WO2011102200A1 - Electronic endoscope system - Google Patents

Electronic endoscope system Download PDF

Info

Publication number
WO2011102200A1
WO2011102200A1 PCT/JP2011/051598 JP2011051598W WO2011102200A1 WO 2011102200 A1 WO2011102200 A1 WO 2011102200A1 JP 2011051598 W JP2011051598 W JP 2011051598W WO 2011102200 A1 WO2011102200 A1 WO 2011102200A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
value
temperature
upper limit
light amount
Prior art date
Application number
PCT/JP2011/051598
Other languages
French (fr)
Japanese (ja)
Inventor
毅 芦田
安土 遠藤
加賀谷 淳
正行 高平
貴行 仲村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201180009150.3A priority Critical patent/CN102781306B/en
Priority to JP2012500541A priority patent/JP5537645B2/en
Publication of WO2011102200A1 publication Critical patent/WO2011102200A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports

Definitions

  • the present invention relates to an electronic endoscope system that has an endoscope inserted into a body cavity and is used for diagnosis.
  • the electronic endoscope includes an elongated insertion portion that is inserted into a body cavity.
  • An imaging device such as a CCD or a CMOS is built in the distal end of the insertion portion.
  • an exit window that emits light toward the observation site of the body cavity is provided at the distal end of the insertion portion.
  • a light guide optical fiber
  • the imaging device images light from the observation site, and the captured image is displayed on the monitor after various processing is performed by the processor device. The image displayed on the monitor is observed by a doctor.
  • the light source device is provided with a halogen lamp or a xenon lamp as a light source.
  • a diaphragm for adjusting the amount of light incident on the light guide is provided between the base end of the light guide and the light source.
  • the amount of light exiting from the exit window (hereinafter referred to as exit light) is adjusted by the diaphragm.
  • the aperture of the diaphragm is controlled based on the brightness of the image obtained by the imaging device. When the amount of incident light incident on the imaging device is large, the aperture amount is reduced to reduce the amount of outgoing light, and when the amount of incident light is small, the aperture amount is increased to increase the amount of outgoing light. By performing such light amount control, the brightness of the image is properly maintained.
  • the aperture of the diaphragm is large and the amount of emitted light is large, the temperature at the tip of the insertion portion rises due to heat generated by the emitted light.
  • the endoscope is placed on a hanger or the like of a cart while the light source device is turned on and the light source is turned on.
  • the amount of incident light is reduced because the observation site does not exist near the insertion portion when compared with the state where the endoscope insertion portion is inserted into the body cavity. small. Therefore, the aperture of the diaphragm is large, the state of excess light quantity of the emitted light continues, and the tip temperature rises.
  • the upper limit value of the range of light amount control by the diaphragm is set to the normal upper limit value set at the time of activation. Change to something smaller.
  • the upper limit value of the light amount control range is reduced, the maximum light amount of the emitted light is reduced, so that the amount of heat generated at the tip of the insertion portion is also reduced, and the temperature rise is suppressed.
  • the light quantity control for temperature suppression described in Patent Document 1 has the following problems because only one upper limit value can be set. That is, if the upper limit value of the light amount control range is set high, useless heat generation cannot be suppressed during standby when the endoscope is not inserted into the body cavity, and the temperature rise at the distal end of the insertion portion cannot be sufficiently suppressed. . During standby, the amount of emitted light is sufficient to be able to confirm that the light source is turned on. In recent years, there is a concern about an increase in the amount of heat generated by the imaging apparatus itself due to an increase in the number of pixels and a decrease in heat dissipation due to a reduction in the diameter of the insertion portion.
  • the present invention has been made in view of the above problems, and sufficiently suppresses the temperature rise at the distal end of the insertion portion during standby, and even when temperature suppression is started during observation, the operator feels uneasy. It is an object of the present invention to provide an electronic endoscope system that does not give the above.
  • an electronic endoscope system includes an emitting unit that emits outgoing light to the outside, an incident unit that receives light from the outside, and imaging that captures incident light that has entered the incident unit.
  • An endoscope having an insertion portion provided at the tip thereof, a light amount control means for measuring the light amount of the incident light, and controlling the light amount of the emitted light within a predetermined upper limit value, and Whether the temperature determination means for determining whether or not the temperature of the tip exceeds a preset temperature threshold value, and whether the insertion portion is inserted into a body cavity or in a standby state outside the body cavity
  • the upper limit is set at startup.
  • the upper limit value is set to a value L2 smaller than the
  • the insertion determination unit determines that the insertion unit is in the standby state when the amount of the emitted light continues for a predetermined time at the upper limit value L0.
  • the insertion determination unit determines that the insertion unit is in the insertion state when the light amount of the incident light measured by the light amount control unit exceeds a preset light amount threshold value.
  • the temperature suppression unit changes the upper limit value from the value L2 to the value L0. It is preferable to automatically return to
  • the temperature suppression unit prohibits a release operation for returning the upper limit value from the value L1 to the value L0 unless the temperature at the tip is equal to or lower than the temperature threshold value. It is preferable to do.
  • the temperature determination unit performs a calculation using a light amount control history indicating a transition of a light amount change of the emitted light controlled by the light amount control unit, and the temperature of the tip exceeds the temperature threshold based on the calculation result. It is preferable to determine whether or not.
  • the temperature determination unit obtains an estimated value of the current temperature of the tip using the light amount control history and compares the estimated value with the temperature threshold value.
  • the temperature determination means calculates the estimated value at regular time intervals, adds the temperature increase from the previous time to the current time based on the light amount control history to the calculated previous estimated value, It is preferable to obtain the estimated value at this time by subtracting the temperature decrease due to the heat dissipation until.
  • the temperature determination unit obtains an integrated value of the light amount of the emitted light based on the light amount control history, and determines based on the integrated value.
  • the temperature determination means obtains the integrated value by decreasing the weight of the older light quantity control history.
  • the temperature determination means collates an actual measurement value measured by a temperature sensor provided at the tip with the temperature threshold value.
  • a light source that illuminates with a substantially constant light amount, and a diaphragm adjustment mechanism that adjusts a light amount of the emitted light by adjusting an opening amount of a diaphragm opening disposed on an optical path of light emitted from the light source, and the temperature
  • the suppressing means limits the upper limit of the opening amount of the aperture adjustment mechanism by the value L1 and the value L2.
  • the temperature suppressing unit limits the upper limit of the light emission amount of the light source by the value L1 and the value L2.
  • the amount of emitted light is controlled.
  • the upper limit value is set to the first limit value L1 that is lower than the upper limit value L0 that is set at the time of activation, and the upper limit value is the first limit value when it is determined that the insertion portion is outside the body cavity. Since the second limit value L2 lower than L1 is set, the electronic endoscope in a state where the power is turned on and irradiated with the emitted light is hung on a hanger or the like, and preparations for inserting the insertion portion into the body cavity are made. The temperature at the distal end of the insertion portion is prevented from rising while the insertion portion is inserted and while the insertion portion is inserted into the body cavity and the diagnosis is performed.
  • DELTA temperature rise value
  • the electronic endoscope system 11 of the first embodiment shown in FIG. 1 is used for patient examination.
  • the electronic endoscope system 11 illuminates an observation region, an electronic endoscope 12 for imaging an observation region of a body cavity, a processor device 13 that generates an image of the observation region based on a signal obtained by the imaging, and the observation region.
  • the electronic endoscope 12 includes a flexible insertion portion 16 to be inserted into a body cavity, an operation portion 17 connected to a proximal end portion of the insertion portion 16, the operation portion 17, a processor device 13, and a light source device 14. And a connector 19 attached to a proximal end portion of the universal cord 18.
  • the insertion portion 16 has, for example, an elongated shape with an outer diameter of 6 mm and is covered with a flexible tube.
  • the operation unit 17 includes operation members such as a release button 20 for recording a still image and an air / water supply button (not shown).
  • the connector 19 is a composite type composed of a communication connector and a light source connector.
  • the connector 19 removably connects the electronic endoscope 12 to the processor device 13 and the light source device 14.
  • an emission window 27 that emits the light supplied from the light source device 14 to the outside
  • an incident window 28 (see FIG. 2) for taking in external light
  • an incident light CCD 30 (refer FIG. 2) which images the external light (henceforth incident light) which injected into the window 28
  • an emission window 27 that emits the light supplied from the light source device 14 to the outside
  • an incident window 28 for taking in external light
  • an incident light CCD 30 (refer FIG. 2) which images the external light (henceforth incident light) which injected into the window 28
  • the processor device 13 is electrically connected to the electronic endoscope 12, the light source device 14, and the monitor 15, and comprehensively controls the operation of the entire electronic endoscope system 11.
  • the processor device 13 includes a monitor lamp 21 that displays the operation state of the electronic endoscope system 11 on the front surface thereof.
  • the electronic endoscope 12 includes a light guide 26, an exit window 27, an entrance window 28, a condenser lens 29, a CCD 30, and an analog front end (hereinafter abbreviated as AFE) 31. And a CCD drive circuit 32 and a temperature sensor 33.
  • the light guide 26 guides the light supplied from the light source device 14 to the distal end 16a of the insertion portion 16.
  • the emission window 27 emits the light guided by the light guide 26 to the outside.
  • the incident window 28 guides incident light to the condenser lens 29.
  • the condensing lens 29 condenses incident light on the CCD 30.
  • the CCD 30 performs an imaging operation according to the drive pulse from the CCD drive circuit 32, and inputs an imaging signal corresponding to the amount of light from the condenser lens 29 to the AFE 31.
  • a CMOS image sensor may be used instead of the CCD.
  • the AFE 31 is a correlated double sampling circuit (hereinafter abbreviated as CDS), an automatic gain control circuit (hereinafter abbreviated as AGC), and an analog / digital converter (hereinafter abbreviated as A / D) (all shown). (Omitted).
  • CDS correlated double sampling circuit
  • AGC automatic gain control circuit
  • a / D analog / digital converter
  • Each part of the AFE 31 operates based on a synchronization pulse from the CCD drive circuit 32.
  • the CDS performs correlated double sampling processing on the imaging signal input from the CCD 30, and removes reset noise and amplifier noise generated by the CCD 30.
  • the AGC converts the imaging signal amplified by the CDS into a digital imaging signal having a predetermined number of bits and inputs the digital imaging signal to the processor device 13. In the processor device 13, an image is generated based on the imaging signal.
  • the CCD drive circuit 32 generates a drive pulse (vertical / horizontal scanning pulse, electronic shutter pulse, readout pulse, reset pulse, etc.) of the CCD 30 and a synchronization pulse for the AFE 31 based on a signal from the processor device 13.
  • a drive pulse vertical / horizontal scanning pulse, electronic shutter pulse, readout pulse, reset pulse, etc.
  • the temperature sensor 33 is provided at the tip 16a of the insertion portion 16, and detects the temperature T [° C.] at the tip 16a.
  • the temperature sensor 33 inputs the detected temperature T [° C.] to the processor device 13.
  • the processor device 13 includes a CPU 36, a ROM 37, a RAM 38, a digital signal processing unit (hereinafter abbreviated as DSP) 39, a digital image processing circuit (hereinafter abbreviated as DIP) 40, and a display control circuit 41. I have.
  • DSP digital signal processing unit
  • DIP digital image processing circuit
  • the CPU 36 controls the overall operation of the processor device 13.
  • the CPU 36 is connected to each unit via a data bus, an address bus, and a control line (all not shown).
  • the CPU 36 operates each unit in response to an operation signal from the operation unit 42.
  • the operation unit 42 is a known input device such as an operation panel provided on the housing of the processor device 13, buttons on the operation unit 17 (see FIG. 1) of the electronic endoscope 12, or a mouse or a keyboard.
  • the ROM 37 stores various programs (OS, application programs, etc.) and data (graphic data, etc.) for controlling the operation of the processor device 13.
  • the RAM 38 is a working memory from which necessary programs and data are read from the ROM 37.
  • the program read to the RAM 38 is sequentially processed by the CPU 36.
  • the DSP 39 includes a frame memory (not shown).
  • the frame memory temporarily stores the imaging signal from the AFE 31.
  • the DSP 39 reads an image pickup signal from the frame memory, performs various signal processing such as color separation, color interpolation, gain correction, white balance adjustment, and gamma correction, and generates an image for one frame.
  • the DSP 39 inputs the generated image to the DIP 40.
  • the DIP 40 includes a frame memory (not shown).
  • the frame memory temporarily stores an image from the DSP 39.
  • the DIP 40 reads an image from the frame memory and performs various image processing such as electronic scaling, color enhancement, and edge enhancement.
  • the DIP 40 inputs an image subjected to various image processes to the display control circuit 41.
  • the display control circuit 41 includes a VRAM (not shown).
  • the VRAM temporarily stores the image from the DIP 40.
  • the display control circuit 41 receives graphic data stored in the ROM 37.
  • Graphic data includes a display mask that hides the ineffective pixel region of the in-vivo image and displays only the effective pixel region, character information such as examination date and time, or patient and surgeon information, and a graphical user interface (GUI). Etc.
  • the display control circuit 41 reads an image from the VRAM and performs various display control processes such as a display mask, character information, GUI superimposition processing, and drawing processing on the display screen of the monitor 15.
  • the display control circuit 41 converts the image subjected to various display control processes into a video signal (component signal, composite signal, etc.) corresponding to the display format of the monitor 15 and displays it on the monitor 15.
  • the processor device 13 performs a compression processing circuit for compressing an image in a predetermined format (for example, JPEG format), and the compressed image is linked to the operation of the release button 20 by using a CF card, optical Media I / F for recording on removable media such as magnetic disks (MO) and CD-Rs, and network I / F (all not shown) for controlling transmission of various data to and from networks such as LAN Yes.
  • a compression processing circuit for compressing an image in a predetermined format (for example, JPEG format)
  • a CF card for example, JPEG format
  • optical Media I / F for recording on removable media such as magnetic disks (MO) and CD-Rs
  • network I / F all not shown
  • These are connected to the CPU 36 via a data bus (not shown) or the like.
  • the light source device 14 includes a CPU 46, a light source 47, a light source driver 48, an aperture adjustment mechanism 49, a motor 50, a motor driver 51 that drives the motor 50, and a condenser lens 52.
  • the CPU 46 communicates with the CPU 36 of the processor device 13 and controls the overall operation of the light source device 14.
  • the CPU 46 is connected to each unit via a data bus, an address bus, and a control line (all not shown).
  • the light source 47 is a halogen lamp or a xenon lamp that generates white light.
  • the light source 47 is driven by a light source driver 48 and is lit with a substantially constant light amount, and the light from the light source 47 is incident on the condenser lens 52.
  • the aperture adjustment mechanism 49 is disposed on the optical path of the light source 47 and adjusts the aperture amount of the aperture opening 57 (see FIG. 3). Light having a light amount corresponding to the opening amount of the aperture opening 57 enters the condenser lens 52.
  • the motor 50 is rotated by the drive pulse input from the motor driver 51 and drives the aperture adjustment mechanism 49.
  • the condenser lens 52 condenses the light that has passed through the aperture adjusting mechanism 49 and guides it to the incident end of the light guide 26.
  • the CPU 36 of the processor device 13 functions as a light amount control unit 53, an insertion determination unit 54, a temperature determination unit 55, and a temperature suppression unit 56.
  • Light quantity control unit 53 by calculating the average luminance value of all pixels in the effective pixel area based on one frame imaging signal from CCD 30 (photometric value L M), for measuring the amount of the incident light L in .
  • the light amount control unit 53 outputs a light amount control signal for requesting the light amount of the emitted light L out to the light source device 14 so that the photometric value L M becomes the reference value L S for keeping the brightness of the image constant.
  • the amount of outgoing light L out is controlled through the light source device 14.
  • the light quantity control unit 53 when the photometric value L M is smaller than the reference value L S, as the photometric value L M is the reference value L S, the light amount of the shortage of the outgoing light L out, That is, a light amount control signal requesting the necessary light amount is sent. Also, if the photometric value L M exceeds the reference value L S, as the photometric value L M is the reference value L S, and sends a light amount control signal requesting a decrease in excess of the amount of light of the outgoing light L out .
  • the CPU 46 of the light source device 14 controls the aperture adjustment mechanism 49 based on the light amount control signal input from the light amount control unit 53.
  • the CPU 46 calculates a PWM (pulse width modulation) value that determines the torque of the motor 50 according to the light amount control signal, and the motor driver 51 drives the motor 50 by generating a drive pulse corresponding to the PWM value.
  • the PWM value determines the duty ratio of the drive pulse of the motor 50 (value obtained by dividing the pulse width by the pulse period), and determines the torque of the motor 50.
  • the CPU 46 increases the PWM value according to the increase, and the light amount control signal requests a decrease in the light amount of the emitted light L out. If it is a signal, the PWM value is lowered according to the decrease.
  • the diaphragm adjusting mechanism 49 includes a diaphragm blade 58 that opens and closes the diaphragm opening 57 and a spring 59 that biases the diaphragm blade 58 to a position where the diaphragm opening 57 is closed.
  • the diaphragm blade 58 rotates in a direction (for example, clockwise) in which the aperture amount of the aperture opening 57 increases against the urging force of the spring 59 due to the torque applied from the motor 50. Stop at a position where the forces are balanced.
  • the torque is large, the force against the urging force of the spring 59 is also increased, so that the opening amount of the aperture opening 57 is also increased.
  • the torque is small, the force against the urging force of the spring 59 is small, so the opening amount of the aperture opening 57 is small.
  • the torque of the motor 50 increases as the PWM value increases, and decreases as the PWM value decreases.
  • Such aperture of the light amount control is carried out in accordance with the photometric value L M, the state amount is large of the outgoing light L out is also large temperature rise in the long-lasting and of the insertion portion 16 tip 16a.
  • the electronic endoscope system 11 restricts the upper limit value of the light amount control range of the emitted light Lout , thereby suppressing the temperature rise of the distal end 16a of the insertion portion 16.
  • M1 and the second restriction mode M2 are provided.
  • the normal mode M0 is a mode that is set when the light source device 14 is activated, and the upper limit value of the opening that indicates the opening amount of the aperture opening 57 as a percentage is 100%, for example, the output light L out .
  • the upper limit Lx of the light quantity is set to L0 [lm: lumen].
  • the PWM value for setting this upper limit value L0 [lm] is P0.
  • the upper limit value L0 [lm] of the light amount of the emitted light Lout is the upper limit value of the light amount control range in the normal mode M0.
  • the upper limit of the amount of light control range in the first limitation mode M1 is lower than the normal mode M0, for example, the upper limit value of the degree of opening of the aperture stop 57 is 70%, the upper limit value Lx of the light quantity of the outgoing light L out is L1 [lm ] ( ⁇ L0 [lm]), and the PWM value for setting the upper limit L1 [lm] is P1.
  • the upper limit of the amount of light control range in the second limit mode M2 is further lower than the first limitation mode M1, the upper limit is 25% of the aperture size of the diaphragm aperture 57, the upper limit value Lx of the light quantity of the outgoing light L out is L2 [ lm] ( ⁇ L1 [lm]), and the PWM value for setting the upper limit L2 [lm] is P2.
  • L2 only needs to be such that it can be confirmed whether or not the tip 16a is lit during standby.
  • the light amount control by the diaphragm is performed within the ranges of the upper limit values L1 [lm] and L2 [lm], respectively. That is, in the first limitation mode M1 and the second limitation mode M2, and the light quantity control unit 53 detects the insufficient light amount of incident light L in, requesting an increase in the quantity of emitted light L out against CPU46 of the light source device 14 Even if the light quantity control signal to be transmitted is transmitted, if the light quantity of the emitted light L out has already reached the upper limit values L1 [lm] and L2 [lm], the CPU 46 does not further increase the PWM value. not raise the amount of light of the Shako L out.
  • the upper limit value Lx of the light quantity of the outgoing light L out is the upper limit value L0 [lm] lower than the upper limit L1 of the normal mode M0 [lm], L2 Since it is limited to [lm], the temperature rise of the distal end 16a of the insertion portion 16 is suppressed.
  • Switching from the normal mode M0 to the first restriction mode M1 and from the normal mode M0 to the second restriction mode M2 is performed based on whether or not the insertion portion 16 is inserted into the body cavity and the temperature of the distal end 16a. Is called.
  • the light amount control unit 53 continues to request the CPU 46 of the light source device 14 to increase the light amount of the emitted light L out , so that the necessary light amount gradually increases. As a result, the light quantity of the outgoing light L out reaches the upper limit value L0 [lm].
  • the insertion determination unit 54 sequentially acquires the PWM value representing the light amount of the emitted light L out from the CPU 46, and measures the time during which the state where the upper limit value Px of the PWM value is P0 continues with the system timer.
  • the insertion determination unit 54 is in a state where the insertion unit 16 is not inserted into the body cavity, that is, a state where the insertion unit 16 is outside the body cavity. It is determined that it is S1 (hereinafter referred to as a standby state).
  • insertion determining unit 54, the second limitation mode M2 when the required amount of light quantity control unit 53 requests the CPU46 on the basis of the photometric value L M becomes the upper limit value smaller than L0 [lm], insert It is determined that the part 16 is in the state S2 inserted into the body cavity.
  • the observation part inner wall of the duct
  • the observation part exists in the vicinity of the distal end 16a where the incident window 28 is provided, so that the emitted light L out reflected at the observation part is incident light.
  • a L in is incident on the CCD30.
  • the photometric value L M of the insertion state S2 is larger than that of the standby state S1, exceeds described later light amount threshold.
  • the light amount threshold value is stored in, for example, a built-in memory of the light source device 14 and can be read by the CPU 46.
  • the required light amount requested by the light amount control unit 53 to the CPU 46 is less than the upper limit value L0 [lm] of the light amount in the normal mode M0.
  • the insertion determination unit 54 inputs the determination result thus determined (whether the insertion unit 16 is in the standby state S1 or the insertion state S2) to the temperature suppression unit 56.
  • the temperature determination unit 55 has a difference (hereinafter, abbreviated as a temperature difference) ⁇ T [° C.] from a reference value of the temperature T [° C.] detected by the temperature sensor 33 exceeding a preset threshold value T1 [° C.]. It is determined whether or not.
  • the reference value of the temperature T [° C.] detected by the temperature sensor 33 is, for example, a value when the power of the electronic endoscope system 11 is turned on, and the temperature when the power is turned on.
  • T is 20 ° C. and the current temperature T is 30 ° C.
  • the temperature difference ⁇ T is 10 ° C.
  • the temperature suppression unit 56 determines whether or not to shift from the normal mode M0 to the first restriction mode M1 and the second restriction mode M2.
  • the mode switching signal is transmitted to the CPU 46 of the light source device 14.
  • the temperature suppression unit 56 starts from the normal mode M0 to the first restriction mode.
  • a first mode switching signal for switching to M1 is input to the CPU 46 of the light source device 14.
  • the temperature suppression unit 56 When it is determined that the insertion unit 16 is not inserted into the body cavity, the temperature suppression unit 56 inputs a second mode switching signal for switching from the normal mode M0 to the second restriction mode M2 to the CPU 46 of the light source device 14.
  • the temperature suppression unit 56 After it is determined that the insertion portion 16 is not inserted into the body cavity, that is, when it is determined that the insertion portion 16 is in the insertion state S2 during the second restriction mode M2, the temperature suppression unit 56 performs the second restriction mode.
  • a release signal for releasing M2 and returning to the normal mode M0 is input to the CPU 46 of the light source device 14.
  • the CPU 46 of the light source device 14 switches from the normal mode M0 to the first limit mode M1 when the first mode switching signal is input from the processor device 13, and from the normal mode M0 when the second mode switching signal is input. Switch to the second restriction mode M2.
  • the second restriction mode M2 when a release signal is input from the processor device 13, the second restriction mode M2 is released and the normal mode M0 is restored.
  • the first restriction mode M1 cannot be released by manual operation while the insertion portion 16 is inserted.
  • Each mode M0 to M2 is notified by lighting or blinking of the monitor lamp 21.
  • the normal mode M0, first limitation mode M1, and an example of a change in the upper limit value Lx and the temperature difference ⁇ T of the light quantity of the outgoing light L out when the transition between the second limitation mode M2 explain.
  • the mode transition example in FIG. 5B assumes the following sequence. First, at time t0 [s], when the power source of the light source device 14 to which the electronic endoscope 12 is connected is turned on (U on ), the light source device 14 is in the normal mode M0 (the upper limit Lx of the light amount is L0 [ lm])).
  • the light amount of the emitted light L out is the upper limit value L0 [lm], L1 [lm], L2 [lm], that is, the maximum light amount in each mode.
  • the temperature difference ⁇ T [° C.] changes as shown in FIG. That is, since it is the normal mode M0 at the time of activation, if the light source 47 continues to irradiate with the maximum light amount (upper limit value L0 [lm]) of the normal mode M0, the temperature difference ⁇ T [° C.] increases monotonously.
  • the upper limit value Px of the PWM value decreases from the upper limit value P0 of the normal mode M0 to the upper limit value P2 of the second limit mode M2. For this reason, the upper limit Lx of the amount of light decreases from L0 [lm] to L2 [lm].
  • the maximum light amount (upper limit value L2 [lm]) is lower than that in the normal mode M0. Therefore, even if irradiation is continued at the maximum light amount (upper limit value L2 [lm]), the temperature rise gradient The temperature difference ⁇ T [° C.] converges to T5 [° C.].
  • the insertion section 16 When the insertion section 16 is inserted into the body cavity at time t2 [s] (U insert ), an observation site is present in the vicinity of the distal end 16a where the incident window 28 is provided. Therefore, when the insertion portion 16 is an upper limit value Lx of the light amount is changed from the left standby state S1 of L2 to the insertion state S2, the photometric value L M exceeds the light amount threshold.
  • the light amount threshold the insertion portion 16 is in a standby state S1, a photometric value L M when the upper limit value Lx of the light amount is L2.
  • the necessary light quantity becomes the upper limit Lx of the normal mode M0, that is, less than L0.
  • the insertion determination unit 54 determines that the insertion unit 16 is in the insertion state S2 inserted into the body cavity, and inputs a release signal to the light source device 14.
  • the CPU 46 releases the second restriction mode M2 and returns to the normal mode M0.
  • the upper limit Lx of the light amount increases from L2 [lm] to L0 [lm].
  • the temperature difference ⁇ T [° C.] increases monotonously beyond the convergence value T5 [° C.] in the second limit mode M2. If this state continues, the limit value T3 is exceeded as indicated by a two-dot chain line Lk2.
  • the convergence value T2 [° C.] of the temperature difference ⁇ T [° C.] in the first limit mode M1 needs to be equal to or less than the limit value T3 [° C.] at which the electronic endoscope system 11 functions normally. Since the convergence value T2 [° C.] is determined by the upper limit value L1 [lm] of the first limit mode M1, the upper limit value L1 [lm] is set so that the convergence value T2 [° C.] does not exceed the limit value T3 [° C.]. Is done.
  • the upper limit value is set so that T2 [° C] is separated from T3 [° C] by a predetermined temperature so that the temperature difference ⁇ T [° C] does not exceed the limit value T3 [° C]. It is preferable to set L1 [lm].
  • the threshold value T1 [° C.] needs to be separated from T2 [° C.] by a predetermined temperature. Otherwise, the temperature determination unit 55 determines that the temperature difference ⁇ T [° C.] has exceeded the threshold value T1 [° C.] until the light source device 14 is switched to the first limit mode M1. This is because the temperature difference ⁇ T [° C.] may once exceed T2 [° C.]. As specific values, when T3 is 20 ° C., T2 is set to 15 ° C. and T1 is set to 13 ° C.
  • the electronic endoscope 12 is connected to the processor device 13 and the light source device 14, and the power of the electronic endoscope system 11 is turned on (step ( Hereinafter, abbreviated as S.) 11).
  • the light source device 14 is activated in the normal mode M0 (the upper limit value Lx of the light amount is L0 [lm]).
  • Information about the patient is input to the processor device 13 from the operation unit 42.
  • the electronic endoscope 12 is placed on a hanger of a cart in which the processor device 13 and the light source device 14 are accommodated and is on standby. Since the light source device 14 is turned on and the light source 47 is lit, the electronic endoscope 12 emits the emitted light L out from the distal end 16a even during standby.
  • the insertion determination unit 54 starts determination processing (S12).
  • Light quantity control unit 53 sends a light amount control signal for requesting an increase in the quantity of emitted light L out with respect to the light source device 14.
  • the CPU 46 calculates a PWM value corresponding to the light amount control signal, and controls the aperture adjustment mechanism 49 through the motor driver 51 to increase the light amount of the emitted light L out .
  • the light amount control unit 53 continues to request the CPU 46 to increase the light amount, and the CPU 46 continues to output the upper limit value P0 of the PWM value.
  • This PWM value is input to the insertion determination unit 54.
  • the insertion determination unit 54 monitors the PWM value, and when the state where the upper limit value Lx of the PWM value is P0 continues for a predetermined time (for example, 30 seconds), the insertion determination unit 54 determines that the standby state S1 in which the insertion unit 16 is not inserted (S1). NO at S12).
  • the temperature suppression unit 56 transmits a second mode switching signal for switching from the normal mode M0 to the second restriction mode M2 to the CPU 46.
  • CPU46 receives the second mode switching signal, the upper limit value Px of the PWM value is changed to P2, lower the upper limit value Lx of the light quantity of the outgoing light L out to L2 [lm] (S13).
  • tip 16a converges by T5 [degreeC], and a temperature rise is suppressed. Moreover, useless heat generation can be suppressed.
  • the electronic endoscope 12 When the examination is started, the electronic endoscope 12 is removed from the hanger, and the insertion portion 16 is inserted into the body cavity. Since the temperature of the tip 16a is suppressed to T5 [° C.] at the start of insertion, the burden on the subject is small.
  • the emitted light L out supplied from the light source device 14 is irradiated to the body cavity, and an image by the CCD 30 is displayed on the monitor 15.
  • the insertion portion 16 When the insertion portion 16 is inserted into the body cavity, due to the presence of the observation portion (such as a tube passage inner wall) is in the vicinity of the tip 16a, with even light intensity of the outgoing light L out is constant, increase amount of the incident light L in incident to CCD30 To do. As a result, the required light amount requested by the light amount control unit 53 to the CPU 46 is less than the upper limit value L0 [lm] of the normal mode M0.
  • the insertion determination unit 54 monitors the necessary light amount requested by the light amount control unit 53 to the CPU 46 (S14), and when the necessary light amount becomes less than the upper limit L0 [lm], the insertion unit 16 is inserted. Determine (YES in S14).
  • the temperature suppression unit 56 inputs a release signal to the CPU 46 of the light source device 14.
  • the CPU 46 cancels the second limit mode M2 and returns to the normal mode M0, and increases the upper limit Lx of the light amount from L2 [lm] to L0 [lm] (S15).
  • the temperature determination unit 55 After determining that the insertion unit 16 is in the insertion state S2 (YES in S12, YES in S14), the temperature determination unit 55 sequentially determines whether or not the temperature difference ⁇ T [° C.] exceeds the threshold value T1 [° C.]. (S16). When it is determined that the temperature difference ⁇ T [° C.] exceeds the threshold value T1 [° C.] (YES in S16), the first mode switching signal is input to the CPU 46 of the light source device 14. In response to the input of the first mode switching signal, the CPU 46 switches from the normal mode M0 to the first limiting mode M1, and lowers the light amount upper limit Lx from L0 [lm] to L1 [lm] (S17).
  • the upper limit value Lx of the light amount is L0 from the normal mode M0. Since the transition is made to the second restriction mode M2 of L2 [lm] smaller than L1, the temperature rise at the distal end 16a of the insertion portion 16 can be suppressed while preparing to insert the insertion portion 16 into the body cavity. .
  • the second restriction mode M2 when it is determined that the insertion portion 16 has been inserted into the body cavity, the second restriction mode M2 is automatically canceled and the normal mode M0 is entered. Since the amount of light is adjusted, there is no need to manually release the second restriction mode M2, and this is convenient. If the operator does not have an automatic release function, the operator may forget to release it and the image displayed on the monitor 15 will remain dark, which may cause a misunderstanding that a failure or malfunction has occurred. There is no such inconvenience.
  • the temperature difference ⁇ T [° C.] at the distal end 16a of the insertion portion 16 exceeds the preset threshold value T1 [° C.] from the normal mode M0.
  • Switching to the 1 limit mode M1 and lowering the upper limit value Lx of the light amount from L0 [lm] to L1 [lm] prevents the distal end 16a of the insertion portion 16 from reaching the limit value T3 [° C.].
  • the upper limit value L1 [lm] in the first limit mode M1 is closer to the upper limit value L0 [lm] in the normal mode M0 than the upper limit value L2 [lm] in the second limit mode M2. Therefore, even if the first restriction mode M1 is shifted during observation, the brightness of the image is relatively close to that of the normal mode M0 and does not become extremely dark. Absent.
  • the image displayed on the monitor 15 is prevented from suddenly becoming dark.
  • adopted by the said 1st Embodiment and each embodiment shown after this shall be applied mutually in the possible range.
  • the description of the same configuration, operation, and effect as in the first embodiment is omitted.
  • only a different point from other embodiment is demonstrated.
  • the temperature determination unit 55 sequentially inputs the temperature difference ⁇ T [° C.] to the CPU 46 of the light source device 14 when the temperature difference ⁇ T [° C.] exceeds the threshold T1 [° C.].
  • the CPU 46 receives the temperature difference ⁇ T [°] when the temperature difference ⁇ T [° C.] exceeds the threshold T1 [° C.] and the first mode switching signal is input from the processor device 13.
  • the upper limit value (Px) of the PWM value is decreased from the maximum value P0 to P1 with the increase in [° C.]
  • it is gradually decreased in a continuous or stepwise manner.
  • the CPU 46 continuously increases the PWM upper limit value (Px) from the maximum value P0 to P1 when the first mode switching signal is input. Or you may reduce gradually in steps.
  • the upper limit value (Lx) of the light amount gradually decreases from L0 [lm] to L1 [lm] over a predetermined time ⁇ t [s].
  • the image displayed on the monitor 15 is gradually darkened over a predetermined time ⁇ t [s].
  • the image displayed on the monitor 15 does not suddenly become dark, It is possible to prevent misidentification that a defect has occurred.
  • the temperature is estimated based on the history information of the light amount control, instead of directly detecting the temperature by providing the tip 16a with a temperature sensor. Specifically, the temperature is indirectly detected by obtaining the temperature difference ⁇ T [° C.] by calculation based on the history information of the PWM value representing the transition of the light amount change in the light amount control.
  • the temperature determination unit 55 performs a calculation using the history information of the PWM value input from the light source device 14 and virtually calculates the temperature difference ⁇ T [° C.].
  • the heat capacity C [mJ / ° C.] is a value inherent to the electronic endoscope 12 and is, for example, 800 mJ / ° C.
  • the temperature difference ⁇ T n [° C.] up to the present time is added to the tip 16a of the insertion portion 16 at the immediately preceding dt [s] time, with the rising value until dt [s] time being ⁇ T n-1 [° C.].
  • ⁇ T n ⁇ T n-1 + dQ / C (Expression 2).
  • the time dt [s] is, for example, 1.0 s.
  • the initial value of the temperature difference ⁇ T [° C.] is 0.0 ° C.
  • the thermal resistance R [° C./mW] is a value inherent to the electronic endoscope 12 and is, for example, 0.2 ° C./mW.
  • the calorific value q [mW] is expressed as (PWM value that determines the amount of light) ⁇ (proportional constant kq).
  • the proportionality constant kq is a value unique to the electronic endoscope 12 and the light source device 14.
  • PWM value an average value of values at each time obtained by dividing the time dt [s] into n (for example, 10) is used in order to improve calculation accuracy.
  • the calorific value sq [mW] is a value unique to the CCD, for example, 100 mW.
  • the temperature determination unit 55 obtains the temperature difference ⁇ T n [° C.] up to the present time using the above equation 4. That is, as shown in FIG.
  • the temperature determining unit 55 with respect to dt [s] Temperature difference ⁇ T n-1 [°C] up to the time before, the heat radiation temperature represented by a function of ⁇ T n-1 [°C]
  • the temperature difference ⁇ T n [° C.] up to the present time is determined by adding the heat generation temperature indicated by the function of the heat generation amount q [mW] per unit time due to the light supplied from the light source device 14.
  • the parameters C [mJ / ° C.], sq [mW], R [° C./mW], and kq depending on the model of the electronic endoscope 12 are non-volatiles built into the electronic endoscope 12 at the time of factory shipment. It is stored in advance in a memory (for example, an EEPROM), and is automatically acquired when the power of the electronic endoscope system 11 is turned on and used for calculation. Alternatively, it is associated with a model-specific ID and stored in advance in a nonvolatile memory built in the processor device 13. A model-specific ID is stored in the nonvolatile memory built in the electronic endoscope 12, and each parameter corresponding to the ID read from the nonvolatile memory of the electronic endoscope 12 is used for calculation.
  • a memory for example, an EEPROM
  • each parameter corresponding to the ID read from the nonvolatile memory of the electronic endoscope 12 is acquired from the server and used for the calculation.
  • the temperature determination unit 55 determines whether or not the obtained temperature difference ⁇ T n [° C.] exceeds a preset threshold T 1 [° C.].
  • S31 to S35 are the same as S11 to S15.
  • the temperature determination unit 55 After determining that the insertion unit 16 has been inserted into the body cavity (YES in S32, YES in S34), the temperature determination unit 55 sequentially obtains the temperature difference ⁇ T n [° C.] (S36). Then, when it is determined that the temperature difference ⁇ T n [° C.] has exceeded the threshold T 1 [° C.] (YES in S 37), the first mode switching signal is input to the CPU 46 of the light source device 14. In response to the input of the first mode switching signal, the CPU 46 switches from the normal mode M0 to the first limit mode M1, and lowers the light amount upper limit Lx from L0 [lm] to L1 [lm] (S38).
  • the temperature of the distal end 16a of the insertion portion 16 is not limited without a temperature sensor. It is prevented that the value T3 [° C.] is exceeded.
  • the temperature difference ⁇ T [° C.] is obtained in detail by using values such as the heat capacity C [mJ / ° C.] and the thermal resistance R [° C./mW] at the tip 16a of the insertion portion 16,
  • the integrated value [lm ⁇ s] of the light amount L [lm] is obtained by a simple calculation, and it is handled that the temperature difference ⁇ T [° C.] is obtained.
  • the temperature determination unit 55 performs a calculation using the history information of the PWM value input from the light source device 14, and the light amount L from the light source device 14 at a predetermined time ts [s] (for example, 30 s).
  • An integrated value [lm ⁇ s] of N [lm] is obtained.
  • the light quantity LN is expressed as (PWM value) ⁇ kl.
  • the proportionality constant kl is a value unique to the electronic endoscope 12 and the light source device 14.
  • the temperature determination unit 55 calculates the integrated value [lm ⁇ s] of the light amount L N [lm] up to the present time by integrating the PWM value multiplied by the proportionality constant kl.
  • the temperature determination unit 55 determines whether or not the obtained integrated value [lm ⁇ s] exceeds a preset threshold value [lm ⁇ s].
  • the temperature suppression unit 56 is a first mode for switching from the normal mode M0 to the first limit mode M1 when the temperature determination unit 55 determines that the integrated value [lm ⁇ s] of the light amount L N [lm] exceeds the threshold value.
  • a switching signal is input to the light source device 14.
  • the processor device 13 when the integrated value [lm ⁇ s] (value indicated by the hatched area) of the light amount L N [lm] at a predetermined time ts [s] exceeds the threshold value, the processor device 13.
  • the first mode switching signal is input to the light source device 14.
  • S41 to S45 are the same as S31 to S35.
  • the temperature determination unit 55 determines the amount of light L N [lm from the light source device 14 at a predetermined time ts [s]. ] Is sequentially obtained (S46). Then, it is determined whether or not the integrated value [lm ⁇ s] of the light amount L N [lm] exceeds a threshold value (S47).
  • the first mode switching signal is input from the temperature suppression unit 56 to the CPU 46 of the light source device 14.
  • S48 is the same as S38.
  • the integrated value [lm ⁇ s] of the light amount L N [lm] at the predetermined time ts [s] is obtained by weighted calculation in which the older history information is made smaller in weight. This is different from the fourth embodiment.
  • the temperature determination unit 55 integrates a value obtained by multiplying the PWM value by a proportional constant kl with a smaller weight added to older history information, thereby integrating the light amount L N [lm] up to the present time. [Lm ⁇ s] is obtained. For example, when weighting is performed by dividing the predetermined time ts [s] into three, the weights are multiplied by 1.0, 0.9, and 0.8 sequentially from the new history information.
  • the weighted integrated value [lm ⁇ s] (a value obtained by multiplying the area of each portion indicated by hatching by each weight) exceeds a threshold value at a predetermined time ts [s].
  • the first mode switching signal is input to the light source device 14.
  • the older history information having a smaller influence on temperature has a smaller weight, and the integrated value [lm ⁇ s] of the light amount L N [lm] is obtained. It can prevent more correctly that the front-end
  • the light source 47 that is turned on with a substantially constant light amount is provided, and the aperture adjustment mechanism 49 adjusts the aperture amount of the aperture opening 57 disposed on the optical path of the light from the light source 47, thereby outputting the emitted light L.
  • the out light quantity is controlled, a light source capable of controlling the light emission amount of the light source itself may be provided instead.
  • an LED 61 that emits outgoing light L out is built in the distal end 16 a of the insertion portion 16 of the electronic endoscope 12.
  • the CPU 46 controls the light emission amount [lm] of the LED 61 through the light source driver 48.
  • the CPU 46 changes the upper limit value of the light amount control range by the light amount control unit 53 based on the mode switching signal from the temperature suppression unit 56.
  • the LED 61 is disposed at the distal end 16a of the insertion portion 16, but the LED 61 may be disposed at the light source device 14 and guided to the distal end 16a by an optical fiber.
  • the light source may be a light source that emits white light by exciting the phosphor by making the excitation light incident on the phosphor.
  • a release function is not provided so that the first restriction mode M1 is not carelessly released, but on condition that the temperature difference ⁇ T [° C.] does not exceed T2 [° C.], that is, The temperature difference ⁇ T [° C.] may be canceled on the condition that the temperature difference ⁇ T [° C.] has dropped below T1 [° C.].
  • the first restriction mode M1 when the first restriction mode M1 is canceled at the moment when the temperature difference ⁇ T [° C.] falls below T1 [° C.], the temperature difference ⁇ T [° C.] immediately exceeds T1 [° C.] immediately after that, and the first restriction immediately follows. There is a risk of returning to the mode M1. For this reason, the first limit mode M1 can be canceled on the condition that the temperature difference ⁇ T [° C.] has dropped below the preset temperature [° C.] by a predetermined temperature from T1 [° C.]. It is preferable.
  • the first restriction mode M1 may be automatically released when the release condition is satisfied, or the first restriction mode M1 may be released when an appropriately set additional condition is satisfied in addition to the release condition. Good. For example, when the additional condition is “when a release button provided on the operation unit 17 of the electronic endoscope 12 is pressed”, the first restriction mode M1 can be manually released.
  • the relationship between the temperature difference ⁇ T [° C.] shown in FIG. 7A and the upper limit value (Px) of the PWM value that determines the amount of light is used.
  • the PWM value may be gradually increased from P1 to the maximum value P0 continuously or stepwise. According to such a configuration, the increase in the upper limit Lx of the light amount due to the cancellation of the first restriction mode M1 can be moderated, so that the image displayed on the monitor 15 does not suddenly become bright.
  • the first restriction depends on the types of the electronic endoscope 12, the processor device 13, and the light source device 14 that constitute the electronic endoscope system 11, and the combinations of the configurations 12, 13, and 14.
  • the function of the mode M1 or the second restriction mode M2 may be stopped.
  • the insertion determination unit 54 determines that the insertion unit 16 determines that the state in which the upper limit value Lx of the light amount is the maximum value L0 [lm] in the normal mode M0 continues for a preset predetermined time. It is determined that the insertion unit 16 is inserted into the body cavity when it is determined that the insertion unit 16 has not been inserted into the body cavity, and the required light amount requested by the light amount control unit 53 in the second restriction mode M2 is less than the upper limit L0 [lm]. Although it determined, the determination method is not limited to this.
  • the determination may be made based on the temperature change at the tip when moving from the outside of the body cavity (outside the subject) to the inside of the body cavity, or by image analysis.
  • the image analysis method is a method of analyzing an image captured by the imaging apparatus and determining whether the image is a body cavity image or an image outside the body cavity. Or you may determine by the detection of the mouthpiece used at the time of a test
  • an RFID tag is embedded in the mouthpiece, and an RFID reader is provided at the distal end 16a of the insertion portion 16, and the determination is made based on whether radio waves are received from the RFID tag.
  • the second restriction mode M2 is automatically released when it is determined that the insertion unit 16 has been inserted into the body cavity, but a release button is provided on the operation unit 17 of the electronic endoscope 12. It may be possible to release it by manual operation.
  • the upper limit Lx of the light amount is lower than that in the normal mode M0, so that the image displayed on the monitor 15 becomes dark and the operator feels uncomfortable. There is a risk of remembering.
  • a function of amplifying the imaging signal when switching to the first restriction mode M1 may be installed.
  • the amplification factor A corresponding to the required light quantity L [lm] requested by the light quantity restriction unit 53 Is set in the DSP 39, and the imaging signal is amplified by the DSP 39.
  • A 1 when the required light quantity L [lm] is less than L1 [lm]
  • A L / L1 when the required light quantity L [lm] is greater than or equal to L1 [lm] and less than L0 [lm]
  • the required light quantity 1 when the required light quantity L [lm] is less than L1 [lm]
  • A L0 / L1 and an amplification factor are set so that the brightness of the image displayed on the monitor 15 is equal in both the normal mode M0 and the first limit mode M1. An image with less discomfort for the surgeon can be obtained.
  • the digital imaging signal was amplified was mentioned as an example, you may make it the structure which amplifies an analog imaging signal.
  • the first function is provided by temporarily releasing the upper limit of the light amount of the emitted light L out when recording a still image (for example, by 1/60 s of the frame rate).
  • a configuration in which a sufficient amount of the emitted light L out is secured even under the restriction mode M1 to obtain a high-quality still image may be used.
  • the temperature rise when the upper limit of the light amount of the emitted light Lout is temporarily released is temporarily released, and the calculation result is the limit value T3 [° C. ] May not be released, i.e., control may be performed to continue the upper limit restriction.

Abstract

If it is determined that an insertion section has not been inserted into a body cavity, then the mode is switched from a normal mode to a second restricted mode, and the upper limit (Lx) of the light amount for the light illuminated on an observation region is reduced from L0 [1m] to L2 [1m]. Once it has been determined that the insertion section (16) has not been inserted into a body cavity, whether or not the insertion section (16) has been inserted into a body cavity is again successively determined. If it is determined that the insertion section has been inserted, then the second restriction mode is cancelled and the mode returned to normal mode, and the upper limit (Lx) is increased from L2 [1m] to L0 [1m]. Once it has been determined that the insertion section (16) has been inserted into a body cavity, whether or not a temperature difference (ΔT) [˚C ] exceeds a threshold value (T1) [˚C ] is successively determined. If the temperature difference (ΔT) [˚C ] exceeds the threshold value (T1) [˚C ], the mode is switched from normal mode to a first restriction mode, and the upper limit (Lx) is reduced from L0 [1m] to L1 [1m].

Description

電子内視鏡システムElectronic endoscope system
 本発明は、体腔に挿入される内視鏡を有し、診察に用いられる電子内視鏡システムに関する。 The present invention relates to an electronic endoscope system that has an endoscope inserted into a body cavity and is used for diagnosis.
 従来から医療分野では、電子内視鏡を用いた内視鏡検査が数多く行われている。電子内視鏡は、体腔に挿入される細長の挿入部を備えている。挿入部の先端には、CCDやCMOS等の撮像装置が内蔵されている。また、挿入部の先端には、体腔の観察部位に向けて光を出射する出射窓が設けられている。挿入部には、ライトガイド(光ファイバ)が配設されており、電子内視鏡に接続された光源装置からの光がライトガイドを通じて出射窓に導光される。撮像装置は、観察部位からの光を撮像し、撮像された画像は、プロセッサ装置で各種処理が施された後に、モニタに表示される。モニタに表示された画像が、医師によって観察される。 Conventionally, in the medical field, many endoscopic examinations using an electronic endoscope have been performed. The electronic endoscope includes an elongated insertion portion that is inserted into a body cavity. An imaging device such as a CCD or a CMOS is built in the distal end of the insertion portion. In addition, an exit window that emits light toward the observation site of the body cavity is provided at the distal end of the insertion portion. A light guide (optical fiber) is disposed in the insertion portion, and light from the light source device connected to the electronic endoscope is guided to the exit window through the light guide. The imaging device images light from the observation site, and the captured image is displayed on the monitor after various processing is performed by the processor device. The image displayed on the monitor is observed by a doctor.
 光源装置には、ハロゲンランプやキセノンランプが光源として設けられている。ライトガイドの基端と光源の間には、ライトガイドに入射する光量を調節する絞りが設けられている。出射窓から出射される光(以下、出射光と称する)の光量は、絞りによって調節される。絞りは、撮像装置によって得られる画像の明るさに基づいて、開口量が制御される。撮像装置に入射する入射光の光量が大きい場合は、開口量を小さくして出射光の光量を下げ、入射光の光量が小さい場合には、開口量を大きくして出射光の光量を上げる。こうした光量制御を行うことにより、画像の明るさが適正に維持される。 The light source device is provided with a halogen lamp or a xenon lamp as a light source. A diaphragm for adjusting the amount of light incident on the light guide is provided between the base end of the light guide and the light source. The amount of light exiting from the exit window (hereinafter referred to as exit light) is adjusted by the diaphragm. The aperture of the diaphragm is controlled based on the brightness of the image obtained by the imaging device. When the amount of incident light incident on the imaging device is large, the aperture amount is reduced to reduce the amount of outgoing light, and when the amount of incident light is small, the aperture amount is increased to increase the amount of outgoing light. By performing such light amount control, the brightness of the image is properly maintained.
 絞りの開口量が大きく、出射光の光量が多い状態が続くと、出射光による発熱により挿入部の先端の温度が上昇する。例えば、内視鏡検査の準備中には、光源装置の電源をオンにして光源を点灯させた状態で、内視鏡はカートのハンガー等に掛けた状態で待機させられる。内視鏡の挿入部が体腔に挿入されていない待機中は、内視鏡の挿入部を体腔に挿入された状態と比較すると、観察部位が挿入部の近傍に存在しないため入射光の光量が小さい。そのため、絞りの開口量が大きく、出射光の光量の過剰状態が続き、先端の温度が上昇する。 If the aperture of the diaphragm is large and the amount of emitted light is large, the temperature at the tip of the insertion portion rises due to heat generated by the emitted light. For example, during preparation for endoscopy, the endoscope is placed on a hanger or the like of a cart while the light source device is turned on and the light source is turned on. When the endoscope insertion portion is not inserted into the body cavity, the amount of incident light is reduced because the observation site does not exist near the insertion portion when compared with the state where the endoscope insertion portion is inserted into the body cavity. small. Therefore, the aperture of the diaphragm is large, the state of excess light quantity of the emitted light continues, and the tip temperature rises.
 温度が上昇すると、撮像装置が故障したり、撮像装置からの信号にノイズがのったりする等、画質に影響を及ぼすので、挿入部の先端の温度上昇を抑制する対策が提案されている(例えば、特許文献1参照)。 When the temperature rises, the image pickup apparatus breaks down, noise is added to the signal from the image pickup apparatus, and the like affects the image quality. Therefore, a countermeasure for suppressing the temperature rise at the tip of the insertion portion has been proposed ( For example, see Patent Document 1).
 特許文献1に記載の電子内視鏡は、出射光の光量が閾値を超えている状態が所定時間継続した時に、絞りによる光量制御の範囲の上限値を、起動時に設定される通常の上限値よりも小さいものに変更する。光量制御範囲の上限値が小さくなると、出射光の最大光量が小さくなるので、挿入部の先端の発熱量も減少し、温度上昇が抑制される。 In the electronic endoscope described in Patent Document 1, when the state in which the amount of emitted light exceeds the threshold value continues for a predetermined time, the upper limit value of the range of light amount control by the diaphragm is set to the normal upper limit value set at the time of activation. Change to something smaller. When the upper limit value of the light amount control range is reduced, the maximum light amount of the emitted light is reduced, so that the amount of heat generated at the tip of the insertion portion is also reduced, and the temperature rise is suppressed.
特開2002-282207号公報JP 2002-282207 A
 しかしながら、特許文献1に記載の温度抑制のための光量制御では、上限値を1つしか設定することができないため、次のような課題があった。すなわち、光量制御範囲の上限値を高めに設定すると、内視鏡を体腔に挿入していない待機中において、無駄な発熱を抑えることができず、挿入部の先端の温度上昇を十分に抑制できない。待機中においては、出射光の光量は、光源が点灯していることを確認できる程度で十分であるので、それ以上の光量は無駄である。近年、高画素化による撮像装置自体の発熱量の増加や、挿入部の細径化による放熱性の低下も懸念されているため、先端の無駄な発熱をできる限り抑えたいという要請が強い。 However, the light quantity control for temperature suppression described in Patent Document 1 has the following problems because only one upper limit value can be set. That is, if the upper limit value of the light amount control range is set high, useless heat generation cannot be suppressed during standby when the endoscope is not inserted into the body cavity, and the temperature rise at the distal end of the insertion portion cannot be sufficiently suppressed. . During standby, the amount of emitted light is sufficient to be able to confirm that the light source is turned on. In recent years, there is a concern about an increase in the amount of heat generated by the imaging apparatus itself due to an increase in the number of pixels and a decrease in heat dissipation due to a reduction in the diameter of the insertion portion.
 待機中の無駄な発熱を抑えるという観点からは、光量制限モードにおける光量制限範囲の上限値をできるだけ低めに設定する方がよい。しかしながら、観察中に温度抑制のための光量制御が開始された場合、通常と比べて画像が極端に暗くなってしまい、術者に不安感を与えてしまうという問題が生じる。 From the viewpoint of suppressing unnecessary heat generation during standby, it is better to set the upper limit value of the light amount limit range in the light amount limit mode as low as possible. However, when the light amount control for suppressing the temperature is started during observation, the image becomes extremely dark as compared with the normal case, which causes a problem of giving the operator anxiety.
 本発明は、上記課題を鑑みてなされたものであり、待機中における挿入部の先端の温度上昇を十分に抑制し、かつ、観察中に温度抑制が開始された場合でも、術者に不安感を与えることがない電子内視鏡システムを提供することを目的とする。 The present invention has been made in view of the above problems, and sufficiently suppresses the temperature rise at the distal end of the insertion portion during standby, and even when temperature suppression is started during observation, the operator feels uneasy. It is an object of the present invention to provide an electronic endoscope system that does not give the above.
 上記目的を達成するために、本発明の電子内視鏡システムは、出射光を外部へ放つ出射部、外部からの光が入射する入射部、及び前記入射部に入射した入射光を撮像する撮像部が先端に設けられた挿入部を有する内視鏡と、前記入射光の光量を測定し、前記出射光の光量を予め設定された上限値以下の範囲内で制御する光量制御手段と、前記先端の温度が予め設定されている温度閾値を超えたか否かを判定する温度判定手段と、前記挿入部が体腔に挿入された挿入状態及び前記体腔の外にある待機状態のいずれであるかを判定する挿入判定手段と、前記挿入判定手段により前記挿入部が前記挿入状態であると判定され、かつ、前記温度判定手段により前記先端の温度が前記温度閾値を超えたと判定された場合には、前記上限値を起動時に設定される値L0よりも小さい値L1に設定し、前記挿入判定手段により前記挿入部が前記待機状態であると判定された場合には、前記上限値を前記値L1よりも小さい値L2に設定し、前記上限値の設定により前記先端の温度上昇を抑制する温度抑制手段とを備えていることを特徴とする。 In order to achieve the above object, an electronic endoscope system according to the present invention includes an emitting unit that emits outgoing light to the outside, an incident unit that receives light from the outside, and imaging that captures incident light that has entered the incident unit. An endoscope having an insertion portion provided at the tip thereof, a light amount control means for measuring the light amount of the incident light, and controlling the light amount of the emitted light within a predetermined upper limit value, and Whether the temperature determination means for determining whether or not the temperature of the tip exceeds a preset temperature threshold value, and whether the insertion portion is inserted into a body cavity or in a standby state outside the body cavity When determining that the insertion portion is in the inserted state by the insertion determining means and the insertion determining means, and the temperature determining means determines that the temperature of the tip has exceeded the temperature threshold, The upper limit is set at startup. When the insertion determination unit determines that the insertion unit is in the standby state, the upper limit value is set to a value L2 smaller than the value L1. And a temperature suppression means for suppressing a temperature rise at the tip by setting the upper limit value.
 前記挿入判定手段は、前記出射光の光量が前記上限値L0で所定時間継続した場合に、前記挿入部が前記待機状態であると判定することが好ましい。 It is preferable that the insertion determination unit determines that the insertion unit is in the standby state when the amount of the emitted light continues for a predetermined time at the upper limit value L0.
 前記挿入判定手段は、前記光量制御手段によって測定された前記入射光の光量が予め設定されている光量閾値を超えている場合に、前記挿入部が前記挿入状態であると判定することが好ましい。 Preferably, the insertion determination unit determines that the insertion unit is in the insertion state when the light amount of the incident light measured by the light amount control unit exceeds a preset light amount threshold value.
 前記上限値が前記値L2に設定されている場合、前記挿入判定手段によって前記挿入部が前記挿入状態であると判定された時に、前記温度抑制手段は、前記上限値を前記値L2から値L0に自動的に復帰させることが好ましい。 When the upper limit value is set to the value L2, when the insertion determination unit determines that the insertion portion is in the insertion state, the temperature suppression unit changes the upper limit value from the value L2 to the value L0. It is preferable to automatically return to
 前記温度抑制手段は、前記上限値を前記値L1に設定した後は、前記先端の温度が前記温度閾値以下にならない限り、前記上限値を前記値L1から前記値L0に復帰させる解除操作を禁止することが好ましい。 After the upper limit value is set to the value L1, the temperature suppression unit prohibits a release operation for returning the upper limit value from the value L1 to the value L0 unless the temperature at the tip is equal to or lower than the temperature threshold value. It is preferable to do.
 前記温度判定手段は、前記光量制御手段によって制御される前記出射光の光量変化の推移を表す光量制御履歴を用いた演算を行い、その演算結果に基づいて前記先端の温度が前記温度閾値を超えたか否かを判定することが好ましい。 The temperature determination unit performs a calculation using a light amount control history indicating a transition of a light amount change of the emitted light controlled by the light amount control unit, and the temperature of the tip exceeds the temperature threshold based on the calculation result. It is preferable to determine whether or not.
 前記温度判定手段は、前記光量制御履歴を用いて前記先端の現在の温度の推定値を求め、前記推定値と前記温度閾値を照合することにより判定することが好ましい。 It is preferable that the temperature determination unit obtains an estimated value of the current temperature of the tip using the light amount control history and compares the estimated value with the temperature threshold value.
 前記温度判定手段は、前記推定値を一定時間間隔で算出し、算出済みの前回の前記推定値に対して、前記光量制御履歴に基づく前回から今回までの温度上昇分を加算し、前回から今回までの放熱による温度減少分を減算することにより今回の前記推定値を求めることが好ましい。 The temperature determination means calculates the estimated value at regular time intervals, adds the temperature increase from the previous time to the current time based on the light amount control history to the calculated previous estimated value, It is preferable to obtain the estimated value at this time by subtracting the temperature decrease due to the heat dissipation until.
 前記温度判定手段は、前記光量制御履歴に基づいて前記出射光の光量の積算値を求め、前記積算値に基づいて判定することが好ましい。 It is preferable that the temperature determination unit obtains an integrated value of the light amount of the emitted light based on the light amount control history, and determines based on the integrated value.
 前記温度判定手段は、前記光量制御履歴のうち古いものほど重みを小さくして前記積算値を求めることが好ましい。 It is preferable that the temperature determination means obtains the integrated value by decreasing the weight of the older light quantity control history.
 前記温度判定手段は、前記先端に設けられた温度センサによって測定される実測値と前記温度閾値を照合することが好ましい。 It is preferable that the temperature determination means collates an actual measurement value measured by a temperature sensor provided at the tip with the temperature threshold value.
 ほぼ一定光量で点灯する光源と、前記光源が発する光の光路上に配置された絞り開口の開口量を調節することにより前記出射光の光量を調節する絞り調節機構とを備えており、前記温度抑制手段は、前記値L1及び値L2によって前記絞り調節機構の前記開口量の上限を制限することが好ましい。 A light source that illuminates with a substantially constant light amount, and a diaphragm adjustment mechanism that adjusts a light amount of the emitted light by adjusting an opening amount of a diaphragm opening disposed on an optical path of light emitted from the light source, and the temperature Preferably, the suppressing means limits the upper limit of the opening amount of the aperture adjustment mechanism by the value L1 and the value L2.
 発光量を制御可能な光源を備えており、前記温度抑制手段は、前記値L1及び値L2によって前記光源の前記発光量の上限を制限することが好ましい。 It is preferable that a light source capable of controlling the light emission amount is provided, and the temperature suppressing unit limits the upper limit of the light emission amount of the light source by the value L1 and the value L2.
 本発明によれば、挿入部が体腔に挿入されていると判定され、かつ、挿入部の先端の温度が予め設定されている温度閾値を超えたと判定された場合に、出射光の光量を制御する範囲の上限値を、起動時に設定される上限値L0よりも低い第1制限値L1に設定し、挿入部が体腔の外にあると判定されている場合に、上限値が第1制限値L1よりもさらに低い第2制限値L2に設定するから、電源がオンにされて出射光が照射された状態の電子内視鏡がハンガー等に掛けられ、挿入部を体腔に挿入する準備が行われている間、及び挿入部が体腔に挿入されて診断が行われている間を通じて、挿入部の先端の温度が上昇することが抑止される。 According to the present invention, when it is determined that the insertion portion is inserted into the body cavity and it is determined that the temperature of the distal end of the insertion portion exceeds a preset temperature threshold, the amount of emitted light is controlled. The upper limit value is set to the first limit value L1 that is lower than the upper limit value L0 that is set at the time of activation, and the upper limit value is the first limit value when it is determined that the insertion portion is outside the body cavity. Since the second limit value L2 lower than L1 is set, the electronic endoscope in a state where the power is turned on and irradiated with the emitted light is hung on a hanger or the like, and preparations for inserting the insertion portion into the body cavity are made. The temperature at the distal end of the insertion portion is prevented from rising while the insertion portion is inserted and while the insertion portion is inserted into the body cavity and the diagnosis is performed.
電子内視鏡システムの外観図である。It is an external view of an electronic endoscope system. 電子内視鏡システムの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of an electronic endoscope system. プロセッサ装置におけるCPU、光源装置における絞り調節機構の詳細を説明するブロック図である。It is a block diagram explaining the detail of the aperture adjustment mechanism in CPU in a processor apparatus and a light source device. 各モードにおけるPWM値の上限値Px、絞り開口の開度、及び出射光の光量の上限値Lxを示すテーブルである。It is a table which shows the upper limit Px of the PWM value in each mode, the opening of the aperture opening, and the upper limit Lx of the quantity of emitted light. 時刻歴を示すグラフであり、(A)は、挿入部の先端における温度の上昇値ΔTに関し、(B)は、光量の上限値Lxに関するものである。It is a graph which shows a time history, (A) is related with the temperature rise value (DELTA) T in the front-end | tip of an insertion part, (B) is related with the upper limit Lx of light quantity. 挿入部の先端における温度制御を説明するフローチャートである。It is a flowchart explaining the temperature control in the front-end | tip of an insertion part. 挿入部の先端における温度の上昇値ΔTとPWM値の上限値Pxとの関係を示すグラフである。It is a graph which shows the relationship between temperature rise value (DELTA) T in the front-end | tip of an insertion part, and the upper limit Px of PWM value. 光量の上限値Lxの時刻歴を示すグラフである。It is a graph which shows the time history of the upper limit Lx of light quantity. 第3実施形態の挿入部の先端における温度差分を求める演算を説明するブロック図である。It is a block diagram explaining the calculation which calculates | requires the temperature difference in the front-end | tip of the insertion part of 3rd Embodiment. 第3実施形態の挿入部の先端における温度制御を説明するフローチャートである。It is a flowchart explaining the temperature control in the front-end | tip of the insertion part of 3rd Embodiment. 第4実施形態の光量Lに関する時刻歴を示すグラフである。It is a graph which shows the time history regarding the light quantity LN of 4th Embodiment. 第4実施形態の挿入部の先端における温度制御を説明するフローチャートである。It is a flowchart explaining the temperature control in the front-end | tip of the insertion part of 4th Embodiment. 第5実施形態の光量Lに関する時刻歴を示すグラフである。It is a graph which shows the time history regarding the light quantity LN of 5th Embodiment. 第6実施形態の電子内視鏡システムの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the electronic endoscope system of 6th Embodiment.
[第1実施形態]
 図1に示す第1実施形態の電子内視鏡システム11は、患者の診察に用いられる。電子内視鏡システム11は、体腔の観察部位を撮像するための電子内視鏡12と、撮像により得られた信号に基づいて観察部位の画像を生成するプロセッサ装置13と、観察部位を照らすための出射光を供給する光源装置14と、観察部位の画像を表示するモニタ15とを備えている。
[First Embodiment]
The electronic endoscope system 11 of the first embodiment shown in FIG. 1 is used for patient examination. The electronic endoscope system 11 illuminates an observation region, an electronic endoscope 12 for imaging an observation region of a body cavity, a processor device 13 that generates an image of the observation region based on a signal obtained by the imaging, and the observation region. A light source device 14 for supplying the emitted light and a monitor 15 for displaying an image of the observation site.
 電子内視鏡12は、体腔に挿入される可撓性の挿入部16と、この挿入部16の基端部分に接続された操作部17と、この操作部17とプロセッサ装置13及び光源装置14との間を繋ぐユニバーサルコード18と、ユニバーサルコード18の基端部分に取り付けられたコネクタ19とを備えている。 The electronic endoscope 12 includes a flexible insertion portion 16 to be inserted into a body cavity, an operation portion 17 connected to a proximal end portion of the insertion portion 16, the operation portion 17, a processor device 13, and a light source device 14. And a connector 19 attached to a proximal end portion of the universal cord 18.
 挿入部16は、例えば、外径6mmの細長形状を有し、可撓性チューブで覆われている。操作部17は、静止画を記録するためのレリーズボタン20や送気・送水ボタン(図示省略)等の操作部材を備えている。 The insertion portion 16 has, for example, an elongated shape with an outer diameter of 6 mm and is covered with a flexible tube. The operation unit 17 includes operation members such as a release button 20 for recording a still image and an air / water supply button (not shown).
 コネクタ19は、通信用コネクタと光源用コネクタとからなる複合タイプである。コネクタ19は、電子内視鏡12を、プロセッサ装置13及び光源装置14に着脱自在に接続させる。 The connector 19 is a composite type composed of a communication connector and a light source connector. The connector 19 removably connects the electronic endoscope 12 to the processor device 13 and the light source device 14.
 挿入部16の先端16aには、光源装置14から供給された光を外部へ出射する出射窓27(図2参照)と、外部の光を取り込むための入射窓28(図2参照)と、入射窓28に入射した外部光(以下、入射光と称する)を撮像するCCD30(図2参照)とを備える。体腔に挿入された挿入部16の先端16aを観察部位に向けることにより、光源装置14から供給された光は観察部位によって反射する。観察部位によって反射した光は、入射窓28へ入射する。そして、入射光の撮像により、観察部位の画像を得ることができる。 At the distal end 16a of the insertion portion 16, an emission window 27 (see FIG. 2) that emits the light supplied from the light source device 14 to the outside, an incident window 28 (see FIG. 2) for taking in external light, and an incident light CCD 30 (refer FIG. 2) which images the external light (henceforth incident light) which injected into the window 28 is provided. By directing the distal end 16a of the insertion portion 16 inserted into the body cavity toward the observation site, the light supplied from the light source device 14 is reflected by the observation site. The light reflected by the observation site enters the incident window 28. An image of the observation site can be obtained by imaging incident light.
 プロセッサ装置13は、電子内視鏡12、光源装置14、及びモニタ15と電気的に接続され、電子内視鏡システム11全体の動作を統括的に制御する。プロセッサ装置13は、その前面に、電子内視鏡システム11の動作状態を表示するモニタランプ21を備えている。 The processor device 13 is electrically connected to the electronic endoscope 12, the light source device 14, and the monitor 15, and comprehensively controls the operation of the entire electronic endoscope system 11. The processor device 13 includes a monitor lamp 21 that displays the operation state of the electronic endoscope system 11 on the front surface thereof.
 図2に示すように、電子内視鏡12は、ライトガイド26と、出射窓27と、入射窓28と、集光レンズ29と、CCD30と、アナログフロントエンド(以下、AFEと略す。)31と、CCD駆動回路32と、温度センサ33とを備えている。 As shown in FIG. 2, the electronic endoscope 12 includes a light guide 26, an exit window 27, an entrance window 28, a condenser lens 29, a CCD 30, and an analog front end (hereinafter abbreviated as AFE) 31. And a CCD drive circuit 32 and a temperature sensor 33.
 ライトガイド26は、光源装置14から供給された光を挿入部16の先端16aに導く。出射窓27は、ライトガイド26により導かれた光を外部へ出射する。入射窓28は、入射光を集光レンズ29に導く。集光レンズ29は、入射光をCCD30に集光する。CCD30は、CCD駆動回路32からの駆動パルスに応じて撮像動作を行い、集光レンズ29からの光量に応じた撮像信号をAFE31に入力する。なお、CCDの代わりにCMOSイメージセンサを用いてもよい。 The light guide 26 guides the light supplied from the light source device 14 to the distal end 16a of the insertion portion 16. The emission window 27 emits the light guided by the light guide 26 to the outside. The incident window 28 guides incident light to the condenser lens 29. The condensing lens 29 condenses incident light on the CCD 30. The CCD 30 performs an imaging operation according to the drive pulse from the CCD drive circuit 32, and inputs an imaging signal corresponding to the amount of light from the condenser lens 29 to the AFE 31. A CMOS image sensor may be used instead of the CCD.
 AFE31は、相関二重サンプリング回路(以下、CDSと略す。)、自動ゲイン制御回路(以下、AGCと略す。)、及びアナログ/デジタル変換器(以下、A/Dと略す。)(いずれも図示省略)から構成されている。AFE31の各部は、CCD駆動回路32からの同期パルスに基づいて動作する。CDSは、CCD30から入力された撮像信号に対して相関二重サンプリング処理を施し、CCD30で生じたリセット雑音及びアンプ雑音の除去を行う。AGCは、CDSにより増幅された撮像信号を、所定のビット数のデジタルな撮像信号に変換してプロセッサ装置13に入力する。プロセッサ装置13では、撮像信号に基づいて画像が生成される。 The AFE 31 is a correlated double sampling circuit (hereinafter abbreviated as CDS), an automatic gain control circuit (hereinafter abbreviated as AGC), and an analog / digital converter (hereinafter abbreviated as A / D) (all shown). (Omitted). Each part of the AFE 31 operates based on a synchronization pulse from the CCD drive circuit 32. The CDS performs correlated double sampling processing on the imaging signal input from the CCD 30, and removes reset noise and amplifier noise generated by the CCD 30. The AGC converts the imaging signal amplified by the CDS into a digital imaging signal having a predetermined number of bits and inputs the digital imaging signal to the processor device 13. In the processor device 13, an image is generated based on the imaging signal.
 CCD駆動回路32は、プロセッサ装置13からの信号に基づいて、CCD30の駆動パルス(垂直/水平走査パルス、電子シャッタパルス、読出しパルス、リセットパルス等)と、AFE31用の同期パルスとを発生させる。 The CCD drive circuit 32 generates a drive pulse (vertical / horizontal scanning pulse, electronic shutter pulse, readout pulse, reset pulse, etc.) of the CCD 30 and a synchronization pulse for the AFE 31 based on a signal from the processor device 13.
 温度センサ33は、挿入部16の先端16aに設けられ、先端16aにおける温度T[℃]を検知する。温度センサ33は、検知した温度T[℃]をプロセッサ装置13に入力する。 The temperature sensor 33 is provided at the tip 16a of the insertion portion 16, and detects the temperature T [° C.] at the tip 16a. The temperature sensor 33 inputs the detected temperature T [° C.] to the processor device 13.
 プロセッサ装置13は、CPU36と、ROM37と、RAM38と、デジタル信号処理部(以下、DSPと略す。)39と、デジタル画像処理回路(以下、DIPと略す。)40と、表示制御回路41とを備えている。 The processor device 13 includes a CPU 36, a ROM 37, a RAM 38, a digital signal processing unit (hereinafter abbreviated as DSP) 39, a digital image processing circuit (hereinafter abbreviated as DIP) 40, and a display control circuit 41. I have.
 CPU36は、プロセッサ装置13全体の動作を統括的に制御する。CPU36は、データバス、アドレスバス及び制御線(いずれも図示省略)を介して各部と接続している。CPU36は、操作部42からの操作信号に応じて、各部を動作させる。操作部42は、プロセッサ装置13の筐体に設けられた操作パネル、電子内視鏡12の操作部17(図1参照)にあるボタン、あるいは、マウスやキーボード等の周知の入力デバイスである。 The CPU 36 controls the overall operation of the processor device 13. The CPU 36 is connected to each unit via a data bus, an address bus, and a control line (all not shown). The CPU 36 operates each unit in response to an operation signal from the operation unit 42. The operation unit 42 is a known input device such as an operation panel provided on the housing of the processor device 13, buttons on the operation unit 17 (see FIG. 1) of the electronic endoscope 12, or a mouse or a keyboard.
 ROM37は、プロセッサ装置13の動作を制御する各種プログラム(OS、アプリケーションプログラム等)やデータ(グラフィックデータ等)を記憶している。RAM38は、ROM37から必要なプログラムやデータが読み出される作業用メモリである。RAM38に読み出されたプログラムは、CPU36により逐次処理される。 The ROM 37 stores various programs (OS, application programs, etc.) and data (graphic data, etc.) for controlling the operation of the processor device 13. The RAM 38 is a working memory from which necessary programs and data are read from the ROM 37. The program read to the RAM 38 is sequentially processed by the CPU 36.
 DSP39は、フレームメモリ(図示省略)を備えている。そのフレームメモリは、AFE31からの撮像信号を一旦格納する。DSP39は、フレームメモリから撮像信号を読み出して、色分離、色補間、ゲイン補正、ホワイトバランス調整、ガンマ補正等の各種信号処理を施し、一フレーム分の画像を生成する。DSP39は、生成した画像をDIP40に入力する。 The DSP 39 includes a frame memory (not shown). The frame memory temporarily stores the imaging signal from the AFE 31. The DSP 39 reads an image pickup signal from the frame memory, performs various signal processing such as color separation, color interpolation, gain correction, white balance adjustment, and gamma correction, and generates an image for one frame. The DSP 39 inputs the generated image to the DIP 40.
 DIP40は、フレームメモリ(図示省略)を備えている。そのフレームメモリは、DSP39からの画像を一旦格納する。DIP40は、フレームメモリから画像を読み出して、電子変倍、色強調、エッジ強調等の各種画像処理を施す。DIP40は、各種画像処理を施した画像を表示制御回路41に入力する。 The DIP 40 includes a frame memory (not shown). The frame memory temporarily stores an image from the DSP 39. The DIP 40 reads an image from the frame memory and performs various image processing such as electronic scaling, color enhancement, and edge enhancement. The DIP 40 inputs an image subjected to various image processes to the display control circuit 41.
 表示制御回路41は、VRAM(図示省略)を備えている。そのVRAMは、DIP40からの画像を一旦格納する。表示制御回路41は、ROM37のグラフィックデータを受け取る。グラフィックデータには、体内画像の無効画素領域を隠して有効画素領域のみを表示させる表示用マスク、検査日時、あるいは患者や術者の情報等の文字情報、グラフィカルユーザインターフェイス(GUI;Graphical User Interface)等がある。 The display control circuit 41 includes a VRAM (not shown). The VRAM temporarily stores the image from the DIP 40. The display control circuit 41 receives graphic data stored in the ROM 37. Graphic data includes a display mask that hides the ineffective pixel region of the in-vivo image and displays only the effective pixel region, character information such as examination date and time, or patient and surgeon information, and a graphical user interface (GUI). Etc.
 表示制御回路41は、VRAMから画像を読み出して、表示用マスク、文字情報、GUIの重畳処理、モニタ15の表示画面への描画処理といった各種表示制御処理を施す。表示制御回路41は、各種表示制御処理を施した画像を、モニタ15の表示形式に応じたビデオ信号(コンポーネント信号、コンポジット信号等)に変換し、モニタ15に表示する。 The display control circuit 41 reads an image from the VRAM and performs various display control processes such as a display mask, character information, GUI superimposition processing, and drawing processing on the display screen of the monitor 15. The display control circuit 41 converts the image subjected to various display control processes into a video signal (component signal, composite signal, etc.) corresponding to the display format of the monitor 15 and displays it on the monitor 15.
 プロセッサ装置13は、上記の他に、画像に所定の形式(例えば、JPEG形式)で圧縮処理を施す圧縮処理回路や、レリーズボタン20の操作に連動して、圧縮された画像をCFカード、光磁気ディスク(MO)、CD-R等のリムーバブルメディアに記録するメディアI/F、LAN等のネットワークとの間で各種データの伝送制御を行うネットワークI/F(いずれも図示省略)等を備えている。これらは、データバス(図示省略)等を介してCPU36と接続されている。 In addition to the above, the processor device 13 performs a compression processing circuit for compressing an image in a predetermined format (for example, JPEG format), and the compressed image is linked to the operation of the release button 20 by using a CF card, optical Media I / F for recording on removable media such as magnetic disks (MO) and CD-Rs, and network I / F (all not shown) for controlling transmission of various data to and from networks such as LAN Yes. These are connected to the CPU 36 via a data bus (not shown) or the like.
 光源装置14は、CPU46と、光源47と、光源ドライバ48と、絞り調節機構49と、モータ50と、モータ50を駆動するモータドライバ51と、集光レンズ52とを備えている。 The light source device 14 includes a CPU 46, a light source 47, a light source driver 48, an aperture adjustment mechanism 49, a motor 50, a motor driver 51 that drives the motor 50, and a condenser lens 52.
 CPU46は、プロセッサ装置13のCPU36と通信し、光源装置14全体の動作を統括的に制御する。CPU46は、データバス、アドレスバス及び制御線(いずれも図示省略)を介して各部と接続している。 The CPU 46 communicates with the CPU 36 of the processor device 13 and controls the overall operation of the light source device 14. The CPU 46 is connected to each unit via a data bus, an address bus, and a control line (all not shown).
 光源47は、白色光を発生するハロゲンランプやキセノンランプ等である。光源47は、光源ドライバ48によって駆動され、ほぼ一定の光量で点灯し、光源47の光は集光レンズ52に入射する。絞り調節機構49は、光源47の光路上に配置され、絞り開口57(図3参照)の開口量を調節する。絞り開口57の開口量に応じた光量の光が集光レンズ52に入射する。モータ50は、モータドライバ51から入力される駆動パルスによって回転し、絞り調節機構49を駆動する。集光レンズ52は、絞り調節機構49を通過した光を集光し、ライトガイド26の入射端に導光する。 The light source 47 is a halogen lamp or a xenon lamp that generates white light. The light source 47 is driven by a light source driver 48 and is lit with a substantially constant light amount, and the light from the light source 47 is incident on the condenser lens 52. The aperture adjustment mechanism 49 is disposed on the optical path of the light source 47 and adjusts the aperture amount of the aperture opening 57 (see FIG. 3). Light having a light amount corresponding to the opening amount of the aperture opening 57 enters the condenser lens 52. The motor 50 is rotated by the drive pulse input from the motor driver 51 and drives the aperture adjustment mechanism 49. The condenser lens 52 condenses the light that has passed through the aperture adjusting mechanism 49 and guides it to the incident end of the light guide 26.
 図3に示すように、プロセッサ装置13のCPU36は、光量制御部53、挿入判定部54、温度判定部55、及び温度抑制部56として機能する。 As shown in FIG. 3, the CPU 36 of the processor device 13 functions as a light amount control unit 53, an insertion determination unit 54, a temperature determination unit 55, and a temperature suppression unit 56.
 光量制御部53は、CCD30からの一フレーム分の撮像信号に基づいて有効画素領域内の全画素の平均輝度値(測光値L)を算出することにより、入射光Linの光量を測定する。光量制御部53は、測光値Lが、画像の明るさを一定に保つ基準値Lとなるように、光源装置14に対して必要な出射光Loutの光量を要求する光量制御信号を送り、光源装置14を通じて出射光Loutの光量を制御する。具体的には、光量制御部53は、測光値Lが基準値Lを下回っている場合、測光値Lが基準値Lとなるように、不足分の出射光Loutの光量、すなわち必要光量を要求する光量制御信号を送る。また、測光値Lが基準値Lから上回っている場合、測光値Lが基準値Lとなるように、出射光Loutの超過分の光量の減少を要求する光量制御信号を送る。 Light quantity control unit 53, by calculating the average luminance value of all pixels in the effective pixel area based on one frame imaging signal from CCD 30 (photometric value L M), for measuring the amount of the incident light L in . The light amount control unit 53 outputs a light amount control signal for requesting the light amount of the emitted light L out to the light source device 14 so that the photometric value L M becomes the reference value L S for keeping the brightness of the image constant. The amount of outgoing light L out is controlled through the light source device 14. Specifically, the light quantity control unit 53, when the photometric value L M is smaller than the reference value L S, as the photometric value L M is the reference value L S, the light amount of the shortage of the outgoing light L out, That is, a light amount control signal requesting the necessary light amount is sent. Also, if the photometric value L M exceeds the reference value L S, as the photometric value L M is the reference value L S, and sends a light amount control signal requesting a decrease in excess of the amount of light of the outgoing light L out .
 光源装置14のCPU46は、光量制御部53から入力される光量制御信号に基づいて、絞り調節機構49を制御する。CPU46は、光量制御信号に応じて、モータ50のトルクを決定するPWM(パルス幅変調)値を算出し、モータドライバ51は、PWM値に応じた駆動パルスを発生してモータ50を駆動する。PWM値は、モータ50の駆動パルスのデューティ比(パルス幅をパルス周期で割った値)を決定するもので、モータ50のトルクを決定する。CPU46は、光量制御信号が出射光Loutの光量の増加を要求する信号である場合には、増加分に応じてPWM値を上げ、光量制御信号が出射光Loutの光量の減少を要求する信号である場合には、減少分に応じてPWM値を下げる。 The CPU 46 of the light source device 14 controls the aperture adjustment mechanism 49 based on the light amount control signal input from the light amount control unit 53. The CPU 46 calculates a PWM (pulse width modulation) value that determines the torque of the motor 50 according to the light amount control signal, and the motor driver 51 drives the motor 50 by generating a drive pulse corresponding to the PWM value. The PWM value determines the duty ratio of the drive pulse of the motor 50 (value obtained by dividing the pulse width by the pulse period), and determines the torque of the motor 50. When the light amount control signal is a signal requesting an increase in the light amount of the emitted light L out , the CPU 46 increases the PWM value according to the increase, and the light amount control signal requests a decrease in the light amount of the emitted light L out. If it is a signal, the PWM value is lowered according to the decrease.
 絞り調節機構49は、絞り開口57を開閉する絞り羽根58と、絞り開口57を閉じる位置に絞り羽根58を付勢するスプリング59とを備えている。絞り羽根58は、モータ50から与えられるトルクによって、スプリング59の付勢力に抗して絞り開口57の開口量が大きくなる方向(例えば、時計方向)に回転し、トルクの大きさとスプリング59の付勢力が釣り合う位置で停止する。トルクが大きいとスプリング59の付勢力に抗する力も大きくなるので、絞り開口57の開口量も大きくなる。トルクが小さいとスプリング59の付勢力に抗する力が小さくなるので絞り開口57の開口量が小さくなる。モータ50のトルクは、PWM値の増加とともに大きくなり、PWM値が下がると減少する。 The diaphragm adjusting mechanism 49 includes a diaphragm blade 58 that opens and closes the diaphragm opening 57 and a spring 59 that biases the diaphragm blade 58 to a position where the diaphragm opening 57 is closed. The diaphragm blade 58 rotates in a direction (for example, clockwise) in which the aperture amount of the aperture opening 57 increases against the urging force of the spring 59 due to the torque applied from the motor 50. Stop at a position where the forces are balanced. When the torque is large, the force against the urging force of the spring 59 is also increased, so that the opening amount of the aperture opening 57 is also increased. When the torque is small, the force against the urging force of the spring 59 is small, so the opening amount of the aperture opening 57 is small. The torque of the motor 50 increases as the PWM value increases, and decreases as the PWM value decreases.
 こうした絞りによる光量制御は、測光値Lに応じて行われるが、出射光Loutの光量が大きい状態が長時間継続すると挿入部16の先端16aの温度上昇も大きくなる。この温度上昇を抑制するために、電子内視鏡システム11は、出射光Loutの光量制御範囲の上限値を制限することにより、挿入部16の先端16aの温度上昇を抑制する第1制限モードM1及び第2制限モードM2を備えている。 Such aperture of the light amount control is carried out in accordance with the photometric value L M, the state amount is large of the outgoing light L out is also large temperature rise in the long-lasting and of the insertion portion 16 tip 16a. In order to suppress this temperature rise, the electronic endoscope system 11 restricts the upper limit value of the light amount control range of the emitted light Lout , thereby suppressing the temperature rise of the distal end 16a of the insertion portion 16. M1 and the second restriction mode M2 are provided.
 図4に示すように、通常モードM0は、光源装置14の起動時に設定されるモードで、絞り開口57の開口量を割合で示した開度の上限値が例えば100%、出射光Loutの光量の上限値LxがL0[lm:ルーメン]に設定される。この上限値L0[lm]にするためのPWM値はP0である。出射光Loutの光量の上限値L0[lm]が通常モードM0における光量制御範囲の上限値となる。第1制限モードM1における光量制御範囲の上限値は、通常モードM0よりも低く、例えば、絞り開口57の開度の上限値が70%、出射光Loutの光量の上限値LxがL1[lm](<L0[lm])であり、上限値L1[lm]にするためのPWM値がP1である。第2制限モードM2における光量制御範囲の上限値は、第1制限モードM1よりもさらに低く、絞り開口57の開度の上限値が25%、出射光Loutの光量の上限値LxがL2[lm](<L1[lm])であり、上限値L2[lm]にするためのPWM値がP2である。ここで、L2は、待機中において先端16aが点灯しているか否かを確認できる程度のものであれば良い。 As shown in FIG. 4, the normal mode M0 is a mode that is set when the light source device 14 is activated, and the upper limit value of the opening that indicates the opening amount of the aperture opening 57 as a percentage is 100%, for example, the output light L out . The upper limit Lx of the light quantity is set to L0 [lm: lumen]. The PWM value for setting this upper limit value L0 [lm] is P0. The upper limit value L0 [lm] of the light amount of the emitted light Lout is the upper limit value of the light amount control range in the normal mode M0. The upper limit of the amount of light control range in the first limitation mode M1 is lower than the normal mode M0, for example, the upper limit value of the degree of opening of the aperture stop 57 is 70%, the upper limit value Lx of the light quantity of the outgoing light L out is L1 [lm ] (<L0 [lm]), and the PWM value for setting the upper limit L1 [lm] is P1. The upper limit of the amount of light control range in the second limit mode M2 is further lower than the first limitation mode M1, the upper limit is 25% of the aperture size of the diaphragm aperture 57, the upper limit value Lx of the light quantity of the outgoing light L out is L2 [ lm] (<L1 [lm]), and the PWM value for setting the upper limit L2 [lm] is P2. Here, L2 only needs to be such that it can be confirmed whether or not the tip 16a is lit during standby.
 第1制限モードM1及び第2制限モードM2においては、それぞれ上限値L1[lm]、L2[lm]以下の範囲内で絞りによる光量制御が行われる。つまり、第1制限モードM1及び第2制限モードM2では、光量制御部53が入射光Linの光量不足を検知して、光源装置14のCPU46に対して出射光Loutの光量の増加を要求する光量制御信号を送信しても、CPU46は、すでに出射光Loutの光量が上限値L1[lm]、L2[lm]に達している場合には、それ以上、PWM値を増加させず出射光Loutの光量を上げない。このように、第1制限モードM1及び第2制限モードM2では、出射光Loutの光量の上限値Lxが、通常モードM0の上限値L0[lm]よりも低い上限値L1[lm]、L2[lm]に制限されるので、挿入部16の先端16aの温度上昇が抑制される。通常モードM0から第1制限モードM1及び通常モードM0から第2制限モードM2への切替えは、挿入部16が体腔に挿入されている状態であるか否かと、先端16aの温度とに基づいて行われる。 In the first restriction mode M1 and the second restriction mode M2, the light amount control by the diaphragm is performed within the ranges of the upper limit values L1 [lm] and L2 [lm], respectively. That is, in the first limitation mode M1 and the second limitation mode M2, and the light quantity control unit 53 detects the insufficient light amount of incident light L in, requesting an increase in the quantity of emitted light L out against CPU46 of the light source device 14 Even if the light quantity control signal to be transmitted is transmitted, if the light quantity of the emitted light L out has already reached the upper limit values L1 [lm] and L2 [lm], the CPU 46 does not further increase the PWM value. not raise the amount of light of the Shako L out. Thus, the first limitation mode M1 and the second limitation mode M2, the upper limit value Lx of the light quantity of the outgoing light L out is the upper limit value L0 [lm] lower than the upper limit L1 of the normal mode M0 [lm], L2 Since it is limited to [lm], the temperature rise of the distal end 16a of the insertion portion 16 is suppressed. Switching from the normal mode M0 to the first restriction mode M1 and from the normal mode M0 to the second restriction mode M2 is performed based on whether or not the insertion portion 16 is inserted into the body cavity and the temperature of the distal end 16a. Is called.
 図3に示す挿入判定部54は、通常モードM0において、出射光Loutの光量が上限値L0[lm]で照射されている状態が、予め設定されている所定時間(例えば、30s)継続した時に、挿入部16が体腔に挿入されていない待機状態S1であると判定する。挿入部16が体腔に挿入されていない待機状態S1においては、入射窓28が設けられている先端16aの近傍に観察部位が存在しないため、出射光Loutの光量が上限値L0[lm]で照射されている場合でも、測光値Lは基準値Lに達しない。この状態では、光量制御部53は、光源装置14のCPU46に対して出射光Loutの光量を増加する要求を続けるので、必要光量は次第に増大する。この結果、出射光Loutの光量が上限値L0[lm]に到達する。 Insertion determining unit 54 shown in FIG. 3, in the normal mode M0, the state in which the light quantity of the outgoing light L out is irradiated with the upper limit value L0 [lm] is a predetermined time (for example, 30s) that are set in advance was continued Sometimes, it is determined that the insertion unit 16 is in the standby state S1 in which it is not inserted into the body cavity. In the standby state S1 in which the insertion portion 16 is not inserted into the body cavity, because the observation region in the vicinity of the tip 16a of the entrance window 28 is provided is not present, in the light quantity upper limit value L0 of the outgoing light L out [lm] even if they are irradiated, the photometric value L M does not reach the reference value L S. In this state, the light amount control unit 53 continues to request the CPU 46 of the light source device 14 to increase the light amount of the emitted light L out , so that the necessary light amount gradually increases. As a result, the light quantity of the outgoing light L out reaches the upper limit value L0 [lm].
 挿入判定部54は、出射光Loutの光量を表すPWM値をCPU46から逐次取得し、PWM値の上限値PxがP0である状態が継続する時間をシステムタイマで計測する。PWM値の上限値PxがP0である状態が所定時間継続した場合には、挿入判定部54は、挿入部16が体腔に挿入されていない状態、すなわち、挿入部16が体腔の外部にある状態(以下、待機状態と称する)S1であると判定する。 The insertion determination unit 54 sequentially acquires the PWM value representing the light amount of the emitted light L out from the CPU 46, and measures the time during which the state where the upper limit value Px of the PWM value is P0 continues with the system timer. When the state where the upper limit value Px of the PWM value is P0 continues for a predetermined time, the insertion determination unit 54 is in a state where the insertion unit 16 is not inserted into the body cavity, that is, a state where the insertion unit 16 is outside the body cavity. It is determined that it is S1 (hereinafter referred to as a standby state).
 また、挿入判定部54は、第2制限モードM2において、光量制御部53が測光値Lに基づいてCPU46に対して要求する必要光量が上限値L0[lm]未満となった場合に、挿入部16が体腔に挿入された状態S2と判定する。挿入部16が体腔に挿入された挿入状態S2では、入射窓28が設けられている先端16aの近傍に観察部位(管道内壁)が存在するため、観察部位で反射した出射光Loutが入射光LinとなってCCD30に入射する。よって、上限値Lxが一定である場合、挿入状態S2の測光値Lは、待機状態S1のものよりも大きく、後述する光量閾値を超える。光量閾値は、例えば、光源装置14の内蔵メモリに格納され、CPU46により読み込み可能となっている。この結果、挿入状態S2では光量制御部53がCPU46に対して要求する必要光量が通常モードM0における光量の上限値L0[lm]未満となる。挿入判定部54は、こうして判定した判定結果(挿入部16が待機状態S1であるか、又は挿入状態S2であるか)を温度抑制部56に入力する。 Further, insertion determining unit 54, the second limitation mode M2, when the required amount of light quantity control unit 53 requests the CPU46 on the basis of the photometric value L M becomes the upper limit value smaller than L0 [lm], insert It is determined that the part 16 is in the state S2 inserted into the body cavity. In the insertion state S2 in which the insertion portion 16 is inserted into the body cavity, the observation part (inner wall of the duct) exists in the vicinity of the distal end 16a where the incident window 28 is provided, so that the emitted light L out reflected at the observation part is incident light. a L in is incident on the CCD30. Therefore, if the upper limit value Lx is constant, the photometric value L M of the insertion state S2 is larger than that of the standby state S1, exceeds described later light amount threshold. The light amount threshold value is stored in, for example, a built-in memory of the light source device 14 and can be read by the CPU 46. As a result, in the insertion state S2, the required light amount requested by the light amount control unit 53 to the CPU 46 is less than the upper limit value L0 [lm] of the light amount in the normal mode M0. The insertion determination unit 54 inputs the determination result thus determined (whether the insertion unit 16 is in the standby state S1 or the insertion state S2) to the temperature suppression unit 56.
 温度判定部55は、温度センサ33が検知した温度T[℃]の基準値との差分(以下、温度差分と略す。)ΔT[℃]が、予め設定されている閾値T1[℃]を超えたか否かを判定する。ここで、温度センサ33が検知した温度T[℃]の基準値とは、例えば、電子内視鏡システム11の電源がオンにされた時の値であり、電源がオンにされた時の温度Tが20℃で、現在の温度Tが30℃であるとき、温度差分ΔTは10℃である。 The temperature determination unit 55 has a difference (hereinafter, abbreviated as a temperature difference) ΔT [° C.] from a reference value of the temperature T [° C.] detected by the temperature sensor 33 exceeding a preset threshold value T1 [° C.]. It is determined whether or not. Here, the reference value of the temperature T [° C.] detected by the temperature sensor 33 is, for example, a value when the power of the electronic endoscope system 11 is turned on, and the temperature when the power is turned on. When T is 20 ° C. and the current temperature T is 30 ° C., the temperature difference ΔT is 10 ° C.
 温度抑制部56は、挿入判定部54からの判定結果と、温度判定部55の判定結果に基づいて、通常モードM0から、第1制限モードM1及び第2制限モードM2へ移行するか否かを判定し、光源装置14のCPU46に対してモード切替え信号を送信する。 Based on the determination result from the insertion determination unit 54 and the determination result from the temperature determination unit 55, the temperature suppression unit 56 determines whether or not to shift from the normal mode M0 to the first restriction mode M1 and the second restriction mode M2. The mode switching signal is transmitted to the CPU 46 of the light source device 14.
 温度抑制部56は、挿入部16が体腔に挿入されていて、かつ、温度差分ΔT[℃]が予め設定されている閾値T1[℃]を超えている時、通常モードM0から第1制限モードM1へ切り替える第1モード切替え信号を、光源装置14のCPU46に入力する。 When the insertion portion 16 is inserted into the body cavity and the temperature difference ΔT [° C.] exceeds the preset threshold value T1 [° C.], the temperature suppression unit 56 starts from the normal mode M0 to the first restriction mode. A first mode switching signal for switching to M1 is input to the CPU 46 of the light source device 14.
 温度抑制部56は、挿入部16が体腔に挿入されていないと判定された時に、通常モードM0から第2制限モードM2へ切り替える第2モード切替え信号を、光源装置14のCPU46に入力する。 When it is determined that the insertion unit 16 is not inserted into the body cavity, the temperature suppression unit 56 inputs a second mode switching signal for switching from the normal mode M0 to the second restriction mode M2 to the CPU 46 of the light source device 14.
 温度抑制部56は、挿入部16が体腔に挿入されていないと判定された後、すなわち第2制限モードM2中に、挿入部16が挿入状態S2であると判定された時に、第2制限モードM2を解除して通常モードM0に復帰する解除信号を、光源装置14のCPU46に入力する。 After it is determined that the insertion portion 16 is not inserted into the body cavity, that is, when it is determined that the insertion portion 16 is in the insertion state S2 during the second restriction mode M2, the temperature suppression unit 56 performs the second restriction mode. A release signal for releasing M2 and returning to the normal mode M0 is input to the CPU 46 of the light source device 14.
 光源装置14のCPU46は、プロセッサ装置13から第1モード切替え信号が入力されると、通常モードM0から第1制限モードM1に切り替えて、第2モード切替え信号が入力されると、通常モードM0から第2制限モードM2に切り替える。また、第2制限モードM2において、プロセッサ装置13から解除信号が入力されると、第2制限モードM2を解除して通常モードM0に戻る。一方、第1制限モードM1については、挿入部16が挿入されている間は、手動操作によって解除できないようになっている。各モードM0~M2は、モニタランプ21の点灯又は点滅によって報知される。 The CPU 46 of the light source device 14 switches from the normal mode M0 to the first limit mode M1 when the first mode switching signal is input from the processor device 13, and from the normal mode M0 when the second mode switching signal is input. Switch to the second restriction mode M2. In addition, in the second restriction mode M2, when a release signal is input from the processor device 13, the second restriction mode M2 is released and the normal mode M0 is restored. On the other hand, the first restriction mode M1 cannot be released by manual operation while the insertion portion 16 is inserted. Each mode M0 to M2 is notified by lighting or blinking of the monitor lamp 21.
 図5のグラフを用いて、通常モードM0、第1制限モードM1、及び第2制限モードM2の間で遷移したときの出射光Loutの光量の上限値Lxと温度差分ΔTの変化の例を説明する。図5(B)のモード遷移例は、次のようなシーケンスを想定したものである。まず、時刻t0[s]において、電子内視鏡12が接続された光源装置14の電源がオンにされる(Uon)と、光源装置14が通常モードM0(光量の上限値LxはL0[lm]である。)で起動する。次に、電子内視鏡12が待機中(Uout)のまま所定時間(例えば30s)が経過すると、挿入部16が体腔に挿入されていない待機状態S1と判定されて、時刻t1[s]において第2制限モードM2(光量の上限値LxはL2[lm]である。)に移行する。時刻t2[s]において内視鏡による診察が開始されて、挿入部16が体腔に挿入された挿入状態S2と判定される(Uinsert)と、第2制限モードM2から通常モードM0に復帰する。そして、時刻t3[s]において、温度差分ΔT[℃]が閾値T1[℃]を超えると、通常モードM0から第1制限モードM1(光量の上限値LxはL1[lm]である。)に移行する。 With reference to the graph of FIG. 5, the normal mode M0, first limitation mode M1, and an example of a change in the upper limit value Lx and the temperature difference ΔT of the light quantity of the outgoing light L out when the transition between the second limitation mode M2 explain. The mode transition example in FIG. 5B assumes the following sequence. First, at time t0 [s], when the power source of the light source device 14 to which the electronic endoscope 12 is connected is turned on (U on ), the light source device 14 is in the normal mode M0 (the upper limit Lx of the light amount is L0 [ lm])). Next, when a predetermined time (for example, 30 s) elapses while the electronic endoscope 12 is on standby (U out ), it is determined that the insertion portion 16 is not inserted into the body cavity, and the time t1 [s]. The process proceeds to the second restriction mode M2 (the upper limit value Lx of the light amount is L2 [lm]). When examination by an endoscope is started at time t2 [s] and it is determined that the insertion portion 16 is in the insertion state S2 inserted into the body cavity (U insert ), the normal mode M0 is restored from the second restriction mode M2. . Then, at time t3 [s], when the temperature difference ΔT [° C.] exceeds the threshold T1 [° C.], the normal mode M0 changes to the first limit mode M1 (the upper limit Lx of the light amount is L1 [lm]). Transition.
 図5(B)に示すように、上述したシーケンスの各モードにおいて、出射光Loutの光量がそれぞれ上限値L0[lm]、L1[lm]、L2[lm]、すなわち、各モードの最大光量で照射され続けた場合には、温度差分ΔT[℃]は、図5(A)に示すように推移する。すなわち、起動時は通常モードM0なので、光源47が通常モードM0の最大光量(上限値L0[lm])で照射し続けると、温度差分ΔT[℃]は単調増加する。そして、この状態が継続すると、温度差分ΔTは、二点鎖線Lk1のように、電子内視鏡システム11が正常に機能する限界値T3を超えてしまう。そこで、温度差分ΔTの増加を抑制する温度制御を行う。 As shown in FIG. 5B, in each mode of the above-described sequence, the light amount of the emitted light L out is the upper limit value L0 [lm], L1 [lm], L2 [lm], that is, the maximum light amount in each mode. When the irradiation continues, the temperature difference ΔT [° C.] changes as shown in FIG. That is, since it is the normal mode M0 at the time of activation, if the light source 47 continues to irradiate with the maximum light amount (upper limit value L0 [lm]) of the normal mode M0, the temperature difference ΔT [° C.] increases monotonously. When this state continues, the temperature difference ΔT exceeds the limit value T3 at which the electronic endoscope system 11 functions normally, as indicated by the two-dot chain line Lk1. Therefore, temperature control that suppresses an increase in the temperature difference ΔT is performed.
 時刻t1[s]において、光源装置14が第2制限モードM2に移行すると、PWM値の上限値Pxは、通常モードM0の上限値P0から第2制限モードM2の上限値P2に低下する。このため、光量の上限値LxはL0[lm]からL2[lm]に低下する。第2制限モードM2においては、通常モードM0と比べて最大光量(上限値L2[lm])が低いので、その最大光量(上限値L2[lm])で照射し続けても、温度上昇の勾配が緩やかになり、温度差分ΔT[℃]はT5[℃]に収束する。 When the light source device 14 shifts to the second limit mode M2 at time t1 [s], the upper limit value Px of the PWM value decreases from the upper limit value P0 of the normal mode M0 to the upper limit value P2 of the second limit mode M2. For this reason, the upper limit Lx of the amount of light decreases from L0 [lm] to L2 [lm]. In the second restriction mode M2, the maximum light amount (upper limit value L2 [lm]) is lower than that in the normal mode M0. Therefore, even if irradiation is continued at the maximum light amount (upper limit value L2 [lm]), the temperature rise gradient The temperature difference ΔT [° C.] converges to T5 [° C.].
 時刻t2[s]において、挿入部16が体腔に挿入される(Uinsert)と、入射窓28が設けられている先端16aの近傍に観察部位が存在することとなる。このため、挿入部16が光量の上限値LxがL2のまま待機状態S1から挿入状態S2へ遷移すると、測光値Lは光量閾値を超える。ここで、光量閾値は、挿入部16が待機状態S1であり、光量の上限値LxがL2であるときの測光値Lである。この結果、必要光量は、通常モードM0の上限値Lx、すなわちL0未満となる。こうして、挿入判定部54は、挿入部16が体腔に挿入された挿入状態S2であると判定し、光源装置14に解除信号を入力する。CPU46は、第2制限モードM2を解除して通常モードM0に戻す。通常モードM0に戻ると、光量の上限値LxがL2[lm]からL0[lm]に上がる。通常モードM0において最大光量(上限値L0[lm])で照射し続けた場合、温度差分ΔT[℃]は、第2制限モードM2における収束値であるT5[℃]を超えて単調増加する。そして、この状態が継続すると、二点鎖線Lk2のように、限界値T3を超えてしまう。そこで、時刻t3[s]において、温度差分ΔT[℃]が閾値T1[℃]を超えると、通常モードM0から第1制限モードM1に移行する。これにより、光量の上限値LxがL0[lm]からL1[lm]に下がる。光量の上限値LxがL1[lm]に下がると、その最大光量(上限値L1[lm])で照射し続けても、温度上昇の勾配が緩やかになり、温度差分ΔT[℃]はT2[℃]に収束する。 When the insertion section 16 is inserted into the body cavity at time t2 [s] (U insert ), an observation site is present in the vicinity of the distal end 16a where the incident window 28 is provided. Therefore, when the insertion portion 16 is an upper limit value Lx of the light amount is changed from the left standby state S1 of L2 to the insertion state S2, the photometric value L M exceeds the light amount threshold. Here, the light amount threshold, the insertion portion 16 is in a standby state S1, a photometric value L M when the upper limit value Lx of the light amount is L2. As a result, the necessary light quantity becomes the upper limit Lx of the normal mode M0, that is, less than L0. Thus, the insertion determination unit 54 determines that the insertion unit 16 is in the insertion state S2 inserted into the body cavity, and inputs a release signal to the light source device 14. The CPU 46 releases the second restriction mode M2 and returns to the normal mode M0. When returning to the normal mode M0, the upper limit Lx of the light amount increases from L2 [lm] to L0 [lm]. When irradiation is continued with the maximum light amount (upper limit L0 [lm]) in the normal mode M0, the temperature difference ΔT [° C.] increases monotonously beyond the convergence value T5 [° C.] in the second limit mode M2. If this state continues, the limit value T3 is exceeded as indicated by a two-dot chain line Lk2. Therefore, when the temperature difference ΔT [° C.] exceeds the threshold T1 [° C.] at time t3 [s], the normal mode M0 is shifted to the first limit mode M1. As a result, the upper limit value Lx of the light amount decreases from L0 [lm] to L1 [lm]. When the upper limit value Lx of the light quantity decreases to L1 [lm], even if irradiation is continued with the maximum light quantity (upper limit value L1 [lm]), the gradient of temperature rise becomes gentle, and the temperature difference ΔT [° C.] becomes T2 [ [° C].
 第1制限モードM1における温度差分ΔT[℃]の収束値であるT2[℃]は、電子内視鏡システム11が正常に機能する限界値T3[℃]以下である必要がある。収束値T2[℃]は第1制限モードM1の上限値L1[lm]によって決まるので、上限値L1[lm]は、収束値T2[℃]が限界値T3[℃]を超えないように設定される。検知の誤差があっても、温度差分ΔT[℃]が限界値T3[℃]を超えることがないように、T2[℃]が、T3[℃]から所定の温度だけ離れるように、上限値L1[lm]を設定することが好ましい。 The convergence value T2 [° C.] of the temperature difference ΔT [° C.] in the first limit mode M1 needs to be equal to or less than the limit value T3 [° C.] at which the electronic endoscope system 11 functions normally. Since the convergence value T2 [° C.] is determined by the upper limit value L1 [lm] of the first limit mode M1, the upper limit value L1 [lm] is set so that the convergence value T2 [° C.] does not exceed the limit value T3 [° C.]. Is done. Even if there is a detection error, the upper limit value is set so that T2 [° C] is separated from T3 [° C] by a predetermined temperature so that the temperature difference ΔT [° C] does not exceed the limit value T3 [° C]. It is preferable to set L1 [lm].
 また、閾値T1[℃]は、T2[℃]から所定の温度だけ離す必要がある。このようにしないと、温度判定部55が、温度差分ΔT[℃]が閾値T1[℃]を超えたと判定してから、光源装置14が第1制限モードM1へ切り替わるまでの時間的な遅れによって、温度差分ΔT[℃]が一旦T2[℃]を超えてしまうおそれがあるからである。具体的な値としては、T3が20℃の場合、T2は15℃、T1は13℃と設定される。 Also, the threshold value T1 [° C.] needs to be separated from T2 [° C.] by a predetermined temperature. Otherwise, the temperature determination unit 55 determines that the temperature difference ΔT [° C.] has exceeded the threshold value T1 [° C.] until the light source device 14 is switched to the first limit mode M1. This is because the temperature difference ΔT [° C.] may once exceed T2 [° C.]. As specific values, when T3 is 20 ° C., T2 is set to 15 ° C. and T1 is set to 13 ° C.
 次に、上記構成の作用について図6のフローチャートを参照しながら説明する。電子内視鏡システム11による内視鏡検査の準備作業として、電子内視鏡12は、プロセッサ装置13及び光源装置14に接続され、電子内視鏡システム11の電源がオンにされる(ステップ(以下、Sと略す。)11)。光源装置14は、通常モードM0(光量の上限値LxはL0[lm])で起動する。 Next, the operation of the above configuration will be described with reference to the flowchart of FIG. As preparation work for endoscopy by the electronic endoscope system 11, the electronic endoscope 12 is connected to the processor device 13 and the light source device 14, and the power of the electronic endoscope system 11 is turned on (step ( Hereinafter, abbreviated as S.) 11). The light source device 14 is activated in the normal mode M0 (the upper limit value Lx of the light amount is L0 [lm]).
 プロセッサ装置13には、操作部42から患者に関する情報(患者名、患者IDなど)等が入力される。準備作業の間、電子内視鏡12は、プロセッサ装置13や光源装置14が収容されるカートのハンガーに掛けられて待機させられている。光源装置14の電源がオンにされて光源47が点灯しているので、待機中においても、電子内視鏡12は先端16aから出射光Loutが出射されている。また、電源がオンにされると、挿入判定部54が判定処理を開始する(S12)。 Information about the patient (patient name, patient ID, etc.) is input to the processor device 13 from the operation unit 42. During the preparatory work, the electronic endoscope 12 is placed on a hanger of a cart in which the processor device 13 and the light source device 14 are accommodated and is on standby. Since the light source device 14 is turned on and the light source 47 is lit, the electronic endoscope 12 emits the emitted light L out from the distal end 16a even during standby. When the power is turned on, the insertion determination unit 54 starts determination processing (S12).
 待機中では、先端16aの近傍に観察部位が存在しない。このため、待機中における入射光Linのほとんどは、先端16aから遠く離れた物体(床など)からの反射光であるため、測光値Lは基準値Lよりも小さい。光量制御部53は、光源装置14に対して出射光Loutの光量の増加を要求する光量制御信号を送る。CPU46は、光量制御信号に応じたPWM値を算出し、モータドライバ51を通じて絞り調節機構49を制御して、出射光Loutの光量を上げる。しかしながら、待機中では、出射光Loutの光量が上限値L0[lm]でもCCD30に入射する入射光Linの光量、すなわち測光値Lが基準値Lに達しない。そのため、光量制御部53は、CPU46に対して光量の増加を要求しつづけて、CPU46は、PWM値の上限値P0の出力を継続する。このPWM値は挿入判定部54に入力される。挿入判定部54は、PWM値を監視し、PWM値の上限値LxがP0である状態が所定時間(例えば30s)継続すると、挿入部16が挿入されていない待機状態S1であると判定する(S12でNO)。 During standby, there is no observation site near the tip 16a. For this reason, most of the incident light L in during standby is reflected light from an object (such as a floor) far away from the tip 16a, and thus the photometric value L M is smaller than the reference value L S. Light quantity control unit 53 sends a light amount control signal for requesting an increase in the quantity of emitted light L out with respect to the light source device 14. The CPU 46 calculates a PWM value corresponding to the light amount control signal, and controls the aperture adjustment mechanism 49 through the motor driver 51 to increase the light amount of the emitted light L out . However, the waiting, the light quantity of the incident light L in the light quantity of the outgoing light L out is incident on the upper limit value L0 [lm] Any CCD 30, i.e. photometric value L M does not reach the reference value L S. Therefore, the light amount control unit 53 continues to request the CPU 46 to increase the light amount, and the CPU 46 continues to output the upper limit value P0 of the PWM value. This PWM value is input to the insertion determination unit 54. The insertion determination unit 54 monitors the PWM value, and when the state where the upper limit value Lx of the PWM value is P0 continues for a predetermined time (for example, 30 seconds), the insertion determination unit 54 determines that the standby state S1 in which the insertion unit 16 is not inserted (S1). NO at S12).
 挿入判定部54により待機状態S1であると判定されると、温度抑制部56は、通常モードM0から第2制限モードM2へ切り替える第2モード切替え信号をCPU46に送信する。CPU46は、第2モード切替え信号を受信すると、PWM値の上限値PxをP2に変更して、出射光Loutの光量の上限値LxをL2[lm]に下げる(S13)。このため、図5(A)に示すように、先端16aの温度は、T5[℃]で収束し、温度上昇が抑制される。また、無駄な発熱も抑えられる。 When the insertion determination unit 54 determines that the standby state S1 is in effect, the temperature suppression unit 56 transmits a second mode switching signal for switching from the normal mode M0 to the second restriction mode M2 to the CPU 46. CPU46 receives the second mode switching signal, the upper limit value Px of the PWM value is changed to P2, lower the upper limit value Lx of the light quantity of the outgoing light L out to L2 [lm] (S13). For this reason, as shown to FIG. 5 (A), the temperature of the front-end | tip 16a converges by T5 [degreeC], and a temperature rise is suppressed. Moreover, useless heat generation can be suppressed.
 検査が開始されると、電子内視鏡12がハンガーから取り外されて、挿入部16が体腔に挿入される。挿入開始時において、先端16aの温度はT5[℃]に抑えられているので、被検者に与える負担も少ない。光源装置14から供給される出射光Loutが体腔に照射され、CCD30による画像がモニタ15に表示される。 When the examination is started, the electronic endoscope 12 is removed from the hanger, and the insertion portion 16 is inserted into the body cavity. Since the temperature of the tip 16a is suppressed to T5 [° C.] at the start of insertion, the burden on the subject is small. The emitted light L out supplied from the light source device 14 is irradiated to the body cavity, and an image by the CCD 30 is displayed on the monitor 15.
 挿入部16が体腔に挿入されると、先端16aの近傍に観察部位(管道内壁など)が存在するため、出射光Loutの光量が一定でも、CCD30に入射する入射光Linの光量が増大する。これにより、光量制御部53がCPU46に対して要求する必要光量が、通常モードM0の上限値L0[lm]未満となる。挿入判定部54は、光量制御部53がCPU46に対して要求する必要光量を監視して(S14)、必要光量が上限値L0[lm]未満となった場合に、挿入部16が挿入されたと判定する(S14でYES)。 When the insertion portion 16 is inserted into the body cavity, due to the presence of the observation portion (such as a tube passage inner wall) is in the vicinity of the tip 16a, with even light intensity of the outgoing light L out is constant, increase amount of the incident light L in incident to CCD30 To do. As a result, the required light amount requested by the light amount control unit 53 to the CPU 46 is less than the upper limit value L0 [lm] of the normal mode M0. The insertion determination unit 54 monitors the necessary light amount requested by the light amount control unit 53 to the CPU 46 (S14), and when the necessary light amount becomes less than the upper limit L0 [lm], the insertion unit 16 is inserted. Determine (YES in S14).
 挿入部16が体腔に挿入された挿入状態S2であると判定されると、温度抑制部56は、光源装置14のCPU46に解除信号を入力する。解除信号が入力されたことを契機に、CPU46が、第2制限モードM2を解除して通常モードM0に戻し、光量の上限値LxをL2[lm]からL0[lm]に上げる(S15)。 If it is determined that the insertion unit 16 is in the insertion state S2 inserted into the body cavity, the temperature suppression unit 56 inputs a release signal to the CPU 46 of the light source device 14. When the cancel signal is input, the CPU 46 cancels the second limit mode M2 and returns to the normal mode M0, and increases the upper limit Lx of the light amount from L2 [lm] to L0 [lm] (S15).
 挿入部16が挿入状態S2であると判定(S12でYES、S14でYES)した後、温度判定部55が、温度差分ΔT[℃]が閾値T1[℃]を超えたか否かを逐次判定する(S16)。温度差分ΔT[℃]が閾値T1[℃]を超えたと判定した時(S16でYES)に、光源装置14のCPU46に第1モード切替え信号が入力される。第1モード切替え信号が入力されたことを契機に、CPU46が、通常モードM0から第1制限モードM1に切り替え、光量の上限値LxをL0[lm]からL1[lm]に下げる(S17)。 After determining that the insertion unit 16 is in the insertion state S2 (YES in S12, YES in S14), the temperature determination unit 55 sequentially determines whether or not the temperature difference ΔT [° C.] exceeds the threshold value T1 [° C.]. (S16). When it is determined that the temperature difference ΔT [° C.] exceeds the threshold value T1 [° C.] (YES in S16), the first mode switching signal is input to the CPU 46 of the light source device 14. In response to the input of the first mode switching signal, the CPU 46 switches from the normal mode M0 to the first limiting mode M1, and lowers the light amount upper limit Lx from L0 [lm] to L1 [lm] (S17).
 第1実施形態では、光量の上限値がL0[lm]の通常モードM0で光量を調節し、挿入部16が体腔に挿入されていない場合に、通常モードM0から、光量の上限値LxがL0及びL1よりも小さいL2[lm]の第2制限モードM2へ遷移するから、挿入部16を体腔に挿入する準備を行っている間、挿入部16の先端16aにおける温度上昇を抑制することができる。 In the first embodiment, when the light amount is adjusted in the normal mode M0 where the upper limit value of the light amount is L0 [lm] and the insertion portion 16 is not inserted into the body cavity, the upper limit value Lx of the light amount is L0 from the normal mode M0. Since the transition is made to the second restriction mode M2 of L2 [lm] smaller than L1, the temperature rise at the distal end 16a of the insertion portion 16 can be suppressed while preparing to insert the insertion portion 16 into the body cavity. .
 また、第2制限モードM2で光量を調節している場合において、挿入部16が体腔に挿入されたと判定した時に、自動的に第2制限モードM2を解除して通常モードM0へ遷移することにより光量を調節するから、第2制限モードM2を手動で解除する必要がなく、簡便である。また、自動解除機能を持たない場合、術者が解除し忘れてモニタ15に表示される画像が暗いままとなり、故障や不具合が発生したと誤認させるおそれがあるが、自動解除機能を備えたことで、こうした不都合はない。 Further, when the light quantity is adjusted in the second restriction mode M2, when it is determined that the insertion portion 16 has been inserted into the body cavity, the second restriction mode M2 is automatically canceled and the normal mode M0 is entered. Since the amount of light is adjusted, there is no need to manually release the second restriction mode M2, and this is convenient. If the operator does not have an automatic release function, the operator may forget to release it and the image displayed on the monitor 15 will remain dark, which may cause a misunderstanding that a failure or malfunction has occurred. There is no such inconvenience.
 さらに、挿入部16が体腔に挿入されている場合に、挿入部16の先端16aにおける温度差分ΔT[℃]が、予め設定されている閾値T1[℃]を超えた時に、通常モードM0から第1制限モードM1に切り替え、光量の上限値LxをL0[lm]からL1[lm]に下げるから、挿入部16の先端16aが限界値T3[℃]になることが防止される。また、第1制限モードM1における上限値L1[lm]は、第2制限モードM2の上限値L2[lm]よりも、通常モードM0の上限値L0[lm]に近い値である。そのため、観察中に第1制限モードM1に移行しても、画像の明るさが比較的通常モードM0の明るさに近く、極端に暗くなることはないので、術者に不安感を与えることはない。 Furthermore, when the insertion portion 16 is inserted into the body cavity, the temperature difference ΔT [° C.] at the distal end 16a of the insertion portion 16 exceeds the preset threshold value T1 [° C.] from the normal mode M0. Switching to the 1 limit mode M1 and lowering the upper limit value Lx of the light amount from L0 [lm] to L1 [lm] prevents the distal end 16a of the insertion portion 16 from reaching the limit value T3 [° C.]. The upper limit value L1 [lm] in the first limit mode M1 is closer to the upper limit value L0 [lm] in the normal mode M0 than the upper limit value L2 [lm] in the second limit mode M2. Therefore, even if the first restriction mode M1 is shifted during observation, the brightness of the image is relatively close to that of the normal mode M0 and does not become extremely dark. Absent.
[第2実施形態]
 上記第1実施形態の電子内視鏡システム11では、通常モードM0から第1制限モードM1に切り替わる際、光量の上限値LxがL0[lm]からL1[lm]に一段階で下がる(図5(B)参照)。このため、通常モードM0において最大光量で照射していた場合に第1制限モードM1に切り替わると、光量がL0[lm]からL1[lm]に突然下がる。光量が突然下がると、モニタ15に表示される画像は急に暗くなる。これにより、術者が故障や不具合が発生したと誤認するおそれがある。
[Second Embodiment]
In the electronic endoscope system 11 of the first embodiment, when the normal mode M0 is switched to the first limiting mode M1, the upper limit value Lx of the light amount is lowered in one step from L0 [lm] to L1 [lm] (FIG. 5). (See (B)). For this reason, when the irradiation is performed with the maximum light amount in the normal mode M0, when the mode is switched to the first restriction mode M1, the light amount suddenly decreases from L0 [lm] to L1 [lm]. When the amount of light suddenly decreases, the image displayed on the monitor 15 suddenly becomes dark. As a result, the surgeon may misunderstand that a failure or malfunction has occurred.
 そこで、次に説明する第2実施形態では、モニタ15に表示される画像が急に暗くなることを防止している。なお、上記第1実施形態、及びこれ以降に示す各実施形態で採用した構成は、可能な範囲において相互で適用されるものとする。本第2実施形態において、上記第1実施形態と同様の構成、作用、及び効果についての説明は省略する。また、第3実施形態以降の各実施形態では、他の実施形態と異なる点だけを説明する。 Therefore, in the second embodiment described below, the image displayed on the monitor 15 is prevented from suddenly becoming dark. In addition, the structure employ | adopted by the said 1st Embodiment and each embodiment shown after this shall be applied mutually in the possible range. In the second embodiment, the description of the same configuration, operation, and effect as in the first embodiment is omitted. Moreover, in each embodiment after 3rd Embodiment, only a different point from other embodiment is demonstrated.
 第2実施形態において、温度判定部55は、温度差分ΔT[℃]が閾値T1[℃]を超えた時から、温度差分ΔT[℃]を光源装置14のCPU46に逐次入力する。 In the second embodiment, the temperature determination unit 55 sequentially inputs the temperature difference ΔT [° C.] to the CPU 46 of the light source device 14 when the temperature difference ΔT [° C.] exceeds the threshold T1 [° C.].
 図7A及び図7Bに示すように、CPU46は、温度差分ΔT[℃]が閾値T1[℃]を超え、プロセッサ装置13から第1モード切替え信号が入力されたことを契機に、温度差分ΔT[℃]の増加とともにPWM値の上限値(Px)を最大値であるP0からP1に減少する際に、連続的あるいは段階的に徐々に減少させる。なお、温度差分ΔT[℃]の増加に関わらず、CPU46は、第1モード切替え信号が入力されたことを契機に、PWM値の上限値(Px)を最大値であるP0からP1へ連続的あるいは段階的に徐々に減少させてもよい。光量の上限値(Lx)は、所定の時間Δt[s]をかけてL0[lm]からL1[lm]に緩やかに下がる。モニタ15に表示される画像は、所定の時間Δt[s]をかけて徐々に暗くなる。 As shown in FIGS. 7A and 7B, the CPU 46 receives the temperature difference ΔT [°] when the temperature difference ΔT [° C.] exceeds the threshold T1 [° C.] and the first mode switching signal is input from the processor device 13. When the upper limit value (Px) of the PWM value is decreased from the maximum value P0 to P1 with the increase in [° C.], it is gradually decreased in a continuous or stepwise manner. Regardless of the increase in the temperature difference ΔT [° C.], the CPU 46 continuously increases the PWM upper limit value (Px) from the maximum value P0 to P1 when the first mode switching signal is input. Or you may reduce gradually in steps. The upper limit value (Lx) of the light amount gradually decreases from L0 [lm] to L1 [lm] over a predetermined time Δt [s]. The image displayed on the monitor 15 is gradually darkened over a predetermined time Δt [s].
 以上説明したように、第2実施形態では、光量の上限値をL0[lm]からL1[lm]に緩やかに下げるから、モニタ15に表示される画像が急に暗くなることがなく、故障や不具合が発生したと誤認させることを防止できる。 As described above, in the second embodiment, since the upper limit value of the light amount is gently lowered from L0 [lm] to L1 [lm], the image displayed on the monitor 15 does not suddenly become dark, It is possible to prevent misidentification that a defect has occurred.
[第3実施形態]
 次に説明する第3実施形態では、先端16aに温度センサを備えて温度を直接検知する代わりに、光量制御の履歴情報に基づいて、温度を推定する。具体的には、光量制御における光量変化の推移を表す、PWM値の履歴情報に基づいて演算により温度差分ΔT[℃]を求めることによって、温度を間接的に検知する。
[Third Embodiment]
In the third embodiment described below, the temperature is estimated based on the history information of the light amount control, instead of directly detecting the temperature by providing the tip 16a with a temperature sensor. Specifically, the temperature is indirectly detected by obtaining the temperature difference ΔT [° C.] by calculation based on the history information of the PWM value representing the transition of the light amount change in the light amount control.
 温度判定部55は、光源装置14から入力されたPWM値の履歴情報を用いた演算を行い、仮想的に温度差分ΔT[℃]を求める。温度差分ΔT[℃]は、挿入部16の先端16aに加えられた熱量をQ[mJ]とし、挿入部16の先端16aにおける熱容量をC[mJ/℃]とすると、ΔT=Q/C・・・(式1)と示される。熱容量C[mJ/℃]は電子内視鏡12固有の値であり、例えば800mJ/℃である。 The temperature determination unit 55 performs a calculation using the history information of the PWM value input from the light source device 14 and virtually calculates the temperature difference ΔT [° C.]. The temperature difference ΔT [° C.] is expressed as follows: ΔT = Q / C · where the amount of heat applied to the tip 16a of the insertion portion 16 is Q [mJ] and the heat capacity at the tip 16a of the insertion portion 16 is C [mJ / ° C.]. .. (Equation 1) The heat capacity C [mJ / ° C.] is a value inherent to the electronic endoscope 12 and is, for example, 800 mJ / ° C.
 現時点までの温度差分ΔT[℃]は、dt[s]時間前までの上昇値をΔTn-1[℃]とし、直前のdt[s]時間で挿入部16の先端16aに加えられた熱量をdQ[mJ]とすると、ΔT=ΔTn-1+dQ/C・・・(式2)と示される。時間dt[s]は、例えば1.0sとする。温度差分ΔT[℃]の初期値は、0.0℃である。 The temperature difference ΔT n [° C.] up to the present time is added to the tip 16a of the insertion portion 16 at the immediately preceding dt [s] time, with the rising value until dt [s] time being ΔT n-1 [° C.]. When the heat quantity is dQ [mJ], ΔT n = ΔT n-1 + dQ / C (Expression 2). The time dt [s] is, for example, 1.0 s. The initial value of the temperature difference ΔT [° C.] is 0.0 ° C.
 熱量dQ[mJ]は、光源装置14から供給された光による単位時間当たりの発熱量をq[mW(=mJ/s)]とし、CCD30からの単位時間当たりの発熱量をsq[mW]とし、挿入部16の先端16aにおける熱抵抗をR[℃/mW]とすると、dQ=(q+sq)×dt-ΔTn-1×dt/R・・・(式3)のように、発熱量と放熱量とで示される。 The calorific value dQ [mJ] is defined as q [mW (= mJ / s)] as the calorific value per unit time due to the light supplied from the light source device 14, and sq [mW] as the calorific value per unit time from the CCD 30. If the thermal resistance at the distal end 16a of the insertion portion 16 is R [° C./mW], the calorific value is expressed as follows: dQ = (q + sq) × dt−ΔT n−1 × dt / R (Equation 3) It is indicated by heat dissipation.
 熱抵抗R[℃/mW]は電子内視鏡12固有の値であり、例えば0.2℃/mWである。発熱量q[mW]は、(光量を定めるPWM値)×(比例定数kq)と表される。比例定数kqは、電子内視鏡12及び光源装置14固有の値である。PWM値は、計算精度を高めるために、時間dt[s]をn分割(例えば、10分割)した各時刻における値の平均値を用いる。発熱量sq[mW]はCCD固有の値であり、例えば100mWである。 The thermal resistance R [° C./mW] is a value inherent to the electronic endoscope 12 and is, for example, 0.2 ° C./mW. The calorific value q [mW] is expressed as (PWM value that determines the amount of light) × (proportional constant kq). The proportionality constant kq is a value unique to the electronic endoscope 12 and the light source device 14. For the PWM value, an average value of values at each time obtained by dividing the time dt [s] into n (for example, 10) is used in order to improve calculation accuracy. The calorific value sq [mW] is a value unique to the CCD, for example, 100 mW.
 上記式3を上記式2に代入すると、現時点までの温度差分ΔT[℃]は、ΔT=ΔTn-1+(q+sq)×dt/C-ΔTn-1×dt/(C×R)・・・(式4)と示される。温度判定部55は、上記式4を用い、現時点までの温度差分ΔT[℃]を求める。すなわち、図8に示すように、温度判定部55は、dt[s]時間前までの温度差分ΔTn-1[℃]に対し、ΔTn-1[℃]の関数で示される放熱温度を減ずるとともに、光源装置14から供給された光による単位時間当たりの発熱量q[mW]の関数で示される発熱温度を加えることで、現時点までの温度差分ΔT[℃]を求める。 Substituting Equation 3 into Equation 2 above, the temperature difference ΔT n [° C.] up to the present time can be expressed as ΔT n = ΔT n-1 + (q + sq) × dt / C−ΔT n−1 × dt / (C × R ) (Expression 4). The temperature determination unit 55 obtains the temperature difference ΔT n [° C.] up to the present time using the above equation 4. That is, as shown in FIG. 8, the temperature determining unit 55, with respect to dt [s] Temperature difference ΔT n-1 [℃] up to the time before, the heat radiation temperature represented by a function of ΔT n-1 [℃] The temperature difference ΔT n [° C.] up to the present time is determined by adding the heat generation temperature indicated by the function of the heat generation amount q [mW] per unit time due to the light supplied from the light source device 14.
 なお、電子内視鏡12の機種に依存する各パラメータC[mJ/℃]、sq[mW]、R[℃/mW]、kqは、工場出荷時に、電子内視鏡12に内蔵の不揮発性メモリ(例えば、EEPROM)に予め記憶されており、電子内視鏡システム11の電源がオンにされた時に自動的に取得されて演算に用いられる。または、機種固有のIDに紐付けられて、プロセッサ装置13に内蔵の不揮発性メモリに予め記憶されている。電子内視鏡12に内蔵の不揮発性メモリには機種固有のIDが記憶されており、電子内視鏡12の不揮発性メモリから読み出されたIDに対応する各パラメータが演算に用いられる。もしくは、機種固有のIDに紐付けられて、ネットワーク等で接続するサーバに予め記憶されている。この場合、電子内視鏡12の不揮発性メモリから読み出されたIDに対応する各パラメータがサーバから取得されて演算に用いられる。 The parameters C [mJ / ° C.], sq [mW], R [° C./mW], and kq depending on the model of the electronic endoscope 12 are non-volatiles built into the electronic endoscope 12 at the time of factory shipment. It is stored in advance in a memory (for example, an EEPROM), and is automatically acquired when the power of the electronic endoscope system 11 is turned on and used for calculation. Alternatively, it is associated with a model-specific ID and stored in advance in a nonvolatile memory built in the processor device 13. A model-specific ID is stored in the nonvolatile memory built in the electronic endoscope 12, and each parameter corresponding to the ID read from the nonvolatile memory of the electronic endoscope 12 is used for calculation. Alternatively, it is associated with a model-specific ID and stored in advance in a server connected via a network or the like. In this case, each parameter corresponding to the ID read from the nonvolatile memory of the electronic endoscope 12 is acquired from the server and used for the calculation.
 温度判定部55は、求めた温度差分ΔT[℃]が、予め設定されている閾値T1[℃]を超えたか否かを判定する。 The temperature determination unit 55 determines whether or not the obtained temperature difference ΔT n [° C.] exceeds a preset threshold T 1 [° C.].
 次に、上記構成の作用について説明する。図9に示すように、S31~S35は、S11~S15と同様である。挿入部16が体腔に挿入されていることを判定して(S32でYES、S34でYES)からは、温度判定部55が、温度差分ΔT[℃]を逐次求める(S36)。そして、温度差分ΔT[℃]が閾値T1[℃]を超えたと判定した時(S37でYES)に、光源装置14のCPU46に第1モード切替え信号が入力される。第1モード切替え信号が入力されたことを契機に、CPU46が、通常モードM0から第1制限モードM1に切り替え、光量の上限値LxをL0[lm]からL1[lm]に下げる(S38)。 Next, the operation of the above configuration will be described. As shown in FIG. 9, S31 to S35 are the same as S11 to S15. After determining that the insertion unit 16 has been inserted into the body cavity (YES in S32, YES in S34), the temperature determination unit 55 sequentially obtains the temperature difference ΔT n [° C.] (S36). Then, when it is determined that the temperature difference ΔT n [° C.] has exceeded the threshold T 1 [° C.] (YES in S 37), the first mode switching signal is input to the CPU 46 of the light source device 14. In response to the input of the first mode switching signal, the CPU 46 switches from the normal mode M0 to the first limit mode M1, and lowers the light amount upper limit Lx from L0 [lm] to L1 [lm] (S38).
 以上説明したように、第3実施形態では、挿入部16の先端16aにおける温度の温度差分ΔT[℃]を仮想的に求めるから、温度センサを備えずに挿入部16の先端16aの温度が限界値T3[℃]を超えることが防止される。 As described above, in the third embodiment, since the temperature difference ΔT [° C.] of the temperature at the distal end 16a of the insertion portion 16 is virtually obtained, the temperature of the distal end 16a of the insertion portion 16 is not limited without a temperature sensor. It is prevented that the value T3 [° C.] is exceeded.
[第4実施形態]
 上記第3実施形態では、挿入部16の先端16aにおける熱容量C[mJ/℃]及び熱抵抗R[℃/mW]等の値を用いることで、温度差分ΔT[℃]をきめ細かく求めたが、次に説明する第4実施形態では、簡易的な演算によって光量L[lm]の積算値[lm・s]を求め、温度差分ΔT[℃]を求めたこととして扱う。
[Fourth Embodiment]
In the third embodiment, the temperature difference ΔT [° C.] is obtained in detail by using values such as the heat capacity C [mJ / ° C.] and the thermal resistance R [° C./mW] at the tip 16a of the insertion portion 16, In the fourth embodiment to be described next, the integrated value [lm · s] of the light amount L [lm] is obtained by a simple calculation, and it is handled that the temperature difference ΔT [° C.] is obtained.
 第4実施形態において、温度判定部55は、光源装置14から入力されたPWM値の履歴情報を用いた演算を行い、所定時間ts[s](例えば、30s)における光源装置14からの光量L[lm]の積算値[lm・s]を求める。光量Lは、(PWM値)×klと表される。比例定数klは、電子内視鏡12及び光源装置14固有の値である。温度判定部55は、PWM値に比例定数klを乗じた値を積算することで、現時点までの光量L[lm]の積算値[lm・s]を求める。温度判定部55は、求めた積算値[lm・s]が、予め設定されている閾値[lm・s]を超えたか否かを判定する。 In the fourth embodiment, the temperature determination unit 55 performs a calculation using the history information of the PWM value input from the light source device 14, and the light amount L from the light source device 14 at a predetermined time ts [s] (for example, 30 s). An integrated value [lm · s] of N [lm] is obtained. The light quantity LN is expressed as (PWM value) × kl. The proportionality constant kl is a value unique to the electronic endoscope 12 and the light source device 14. The temperature determination unit 55 calculates the integrated value [lm · s] of the light amount L N [lm] up to the present time by integrating the PWM value multiplied by the proportionality constant kl. The temperature determination unit 55 determines whether or not the obtained integrated value [lm · s] exceeds a preset threshold value [lm · s].
 温度抑制部56は、温度判定部55で、光量L[lm]の積算値[lm・s]が閾値を超えたと判定された時に、通常モードM0から第1制限モードM1へ切り替える第1モード切替え信号を、光源装置14に入力する。 The temperature suppression unit 56 is a first mode for switching from the normal mode M0 to the first limit mode M1 when the temperature determination unit 55 determines that the integrated value [lm · s] of the light amount L N [lm] exceeds the threshold value. A switching signal is input to the light source device 14.
 図10に示すように、所定時間ts[s]における光量L[lm]の積算値[lm・s](斜線で示す箇所の面積で示される値)が閾値を超えた時に、プロセッサ装置13から光源装置14に第1モード切替え信号が入力される。 As shown in FIG. 10, when the integrated value [lm · s] (value indicated by the hatched area) of the light amount L N [lm] at a predetermined time ts [s] exceeds the threshold value, the processor device 13. The first mode switching signal is input to the light source device 14.
 次に、上記構成の作用について説明する。図11に示すように、S41~S45は、S31~S35と同様である。挿入部16が体腔に挿入されていることを判定して(S42でYES、S44でYES)からは、温度判定部55が、所定時間ts[s]における光源装置14からの光量L[lm]の積算値[lm・s]を逐次求める(S46)。そして、光量L[lm]の積算値[lm・s]が閾値を超えたか否かを判定する(S47)。光量L[lm]の積算値[lm・s]が閾値を超えたと判定された時(S47でYES)に、温度抑制部56から光源装置14のCPU46に第1モード切替え信号が入力される。S48は、S38と同様である。 Next, the operation of the above configuration will be described. As shown in FIG. 11, S41 to S45 are the same as S31 to S35. After determining that the insertion unit 16 has been inserted into the body cavity (YES in S42, YES in S44), the temperature determination unit 55 determines the amount of light L N [lm from the light source device 14 at a predetermined time ts [s]. ] Is sequentially obtained (S46). Then, it is determined whether or not the integrated value [lm · s] of the light amount L N [lm] exceeds a threshold value (S47). When it is determined that the integrated value [lm · s] of the light amount L N [lm] exceeds the threshold (YES in S47), the first mode switching signal is input from the temperature suppression unit 56 to the CPU 46 of the light source device 14. . S48 is the same as S38.
[第5実施形態]
 ところで、光量の履歴情報は、古いものほど、挿入部16の先端16aにおける温度への影響力が小さい。そこで、次に説明する第5実施形態では、古い履歴情報ほど重みを小さくする重み付き演算で、所定時間ts[s]における光量L[lm]の積算値[lm・s]を求めている点で、第4実施形態と異なる。
[Fifth Embodiment]
By the way, the older the history information of the amount of light, the smaller the influence on the temperature at the distal end 16a of the insertion portion 16. Therefore, in the fifth embodiment described below, the integrated value [lm · s] of the light amount L N [lm] at the predetermined time ts [s] is obtained by weighted calculation in which the older history information is made smaller in weight. This is different from the fourth embodiment.
 第5実施形態において、温度判定部55は、PWM値に比例定数klを乗じた値を、古い履歴情報ほど小さな重みを付けて積算することで、現時点までの光量L[lm]の積算値[lm・s]を求める。例えば、所定時間ts[s]を3分割して重み付けを行う場合、新しい履歴情報から順に、重みとして1.0、0.9、0.8を乗じる。 In the fifth embodiment, the temperature determination unit 55 integrates a value obtained by multiplying the PWM value by a proportional constant kl with a smaller weight added to older history information, thereby integrating the light amount L N [lm] up to the present time. [Lm · s] is obtained. For example, when weighting is performed by dividing the predetermined time ts [s] into three, the weights are multiplied by 1.0, 0.9, and 0.8 sequentially from the new history information.
 図12に示すように、所定時間ts[s]における重み付きの積算値[lm・s](斜線で示す各箇所の面積に、各重みを乗じた値)が閾値を超えたと判定された時に、光源装置14に第1モード切替え信号が入力される。 As shown in FIG. 12, when it is determined that the weighted integrated value [lm · s] (a value obtained by multiplying the area of each portion indicated by hatching by each weight) exceeds a threshold value at a predetermined time ts [s]. The first mode switching signal is input to the light source device 14.
 以上説明したように、第5実施形態では、温度への影響力が小さい、古い履歴情報ほど重みを小さくして、光量L[lm]の積算値[lm・s]を求めているから、挿入部16の先端16aが限界値T3[℃]を超えることをより正確に防止できる。 As described above, in the fifth embodiment, the older history information having a smaller influence on temperature has a smaller weight, and the integrated value [lm · s] of the light amount L N [lm] is obtained. It can prevent more correctly that the front-end | tip 16a of the insertion part 16 exceeds limit value T3 [degreeC].
[第6実施形態]
 上記各実施形態では、ほぼ一定光量で点灯する光源47を備え、絞り調節機構49が、光源47からの光の光路上に配置された絞り開口57の開口量を調節することにより、出射光Loutの光量を制御したが、これに代えて、光源の発光量そのものを制御可能な光源を備えてもよい。
[Sixth Embodiment]
In each of the above embodiments, the light source 47 that is turned on with a substantially constant light amount is provided, and the aperture adjustment mechanism 49 adjusts the aperture amount of the aperture opening 57 disposed on the optical path of the light from the light source 47, thereby outputting the emitted light L. Although the out light quantity is controlled, a light source capable of controlling the light emission amount of the light source itself may be provided instead.
 例えば、図13に示すように、電子内視鏡12の挿入部16の先端16aには、出射光Loutを出射するLED61が内蔵されている。CPU46は、光源ドライバ48を通じてLED61の発光量[lm]を制御する。CPU46は、温度抑制部56からのモード切替え信号に基づいて、光量制御部53による光量制御範囲の上限値を変更する。また、図13においては、挿入部16の先端16aにLED61を配置しているが、光源装置14にLED61を配置して、先端16aまで光ファイバで導光してもよい。さらに、光源としては、励起光を蛍光体に入射して蛍光体を励起させることにより白色光を発光する光源などでもよい。 For example, as shown in FIG. 13, an LED 61 that emits outgoing light L out is built in the distal end 16 a of the insertion portion 16 of the electronic endoscope 12. The CPU 46 controls the light emission amount [lm] of the LED 61 through the light source driver 48. The CPU 46 changes the upper limit value of the light amount control range by the light amount control unit 53 based on the mode switching signal from the temperature suppression unit 56. In FIG. 13, the LED 61 is disposed at the distal end 16a of the insertion portion 16, but the LED 61 may be disposed at the light source device 14 and guided to the distal end 16a by an optical fiber. Further, the light source may be a light source that emits white light by exciting the phosphor by making the excitation light incident on the phosphor.
 なお、上記各実施形態では、第1制限モードM1が不用意に解除されないよう、解除機能を設けていないが、温度差分ΔT[℃]がT2[℃]を超えないことを条件に、すなわち、温度差分ΔT[℃]がT1[℃]以下に下がったことを条件に、解除できるようにしてもよい。 In each of the above embodiments, a release function is not provided so that the first restriction mode M1 is not carelessly released, but on condition that the temperature difference ΔT [° C.] does not exceed T2 [° C.], that is, The temperature difference ΔT [° C.] may be canceled on the condition that the temperature difference ΔT [° C.] has dropped below T1 [° C.].
 但し、温度差分ΔT[℃]がT1[℃]以下に下がった瞬間に第1制限モードM1を解除した場合、その後すぐに温度差分ΔT[℃]がT1[℃]を超え、直ちに第1制限モードM1に戻ってしまうおそれがある。そのため、温度差分ΔT[℃]が、T1[℃]から所定の温度だけ低く設定されている温度[℃]以下に下がったことを解除条件に、第1制限モードM1を解除できるようにしておくことが好ましい。なお、解除条件を満たした時に第1制限モードM1を自動的に解除してもよいし、解除条件に加え適宜設定された付加条件を満たした時に第1制限モードM1を解除できるようにしてもよい。例えば、付加条件を「電子内視鏡12の操作部17に設けられた解除ボタンが押圧されたとき」とすることにより、第1制限モードM1を手動で解除することができる。 However, when the first restriction mode M1 is canceled at the moment when the temperature difference ΔT [° C.] falls below T1 [° C.], the temperature difference ΔT [° C.] immediately exceeds T1 [° C.] immediately after that, and the first restriction immediately follows. There is a risk of returning to the mode M1. For this reason, the first limit mode M1 can be canceled on the condition that the temperature difference ΔT [° C.] has dropped below the preset temperature [° C.] by a predetermined temperature from T1 [° C.]. It is preferable. The first restriction mode M1 may be automatically released when the release condition is satisfied, or the first restriction mode M1 may be released when an appropriately set additional condition is satisfied in addition to the release condition. Good. For example, when the additional condition is “when a release button provided on the operation unit 17 of the electronic endoscope 12 is pressed”, the first restriction mode M1 can be manually released.
 また、上記各実施形態において、第1制限モードM1を解除する構成にした場合、図7Aに示した温度差分ΔT[℃]と光量を定めるPWM値の上限値(Px)との関係を用い、温度差分ΔT[℃]の減少とともにPWM値をP1から最大値であるP0に、連続的あるいは段階的に徐々に増加させてもよい。このような構成によれば、第1制限モードM1の解除による光量の上限値Lxの増大を緩やかにすることが可能となるため、モニタ15に表示される画像が急に明るくなることはない。 In each of the above embodiments, when the first restriction mode M1 is canceled, the relationship between the temperature difference ΔT [° C.] shown in FIG. 7A and the upper limit value (Px) of the PWM value that determines the amount of light is used. As the temperature difference ΔT [° C.] decreases, the PWM value may be gradually increased from P1 to the maximum value P0 continuously or stepwise. According to such a configuration, the increase in the upper limit Lx of the light amount due to the cancellation of the first restriction mode M1 can be moderated, so that the image displayed on the monitor 15 does not suddenly become bright.
 なお、上記各実施形態において、電子内視鏡システム11を構成する電子内視鏡12、プロセッサ装置13、及び光源装置14の種類や、各構成12、13、14の組合せによっては、第1制限モードM1又は第2制限モードM2の機能を停止してもよい。 In each of the above-described embodiments, the first restriction depends on the types of the electronic endoscope 12, the processor device 13, and the light source device 14 that constitute the electronic endoscope system 11, and the combinations of the configurations 12, 13, and 14. The function of the mode M1 or the second restriction mode M2 may be stopped.
 また、上記各実施形態において、挿入判定部54は、光量の上限値Lxが通常モードM0における最大値L0[lm]である状態が、予め設定されている所定時間継続した時に、挿入部16が体腔に挿入されていないと判定し、第2制限モードM2において光量制御部53が要求する必要光量が上限値L0[lm]未満となった場合に、挿入部16が体腔に挿入されていると判定したが、判定方法はこれに限定されない。例えば、体腔の外部(被検体外)から体腔内部へ移動したときの先端の温度変化によって判定してもよいし、画像解析によって判定してもよい。画像解析による方法は、撮像装置が撮像する画像を解析して、それが体腔の画像か体腔の外部の画像かを判定する方法である。あるいは、検査時に使用されるマウスピースの検出によって判定してもよい。この場合、例えば、マウスピースにRFIDタグを埋め込んで、かつ、挿入部16の先端16aにRFIDリーダを設けておき、RFIDタグからの電波の受信の有無で判定する。 Further, in each of the embodiments described above, the insertion determination unit 54 determines that the insertion unit 16 determines that the state in which the upper limit value Lx of the light amount is the maximum value L0 [lm] in the normal mode M0 continues for a preset predetermined time. It is determined that the insertion unit 16 is inserted into the body cavity when it is determined that the insertion unit 16 has not been inserted into the body cavity, and the required light amount requested by the light amount control unit 53 in the second restriction mode M2 is less than the upper limit L0 [lm]. Although it determined, the determination method is not limited to this. For example, the determination may be made based on the temperature change at the tip when moving from the outside of the body cavity (outside the subject) to the inside of the body cavity, or by image analysis. The image analysis method is a method of analyzing an image captured by the imaging apparatus and determining whether the image is a body cavity image or an image outside the body cavity. Or you may determine by the detection of the mouthpiece used at the time of a test | inspection. In this case, for example, an RFID tag is embedded in the mouthpiece, and an RFID reader is provided at the distal end 16a of the insertion portion 16, and the determination is made based on whether radio waves are received from the RFID tag.
 また、上記各実施形態では、挿入部16が体腔に挿入されたと判定したことを契機として、自動的に第2制限モードM2を解除したが、電子内視鏡12の操作部17に解除ボタンを設ける等して、手動操作によって解除できるようにしてもよい。 In each of the above embodiments, the second restriction mode M2 is automatically released when it is determined that the insertion unit 16 has been inserted into the body cavity, but a release button is provided on the operation unit 17 of the electronic endoscope 12. It may be possible to release it by manual operation.
 また、上記各実施形態において、第1制限モードM1に切り替わった場合、通常モードM0時に比べて光量の上限値Lxが下がることで、モニタ15に表示される画像が暗くなり、術者が違和感を覚えるおそれがある。これを是正するため、第1制限モードM1に切り替わった場合に撮像信号を増幅する機能を搭載してもよい。 In each of the above embodiments, when the mode is switched to the first limit mode M1, the upper limit Lx of the light amount is lower than that in the normal mode M0, so that the image displayed on the monitor 15 becomes dark and the operator feels uncomfortable. There is a risk of remembering. In order to correct this, a function of amplifying the imaging signal when switching to the first restriction mode M1 may be installed.
 すなわち、第1制限モードM1に切り替わり、光量の上限値LxがL0[lm]からL1[lm]に制限された場合、光量制限部53が要求する必要光量L[lm]に応じた増幅率AをDSP39に設定し、DSP39で撮像信号を増幅する。この場合、必要光量L[lm]がL1[lm]未満の場合はA=1、必要光量L[lm]がL1[lm]以上L0[lm]未満の場合はA=L/L1、必要光量L[lm]がL0[lm]の場合はA=L0/L1と増幅率を設定することで、通常モードM0でも第1制限モードM1でも、モニタ15に表示される画像の明るさが同等となり、術者にとって違和感の少ない画像が得られる。なお、デジタルの撮像信号を増幅する場合を例に挙げたが、アナログの撮像信号を増幅する構成にしてもよい。 That is, when the mode is switched to the first restriction mode M1 and the upper limit value Lx of the light quantity is restricted from L0 [lm] to L1 [lm], the amplification factor A corresponding to the required light quantity L [lm] requested by the light quantity restriction unit 53 Is set in the DSP 39, and the imaging signal is amplified by the DSP 39. In this case, A = 1 when the required light quantity L [lm] is less than L1 [lm], A = L / L1 when the required light quantity L [lm] is greater than or equal to L1 [lm] and less than L0 [lm], and the required light quantity. When L [lm] is L0 [lm], A = L0 / L1 and an amplification factor are set so that the brightness of the image displayed on the monitor 15 is equal in both the normal mode M0 and the first limit mode M1. An image with less discomfort for the surgeon can be obtained. In addition, although the case where the digital imaging signal was amplified was mentioned as an example, you may make it the structure which amplifies an analog imaging signal.
 また、上記各実施形態において、静止画を記録する際に出射光Loutの光量の上限値制限を一時的に(例えば、フレームレートの1/60sだけ)解除する機能を設けることで、第1制限モードM1の下でも十分な出射光Loutの光量を確保して、高画質の静止画を得る構成にしてもよい。この場合、静止画の記録を術者が指示した際、出射光Loutの光量の上限値制限を一時的に解除した時の温度上昇を一時的に解除し、演算結果が限界値T3[℃]を超える場合は上限値制限を解除しない、すなわち上限値制限を継続する制御を行う構成にしてもよい。 Further, in each of the above embodiments, the first function is provided by temporarily releasing the upper limit of the light amount of the emitted light L out when recording a still image (for example, by 1/60 s of the frame rate). A configuration in which a sufficient amount of the emitted light L out is secured even under the restriction mode M1 to obtain a high-quality still image may be used. In this case, when the surgeon instructs to record a still image, the temperature rise when the upper limit of the light amount of the emitted light Lout is temporarily released is temporarily released, and the calculation result is the limit value T3 [° C. ] May not be released, i.e., control may be performed to continue the upper limit restriction.
 11 電子内視鏡システム
 14 光源装置
 16 挿入部
 16a 先端
 33 温度センサ
 36 CPU
 49 絞り調節機構
 53 光量制御部
 54 挿入判定部
 55 温度判定部
 56 温度抑制部
 61 LED
DESCRIPTION OF SYMBOLS 11 Electronic endoscope system 14 Light source device 16 Insertion part 16a Tip 33 Temperature sensor 36 CPU
49 Aperture adjustment mechanism 53 Light quantity control unit 54 Insertion determination unit 55 Temperature determination unit 56 Temperature suppression unit 61 LED

Claims (13)

  1.  出射光を外部へ放つ出射部、外部からの光が入射する入射部、及び前記入射部に入射した入射光を撮像する撮像部が先端に設けられた挿入部を有する内視鏡と、
     前記入射光の光量を測定し、前記出射光の光量を予め設定された上限値以下の範囲内で制御する光量制御手段と、
     前記先端の温度が予め設定されている温度閾値を超えたか否かを判定する温度判定手段と、
     前記挿入部が体腔に挿入された挿入状態及び前記体腔の外にある待機状態のいずれであるかを判定する挿入判定手段と、
     前記挿入判定手段により前記挿入部が前記挿入状態であると判定され、かつ、前記温度判定手段により前記先端の温度が前記温度閾値を超えたと判定された場合には、前記上限値を起動時に設定される値L0よりも小さい値L1に設定し、前記挿入判定手段により前記挿入部が前記待機状態であると判定された場合には、前記上限値を前記値L1よりも小さい値L2に設定し、前記上限値の設定により前記先端の温度上昇を抑制する温度抑制手段とを備えていることを特徴とする電子内視鏡システム。
    An endoscope having an emission part that emits outgoing light to the outside, an incident part where light from the outside is incident, and an insertion part provided at the tip with an imaging part that images incident light incident on the incident part;
    A light amount control means for measuring the light amount of the incident light and controlling the light amount of the emitted light within a range of a preset upper limit value or less;
    Temperature determination means for determining whether or not the temperature of the tip exceeds a preset temperature threshold;
    Insertion determining means for determining whether the insertion portion is inserted into a body cavity or a standby state outside the body cavity;
    When the insertion determination unit determines that the insertion portion is in the insertion state and the temperature determination unit determines that the temperature of the tip has exceeded the temperature threshold, the upper limit value is set at startup. When the insertion determination unit determines that the insertion unit is in the standby state, the upper limit value is set to a value L2 smaller than the value L1. An electronic endoscope system comprising: temperature suppression means for suppressing temperature rise at the tip by setting the upper limit value.
  2.  前記挿入判定手段は、前記出射光の光量が前記上限値L0で所定時間継続した場合に、前記挿入部が前記待機状態であると判定することを特徴とする請求の範囲第1項に記載の電子内視鏡システム。  The said insertion determination means determines that the said insertion part is the said standby state, when the light quantity of the said emitted light continues for the predetermined time with the said upper limit L0, The range of Claim 1 characterized by the above-mentioned. Electronic endoscope system. *
  3.  前記挿入判定手段は、前記光量制御手段によって測定された前記入射光の光量が予め設定されている光量閾値を超えている場合に、前記挿入部が前記挿入状態であると判定することを特徴とする請求の範囲第1又は2項に記載の電子内視鏡システム。 The insertion determination unit determines that the insertion unit is in the insertion state when the light amount of the incident light measured by the light amount control unit exceeds a preset light amount threshold value. The electronic endoscope system according to claim 1 or 2.
  4.  前記上限値が前記値L2に設定されている場合、前記挿入判定手段によって前記挿入部が前記挿入状態であると判定された時に、前記温度抑制手段は、前記上限値を前記値L2から値L0に自動的に復帰させることを特徴とする請求の範囲第1~3項のいずれかに記載の電子内視鏡システム。 When the upper limit value is set to the value L2, when the insertion determination unit determines that the insertion portion is in the insertion state, the temperature suppression unit changes the upper limit value from the value L2 to the value L0. The electronic endoscope system according to any one of claims 1 to 3, wherein the electronic endoscope system is automatically returned to a normal state.
  5.  前記温度抑制手段は、前記上限値を前記値L1に設定した後は、前記先端の温度が前記温度閾値以下にならない限り、前記上限値を前記値L1から前記値L0に復帰させる解除操作を禁止することを特徴とする請求の範囲第1~4項のいずれかに記載の電子内視鏡システム。 After the upper limit value is set to the value L1, the temperature suppression unit prohibits a release operation for returning the upper limit value from the value L1 to the value L0 unless the temperature at the tip is equal to or lower than the temperature threshold value. The electronic endoscope system according to any one of claims 1 to 4, characterized in that:
  6.  前記温度判定手段は、前記光量制御手段によって制御される前記出射光の光量変化の推移を表す光量制御履歴を用いた演算を行い、その演算結果に基づいて前記先端の温度が前記温度閾値を超えたか否かを判定することを特徴とする請求の範囲第1~5項のいずれかに記載の電子内視鏡システム。 The temperature determination unit performs a calculation using a light amount control history indicating a transition of a light amount change of the emitted light controlled by the light amount control unit, and the temperature of the tip exceeds the temperature threshold based on the calculation result. The electronic endoscope system according to any one of claims 1 to 5, wherein it is determined whether or not it has been.
  7.  前記温度判定手段は、前記光量制御履歴を用いて前記先端の現在の温度の推定値を求め、前記推定値と前記温度閾値を照合することにより判定することを特徴とする請求の範囲第6項に記載の電子内視鏡システム。 7. The temperature determination unit according to claim 6, wherein the temperature determination unit obtains an estimated value of the current temperature of the tip using the light amount control history, and makes a determination by comparing the estimated value with the temperature threshold value. The electronic endoscope system described in 1.
  8.  前記温度判定手段は、前記推定値を一定時間間隔で算出し、算出済みの前回の前記推定値に対して、前記光量制御履歴に基づく前回から今回までの温度上昇分を加算し、前回から今回までの放熱による温度減少分を減算することにより今回の前記推定値を求めることを特徴とする請求の範囲第7項に記載の電子内視鏡システム。 The temperature determination means calculates the estimated value at regular time intervals, adds the temperature increase from the previous time to the current time based on the light amount control history to the calculated previous estimated value, The electronic endoscope system according to claim 7, wherein the estimated value for this time is obtained by subtracting a temperature decrease due to heat dissipation up to.
  9.  前記温度判定手段は、前記光量制御履歴に基づいて前記出射光の光量の積算値を求め、前記積算値に基づいて判定することを特徴とする請求の範囲第6項に記載の電子内視鏡システム。 The electronic endoscope according to claim 6, wherein the temperature determination unit obtains an integrated value of the light amount of the emitted light based on the light amount control history, and determines based on the integrated value. system.
  10.  前記温度判定手段は、前記光量制御履歴のうち古いものほど重みを小さくして前記積算値を求めることを特徴とする請求の範囲第9項に記載の電子内視鏡システム。 10. The electronic endoscope system according to claim 9, wherein the temperature determination means obtains the integrated value by decreasing a weight of an older one of the light amount control histories.
  11.  前記温度判定手段は、前記先端に設けられた温度センサによって測定される実測値と前記温度閾値を照合することにより判定することを特徴とする請求の範囲第1~5項のいずれかに記載の電子内視鏡システム。 6. The temperature determination unit according to claim 1, wherein the temperature determination unit makes a determination by collating an actual measurement value measured by a temperature sensor provided at the tip with the temperature threshold value. Electronic endoscope system.
  12.  ほぼ一定光量で点灯する光源と、前記光源が発する光の光路上に配置された絞り開口の開口量を調節することにより前記出射光の光量を調節する絞り調節機構とを備えており、
     前記温度抑制手段は、前記値L1及び値L2によって前記絞り調節機構の前記開口量の上限を制限することを特徴とする請求の範囲第1~11項のいずれかに記載の電子内視鏡システム。
    A light source that is lit with a substantially constant light amount, and an aperture adjustment mechanism that adjusts the light amount of the emitted light by adjusting the aperture amount of the aperture opening disposed on the optical path of the light emitted from the light source,
    The electronic endoscope system according to any one of claims 1 to 11, wherein the temperature suppressing means limits the upper limit of the opening amount of the aperture adjustment mechanism by the value L1 and the value L2. .
  13.  発光量を制御可能な光源を備えており、
     前記温度抑制手段は、前記値L1及び値L2によって前記光源の前記発光量の上限を制限することを特徴とする請求の範囲第1~11項のいずれかに記載の電子内視鏡システム。
    It has a light source that can control the amount of light emitted.
    The electronic endoscope system according to any one of claims 1 to 11, wherein the temperature suppression means limits an upper limit of the light emission amount of the light source by the value L1 and the value L2.
PCT/JP2011/051598 2010-02-19 2011-01-27 Electronic endoscope system WO2011102200A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180009150.3A CN102781306B (en) 2010-02-19 2011-01-27 Electronic endoscope system
JP2012500541A JP5537645B2 (en) 2010-02-19 2011-01-27 Electronic endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010034328 2010-02-19
JP2010-034328 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102200A1 true WO2011102200A1 (en) 2011-08-25

Family

ID=44482799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051598 WO2011102200A1 (en) 2010-02-19 2011-01-27 Electronic endoscope system

Country Status (3)

Country Link
JP (1) JP5537645B2 (en)
CN (1) CN102781306B (en)
WO (1) WO2011102200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143391A (en) * 2011-01-12 2012-08-02 Olympus Corp Endoscope system
CN112638232A (en) * 2018-09-06 2021-04-09 奥林巴斯株式会社 Light source control device, endoscope system, and light control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3073895A1 (en) * 2013-11-25 2016-10-05 Covidien LP Imaging catheter with thermal management assembly
JP6353288B2 (en) 2014-06-19 2018-07-04 オリンパス株式会社 Optical scanning endoscope device
CN109009078B (en) * 2018-08-24 2020-10-30 复旦大学附属中山医院 Infrared endoscope auxiliary device
CN109938687A (en) * 2019-03-04 2019-06-28 张朝阳 A kind of laparoscope robot of the liver and gall surgical department with temperature overload protective device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201892A (en) * 1998-11-11 2000-07-25 Asahi Optical Co Ltd Endoscopic instrument
JP2002282207A (en) * 2001-03-26 2002-10-02 Fuji Photo Optical Co Ltd Electronic endoscopic apparatus
JP2007117583A (en) * 2005-10-31 2007-05-17 Pentax Corp Endoscope system
JP2008104467A (en) * 2006-10-23 2008-05-08 Pentax Corp Endoscope with automatic dimming function
JP2010187903A (en) * 2009-02-18 2010-09-02 Fujifilm Corp Endoscope apparatus and control method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH650868A5 (en) * 1981-06-05 1985-08-15 Volpi Ag DEVICE FOR LIGHTING A CAVITY.
JPH0658459B2 (en) * 1986-01-09 1994-08-03 株式会社町田製作所 Illumination light supply device used for electronic endoscope device
JPS62203151A (en) * 1986-03-03 1987-09-07 Minolta Camera Co Ltd Electrophotographic copying machine
JPH0824219A (en) * 1994-07-12 1996-01-30 Toshiba Medical Eng Co Ltd Endoscope apparatus
JP4343594B2 (en) * 2003-06-23 2009-10-14 オリンパス株式会社 Endoscope device
JP2006006803A (en) * 2004-06-29 2006-01-12 Pentax Corp Diaphragm controlling mechanism of electronic endoscope
JP5095311B2 (en) * 2007-08-30 2012-12-12 株式会社日立製作所 Image display apparatus and method for adjusting vibration state of reflecting mirror in image display apparatus
JP4983647B2 (en) * 2008-02-27 2012-07-25 株式会社ニコン Camera, projector, and illumination limiting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201892A (en) * 1998-11-11 2000-07-25 Asahi Optical Co Ltd Endoscopic instrument
JP2002282207A (en) * 2001-03-26 2002-10-02 Fuji Photo Optical Co Ltd Electronic endoscopic apparatus
JP2007117583A (en) * 2005-10-31 2007-05-17 Pentax Corp Endoscope system
JP2008104467A (en) * 2006-10-23 2008-05-08 Pentax Corp Endoscope with automatic dimming function
JP2010187903A (en) * 2009-02-18 2010-09-02 Fujifilm Corp Endoscope apparatus and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143391A (en) * 2011-01-12 2012-08-02 Olympus Corp Endoscope system
CN112638232A (en) * 2018-09-06 2021-04-09 奥林巴斯株式会社 Light source control device, endoscope system, and light control method

Also Published As

Publication number Publication date
CN102781306B (en) 2015-01-21
CN102781306A (en) 2012-11-14
JP5537645B2 (en) 2014-07-02
JPWO2011102200A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5534997B2 (en) Electronic endoscope system
JP5537645B2 (en) Electronic endoscope system
JP4804062B2 (en) Endoscope system
JP4731248B2 (en) Electronic endoscope system
JP5535305B2 (en) Electronic endoscope system
US9782059B2 (en) Endoscope system
JP2009213673A (en) Endoscope system and endoscope inspecting method
JP4098402B2 (en) Fluorescent imaging device
JP5467971B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
EP3192430A1 (en) Imaging device and processing device
JP6203452B1 (en) Imaging system
JP5780653B2 (en) Light source device and endoscope system
JP6058235B1 (en) Endoscope system
JP2002360510A (en) Endoscopic apparatus and control method for the same
US20210208383A1 (en) Light source control device, endoscope system, and light quantity control method
JP2012050509A (en) Electronic endoscope system
JP2009240531A (en) Photographic equipment
JP5467970B2 (en) Electronic endoscope system
JP5225146B2 (en) Automatic dimming processing device for diagnostic medical device, image signal processing device for diagnostic medical device, and medical system
JP6242552B1 (en) Image processing device
CN111277766B (en) Image photographing method and image photographing apparatus
JP2009095539A (en) Electronic endoscope of endoscope apparatus
JP5411086B2 (en) Electronic endoscope system
JP2012085917A (en) Electronic endoscope system, processor device of the same, and method of supersensitizing fluoroscopic image
JP5467972B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009150.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744489

Country of ref document: EP

Kind code of ref document: A1