JP2008531445A - Hydrogen storage structure - Google Patents

Hydrogen storage structure Download PDF

Info

Publication number
JP2008531445A
JP2008531445A JP2007540443A JP2007540443A JP2008531445A JP 2008531445 A JP2008531445 A JP 2008531445A JP 2007540443 A JP2007540443 A JP 2007540443A JP 2007540443 A JP2007540443 A JP 2007540443A JP 2008531445 A JP2008531445 A JP 2008531445A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
layer
diffusion
storage structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007540443A
Other languages
Japanese (ja)
Inventor
民夫 篠澤
朋也 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JP2008531445A publication Critical patent/JP2008531445A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】
水素吸蔵量が大きく、室温付近での水素吸蔵速度が速い水素貯蔵構造体を提供する。
【解決手段】水素貯蔵構造体は、Mg又はMg系水素吸蔵合金を含む水素吸蔵層と、水素吸蔵層を挟持するように設けられ、水素拡散材を含む水素拡散層と、を備える。 Mg又はMg系水素吸蔵合金を含む水素吸蔵層と、水素拡散材を含む水素拡散層とは交互に複数備えられる。水素拡散材の25℃における水素平衡圧が0.1MPa以上であり、且つMg又は前記Mg系水素吸蔵合金の25℃における水素平衡圧よりも高い。前記水素拡散材は、TiMn、TiCr、TiFe、Ti及びVから選択される少なくとも一種である。さらに、最外層として、水素乖離材を含む水素乖離層を備えてもよい。
【選択図】図6
【Task】
Provided is a hydrogen storage structure having a large hydrogen storage amount and a high hydrogen storage rate near room temperature.
A hydrogen storage structure includes a hydrogen storage layer including Mg or an Mg-based hydrogen storage alloy, and a hydrogen diffusion layer provided so as to sandwich the hydrogen storage layer and including a hydrogen diffusion material. A plurality of hydrogen storage layers including Mg or Mg-based hydrogen storage alloy and a plurality of hydrogen diffusion layers including a hydrogen diffusion material are alternately provided. The hydrogen equilibrium pressure at 25 ° C. of the hydrogen diffusing material is 0.1 MPa or higher and higher than the hydrogen equilibrium pressure at 25 ° C. of Mg or the Mg-based hydrogen storage alloy. The hydrogen diffusing material is at least one selected from TiMn, TiCr, TiFe, Ti and V. Furthermore, you may provide the hydrogen dissociation layer containing a hydrogen dissociation material as an outermost layer.
[Selection] Figure 6

Description

本発明は、積層構造を有する水素貯蔵構造体に関する。   The present invention relates to a hydrogen storage structure having a laminated structure.

近年の環境問題やエネルギー問題等の高まりによって、燃料電池自動車の開発が活発に行われている。燃料電池自動車の開発に当たっては、水素ガスの貯蔵が大きな課題の一つとされており、燃料電池自動車用の高密度水素吸蔵材料の開発が求められている。   Due to the recent increase in environmental and energy problems, fuel cell vehicles are being actively developed. In developing a fuel cell vehicle, storage of hydrogen gas is regarded as one of the major issues, and development of a high-density hydrogen storage material for a fuel cell vehicle is required.

水素吸蔵材料の一例として、TiCrV系水素吸蔵合金に代表される室温吸蔵材料が挙げられる。しかし、TiCrV系水素吸蔵合金は、水素貯蔵量が2質量%強で開発が停滞している。これに対して、水素の貯蔵量が大きいという理由からMg等に代表される軽量な元素を用いる試みがなされている。しかし、Mg系水素吸蔵合金は、水素貯蔵量は大きいものの、水素の吸蔵・放出に350℃以上の高温を必要とし、水素の吸蔵・放出速度も遅いため、実用には適さないという問題を有している。このため、Mg系水素吸蔵合金の水素吸蔵・放出特性を向上させるべく、種々の試みがなされており、例えば、特許文献1(特開2002−105576号公報)には、マグネシウム又はマグネシウム系合金を薄膜化した水素吸蔵層と、その水素吸蔵層を挟むように積層された一対の水素授受層とを備えた水素吸蔵積層構造体が開示されている。また、特許文献2(特開2004−66653号公報)及び特許文献3(特開2004−346418号公報)には水素吸蔵材の多層構造体に関する技術が開示されている。   As an example of the hydrogen storage material, a room temperature storage material represented by a TiCrV-based hydrogen storage alloy can be given. However, the development of TiCrV-based hydrogen storage alloys is stagnant with a hydrogen storage capacity of more than 2 mass%. In contrast, attempts have been made to use lightweight elements typified by Mg and the like because of the large amount of hydrogen stored. However, although Mg-based hydrogen storage alloys have a large amount of hydrogen storage, they require a high temperature of 350 ° C or higher for hydrogen storage / release, and the hydrogen storage / release rate is slow, so they are not suitable for practical use. is doing. For this reason, various attempts have been made to improve the hydrogen storage / release characteristics of Mg-based hydrogen storage alloys. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-105576), magnesium or a magnesium-based alloy is used. A hydrogen storage layered structure including a thinned hydrogen storage layer and a pair of hydrogen transfer layers stacked so as to sandwich the hydrogen storage layer is disclosed. Patent Document 2 (Japanese Patent Laid-Open No. 2004-66653) and Patent Document 3 (Japanese Patent Laid-Open No. 2004-346418) disclose a technique related to a multilayer structure of a hydrogen storage material.

特開2002−105576号公報に開示された水素吸蔵積層構造体は、マグネシウム等からなる水素吸蔵層の両側に、水素ガスを原子状に解離させる触媒層として機能する水素授受層を設けたものである。そして、実施例として、マグネシウム層の両側に一対のパラジウム層を設けた三層構造の水素吸蔵積層構造体が挙げられている。しかし、この水素吸蔵積層構造体の常温付近での水素の吸蔵速度は充分とはいえない。   The hydrogen storage layered structure disclosed in Japanese Patent Application Laid-Open No. 2002-105576 is provided with hydrogen transfer layers functioning as catalyst layers that dissociate hydrogen gas into atoms on both sides of a hydrogen storage layer made of magnesium or the like. is there. And as an Example, the hydrogen storage laminated structure of the three-layer structure which provided a pair of palladium layer on both sides of the magnesium layer is mentioned. However, it cannot be said that the hydrogen occlusion speed of this hydrogen occlusion laminated structure near room temperature is sufficient.

特開2002−105576号公報の実施例に記載のMg又はMg系水素吸蔵合金をPd層で挟持した構成の水素吸蔵積層構造体や、特開2004−66653号公報に記載の多層構造水素吸蔵体及び特開2004−346418号公報に記載の多層構造体のような単なる水素吸蔵材の積層では、350℃以下で且つ高速の水素吸放出を行うことは困難である。   A hydrogen storage laminated structure having a structure in which Mg or Mg-based hydrogen storage alloy described in Examples of Japanese Patent Application Laid-Open No. 2002-105576 is sandwiched between Pd layers, and a multilayer structure hydrogen storage body described in Japanese Patent Application Laid-Open No. 2004-66653 In addition, it is difficult to perform high-speed hydrogen absorption / desorption at 350 ° C. or lower by simply stacking a hydrogen storage material such as the multilayer structure described in Japanese Patent Application Laid-Open No. 2004-346418.

水素吸蔵材を所定の粒度にて使用する場合があるが、粒状物の嵩密度は真密度の60%程度となるため、マグネシウム等の軽合金を用いた場合に嵩密度が著しく低下することとなる。そのため、体積当りの水素吸蔵量を大幅に向上させることは困難である。
特開2002−105576号公報 特開2004−66653号公報 特開2004−346418号公報
The hydrogen storage material may be used at a predetermined particle size, but the bulk density of the granular material is about 60% of the true density, so that the bulk density is significantly reduced when a light alloy such as magnesium is used. Become. Therefore, it is difficult to significantly improve the hydrogen storage amount per volume.
JP 2002-105576 A JP 2004-66653 A JP 2004-346418 A

本発明は上記従来の問題点に鑑みてなされたものであり、水素貯蔵量が大きく、室温付近での水素吸蔵速度が速い水素貯蔵構造体を提供する。   The present invention has been made in view of the above-described conventional problems, and provides a hydrogen storage structure having a large hydrogen storage amount and a high hydrogen storage rate near room temperature.

本発明の第1の態様は、Mg又はMg系水素吸蔵合金を含む水素吸蔵層と、前記水素吸蔵層を挟持するように設けられ、水素拡散材を含む一対の水素拡散層と、を備えた水素貯蔵構造体である。   A first aspect of the present invention includes a hydrogen storage layer containing Mg or an Mg-based hydrogen storage alloy, and a pair of hydrogen diffusion layers provided so as to sandwich the hydrogen storage layer and including a hydrogen diffusion material. It is a hydrogen storage structure.

本発明の第2の態様は、Mg又はMg系水素吸蔵合金を含む水素吸蔵層と、水素拡散材を含む水素拡散層と、を交互に複数備えた水素貯蔵構造体である。   A second aspect of the present invention is a hydrogen storage structure comprising a plurality of hydrogen storage layers containing Mg or Mg-based hydrogen storage alloys and a plurality of hydrogen diffusion layers containing a hydrogen diffusion material alternately.

上記のそれぞれの態様において、前記水素拡散材の25℃における水素平衡圧を、0.1MPa以上で、且つMg又は前記Mg系水素吸蔵合金の25℃における水素平衡圧よりも高いものとしてもよい。   In each of the above aspects, the hydrogen equilibrium pressure at 25 ° C. of the hydrogen diffusing material may be 0.1 MPa or higher and higher than the hydrogen equilibrium pressure at 25 ° C. of Mg or the Mg-based hydrogen storage alloy.

上記のそれぞれの態様において、前記水素拡散材を、TiMn、TiCr、TiFe、Ti及びVから選択される少なくとも一種としてもよい。   In each of the above aspects, the hydrogen diffusing material may be at least one selected from TiMn, TiCr, TiFe, Ti, and V.

上記のそれぞれの態様において、前記水素拡散材を、水素に対して安定であり、且つ前記水素拡散材の25℃における水素拡散係数が、25℃におけるMg又は前記Mg系水素吸蔵合金の水素拡散係数よりも高いものとしてもよい。   In each of the above embodiments, the hydrogen diffusion material is stable against hydrogen, and the hydrogen diffusion coefficient at 25 ° C. of the hydrogen diffusion material is Mg at 25 ° C. or the hydrogen diffusion coefficient of the Mg-based hydrogen storage alloy Higher than that.

上記のそれぞれの態様において、前記水素拡散材を、Niとしてもよい。   In each of the above embodiments, the hydrogen diffusing material may be Ni.

上記のそれぞれの態様において、最外層として、水素乖離材を含む水素乖離層をさらに備えてもよい。   In each of the above aspects, a hydrogen dissociation layer including a hydrogen dissociation material may be further provided as the outermost layer.

本発明によれば、水素貯蔵量が大きく、室温付近での水素吸蔵速度が速い水素貯蔵構造体を提供することができる。   According to the present invention, it is possible to provide a hydrogen storage structure having a large hydrogen storage amount and a high hydrogen storage rate near room temperature.

以下、本発明の水素貯蔵構造体について詳細に説明する。
図1は、第一実施形態に係る本発明の水素貯蔵構造体を表す斜視図である。第一実施形態に係る水素貯蔵構造体は、Mg又はMg系水素吸蔵合金を含む水素吸蔵層1と、水素吸蔵層1を挟持するように設けられ、水素拡散材を含む一対の水素拡散層2と、を備えたものである。
Hereinafter, the hydrogen storage structure of the present invention will be described in detail.
FIG. 1 is a perspective view showing the hydrogen storage structure of the present invention according to the first embodiment. The hydrogen storage structure according to the first embodiment includes a hydrogen storage layer 1 containing Mg or an Mg-based hydrogen storage alloy, and a pair of hydrogen diffusion layers 2 provided to sandwich the hydrogen storage layer 1 and including a hydrogen diffusion material. And.

水素吸蔵層1に含まれるMg又はMg系水素吸蔵合金は水素貯蔵量が高い一方、水素吸放出温度が350〜400℃と室温での水素吸放出の困難な材料である。水素拡散層2に含まれる水素拡散材は、水素原子の拡散移動速度が高い材料である。水素原子は、水素拡散層2の表面及び端面から水素拡散層2に進入し、水素拡散層2内を高速に拡散移動して、水素吸蔵層1に含まれるMg又はMg系水素吸蔵合金により金属水素化物として貯蔵される。そのため、本発明の水素貯蔵構造体は室温で且つ高速の水素吸蔵が可能となる。なお、本発明において室温とは、通常の大気温をいい、一般的に0〜40℃程度を示す。   The Mg or Mg-based hydrogen storage alloy contained in the hydrogen storage layer 1 is a material that has a high hydrogen storage capacity, but has a hydrogen storage / release temperature of 350 to 400 ° C., which is difficult to absorb and release at room temperature. The hydrogen diffusion material contained in the hydrogen diffusion layer 2 is a material having a high diffusion movement speed of hydrogen atoms. Hydrogen atoms enter the hydrogen diffusion layer 2 from the surface and end face of the hydrogen diffusion layer 2, diffuse and move at high speed in the hydrogen diffusion layer 2, and are formed into metal by Mg or Mg-based hydrogen storage alloy contained in the hydrogen storage layer 1. Stored as hydride. Therefore, the hydrogen storage structure of the present invention can store hydrogen at room temperature and at high speed. In addition, in this invention, room temperature means normal atmospheric temperature, and generally shows about 0-40 degreeC.

また、Mg又はMg系水素吸蔵合金は酸化されやすく、酸素や水と反応して発熱等するおそれがあるが、水素吸蔵層1を一対の水素拡散層2で挟持するため、Mg又はMg系水素吸蔵合金が直接大気にふれることがなく、本発明の水素貯蔵構造体を安全に取り扱うことが可能となる。   In addition, Mg or Mg-based hydrogen storage alloy is easily oxidized and may react with oxygen or water to generate heat. However, since the hydrogen storage layer 1 is sandwiched between the pair of hydrogen diffusion layers 2, Mg or Mg-based hydrogen is used. The storage alloy is not directly exposed to the atmosphere, and the hydrogen storage structure of the present invention can be handled safely.

本発明に用いられるMg系水素吸蔵合金の具体例としては、例えば、MgNi、MgAl、MgB等が挙げられる。水素吸蔵層1は、MgNi及びMgから選択される一種の水素吸蔵材を含有することが好ましく、Mgを含有することがさらに好ましい。   Specific examples of the Mg-based hydrogen storage alloy used in the present invention include, for example, MgNi, MgAl, MgB and the like. The hydrogen storage layer 1 preferably contains a kind of hydrogen storage material selected from MgNi and Mg, and more preferably contains Mg.

本発明に用いられる水素拡散材としては、水素原子の拡散移動速度が高い材料であれば特に限定されるものではないが、例えば、25℃における水素平衡圧が0.1MPa以上であり、且つMg又は前記Mg系水素吸蔵合金の25℃における水素平衡圧よりも高い水素平衡圧を示す材料が好ましい。このような材料を用いることにより、室温における水素乖離性が改善され、水素吸蔵温度及び水素吸蔵速度を大幅に向上させることができる。   The hydrogen diffusing material used in the present invention is not particularly limited as long as it has a high diffusion rate of hydrogen atoms. For example, the hydrogen equilibrium pressure at 25 ° C. is 0.1 MPa or more, and Mg Or the material which shows a hydrogen equilibrium pressure higher than the hydrogen equilibrium pressure in 25 degreeC of the said Mg-type hydrogen storage alloy is preferable. By using such a material, the hydrogen dissociation property at room temperature can be improved, and the hydrogen storage temperature and the hydrogen storage rate can be greatly improved.

25℃における水素平衡圧が0.1MPa以上であり、且つMg又は前記Mg系水素吸蔵合金の25℃における水素平衡圧よりも高い水素平衡圧を示す材料の具体例としては、例えば、TiMn、TiCr、TiFe、Ti及びVから選択される少なくとも一種が挙げられる。   Specific examples of materials having a hydrogen equilibrium pressure at 25 ° C. of 0.1 MPa or more and a hydrogen equilibrium pressure higher than that of Mg or the Mg-based hydrogen storage alloy at 25 ° C. include, for example, TiMn, TiCr At least one selected from TiFe, Ti and V.

材料の水素平衡圧は、PCT(Pressure−Composition−Temperature 以下同じ)装置により測定したPCT曲線から求めることが可能である(ジーベルツ法)。   The hydrogen equilibrium pressure of the material can be determined from a PCT curve measured by a PCT (Pressure-Composition-Temperature).

本発明に用いられる水素拡散材としては、水素に対して安定であり、且つ25℃における水素拡散係数が、25℃におけるMg又はMg系水素吸蔵合金の水素拡散係数よりも高い材料も好ましい。本発明において、水素拡散材が水素に対して安定であるとは、本発明の水素貯蔵構造体が使用される環境下で水素化物を形成しない程度に安定であることをいう。   As the hydrogen diffusion material used in the present invention, a material that is stable against hydrogen and has a hydrogen diffusion coefficient at 25 ° C. higher than that of Mg or Mg-based hydrogen storage alloy at 25 ° C. is also preferable. In the present invention, the fact that the hydrogen diffusing material is stable against hydrogen means that the hydrogen diffusing material is stable to the extent that hydride is not formed in the environment where the hydrogen storage structure of the present invention is used.

Mg又はMg系水素吸蔵合金が水素を吸蔵・放出することにより水素吸蔵層1は収縮・膨張する。一方、水素化物を作りにくい水素拡散材を含む水素拡散層2も程度の差はあるが膨張・収縮(体積変化)する。そのため、水素を吸蔵して収縮した水素吸蔵層1には、体積変化をほとんど生じないか又は膨張する水素拡散層2から水素吸蔵層1が収縮しないように引張歪みが与えられ水素吸蔵がスムーズに行われるようになる。その結果として、低温での水素吸蔵を実現できる。   The hydrogen storage layer 1 contracts and expands when Mg or Mg-based hydrogen storage alloy stores and releases hydrogen. On the other hand, the hydrogen diffusion layer 2 containing a hydrogen diffusion material that is difficult to form a hydride also expands and contracts (changes in volume) to some extent. Therefore, the hydrogen storage layer 1 that has contracted by storing hydrogen has a tensile strain so that the volume of the hydrogen storage layer 1 hardly changes or the hydrogen storage layer 1 does not contract from the expanding hydrogen diffusion layer 2 so that the hydrogen storage is smooth. To be done. As a result, hydrogen storage at a low temperature can be realized.

水素に対して安定であり、且つ25℃における水素拡散係数が、25℃におけるMg又はMg系水素吸蔵合金の水素拡散係数よりも高い材料の具体例としては、Ni等が挙げられる。   Specific examples of materials that are stable to hydrogen and have a hydrogen diffusion coefficient at 25 ° C. higher than that of Mg or Mg-based hydrogen storage alloys at 25 ° C. include Ni and the like.

材料の水素拡散係数は、電気化学的放出法や昇温脱離法により測定可能である。   The hydrogen diffusion coefficient of the material can be measured by an electrochemical release method or a temperature programmed desorption method.

水素吸蔵層1の膜厚は、10〜1000nmが好ましく、10〜100nmがさらに好ましい。水素吸蔵層1の膜厚が10〜1000nmであれば迅速な水素吸蔵及び放出を実現できる。   10-1000 nm is preferable and, as for the film thickness of the hydrogen storage layer 1, 10-100 nm is more preferable. If the film thickness of the hydrogen storage layer 1 is 10 to 1000 nm, rapid hydrogen storage and release can be realized.

水素拡散層2の膜厚は、1〜150nmが好ましく、10〜100nmがさらに好ましい。水素拡散層2の膜厚が1〜150nmであれば迅速な水素吸蔵及び放出を実現できる。   The film thickness of the hydrogen diffusion layer 2 is preferably 1 to 150 nm, and more preferably 10 to 100 nm. If the film thickness of the hydrogen diffusion layer 2 is 1 to 150 nm, rapid hydrogen storage and release can be realized.

水素吸蔵層1の膜厚Aと水素拡散層2の膜厚(2層の膜厚の合計)Bとの比A/Bは、1.5以上が好ましく、2以上がさらに好ましい。A/Bが1.5以上であれば迅速な水素吸蔵及び放出を実現できる。また、A/Bが大き過ぎることによる水素吸蔵時間の著しい増大を防ぐためにA/Bは10以下が好ましい。   The ratio A / B between the film thickness A of the hydrogen storage layer 1 and the film thickness B of the hydrogen diffusion layer 2 (the total film thickness of the two layers) B is preferably 1.5 or more, and more preferably 2 or more. If A / B is 1.5 or more, rapid hydrogen storage and release can be realized. In order to prevent a significant increase in the hydrogen storage time due to A / B being too large, A / B is preferably 10 or less.

第一実施形態に係る水素貯蔵構造体の形状、大きさ等は特に限定されるものではないが、水素貯蔵構造体の短手方向の長さは20cm以下が好ましい。水素貯蔵構造体の短手方向の長さを20cm以下とすることにより、迅速な水素吸蔵及び放出を実現できる。   The shape, size, and the like of the hydrogen storage structure according to the first embodiment are not particularly limited, but the length in the short direction of the hydrogen storage structure is preferably 20 cm or less. By setting the length of the hydrogen storage structure in the short direction to 20 cm or less, rapid hydrogen storage and release can be realized.

図2は、第二実施形態に係る本発明の水素貯蔵構造体を表す斜視図である。第二実施形態に係る水素貯蔵構造体は、第一実施形態に係る本発明の水素貯蔵構造体の最外層に、水素乖離材を含む水素乖離層3をさらに備えたものである。第二実施形態に係る水素貯蔵構造体は、その両面に水素乖離層3を備えるが、片方の面にのみ水素乖離層3を備えるようにしてもよい。   FIG. 2 is a perspective view showing the hydrogen storage structure of the present invention according to the second embodiment. The hydrogen storage structure according to the second embodiment further includes a hydrogen dissociation layer 3 including a hydrogen dissociation material in the outermost layer of the hydrogen storage structure of the present invention according to the first embodiment. The hydrogen storage structure according to the second embodiment includes the hydrogen dissociation layer 3 on both surfaces thereof, but may include the hydrogen dissipation layer 3 only on one surface.

水素乖離材は、水素分子を水素原子に乖離させる触媒作用を発現する材料である。水素乖離材の具体例としては、例えば、V、Pdが挙げられる。これらの中でも、強力な触媒作用を示すPdが好ましい。最外層に水素乖離層3を備えることにより、迅速な水素吸蔵を実現できる。   A hydrogen dissociation material is a material that exhibits a catalytic action that dissociates hydrogen molecules into hydrogen atoms. Specific examples of the hydrogen-dissociating material include V and Pd. Among these, Pd showing a strong catalytic action is preferable. By providing the hydrogen dissociation layer 3 in the outermost layer, rapid hydrogen storage can be realized.

第二実施形態に係る水素貯蔵構造体においては、水素乖離層3には水素拡散材よりも水素乖離能力に優れる材料が用いられる。個々の材料についての水素乖離能力の優劣は知られており、例えば、Pdの水素乖離能力はVのそれよりも優れる。そのため、水素拡散層2がVにより構成される場合、水素乖離層3はPdにより構成されることとなる。   In the hydrogen storage structure according to the second embodiment, the hydrogen detaching layer 3 is made of a material that is superior in hydrogen detaching ability to the hydrogen diffusing material. The superiority or inferiority of the hydrogen dissociation ability of each material is known. For example, the hydrogen dissociation ability of Pd is superior to that of V. Therefore, when the hydrogen diffusion layer 2 is composed of V, the hydrogen dissociation layer 3 is composed of Pd.

水素乖離層3の膜厚は5nm以下が好ましい。水素乖離層3の膜厚が5nm以下であれば迅速な水素吸蔵及び放出を実現できる。   The film thickness of the hydrogen dissociation layer 3 is preferably 5 nm or less. If the thickness of the hydrogen dissociation layer 3 is 5 nm or less, rapid hydrogen storage and release can be realized.

なお、第二実施形態に係る水素貯蔵構造体における水素吸蔵層1及び水素拡散層2の膜厚の好ましい範囲及び好ましい材料、並びに水素貯蔵構造体の短手方向の長さの好ましい範囲等は、第一実施形態の場合と同様である。   In addition, the preferable range and preferable materials of the film thickness of the hydrogen storage layer 1 and the hydrogen diffusion layer 2 in the hydrogen storage structure according to the second embodiment, the preferable range of the length in the short direction of the hydrogen storage structure, etc. This is the same as in the case of the first embodiment.

図3は、第三実施形態に係る本発明の水素貯蔵構造体を表す斜視図である。第三実施形態に係る水素貯蔵構造体は、Mg又はMg系水素吸蔵合金を含む水素吸蔵層1と、水素拡散材を含む水素拡散層2と、を交互に複数備え、最外層に水素乖離材を含む水素乖離層3をさらに備える。   FIG. 3 is a perspective view showing the hydrogen storage structure of the present invention according to the third embodiment. The hydrogen storage structure according to the third embodiment includes a plurality of hydrogen storage layers 1 containing Mg or an Mg-based hydrogen storage alloy and hydrogen diffusion layers 2 containing a hydrogen diffusion material alternately, and a hydrogen dissociation material in the outermost layer. The hydrogen dissociation layer 3 containing is further provided.

トータルの水素吸蔵層の膜厚が同じであっても単層の水素吸蔵層を備える第一実施形態に係る水素貯蔵構造体よりも複数の水素吸蔵層を備える第三実施形態に係る水素貯蔵構造体のほうが水素吸蔵速度及び水素貯蔵量に優れる。これは、水素吸蔵層が単層よりも複数層存在する方が水素拡散層2と水素吸蔵層1との接触面積が大きくなり、且つ拡散距離が短くなるためであると考えられる。Mg等の水素吸蔵材は、所謂室温型の水素吸蔵材とは異なり、水素を固溶するのではなくMgH2様の水素化物(イオン結合)を形成して水素を貯蔵する。生成したMgH2自体が水素拡散を妨げ、材料表面が水素化された時点でその後の水素拡散は著しく遅くなると考えられている。しかし、水素吸蔵層1と水素拡散層2とを交互に複数備えることにより水素拡散層2と水素吸蔵層1との接触面積を大きくすることができるため材料表面の水素化による水素拡散能の低下の影響を受けにくくなる。 The hydrogen storage structure according to the third embodiment including a plurality of hydrogen storage layers than the hydrogen storage structure according to the first embodiment including a single hydrogen storage layer even when the total hydrogen storage layer has the same thickness. The body is superior in hydrogen storage rate and hydrogen storage capacity. This is considered to be because the contact area between the hydrogen diffusion layer 2 and the hydrogen storage layer 1 increases and the diffusion distance decreases when there are a plurality of hydrogen storage layers rather than a single layer. Unlike a so-called room temperature type hydrogen storage material, a hydrogen storage material such as Mg does not dissolve hydrogen but forms a hydride (ion bond) like MgH 2 to store hydrogen. It is believed that the produced MgH 2 itself hinders hydrogen diffusion and the subsequent hydrogen diffusion is significantly slowed when the material surface is hydrogenated. However, since the contact area between the hydrogen diffusing layer 2 and the hydrogen occluding layer 1 can be increased by providing a plurality of the hydrogen occluding layers 1 and the hydrogen diffusing layers 2 alternately, the hydrogen diffusing capacity is reduced due to hydrogenation of the material surface. It becomes difficult to be affected.

第三実施形態に係る水素貯蔵構造体が水素乖離層3を備えない場合、最外層は水素拡散層2であることが好ましい。水素拡散層2を最外層とすることにより、Mg又はMg系水素吸蔵合金を含む水素吸蔵層1が直接大気とふれることがなく安全に水素貯蔵構造体を取り扱うことができる。   When the hydrogen storage structure according to the third embodiment does not include the hydrogen separation layer 3, the outermost layer is preferably the hydrogen diffusion layer 2. By using the hydrogen diffusion layer 2 as the outermost layer, the hydrogen storage layer 1 containing Mg or an Mg-based hydrogen storage alloy can be handled safely without being in direct contact with the atmosphere.

第三実施形態に係る水素貯蔵構造体においては、水素吸蔵層1及び水素拡散層2の積層数は、合計で10層以上とすることが好ましく、特に100層以上とすることが好ましい。   In the hydrogen storage structure according to the third embodiment, the total number of layers of the hydrogen storage layer 1 and the hydrogen diffusion layer 2 is preferably 10 layers or more, and particularly preferably 100 layers or more.

水素吸蔵層1の膜厚は、10〜100nmが好ましく、10〜50nmが特に好ましい。水素吸蔵層1の膜厚が10〜100nmであれば迅速な水素吸蔵及び放出を実現できる。   10-100 nm is preferable and, as for the film thickness of the hydrogen storage layer 1, 10-50 nm is especially preferable. If the film thickness of the hydrogen storage layer 1 is 10 to 100 nm, rapid hydrogen storage and release can be realized.

水素拡散層2の膜厚は、1〜10nmが好ましく、1〜5nmがさらに好ましい。水素拡散層2の膜厚が1〜10nmであれば迅速な水素吸蔵及び放出を実現できる。   The film thickness of the hydrogen diffusion layer 2 is preferably 1 to 10 nm, and more preferably 1 to 5 nm. If the film thickness of the hydrogen diffusion layer 2 is 1 to 10 nm, rapid hydrogen storage and release can be realized.

必要に応じて備えられる水素乖離層3の膜厚は、5nm以下が好ましい。水素乖離層3の膜厚が5nm以下であれば迅速な水素吸蔵及び放出を実現できる。   As for the film thickness of the hydrogen dissociation layer 3 provided as needed, 5 nm or less is preferable. If the thickness of the hydrogen dissociation layer 3 is 5 nm or less, rapid hydrogen storage and release can be realized.

水素吸蔵層1の膜厚A(水素吸蔵層1全ての膜厚の合計)と水素拡散層2の膜厚(水素拡散層2全ての膜厚の合計)Bとの比A/Bは、1以上が好ましく、5以上がさらに好ましく、10以上が特に好ましい。A/Bが1以上であれば迅速な水素吸蔵及び放出を実現できる。なお、水素乖離層3を備える場合、Bは水素拡散層2全ての膜厚と水素乖離層3全ての膜厚の合計を意味する。   The ratio A / B of the film thickness A of the hydrogen storage layer 1 (the total film thickness of all the hydrogen storage layers 1) and the film thickness of the hydrogen diffusion layer 2 (the total film thickness of all the hydrogen diffusion layers 2) B is 1 The above is preferable, 5 or more is more preferable, and 10 or more is particularly preferable. If A / B is 1 or more, rapid hydrogen storage and release can be realized. In the case where the hydrogen dissociation layer 3 is provided, B means the total thickness of all the hydrogen diffusion layers 2 and all the hydrogen dissociation layers 3.

また、水素吸蔵時間が数時間以上となることを防ぐためA/Bは50以下が好ましい。   Further, A / B is preferably 50 or less in order to prevent the hydrogen storage time from being several hours or more.

なお、第三実施形態に係る水素貯蔵構造体における短手方向の長さの好ましい範囲等は、第一実施形態の場合と同様である。   In addition, the preferable range etc. of the length of the transversal direction in the hydrogen storage structure which concerns on 3rd embodiment are the same as that of the case of 1st embodiment.

本発明の水素貯蔵構造体の製造方法は特に限定されるものではなく、スパッタ法、フラッシュ蒸発法等のすでに公知の薄膜形成方法を用いて製造すればよい。   The method for producing the hydrogen storage structure of the present invention is not particularly limited, and may be produced using an already known thin film forming method such as sputtering or flash evaporation.

以下、実施例を参照して本発明をさらに詳細に説明するが、本発明は下記実施例により限定されるものではない。
−水素貯蔵構造体の製造−
多元スパッタ装置を用い、A4サイズのアルミニウム薄膜上に表1乃至表5に記載の処方に基づき水素吸蔵層、水素拡散層及び必要に応じて水素乖離層を積層することにより水素貯蔵構造体#1乃至#35を製造した。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail with reference to an Example, this invention is not limited by the following Example.
-Production of hydrogen storage structure-
Hydrogen storage structure # 1 by laminating a hydrogen storage layer, a hydrogen diffusion layer and, if necessary, a hydrogen dissociation layer on an A4 size aluminum thin film using a multi-source sputtering apparatus based on the formulations described in Tables 1 to 5 Thru # 35 were produced.

−水素吸蔵量の測定−
水素吸蔵量は、PCT装置により測定した。
-Measurement of hydrogen storage amount-
The amount of hydrogen occlusion was measured with a PCT apparatus.

図4は、PCT装置の概略構成を示す図である。装置10において、水素ボンベ11と、バッファー容器12と、試料容器13と、真空ポンプ14と、圧力計15と、湿式流量計18とが配管16を介して接続されている。配管16には、バルブV0〜V6が設けられている。試料容器13はヒーター19に覆われており、試料容器13中の水素貯蔵構造体(例えば、測定試料17)が加熱されるようになっている。   FIG. 4 is a diagram illustrating a schematic configuration of the PCT apparatus. In the apparatus 10, a hydrogen cylinder 11, a buffer container 12, a sample container 13, a vacuum pump 14, a pressure gauge 15, and a wet flow meter 18 are connected via a pipe 16. The piping 16 is provided with valves V0 to V6. The sample container 13 is covered with a heater 19 so that the hydrogen storage structure (for example, the measurement sample 17) in the sample container 13 is heated.

まず、バルブV0、V5及びV6を閉じ、バルブV1〜V4を開けた状態で、バッファー容器12、試料容器13及び配管16中の圧力が所定圧力以下になるまで真空ポンプ14を作動させる。   First, with the valves V0, V5, and V6 closed and the valves V1 to V4 opened, the vacuum pump 14 is operated until the pressure in the buffer container 12, the sample container 13, and the pipe 16 is equal to or lower than a predetermined pressure.

バッファー容器12、試料容器13及び配管16中の圧力が所定圧力以下になったらバルブV3を閉じて真空ポンプ14を止める。   When the pressure in the buffer container 12, the sample container 13 and the pipe 16 becomes a predetermined pressure or less, the valve V3 is closed and the vacuum pump 14 is stopped.

バルブV2を閉じ、バルブV0を開けてバッファー容器12に水素ガスを満たした後、バルブV0及びバルブV1を閉じる。このときに圧力計15で測定された圧力をP0とする。次に、バルブV2を開けてバッファー容器12と試料容器13との圧力を一定にする。このときに圧力計15で測定された圧力をP1とする。圧力P0及びP1の圧力差から水素吸蔵量(mass%)を求める。なお、この方式は一般にジーベルツ法(容量法)として知られている。   After the valve V2 is closed and the valve V0 is opened to fill the buffer container 12 with hydrogen gas, the valve V0 and the valve V1 are closed. At this time, the pressure measured by the pressure gauge 15 is P0. Next, the valve V2 is opened to make the pressure in the buffer container 12 and the sample container 13 constant. At this time, the pressure measured by the pressure gauge 15 is defined as P1. The hydrogen storage amount (mass%) is obtained from the pressure difference between the pressures P0 and P1. This method is generally known as the Siebert method (capacitance method).

−放出水素量の測定−
図4に示す装置10において、ヒーター19により所定温度に加熱された試料容器13内に水素を吸蔵させた測定試料17を配置し、バルブV0〜V2、V4及びV5を閉じ、バルブV3及びV6を開いた状態で、各温度で放出される水素を湿式流量計18に導入して水素体積を測定することにより放出水素量を求めた。
-Measurement of released hydrogen amount-
In the apparatus 10 shown in FIG. 4, a measurement sample 17 in which hydrogen is occluded is placed in a sample container 13 heated to a predetermined temperature by a heater 19, valves V0 to V2, V4 and V5 are closed, and valves V3 and V6 are closed. In an open state, hydrogen released at each temperature was introduced into the wet flow meter 18 and the hydrogen volume was measured to determine the amount of hydrogen released.

また、得られた放出水素量に基づいて、体積貯蔵密度を求めた。ここで、体積貯蔵密度とは、水素貯蔵構造体単位体積あたりに貯蔵される水素ガスの体積をいう。   Further, the volume storage density was determined based on the obtained amount of released hydrogen. Here, the volume storage density refers to the volume of hydrogen gas stored per unit volume of the hydrogen storage structure.

上述の方法により製造した水素貯蔵構造体#1乃至#4について所定温度における90%水素吸蔵時間(吸蔵時間)及び90%水素放出時間(放出時間)を求めた。得られた結果を表1に示す。なお、90%水素吸蔵時間とは水素吸蔵量の最大値の90%の量の水素が吸蔵されるのに要する時間をいい、90%水素放出時間とは水素吸蔵量の最大値の90%の量の水素が放出されるのに要する時間をいう。   For the hydrogen storage structures # 1 to # 4 manufactured by the above-described method, 90% hydrogen storage time (storage time) and 90% hydrogen release time (release time) at a predetermined temperature were determined. The obtained results are shown in Table 1. The 90% hydrogen storage time refers to the time required to store 90% of the maximum hydrogen storage amount, and the 90% hydrogen release time refers to 90% of the maximum hydrogen storage amount. The time required for the amount of hydrogen released.

Figure 2008531445
Figure 2008531445

表1に示すように、本発明に係る水素貯蔵構造体#1乃至#3は150℃で水素を吸蔵し、300℃で水素を放出することが可能であることがわかる。Mg薄膜である水素貯蔵構造体#4と比較して水素吸蔵特性及び水素放出特性が改善されたことがわかる。   As shown in Table 1, the hydrogen storage structures # 1 to # 3 according to the present invention can absorb hydrogen at 150 ° C. and release hydrogen at 300 ° C. It can be seen that the hydrogen storage characteristics and the hydrogen release characteristics are improved as compared with the hydrogen storage structure # 4 which is an Mg thin film.

上述の方法により製造した水素貯蔵構造体#5(#1と同じ)乃至#7について、所定温度における90%水素吸蔵時間(吸蔵時間)及び90%水素放出時間(放出時間)を求めた。得られた結果を表2に示す。   With respect to hydrogen storage structures # 5 (same as # 1) to # 7 manufactured by the above-described method, 90% hydrogen storage time (storage time) and 90% hydrogen release time (release time) at a predetermined temperature were determined. The obtained results are shown in Table 2.

Figure 2008531445
Figure 2008531445

表2から、水素吸蔵層の膜厚を薄くすることで水素放出温度を低減可能であることがわかる。   Table 2 shows that the hydrogen release temperature can be reduced by reducing the thickness of the hydrogen storage layer.

上述の方法により製造した、水素貯蔵構造体#8乃至#18について、25℃における水素吸蔵量、体積貯蔵密度及び90%水素吸蔵時間を求めた。得られた結果を表3に示す。   For the hydrogen storage structures # 8 to # 18 produced by the above-described method, the hydrogen storage amount, volume storage density, and 90% hydrogen storage time at 25 ° C. were determined. The obtained results are shown in Table 3.

Figure 2008531445
Figure 2008531445

表3から、25℃において水素吸蔵が可能であることがわかる。さらに、以下のことがわかる。   Table 3 shows that hydrogen storage is possible at 25 degreeC. Further, the following can be understood.

(1) 水素貯蔵構造体#8乃至#10の結果から、水素乖離層を設けない場合、水素吸蔵層の膜厚を薄くすることにより、吸蔵時間を短くすることができることがわかる。 (1) From the results of the hydrogen storage structures # 8 to # 10, it is understood that the occlusion time can be shortened by reducing the thickness of the hydrogen occlusion layer when no hydrogen dissociation layer is provided.

(2) 水素貯蔵構造体#11乃至13の結果から、水素乖離層を設けない場合に水素吸蔵層の膜厚を100nm以上(且つA/Bを2以上)とすることにより、25℃における水素吸蔵量が多く、かつ90%水素吸蔵時間が短くなることがわかる。 (2) From the results of the hydrogen storage structures # 11 to # 13, when no hydrogen dissociation layer is provided, the hydrogen storage layer has a thickness of 100 nm or more (and A / B is 2 or more). It can be seen that the amount of occlusion is large and the 90% hydrogen occlusion time is shortened.

(3) 水素貯蔵構造体#14乃至#17の結果から、水素乖離層を設ける場合にA/Bを1.7〜2.6にすることにより25℃における水素吸蔵量、体積貯蔵密度及び90%水素吸蔵時間に優れた水素貯蔵構造体を得ることができることがわかる。 (3) From the results of the hydrogen storage structures # 14 to # 17, the hydrogen storage amount at 25 ° C., the volume storage density, and 90 by setting A / B to 1.7 to 2.6 when a hydrogen dissociation layer is provided. It can be seen that a hydrogen storage structure excellent in% hydrogen storage time can be obtained.

(4) 水素貯蔵構造体#17及び#18の結果から、水素乖離層(Pd)の有無により水素吸蔵速度に差が生ずることがわかる。 (4) From the results of the hydrogen storage structures # 17 and # 18, it can be seen that there is a difference in the hydrogen storage rate depending on the presence or absence of the hydrogen dissociation layer (Pd).

上述の方法により製造した水素貯蔵構造体#19乃至#32について、25℃における水素吸蔵量、体積貯蔵密度及び90%水素吸蔵時間を求めた。得られた結果を表4に示す。   For the hydrogen storage structures # 19 to # 32 produced by the above-described method, the hydrogen storage amount, volume storage density, and 90% hydrogen storage time at 25 ° C. were determined. The results obtained are shown in Table 4.

Figure 2008531445
Figure 2008531445

表4から、25℃において水素吸蔵が可能であることがわかる。さらに、以下のことがわかる。   Table 4 shows that hydrogen storage is possible at 25 degreeC. Furthermore, the following can be understood.

(1) 水素貯蔵構造体#19及び#20の結果から、水素吸蔵層の層数を増やすことにより90%水素貯蔵時間を短くすることができることがわかる。 (1) From the results of the hydrogen storage structures # 19 and # 20, it can be seen that the 90% hydrogen storage time can be shortened by increasing the number of hydrogen storage layers.

(2) 水素貯蔵構造体#21乃至#23の結果から、水素吸蔵層及び水素拡散層の積層数が多くなるに従い、水素吸蔵量及び90%水素吸蔵時間が向上することがわかる。 (2) From the results of the hydrogen storage structures # 21 to # 23, it is understood that the hydrogen storage amount and the 90% hydrogen storage time are improved as the number of the hydrogen storage layers and the hydrogen diffusion layers is increased.

(3) 水素貯蔵構造体#24乃至28の結果から、水素吸蔵層及び水素拡散層の積層数を多くする場合、水素吸蔵層の膜厚を薄くすることにより、90%水素吸蔵時間を短くすることができることがわかる。 (3) From the results of hydrogen storage structures # 24 to 28, when increasing the number of hydrogen storage layers and hydrogen diffusion layers, 90% hydrogen storage time is shortened by reducing the thickness of the hydrogen storage layer. You can see that

(4) 水素貯蔵構造体#29乃至32の結果から、水素吸蔵層及び水素拡散層の積層数を多くする場合、水素拡散層の膜厚を厚くすることにより、90%水素吸蔵時間を短くすることができることがわかる。
(5) 水素貯蔵構造体#24乃至32の結果から、水素吸蔵層及び水素拡散層の積層数を多くする場合、A/Bを1-15とすることにより、90%水素吸蔵時間に優れた水素貯蔵構造体を得ることができることがわかる。
(4) From the results of hydrogen storage structures # 29 to 32, when increasing the number of hydrogen storage layers and hydrogen diffusion layers, 90% hydrogen storage time is shortened by increasing the thickness of the hydrogen diffusion layer. You can see that
(5) From the results of the hydrogen storage structures # 24 to 32, when increasing the number of layers of the hydrogen storage layer and the hydrogen diffusion layer, 90% hydrogen storage time was excellent by setting A / B to 1-15. It can be seen that a hydrogen storage structure can be obtained.

上述の方法により製造した水素貯蔵構造体#33乃至#35については、膜厚60nmの水素拡散層が水素乖離層と接するようにした。また、水素貯蔵構造体#35断面の透過型電子顕微鏡写真を図5に示す。   In the hydrogen storage structures # 33 to # 35 manufactured by the above-described method, the hydrogen diffusion layer having a thickness of 60 nm was in contact with the hydrogen dissociation layer. Further, FIG. 5 shows a transmission electron micrograph of the cross section of the hydrogen storage structure # 35.

Figure 2008531445
Figure 2008531445

水素貯蔵構造体#33乃至#35を用いて、水素放出量の温度依存性を調べた。得られた結果を図6に示す。図6から、水素拡散材としてNiを用いることにより100℃未満からの水素放出を実現できることがわかる。   Using the hydrogen storage structures # 33 to # 35, the temperature dependence of the hydrogen release amount was examined. The obtained result is shown in FIG. It can be seen from FIG. 6 that hydrogen release from below 100 ° C. can be realized by using Ni as the hydrogen diffusion material.

第一実施形態に係る本発明の水素貯蔵構造体を表す斜視図である。It is a perspective view showing the hydrogen storage structure of the present invention concerning a first embodiment. 第二実施形態に係る本発明の水素貯蔵構造体を表す斜視図である。It is a perspective view showing the hydrogen storage structure of the present invention concerning a second embodiment. 第三実施形態に係る本発明の水素貯蔵構造体を表す斜視図である。It is a perspective view showing the hydrogen storage structure of the present invention concerning a third embodiment. PCT装置の概略構成図である。It is a schematic block diagram of a PCT apparatus. 水素貯蔵構造体#35の断面の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the cross section of hydrogen storage structure # 35. 図6は、水素貯蔵構造体#33乃至#35の、水素放出量の温度依存性を示す図である。FIG. 6 is a diagram showing the temperature dependence of the hydrogen release amount of the hydrogen storage structures # 33 to # 35.

符号の説明Explanation of symbols

1 水素吸蔵層
2 水素拡散層
3 水素乖離層
1 Hydrogen storage layer 2 Hydrogen diffusion layer 3 Hydrogen separation layer

Claims (7)

Mg又はMg系水素吸蔵合金を含む水素吸蔵層と、前記水素吸蔵層を挟持するように設けられ、水素拡散材を含む一対の水素拡散層と、を備えた水素貯蔵構造体。   A hydrogen storage structure comprising: a hydrogen storage layer including Mg or an Mg-based hydrogen storage alloy; and a pair of hydrogen diffusion layers provided so as to sandwich the hydrogen storage layer and including a hydrogen diffusion material. Mg又はMg系水素吸蔵合金を含む水素吸蔵層と、水素拡散材を含む水素拡散層と、を交互に複数備えた水素貯蔵構造体。 A hydrogen storage structure comprising a plurality of hydrogen storage layers containing Mg or a Mg-based hydrogen storage alloy and hydrogen diffusion layers containing a hydrogen diffusion material alternately. 前記水素拡散材の25℃における水素平衡圧が0.1MPa以上であり、且つMg又は前記Mg系水素吸蔵合金の25℃における水素平衡圧よりも高い、請求項1または2に記載の水素貯蔵構造体。   The hydrogen storage structure according to claim 1 or 2, wherein a hydrogen equilibrium pressure at 25 ° C of the hydrogen diffusing material is 0.1 MPa or more and higher than a hydrogen equilibrium pressure at 25 ° C of Mg or the Mg-based hydrogen storage alloy. body. 前記水素拡散材が、TiMn、TiCr、TiFe、Ti及びVから選択される少なくとも一種である請求項1乃至3の何れか1項に記載の水素貯蔵構造体。   4. The hydrogen storage structure according to claim 1, wherein the hydrogen diffusing material is at least one selected from TiMn, TiCr, TiFe, Ti, and V. 5. 前記水素拡散材が水素に対して安定であり、且つ前記水素拡散材の25℃における水素拡散係数が、25℃におけるMg又は前記Mg系水素吸蔵合金の水素拡散係数よりも高い、請求項1または2に記載の水素貯蔵構造体。   The hydrogen diffusion material is stable against hydrogen, and the hydrogen diffusion coefficient of the hydrogen diffusion material at 25 ° C is higher than the hydrogen diffusion coefficient of Mg or the Mg-based hydrogen storage alloy at 25 ° C. 3. The hydrogen storage structure according to 2. 前記水素拡散材が、Niである請求項1、2または5の何れか1項に記載の水素貯蔵構造体。   The hydrogen storage structure according to claim 1, wherein the hydrogen diffusion material is Ni. 最外層として、水素乖離材を含む水素乖離層をさらに備えた請求項1から6の何れか1項に記載の水素貯蔵構造体。
The hydrogen storage structure according to any one of claims 1 to 6, further comprising a hydrogen dissociation layer containing a hydrogen dissociation material as an outermost layer.
JP2007540443A 2005-03-31 2006-03-31 Hydrogen storage structure Withdrawn JP2008531445A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005105085 2005-03-31
PCT/JP2006/307390 WO2006104274A1 (en) 2005-03-31 2006-03-31 Hydrogen storage structure

Publications (1)

Publication Number Publication Date
JP2008531445A true JP2008531445A (en) 2008-08-14

Family

ID=36572081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007540443A Withdrawn JP2008531445A (en) 2005-03-31 2006-03-31 Hydrogen storage structure

Country Status (5)

Country Link
EP (1) EP1866238A1 (en)
JP (1) JP2008531445A (en)
KR (1) KR20070116281A (en)
CN (1) CN101151208A (en)
WO (1) WO2006104274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205257A (en) * 2014-04-22 2015-11-19 株式会社テックコーポレーション Hydrogen emission device, hydrogen gas supply method and hydrogen emission system
WO2018230447A1 (en) * 2017-06-15 2018-12-20 株式会社クリーンプラネット Heat generating device and method for generating heat

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045335B2 (en) 2010-08-18 2015-06-02 The Governors Of The University Of Alberta Kinetic stabilization of magnesium hydride
WO2012021996A1 (en) * 2010-08-18 2012-02-23 The Governors Of The University Of Alberta Kinetic stabilization of magnesium hydride
KR101524350B1 (en) * 2013-05-06 2015-06-05 전북대학교산학협력단 Hydrogen permeation barrier layer comprising active/passive hybrid blocking layers
CN103668070A (en) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 Magnesium-base hydrogen storage film and preparation method thereof
RU168280U1 (en) * 2015-12-16 2017-01-26 Акционерное общество "ТЕХНОАТОМ" HETTER DEVICE FOR MOLECULAR HYDROGEN SELECTIVE PUMPING
CN113739067B (en) * 2021-09-02 2023-01-13 西北工业大学太仓长三角研究院 Dual-cavity-based hydrogen charging control device, hydrogen charging control method and equipment
CN114182205B (en) * 2021-12-10 2023-05-16 中国工程物理研究院材料研究所 Metal hydrogen absorption film with nano multilayer structure and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006024A1 (en) * 1999-07-16 2001-01-25 Sumitomo Electric Industries, Ltd. Hydrogen-occluding material and process for producing the same
US6627148B1 (en) * 1999-11-06 2003-09-30 Energy Conversion Devices, Inc. Safe, ecomomical transport of hydrogen in pelletized form
JP2002105576A (en) * 2000-09-29 2002-04-10 Univ Hiroshima Hydrogen occluding laminated structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205257A (en) * 2014-04-22 2015-11-19 株式会社テックコーポレーション Hydrogen emission device, hydrogen gas supply method and hydrogen emission system
WO2018230447A1 (en) * 2017-06-15 2018-12-20 株式会社クリーンプラネット Heat generating device and method for generating heat
JPWO2018230447A1 (en) * 2017-06-15 2019-06-27 株式会社クリーンプラネット Heating device and heating method
JP2019168221A (en) * 2017-06-15 2019-10-03 株式会社クリーンプラネット Heat generating device and heat generating method
US11971199B2 (en) 2017-06-15 2024-04-30 Clean Planet Inc. Heat generating device and method for generating heat

Also Published As

Publication number Publication date
EP1866238A1 (en) 2007-12-19
WO2006104274A1 (en) 2006-10-05
CN101151208A (en) 2008-03-26
KR20070116281A (en) 2007-12-07

Similar Documents

Publication Publication Date Title
JP2008531445A (en) Hydrogen storage structure
Khafidz et al. The kinetics of lightweight solid-state hydrogen storage materials: A review
JP4078522B2 (en) Hybrid hydrogen storage container and method for storing hydrogen in the container
KR20080004624A (en) Composite hydrogen storage material and methods related thereto
KR101604512B1 (en) Hydrogen storage alloy and hydrogen storage unit using same
Gkanas Metal hydrides: modeling of metal hydrides to be operated in a fuel cell
US8166833B2 (en) State of charge indicator and methods related thereto
JP4147462B2 (en) Multilayer hydrogen storage
WO2011027462A1 (en) Hydrogen storage unit
US20080166573A1 (en) Hydrogens Storage Structure
Park et al. Investigation of coupled AB5 type high-power metal hydride reactors
US4631170A (en) Calcium-nickel-misch metal-aluminum quaternary alloy for hydrogen storage
US8656793B2 (en) State of charge indicator and methods related thereto
JP2004261739A (en) Hydrogen occlusion composite material
JP2001220101A (en) Hydrogen storage method and hydrogen storage device
JP4367084B2 (en) Method for producing Mg-Li-based hydrogen storage alloy
JP3327564B2 (en) Hydrogen storage device
JP2001289397A (en) Hydrogen storage alloy storing container
JP2002105576A (en) Hydrogen occluding laminated structure
JP2004083966A (en) Method for producing hydrogen storage material, and hydrogen storage material
JP4550462B2 (en) Hydrogen storage body, hydrogen storage container, and pressure adjustment method in hydrogen storage container
JP2003172499A (en) Hydrogen storage device
Sabzevar Tailoring sorption properties of nano-sized multilayer structured magnesium for hydrogen storage
Zahiri Sabzevar Tailoring sorption properties of nano-sized multilayer structured magnesium for hydrogen storage
JP2004346418A (en) Compound hydrogen storage alloy, hydrogen storage tank for fuel battery, multilayer structure, and method of producing compound hydrogen storage alloy

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100903