WO2011102290A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2011102290A1
WO2011102290A1 PCT/JP2011/052843 JP2011052843W WO2011102290A1 WO 2011102290 A1 WO2011102290 A1 WO 2011102290A1 JP 2011052843 W JP2011052843 W JP 2011052843W WO 2011102290 A1 WO2011102290 A1 WO 2011102290A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power generation
voltage value
temperature
module
Prior art date
Application number
PCT/JP2011/052843
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 俊治
勝久 土屋
重住 司
中野 清隆
大江 俊春
卓哉 松尾
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Publication of WO2011102290A1 publication Critical patent/WO2011102290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/025Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form semicylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system, and more particularly to a fuel cell system using a solid oxide fuel cell (solid oxide fuel cell).
  • the measured open circuit voltage (hereinafter also referred to as “OCV”) is compared with a reference value.
  • OCV measured open circuit voltage
  • An OCV determination process for determining whether or not the power generation function of the fuel cell system is normal is performed. In this OCV determination, when the measured OCV is greater than or equal to the reference value, it is determined that the power generation function is normal, and power supply to the load can be started.
  • the polymer electrolyte fuel cell (hereinafter also referred to as “PEFC”) is not so high in power generation efficiency, but the operation temperature is relatively low (about 100 ° C.), and the start-up time and operation stop The time is short. Therefore, in PEFC, when the reaction gas is supplied to the fuel battery cell, the cell voltage immediately rises to a predetermined voltage. For this reason, in the PEFC, the OCV determination is performed immediately after starting the supply of the reaction gas (see Patent Document 1). That is, in the PEFC, the OCV determination is performed at the stage where the startup is almost completed.
  • the OCV determination can be performed early from the start of the start-up, and therefore it is possible to determine the quality of the power generation function at an early stage.
  • solid oxide fuel cells hereinafter also referred to as “SOFC”) having high power generation efficiency have a high operating temperature (about 700 to 1000 ° C.).
  • SOFC solid oxide fuel cells
  • SOFC in SOFC, it takes a long time to make an OCV determination. Therefore, even if there is an abnormality in the power generation function of the fuel cell system, the power generation abnormality cannot be detected by the OCV determination unless 1.5 to 2 hours have elapsed after the start of startup. For this reason, SOFC has a problem that it is not possible to quickly respond to power generation abnormality. In addition, in SOFC, when a power generation abnormality is detected, it is necessary to lower the temperature of a module or the like that has risen to a high temperature, and it takes a long time to stop the system.
  • an object of the present invention is to provide a fuel cell system capable of detecting power generation abnormality at an early stage in a fuel cell system using SOFC.
  • the present invention provides a fuel cell module having a solid oxide cell, a reaction gas supply means for supplying a reaction gas for power generation to the fuel cell module, and a module temperature of the fuel cell module.
  • the fuel cell system configured to cause the module temperature to reach the power generation start temperature, wherein the voltage measurement means is in the middle of the start-up stage before the fuel cell module temperature reaches the power generation start temperature. Is configured to measure the open circuit voltage value, and the measured open circuit voltage value is less than the power generation start temperature.
  • Generation malfunction and determine if it falls below the reference voltage value have to correspond to the module temperature is predetermined, is characterized by comprising an abnormality handling control means for performing an abnormality handling control.
  • the present invention configured as described above, at the start-up stage, before the module temperature reaches the power generation start temperature at which power is generated and power can be supplied to the load, that is, the module temperature rises to the power generation start temperature.
  • the open circuit voltage value is compared with a reference voltage value determined in advance corresponding to the module temperature, so that a power generation abnormality can be detected at an early stage.
  • the present invention has a fuel cell module using a solid oxide fuel cell, and this type of fuel cell module requires a long time to start and stop as described above. Therefore, in the present invention, when a power generation abnormality is detected by determining whether there is a power generation abnormality in the middle of the module temperature reaching a predetermined power generation start temperature, abnormality response control is performed at an early stage. be able to.
  • the reference voltage value is preferably lower than a normal voltage value that is a normal open circuit voltage value corresponding to the module temperature. According to the present invention configured as described above, by setting the reference voltage value lower than the open circuit voltage value at the normal time, it is erroneously determined as a power generation abnormality due to variations in the measurement of the open circuit voltage value. Can be prevented.
  • the reference voltage value is set to be lower than the normal voltage value as the module temperature is lower.
  • the temperature variation is large, and the power generation performance of each fuel cell unit tends to be uneven. Therefore, the measured value of the open circuit voltage value tends to vary.
  • the reference voltage value is set lower than the normal voltage value. It is set. Thereby, in this invention, the misjudgment resulting from variation can be prevented.
  • the abnormality handling control means performs the determination of power generation abnormality a plurality of times in the startup stage.
  • the power generation abnormality determination process based on the open circuit voltage value and the reference voltage value corresponding to the module temperature is performed a plurality of times in the startup stage, so that it is normal until the middle of the startup stage.
  • a cell abnormality occurs after that, it is possible to prevent erroneous determination as normal in the process up to the middle of the startup stage.
  • the abnormality handling control is control that lowers the maximum output power after the start of power generation below a set value. According to the present invention configured as described above, even when the open circuit voltage value is lower than the reference voltage value, there is a case where power can be generated without problems by reducing the maximum output power from the set value power. Therefore, the operation can be continued with the maximum output voltage lowered.
  • the abnormality handling control is preferably control for stopping the operation of the fuel cell system.
  • the open circuit voltage value is significantly lower than the reference voltage value, it is expected that a serious problem such as film peeling of the air electrode has occurred. It is possible to take various measures such as stopping the operation and suppressing wasteful use of the reaction gas.
  • a reference voltage value and a stop reference voltage value lower than the reference voltage value are set corresponding to the module temperature, and the abnormality response control means performs open circuit voltage as abnormality response control. Is lower than the reference voltage value and higher than the stop reference voltage value, the maximum output power after the start of power generation is lowered below the set value, and when the open circuit voltage is lower than the stop reference voltage value, the fuel cell system Stop driving.
  • the seriousness of malfunction or deterioration is estimated according to the magnitude of the open circuit voltage value, and it is appropriately determined whether to continue operation or stop at low output. It can be carried out.
  • the stop reference voltage value is determined to be lower than the reference voltage as the module temperature is lower.
  • the temperature variation is large, the power generation performance of each fuel cell unit tends to be uneven, and the measured value of the open circuit voltage value tends to vary.
  • the stop reference voltage value is compared with the reference voltage value. Is set lower. Thereby, in this invention, the misjudgment resulting from the variation in open circuit voltage value measurement, and an operation stop can be prevented.
  • power generation abnormality can be detected at an early stage.
  • 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • 1 is a front sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention. It is sectional drawing which follows the III-III line of FIG. It is a fragmentary sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to one embodiment of the present invention.
  • 1 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • 1 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • a solid oxide fuel cell (SOFC) or fuel cell system 1 according to an embodiment of the present invention includes a fuel cell module 2 and an auxiliary unit 4.
  • the fuel cell module 2 includes a housing 6, and a sealed space 8 is formed inside the housing 6 via a heat insulating material (not shown, but the heat insulating material is not an essential component and may not be necessary). Is formed. In addition, you may make it not provide a heat insulating material.
  • a fuel cell assembly 12 that performs a power generation reaction with fuel gas and an oxidant (air) is disposed in a power generation chamber 10 that is a lower portion of the sealed space 8.
  • the fuel cell assembly 12 includes ten fuel cell stacks 14 (see FIG. 5), and the fuel cell stack 14 includes 16 fuel cell unit 16 (see FIG. 4). Yes.
  • the fuel cell assembly 12 has 160 fuel cell units 16, and all of these fuel cell units 16 are connected in series.
  • a combustion chamber 18 is formed above the above-described power generation chamber 10 in the sealed space 8 of the fuel cell module 2.
  • this combustion chamber 18 the remaining fuel gas that has not been used for the power generation reaction and the remaining oxidant (air) ) And combusted to generate exhaust gas.
  • a reformer 20 for reforming the fuel gas is disposed above the combustion chamber 18, and the reformer 20 is heated to a temperature at which the reforming reaction can be performed by the combustion heat of the residual gas described above. is doing.
  • an air heat exchanger 22 for receiving combustion heat and heating air is disposed above the reformer 20.
  • the auxiliary unit 4 stores a pure water tank 26 that stores water from a water supply source 24 such as tap water and uses the filter to obtain pure water, and a water flow rate that adjusts the flow rate of the water supplied from the water storage tank.
  • An adjustment unit 28 (such as a “water pump” driven by a motor) is provided.
  • the auxiliary unit 4 also includes a gas shut-off valve 32 that shuts off the fuel gas supplied from a fuel supply source 30 such as city gas, a desulfurizer 36 for removing sulfur from the fuel gas, and a flow rate of the fuel gas.
  • a fuel flow rate adjusting unit 38 (such as a “fuel pump” driven by a motor) is provided.
  • the auxiliary unit 4 includes an electromagnetic valve 42 that shuts off air that is an oxidant supplied from the air supply source 40, a reforming air flow rate adjusting unit 44 that adjusts the flow rate of air, and a power generation air flow rate adjusting unit. 45 (such as an “air blower” driven by a motor), a first heater 46 for heating the reforming air supplied to the reformer 20, and a second for heating the power generating air supplied to the power generation chamber And a heater 48.
  • the first heater 46 and the second heater 48 are provided in order to efficiently raise the temperature at startup, but may be omitted.
  • a hot water production apparatus 50 to which exhaust gas is supplied is connected to the fuel cell module 2.
  • the hot water production apparatus 50 is supplied with tap water from the water supply source 24, and the tap water is heated by the heat of the exhaust gas and supplied to a hot water storage tank of an external hot water heater (not shown).
  • the fuel cell module 2 is provided with a control box 52 for controlling the amount of fuel gas supplied and the like. Furthermore, the fuel cell module 2 is connected to an inverter 54 that is a power extraction unit (power conversion unit) for supplying the power generated by the fuel cell module to the outside.
  • FIG. 2 is a side sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the fuel cell assembly 12, the reformer 20, and the air heat exchange are sequentially performed from below.
  • a vessel 22 is arranged.
  • the reformer 20 is provided with a pure water introduction pipe 60 for introducing pure water and a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • a pure water introduction pipe 60 for introducing pure water
  • a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • an evaporation unit 20a and a reforming unit 20b are formed sequentially from the upstream side, and the evaporation unit 20a and the reforming unit 20b are filled with a reforming catalyst.
  • the fuel gas and air mixed with the steam (pure water) introduced into the reformer 20 are reformed by the reforming catalyst filled in the reformer 20.
  • the reforming catalyst a catalyst obtained by imparting nickel to the alumina sphere surface or a catalyst obtained by imparting ruthenium to the alumina sphere surface is appropriately used.
  • a fuel gas supply pipe 64 is connected to the downstream end side of the reformer 20, and the fuel gas supply pipe 64 extends downward and further in an manifold 66 formed below the fuel cell assembly 12. It extends horizontally.
  • a plurality of fuel supply holes 64 b are formed in the lower surface of the horizontal portion 64 a of the fuel gas supply pipe 64, and the reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64 b.
  • a lower support plate 68 having a through hole for supporting the fuel cell stack 14 described above is attached above the manifold 66, and the fuel gas in the manifold 66 flows into the fuel cell unit 16. Supplied.
  • the air heat exchanger 22 includes an air aggregation chamber 70 on the upstream side and two air distribution chambers 72 on the downstream side.
  • the air aggregation chamber 70 and the air distribution chamber 72 include six air flow path tubes 74. Connected by.
  • three air flow path pipes 74 form a set (74a, 74b, 74c, 74d, 74e, 74f), and the air in the air collecting chamber 70 is in each set. It flows into each air distribution chamber 72 from the air flow path pipe 74.
  • the air flowing through the six air flow path pipes 74 of the air heat exchanger 22 is preheated by exhaust gas that burns and rises in the combustion chamber 18.
  • An air introduction pipe 76 is connected to each of the air distribution chambers 72, the air introduction pipe 76 extends downward, and the lower end side communicates with the lower space of the power generation chamber 10, and the air that has been preheated in the power generation chamber 10. Is introduced.
  • an exhaust gas chamber 78 is formed below the manifold 66. Further, as shown in FIG. 3, an exhaust gas passage 80 extending in the vertical direction is formed inside the front surface 6 a and the rear surface 6 b which are surfaces along the longitudinal direction of the housing 6, and the upper end of the exhaust gas chamber passage 80 is formed. The side communicates with the space in which the air heat exchanger 22 is disposed, and the lower end side communicates with the exhaust gas chamber 78. Further, an exhaust gas discharge pipe 82 is connected to substantially the center of the lower surface of the exhaust gas chamber 78, and the downstream end of the exhaust gas discharge pipe 82 is connected to the above-described hot water producing apparatus 50 shown in FIG. As shown in FIG. 2, an ignition device 83 for starting combustion of fuel gas and air is provided in the combustion chamber 18.
  • FIG. 4 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
  • the fuel cell 84 is a tubular structure extending in the vertical direction, and includes a cylindrical inner electrode layer 90 that forms a fuel gas flow path 88 therein, a cylindrical outer electrode layer 92, an inner electrode layer 90, and an outer side.
  • An electrolyte layer 94 is provided between the electrode layer 92 and the electrode layer 92.
  • the inner electrode layer 90 is a fuel electrode through which fuel gas passes and becomes a ( ⁇ ) electrode, while the outer electrode layer 92 is an air electrode in contact with air and becomes a (+) electrode.
  • the upper portion 90 a of the inner electrode layer 90 includes an outer peripheral surface 90 b and an upper end surface 90 c exposed to the electrolyte layer 94 and the outer electrode layer 92.
  • the inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected.
  • a fuel gas passage 98 communicating with the fuel gas passage 88 of the inner electrode layer 90 is formed at the center of the inner electrode terminal 86.
  • the inner electrode layer 90 includes, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and Ni and ceria doped with at least one selected from rare earth elements.
  • the mixture is formed of at least one of Ni and a mixture of lanthanum garade doped with at least one selected from Sr, Mg, Co, Fe, and Cu.
  • the electrolyte layer 94 includes, for example, zirconia doped with at least one selected from rare earth elements such as Y and Sc, ceria doped with at least one selected from rare earth elements, lanthanum gallate doped with at least one selected from Sr and Mg, Formed from at least one of the following.
  • the outer electrode layer 92 includes, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni and Cu, Sr, Fe, Ni and Cu. It is formed from at least one of lanthanum cobaltite doped with at least one selected from the group consisting of silver and silver.
  • FIG. 5 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the fuel cell stack 14 includes 16 fuel cell units 16, and the lower end side and the upper end side of these fuel cell units 16 are a ceramic lower support plate 68 and an upper side, respectively. It is supported by the support plate 100.
  • the lower support plate 68 and the upper support plate 100 are formed with through holes 68a and 100a through which the inner electrode terminal 86 can pass.
  • the current collector 102 includes a fuel electrode connection portion 102a that is electrically connected to an inner electrode terminal 86 attached to the inner electrode layer 90 that is a fuel electrode, and an entire outer peripheral surface of the outer electrode layer 92 that is an air electrode. And an air electrode connecting portion 102b electrically connected to each other.
  • the air electrode connecting portion 102b is formed of a vertical portion 102c extending in the vertical direction on the surface of the outer electrode layer 92 and a plurality of horizontal portions 102d extending in a horizontal direction along the surface of the outer electrode layer 92 from the vertical portion 102c. Has been.
  • the fuel electrode connection portion 102a is linearly directed obliquely upward or obliquely downward from the vertical portion 102c of the air electrode connection portion 102b toward the inner electrode terminal 86 positioned in the vertical direction of the fuel cell unit 16. It extends.
  • the inner electrode terminals 86 at the upper end and the lower end of the two fuel cell units 16 located at the ends of the fuel cell stack 14 are external terminals, respectively. 104 is connected. These external terminals 104 are connected to the external terminals 104 (not shown) of the fuel cell unit 16 at the end of the adjacent fuel cell stack 14, and as described above, the 160 fuel cell units 16 Everything is connected in series.
  • FIG. 6 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the solid oxide fuel cell 1 includes a control unit 110, and the control unit 110 includes operation buttons such as “ON” and “OFF” for operation by the user.
  • a device 112 a display device 114 for displaying various data such as a power generation output value (wattage), and a notification device 116 for issuing an alarm (warning) in an abnormal state are connected.
  • the notification device 116 may be connected to a remote management center and notify the management center of an abnormal state.
  • the voltage sensor 118 measures the voltage across both ends of a series connection composed of 160 fuel cell units 16.
  • the voltage sensor 118 can measure an open circuit voltage (OCV) to be supplied to a load (inverter 54) and a voltage in a load state.
  • OCV open circuit voltage
  • the combustible gas detection sensor 120 is for detecting a gas leak, and is attached to the fuel cell module 2 and the auxiliary unit 4.
  • the CO detection sensor 122 detects whether or not CO in the exhaust gas originally discharged to the outside through the exhaust gas passage 80 or the like leaks to an external housing (not shown) that covers the fuel cell module 2 and the auxiliary unit 4. Is to do.
  • the hot water storage state detection sensor 124 is for detecting the temperature and amount of hot water in a water heater (not shown).
  • the power state detection sensor 126 is for detecting the current and voltage of the inverter 54 and the distribution board (not shown).
  • the power generation air flow rate detection sensor 128 is for detecting the flow rate of power generation air supplied to the power generation chamber 10.
  • the reforming air flow sensor 130 is for detecting the flow rate of the reforming air supplied to the reformer 20.
  • the fuel flow sensor 132 is for detecting the flow rate of the fuel gas supplied to the reformer 20.
  • the water flow rate sensor 134 is for detecting the flow rate of pure water (steam) supplied to the reformer 20.
  • the water level sensor 136 is for detecting the water level of the pure water tank 26.
  • the pressure sensor 138 is for detecting the pressure on the upstream side outside the reformer 20.
  • the exhaust temperature sensor 140 is for detecting the temperature of the exhaust gas flowing into the hot water production apparatus 50.
  • the power generation chamber temperature sensor 142 is provided on the front side and the back side in the vicinity of the fuel cell assembly 12, and detects the temperature in the vicinity of the fuel cell stack 14 to thereby detect the fuel cell stack. 14 (ie, the fuel cell 84 itself) is estimated.
  • the combustion chamber temperature sensor 144 is for detecting the temperature of the combustion chamber 18.
  • the exhaust gas chamber temperature sensor 146 is for detecting the temperature of the exhaust gas in the exhaust gas chamber 78.
  • the reformer temperature sensor 148 is for detecting the temperature of the reformer 20, and calculates the temperature of the reformer 20 from the inlet temperature and the outlet temperature of the reformer 20.
  • the outside air temperature sensor 150 is for detecting the temperature of the outside air when the solid oxide fuel cell (SOFC) is disposed outdoors. Further, a sensor for measuring the humidity or the like of the outside air may be provided.
  • SOFC solid oxide fuel cell
  • Signals from these sensors are sent to the control unit 110, and the control unit 110, based on data based on these signals, the water flow rate adjustment unit 28, the fuel flow rate adjustment unit 38, the reforming air flow rate adjustment unit 44, A control signal is sent to the power generation air flow rate adjusting unit 45 to control each flow rate in these units. Further, the control unit 110 sends a control signal to the inverter 54 to control the power supply amount.
  • FIG. 7 is a time chart showing the operation at the time of startup of the solid oxide fuel cell (SOFC) according to one embodiment of the present invention.
  • reforming air is supplied from the reforming air flow rate adjustment unit 44 to the reformer 20 of the fuel cell module 2 via the first heater 46.
  • the power generation air is supplied from the power generation air flow rate adjustment unit 45 to the air heat exchanger 22 of the fuel cell module 2 via the second heater 48, and this power generation air is supplied to the power generation chamber 10 and the combustion chamber.
  • the fuel gas is also supplied from the fuel flow rate adjustment unit 38, and the fuel gas mixed with the reforming air passes through the reformer 20, the fuel cell stack 14, and the fuel cell unit 16, and It reaches the combustion chamber 18.
  • the ignition device 83 is ignited to burn the fuel gas and air (reforming air and power generation air) in the combustion chamber 18.
  • Exhaust gas is generated by the combustion of the fuel gas and air, and the power generation chamber 10 is warmed by the exhaust gas, and when the exhaust gas rises in the sealed space 8 of the fuel cell module 2, The fuel gas containing the reforming air is warmed, and the power generation air in the air heat exchanger 22 is also warmed.
  • the fuel gas mixed with the reforming air is supplied to the reformer 20 by the fuel flow rate adjusting unit 38 and the reforming air flow rate adjusting unit 44.
  • the heated fuel gas is supplied to the lower side of the fuel cell stack 14 through the fuel gas supply pipe 64, whereby the fuel cell stack 14 is heated from below, and the combustion chamber 18 also has the fuel gas and air.
  • the fuel cell stack 14 is also heated from above, and as a result, the fuel cell stack 14 can be heated substantially uniformly in the vertical direction. Even if the partial oxidation reforming reaction POX proceeds, the combustion reaction between the fuel gas and air continues in the combustion chamber 18.
  • the reformer temperature sensor 148 detects that the reformer 20 has reached a predetermined temperature (for example, 600 ° C.) after the partial oxidation reforming reaction POX is started, the water flow rate adjustment unit 28 and the fuel flow rate adjustment unit 38 are detected.
  • the reforming air flow rate adjusting unit 44 supplies the reformer 20 with a gas in which fuel gas, reforming air, and steam are mixed in advance.
  • an autothermal reforming reaction ATR in which the partial oxidation reforming reaction POX described above and a steam reforming reaction SR described later are used proceeds. Since the autothermal reforming reaction ATR is thermally balanced internally, the reaction proceeds in the reformer 20 in a thermally independent state.
  • the reformer temperature sensor 146 detects that the reformer 20 has reached a predetermined temperature (for example, 700 ° C.) after the start of the autothermal reforming reaction ATR shown in Formula (2), the reforming air flow rate The supply of reforming air by the adjustment unit 44 is stopped, and the supply of water vapor by the water flow rate adjustment unit 28 is increased. As a result, the reformer 20 is supplied with a gas that does not contain air and contains only fuel gas and water vapor, and the steam reforming reaction SR of formula (3) proceeds in the reformer 20.
  • a predetermined temperature for example, 700 ° C.
  • this steam reforming reaction SR is an endothermic reaction, the reaction proceeds while maintaining a heat balance with the combustion heat from the combustion chamber 18. At this stage, since the fuel cell module 2 is in the final stage of start-up, the power generation chamber 10 is heated to a sufficiently high temperature. Therefore, even if the endothermic reaction proceeds, the power generation chamber 10 is greatly reduced in temperature. There is nothing. Even if the steam reforming reaction SR proceeds, the combustion reaction continues in the combustion chamber 18.
  • the partial oxidation reforming reaction POX, the autothermal reforming reaction ATR, and the steam reforming reaction SR proceed in sequence, so that the inside of the power generation chamber 10 The temperature gradually increases.
  • the circuit including the fuel cell module 2 is closed, and the fuel cell Power generation by the module 2 is started, so that a current flows in the circuit. Due to the power generation of the fuel cell module 2, the fuel cell 84 itself also generates heat, and the temperature of the fuel cell 84 also rises.
  • the rated temperature at which the fuel cell module 2 is operated becomes, for example, 600 ° C. to 800 ° C.
  • FIG. 8 is a time chart showing the operation when the solid oxide fuel cell (SOFC) according to the present embodiment is stopped.
  • the fuel flow rate adjustment unit 38 and the water flow rate adjustment unit 28 are operated to supply fuel gas and water vapor to the reformer 20. Reduce the amount.
  • the amount of fuel gas and water vapor supplied to the reformer 20 is decreased, and at the same time, the fuel cell module 2 for generating air by the power generation air flow rate adjustment unit 45 is used.
  • the supply amount to the inside is increased, and the fuel cell assembly 12 and the reformer 20 are cooled by air, and these temperatures are lowered.
  • the temperature of the reformer 20 decreases to a predetermined temperature, for example, 400 ° C.
  • the supply of fuel gas and steam to the reformer 20 is stopped, and the steam reforming reaction SR of the reformer 20 is ended. .
  • This supply of power generation air continues until the temperature of the reformer 20 decreases to a predetermined temperature, for example, 200 ° C., and when this temperature is reached, the power generation air from the power generation air flow rate adjustment unit 45 is supplied. Stop supplying.
  • the steam reforming reaction SR by the reformer 20 and the cooling by the power generation air are used in combination.
  • the operation of the fuel cell module can be stopped.
  • the abnormality determination response control at the time of startup of the solid oxide fuel cell 1 according to the embodiment of the present invention will be described.
  • the OCV is measured at least once or more times during the start-up process, not at the stage where the start-up process is almost finished, and the fuel cell module 2 is controlled based on the obtained OCV. This makes it possible to detect power generation abnormality early.
  • FIG. 9 schematically shows a time chart of the module temperature (a), the reaction gas supply amount (b), and the OCV (b) at the time of startup.
  • the module temperature is an average temperature of the fuel cell assembly 12 or the fuel cell unit 16, and is actually represented by the power generation chamber temperature detected by the power generation chamber temperature sensor 142.
  • the reactive gas supply amount corresponds to the fuel flow rate detected by the fuel flow rate sensor 132.
  • OCV corresponds to an open circuit voltage value detected by the voltage sensor 118.
  • the OCV has a temperature dependence on the module temperature. That is, there is a close relationship in which the OCV rises as the module temperature rises. Specifically, when the module temperature rises to a certain temperature after the start of startup, the OCV starts to rise, and the module temperature is predetermined at the final stage of startup. When the power generation start temperature (for example, 700 ° C.) is reached, the OCV also reaches a predetermined power generation start voltage value (for example, 150 to 160 V). In the present embodiment, when the module temperature reaches the power generation start temperature, power supply is started from the fuel cell module 2 toward the load (for example, an inverter).
  • the load for example, an inverter
  • the PEFC since the PEFC has a short start-up time, it is possible to detect a power generation abnormality at an early stage even if an OCV determination is made at the end of start-up.
  • the OCV behavior during startup does not matter, and since the startup time is short, the OCV behavior is not stable, and accurate determination cannot be performed even if OCV determination is performed during startup. For this reason, conventionally, fuel cells, particularly PEFCs with a short start-up time, did not have the idea of detecting a power generation abnormality by OCV determination during start-up.
  • the present inventor has found that the behavior of the OCV at the time of startup is stable in the solid oxide fuel cell (SOFC), that is, the value of the OCV with respect to the module temperature is very stable at the time of startup. It was found that the variation of the OCV with respect to the module temperature is relatively small. Specifically, in the SOFC, when the reaction gas is supplied to the fuel cell module, the module temperature and the OCV rise in a stable relationship according to the amount of heat supplied by the reaction gas, and reach a stable operation state. . In addition, the SOFC requires about 1.5 to 2 hours to start up, but the variation of the OCV with respect to the module temperature is relatively small during this period.
  • SOFC solid oxide fuel cell
  • the SOFC during the start-up, it is determined whether the OCV value has a predetermined relationship with the module temperature, so that the malfunction of the power generation function of the fuel cell module or the degradation of the power generation performance It can be detected early.
  • FIG. 10 schematically shows changes in the normal voltage value (a), the reference voltage value (b), and the stop reference voltage value (c) with respect to the module temperature.
  • the control unit 110 stores each voltage value change shown in FIG. 10 in the memory as reference data.
  • the normal voltage value (a) is the same for each module temperature under the same conditions when there is no abnormality in the fuel cell unit 16 and the power generation function of the fuel cell module 2 is normal and the power generation performance is not deteriorated. This is a voltage value detected on average.
  • the reference voltage value (b) is a voltage value (OCV) determined in consideration of individual manufacturing variations of the fuel cell module 2 and the like. As can be seen from FIG. 10, the reference voltage value (b) starts rising at the OCV determinable temperature T 1 later than the normal voltage value (a), and the normal voltage value (a) at each module temperature. Has a smaller value. Therefore, if an OCV (normal region) larger than the reference voltage value is detected at each module temperature, it can be determined that the power generation performance of the fuel cell module 2 is in a normal range. In this case, in this embodiment, after the module temperature reaches the power generation start temperature, it is output to the load with the rated output power (for example, 700 W) as the upper limit.
  • the rated output power for example, 700 W
  • the stop reference voltage value (c) is a voltage value determined in consideration of allowable performance deterioration (minor power generation abnormality) of the fuel cell module 2.
  • the stop reference voltage value (c) has a smaller value than the reference voltage value (b) at each module temperature. Therefore, if an OCV greater than the stop reference voltage value and less than or equal to the reference voltage value (degradation region) is detected at each module temperature, it can be determined that the power generation performance of the fuel cell module 2 is in the degraded state range. . In this case, the power generation performance of the fuel cell module 2 is deteriorated, but in the present embodiment, power corresponding to the degree of deterioration is supplied to the load.
  • the output power to the load is reduced according to the detected magnitude of the OCV with respect to the normal voltage value as the abnormality handling control process.
  • normal operation voltage e.g., V 0
  • OCV for e.g., V 1
  • the output power reduced by multiplying (rated output power ⁇ V 1 / V 0 ) can be obtained.
  • the reduced output power is output to the load as the maximum output power.
  • the present invention is not limited to this, and the output power may be set in stages, such as 600 W, 500 W, and 400 W, depending on the range of the detected OCV value.
  • the deterioration in the power generation performance of the fuel cell module 2 is, for example, partial peeling of the outer electrode layer 92 of the fuel cell unit 16. Since the power generation area is reduced by such peeling, the output voltage of the fuel cell unit 16 is reduced from the rated voltage (for example, about 1 V). However, even if the output voltage is reduced due to partial peeling, it can be used within the reduced output voltage.
  • the output power is reduced according to the deterioration state or the degree of deterioration, and the use is continued. Is configured to do. Thereby, for example, it is possible to prevent an excessive load from being applied to the normal fuel cell unit 16 in which the above-described peeling or the like has not occurred and the fuel cell unit 16 in which the deterioration has progressed, thereby suppressing reduction in power generation performance. Can prolong the product life.
  • the malfunction of the power generation system of the fuel cell module 2 is that, for example, a short circuit occurs when the peeled outer electrode layer 92 comes into contact with the adjacent fuel cell unit 16.
  • a short circuit occurs between the fuel cell units 16, the fuel cell assembly 12 cannot supply a sufficient output voltage. Therefore, in the present embodiment, when it is determined that such a problem has occurred according to the detected OCV, the power supply is stopped.
  • Table 1 corresponds to FIG. 10, and shows numerical values of voltage values at typical module temperatures.
  • the module temperature of 300 ° C. is a temperature higher than the OCV determination possible temperature T 1.
  • the normal voltage value (a) is 60 V
  • the reference voltage value (b) is 10 V
  • the voltage difference between them is 50 V. It is.
  • the difference between the two is set to 45V, 30V, 20V, and 10V, respectively.
  • the voltage difference between the two is set larger as the module temperature is lower.
  • the arrangement of the fuel cell units 16 in the power generation chamber 10 (for example, cells near the side walls are easily affected by the surrounding environment) Large temperature unevenness.
  • the temperature unevenness is large in one fuel cell unit 16.
  • the degree of temperature unevenness also varies depending on environmental conditions such as the outside air temperature at startup. Therefore, in the initial stage of start-up, the temperature unevenness is relatively large throughout the fuel cell assembly 12, and thereby the OCV variation with respect to the module temperature is also relatively large.
  • the reference voltage value is set so that the allowable voltage difference between the reference voltage value and the normal voltage value becomes smaller as the module temperature becomes higher. is doing.
  • the voltage difference between the reference voltage value (b) and the stop reference voltage value (c) is 50V and 40V at the module temperatures of 600 ° C. and 700 ° C., respectively.
  • the voltage difference between the two is set larger as the module temperature is lower.
  • the voltage difference between the normal voltage value (a) and the stop reference voltage value (c) is 70V and 50V, and the voltage difference between the two is set larger as the module temperature is lower.
  • the present embodiment if it is determined that there is a malfunction, an operation stop process is performed, and thus power cannot be supplied at all. Accordingly, when the voltage difference between the reference voltage value (b) and the stop reference voltage value (c) is set according to the module temperature in this way, the module temperature is not sufficiently increased (OCV variation). ) Is still in a large state), and it is possible to reduce the possibility that the malfunction is erroneously determined and the operation stop process is performed.
  • the control unit 110 measures and acquires the module temperature (step S1).
  • the control unit 110 determines whether or not the acquired module temperature is equal to or higher than the OCV determination possible temperature T 1 (step S2).
  • step S2 When the module temperature is not equal to or higher than the OCV determination possible temperature T 1 (step S2; No), the process of step S1 is repeated. On the other hand, when the module temperature is equal to or higher than the OCV determination possible temperature T 1 (step S2; Yes), the control unit 110, based on the data stored in the memory, the reference voltage value and the stop reference corresponding to the acquired module temperature. A voltage value is determined (step S3). Moreover, the control part 110 measures and acquires OCV (step S4).
  • control unit 110 compares the acquired OCV with the determined reference voltage value (step S5).
  • the OCV is larger than the reference voltage value (step S5; Yes)
  • the power generation performance of the fuel cell module 2 is normal, and the control unit 110 determines that the acquired module temperature can be generated (eg, 700 ° C.). Is determined (step S6).
  • step S6 When the module temperature is equal to or higher than the temperature at which power generation is possible (step S6; Yes), the startup process is normal and there is sufficient power generation performance, so the control unit 110 maximizes the normal rated output power (for example, 700 W). As output power, power supply to the load is started (step S7), and the process is terminated. On the other hand, if the module temperature is not equal to or higher than the temperature at which power generation is possible (step S6; No), the controller 110 is in the middle of the startup process, so the control unit 110 waits for a predetermined time to elapse (step S8) and repeats the process of step S1. repeat.
  • the control unit 110 waits for a predetermined time to elapse (step S8) and repeats the process of step S1. repeat.
  • step S5 when the OCV is equal to or lower than the reference voltage value (step S5; No), the power generation performance of the fuel cell module 2 is deteriorated or has a defect in the power generation system.
  • the control unit 110 compares the OCV with the stop reference voltage value (step S9). When the OCV is larger than the stop reference voltage value (step S9; Yes), the power generation performance of the fuel cell module 2 is deteriorated, but is not in a defective state. It is determined whether or not the temperature reaches a temperature at which power generation is possible (step S10).
  • step S8 the process in step S1 is repeated again after a predetermined time has elapsed.
  • step S10 when the module temperature is equal to or higher than the temperature at which power generation is possible (step S10; Yes), although power generation can be started, the power generation performance has deteriorated, so the control unit 110 outputs maximum power according to the degree of deterioration.
  • step S11 After performing the process of reducing power (step S11), power supply to the load is started with the reduced maximum output power as an upper limit (step S12), and the process is terminated.
  • the OCV is equal to or lower than the reference voltage value and larger than the stop reference voltage value
  • power generation is performed by reducing the maximum output power. As a simple method, the maximum output current can be reduced.
  • step S9 when the OCV is equal to or lower than the stop reference voltage value (step S9; No), since the power generation system of the fuel cell module 2 has a problem, the control unit 110 performs an operation stop process (step S9). S13), the process is terminated.
  • the display device 114 displays the deterioration status and the failure status, and the notification device 116 indicates the deterioration status to the user or the like. And you may comprise so that a malfunction condition may be alert
  • the OCV and the stop reference voltage value are compared to detect a power generation abnormality (such as a malfunction or failure in the power generation system) before the startup process is completed. It is possible to perform abnormality response control (here, operation stop processing) before the start-up process is completed.
  • a power generation abnormality such as a malfunction or failure in the power generation system
  • abnormality response control here, operation stop processing
  • the present embodiment it is possible to detect and monitor the deterioration of the power generation function not to the extent of stopping the operation by comparing the OCV and the reference voltage value during the start-up.
  • the load applied to each cell unit 16 of the fuel cell assembly 12 is reduced by reducing the output power according to the value of the OCV. It becomes possible to extend the life of the battery module 2.
  • the degree of decrease in the power generation function is distinguished by comparing the OCV and the two reference voltage values, and the abnormality response control (maximum output power Reduction, operation stop) can be performed selectively.
  • the power generation abnormality determination is performed a plurality of times by comparing the OCV with the reference voltage value and the stop reference voltage value, thereby shortening the time from occurrence of the power generation abnormality to detection. It is possible to detect power generation abnormality at an early stage.
  • the OCV detected at each module temperature during the start-up is the area between lines ab (normal area), the area between lines bc (deterioration area), and line c in FIG. Even if it is detected to pass through only a single region (normal region or degraded region) among lower regions (failure or abnormal regions), a plurality of regions (normal region and degraded region) Even when the module is detected to pass through, the magnitude of the output power depends on which region the OCV belongs to when the module temperature reaches the module temperature at which power generation is possible (steps S6 and S10). Is configured to be determined.
  • the present invention is not limited to this, and it may be configured such that output power that is not reduced is supplied only when the OCV always has a value in the normal region during startup. That is, when it is determined even once that it is in a degraded state during the start-up (step S5; No), the OCV is larger than the reference voltage value when the module temperature reaches the module temperature at which power generation is possible.
  • the output power may be reduced. In this case, the output power can be reduced according to the ratio determined as the degradation region and the degree thereof.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a fuel cell system, which uses an SOFC, and which can detect an abnormality of power generation at an early stage. The fuel cell system (1) is provided with: a fuel cell module (2), which has a fuel cell unit (16); a fuel flow quantity adjusting unit (38) and an air flow quantity adjusting unit for power generation (45), which supply the fuel cell module (2) with a reaction gas for power generation; a power generation chamber temperature sensor (142) which measures the module temperature of the fuel cell module (2); and a voltage sensor (118) which measures the open circuit voltage value of the fuel cell module (2). At the start up stage, the module temperature is increased, while supplying the reaction gas to the fuel cell module (2), and the module temperature is increased to a power generation start temperature (T1). The fuel cell system is provided with a control unit (110) which performs abnormality handling control, wherein it is determined, at the start up stage, that power generation is abnormal in the case where the open circuit voltage value is lower than a reference voltage value previously determined corresponding to the module temperature.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関し、特に、固体酸化物形燃料電池(固体電解質形燃料電池)を利用した燃料電池システムに関する。 The present invention relates to a fuel cell system, and more particularly to a fuel cell system using a solid oxide fuel cell (solid oxide fuel cell).
 従来、燃料電池システムでは、燃料電池の起動時において、発電した電力を負荷へ供給する前段階で、測定した開回路電圧(以下、「OCV」ともいう)と基準値との比較を行って、燃料電池システムの発電機能が正常であるか否かを判定するOCV判定処理が行われている。このOCV判定では、測定したOCVが基準値以上である場合に、発電機能が正常であると判定され、負荷への電力供給開始が可能となる。 Conventionally, in the fuel cell system, at the start of the fuel cell, before the generated power is supplied to the load, the measured open circuit voltage (hereinafter also referred to as “OCV”) is compared with a reference value, An OCV determination process for determining whether or not the power generation function of the fuel cell system is normal is performed. In this OCV determination, when the measured OCV is greater than or equal to the reference value, it is determined that the power generation function is normal, and power supply to the load can be started.
 燃料電池システムのうち、固体高分子形燃料電池(以下、「PEFC」ともいう)は、発電効率はそれほど高くないが、運転温度が比較的低温(100℃程度)であり、起動時間及び運転停止時間が短い。したがって、PEFCでは、燃料電池セルに反応ガスを供給すると、すぐにセル電圧が所定電圧まで上昇する。このため、PEFCでは、反応ガス供給開始後直ちに、OCV判定が行われるようになっている(特許文献1参照)。つまり、PEFCでは、起動がほぼ終了した段階でOCV判定を行っている。 Among the fuel cell systems, the polymer electrolyte fuel cell (hereinafter also referred to as “PEFC”) is not so high in power generation efficiency, but the operation temperature is relatively low (about 100 ° C.), and the start-up time and operation stop The time is short. Therefore, in PEFC, when the reaction gas is supplied to the fuel battery cell, the cell voltage immediately rises to a predetermined voltage. For this reason, in the PEFC, the OCV determination is performed immediately after starting the supply of the reaction gas (see Patent Document 1). That is, in the PEFC, the OCV determination is performed at the stage where the startup is almost completed.
特開2009-110806号公報JP 2009-110806 A
 上述のように、PEFCでは、起動時間が短いため、OCV判定を起動開始から早期に行うことができ、したがって、早期に発電機能の良否を判定することが可能である。
 しかしながら、燃料電池システムのうち、高い発電効率を有する固体酸化物形燃料電池(以下、「SOFC」ともいう)は、運転温度が高温(700~1000℃程度)であり、このため起動時間及び運転停止時間が長い。詳しくは、SOFCでは、起動時において燃料電池モジュールの温度上昇に時間(1.5~2時間程度)を要し、発電性能に温度依存性があるため、反応ガス供給を開始してもOCVはゆっくりとしか上昇しない。したがって、SOFCでは、起動開始後、温度上昇に必要な時間が経過するのを待ってからOCV判定を行わなければならなかった。
As described above, since the start-up time is short in PEFC, the OCV determination can be performed early from the start of the start-up, and therefore it is possible to determine the quality of the power generation function at an early stage.
However, among fuel cell systems, solid oxide fuel cells (hereinafter also referred to as “SOFC”) having high power generation efficiency have a high operating temperature (about 700 to 1000 ° C.). Long downtime. Specifically, in SOFC, it takes time (about 1.5 to 2 hours) to increase the temperature of the fuel cell module at startup, and the power generation performance is temperature-dependent. It rises only slowly. Therefore, in the SOFC, it is necessary to perform the OCV determination after waiting for the time required for the temperature to rise after the start of the start.
 このように、SOFCでは、OCV判定を行うまでに長時間を要する。したがって、燃料電池システムの発電機能に異常があった場合であっても、起動開始後、1.5~2時間経過しないと、OCV判定により発電異常を検出することができなかった。このため、SOFCでは発電異常に対する対応を迅速に行うことができないという問題があった。また、SOFCでは、発電異常を検出した場合には、高い温度まで上昇したモジュール等の温度を下げる必要があり、システムを停止するのにも長時間を要していた。 Thus, in SOFC, it takes a long time to make an OCV determination. Therefore, even if there is an abnormality in the power generation function of the fuel cell system, the power generation abnormality cannot be detected by the OCV determination unless 1.5 to 2 hours have elapsed after the start of startup. For this reason, SOFC has a problem that it is not possible to quickly respond to power generation abnormality. In addition, in SOFC, when a power generation abnormality is detected, it is necessary to lower the temperature of a module or the like that has risen to a high temperature, and it takes a long time to stop the system.
 従って、本発明は、SOFCを利用した燃料電池システムにおいて、発電異常を早期に検出することができる燃料電池システムを提供することを目的としている。 Therefore, an object of the present invention is to provide a fuel cell system capable of detecting power generation abnormality at an early stage in a fuel cell system using SOFC.
 上述した課題を解決するために、本発明は、固体酸化物形セルを有する燃料電池モジュールと、発電に供する反応ガスを燃料電池モジュールに供給する反応ガス供給手段と、燃料電池モジュールのモジュール温度を測定する温度測定手段と、燃料電池モジュールの開回路電圧値を測定する電圧測定手段と、を備え、起動段階において、反応ガス供給手段により反応ガスを燃料電池モジュールへ供給しながらモジュール温度を上昇させ、モジュール温度を発電開始温度に到達させるように構成された燃料電池システムであって、起動段階のうち、燃料電池モジュール温度が、発電開始温度に到達する前の起動の途中段階において、電圧測定手段は開回路電圧値を測定するよう構成されており、測定された開回路電圧値が、発電開始温度よりも低いモジュール温度に対応して予め定められている基準電圧値を下回った場合に発電異常と判定し、異常対応制御を行う異常対応制御手段を備えたことを特徴としている。 In order to solve the above-described problems, the present invention provides a fuel cell module having a solid oxide cell, a reaction gas supply means for supplying a reaction gas for power generation to the fuel cell module, and a module temperature of the fuel cell module. A temperature measuring means for measuring and a voltage measuring means for measuring an open circuit voltage value of the fuel cell module, and at the start-up stage, the reaction gas is supplied to the fuel cell module by the reaction gas supply means to raise the module temperature. The fuel cell system configured to cause the module temperature to reach the power generation start temperature, wherein the voltage measurement means is in the middle of the start-up stage before the fuel cell module temperature reaches the power generation start temperature. Is configured to measure the open circuit voltage value, and the measured open circuit voltage value is less than the power generation start temperature. Generation malfunction and determine if it falls below the reference voltage value have to correspond to the module temperature is predetermined, is characterized by comprising an abnormality handling control means for performing an abnormality handling control.
 このように構成された本発明においては、起動段階において、モジュール温度が発電を行って負荷に対して電力供給可能な発電開始温度に到達する前、すなわち、モジュール温度が発電開始温度まで上昇している途中段階において、開回路電圧値を、モジュール温度に対応して予め定められている基準電圧値と比較することによって、発電異常を早期に検出することができ、これに対して異常対応制御を行うことが可能である。本発明では、固体酸化物形燃料電池を用いた燃料電池モジュールを有しおり、このタイプの燃料電池モジュールは上述のように起動及び停止に長い時間を要する。このため、本発明では、モジュール温度が所定の発電開始温度に到達する途中段階において、発電異常か否かを判定することで、発電異常が検出された場合には、早期に異常対応制御を行うことができる。 In the present invention configured as described above, at the start-up stage, before the module temperature reaches the power generation start temperature at which power is generated and power can be supplied to the load, that is, the module temperature rises to the power generation start temperature. In the middle stage, the open circuit voltage value is compared with a reference voltage value determined in advance corresponding to the module temperature, so that a power generation abnormality can be detected at an early stage. Is possible. The present invention has a fuel cell module using a solid oxide fuel cell, and this type of fuel cell module requires a long time to start and stop as described above. Therefore, in the present invention, when a power generation abnormality is detected by determining whether there is a power generation abnormality in the middle of the module temperature reaching a predetermined power generation start temperature, abnormality response control is performed at an early stage. be able to.
 本発明において、好ましくは、基準電圧値は、モジュール温度に対応した正常時の開回路電圧値である正常時電圧値よりも低い値である。
 このように構成された本発明によれば、正常時における開回路電圧値よりも基準電圧値を低く設定することで、開回路電圧値の測定のバラツキ等によって発電異常と誤判定されることを防止することができる。
In the present invention, the reference voltage value is preferably lower than a normal voltage value that is a normal open circuit voltage value corresponding to the module temperature.
According to the present invention configured as described above, by setting the reference voltage value lower than the open circuit voltage value at the normal time, it is erroneously determined as a power generation abnormality due to variations in the measurement of the open circuit voltage value. Can be prevented.
 本発明において、好ましくは、基準電圧値は、モジュール温度が低いときほど、正常時電圧値に対しより低くなるように定められている。
 一般に、モジュール温度が低いときは温度バラツキが大きく、燃料電池セルユニット毎の発電性能にムラが生じ易いため、開回路電圧値の測定値がばらついてしまう傾向がある。このような開回路電圧値の測定値のバラツキに対処するため、上記構成の本発明では、起動初期段階のようにモジュール温度が低温のときには、基準電圧値を正常時電圧値に対してより低く設定している。これにより、本発明では、バラツキに起因した誤判定を防止することができる。
In the present invention, preferably, the reference voltage value is set to be lower than the normal voltage value as the module temperature is lower.
In general, when the module temperature is low, the temperature variation is large, and the power generation performance of each fuel cell unit tends to be uneven. Therefore, the measured value of the open circuit voltage value tends to vary. In order to deal with such variations in the measured value of the open circuit voltage value, in the present invention having the above configuration, when the module temperature is low as in the initial stage of startup, the reference voltage value is set lower than the normal voltage value. It is set. Thereby, in this invention, the misjudgment resulting from variation can be prevented.
 本発明において、好ましくは、異常対応制御手段は、発電異常の判定を起動段階において複数回行う。
 このように構成された本発明によれば、開回路電圧値とモジュール温度に対応する基準電圧値とに基づく発電異常判定処理を起動段階で複数回行うことにより、起動段階の途中までは正常であったが、その後セル異常が発生したような場合において、起動段階の途中までの処理で正常と誤判定してしまうことを防止することができる。
In the present invention, preferably, the abnormality handling control means performs the determination of power generation abnormality a plurality of times in the startup stage.
According to the present invention configured as described above, the power generation abnormality determination process based on the open circuit voltage value and the reference voltage value corresponding to the module temperature is performed a plurality of times in the startup stage, so that it is normal until the middle of the startup stage. However, when a cell abnormality occurs after that, it is possible to prevent erroneous determination as normal in the process up to the middle of the startup stage.
 本発明において、好ましくは、異常対応制御は、発電開始後における最大出力電力を設定値よりも下げる制御である。
 このように構成された本発明によれば、開回路電圧値が基準電圧値を下回った場合であっても、設定値電力よりも最大出力電力を低減することで問題なく発電可能な場合もあるので、最大出力電圧を下げて運転を継続することができる。
In the present invention, preferably, the abnormality handling control is control that lowers the maximum output power after the start of power generation below a set value.
According to the present invention configured as described above, even when the open circuit voltage value is lower than the reference voltage value, there is a case where power can be generated without problems by reducing the maximum output power from the set value power. Therefore, the operation can be continued with the maximum output voltage lowered.
 本発明において、好ましくは、異常対応制御は、燃料電池システムの運転を停止する制御である。
 このように構成された本発明によれば、開回路電圧値が基準電圧値を大きく下回るような場合には、空気極の膜剥がれ等重大な不具合が生じていることが予想されるため、直ちに運転を停止し、反応ガスの無駄な使用を抑制する等の種々の対応をとることができる。
In the present invention, the abnormality handling control is preferably control for stopping the operation of the fuel cell system.
According to the present invention configured as described above, when the open circuit voltage value is significantly lower than the reference voltage value, it is expected that a serious problem such as film peeling of the air electrode has occurred. It is possible to take various measures such as stopping the operation and suppressing wasteful use of the reaction gas.
 本発明において、好ましくは、モジュール温度に対応して、基準電圧値と、この基準電圧値よりも低い停止基準電圧値が設定されており、異常対応制御手段は、異常対応制御として、開回路電圧が基準電圧値以下で且つ停止基準電圧値よりも高い場合には、発電開始後における最大出力電力を設定値よりも下げ、開回路電圧が停止基準電圧値以下である場合には、燃料電池システムの運転を停止する。
 このように構成された本発明によれば、開回路電圧値の大きさに応じて不具合又は劣化の深刻さを推定し、低出力で運転を継続するか、それとも停止するかの判断を適切に行うことができる。
In the present invention, preferably, a reference voltage value and a stop reference voltage value lower than the reference voltage value are set corresponding to the module temperature, and the abnormality response control means performs open circuit voltage as abnormality response control. Is lower than the reference voltage value and higher than the stop reference voltage value, the maximum output power after the start of power generation is lowered below the set value, and when the open circuit voltage is lower than the stop reference voltage value, the fuel cell system Stop driving.
According to the present invention configured as described above, the seriousness of malfunction or deterioration is estimated according to the magnitude of the open circuit voltage value, and it is appropriately determined whether to continue operation or stop at low output. It can be carried out.
 本発明において、好ましくは、停止基準電圧値は、モジュール温度が低いときほど、基準電圧に対しより低くなるように定められている。
 一般に、モジュール温度が低いときは温度バラツキが大きく、燃料電池セルユニット毎の発電性能にムラが生じ易く、開回路電圧値の測定値がばらついてしまう傾向がある。このような開回路電圧値の測定値のバラツキに対処するため、上記構成の本発明では、起動初期・中期段階のようにモジュール温度がそれほど高くないときには、停止基準電圧値を基準電圧値に対してより低く設定している。これにより、本発明では、開回路電圧値測定のバラツキに起因した誤判定、及び運転停止を防止することができる。
In the present invention, preferably, the stop reference voltage value is determined to be lower than the reference voltage as the module temperature is lower.
In general, when the module temperature is low, the temperature variation is large, the power generation performance of each fuel cell unit tends to be uneven, and the measured value of the open circuit voltage value tends to vary. In order to deal with such a variation in the measured value of the open circuit voltage value, in the present invention having the above-described configuration, when the module temperature is not so high as in the initial start and middle stages, the stop reference voltage value is compared with the reference voltage value. Is set lower. Thereby, in this invention, the misjudgment resulting from the variation in open circuit voltage value measurement, and an operation stop can be prevented.
 本発明の燃料電池システムによれば、発電異常を早期に検出することができる。 According to the fuel cell system of the present invention, power generation abnormality can be detected at an early stage.
本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す正面断面図である。1 is a front sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention. 図2のIII-III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セル単体を示す部分断面図である。It is a fragmentary sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to one embodiment of the present invention. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。1 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. 本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。1 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。It is a time chart which shows the operation | movement at the time of starting of the solid oxide fuel cell (SOFC) by one Embodiment of this invention. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。It is a time chart which shows the operation | movement at the time of operation stop of the solid oxide fuel cell (SOFC) by one Embodiment of this invention. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時におけるモジュール温度,反応ガス供給量及びOCVの対応関係を説明するタイムチャートである。It is a time chart explaining the correspondence of module temperature at the time of starting of a solid oxide fuel cell (SOFC) by one embodiment of the present invention, reaction gas supply amount, and OCV. 本発明の一実施形態による固体電解質型燃料電池(SOFC)のOCV判定処理で用いるモジュール温度と基準電圧値及び停止基準電圧値との対応関係を示すグラフである。It is a graph which shows the correspondence of the module temperature used by the OCV determination process of the solid oxide fuel cell (SOFC) by one Embodiment of this invention, a reference voltage value, and a stop reference voltage value. 本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時における異常対応制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the abnormality response control at the time of starting of the solid oxide fuel cell (SOFC) by one Embodiment of this invention.
 次に、添付図面を参照して、本発明の実施形態による固体電解質型燃料電池(SOFC)を説明する。
 図1は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体電解質型燃料電池(SOFC)又は燃料電池システム1は、燃料電池モジュール2と、補機ユニット4を備えている。
Next, a solid oxide fuel cell (SOFC) according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. As shown in FIG. 1, a solid oxide fuel cell (SOFC) or fuel cell system 1 according to an embodiment of the present invention includes a fuel cell module 2 and an auxiliary unit 4.
 燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材(図示せず但し断熱材は必須の構成ではなく、なくても良いものである。)を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。 The fuel cell module 2 includes a housing 6, and a sealed space 8 is formed inside the housing 6 via a heat insulating material (not shown, but the heat insulating material is not an essential component and may not be necessary). Is formed. In addition, you may make it not provide a heat insulating material. A fuel cell assembly 12 that performs a power generation reaction with fuel gas and an oxidant (air) is disposed in a power generation chamber 10 that is a lower portion of the sealed space 8. The fuel cell assembly 12 includes ten fuel cell stacks 14 (see FIG. 5), and the fuel cell stack 14 includes 16 fuel cell unit 16 (see FIG. 4). Yes. Thus, the fuel cell assembly 12 has 160 fuel cell units 16, and all of these fuel cell units 16 are connected in series.
 燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
 また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、上述した残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、燃焼熱を受けて空気を加熱するための空気用熱交換器22が配置されている。
A combustion chamber 18 is formed above the above-described power generation chamber 10 in the sealed space 8 of the fuel cell module 2. In this combustion chamber 18, the remaining fuel gas that has not been used for the power generation reaction and the remaining oxidant (air) ) And combusted to generate exhaust gas.
Further, a reformer 20 for reforming the fuel gas is disposed above the combustion chamber 18, and the reformer 20 is heated to a temperature at which the reforming reaction can be performed by the combustion heat of the residual gas described above. is doing. Further, an air heat exchanger 22 for receiving combustion heat and heating air is disposed above the reformer 20.
 次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。 Next, the auxiliary unit 4 stores a pure water tank 26 that stores water from a water supply source 24 such as tap water and uses the filter to obtain pure water, and a water flow rate that adjusts the flow rate of the water supplied from the water storage tank. An adjustment unit 28 (such as a “water pump” driven by a motor) is provided. The auxiliary unit 4 also includes a gas shut-off valve 32 that shuts off the fuel gas supplied from a fuel supply source 30 such as city gas, a desulfurizer 36 for removing sulfur from the fuel gas, and a flow rate of the fuel gas. A fuel flow rate adjusting unit 38 (such as a “fuel pump” driven by a motor) is provided. Further, the auxiliary unit 4 includes an electromagnetic valve 42 that shuts off air that is an oxidant supplied from the air supply source 40, a reforming air flow rate adjusting unit 44 that adjusts the flow rate of air, and a power generation air flow rate adjusting unit. 45 (such as an “air blower” driven by a motor), a first heater 46 for heating the reforming air supplied to the reformer 20, and a second for heating the power generating air supplied to the power generation chamber And a heater 48. The first heater 46 and the second heater 48 are provided in order to efficiently raise the temperature at startup, but may be omitted.
 次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
 また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
 さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
Next, a hot water production apparatus 50 to which exhaust gas is supplied is connected to the fuel cell module 2. The hot water production apparatus 50 is supplied with tap water from the water supply source 24, and the tap water is heated by the heat of the exhaust gas and supplied to a hot water storage tank of an external hot water heater (not shown).
The fuel cell module 2 is provided with a control box 52 for controlling the amount of fuel gas supplied and the like.
Furthermore, the fuel cell module 2 is connected to an inverter 54 that is a power extraction unit (power conversion unit) for supplying the power generated by the fuel cell module to the outside.
 次に、図2及び図3により、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
 図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
Next, the internal structure of a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a side sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention, and FIG. 3 is a sectional view taken along line III-III in FIG.
As shown in FIGS. 2 and 3, in the sealed space 8 in the housing 6 of the fuel cell module 2, as described above, the fuel cell assembly 12, the reformer 20, and the air heat exchange are sequentially performed from below. A vessel 22 is arranged.
 改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bが形成され、これらの蒸発部20aと改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。 The reformer 20 is provided with a pure water introduction pipe 60 for introducing pure water and a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof. In addition, in the reformer 20, an evaporation unit 20a and a reforming unit 20b are formed sequentially from the upstream side, and the evaporation unit 20a and the reforming unit 20b are filled with a reforming catalyst. The fuel gas and air mixed with the steam (pure water) introduced into the reformer 20 are reformed by the reforming catalyst filled in the reformer 20. As the reforming catalyst, a catalyst obtained by imparting nickel to the alumina sphere surface or a catalyst obtained by imparting ruthenium to the alumina sphere surface is appropriately used.
 この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。 A fuel gas supply pipe 64 is connected to the downstream end side of the reformer 20, and the fuel gas supply pipe 64 extends downward and further in an manifold 66 formed below the fuel cell assembly 12. It extends horizontally. A plurality of fuel supply holes 64 b are formed in the lower surface of the horizontal portion 64 a of the fuel gas supply pipe 64, and the reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64 b.
 このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。 A lower support plate 68 having a through hole for supporting the fuel cell stack 14 described above is attached above the manifold 66, and the fuel gas in the manifold 66 flows into the fuel cell unit 16. Supplied.
 次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。 Next, an air heat exchanger 22 is provided above the reformer 20. The air heat exchanger 22 includes an air aggregation chamber 70 on the upstream side and two air distribution chambers 72 on the downstream side. The air aggregation chamber 70 and the air distribution chamber 72 include six air flow path tubes 74. Connected by. Here, as shown in FIG. 3, three air flow path pipes 74 form a set (74a, 74b, 74c, 74d, 74e, 74f), and the air in the air collecting chamber 70 is in each set. It flows into each air distribution chamber 72 from the air flow path pipe 74.
 空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
 空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
The air flowing through the six air flow path pipes 74 of the air heat exchanger 22 is preheated by exhaust gas that burns and rises in the combustion chamber 18.
An air introduction pipe 76 is connected to each of the air distribution chambers 72, the air introduction pipe 76 extends downward, and the lower end side communicates with the lower space of the power generation chamber 10, and the air that has been preheated in the power generation chamber 10. Is introduced.
 次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス室通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
 図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
Next, an exhaust gas chamber 78 is formed below the manifold 66. Further, as shown in FIG. 3, an exhaust gas passage 80 extending in the vertical direction is formed inside the front surface 6 a and the rear surface 6 b which are surfaces along the longitudinal direction of the housing 6, and the upper end of the exhaust gas chamber passage 80 is formed. The side communicates with the space in which the air heat exchanger 22 is disposed, and the lower end side communicates with the exhaust gas chamber 78. Further, an exhaust gas discharge pipe 82 is connected to substantially the center of the lower surface of the exhaust gas chamber 78, and the downstream end of the exhaust gas discharge pipe 82 is connected to the above-described hot water producing apparatus 50 shown in FIG.
As shown in FIG. 2, an ignition device 83 for starting combustion of fuel gas and air is provided in the combustion chamber 18.
 次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
 図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
 燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(-)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
Next, the fuel cell unit 16 will be described with reference to FIG. FIG. 4 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
As shown in FIG. 4, the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
The fuel cell 84 is a tubular structure extending in the vertical direction, and includes a cylindrical inner electrode layer 90 that forms a fuel gas flow path 88 therein, a cylindrical outer electrode layer 92, an inner electrode layer 90, and an outer side. An electrolyte layer 94 is provided between the electrode layer 92 and the electrode layer 92. The inner electrode layer 90 is a fuel electrode through which fuel gas passes and becomes a (−) electrode, while the outer electrode layer 92 is an air electrode in contact with air and becomes a (+) electrode.
 燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。 Since the inner electrode terminals 86 attached to the upper end side and the lower end side of the fuel cell 16 have the same structure, the inner electrode terminal 86 attached to the upper end side will be specifically described here. The upper portion 90 a of the inner electrode layer 90 includes an outer peripheral surface 90 b and an upper end surface 90 c exposed to the electrolyte layer 94 and the outer electrode layer 92. The inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected. A fuel gas passage 98 communicating with the fuel gas passage 88 of the inner electrode layer 90 is formed at the center of the inner electrode terminal 86.
 内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。 The inner electrode layer 90 includes, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and Ni and ceria doped with at least one selected from rare earth elements. The mixture is formed of at least one of Ni and a mixture of lanthanum garade doped with at least one selected from Sr, Mg, Co, Fe, and Cu.
 電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。 The electrolyte layer 94 includes, for example, zirconia doped with at least one selected from rare earth elements such as Y and Sc, ceria doped with at least one selected from rare earth elements, lanthanum gallate doped with at least one selected from Sr and Mg, Formed from at least one of the following.
 外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。 The outer electrode layer 92 includes, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni and Cu, Sr, Fe, Ni and Cu. It is formed from at least one of lanthanum cobaltite doped with at least one selected from the group consisting of silver and silver.
 次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
 図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
Next, the fuel cell stack 14 will be described with reference to FIG. FIG. 5 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
As shown in FIG. 5, the fuel cell stack 14 includes 16 fuel cell units 16, and the lower end side and the upper end side of these fuel cell units 16 are a ceramic lower support plate 68 and an upper side, respectively. It is supported by the support plate 100. The lower support plate 68 and the upper support plate 100 are formed with through holes 68a and 100a through which the inner electrode terminal 86 can pass.
 さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。 Furthermore, a current collector 102 and an external terminal 104 are attached to the fuel cell unit 16. The current collector 102 includes a fuel electrode connection portion 102a that is electrically connected to an inner electrode terminal 86 attached to the inner electrode layer 90 that is a fuel electrode, and an entire outer peripheral surface of the outer electrode layer 92 that is an air electrode. And an air electrode connecting portion 102b electrically connected to each other. The air electrode connecting portion 102b is formed of a vertical portion 102c extending in the vertical direction on the surface of the outer electrode layer 92 and a plurality of horizontal portions 102d extending in a horizontal direction along the surface of the outer electrode layer 92 from the vertical portion 102c. Has been. The fuel electrode connection portion 102a is linearly directed obliquely upward or obliquely downward from the vertical portion 102c of the air electrode connection portion 102b toward the inner electrode terminal 86 positioned in the vertical direction of the fuel cell unit 16. It extends.
 さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。 Further, the inner electrode terminals 86 at the upper end and the lower end of the two fuel cell units 16 located at the ends of the fuel cell stack 14 (the far left side and the near side in FIG. 5) are external terminals, respectively. 104 is connected. These external terminals 104 are connected to the external terminals 104 (not shown) of the fuel cell unit 16 at the end of the adjacent fuel cell stack 14, and as described above, the 160 fuel cell units 16 Everything is connected in series.
 次に図6により本実施形態による固体電解質型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。
 図6に示すように、固体電解質型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
Next, sensors and the like attached to the solid oxide fuel cell (SOFC) according to the present embodiment will be described with reference to FIG. FIG. 6 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
As shown in FIG. 6, the solid oxide fuel cell 1 includes a control unit 110, and the control unit 110 includes operation buttons such as “ON” and “OFF” for operation by the user. A device 112, a display device 114 for displaying various data such as a power generation output value (wattage), and a notification device 116 for issuing an alarm (warning) in an abnormal state are connected. The notification device 116 may be connected to a remote management center and notify the management center of an abnormal state.
 次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
 先ず、電圧センサ118は、160本の燃料電池セルユニット16からなる直列接続の両端電圧を測定するものである。電圧センサ118は、負荷(インバータ54)に供給するための開回路電圧(OCV)及び負荷状態の電圧を測定可能となっている。
 可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
 CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
 貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
Next, signals from various sensors described below are input to the control unit 110.
First, the voltage sensor 118 measures the voltage across both ends of a series connection composed of 160 fuel cell units 16. The voltage sensor 118 can measure an open circuit voltage (OCV) to be supplied to a load (inverter 54) and a voltage in a load state.
The combustible gas detection sensor 120 is for detecting a gas leak, and is attached to the fuel cell module 2 and the auxiliary unit 4.
The CO detection sensor 122 detects whether or not CO in the exhaust gas originally discharged to the outside through the exhaust gas passage 80 or the like leaks to an external housing (not shown) that covers the fuel cell module 2 and the auxiliary unit 4. Is to do.
The hot water storage state detection sensor 124 is for detecting the temperature and amount of hot water in a water heater (not shown).
 電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
 発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
 改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
 燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
The power state detection sensor 126 is for detecting the current and voltage of the inverter 54 and the distribution board (not shown).
The power generation air flow rate detection sensor 128 is for detecting the flow rate of power generation air supplied to the power generation chamber 10.
The reforming air flow sensor 130 is for detecting the flow rate of the reforming air supplied to the reformer 20.
The fuel flow sensor 132 is for detecting the flow rate of the fuel gas supplied to the reformer 20.
 水流量センサ134は、改質器20に供給される純水(水蒸気)の流量を検出するためのものである。
 水位センサ136は、純水タンク26の水位を検出するためのものである。
 圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
 排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
The water flow rate sensor 134 is for detecting the flow rate of pure water (steam) supplied to the reformer 20.
The water level sensor 136 is for detecting the water level of the pure water tank 26.
The pressure sensor 138 is for detecting the pressure on the upstream side outside the reformer 20.
The exhaust temperature sensor 140 is for detecting the temperature of the exhaust gas flowing into the hot water production apparatus 50.
 発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
 燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
 排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
 改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
 外気温度センサ150は、固体電解質型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
As shown in FIG. 3, the power generation chamber temperature sensor 142 is provided on the front side and the back side in the vicinity of the fuel cell assembly 12, and detects the temperature in the vicinity of the fuel cell stack 14 to thereby detect the fuel cell stack. 14 (ie, the fuel cell 84 itself) is estimated.
The combustion chamber temperature sensor 144 is for detecting the temperature of the combustion chamber 18.
The exhaust gas chamber temperature sensor 146 is for detecting the temperature of the exhaust gas in the exhaust gas chamber 78.
The reformer temperature sensor 148 is for detecting the temperature of the reformer 20, and calculates the temperature of the reformer 20 from the inlet temperature and the outlet temperature of the reformer 20.
The outside air temperature sensor 150 is for detecting the temperature of the outside air when the solid oxide fuel cell (SOFC) is disposed outdoors. Further, a sensor for measuring the humidity or the like of the outside air may be provided.
 これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
 また、制御ユニット110は、インバータ54に、制御信号を送り、電力供給量を制御するようになっている。
Signals from these sensors are sent to the control unit 110, and the control unit 110, based on data based on these signals, the water flow rate adjustment unit 28, the fuel flow rate adjustment unit 38, the reforming air flow rate adjustment unit 44, A control signal is sent to the power generation air flow rate adjusting unit 45 to control each flow rate in these units.
Further, the control unit 110 sends a control signal to the inverter 54 to control the power supply amount.
 次に図7により本実施形態による固体電解質型燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
 最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
Next, the operation at the time of starting by the solid oxide fuel cell (SOFC) according to the present embodiment will be described with reference to FIG. FIG. 7 is a time chart showing the operation at the time of startup of the solid oxide fuel cell (SOFC) according to one embodiment of the present invention.
Initially, in order to warm the fuel cell module 2, the operation is started in a no-load state, that is, in a state where a circuit including the fuel cell module 2 is opened. At this time, since no current flows through the circuit, the fuel cell module 2 does not generate power.
 先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
 この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
First, reforming air is supplied from the reforming air flow rate adjustment unit 44 to the reformer 20 of the fuel cell module 2 via the first heater 46. At the same time, the power generation air is supplied from the power generation air flow rate adjustment unit 45 to the air heat exchanger 22 of the fuel cell module 2 via the second heater 48, and this power generation air is supplied to the power generation chamber 10 and the combustion chamber. Reach chamber 18.
Immediately after this, the fuel gas is also supplied from the fuel flow rate adjustment unit 38, and the fuel gas mixed with the reforming air passes through the reformer 20, the fuel cell stack 14, and the fuel cell unit 16, and It reaches the combustion chamber 18.
 次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。 Next, the ignition device 83 is ignited to burn the fuel gas and air (reforming air and power generation air) in the combustion chamber 18. Exhaust gas is generated by the combustion of the fuel gas and air, and the power generation chamber 10 is warmed by the exhaust gas, and when the exhaust gas rises in the sealed space 8 of the fuel cell module 2, The fuel gas containing the reforming air is warmed, and the power generation air in the air heat exchanger 22 is also warmed.
 このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。 At this time, the fuel gas mixed with the reforming air is supplied to the reformer 20 by the fuel flow rate adjusting unit 38 and the reforming air flow rate adjusting unit 44. The partial oxidation reforming reaction POX shown in FIG. Since the partial oxidation reforming reaction POX is an exothermic reaction, the startability is good. Further, the heated fuel gas is supplied to the lower side of the fuel cell stack 14 through the fuel gas supply pipe 64, whereby the fuel cell stack 14 is heated from below, and the combustion chamber 18 also has the fuel gas and air. The fuel cell stack 14 is also heated from above, and as a result, the fuel cell stack 14 can be heated substantially uniformly in the vertical direction. Even if the partial oxidation reforming reaction POX proceeds, the combustion reaction between the fuel gas and air continues in the combustion chamber 18.
  Cmn+xO2 → aCO2+bCO+cH2        (1) C m H n + xO 2 → aCO 2 + bCO + cH 2 (1)
 部分酸化改質反応POXの開始後、改質器温度センサ148により改質器20が所定温度(例えば、600℃)になったことを検知したとき、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスを改質器20に供給する。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。この段階では、既に起動の初期段階は過ぎており、発電室10内がある程度の温度まで昇温されているので、吸熱反応が支配的であっても大幅な温度低下を引き起こすことはない。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。 When the reformer temperature sensor 148 detects that the reformer 20 has reached a predetermined temperature (for example, 600 ° C.) after the partial oxidation reforming reaction POX is started, the water flow rate adjustment unit 28 and the fuel flow rate adjustment unit 38 are detected. The reforming air flow rate adjusting unit 44 supplies the reformer 20 with a gas in which fuel gas, reforming air, and steam are mixed in advance. At this time, in the reformer 20, an autothermal reforming reaction ATR in which the partial oxidation reforming reaction POX described above and a steam reforming reaction SR described later are used proceeds. Since the autothermal reforming reaction ATR is thermally balanced internally, the reaction proceeds in the reformer 20 in a thermally independent state. That is, when oxygen (air) is large, heat generation by the partial oxidation reforming reaction POX is dominant, and when there is much steam, an endothermic reaction by the steam reforming reaction SR is dominant. At this stage, the initial stage of startup has already passed, and the temperature inside the power generation chamber 10 has been raised to a certain temperature. Therefore, even if the endothermic reaction is dominant, no significant temperature drop is caused. Further, the combustion reaction continues in the combustion chamber 18 even while the autothermal reforming reaction ATR is in progress.
 式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により改質器20が所定温度(例えば、700℃)になったことを検知したとき、改質用空気流量調整ユニット44による改質用空気の供給を停止すると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。 When the reformer temperature sensor 146 detects that the reformer 20 has reached a predetermined temperature (for example, 700 ° C.) after the start of the autothermal reforming reaction ATR shown in Formula (2), the reforming air flow rate The supply of reforming air by the adjustment unit 44 is stopped, and the supply of water vapor by the water flow rate adjustment unit 28 is increased. As a result, the reformer 20 is supplied with a gas that does not contain air and contains only fuel gas and water vapor, and the steam reforming reaction SR of formula (3) proceeds in the reformer 20.
  Cmn+xO2+yH2O → aCO2+bCO+cH2    (2)
  Cmn+xH2O → aCO2+bCO+cH2       (3)
C m H n + xO 2 + yH 2 O → aCO 2 + bCO + cH 2 (2)
C m H n + xH 2 O → aCO 2 + bCO + cH 2 (3)
 この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。この段階では、燃料電池モジュール2の起動の最終段階であるため、発電室10内が十分高温に昇温されているので、吸熱反応が進行しても、発電室10が大幅な温度低下を招くこともない。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。 Since this steam reforming reaction SR is an endothermic reaction, the reaction proceeds while maintaining a heat balance with the combustion heat from the combustion chamber 18. At this stage, since the fuel cell module 2 is in the final stage of start-up, the power generation chamber 10 is heated to a sufficiently high temperature. Therefore, even if the endothermic reaction proceeds, the power generation chamber 10 is greatly reduced in temperature. There is nothing. Even if the steam reforming reaction SR proceeds, the combustion reaction continues in the combustion chamber 18.
 このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。次に、発電室10内及び燃料電池セル84の温度が燃料電池モジュール2を安定的に作動させる定格温度よりも低い所定の発電温度に達したら、燃料電池モジュール2を含む回路を閉じ、燃料電池モジュール2による発電を開始し、それにより、回路に電流が流れる。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。この結果、燃料電池モジュール2を作動させる定格温度、例えば、600℃~800℃になる。 In this way, after the fuel cell module 2 is ignited by the ignition device 83, the partial oxidation reforming reaction POX, the autothermal reforming reaction ATR, and the steam reforming reaction SR proceed in sequence, so that the inside of the power generation chamber 10 The temperature gradually increases. Next, when the temperature in the power generation chamber 10 and the fuel cell 84 reaches a predetermined power generation temperature lower than the rated temperature at which the fuel cell module 2 is stably operated, the circuit including the fuel cell module 2 is closed, and the fuel cell Power generation by the module 2 is started, so that a current flows in the circuit. Due to the power generation of the fuel cell module 2, the fuel cell 84 itself also generates heat, and the temperature of the fuel cell 84 also rises. As a result, the rated temperature at which the fuel cell module 2 is operated becomes, for example, 600 ° C. to 800 ° C.
 この後、定格温度を維持するために、燃料電池セル84で消費される燃料ガス及び空気の量よりも多い燃料ガス及び空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。 Thereafter, in order to maintain the rated temperature, fuel gas and air that are larger than the amount of fuel gas and air consumed in the fuel cell 84 are supplied, and combustion in the combustion chamber 18 is continued. During power generation, power generation proceeds in a steam reforming reaction SR with high reforming efficiency.
 次に、図8により本実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
 図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
Next, the operation when the solid oxide fuel cell (SOFC) according to the present embodiment is stopped will be described with reference to FIG. FIG. 8 is a time chart showing the operation when the solid oxide fuel cell (SOFC) according to the present embodiment is stopped.
As shown in FIG. 8, when the operation of the fuel cell module 2 is stopped, first, the fuel flow rate adjustment unit 38 and the water flow rate adjustment unit 28 are operated to supply fuel gas and water vapor to the reformer 20. Reduce the amount.
 また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、発電用空気流量調整ユニット45による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、改質器20の温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。 When the operation of the fuel cell module 2 is stopped, the amount of fuel gas and water vapor supplied to the reformer 20 is decreased, and at the same time, the fuel cell module 2 for generating air by the power generation air flow rate adjustment unit 45 is used. The supply amount to the inside is increased, and the fuel cell assembly 12 and the reformer 20 are cooled by air, and these temperatures are lowered. Thereafter, when the temperature of the reformer 20 decreases to a predetermined temperature, for example, 400 ° C., the supply of fuel gas and steam to the reformer 20 is stopped, and the steam reforming reaction SR of the reformer 20 is ended. . This supply of power generation air continues until the temperature of the reformer 20 decreases to a predetermined temperature, for example, 200 ° C., and when this temperature is reached, the power generation air from the power generation air flow rate adjustment unit 45 is supplied. Stop supplying.
 このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。 As described above, in the present embodiment, when the operation of the fuel cell module 2 is stopped, the steam reforming reaction SR by the reformer 20 and the cooling by the power generation air are used in combination. The operation of the fuel cell module can be stopped.
 次に、図9乃至11を参照して、本発明の実施形態による固体電解質型燃料電池1の起動時における異常判定対応制御について説明する。
 本実施形態の異常判定対応制御は、起動工程がほぼ終了する段階ではなく、起動途中において、OCVを少なくとも1回又はそれ以上の回数だけ測定し、得られたOCVに基づいて燃料電池モジュール2の発電異常を早期に検出可能とするものである。
Next, with reference to FIGS. 9 to 11, the abnormality determination response control at the time of startup of the solid oxide fuel cell 1 according to the embodiment of the present invention will be described.
In the abnormality determination handling control of the present embodiment, the OCV is measured at least once or more times during the start-up process, not at the stage where the start-up process is almost finished, and the fuel cell module 2 is controlled based on the obtained OCV. This makes it possible to detect power generation abnormality early.
 先ず、図9及び図10に基づいて、異常判定対応制御の前提となるモジュール温度とOCVとの関係について説明する。
 図9は、起動時におけるモジュール温度(a),反応ガス供給量(b),OCV(b)のタイムチャートを模式的に示している。ここで、モジュール温度は、燃料電池セル集合体12又は燃料電池セルユニット16の平均温度であり、実際には発電室温度センサ142で検出される発電室温度で代表させている。反応ガス供給量は、燃料流量センサ132で検出される燃料流量に相当する。また、OCVは、電圧センサ118で検出される開回路電圧値に相当する。
First, based on FIG.9 and FIG.10, the relationship between module temperature and OCV used as the premise of abnormality determination response control is demonstrated.
FIG. 9 schematically shows a time chart of the module temperature (a), the reaction gas supply amount (b), and the OCV (b) at the time of startup. Here, the module temperature is an average temperature of the fuel cell assembly 12 or the fuel cell unit 16, and is actually represented by the power generation chamber temperature detected by the power generation chamber temperature sensor 142. The reactive gas supply amount corresponds to the fuel flow rate detected by the fuel flow rate sensor 132. OCV corresponds to an open circuit voltage value detected by the voltage sensor 118.
 図9から分かるように、OCVはモジュール温度に対して温度依存性を有している。すなわち、モジュール温度の上昇と共にOCVが上昇する密接な関係があり、詳しくは、起動開始後、モジュール温度が一定温度まで上昇すると、OCVが上昇を始め、起動時の最終段階で、モジュール温度が所定の発電開始温度(例えば、700℃)に到達すると、OCVも所定の発電開始電圧値(例えば、150~160V)に到達する。本実施形態では、モジュール温度が発電開始温度に達すると、燃料電池モジュール2から負荷(例えば、インバータ)に向けて電力供給が開始される。 As can be seen from FIG. 9, the OCV has a temperature dependence on the module temperature. That is, there is a close relationship in which the OCV rises as the module temperature rises. Specifically, when the module temperature rises to a certain temperature after the start of startup, the OCV starts to rise, and the module temperature is predetermined at the final stage of startup. When the power generation start temperature (for example, 700 ° C.) is reached, the OCV also reaches a predetermined power generation start voltage value (for example, 150 to 160 V). In the present embodiment, when the module temperature reaches the power generation start temperature, power supply is started from the fuel cell module 2 toward the load (for example, an inverter).
 上述のようにPEFCは、起動時間が短いため、起動の終了段階でOCV判定を行っても、早期に発電異常を検出可能である。また、PEFCでは、起動途中のOCVの挙動は問題にならず、また、起動時間が短いためOCVの挙動が安定せず、起動途中でOCV判定を行っても正確な判定を行うことができない。このため、従来、燃料電池、特に起動時間の短いPEFCでは、起動途中にOCV判定によって発電異常を検出するという発想自体がなかった。 As described above, since the PEFC has a short start-up time, it is possible to detect a power generation abnormality at an early stage even if an OCV determination is made at the end of start-up. In addition, in the PEFC, the OCV behavior during startup does not matter, and since the startup time is short, the OCV behavior is not stable, and accurate determination cannot be performed even if OCV determination is performed during startup. For this reason, conventionally, fuel cells, particularly PEFCs with a short start-up time, did not have the idea of detecting a power generation abnormality by OCV determination during start-up.
 これに対して、本発明者は、固体電解質形燃料電池(SOFC)では、起動時のOCVの挙動が安定していること、すなわち、起動時にモジュール温度に対するOCVの値が非常に安定しており、モジュール温度に対するOCVのバラツキが比較的小さいことを見出した。詳しくは、SOFCでは、反応ガスが燃料電池モジュールに供給されると、反応ガスによる供給熱量に応じて、モジュール温度及びOCVが双方安定した関係を保って上昇していき、安定的運転状態に達する。また、SOFCは、起動に1.5~2時間程度を要するが、この間においてモジュール温度に対するOCVのバラツキが比較的小さい。 On the other hand, the present inventor has found that the behavior of the OCV at the time of startup is stable in the solid oxide fuel cell (SOFC), that is, the value of the OCV with respect to the module temperature is very stable at the time of startup. It was found that the variation of the OCV with respect to the module temperature is relatively small. Specifically, in the SOFC, when the reaction gas is supplied to the fuel cell module, the module temperature and the OCV rise in a stable relationship according to the amount of heat supplied by the reaction gas, and reach a stable operation state. . In addition, the SOFC requires about 1.5 to 2 hours to start up, but the variation of the OCV with respect to the module temperature is relatively small during this period.
 これにより、SOFCでは、起動途中において、OCVの値がモジュール温度に対して所定の関係を有しているか否かを判定することで、燃料電池モジュールの発電機能の不具合、又は、発電性能の劣化を早期に検出可能であることが分かった。 As a result, in the SOFC, during the start-up, it is determined whether the OCV value has a predetermined relationship with the module temperature, so that the malfunction of the power generation function of the fuel cell module or the degradation of the power generation performance It can be detected early.
 図10は、モジュール温度に対する、正常時電圧値(a),基準電圧値(b),停止基準電圧値(c)の各変化を模式的に表している。本実施形態では、制御部110が、図10に示された各電圧値変化を基準データとしてメモリ内に記憶している。
 正常時電圧値(a)は、燃料電池セルユニット16に異常がなく、燃料電池モジュール2の発電機能が正常であり発電性能が劣化していない場合に、同一条件のもと、各モジュール温度において平均的に検出される電圧値である。
FIG. 10 schematically shows changes in the normal voltage value (a), the reference voltage value (b), and the stop reference voltage value (c) with respect to the module temperature. In the present embodiment, the control unit 110 stores each voltage value change shown in FIG. 10 in the memory as reference data.
The normal voltage value (a) is the same for each module temperature under the same conditions when there is no abnormality in the fuel cell unit 16 and the power generation function of the fuel cell module 2 is normal and the power generation performance is not deteriorated. This is a voltage value detected on average.
 基準電圧値(b)は、燃料電池モジュール2の個々の製造バラツキ等を考慮して定められた電圧値(OCV)である。基準電圧値(b)は、図10から分かるように、正常時電圧値(a)よりも遅れて、OCV判定可能温度T1で立ち上がりを開始し、各モジュール温度において正常時電圧値(a)よりも小さな値を有する。
 したがって、各モジュール温度において、基準電圧値より大きいOCV(正常領域)が検出されれば、燃料電池モジュール2の発電性能は正常な範囲にあると判定することができる。この場合、本実施形態では、モジュール温度が発電開始温度に到達した後、定格出力電力(例えば、700W)を上限として負荷に対して出力される。
The reference voltage value (b) is a voltage value (OCV) determined in consideration of individual manufacturing variations of the fuel cell module 2 and the like. As can be seen from FIG. 10, the reference voltage value (b) starts rising at the OCV determinable temperature T 1 later than the normal voltage value (a), and the normal voltage value (a) at each module temperature. Has a smaller value.
Therefore, if an OCV (normal region) larger than the reference voltage value is detected at each module temperature, it can be determined that the power generation performance of the fuel cell module 2 is in a normal range. In this case, in this embodiment, after the module temperature reaches the power generation start temperature, it is output to the load with the rated output power (for example, 700 W) as the upper limit.
 停止基準電圧値(c)は、燃料電池モジュール2の許容可能な性能劣化(軽微な発電異常)を考慮して定められた電圧値である。停止基準電圧値(c)は、各モジュール温度において基準電圧値(b)よりも小さな値を有する。
 したがって、各モジュール温度において、停止基準電圧値より大きくかつ基準電圧値以下(劣化領域)のOCVが検出されれば、燃料電池モジュール2の発電性能は劣化状態の範囲にあると判定することができる。この場合、燃料電池モジュール2の発電性能は劣化しているが、本実施形態では、劣化度合いに応じた電力が負荷に供給される。
The stop reference voltage value (c) is a voltage value determined in consideration of allowable performance deterioration (minor power generation abnormality) of the fuel cell module 2. The stop reference voltage value (c) has a smaller value than the reference voltage value (b) at each module temperature.
Therefore, if an OCV greater than the stop reference voltage value and less than or equal to the reference voltage value (degradation region) is detected at each module temperature, it can be determined that the power generation performance of the fuel cell module 2 is in the degraded state range. . In this case, the power generation performance of the fuel cell module 2 is deteriorated, but in the present embodiment, power corresponding to the degree of deterioration is supplied to the load.
 劣化状態と判定された場合、異常対応制御処理として、本実施形態では、正常時電圧値に対する検出されたOCVの大きさに応じて、負荷への出力電力が低減される。例えば、発電可能なモジュール温度において、正常時電圧値(例えば、V0)に対するOCV(例えば、V1)の割合(V1/V0)を算出し、この割合を通常時の定格出力電力に乗じることで低減された出力電力(定格出力電力×V1/V0)を求めることができる。そして、本実施形態では、この低減された出力電力が最大出力電力として負荷に対して出力される。 In the present embodiment, when it is determined that the state is deteriorated, the output power to the load is reduced according to the detected magnitude of the OCV with respect to the normal voltage value as the abnormality handling control process. For example, in a power generation module that can be temperature, normal operation voltage (e.g., V 0) OCV for (e.g., V 1) to calculate the ratio of (V 1 / V 0), the ratio to the rated output power during normal The output power reduced by multiplying (rated output power × V 1 / V 0 ) can be obtained. In this embodiment, the reduced output power is output to the load as the maximum output power.
 なお、これに限らず、検出されたOCVの値の範囲に応じて、600W,500W,400Wといったように、段階的に出力電力を設定するように構成してもよい。
 なお、燃料電池モジュール2の発電性能の劣化とは、例えば、燃料電池セルユニット16の外側電極層92の部分的な剥がれ等である。このような剥がれにより発電可能面積が小さくなるので、燃料電池セルユニット16は、定格電圧(例えば、約1V)から出力電圧が低下する。しかしながら、部分的な剥がれにより出力電圧が低下したとしても、低下した出力電圧内で使用が可能である。
However, the present invention is not limited to this, and the output power may be set in stages, such as 600 W, 500 W, and 400 W, depending on the range of the detected OCV value.
The deterioration in the power generation performance of the fuel cell module 2 is, for example, partial peeling of the outer electrode layer 92 of the fuel cell unit 16. Since the power generation area is reduced by such peeling, the output voltage of the fuel cell unit 16 is reduced from the rated voltage (for example, about 1 V). However, even if the output voltage is reduced due to partial peeling, it can be used within the reduced output voltage.
 したがって、本実施形態では、検出されたOCVに応じて、許容可能な程度の劣化(劣化領域)と判定した場合には、劣化状況又は劣化の程度に応じて出力電力を低減して使用を継続するように構成されている。これにより、例えば、上記剥がれ等が生じていない正常な燃料電池セルユニット16及び劣化が進行している燃料電池セルユニット16に過度な負荷がかかることを防止して、発電性能の低減抑制を図り、製品寿命を延ばすことができる。 Therefore, in this embodiment, when it is determined that the deterioration (acceptable area) is acceptable according to the detected OCV, the output power is reduced according to the deterioration state or the degree of deterioration, and the use is continued. Is configured to do. Thereby, for example, it is possible to prevent an excessive load from being applied to the normal fuel cell unit 16 in which the above-described peeling or the like has not occurred and the fuel cell unit 16 in which the deterioration has progressed, thereby suppressing reduction in power generation performance. Can prolong the product life.
 一方、各モジュール温度において、停止基準電圧値以下のOCV(不具合又は異常領域)が検出された場合には、燃料電池モジュール2が発電異常状態であると判定することができる。この場合、異常対応制御処理として、本実施形態では、運転停止処理に移行する。 On the other hand, when an OCV (failure or abnormal region) equal to or lower than the stop reference voltage value is detected at each module temperature, it can be determined that the fuel cell module 2 is in a power generation abnormal state. In this case, as the abnormality handling control process, in the present embodiment, the operation shifts to the stop process.
 なお、燃料電池モジュール2の発電系統の不具合とは、例えば、剥がれた外側電極層92が、隣接する燃料電池セルユニット16と接触することにより、短絡が起こってしまうことである。燃料電池セルユニット16間で短絡が発生すると、燃料電池セル集合体12は十分な出力電圧を供給することができなくなる。したがって、本実施形態では、検出されたOCVに応じて、このような不具合が発生したと判定した場合には、電力供給を停止するように構成されている。 The malfunction of the power generation system of the fuel cell module 2 is that, for example, a short circuit occurs when the peeled outer electrode layer 92 comes into contact with the adjacent fuel cell unit 16. When a short circuit occurs between the fuel cell units 16, the fuel cell assembly 12 cannot supply a sufficient output voltage. Therefore, in the present embodiment, when it is determined that such a problem has occurred according to the detected OCV, the power supply is stopped.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、図10に対応しており、代表的なモジュール温度における各電圧値を数値で示したものである。モジュール温度300℃は、OCV判定可能温度T1よりも高い温度であり、このとき正常時電圧値(a)は60Vであり、基準電圧値(b)は10Vであり、両者の電圧差は50Vである。同様に、モジュール温度400℃,500℃,600℃,700℃(本実施形態での発電開始温度)において、両者の差は、それぞれ45V,30V,20V,10Vに設定されている。このように、本実施形態では、モジュール温度が低いほど両者の電圧差は大きく設定されている。 Table 1 corresponds to FIG. 10, and shows numerical values of voltage values at typical module temperatures. The module temperature of 300 ° C. is a temperature higher than the OCV determination possible temperature T 1. At this time, the normal voltage value (a) is 60 V, the reference voltage value (b) is 10 V, and the voltage difference between them is 50 V. It is. Similarly, at a module temperature of 400 ° C., 500 ° C., 600 ° C., and 700 ° C. (power generation start temperature in the present embodiment), the difference between the two is set to 45V, 30V, 20V, and 10V, respectively. Thus, in this embodiment, the voltage difference between the two is set larger as the module temperature is lower.
 これは以下の理由による。すなわち、モジュール温度が低い起動の初期段階では、発電室10内での燃料電池セルユニット16の配置により(例えば、側壁付近のセルは周辺環境の影響を受け易い)、燃料電池セルユニット16間の温度ムラが大きい。また、1本の燃料電池セルユニット16内においても温度ムラが大きい。さらには、起動時の外気温度のような環境条件によっても温度ムラの程度が変化する。したがって、起動の初期段階では、燃料電池セル集合体12の全体にわたって、温度ムラが比較的大きく、これによりモジュール温度に対するOCVのバラツキも比較的大きくなる。 This is due to the following reasons. In other words, at the initial stage of start-up when the module temperature is low, the arrangement of the fuel cell units 16 in the power generation chamber 10 (for example, cells near the side walls are easily affected by the surrounding environment) Large temperature unevenness. In addition, the temperature unevenness is large in one fuel cell unit 16. Furthermore, the degree of temperature unevenness also varies depending on environmental conditions such as the outside air temperature at startup. Therefore, in the initial stage of start-up, the temperature unevenness is relatively large throughout the fuel cell assembly 12, and thereby the OCV variation with respect to the module temperature is also relatively large.
 これに対して、モジュール温度が高くなってくると、温度ムラが小さくなってくるので、モジュール温度に対するOCVのバラツキも小さくなる。
 よって、モジュール温度が高いときの方がOCVのバラツキが小さくなるから、本実施形態では、モジュール温度が高いほど正常時電圧値に対する基準電圧値の許容電圧差が小さくなるように基準電圧値を設定している。このように設定することで、発電性能が正常であるにもかかわらず、誤って劣化していると判定してしまうおそれを低減することができる。
On the other hand, when the module temperature is increased, the temperature unevenness is reduced, so that the variation of the OCV with respect to the module temperature is also reduced.
Therefore, since the variation in OCV becomes smaller when the module temperature is higher, in this embodiment, the reference voltage value is set so that the allowable voltage difference between the reference voltage value and the normal voltage value becomes smaller as the module temperature becomes higher. is doing. By setting in this way, it is possible to reduce the possibility of erroneously determining that the power generation performance has deteriorated despite the normal power generation performance.
 また、表1では、モジュール温度600℃,700℃において、基準電圧値(b)と停止基準電圧値(c)との電圧差は、それぞれ50V,40Vである。このように、本実施形態では、モジュール温度が低いほど両者の電圧差は大きく設定されている。また、正常時電圧値(a)と停止基準電圧値(c)との電圧差は70V,50Vであり、モジュール温度が低いほど両者の電圧差は大きく設定されている。 In Table 1, the voltage difference between the reference voltage value (b) and the stop reference voltage value (c) is 50V and 40V at the module temperatures of 600 ° C. and 700 ° C., respectively. Thus, in this embodiment, the voltage difference between the two is set larger as the module temperature is lower. Further, the voltage difference between the normal voltage value (a) and the stop reference voltage value (c) is 70V and 50V, and the voltage difference between the two is set larger as the module temperature is lower.
 上述のように、本実施形態では、不具合と判定されると運転停止処理が行われてしまうので、全く電力を供給することができなくなってしまう。したがって、このように基準電圧値(b)と停止基準電圧値(c)との電圧差がモジュール温度に応じて設定されることで、十分にモジュール温度が昇温していない段階(OCVのバラツキが依然として大きい状態)で、誤って不具合と判定され、運転停止処理が行われてしまうおそれを低減することができる。 As described above, in the present embodiment, if it is determined that there is a malfunction, an operation stop process is performed, and thus power cannot be supplied at all. Accordingly, when the voltage difference between the reference voltage value (b) and the stop reference voltage value (c) is set according to the module temperature in this way, the module temperature is not sufficiently increased (OCV variation). ) Is still in a large state), and it is possible to reduce the possibility that the malfunction is erroneously determined and the operation stop process is performed.
 次に、図11に基づいて、本実施形態の異常判定対応制御の処理フローを説明する。
 先ず、燃料電池システムが起動開始されると、制御部110は、モジュール温度を測定し取得する(ステップS1)。
 次いで、制御部110は、取得したモジュール温度がOCV判定可能温度T1以上であるか否かを判定する(ステップS2)。
Next, based on FIG. 11, the processing flow of the abnormality determination handling control of this embodiment will be described.
First, when the fuel cell system is started, the control unit 110 measures and acquires the module temperature (step S1).
Next, the control unit 110 determines whether or not the acquired module temperature is equal to or higher than the OCV determination possible temperature T 1 (step S2).
 モジュール温度がOCV判定可能温度T1以上でない場合(ステップS2;No)、ステップS1の処理を繰り返す。
 一方、モジュール温度がOCV判定可能温度T1以上である場合(ステップS2;Yes)、制御部110は、メモリ内に記憶したデータに基づいて、取得したモジュール温度に対応する基準電圧値及び停止基準電圧値を決定する(ステップS3)。また、制御部110は、OCVを測定し取得する(ステップS4)。
When the module temperature is not equal to or higher than the OCV determination possible temperature T 1 (step S2; No), the process of step S1 is repeated.
On the other hand, when the module temperature is equal to or higher than the OCV determination possible temperature T 1 (step S2; Yes), the control unit 110, based on the data stored in the memory, the reference voltage value and the stop reference corresponding to the acquired module temperature. A voltage value is determined (step S3). Moreover, the control part 110 measures and acquires OCV (step S4).
 次いで、制御部110は、取得したOCVと決定した基準電圧値とを比較する(ステップS5)。
 OCVの方が基準電圧値よりも大きい場合(ステップS5;Yes)、燃料電池モジュール2の発電性能は正常であり、制御部110は、取得したモジュール温度が発電可能な温度(例えば、700℃)に到達したか否かを判定する(ステップS6)。
Next, the control unit 110 compares the acquired OCV with the determined reference voltage value (step S5).
When the OCV is larger than the reference voltage value (step S5; Yes), the power generation performance of the fuel cell module 2 is normal, and the control unit 110 determines that the acquired module temperature can be generated (eg, 700 ° C.). Is determined (step S6).
 モジュール温度が発電可能な温度以上である場合(ステップS6;Yes)、起動工程が正常であり、十分な発電性能があるので、制御部110は、通常の定格出力電力(例えば、700W)を最大出力電力として、負荷に電力供給を開始し(ステップS7)、処理を終了する。
 一方、モジュール温度が発電可能な温度以上でない場合(ステップS6;No)、起動工程途中にあるので、制御部110は、所定時間経過するのを待って(ステップS8)、再びステップS1の処理を繰り返す。
When the module temperature is equal to or higher than the temperature at which power generation is possible (step S6; Yes), the startup process is normal and there is sufficient power generation performance, so the control unit 110 maximizes the normal rated output power (for example, 700 W). As output power, power supply to the load is started (step S7), and the process is terminated.
On the other hand, if the module temperature is not equal to or higher than the temperature at which power generation is possible (step S6; No), the controller 110 is in the middle of the startup process, so the control unit 110 waits for a predetermined time to elapse (step S8) and repeats the process of step S1. repeat.
 また、ステップS5において、OCVが基準電圧値以下である場合(ステップS5;No)、燃料電池モジュール2の発電性能は劣化しており、又は発電系統に不具合を有しているので、これらを区別するために、制御部110は、OCVと停止基準電圧値とを比較する(ステップS9)。
 OCVの方が停止基準電圧値よりも大きい場合(ステップS9;Yes)、燃料電池モジュール2の発電性能は劣化しているものの、不具合を有する程度ではないので、制御部110は、取得したモジュール温度が発電可能な温度に到達したか否かを判定する(ステップS10)。
In step S5, when the OCV is equal to or lower than the reference voltage value (step S5; No), the power generation performance of the fuel cell module 2 is deteriorated or has a defect in the power generation system. In order to do this, the control unit 110 compares the OCV with the stop reference voltage value (step S9).
When the OCV is larger than the stop reference voltage value (step S9; Yes), the power generation performance of the fuel cell module 2 is deteriorated, but is not in a defective state. It is determined whether or not the temperature reaches a temperature at which power generation is possible (step S10).
 モジュール温度が発電可能な温度以上でない場合(ステップS10;No)、起動工程途中において、発電性能の劣化は見られるものの、運転を停止するほどの不具合ではないので、制御部110は、さらに起動工程を進行させるべく、所定時間経過するのを待って(ステップS8)、再びステップS1の処理を繰り返す。 When the module temperature is not equal to or higher than the temperature at which power generation is possible (step S10; No), although the power generation performance is deteriorated during the startup process, it is not a problem enough to stop the operation. In step S8, the process in step S1 is repeated again after a predetermined time has elapsed.
 一方、モジュール温度が発電可能な温度以上である場合(ステップS10;Yes)、発電を開始することはできるものの発電性能が劣化しているので、制御部110は、劣化の度合いに応じて最大出力電力を低減する処理(ステップS11)を行った後、低減された最大出力電力を上限として負荷に電力供給を開始し(ステップS12)、処理を終了する。
 なお、本実施形態では、OCVが基準電圧値以下で且つ停止基準電圧値より大きい場合に、最大出力電力を低減させて発電を行うように構成されているが、最大出力電力を低減する具体的な方法として、最大出力電流を低減させるように構成することができる。
On the other hand, when the module temperature is equal to or higher than the temperature at which power generation is possible (step S10; Yes), although power generation can be started, the power generation performance has deteriorated, so the control unit 110 outputs maximum power according to the degree of deterioration. After performing the process of reducing power (step S11), power supply to the load is started with the reduced maximum output power as an upper limit (step S12), and the process is terminated.
In the present embodiment, when the OCV is equal to or lower than the reference voltage value and larger than the stop reference voltage value, power generation is performed by reducing the maximum output power. As a simple method, the maximum output current can be reduced.
 ステップS9において、OCVが停止基準電圧値以下である場合(ステップS9;No)、燃料電池モジュール2の発電系統が不具合を有しているので、制御部110は、運転停止処理を行って(ステップS13)、処理を終了する。
 なお、本実施形態では、起動時において、OCVが基準電圧値及び停止基準電圧値以下である場合に、表示装置114に劣化状況及び不具合状況を表示し、報知装置116によって使用者等に劣化状況及び不具合状況を報知するように構成してもよい。
In step S9, when the OCV is equal to or lower than the stop reference voltage value (step S9; No), since the power generation system of the fuel cell module 2 has a problem, the control unit 110 performs an operation stop process (step S9). S13), the process is terminated.
In this embodiment, when the OCV is equal to or lower than the reference voltage value and the stop reference voltage value at the time of starting, the display device 114 displays the deterioration status and the failure status, and the notification device 116 indicates the deterioration status to the user or the like. And you may comprise so that a malfunction condition may be alert | reported.
 以上のように、本実施形態では、起動途中において、OCVと停止基準電圧値とを比較することにより、起動処理が完了する前段階で、発電異常(発電系統の不具合・故障等)を検出することができ、起動処理が完了する前に異常対応制御(ここでは、運転停止処理)を行うことができる。 As described above, in the present embodiment, during startup, the OCV and the stop reference voltage value are compared to detect a power generation abnormality (such as a malfunction or failure in the power generation system) before the startup process is completed. It is possible to perform abnormality response control (here, operation stop processing) before the start-up process is completed.
 また、本実施形態では、起動途中において、OCVと基準電圧値とを比較することにより、運転停止する程度ではない発電機能の劣化を検出及びモニターすることができる。そして、本実施形態では、劣化が検出されたとしても、OCVの値に応じて、出力電力を低減することで、燃料電池セル集合体12の各セルユニット16にかかる負荷を低減して、燃料電池モジュール2の長寿命化を達成することが可能となる。 Further, in the present embodiment, it is possible to detect and monitor the deterioration of the power generation function not to the extent of stopping the operation by comparing the OCV and the reference voltage value during the start-up. In this embodiment, even if deterioration is detected, the load applied to each cell unit 16 of the fuel cell assembly 12 is reduced by reducing the output power according to the value of the OCV. It becomes possible to extend the life of the battery module 2.
 また、本実施形態では、起動途中において、OCVと2つの基準電圧値との比較により、発電機能の低下の度合いを区別して、発電機能の低下度合いに応じて、異常対応制御(最大出力電力の低下、運転停止)を選択的に行うことができる。 Further, in the present embodiment, during the start-up, the degree of decrease in the power generation function is distinguished by comparing the OCV and the two reference voltage values, and the abnormality response control (maximum output power Reduction, operation stop) can be performed selectively.
 また、本実施形態では、起動途中において、OCVと基準電圧値及び停止基準電圧値との比較による発電異常判定を複数回行うことで、発電異常が発生してから検出されるまでの時間を短縮することができ、早期に発電異常を検出することが可能である。 Further, in the present embodiment, during the start-up, the power generation abnormality determination is performed a plurality of times by comparing the OCV with the reference voltage value and the stop reference voltage value, thereby shortening the time from occurrence of the power generation abnormality to detection. It is possible to detect power generation abnormality at an early stage.
 なお、上記実施形態では、起動途中において、各モジュール温度において検出されるOCVが、図10の線a-b間の領域(正常領域),線b-c間の領域(劣化領域),線cより下の領域(不具合又は異常領域)のうち、単一の領域(正常領域,又は劣化領域)のみを通過するように検出された場合であっても、複数の領域(正常領域と劣化領域)を通過するように検出された場合であっても、モジュール温度が発電可能なモジュール温度に到達した段階(ステップS6,S10)でOCVがいずれの領域に属するかに応じて、出力電力の大きさが決定されるように構成されている。 In the above-described embodiment, the OCV detected at each module temperature during the start-up is the area between lines ab (normal area), the area between lines bc (deterioration area), and line c in FIG. Even if it is detected to pass through only a single region (normal region or degraded region) among lower regions (failure or abnormal regions), a plurality of regions (normal region and degraded region) Even when the module is detected to pass through, the magnitude of the output power depends on which region the OCV belongs to when the module temperature reaches the module temperature at which power generation is possible (steps S6 and S10). Is configured to be determined.
 しかしながら、これに限らず、起動途中においてOCVが常に正常領域の値を有していた場合のみに、低減されない出力電力が供給されるように構成してもよい。すなわち、起動途中において劣化状態にあると一度でも判定された場合(ステップS5;No)には、モジュール温度が発電可能なモジュール温度に到達した段階において、OCVが基準電圧値より大きい場合であっても、出力電力を低減するように構成してもよい。この場合、劣化領域と判定された割合や、その程度に応じて、出力電力を低減することができる。 However, the present invention is not limited to this, and it may be configured such that output power that is not reduced is supplied only when the OCV always has a value in the normal region during startup. That is, when it is determined even once that it is in a degraded state during the start-up (step S5; No), the OCV is larger than the reference voltage value when the module temperature reaches the module temperature at which power generation is possible. Alternatively, the output power may be reduced. In this case, the output power can be reduced according to the ratio determined as the degradation region and the degree thereof.
  1 固体電解質形燃料電池(燃料電池システム)
  2 燃料電池モジュール
  4 補機ユニット
 10 発電室
 12 燃料電池セル集合体
 14 燃料電池セルスタック
 16 燃料電池セルユニット(固体酸化物形セル)
 18 燃焼室
 20 改質器
 22 空気用熱交換器
 28 水流量調整ユニット(水供給手段)
 38 燃料流量調整ユニット(反応ガス供給手段)
 44 改質用空気流量調整ユニット
 45 発電用空気流量調整ユニット(反応ガス供給手段)
 54 インバータ
 83 点火装置
 84 燃料電池セル
110 制御部(異常対応制御手段)
118 電圧センサ(電圧測定手段)
142 発電室温度センサ(温度測定手段)
1 Solid electrolyte fuel cell (fuel cell system)
2 Fuel cell module 4 Auxiliary machine unit 10 Power generation chamber 12 Fuel cell assembly 14 Fuel cell stack 16 Fuel cell unit (solid oxide cell)
18 Combustion chamber 20 Reformer 22 Heat exchanger for air 28 Water flow rate adjustment unit (water supply means)
38 Fuel flow rate adjustment unit (reactive gas supply means)
44 reforming air flow rate adjustment unit 45 power generation air flow rate adjustment unit (reactive gas supply means)
54 inverter 83 ignition device 84 fuel cell 110 control unit (abnormality response control means)
118 Voltage sensor (voltage measuring means)
142 Power generation chamber temperature sensor (temperature measuring means)

Claims (8)

  1.  固体酸化物形セルを有する燃料電池モジュールと、
     発電に供する反応ガスを前記燃料電池モジュールに供給する反応ガス供給手段と、
     前記燃料電池モジュールのモジュール温度を測定する温度測定手段と、
     前記燃料電池モジュールの開回路電圧値を測定する電圧測定手段と、を備え、
     起動段階において、前記反応ガス供給手段により前記反応ガスを前記燃料電池モジュールへ供給しながら前記モジュール温度を上昇させ、前記モジュール温度を発電開始温度に到達させるように構成された燃料電池システムであって、
     前記起動段階のうち、前記燃料電池モジュール温度が、前記発電開始温度に到達する前の起動の途中段階において、前記電圧測定手段は前記開回路電圧値を測定するよう構成されており、
     該測定された前記開回路電圧値が、前記発電開始温度よりも低い前記モジュール温度に対応して予め定められている基準電圧値を下回った場合に発電異常と判定し、異常対応制御を行う異常対応制御手段を備えたことを特徴とする燃料電池システム。
    A fuel cell module having a solid oxide cell;
    Reactive gas supply means for supplying a reactive gas for power generation to the fuel cell module;
    Temperature measuring means for measuring the module temperature of the fuel cell module;
    Voltage measuring means for measuring an open circuit voltage value of the fuel cell module,
    A fuel cell system configured to increase the module temperature while supplying the reaction gas to the fuel cell module by the reaction gas supply means in the start-up stage so that the module temperature reaches a power generation start temperature. ,
    In the starting stage, in the middle stage of starting before the fuel cell module temperature reaches the power generation start temperature, the voltage measuring means is configured to measure the open circuit voltage value,
    Abnormality in which the measured open circuit voltage value falls below a predetermined reference voltage value corresponding to the module temperature lower than the power generation start temperature, and that power generation abnormality is determined, and abnormality response control is performed. A fuel cell system comprising a corresponding control means.
  2.  前記基準電圧値は、前記モジュール温度に対応した正常時の開回路電圧値である正常時電圧値よりも低い値であることを特徴とする請求項1に記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the reference voltage value is lower than a normal voltage value that is a normal open circuit voltage value corresponding to the module temperature.
  3.  前記基準電圧値は、前記モジュール温度が低いときほど、前記正常時電圧値に対しより低くなるように定められていることを特徴とする請求項2に記載の燃料電池システム。 3. The fuel cell system according to claim 2, wherein the reference voltage value is set to be lower than the normal voltage value as the module temperature is lower.
  4.  前記異常対応制御手段は、前記発電異常の判定を起動段階において複数回行うことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 3, wherein the abnormality response control means performs the determination of the power generation abnormality a plurality of times in a startup stage.
  5.  前記異常対応制御は、発電開始後における最大出力電力を設定値よりも下げる制御であることを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the abnormality response control is control for lowering a maximum output power after a start of power generation below a set value.
  6.  前記異常対応制御は、燃料電池システムの運転を停止する制御であることを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the abnormality response control is control for stopping operation of the fuel cell system.
  7.  前記モジュール温度に対応して、前記基準電圧値と、この基準電圧値よりも低い停止基準電圧値が設定されており、
     前記異常対応制御手段は、前記異常対応制御として、前記開回路電圧が前記基準電圧値以下で且つ前記停止基準電圧値よりも高い場合には、発電開始後における最大出力電力を設定値よりも下げ、前記開回路電圧が前記停止基準電圧値以下である場合には、燃料電池システムの運転を停止することを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池システム。
    Corresponding to the module temperature, the reference voltage value and a stop reference voltage value lower than the reference voltage value are set,
    When the open circuit voltage is equal to or lower than the reference voltage value and higher than the stop reference voltage value, the abnormality response control means lowers the maximum output power after the start of power generation below a set value as the abnormality response control. The fuel cell system according to any one of claims 1 to 4, wherein when the open circuit voltage is equal to or less than the stop reference voltage value, the operation of the fuel cell system is stopped.
  8.  前記停止基準電圧値は、前記モジュール温度が低いときほど、前記基準電圧に対しより低くなるように定められていることを特徴とする請求項7に記載の燃料電池システム。 The fuel cell system according to claim 7, wherein the stop reference voltage value is set to be lower than the reference voltage as the module temperature is lower.
PCT/JP2011/052843 2010-02-16 2011-02-10 Fuel cell system WO2011102290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-030946 2010-02-16
JP2010030946A JP2011170983A (en) 2010-02-16 2010-02-16 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2011102290A1 true WO2011102290A1 (en) 2011-08-25

Family

ID=44482877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052843 WO2011102290A1 (en) 2010-02-16 2011-02-10 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2011170983A (en)
WO (1) WO2011102290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190036145A1 (en) * 2016-02-04 2019-01-31 Connexx Systems Corporation Fuel cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734694B2 (en) * 2011-02-15 2015-06-17 本田技研工業株式会社 Control method of fuel cell stack
JP5864059B2 (en) * 2012-03-12 2016-02-17 アイシン精機株式会社 Fuel cell system and failure diagnosis method thereof
WO2015005441A1 (en) * 2013-07-11 2015-01-15 Jx日鉱日石エネルギー株式会社 Fuel cell device
JP6185312B2 (en) * 2013-07-17 2017-08-23 日本特殊陶業株式会社 Fuel cell
JP2016024950A (en) * 2014-07-18 2016-02-08 日本特殊陶業株式会社 Control device for fuel battery system and control method for fuel battery system
CN113903944B (en) * 2021-09-23 2023-03-31 同济大学 Fuel cell system starting method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312818A (en) * 1997-05-14 1998-11-24 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JP2003109634A (en) * 2001-09-27 2003-04-11 Mitsubishi Heavy Ind Ltd Fuel cell system and operation method of fuel cell
JP2006100153A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
JP2006344488A (en) * 2005-06-09 2006-12-21 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2007103031A (en) * 2005-09-30 2007-04-19 Ngk Spark Plug Co Ltd Solid electrolyte fuel battery stack, solid electrolyte fuel battery module, and solid electrolyte fuel battery system
JP2007165082A (en) * 2005-12-13 2007-06-28 Nissan Motor Co Ltd Fuel cell system
JP2008251513A (en) * 2007-03-05 2008-10-16 Toyota Motor Corp Fuel cell module and fuel cell stack
JP2009110806A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Fuel cell system, and starting control method of fuel cell system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922597B2 (en) * 2005-10-27 2012-04-25 株式会社日立製作所 Diagnostic method and diagnostic apparatus for fuel cell system
JP4739938B2 (en) * 2005-12-19 2011-08-03 本田技研工業株式会社 Fuel cell system
JP5249506B2 (en) * 2006-03-15 2013-07-31 本田技研工業株式会社 Fuel cell system and starting method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312818A (en) * 1997-05-14 1998-11-24 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JP2003109634A (en) * 2001-09-27 2003-04-11 Mitsubishi Heavy Ind Ltd Fuel cell system and operation method of fuel cell
JP2006100153A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
JP2006344488A (en) * 2005-06-09 2006-12-21 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2007103031A (en) * 2005-09-30 2007-04-19 Ngk Spark Plug Co Ltd Solid electrolyte fuel battery stack, solid electrolyte fuel battery module, and solid electrolyte fuel battery system
JP2007165082A (en) * 2005-12-13 2007-06-28 Nissan Motor Co Ltd Fuel cell system
JP2008251513A (en) * 2007-03-05 2008-10-16 Toyota Motor Corp Fuel cell module and fuel cell stack
JP2009110806A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Fuel cell system, and starting control method of fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190036145A1 (en) * 2016-02-04 2019-01-31 Connexx Systems Corporation Fuel cell

Also Published As

Publication number Publication date
JP2011170983A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4863171B2 (en) Solid oxide fuel cell
JP5565749B2 (en) Solid oxide fuel cell
JP4761260B2 (en) Solid oxide fuel cell
WO2011102290A1 (en) Fuel cell system
JP4761259B2 (en) Solid oxide fuel cell
JP4707023B2 (en) Solid oxide fuel cell
WO2012043645A1 (en) Fuel cell device
JP6048662B2 (en) Solid oxide fuel cell
WO2010114041A1 (en) Solid electrolyte fuel cell
JP2011009195A (en) Solid electrolyte fuel battery
JP2011009136A (en) Solid oxide fuel cell
JP4656611B2 (en) Solid oxide fuel cell
JP5561655B2 (en) Solid oxide fuel cell device
JP4622005B2 (en) Solid oxide fuel cell
JP5741803B2 (en) Solid oxide fuel cell device
JP5483253B2 (en) Solid oxide fuel cell
JP5618069B2 (en) Solid oxide fuel cell device
WO2012043647A1 (en) Solid oxide fuel cell device
JP5517096B2 (en) Solid oxide fuel cell
JP2013206578A (en) Solid oxide fuel cell
JP5412923B2 (en) Solid oxide fuel cell
JP6041091B2 (en) Solid oxide fuel cell
JP2014026982A (en) Solid oxide fuel cell device
JP5505872B2 (en) Solid oxide fuel cell
JP2011103211A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744577

Country of ref document: EP

Kind code of ref document: A1