WO2011102178A1 - Analysis system using modified reporter gene - Google Patents

Analysis system using modified reporter gene Download PDF

Info

Publication number
WO2011102178A1
WO2011102178A1 PCT/JP2011/050957 JP2011050957W WO2011102178A1 WO 2011102178 A1 WO2011102178 A1 WO 2011102178A1 JP 2011050957 W JP2011050957 W JP 2011050957W WO 2011102178 A1 WO2011102178 A1 WO 2011102178A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
gluc
reporter gene
mutant
luminescent enzyme
Prior art date
Application number
PCT/JP2011/050957
Other languages
French (fr)
Japanese (ja)
Inventor
誠培 金
博明 田尾
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2011102178A1 publication Critical patent/WO2011102178A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1086Preparation or screening of expression libraries, e.g. reporter assays

Definitions

  • the present invention uses a reporter gene, characterized in that a marine animal luminescent enzyme variant gene having improved luminescence intensity, stability, and / or animal tissue permeability by long wavelength shift is used as a reporter gene.
  • the present invention relates to an improvement method for various analysis systems.
  • reporter gene assay examples include reporter gene assay (non-patent document 6) and (e) a two-hybrid assay (non-patent document 7) for analyzing protein interactions.
  • Reporter gene assays and two-hybrid assays, in particular using reporter genes are the most universal and standard bioanalytical methods today, and the types of reporter genes used here are fluorescent protein genes (hereinafter referred to as fluorescent methods).
  • the photoprotein gene hereinafter referred to as the luminescence method
  • the fluorescent method is characterized by expressing a green protein (GFP) or a variant thereof as a reporter gene product.
  • GFP green protein
  • the fluorescent protein has a high background due to autofluorescence and an external light source.
  • Non-patent Document 8 discloses a problem in quantitativeness
  • the luminescent method is characterized by expressing a bioluminescent enzyme (luciferase) when detecting an external stimulus.
  • a bioluminescent enzyme luciferase
  • the luminescence method does not require a large-sized device and is used in many assay methods using many reporter genes today because of the ease of measurement.
  • the bioluminescent enzyme is generally lower in luminance than the fluorescent dye. Since the luminance is lower than that of fluorescent dyes, the luminescence method requires a highly sensitive measuring device and is not suitable for single-cell imaging or molecular phenomenon search at the organelle level. In addition, in order to obtain sufficient luminance, it is necessary to take a long stimulation time for the expression product to accumulate.
  • ⁇ -galactosidase and alkaline phosphatase are also insensitive, so a long stimulus is required until the expression of these proteins is fully accumulated, and a reaction time of 15 minutes to 1 hour is also required for the color reaction.
  • a common big problem of the conventional assay method using a reporter gene is that a long ligand stimulation time is required until measurement.
  • a standard method requires a stimulation time of about one day. Because it is necessary, it is impossible to measure dynamic molecular phenomena that occur in cells.
  • the standard protocol of the assay method using a conventional reporter gene since the measurement is started after the cells are ground (making a lyset), it takes about 10-20 minutes to make the cell lyset.
  • An object of the present invention is to provide an improved method for shortening the ligand stimulation time in various assay methods using a reporter gene such as a reporter gene assay or a two-hybrid assay. It is an object of the present invention to provide a method for using a genetically modified product that expresses a luciferase that exhibits a stable and bioluminescent light emission and / or bioluminescence shifted to a longer wavelength side.
  • the present inventors have already introduced a mutation at a specific position of a luminescent enzyme derived from marine animals such as Gaussia luciferase (GLuc), so that luminescence intensity is high and stable, and luminescence shifted to a long wavelength is emitted. It has been clarified that it is possible to synthesize an ultra-bright bioluminescent enzyme efficiently in mammalian cells by codon optimization of the modified gene (specialty). (Application 2009-101025).
  • the reporter gene is recognized as a reporter gene based on the recognition that the most direct cause is the low brightness of the reporter protein itself. It came to mind using the said mutant luminescent enzyme modified gene which the inventors developed.
  • a reporter gene assay system was constructed by adopting a high-luminance bioluminescent enzyme gene as a reporter gene mounted downstream of a reporter expression plasmid having an androgen response element (ARE) (Example) 1)
  • ARE androgen response element
  • the assay time was shortened (Example 2).
  • examination of the optimum mixing ratio of each plasmid constituting the system (Example 3), the optimum stimulus and its appropriate stimulus concentration (Example) 6) was also performed.
  • the present invention is a bioanalytical method using kinetics of luminescence intensity by the expressed ultra-bright variant luminescent enzyme, wherein the change in luminescence value per unit time (RLU / sec) is an analysis index.
  • RLU / sec the change in luminescence value per unit time
  • a reporter gene comprising a gene encoding the mutated luminescent enzyme.
  • the gene encoding the mutant luminescent enzyme is located at position 89, 90, 97, 108, 112, 115, or 118 on the amino acid sequence of GLuc in the amino acid sequence of marine animal luminescent enzyme. Substitution from the hydrophobic amino acid residue at the corresponding position to another hydrophobic amino acid residue, or from the hydrophilic amino acid residue forming a hydrogen bond at the 95th or 100th position to another hydrophilic amino acid residue.
  • the reporter gene according to the above [1] which encodes a mutant luminescent enzyme having a conservative amino acid substitution including a substitution for.
  • the gene encoding the mutant luminescent enzyme comprises substituting leucine for the amino acid residue at position 90 on the amino acid sequence of GLuc in the amino acid sequence of the marine animal luminescent enzyme
  • the reporter gene according to any one of the above [1] to [3], which is a mutant luminescent enzyme gene to which is applied.
  • the marine animal luminescent enzyme is any one of luminescent enzymes selected from Gaussia luciferase (GLuc) and Kaishi luciferase (MLuc, MpLuc1, and MpLuc2) A reporter gene according to any one of the above.
  • [6] An expression vector comprising the reporter gene according to any one of [1] to [5] downstream of a response sequence to an external stimulus or a response sequence to a fusion protein formed by a response to the external stimulus.
  • [7] A transformed cell into which the expression vector according to [6] is introduced.
  • [8] An analytical method for analyzing the timing or expression level of a target gene in a cell in response to an external stimulus, wherein the transformed cell according to [7] is used.
  • the intensity of the external stimulus is quantified using the rate of increase in bioluminescence intensity (RLU / sec) based on the expression of the reporter gene after addition of the substrate or the area of the response curve as an index.
  • the present invention in an analysis system using a reporter gene such as a conventional reporter gene assay method or a two-hybrid method, uses a marine animal-derived luminescent enzyme high-intensity variant gene developed by the present inventors as a reporter gene.
  • the assay time could be shortened.
  • the reporter gene assay has been applied to the comprehensive detection methods of endocrine disruptors, the diagnosis of hormonal abnormalities in vivo, and the two-hybrid method has been applied to improve the accuracy of proteome analysis. Not only can this be achieved, it can also be expected to be a tool for observing molecular phenomena at the intracellular or organelle level, which has been impossible in the past, in a short time.
  • Emission spectra of Y97W, I90L, F89W / I90L / H95E / Y97W (Mon3) compared to conventional GLuc. Relative intensity of long wavelength bioluminescence intensity using 610nm Long-Pass filter. Wavelength of each luminescent variant compared to conventional GLuc (white bar). It can be seen that the mutant exhibits strong long wavelength bioluminescence. Comparison of bioluminescence spectra of representative luciferases. The GLuc mutant (black line) shows much stronger bioluminescence intensity than conventional GLuc (dotted line), FLuc and click beetle luciferase (CBLuc). Comparison of bioluminescence intensity over time.
  • Luminescent properties of MLuc mutant (C) Measurement of long wavelength bioluminescence value (more than 610nm) of MLuc mutant using 610nm Long-Pass filter. (D) Temporal change in luminescence value of MLuc mutant before and after substrate introduction.
  • the base sequence of the I90L mutant of GLuc which consists of codons suitable for mammals including humans and introduced with a restriction enzyme site.
  • the underline indicates the position of the restriction enzyme site, and the italic letters indicate the mutation site.
  • Nucleotide sequence of a GLuc enzyme mutant (Mon3 with mutations at four positions including I90L) that consists of codons suitable for mammals and has EcoRV restriction enzyme sites introduced. The underline indicates the position of the restriction enzyme site, and the italic letters indicate the mutation site.
  • a reporter gene assay method using the luminescent enzyme variant of the present invention as a reporter gene. (A) Operation principle diagram of reporter gene assay method. A transcription factor is activated in the presence of a ligand, leading to expression of a reporter protein. (B) Comparison of luminescence intensity in the reporter gene assay when the conventional Gaussia luciferase (GLuc) is mounted and when the luminescent enzyme mutant of the present invention is mounted.
  • a two-hybrid assay method using the reporter gene of the present invention A two-hybrid assay method using the reporter gene of the present invention.
  • A Operation principle diagram of the two-hybrid assay method. ER LBD Y537 is phosphorylated in the presence of a ligand. This phosphorylation is recognized by the adjacent Src SH2 domain and binding between the fusion proteins occurs. The restoration of the Gal4 transcriptional activity leads to the expression of the reporter protein.
  • B Transition of relative light emission intensity by each stimulation time.
  • Bioluminescence values (measured with a luminescence photometer) after female hormone stimulation when GLuc and GLuc mutant (9096) are loaded on pG5 vector (0 hours, 3 hours, 6 hours, 18 hours).
  • the activity of the ligand could not be separated by the stimulation for 3 hours, but in this method, a significant difference in luminescence intensity could be observed even in 3 hours.
  • “9096” indicates a GLuc mutant (I90L / T96S). Correlation between the amount of plasmid introduced and luminescence intensity in a two-hybrid assay equipped with the reporter gene (9096) of the present invention. Increasing the percentage of the plasmid expressing the reporter led to better ligand sensitivity.
  • a method for measuring ligand activity based on the response speed of a reporter enzyme in a two-hybrid assay equipped with the reporter gene (9096) of the present invention Comparison of luminescence rate when measured immediately after stimulation (0h) and when stimulated for 6 hours (6h).
  • a method for measuring ligand activity based on the response speed of a reporter enzyme in a two-hybrid assay equipped with the reporter gene (9096) of the present invention The rate of increase in the light emission rate when the stimulation time is 0, 3, 6, 18 hours is shown.
  • Ligand selectivity in a two-hybrid assay using the reporter gene of the present invention is shown.
  • the assay system expressing the mutant luminescent enzyme (8990 or 9096) of the present invention responds to female hormone (E2) rather than the conventional assay system expressing GLuc itself. Showed a stronger emission intensity.
  • “8990” is a GLuc mutant having a mutation in F89W / I90L
  • “9096” is a GLuc mutant having a mutation in I90L / T96S. Ligand concentration dependency in a two-hybrid assay using the reporter gene of the present invention.
  • Female hormone (E2) showed the strongest luminescence value for 10 -5 M stimulation.
  • A Molecular structure of a conventional single molecule bioluminescent probe (SimGR3) based on GLuc and a single molecule bioluminescent probe (8990N) based on the high-intensity mutant.
  • 8990N represents a probe using the enzyme mutant “8990”. The same applies hereinafter.
  • B A conventional single molecule bioluminescent probe (SimGR3) based on GLuc Comparison of ligand sensitivity of single-molecule bioluminescent probe (8990N) based on luminance mutants. In the presence of the ligand, 8990N showed a better S / N ratio.
  • the ultra-bright bioluminescence enzyme (I90L) of the present invention exhibits superior bioluminescence intensity compared to conventional M43I and RLuc8.6-535.
  • Imaging of B16 skin cancer cells (melanoma) metastasis Imaging comparison of cancer metastasis location when skin cancer cells expressing high-intensity bioluminescent enzyme (I90L) and conventional GLuc used in the present invention are respectively injected. Imaging of B16 skin cancer cells (melanoma) metastasis. Comparison of bioluminescence intensity for each organ by dissection. It can be seen that the luminescence values of the lungs and uterus are remarkably strong.
  • Marine animal-derived luminescent enzyme refers broadly to Gaussia, Renilla reniformis, Cypridina, In addition to Catria (Metridia) etc., the luminescent plankton companions Obelin, aqualine Pleuromanma, Oplophorus, etc.
  • luciferase the luminescent enzyme produced by these “luminescent marine animals” , Gaussia luciferase (GLuc), and Caucasian luciferase (MLuc derived from Metridia longa, MpLuc1, MpLuc2, etc., a luminescent enzyme group derived from Metridia pacifica) have a very high distribution of hydrophilic and hydrophobic amino acids throughout each enzyme. These lucifers are similar and the amino acid sequence similarity of the putative enzyme active region is extremely high (FIG. 1).
  • the hydrolase group also referred to simply as “marine animals light-emitting enzyme,” but, also referred to as a particularly "Gaussia such luciferase".
  • the Gaucian luciferases MLuc, MpLuc1, or MpLuc2 are slightly different in terms of molecular weight compared to GLuc, but in addition to the similarity in sequence as described above, the enzymatic properties such as substrate and luminescence activity are also GLuc.
  • the following is a description of the typical Gaussia luciferase (GLuc). The knowledge gained in GLuc can be applied to other Gaussia luciferases.
  • the indication of the modified position is represented by the position on the amino acid sequence of GLuc.
  • the 90th amino acid in GLuc corresponds to the 123rd amino acid in the MLuc amino acid sequence.
  • MpLuc1 and MpLuc2 they correspond to the 114th and 93rd positions, respectively.
  • Gaussia luciferase (GLuc) has the following characteristics. (A) Since it is the smallest bioluminescent enzyme discovered so far, when applied to molecular imaging, the burden on host cells and host proteins is much lighter. (I) Extremely strong resistance to pH, surfactants and chemical modifiers. (C) Highest brightness among bioluminescent enzymes. (D) Turn-over of enzyme is fast.
  • the main aim is to increase the emission intensity and to improve the stability of the emission intensity over time, but also includes shifting the emission wavelength to a longer wavelength. Shifting to the longer wavelength side increases permeability from cells, skin, etc., which is an important property for expanding the use of reporter genes.
  • the emission intensity can be obtained by measuring the emission intensity in a specific wavelength region using a conventional emission spectrophotometer after the addition of the substrate, so that two-dimensional information can be obtained. It can be measured.
  • a light-emitting plate reader can also be used, and more accurate data can be acquired because of excellent sample processing ability.
  • the area of each emission spectrum is measured after sufficient lysis time (about 20 minutes).
  • the shift to the long wavelength side can be measured by a wavelength scanning method or by providing a long wavelength filter.
  • a desired amino acid residue of the amino acid sequence itself can be chemically changed.
  • the base corresponding to the amino acid to be substituted in the base sequence encoding the enzyme may be point mutated.
  • a base mutation method a known method such as a site mutation method can be appropriately used.
  • the point mutation was introduced according to the “quick change method” (Non-patent Document 10), but this is not limitative.
  • FIG. 2B-2 shows the case where the time of immersion in the cell lysate is 20 minutes and the area of each emission spectrum is measured with a luminescence plate reader.
  • “Mon3” not only increased the emission intensity, but a long wavelength shift of 35 nm was observed from the absorption wavelength of the original GLuc.
  • Such long-wavelength bioluminescence has high utility value for use as an excellent analysis signal in the future because the tissue permeability of the living body is improved.
  • a substrate dissolved in PBS buffer
  • the change in bioluminescence with time was observed.
  • I90L, H95E, and Y97W they show relatively stable luminescence intensity (Fig. 4A).
  • the result of observation for a longer time (10 minutes) shows that the decrease in the original GLuc luminescence value (white circle) is severe.
  • the emission values of I90L (black square) and I90V (gray triangle) showed relatively stable emission intensity (FIG. 4B).
  • the results of observing the change in bioluminescence over time for a short time (5 seconds) after introducing a substrate (dissolved in Matthew modified buffer) into each mutant were the same (FIG. 4C).
  • the results of observing the change in bioluminescence over time for each step for one second are also very high. It can be seen that it shows stable and strong bioluminescence.
  • coelenterazine which is the standard substrate for GLuc, is preferable in that it exhibits high emission intensity, but by changing the type of coelenterazine, the wavelength at which the peak value is shown is slightly shifted. (Prior Patent Application No. 2009-101025).
  • Gaussia luciferases derived from caussia (Metridia pacifica or Metridia longa), which are Gausia marine animals very similar to Gaussia, specifically MpLuc1 (from Metridia pacifica) and In MLuc (from Metridia longa) luciferase, a mutant (MpLuc1-I114L mutant) due to conservative amino acid substitution at position 114 of MpLuc1, corresponding to position 90 of the amino acid sequence of GLuc, and conservative at position 123 of MLuc MpLuc1 Y113W / I114L / H119E / Y121W mutant (MpLuc4) and MLuc Y122W corresponding to the GLuc F89W / I90L / H95E / Y97W (Mon3) mutant as well as mutants due to amino acid substitution (MLuc-I123L mutant) / I123L / H128E / Y130W mutant (MLuc4) was prepared
  • the hydrophobic amino acid residues corresponding to the 89th, 90th, 97th, 108th, 112th, 115th, or 118th position are mutated to other hydrophobic amino acid residues, respectively.
  • the function of luminescent enzyme activity is improved such that the luminescence intensity increases or shifts to a longer wavelength.
  • mutations from hydrophobic and nonpolar amino acid residues at positions 90, 108, 112, 115, or 118 to other hydrophobic and nonpolar amino acid residues, or position 89 or By causing a mutation from the aromatic amino acid residue at position 97 to another aromatic amino acid residue, the intensity of the luminescent enzyme is increased and stabilized, and a shift to a longer wavelength occurs.
  • a shift to a longer wavelength occurs due to a mutation from a hydrophilic amino acid residue that forms a hydrogen bond at the 95th or 100th position to another hydrophilic amino acid residue. That is, when the mutant luminescent enzyme having an improved luminescent function in the present invention is used, in the marine animal luminescent enzyme (Gaussia luciferase), at least one of amino acid residues at positions corresponding to amino acid positions 89 to 118 in GLuc. Wherein the substitution is at least at a position corresponding to position 89, 90, 95, 97, 100, 108, 112, 115, or 118. Substitutions that include conservative amino acid replacements for amino acid residues at positions selected from one are included.
  • a hydrophobic and nonpolar amino acid residue at position 90, 108, 112, 115, or 118 includes a mutation to another hydrophobic and nonpolar amino acid residue, or the same Others from the hydrophilic amino acid residue containing a mutation from the aromatic amino acid residue at position 89 or 97 to another aromatic amino acid residue or forming a hydrogen bond at position 95 or 100 Including a mutation to a hydrophilic amino acid residue. More preferably, the position corresponding to position 89 on the amino acid sequence of GLuc is tryptophan, position 90 is leucine or valine, position 95 is glutamic acid, position 97 is tryptophan, position 108 is valine, position 112 is leucine.
  • substitution of valine, position 115 with valine, or position 118 with leucine or valine shows particularly significant emission intensity enhancement and also a long wavelength shift.
  • leucine mutants at position 90 are high-intensity luminescent enzymes that have not only high brightness but also remarkable long-wavelength shift.
  • mutants to glutamine or asparagine which are hydrophilic amino acids that form hydrogen bonds at positions 95 and 100, cause a long wavelength shift. Not only such a single amino acid mutant but also two or more positions can be subjected to the same substitution, so that a higher light emission function can be provided.
  • the isoleucine at the position corresponding to position 90 on the amino acid sequence of GLuc was substituted with leucine, and at the same time, tryptophan substitution at position 89 or leucine substitution at position 115 (GLuc- F89W / I90L, or GLuc-I90L / I115L) and four mutants (Glucuc) in which substitution of leucine at position 90, substitution of tryptophan at position 89, substitution of glutamic acid at position 95 and tryptophan substitution at position 97 were performed simultaneously -F89W / I90L / H95E / Y97W (Mon3), MpLuc-Y113W / I114L / H119E / Y121W (MpLuc4) and MLuc-Y122W / I123L / H128E / Y130W (MLuc4)) all show significant emission intensity and long It is an epoch-making high-intensity luminescent enzyme that also causes a remarkable shift to the wavelength side
  • the amino acid sequence corresponding to positions 89 to 118 on the amino acid sequence of GLuc which is a region corresponding to the active center
  • the amino acid sequence of the original Gaussia luciferase has no mutation other than the above-mentioned “similar amino acid substitution”.
  • a mutation within the range in which the three-dimensional structure of the whole enzyme does not change greatly is acceptable, and in particular, a part of the N- or C-terminal portion, for example, 1 to 50, preferably 1 to 30, More preferably 1 to 20, even more preferably 1 to 10 amino acid residues are deleted.
  • the amino acid sequence excluding the region corresponding to positions 89 to 118 on the GLuc amino acid sequence is 70% or more, preferably 80% or more, more preferably Can be expressed as an amino acid sequence having 90% or more, most preferably 95% identity.
  • mutant luminescent enzyme gene of the present invention is used as a reporter gene, typically, a reporter gene assay method or a two-hybrid method is used.
  • the mutant luminescent enzyme gene used at that time is preferably modified to a base sequence that is easily expressed in the host cell by changing it to a codon suitable for the cell depending on the host cell used.
  • the function improvement modification strategy at that time is described in detail in the previous application (Japanese Patent Application No. 2009-101025).
  • an analysis system using a reporter gene is typically a reporter gene assay, a two-hybrid assay, etc., but also includes PSA (protein splicing assay), PCA (protein complementation assay), fluorescence anisotropy, etc. It is.
  • a reporter gene assay and a two-hybrid assay which are typical analysis systems, will be described in detail.
  • the reporter gene assay method is frequently used as an analysis means of transcription factor activation and gene expression regulation by external stimulation, but typically disrupts signal transduction via nuclear receptors. Used to detect endocrine disruptors (environmental hormones).
  • the expression of a target gene eg, a hormone responsive gene
  • a target gene eg, a hormone responsive gene
  • a cis region hormone response element
  • a plasmid incorporating a reporter gene such as luciferase downstream of the cis region of these various hormone-responsive genes.
  • COS cells, CHO-K1 cells, HeLa cells, HEK293 cells, NIH3T3 cells, etc. of mammalian cells used for general gene recombination are preferably used.
  • Bacteria such as yeast cells and Escherichia coli Although it may be a cell, an insect cell, etc., it is often used in a living body of a mammal including human beings or in a mammalian cell in vitro. In that case, it is preferable that the mutant luminescent enzyme gene of the present invention is modified to a base sequence that can be easily expressed in the host cell by changing to a codon suitable for the cell depending on the host cell to be used. In addition, it is necessary to appropriately perform modification to provide a restriction enzyme site for insertion into a vector, and well-known methods can be applied to these steps.
  • the measurement time can be significantly shortened compared to the prior art, and the stability of luminescence over time is high, so that luminescence can be measured even in cell lines with poor gene transfer efficiency. Further, since the shift to the long wavelength side increases the permeability through the cell membrane and the skin, the background value decreases and the measurement accuracy is high.
  • the luminescent enzyme is linked to a known eukaryotic expression vector carrying an expression promoter suitable for the assay upstream. After introduction into a eukaryotic cell and after a certain period of time, it may be used for measurement under the condition that there is no signal (stimulation) (Non-patent Document 20).
  • a known pTransLucent vector can be used and can be easily mounted using a known method.
  • the two-hybrid method is one of the methods to investigate the interaction between proteins.
  • the yeast two-hybrid (Y2H) system using yeast Sacharomyces cerevisiae was used.
  • GAL4DBD and any protein A bait can be expressed as a fusion protein using the fact that the DNA-binding domain (DBD) and transcriptional activation domain of the transcriptional activator GAL4 protein are separable. It can be determined whether or not it interacts with the transcription activation domain (TA) expressed in (1) and protein B (prey) as a fusion protein.
  • DBD and TA are close to each other and the DNA binding domain (DBD) binds to the “UASG” base sequence, so that expression of a reporter gene linked downstream thereof is promoted.
  • the reporter gene is luciferase
  • the affinity of both A and B proteins can be measured by monitoring bioluminescence in the presence of the specific substrate, and screening for proteins and peptides that interact with protein A (bait) Can do.
  • Protein B (prey) at that time can also be provided by an expression library.
  • Host cells are not limited to yeast cells, and bacteria such as E. coli, mammalian cells, and insect cells are also used.
  • “LexA” of a repressor protein derived from E. coli can also be used.
  • a DNA encoding these and a DNA encoding a bait protein that is, the above-mentioned arbitrary protein A
  • a bait protein that is, the above-mentioned arbitrary protein A
  • a ligand-binding region of a ligand-responsive transcriptional regulator are ligated downstream of a promoter that can function in the host cell.
  • the “transcription activation region of transcription activator” for example, the transcription activation region of GAL4, the B42 acidic transcription activation region derived from E.
  • coli the transcription activation region of herpes simplex virus VP16, etc.
  • a DNA encoding these transcriptional activation regions and a DNA encoding a prey protein are linked and downstream of a promoter that can function in the host cell.
  • the plasmid pGBT9 manufactured by Clontech
  • the plasmid pGBT9 can be used as a vector having DNA encoding the DNA binding region of the transcriptional regulatory factor GAL4 and allowing budding yeast to be used in host cells.
  • vectors having DNA encoding a transcription activation region and usable in budding yeast As a vector having DNA encoding a transcription activation region and usable in budding yeast, plasmid pGAD424 (manufactured by Clontech) and the like can be mentioned.
  • vectors that have a DNA encoding the DNA binding region of GAL4 and can be used in mammalian cells include pM (Clontech), pBIND (Promega), etc., and herpes simplex virus VP16
  • vectors having a DNA encoding a transcription activation region and usable in mammalian cells include pVP16 (manufactured by Clontech), pACT (manufactured by Promega), and the like.
  • examples of vectors that have DNA encoding the DNA binding region of LexA and can be used in mammalian cells include pLexA (manufactured by Clontech) and the like.
  • examples of vectors that can be used in the above include pB42AD (manufactured by Clontech).
  • pB42AD manufactured by Clontech
  • As a kit for a two-hybrid system Matchmaker Two-hybrid System (manufactured by Clontech), CheckMate Mammalian Two-Hybrid System (Promega), etc. are already on the market and are incorporated into the kit so that firefly luciferase is expressed. ing.
  • a gene encoding the mutant luminescent enzyme of the present invention may be constructed by inserting a vector inserted as a reporter gene downstream of a region to which GAL4 binds (“UASG”).
  • a vector inserted as a reporter gene downstream of a region to which GAL4 binds (“UASG”).
  • USG a region to which GAL4 binds”.
  • pG5Luc vector Promega
  • pFR-Luc vector Stratagene
  • CAT Chloramphenicol acetyltransferase
  • the reporter gene assay of the present invention is the same as the conventional reporter gene assay method until the reporter protein is expressed in response to an external stimulus.
  • the present inventor Devised a measurement method based on kinetics as follows. (1) A plasmid containing the mutant luminescent enzyme of the present invention as a reporter gene is introduced into a cell and cultured in a well.
  • a test substance hormone or the like is added, and after a certain period of time, a lysis solution (lysis) is added to sufficiently lyse cells (create a lysate).
  • a lysis solution lysis
  • the well plate is set in a plate reader, and after adding the substrate, the intensity of response stimulus of the test substance is observed from the rate of increase in luminescence per unit time (ie, RLU / sec).
  • the rising speed is measured from the difference between the initial light emission value and the light emission value after a certain period of time.
  • the rising speed v can be expressed as follows.
  • RLU 0 indicates the initial light emission intensity (relative luminescence unit; RLU)
  • RLU 1 indicates the light emission intensity after elapse of a predetermined time (t 1 ).
  • the measurement method of the present invention uses the light emission response speed as an analysis signal.
  • Example 1 Reporter gene assay loaded with GLuc mutant
  • pG5Luc an example of a conventional reporter gene assay system
  • ARE androgen response element
  • plasmid groups were first prepared based on the conventional typical two-hybrid assay plasmids pACT, pBIND and pG5Luc: (1) plasmids encoding ER LBD and Gal4; (2) Plasmid encoding SH2 domain and VP16, (3) pG5 plasmid carrying conventional GLuc or high-intensity mutant (I90L) of the present invention as a reporter gene.
  • plasmids (1), (2) and (3) were co-introduced into COS-7 cells, stimulation was performed for 6 hours under the condition of female hormones, and changes in luminescence values were observed.
  • the two-hybrid assay loaded with the mutant (I90L) showed a stronger luminescence value and S / N ratio (FIG. 9B). Moreover, the kinetics showed the same result (FIG. 9C, D). Furthermore, in order to observe the luminescence value dependent on the female hormone stimulation time, the following plasmid groups were first prepared based on the conventional typical two-hybrid assay plasmids pACT, pBIND and pG5Luc: (1) ER A plasmid encoding LBD and Gal4, (2) a plasmid encoding SH2 domain and VP16, and (3) a pG5 plasmid carrying a conventional GLuc or the high-intensity mutant of the invention (9096) as a reporter gene.
  • Example 3 Optimization of plasmid introduction ratio in two-hybrid assay
  • three plasmids a plasmid expressing proteins X and Y and a plasmid having a response sequence that recognizes the bond between XY
  • the ratio of the plasmid introduced into the cell is an important factor that determines the efficiency of the assay.
  • the optimum ratio was examined in performing the assay by changing the introduction ratio of each plasmid.
  • pBIND that expresses ER LBD and pACT plasmid that expresses Src SH2, and a pmG5 plasmid that expresses a reporter protein in response to the binding between ER LBD and SH2 were prepared.
  • the introduction ratios of the three types of plasmids were changed and introduced into COS-7 cells, and the difference in luminescence value was measured under the condition with and without female hormone stimulation. The result is shown in FIG. According to the results, when the ratio of pACT: pBIND: pmG5 was 1: 1: 3, the best signal-to-background ratio (S / N ratio) was shown. As an overall trend, it was observed that the higher the ratio of pmG5, the better the S / N ratio.
  • Example 4 Measurement of hormone sensitivity based on kinetics
  • a reporter protein is expressed in response to an external stimulus.
  • the present inventors have devised the following measurement method. (1) First, eukaryotic cells are cultured in a 96-well plate, and then the plasmid of the present invention is introduced into the cells. At this point, the assay preparation is complete. (2) Next, a female hormone or chemical substance is added to each well of a 96-well plate, and after a certain period of time, a lysate solution (lysis) is added to prepare a lysate.
  • lysis a lysate solution
  • a 96-well plate is set in a plate reader, and after the addition of a substrate, the intensity of hormone stimulation is observed from the rate of increase in luminescence per unit time (ie, RLU / sec).
  • the rising tendency of the initial luminescence value is greatly different depending on the presence or absence of female hormone stimulation.
  • the concentration and nature of female hormones can be observed from this initial velocity.
  • RLU 1 and RLU 0 indicate the emission intensity at a certain time point and the initial emission intensity (relative luminescence unit; RLU), respectively.
  • Fig. 11 (B) shows the result of a more detailed investigation. That is, a two-hybrid system equipped with 9096, which is one of the high-intensity mutants according to the present invention, was created.
  • pG5-9096 expressing 9096 was co-introduced together with pBIND-ER LBD and pACT-SH2 into COS-7 cells cultured in 96-well plates. Thereafter, expression of the reporter protein was induced according to the stimulation time of the female hormone. Thereafter, a cell lysate was prepared, and the increase in luminescence value before and after substrate introduction was measured.
  • the rate of increase in bioluminescence per unit time is 33.3 RLU / sec (0 hour stimulation), 43.3 RLU / sec (3 hour stimulation), 96.7 RLU / sec (6 hour stimulation), 150.0 RLU / sec (18 hour stimulation). It was found that the rate of increase in emission intensity dramatically increases with each stimulation time.
  • Bioluminescent probe using the mutant luminescent enzyme of the present invention In order to prove the superiority of the high-luminance bioluminescent enzyme of the present inventors, a novel bioluminescent probe using this enzyme was prepared ( 8990N). As a control, a probe based on the conventional GLuc itself was also synthesized (SimGR3). The molecular structure of each probe is shown in FIG. That is, each probe contains a stress hormone receptor ligand-binding domain (glucocorticoid receptor ligand binding domain). This makes them stress hormone sensitive.
  • Example 8 Biological imaging using GLuc mutant The improvement (high brightness, long wavelength shift, stability, etc.) of the GLuc mutant of the present invention was utilized to verify its applicability to biological systems ( FIG. 15).
  • a pcDNA3.1 (8990) plasmid inserted with a gene encoding 8990, a high-intensity mutant of GLuc was constructed and introduced into COS-7 cells.
  • pcDNA3.1 (GLuc) plasmid into which a gene encoding conventional GLuc itself was inserted was similarly introduced into COS-7 cells. Thereafter, both transformed cells were transplanted into the left and right upper / subcutaneous tissues of BALB / c nude mice (five weeks old female).
  • a living cell equipped with a mammalian two-hybrid system expressing the GLuc mutant was prepared, and a biological imaging system using the same was tried (FIG. 15B).
  • plasmids were constructed by connecting the female hormone receptor (ER LBD) and Src SH2 domains to BIND and ACT, respectively (pBIND and pACT).
  • ER LBD female hormone receptor
  • ACT ACT
  • a response system a plasmid having a Gal4 response element upstream and expressing I90L was also prepared (pG5-I90L).
  • a plasmid expressing the conventional GLuc itself was prepared (pG5-GLuc).
  • the three types of plasmids (pBIND, pACT, pG5-I90L or pG5-GLuc) were co-transfected into COS-7 cells to produce transformed cells.
  • the transformed cells were transplanted into the left and right upper and subcutaneous tissues of BALB / c nude mice (five-week-old female), respectively.
  • the left upper part was transplanted with control (pG5-GLuc), and the right upper part was transplanted with transformed cells having pG5-I90L.
  • 12 hours were allowed for the transplantation to stabilize.
  • female hormone or solvent (0.1% DMSO) was injected into each mouse, and the luminescence intensity was observed after another 6 hours (FIG. 15B).
  • mice subjected to female hormone stimulation showed stronger bioluminescence.
  • the right upper (I90L expression) showed stronger bioluminescence than the left upper (GLuc expression).
  • I90L showed higher bioluminescence because it was more stable and brighter.
  • the specific light emission intensity is shown in FIG.
  • Example 10 Comparison of bioluminescence characteristics using eukaryotic cells The difference in luminescence value between the GLuc mutant enzyme according to the present invention and the conventional bioluminescence enzyme was measured (Fig. 17). First, plasmids expressing the respective bioluminescent enzymes were introduced into eukaryotic cultured cells (COS-7) and then cultured for 16 hours. Thereafter, the cells were collected and a lyset was prepared. The luminescence value after substrate introduction was measured immediately with a luminometer. The luminescence values of I90L of the GLuc mutant enzyme developed by the present inventor, the M43I mutant (Non-patent Document 12), which is a known GLuc mutant, and RLuc8.6-535 were compared. As a result, I90L according to the present invention exhibited a bioluminescence that was 5 to 20 times stronger than conventional M43I and RLuc8.6-535.
  • Example 11 Imaging of in vivo metastasis of B16 skin cancer cells (melanoma) Taking advantage of the GLuc mutant enzyme exhibiting high-intensity bioluminescence used in the present invention, cancer cell metastasis experiments in living mice The results of (metastesis) are shown in FIG.
  • B16 skin cancer cells (melanoma) were first introduced with the conventional GLuc gene and the I90L gene of the high-intensity bioluminescent enzyme of the present invention and cultured for 16 hours. Thereafter, the cells were collected and intravenously injected into living 6-week-old BALB / c nude mice.
  • the substrate was similarly injected into the vein of the mouse, and the bioluminescence was observed with a small animal imaging device (IVIS Lumina XR (Xenogen)).
  • IVIS Lumina XR Xenogen
  • the bioluminescence intensity in the mouse body was very intense in the lung region (FIG. 18A).
  • the mice injected with cells expressing I90L selectively show strong bioluminescence, so the GLuc mutant enzyme used in the present invention observed the cancer metastasis process in vivo. It turned out to be superior in doing.
  • FIG. 18B shows that strong bioluminescence was shown in the lung and uterus. This result confirms that the bioluminescence observed in FIG.
  • the GLuc mutant enzyme of the present invention can exhibit very excellent performance in biological imaging, particularly in observation of the presence or absence of cancer tissue, cancer cell metastasis, and the like.

Abstract

Disclosed is a reporter gene which, in an analysis method using a reporter gene such as the reporter gene assay method or the two-hybrid assay method, makes it possible to shorten the external stimulus time to the cell, and can make it possible for the intensity of luminescence caused by the reporter gene expression in response to the external stimulus to quantitatively and accurately reflect said degree of external stimulus. In the analysis method for analyzing the amount or timing of target gene expression in a cell in response to an external stimulus, at least one of the amino acid residues at positions corresponding to positions 89 to 118 in the amino acid sequence of Gaussia Luciferase (GLuc) is replaced in the amino acid sequence of a luminescent enzyme of a marine animal as a reporter gene, said replacement being a conservative amino acid replacement of the amino acid residue(s) in at least one position chosen from the positions corresponding to positions 89, 90, 95, 97, 100, 108, 112, 115 and 118 in said amino acid sequence, and a gene is used encoding the altered luminescent enzyme with thusly improved luminescence.

Description

改良されたレポーター遺伝子を用いる分析システムAnalysis system using improved reporter gene
 本発明は、発光の強度、安定性、及び/又は長波長シフトによる動物組織透過性が改良された海洋動物発光酵素改変体の遺伝子をレポーター遺伝子として用いることを特徴とする、レポーター遺伝子を用いた各種分析システムの改良方法に関するものである。 The present invention uses a reporter gene, characterized in that a marine animal luminescent enzyme variant gene having improved luminescence intensity, stability, and / or animal tissue permeability by long wavelength shift is used as a reporter gene. The present invention relates to an improvement method for various analysis systems.
 生体内における分子現象(例えば、蛋白質の構造変化、リン酸化、蛋白質‐蛋白質間の相互作用、2次信号伝達物質の産生等)の計測は、生命現象を理解し、それに係る分子メカニズムを解明する上で極めて重要である。従来、このような分子現象を解析する手法として種々の手法が開発されており、主なものとして、(ア)fluorescent resonance energy transfer(FRET;非特許文献1,2)、(イ)bioluminescent resonance energy transfer(BRET;非特許文献3)、(ウ)タンパク質コンプリメンテーション(protein complementation;非特許文献4,5)、(エ)化学物質と受容体との結合親和性に基づく転写活性の測定等で用いられるレポータージーンアッセイ(reporter gene assay;非特許文献6)、(オ)タンパク質間の相互作用解析のためのツーハイブリットアッセイ(Two-hybrid assay;非特許文献7)等の手法が挙げられる。
 特にレポーター遺伝子を用いる、レポータージーンアッセイやツーハイブリットアッセイは、今日、最も普遍的であり、標準的な生物分析法であり、その際のレポーター遺伝子の種類としては、蛍光蛋白質遺伝子(以下、蛍光法と名づける)と発光蛋白質遺伝子(以下、発光法と名づける)が主に用いられている。蛍光法は、レポーター遺伝子産物として緑色蛋白質(green fluorescent protein;GFP)、又はその変異体を発現させることを特徴とするが、蛍光蛋白質は、自己蛍光(autofluorescence)のためバックグラウンドが高く、外部光源を必要とし、蛍光顕微鏡のような大型装置と精密なフィルターシステムを必要とする。また蛍光発色団が成熟するまでに短くても数時間から数日がかかる問題点があった。また蛍光顕微鏡を使う場合、一回に観察できる細胞数に限界があり、定量性に問題があった(非特許文献8)。
Measurement of molecular phenomena in vivo (for example, protein structural changes, phosphorylation, protein-protein interactions, production of secondary signaling substances, etc.) understand life phenomena and elucidate the molecular mechanisms involved It is extremely important above. Conventionally, various methods have been developed as a method for analyzing such a molecular phenomenon. Main methods are (a) fluorescent resonance energy transfer (FRET; Non-Patent Documents 1 and 2), (b) bioluminescent resonance energy. transfer (BRET; Non-Patent Document 3), (c) Protein complementation (Non-Patent Documents 4 and 5), (d) Measurement of transcriptional activity based on the binding affinity between a chemical substance and a receptor, etc. Examples include reporter gene assay (non-patent document 6) and (e) a two-hybrid assay (non-patent document 7) for analyzing protein interactions.
Reporter gene assays and two-hybrid assays, in particular using reporter genes, are the most universal and standard bioanalytical methods today, and the types of reporter genes used here are fluorescent protein genes (hereinafter referred to as fluorescent methods). The photoprotein gene (hereinafter referred to as the luminescence method) is mainly used. The fluorescent method is characterized by expressing a green protein (GFP) or a variant thereof as a reporter gene product. However, the fluorescent protein has a high background due to autofluorescence and an external light source. And requires a large-scale device such as a fluorescence microscope and a precise filter system. There is also a problem that it takes several hours to several days at the shortest time for the fluorescent chromophore to mature. In addition, when using a fluorescence microscope, there is a limit to the number of cells that can be observed at one time, and there is a problem in quantitativeness (Non-patent Document 8).
 一方、発光法は、外部刺激を検出する際、生物発光酵素(ルシフェラーゼ)を発現することを特徴とする。蛍光法に比べて、発光法は大型装置を必要としない上、測定の簡便さから、今日の多くのレポーター遺伝子を用いるアッセイ法で利用されているが、生物発光酵素を用いた場合、多くの長所にも関らず、解決すべき課題も含んでいる。その第1の理由は、蛍光色素に比べて生物発光酵素がおしなべて低輝度であることにある。蛍光色素に比べて低輝度であるため、発光法では高感度の計測装置を必要とし、単一細胞イメージングや細胞小器官レベルでの分子現象探索などには不向きであるとされている。また、十分な輝度を得るために、発現産物が蓄積されるための刺激時間を長く取る必要があった。また、第2の理由として、生物発光酵素の多くが単調な発色しか提供できず、色の選択肢が乏しいという問題点がある。発光の多色化の利点として、(ア)マルチ信号の同時計測、(イ)長波長発光の生体組織透過性のよさが取り上げられる。
 ところで、レポーター遺伝子としては、他にchloramphenicol acetyltransferase(CAT),β-galactosidase(β-gal),alkaline phosphatase(AP)等も従来から広く使われている。しかし、CATの標準法の感度は一般的に発光酵素法の感度より10倍から1000倍劣っている(非特許文献9)。同様に、β-galactosidaseやalkaline phosphataseも感度において劣るため、これらの蛋白質の発現が十分蓄積されるまで長い刺激を必要とする上に、発色反応のためにも15分から1時間の反応時間を必要とする。
 このように、従来のレポーター遺伝子を用いたアッセイ法の共通の大きな問題点としては、測定まで長いリガンド刺激時間を必要とする点が挙げられ、例えば標準的な方法で1日程度の刺激時間を必要とするため、細胞内で起こるダイナミックな分子現象を計測することはできない。また、従来のレポーター遺伝子を用いるアッセイ法の標準プロトコルでは、細胞をすり潰してから(ライセットを作る)計測に入るので、細胞ライセットを作るために約10-20分程度要することもアッセイ速度を遅くする原因となっていた。
 したがって、従来のレポーター遺伝子を用いたアッセイ法、特に発光酵素(ルシフェラーゼ)を搭載したレポータージーンアッセイとツーハイブリットアッセイにおけるリガンド刺激時間を短縮することが求められており、そのために、より高輝度で安定な生物発光、及び/又はより長波長側にシフトした生物発光を呈するルシフェラーゼ改変体の開発とその応用が望まれていた。
On the other hand, the luminescent method is characterized by expressing a bioluminescent enzyme (luciferase) when detecting an external stimulus. Compared with the fluorescence method, the luminescence method does not require a large-sized device and is used in many assay methods using many reporter genes today because of the ease of measurement. Despite its strengths, it also includes issues to be solved. The first reason is that the bioluminescent enzyme is generally lower in luminance than the fluorescent dye. Since the luminance is lower than that of fluorescent dyes, the luminescence method requires a highly sensitive measuring device and is not suitable for single-cell imaging or molecular phenomenon search at the organelle level. In addition, in order to obtain sufficient luminance, it is necessary to take a long stimulation time for the expression product to accumulate. The second reason is that many of the bioluminescent enzymes can only provide monotonous color development and there are few color choices. Advantages of multicolor emission include (a) simultaneous measurement of multiple signals and (b) good biological tissue permeability of long wavelength emission.
Meanwhile, chloramphenicol acetyltransferase (CAT), β-galactosidase (β-gal), alkaline phosphatase (AP) and the like have been widely used as reporter genes. However, the sensitivity of the CAT standard method is generally 10 to 1000 times inferior to that of the luminescent enzyme method (Non-patent Document 9). Similarly, β-galactosidase and alkaline phosphatase are also insensitive, so a long stimulus is required until the expression of these proteins is fully accumulated, and a reaction time of 15 minutes to 1 hour is also required for the color reaction. And
Thus, a common big problem of the conventional assay method using a reporter gene is that a long ligand stimulation time is required until measurement. For example, a standard method requires a stimulation time of about one day. Because it is necessary, it is impossible to measure dynamic molecular phenomena that occur in cells. In addition, in the standard protocol of the assay method using a conventional reporter gene, since the measurement is started after the cells are ground (making a lyset), it takes about 10-20 minutes to make the cell lyset. It was a cause of slowness.
Therefore, there is a demand for shortening the ligand stimulation time in the conventional assay method using a reporter gene, particularly a reporter gene assay and a two-hybrid assay equipped with a luminescent enzyme (luciferase). Development and application of luciferase variants that exhibit bioluminescence and / or bioluminescence shifted to longer wavelengths have been desired.
 本発明は、レポータージーンアッセイ又はツーハイブリットアッセイ等のレポーター遺伝子を用いた各種アッセイ法におけるリガンド刺激時間を短縮する改良方法の提供を目的とするものであり、具体的には、レポーター遺伝子として、より高輝度で安定な生物発光及び/又は長波長側にシフトした生物発光を呈するルシフェラーゼを発現する遺伝子改変体の利用法の提供を目的とする。 An object of the present invention is to provide an improved method for shortening the ligand stimulation time in various assay methods using a reporter gene such as a reporter gene assay or a two-hybrid assay. It is an object of the present invention to provide a method for using a genetically modified product that expresses a luciferase that exhibits a stable and bioluminescent light emission and / or bioluminescence shifted to a longer wavelength side.
 本発明者らは、既にガウシアルシフェラーゼ(GLuc)などの海洋動物由来の発光酵素の特定の位置に変異を導入することで、発光強度が高く、かつ安定であり、長波長にシフトした発光が得られることを解明しており、当該改変遺伝子のコドン最適化(codon optimization)を行うことによって、哺乳動物細胞内で効率的に超高輝度生物発光酵素が合成できるという知見を得ていた(特願2009-101025号)。
 そして、従来のレポーター遺伝子を用いるアッセイ法で1日以上のアッセイ時間が必要な、直接で最大の原因がレポーター蛋白質そのものの低輝度等に原因があるという認識のもとに、レポーター遺伝子として、本発明者らが開発した上記変異発光酵素改変体遺伝子を用いることに思い至った。
 具体的には、男性ホルモン応答配列(androgen response element;ARE)を持つレポーター発現用プラスミドの下流に搭載するレポーター遺伝子として、高輝度生物発光酵素遺伝子を採用し、レポータージーンアッセイ系を構築した(実施例1)ところ、従来のGLucそのものを搭載したプラスミド(pARE-GLuc)の場合に比べてより強い生物発光を示し、感度の良い検出が可能となった。生物発光が強いことから、少ないレポーター蛋白質でも既存の検出器で十分検出可能となり、レポーター蛋白質が蓄積するまで待つ時間が軽減できた。同様の効果を期待し、ツーハイブリットアッセイ系においても、上記変異発光酵素改変体遺伝子を用いた系を作成し実験を行ったところ、従来法に比べて半分以下の短い時間で同様の結果が得られ、アッセイ時間の短縮を達成できた(実施例2)。また、これらのレポーター遺伝子を用いたアッセイ系の最適計測条件を調べるために、システムを構成する各プラスミドの最適混合比(実施例3)、最適刺激物とその適正な刺激濃度の検討(実施例6)も行った。
 さらに、本発明では、発現された超高輝度変異発光酵素による発光強度の経時変化(kinetics)を利用した生物分析法であって、単位時間あたりの発光値の変化(RLU/sec)を分析指標として、定量的なリガンド計測が可能であることを見出し(実施例4)、女性ホルモン選択性・応答感度をも計測した(実施例5、6)。
 これによって、海洋動物由来の発光酵素の改変体遺伝子をレポーター遺伝子として利用した分析システムに関する本発明を完成した。
The present inventors have already introduced a mutation at a specific position of a luminescent enzyme derived from marine animals such as Gaussia luciferase (GLuc), so that luminescence intensity is high and stable, and luminescence shifted to a long wavelength is emitted. It has been clarified that it is possible to synthesize an ultra-bright bioluminescent enzyme efficiently in mammalian cells by codon optimization of the modified gene (specialty). (Application 2009-101025).
The reporter gene is recognized as a reporter gene based on the recognition that the most direct cause is the low brightness of the reporter protein itself. It came to mind using the said mutant luminescent enzyme modified gene which the inventors developed.
Specifically, a reporter gene assay system was constructed by adopting a high-luminance bioluminescent enzyme gene as a reporter gene mounted downstream of a reporter expression plasmid having an androgen response element (ARE) (Example) 1) However, compared with the case of the plasmid (pARE-GLuc) loaded with the conventional GLuc itself, it showed stronger bioluminescence and was able to detect with high sensitivity. Due to the strong bioluminescence, even a small amount of reporter protein can be detected with the existing detector, and the waiting time until the reporter protein accumulates can be reduced. In the two-hybrid assay system, the same results were obtained in less than half of the time required for the two-hybrid assay system. The assay time was shortened (Example 2). In addition, in order to investigate the optimum measurement conditions of the assay system using these reporter genes, examination of the optimum mixing ratio of each plasmid constituting the system (Example 3), the optimum stimulus and its appropriate stimulus concentration (Example) 6) was also performed.
Furthermore, the present invention is a bioanalytical method using kinetics of luminescence intensity by the expressed ultra-bright variant luminescent enzyme, wherein the change in luminescence value per unit time (RLU / sec) is an analysis index. As a result, it was found that quantitative ligand measurement was possible (Example 4), and female hormone selectivity and response sensitivity were also measured (Examples 5 and 6).
Thus, the present invention relating to an analysis system using a marine animal-derived luminescent enzyme variant gene as a reporter gene was completed.
 すなわち、本発明は、具体的には以下の通りのものである。
〔1〕 外部刺激に応じた細胞内での標的遺伝子発現の時期又は発現量を解析するための分析法に用いるレポーター遺伝子であって、海洋動物発光酵素のアミノ酸配列において、ガウシアルシフェラーゼ(GLuc)のアミノ酸配列上の89~118位までに相当する位置のアミノ酸残基のうち少なくとも1残基が置換されており、当該置換が、同89位、90位、95位、97位、100位、108位、112位、115位、及び118位に相当する位置の少なくとも1つから選ばれた位置のアミノ酸残基に対して同類アミノ酸置換(conservative amino acid replacement)であり、それによって発光機能が向上した変異発光酵素をコードする遺伝子からなることを特徴とする、レポーター遺伝子。
〔2〕 前記変異発光酵素をコードする遺伝子が、海洋動物発光酵素のアミノ酸配列において、GLucのアミノ酸配列上の89位、90位、97位、108位、112位、115位、もしくは118位に相当する位置の疎水性アミノ酸残基から、他の疎水性アミノ酸残基への置換、又は同95位もしくは100位の位置の水素結合を形成する親水性アミノ酸残基から他の親水性アミノ酸残基への置換を含む同類アミノ酸置換が施された変異発光酵素をコードするものである、前記〔1〕に記載のレポーター遺伝子。
〔3〕 前記同類アミノ酸置換が、海洋動物発光酵素のアミノ酸配列において、GLucのアミノ酸配列上の90位、108位、112位、115位、もしくは118位の位置に相当する位置のアミノ酸残基をロイシン(L)、トリプトファン(W)もしくはバリン(V)に置換するか、同89位もしくは97位の位置に相当する位置のアミノ酸残基をトリプトファン(W)に置換するか、同95位に相当する位置のアミノ酸残基をグルタミン酸(E)に置換するか、又は同100位に相当する位置のアミノ酸残基をアスパラギン(N)に置換することを含むものである、前記〔2〕に記載のレポーター遺伝子。
〔4〕 前記変異発光酵素をコードする遺伝子が、前記海洋動物発光酵素のアミノ酸配列において、GLucのアミノ酸配列上の90位に相当する位置のアミノ酸残基をロイシンに置換することを含む同類アミノ酸置換が施された変異発光酵素遺伝子である、前記〔1〕~〔3〕のいずれかに記載のレポーター遺伝子。
〔5〕 前記海洋動物発光酵素が、ガウシアルシフェラーゼ(GLuc)並びにカイシアルシフェラーゼ(MLuc、MpLuc1、及びMpLuc2)から選択されたいずれかの発光酵素である、前記〔1〕~〔4〕のいずれかに記載のレポーター遺伝子。
〔6〕 前記〔1〕~〔5〕のいずれかに記載のレポーター遺伝子を、外部刺激に対する応答配列又は外部刺激の応答により形成される融合蛋白に対する応答配列の下流に含んでなる発現ベクター。
〔7〕 前記〔6〕に記載の発現ベクターが導入された形質転換細胞。
〔8〕 前記〔7〕に記載の形質転換細胞を用いることを特徴とする、外部刺激に応じた細胞内での標的遺伝子発現の時期又は発現量を解析するための分析法。
〔9〕 前記外部刺激の強さを、基質添加後のレポーター遺伝子の発現に基づく生物発光の強度の上昇速度(RLU/sec)、又は応答曲線の面積を指標として定量化することを特徴とする、前記〔8〕に記載の分析法。
〔10〕 前記分析法が、レポータージーンアッセイ法又はツーハイブリットアッセイ法である、前記〔8〕又は〔9〕に記載の分析法。
〔11〕 前記〔10〕に記載のツーハイブリッドアッセイ法を構成する3種類のプラスミドの比率のうち、レポーター発現用プラスミドの割合を他のプラスミドの2倍以上に高めたことを特徴とする、分析法。
That is, the present invention is specifically as follows.
[1] A reporter gene used in an analysis method for analyzing the timing or amount of expression of a target gene in a cell in response to an external stimulus, and in the amino acid sequence of a marine animal luminescent enzyme, Gaussia luciferase (GLuc) At least one of the amino acid residues at positions corresponding to positions 89 to 118 in the amino acid sequence is substituted, and the substitution is performed at positions 89, 90, 95, 97, 100, Conservative amino acid replacement for amino acid residues at positions selected from at least one of positions corresponding to positions 108, 112, 115, and 118, thereby improving luminescence function A reporter gene comprising a gene encoding the mutated luminescent enzyme.
[2] The gene encoding the mutant luminescent enzyme is located at position 89, 90, 97, 108, 112, 115, or 118 on the amino acid sequence of GLuc in the amino acid sequence of marine animal luminescent enzyme. Substitution from the hydrophobic amino acid residue at the corresponding position to another hydrophobic amino acid residue, or from the hydrophilic amino acid residue forming a hydrogen bond at the 95th or 100th position to another hydrophilic amino acid residue The reporter gene according to the above [1], which encodes a mutant luminescent enzyme having a conservative amino acid substitution including a substitution for.
[3] The amino acid residue at the position corresponding to the 90th, 108th, 112th, 115th or 118th position on the amino acid sequence of GLuc in the amino acid sequence of marine animal luminescent enzyme, wherein the conservative amino acid substitution is Substitution with leucine (L), tryptophan (W) or valine (V), substitution of amino acid residue corresponding to position 89 or 97 with tryptophan (W), or equivalent to position 95 The reporter gene according to [2], which comprises substituting the amino acid residue at the position corresponding to glutamic acid (E) or the amino acid residue corresponding to position 100 with asparagine (N) .
[4] A conservative amino acid substitution, wherein the gene encoding the mutant luminescent enzyme comprises substituting leucine for the amino acid residue at position 90 on the amino acid sequence of GLuc in the amino acid sequence of the marine animal luminescent enzyme The reporter gene according to any one of the above [1] to [3], which is a mutant luminescent enzyme gene to which is applied.
[5] Any of the above [1] to [4], wherein the marine animal luminescent enzyme is any one of luminescent enzymes selected from Gaussia luciferase (GLuc) and Kaishi luciferase (MLuc, MpLuc1, and MpLuc2) A reporter gene according to any one of the above.
[6] An expression vector comprising the reporter gene according to any one of [1] to [5] downstream of a response sequence to an external stimulus or a response sequence to a fusion protein formed by a response to the external stimulus.
[7] A transformed cell into which the expression vector according to [6] is introduced.
[8] An analytical method for analyzing the timing or expression level of a target gene in a cell in response to an external stimulus, wherein the transformed cell according to [7] is used.
[9] The intensity of the external stimulus is quantified using the rate of increase in bioluminescence intensity (RLU / sec) based on the expression of the reporter gene after addition of the substrate or the area of the response curve as an index. The analysis method according to [8] above.
[10] The analysis method according to [8] or [9], wherein the analysis method is a reporter gene assay method or a two-hybrid assay method.
[11] Analysis characterized in that, among the ratios of the three types of plasmids constituting the two-hybrid assay method according to [10], the ratio of the plasmid for reporter expression is increased more than twice that of other plasmids. Law.
 本発明は、従来のレポータージーンアッセイ法、ツーハイブリッド法などレポーター遺伝子を用いる分析システムにおいて、本発明者らが開発した海洋動物由来の発光酵素の高輝度改変体遺伝子をレポーター遺伝子として用いることで、大幅にアッセイ時間を短縮することができた。また、各アッセイシステムにおいて、感度が良く定量的な計測が簡便に行えるという優れた改良方法を提供できた。このことは、従来レポータージーンアッセイが適用されていた、内分泌攪乱物質の網羅的な検出法や生体内のホルモン異常などの診断方法、またツーハイブリッド法が適用されていた、プロテオーム解析などにおける精度向上が達成できるだけでなく、従来不可能とされていた、細胞内又は細胞小器官レベルでの分子現象を短時間で観察するツールにもなり得ることを期待させるものでもある。 The present invention, in an analysis system using a reporter gene such as a conventional reporter gene assay method or a two-hybrid method, uses a marine animal-derived luminescent enzyme high-intensity variant gene developed by the present inventors as a reporter gene. The assay time could be shortened. Moreover, in each assay system, it was possible to provide an excellent improved method with high sensitivity and simple quantitative measurement. This is because the reporter gene assay has been applied to the comprehensive detection methods of endocrine disruptors, the diagnosis of hormonal abnormalities in vivo, and the two-hybrid method has been applied to improve the accuracy of proteome analysis. Not only can this be achieved, it can also be expected to be a tool for observing molecular phenomena at the intracellular or organelle level, which has been impossible in the past, in a short time.
各種海洋動物由来の発光酵素のアミノ酸配列の疎水性分布図。Hydrophobic distribution map of amino acid sequences of luminescent enzymes derived from various marine animals. 各種海洋動物由来の発光酵素のアミノ酸配列比較表。点線ボックスは推定酵素活性部位。Table of amino acid sequences of luminescent enzymes derived from various marine animals. The dotted box is the putative enzyme active site. GLucのアミノ酸配列における変異導入箇所マップ。Mutation introduction location map in the amino acid sequence of GLuc. 各GLuc変異体の生物発光強度の比較図(1)。発光スペクトルのピーク値を比較したグラフであり、本来のGLucの発光強度(左端)に比べた、相対的な生物発光強度を示している。なお、ここでは、細胞溶解時間を5分としたので、細胞小器官までは溶解されていない。Comparison diagram of bioluminescence intensity of each GLuc mutant (1). It is the graph which compared the peak value of the light emission spectrum, and has shown the relative bioluminescence intensity compared with the light emission intensity (left end) of original GLuc. Here, since the cell lysis time is 5 minutes, the organelle is not lysed. 各GLuc変異体の生物発光強度の比較図(2)。発光プレートリーダーで測定した各発光スペクトルの面積を指標としたグラフであり、本来のGLucの発光強度(左端)に比べた、相対的な生物発光強度を示している。なお、ここでは、細胞溶解時間を20分としたので、細胞小器官まで溶解された均一な細胞溶解液が得られている。また、一部高輝度GLuc変異体については、発光波長の最大値も併記した。Comparison diagram of bioluminescence intensity of each GLuc mutant (2). It is the graph which used the area of each luminescence spectrum measured with the luminescence plate reader as a parameter | index, and has shown the relative bioluminescence intensity compared with the luminescence intensity (left end) of original GLuc. Here, since the cell lysis time was set to 20 minutes, a uniform cell lysate dissolved up to the organelle was obtained. For some high-luminance GLuc mutants, the maximum emission wavelength is also shown. GLuc変異体の生物発光スペクトルのレッドシフト。上から、I90をTyr(Y)に変異した場合、H95とD100をそれぞれQとNに、H97をWに変異した場合。Red shift of the bioluminescence spectrum of GLuc mutant. From above, when I90 is mutated to Tyr (Y), H95 and D100 are mutated to Q and N, and H97 is mutated to W, respectively. GLuc変異体の生物発光スペクトルのレッドシフト。従来のGLucと比較した、Y97W、I90L、F89W/I90L/H95E/Y97W(Mon3)の発光スペクトル。Red shift of the bioluminescence spectrum of GLuc mutant. Emission spectra of Y97W, I90L, F89W / I90L / H95E / Y97W (Mon3) compared to conventional GLuc. 610nm Long-Pass filterを利用した、長波長生物発光強度の相対的強度。従来のGLuc(白棒)と比較した各発光変異体の波長。変異体が強い長波長の生物発光を示すことが分かる。Relative intensity of long wavelength bioluminescence intensity using 610nm Long-Pass filter. Wavelength of each luminescent variant compared to conventional GLuc (white bar). It can be seen that the mutant exhibits strong long wavelength bioluminescence. 代表的なルシフェラーゼの生物発光スペクトルの比較。GLuc変異体(黒線)は従来のGLuc(点線)、FLucやクリックビートルルシフェラーゼ(CBLuc)に比べてはるかに強い生物発光強度を示す。Comparison of bioluminescence spectra of representative luciferases. The GLuc mutant (black line) shows much stronger bioluminescence intensity than conventional GLuc (dotted line), FLuc and click beetle luciferase (CBLuc). 生物発光強度の経時変化比較。 (A)各変異体に基質(PBSバーファーに溶かす)を導入した後、その生物発光の経時変化を短時間(5秒間)観測した結果。I90L、H95E、Y97Wが、比較的に安定的な生物発光を示すことが分かる。(B)各変異体に基質(PBSバーファーに溶かす)を導入した後、その生物発光の経時変化を、比較的に長時間(10分)観測した結果。本来のGLucの発光値(白丸)の減少は激しい反面、I90L(黒四角)とI90V(灰色三角)の発光値は比較的安定的な発光強度を示す。Comparison of bioluminescence intensity over time. (A) The result of observing the change in bioluminescence over time for a short time (5 seconds) after introducing a substrate (dissolved in PBS buffer) into each mutant. It can be seen that I90L, H95E, and Y97W exhibit relatively stable bioluminescence. (B) The result of observing the change in bioluminescence over time for a relatively long time (10 minutes) after introducing a substrate (dissolved in PBS buffer) into each mutant. While the original GLuc luminescence value (white circles) decreased dramatically, the luminescence values of I90L (black squares) and I90V (gray triangles) showed relatively stable luminescence intensity. 生物発光強度の経時変化比較。 (C)各変異体に基質(Matthew改良バーファーに溶かす)を導入した後、その生物発光の経時変化を短時間(5秒間)観測した結果。(D)各変異体に基質(Matthew改良バーファーに溶かす)を段階的に導入した後、各段階別の生物発光の経時変化を1秒ずつ観測した結果。各変異体が非常に安定的で、強い生物発光を示していることが分かる。Comparison of bioluminescence intensity over time. (C) The result of observing the change in bioluminescence over time for a short time (5 seconds) after introducing a substrate (dissolved in Matthew modified buffer) into each mutant. (D) The result of observing the change in bioluminescence over time for each second after introducing a substrate (dissolved in Matthew modified buffer) into each mutant stepwise. It can be seen that each mutant is very stable and exhibits strong bioluminescence. MpLuc1(Metridia pacifica由来ルシフェラーゼ)変異体の発光特性。 (A)MpLuc1そのもの、MpLuc1のI114L変異体(I114L)、MpLuc1のY113W/I114L/H119E/Y121W変異体(MpLuc4)の発光スペクトル。(B)610nm Long-Pass filterを用いた、MpLuc1変異体の長波長生物発光値(610nm以上)の測定。Luminescent properties of MpLuc1 (Metridia pacifica-derived luciferase) mutant. (A) Emission spectra of MpLuc1 itself, MpLuc1 I114L mutant (I114L), and MpLuc1 Y113W / I114L / H119E / Y121W mutant (MpLuc4). (B) Measurement of long wavelength bioluminescence value (610 nm or more) of MpLuc1 mutant using 610 nm Long-Pass filter. MpLuc1変異体の発光安定性の計測。I114L及びMpLuc4のいずれもが、従来のMpLuc1そのものに比べて安定的な生物発光を示している。Measurement of luminescence stability of MpLuc1 mutant. Both I114L and MpLuc4 show stable bioluminescence compared to the conventional MpLuc1 itself. MLuc(Metridia longa由来ルシフェラーゼ)変異体の発光特性。 (A)MLucそのもの、MLucのI123L変異体(I123L)、MLucのY122W/I123L/H128E/Y130W変異(MLuc4)の発光スペクトル。(B)MLuc変異体の発光安定性の計測。MLuc4の方が、従来のMLucそのものに比べて安定的な生物発光を示している。Luminescent properties of MLuc (Metridia longa-derived luciferase) mutant. (A) Luminescence spectra of MLuc itself, MLuc I123L mutant (I123L), MLuc Y122W / I123L / H128E / Y130W mutation (MLuc4). (B) Measurement of luminescence stability of MLuc mutant. MLuc4 shows more stable bioluminescence than conventional MLuc itself. MLuc変異体の発光特性。 (C)610nm Long-Pass filterを用いた、MLuc変異体の長波長生物発光値(610nm以上)の測定。(D)基質導入前後におけるMLuc変異体発光値の経時変化。Luminescent properties of MLuc mutant. (C) Measurement of long wavelength bioluminescence value (more than 610nm) of MLuc mutant using 610nm Long-Pass filter. (D) Temporal change in luminescence value of MLuc mutant before and after substrate introduction. ヒトを含む哺乳動物での発現に適するGLuc変異体の塩基配列改変例(1)。ヒトを含む哺乳動物に適するコドンからなり、制限酵素サイトを導入したGLucのI90L変異体の塩基配列。下線は、制限酵素サイトの位置、斜体文字は変異箇所を示す。Example (1) of modifying the nucleotide sequence of a GLuc variant suitable for expression in mammals including humans. The base sequence of the I90L mutant of GLuc, which consists of codons suitable for mammals including humans and introduced with a restriction enzyme site. The underline indicates the position of the restriction enzyme site, and the italic letters indicate the mutation site. ヒトを含む哺乳動物での発現に適するGLuc変異体の塩基配列改変例(2)。哺乳動物に適するコドンからなり、EcoRV制限酵素サイトを導入したGLuc酵素変異体(I90Lを含む4箇所に変異を持つMon3)の塩基配列。下線は、制限酵素サイトの位置、斜体文字は変異箇所を示す。Example (2) of modification of the base sequence of a GLuc variant suitable for expression in mammals including humans. Nucleotide sequence of a GLuc enzyme mutant (Mon3 with mutations at four positions including I90L) that consists of codons suitable for mammals and has EcoRV restriction enzyme sites introduced. The underline indicates the position of the restriction enzyme site, and the italic letters indicate the mutation site. 本発明の発光酵素変異体をレポーター遺伝子とするレポータージーンアッセイ法。 (A)レポータージーンアッセイ法の作動原理図。リガンド共存下で転写因子が活性化され、レポーター蛋白質の発現に繋がる。(B)従来のガウシアルシフェラーゼ(GLuc)を搭載した場合と本発明の発光酵素変異体を搭載した場合とのレポータージーンアッセイにおける発光強度比較。変異発光酵素を用いた方が発光強度グラフの面積が広いことが確認できる。(C)前記(B)で得られた発光面積の比較グラフ。A reporter gene assay method using the luminescent enzyme variant of the present invention as a reporter gene. (A) Operation principle diagram of reporter gene assay method. A transcription factor is activated in the presence of a ligand, leading to expression of a reporter protein. (B) Comparison of luminescence intensity in the reporter gene assay when the conventional Gaussia luciferase (GLuc) is mounted and when the luminescent enzyme mutant of the present invention is mounted. It can be confirmed that the area of the luminescence intensity graph is wider when the mutant luminescent enzyme is used. (C) The comparison graph of the light emission area obtained by said (B). 本発明のレポーター遺伝子を用いたツーハイブリットアッセイ法。 (A)ツーハイブリットアッセイ法の作動原理図。リガンド共存下で、ER LBDのY537がリン酸化する。このリン酸化を、隣接したSrc SH2ドメインが認識して融合蛋白質間の結合が起こる。そのGal4転写活性の回復は、レポーター蛋白質の発現に繋がる。(B)各刺激時間による、相対的な発光強度の推移。リガンド刺激を6時間施した結果、従来のGLucを搭載した場合に比べて、当該発明者の高輝度変異体を搭載した場合がより優位な発光強度とS/N比を示した。A two-hybrid assay method using the reporter gene of the present invention. (A) Operation principle diagram of the two-hybrid assay method. ER LBD Y537 is phosphorylated in the presence of a ligand. This phosphorylation is recognized by the adjacent Src SH2 domain and binding between the fusion proteins occurs. The restoration of the Gal4 transcriptional activity leads to the expression of the reporter protein. (B) Transition of relative light emission intensity by each stimulation time. As a result of applying the ligand stimulation for 6 hours, the case where the high-intensity mutant of the present inventor was mounted showed more superior light emission intensity and S / N ratio compared to the case where the conventional GLuc was mounted. 本発明のレポーター遺伝子を用いたツーハイブリットアッセイ法。 (C)本来のGLucを搭載した場合(pG5-GLuc)の生物発光値の経時変化。(D)本発明のGLuc変異体を搭載した場合(pG5-I90L)の生物発光値の経時変化。GLucに比べて発光の絶対値が高く、短時間の女性ホルモン刺激によっても効率よく生物発光の上昇を示す。A two-hybrid assay method using the reporter gene of the present invention. (C) Change in bioluminescence value with time when the original GLuc was installed (pG5-GLuc). (D) Change in bioluminescence value with time when the GLuc mutant of the present invention is mounted (pG5-I90L). The absolute value of luminescence is higher than that of GLuc, and the bioluminescence is efficiently increased by a short female hormone stimulation. 本発明のレポーター遺伝子を用いたツーハイブリットアッセイ法。GLuc及びGLuc変異体(9096)をpG5ベクターに搭載した場合の、女性ホルモン刺激後(0時間、3時間、6時間、18時間)における生物発光値(発光光度計で測定)。従来法では3時間刺激によっては、リガンドの活性を分別できなかった反面、当該法は、3時間でも有意な発光強度の差が観察できた。図中、「9096」はGLuc変異体(I90L/T96S)を指す。A two-hybrid assay method using the reporter gene of the present invention. Bioluminescence values (measured with a luminescence photometer) after female hormone stimulation when GLuc and GLuc mutant (9096) are loaded on pG5 vector (0 hours, 3 hours, 6 hours, 18 hours). In the conventional method, the activity of the ligand could not be separated by the stimulation for 3 hours, but in this method, a significant difference in luminescence intensity could be observed even in 3 hours. In the figure, “9096” indicates a GLuc mutant (I90L / T96S). 本発明のレポーター遺伝子(9096)を搭載したツーハイブリットアッセイにおける、プラスミド導入量と発光強度との相関性。レポーターを発現するプラスミドの割合を増やした方が、リガンド感度の良さに繋がった。Correlation between the amount of plasmid introduced and luminescence intensity in a two-hybrid assay equipped with the reporter gene (9096) of the present invention. Increasing the percentage of the plasmid expressing the reporter led to better ligand sensitivity. 本発明のレポーター遺伝子(9096)を搭載したツーハイブリットアッセイにおける、レポーター酵素の応答速度に基づくリガンド活性測定法。刺激して直後に測定した場合(0h)と6時間刺激した場合(6h)との発光速度の比較。A method for measuring ligand activity based on the response speed of a reporter enzyme in a two-hybrid assay equipped with the reporter gene (9096) of the present invention. Comparison of luminescence rate when measured immediately after stimulation (0h) and when stimulated for 6 hours (6h). 本発明のレポーター遺伝子(9096)を搭載したツーハイブリットアッセイにおける、レポーター酵素の応答速度に基づくリガンド活性測定法。刺激時間を0,3,6,18時間とした場合の発光速度の上昇速度を示す。A method for measuring ligand activity based on the response speed of a reporter enzyme in a two-hybrid assay equipped with the reporter gene (9096) of the present invention. The rate of increase in the light emission rate when the stimulation time is 0, 3, 6, 18 hours is shown. 本発明のレポーター遺伝子を用いたツーハイブリットアッセイにおけるリガンド選択性。各変異体を搭載したアッセイ系を比べた結果、従来のGLucそのものを発現するアッセイ系より、本発明の変異発光酵素(8990又は9096)を発現するアッセイ系が、女性ホルモン(E2)に応答してより強い発光強度を示した。図中、「8990」はF89W/I90Lに変異を持つGLuc変異体、「9096」はI90L/T96Sに変異を持つGLuc変異体である。Ligand selectivity in a two-hybrid assay using the reporter gene of the present invention. As a result of comparing the assay systems loaded with each mutant, the assay system expressing the mutant luminescent enzyme (8990 or 9096) of the present invention responds to female hormone (E2) rather than the conventional assay system expressing GLuc itself. Showed a stronger emission intensity. In the figure, “8990” is a GLuc mutant having a mutation in F89W / I90L, and “9096” is a GLuc mutant having a mutation in I90L / T96S. 本発明のレポーター遺伝子を用いたツーハイブリットアッセイにおけるリガンド濃度依存性。女性ホルモン(E2)10-5M刺激に対してもっとも強い発光値を示した。Ligand concentration dependency in a two-hybrid assay using the reporter gene of the present invention. Female hormone (E2) showed the strongest luminescence value for 10 -5 M stimulation. (A)従来のGLucをベースにした一分子型生物発光プローブ(SimGR3)と、当該高輝度変異体をベースにした一分子型生物発光プローブ(8990N)の分子構造。(なお、ここで「8990N」は、酵素変異体「8990」を用いたプローブを表す。以下同様。) (B)従来のGLucをベースにした一分子型生物発光プローブ(SimGR3)と、当該高輝度変異体をベースにした一分子型生物発光プローブ(8990N)のリガンド感受性の比較。リガンド共存下で、8990Nの方がより優れたS/N比を示した。(A) Molecular structure of a conventional single molecule bioluminescent probe (SimGR3) based on GLuc and a single molecule bioluminescent probe (8990N) based on the high-intensity mutant. (Here, “8990N” represents a probe using the enzyme mutant “8990”. The same applies hereinafter.) (B) A conventional single molecule bioluminescent probe (SimGR3) based on GLuc Comparison of ligand sensitivity of single-molecule bioluminescent probe (8990N) based on luminance mutants. In the presence of the ligand, 8990N showed a better S / N ratio. (A)本発明のF89W/I90Lに変異を持つGLuc変異体(8990N)による生物発光の動物組織透過性の検討。マウスの左後背部及び右後背部のそれぞれの付け根で従来のGLucそのもの及び8990Nを発現させたところ、GLuc(左)に比べ、8990N(右)からの生物発光が強いことが分かる。 (B)ツーハイブリットアッセイ系に搭載した場合の生きた動物組織レベルでの生物発光の観測。COS-7細胞にpACT-SH2とpBIND-ER LBDに加えて、pG5-GLuc又はpG5-90Lを導入した形質変換細胞をそれぞれマウス左後背部と右後背部の付け根に移植し、女性ホルモン刺激の有無で測定。pG5-90Lを導入した組織(右:GLucのI90L変異体発現)からより強い生物発光が観測できた。 (C)実験(B)のマウスの各移植部位における相対的な発光値の比較。左からサイト(1)、(2)、(3)、(4)に相当する。(A) Examination of animal tissue permeability of bioluminescence by GLuc mutant (8990N) having mutation in F89W / I90L of the present invention. When the conventional GLuc itself and 8990N were expressed at the roots of the left back and right back of the mouse, it was found that bioluminescence from 8990N (right) was stronger than that of GLuc (left). (B) Observation of bioluminescence at the level of living animal tissue when mounted on a two-hybrid assay system. In addition to pACT-SH2 and pBIND-ER LBD, COS-7 cells were transplanted with transformed cells transfected with pG5-GLuc or pG5-90L, respectively, at the root of the left back of the mouse and right back of the mouse. Measured with or without. Stronger bioluminescence was observed from the tissue in which pG5-90L was introduced (right: GLuc expression of I90L mutant). (C) Comparison of relative luminescence values at each transplantation site of mouse in experiment (B). It corresponds to the sites (1), (2), (3), and (4) from the left. マンマリアンツーハイブリットアッセイを用いた生物発光特性の比較。当該発明の超高輝度生物発光酵素(I90Lや8990)の方が従来のRLuc8.6-535より発光強度(絶対値)及びS/N比が優れていることが確認できた。Comparison of bioluminescence properties using the Mann Marian two hybrid assay. It was confirmed that the ultra-bright bioluminescence enzyme (I90L or 8990) of the present invention was superior in luminescence intensity (absolute value) and S / N ratio than the conventional RLuc8.6-535. 真核細胞を用いた生物発光特性の比較。当該発明の超高輝度生物発光酵素(I90L)が従来のM43IやRLuc8.6-535に比べて優れた生物発光強度を示していることが分かる。Comparison of bioluminescence characteristics using eukaryotic cells. It can be seen that the ultra-bright bioluminescence enzyme (I90L) of the present invention exhibits superior bioluminescence intensity compared to conventional M43I and RLuc8.6-535. B16皮膚癌細胞(melanoma)の体内転移のイメージング。本発明で用いた高輝度生物発光酵素(I90L)と従来のGLucを発現する皮膚癌細胞をそれぞれ注射した場合における癌転移場所のイメージング比較。Imaging of B16 skin cancer cells (melanoma) metastasis. Imaging comparison of cancer metastasis location when skin cancer cells expressing high-intensity bioluminescent enzyme (I90L) and conventional GLuc used in the present invention are respectively injected. B16皮膚癌細胞(melanoma)の体内転移のイメージング。解剖による各臓器別生物発光強度の比較。肺及び子宮の発光値が格段に強いことがわかる。Imaging of B16 skin cancer cells (melanoma) metastasis. Comparison of bioluminescence intensity for each organ by dissection. It can be seen that the luminescence values of the lungs and uterus are remarkably strong.
1.本発明で用いる海洋動物由来発光酵素遺伝子の改変
(1)海洋動物由来発光酵素について
 本発明において「海洋動物発光酵素」というとき、広義には、ガウシア、ウミシイタケ(Renilla reniformis)、ウミホタル(Cypridina)、カイシア(Metridia)などと共に、発光プランクトンの仲間であるオベリン(Obelin)、アクアリン(aqualine)Pleuromanma、Oplophorus等も含まれ、これらの「発光性の海洋動物」が産生する発光酵素(ルシフェラーゼ)を指すが、ガウシアルシフェラーゼ(GLuc)、及びカイシアルシフェラーゼ(Metridia longa由来のMLucや、Metridia pacifica由来の発光酵素群であるMpLuc1、MpLuc2など)は、各酵素全体の親水性疎水性アミノ酸の分布が非常に類似しており、しかも推定酵素活性領域のアミノ酸配列類似性が極めて高い(図1)ので、これらのルシフェラーゼ群を単に「海洋動物発光酵素」ともいうが、特に「ガウシア類ルシフェラーゼ」ともいう。これらのGLuc、MLuc、MpLuc1、又はMpLuc2のアミノ酸配列及び/又はそれをコードする塩基配列に対して、80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有するアミノ酸配列及び/又は塩基配列にコードされる場合も包含される。ガウシア類ルシフェラーゼであるMLuc、MpLuc1、又はMpLuc2は、GLucよりも分子量が大きい点で若干異なっているが、上記のごとく配列上の類似性の他、基質や発光活性などの酵素的な特性もGLucとほとんど一致しているので、以下典型的なガウシアルシフェラーゼ(GLuc)について主に記述する。GLucにおいて得られた知見は他のガウシア類ルシフェラーゼにも適用することができる。以下、特に断らない限り、改変位置の表示は、GLucのアミノ酸配列上の位置で表す。例えば、GLucにおける90位のアミノ酸というとき、MLucのアミノ酸配列上では123位のアミノ酸に相当する。また、MpLuc1やMpLuc2の場合には、それぞれ114位、93位に相当する。
 ガウシアルシフェラーゼ(GLuc)は、以下のような特徴を持つ。
(ア)今まで発見された生物発光酵素の中で最も小さいため、分子イメージングに応用された場合、宿主細胞やホスト蛋白質への負担が格段に軽い。
(イ)pH・界面活性剤・化学変性剤に対して非常に抵抗力が強い。
(ウ)生物発光酵素の中で最も高輝度である。
(エ)酵素のturn-overが速い。従来のホタルルシフェラーゼに比べ7倍以上速い。
 その反面、GLucによる生物発光は反応条件に影響され易く、発光強度の落ち込みが激しく不安定なため、安定性が重要な条件となる発光分析用のレポーター(指標)としての使用には適さないとされていた。
1. Modification of marine animal-derived luminescent enzyme gene used in the present invention (1) Marine animal-derived luminescent enzyme In the present invention, the term “marine animal luminescent enzyme” refers broadly to Gaussia, Renilla reniformis, Cypridina, In addition to Catria (Metridia) etc., the luminescent plankton companions Obelin, aqualine Pleuromanma, Oplophorus, etc. are also included, which refers to the luminescent enzyme (luciferase) produced by these “luminescent marine animals” , Gaussia luciferase (GLuc), and Caucasian luciferase (MLuc derived from Metridia longa, MpLuc1, MpLuc2, etc., a luminescent enzyme group derived from Metridia pacifica) have a very high distribution of hydrophilic and hydrophobic amino acids throughout each enzyme. These lucifers are similar and the amino acid sequence similarity of the putative enzyme active region is extremely high (FIG. 1). The hydrolase group also referred to simply as "marine animals light-emitting enzyme," but, also referred to as a particularly "Gaussia such luciferase". An amino acid sequence having 80% or more, preferably 90% or more, more preferably 95% or more identity with the amino acid sequence of GLuc, MLuc, MpLuc1, or MpLuc2 and / or the base sequence encoding the amino acid sequence and The case encoded by the nucleotide sequence is also included. The Gaucian luciferases MLuc, MpLuc1, or MpLuc2 are slightly different in terms of molecular weight compared to GLuc, but in addition to the similarity in sequence as described above, the enzymatic properties such as substrate and luminescence activity are also GLuc. The following is a description of the typical Gaussia luciferase (GLuc). The knowledge gained in GLuc can be applied to other Gaussia luciferases. Hereinafter, unless otherwise specified, the indication of the modified position is represented by the position on the amino acid sequence of GLuc. For example, the 90th amino acid in GLuc corresponds to the 123rd amino acid in the MLuc amino acid sequence. In the case of MpLuc1 and MpLuc2, they correspond to the 114th and 93rd positions, respectively.
Gaussia luciferase (GLuc) has the following characteristics.
(A) Since it is the smallest bioluminescent enzyme discovered so far, when applied to molecular imaging, the burden on host cells and host proteins is much lighter.
(I) Extremely strong resistance to pH, surfactants and chemical modifiers.
(C) Highest brightness among bioluminescent enzymes.
(D) Turn-over of enzyme is fast. 7 times faster than conventional firefly luciferase.
On the other hand, bioluminescence generated by GLuc is easily affected by reaction conditions, and the drop in emission intensity is severe and unstable, so it is not suitable for use as a reporter (index) for emission analysis where stability is an important condition. It had been.
(2)発光機能向上のための改変法
(2-1)海洋動物発光酵素の発光機能向上及びその測定方法
 本発明において海洋動物発光酵素の機能向上というとき、レポーター遺伝子発現を観察する上で重要な発光強度の増強及び発光強度の経時的な安定性向上を主にめざすものであるが、発光の波長を長波長へシフトさせることも含まれる。長波長側へシフトさせることによって細胞、皮膚などからの透過性が増すことになるため、レポーター遺伝子の用途を広げる上で重要な性質である。
 発光強度は、基質を添加後に従来の発光分光光度計を用い、特定の波長領域における発光強度を計測すれば二次元情報を収得でき、当該計測を経時的に行えば発光の経時的安定性も測定できる。発光プレートリーダーを用いることもでき、サンプル処理能が優れているためより正確なデータが取得できる。その際、細胞溶解(ライシス)時間を充分に(20分程度)とった上で各発光スペクトルの面積を測定する。また、長波長側へのシフトは、波長スキャンする方法、又は長波長フィルターを設けることによって測定できる。
(2) Modification method for improving luminescent function (2-1) Improvement of luminescent function of marine animal luminescent enzyme and measuring method thereof In the present invention, when the function of marine animal luminescent enzyme is improved, it is important for observing reporter gene expression. The main aim is to increase the emission intensity and to improve the stability of the emission intensity over time, but also includes shifting the emission wavelength to a longer wavelength. Shifting to the longer wavelength side increases permeability from cells, skin, etc., which is an important property for expanding the use of reporter genes.
The emission intensity can be obtained by measuring the emission intensity in a specific wavelength region using a conventional emission spectrophotometer after the addition of the substrate, so that two-dimensional information can be obtained. It can be measured. A light-emitting plate reader can also be used, and more accurate data can be acquired because of excellent sample processing ability. At that time, the area of each emission spectrum is measured after sufficient lysis time (about 20 minutes). Further, the shift to the long wavelength side can be measured by a wavelength scanning method or by providing a long wavelength filter.
(2-2)改変方法について
 本発明の海洋動物発光酵素のアミノ酸配列を改変するためには、当該アミノ酸配列自体の所望のアミノ酸残基を化学的に変更することも可能であるが、一般的には当該酵素をコードする塩基配列中の、置換すべきアミノ酸に対応する塩基をポイント変異させればよい。塩基の変異方法は部位突然変異法など周知の方法を適宜用いることができる。本発明の実施の態様では先の特許出願(特願2009-101025号)に記載されたように、「クイックチェンジ法」(非特許文献10)に従ってポイント変異を導入したが、それには限定されない。
(2-2) Modification Method In order to modify the amino acid sequence of the marine animal luminescent enzyme of the present invention, a desired amino acid residue of the amino acid sequence itself can be chemically changed. In this case, the base corresponding to the amino acid to be substituted in the base sequence encoding the enzyme may be point mutated. As a base mutation method, a known method such as a site mutation method can be appropriately used. In the embodiment of the present invention, as described in the previous patent application (Japanese Patent Application No. 2009-101025), the point mutation was introduced according to the “quick change method” (Non-patent Document 10), but this is not limitative.
(2-3)変異発光酵素の製造及び発光機能の解析
 本発明者らは、海洋動物発光酵素のうちで典型的な発光酵素の一つであるGLucに対して、先の特許出願(特願2009-101025号)に記載された改変のストラテジーに基づいて、その酵素活性領域(GLucの89~118位)を構成するアミノ酸残基の1個以上に対して「同類アミノ酸置換(conservative amino acid replacement)」を施す改変を行った。
 具体的には、ガウシア類ルシフェラーゼの典型例としてのGLucに対して、その活性部位と推定される部位89位~118位中の18箇所の位置に、同類アミノ酸置換となる変異導入のストラテジーを検討し、57種類のGLuc変異体をコードするDNAを作製した(図2A)GLuc変異体DNAを挿入したpcDNA3.1(+)ベクターを、12穴プレート上で培養したCOS-7細胞に導入し、16時間インキュベーションした。その後、各ウェル上のCOS-7細胞を細胞溶解バーファーに5分間浸すことによって細胞溶解液を作製し、発光酵素に特異的な基質(セレンテラジン)存在下でのスペクトルを、蛍光光度計(F-7000,Hitachi)を用いて測定し、導入した変異の有効性を検討した(図2B-1)。細胞溶解液に浸す時間を20分にし、各発光スペクトルの面積を発光プレートリーダーで測定した場合は図2(B-2)に示される。改変前のGLuc自体がルシフェラーゼ類の中でも特に強い発光強度を示すルシフェラーゼであったことから見て、本発明で用いたこれらの変異発光酵素の発光強度の強さがわかる。
 また、従来のGLucと比較した、Y97W、I90L、F89W/I90L/H95E/Y97W(Mon3)の発光スペクトルを図2(D)として示し、610nm Long-Pass filterを利用した、長波長領域における生物発光強度の相対的強度(図2E)から見て、各種変異体が長波長側で強い生物発光を示すことが分かる。「Mon3」は発光強度が高まっただけでなく、もとのGLucの吸収波長からみて35nmもの長波長シフトが観察されたことになる。このような長波長の生物発光は、生体の組織透過性が向上するため、今後優れた分析信号としての用途での利用価値が高い。
 さらに、生物発光強度の安定性をみるため、各変異体に基質(PBSバーファーに溶かす)を導入し、その生物発光の経時変化を観測した。I90L、H95E、Y97Wについて5秒間観測したところ比較的安定的な発光強度を示し(図4A)、さらに長時間(10分)観測した結果は、本来のGLucの発光値(白丸)の減少は激しい反面、I90L(黒四角)とI90V(灰色三角)の発光値は比較的安定的な発光強度を示した(図4B)。各変異体に基質(Matthew改良バーファーに溶かす)を導入した後、その生物発光の経時変化を短時間(5秒間)観測した結果(図4C)も同様であった。また、各変異体に基質(Matthew改良バーファーに溶かす)を段階的に導入した後、各段階別の生物発光の経時変化を1秒ずつ観測した結果(図4D)も、各変異体が非常に安定的で強い生物発光を示していることが分かる。
 GLuc変異体の基質としては、GLucの標準基質となるセレンテラジン(coelenterazine;CTZ)が高い発光強度を示す点で好ましいが、セレンテラジンの種類を変えることでピーク値を示す波長が若干シフトする効果を得ることができる(先の特許出願2009-101025号)。
(2-3) Production of Mutant Luminescent Enzyme and Analysis of Luminescent Function The present inventors have filed an earlier patent application (patent application) against GLuc, which is one of marine animal luminescent enzymes. Based on the modification strategy described in 2009-101025), one or more of the amino acid residues constituting the enzyme active region (GLuc positions 89 to 118) are “conservative amino acid replacement”. ) ”Was made.
Specifically, for GLuc, which is a typical example of Gaussia luciferase, we investigated a strategy for introducing a mutation that results in substitution of conservative amino acids at 18 positions in positions 89 to 118 that are presumed to be active sites. Then, DNAs encoding 57 types of GLuc mutants were prepared (FIG. 2A). The pcDNA3.1 (+) vector inserted with the GLuc mutant DNA was introduced into COS-7 cells cultured on a 12-well plate, Incubated for 16 hours. Subsequently, COS-7 cells in each well were immersed in a cell lysis buffer for 5 minutes to prepare a cell lysate, and the spectrum in the presence of a substrate specific to the luminescent enzyme (coelenterazine) was measured using a fluorometer (F- 7000, Hitachi) and the effectiveness of the introduced mutation was examined (FIG. 2B-1). FIG. 2B-2 shows the case where the time of immersion in the cell lysate is 20 minutes and the area of each emission spectrum is measured with a luminescence plate reader. From the fact that GLuc itself before modification was luciferase showing particularly strong luminescence intensity among luciferases, the intensity of luminescence intensity of these mutant luminescence enzymes used in the present invention can be seen.
In addition, the emission spectra of Y97W, I90L, F89W / I90L / H95E / Y97W (Mon3) compared with the conventional GLuc are shown in FIG. 2D, and bioluminescence in the long wavelength region using a 610 nm long-pass filter is shown. From the relative intensity of intensity (FIG. 2E), it can be seen that various mutants exhibit strong bioluminescence on the long wavelength side. “Mon3” not only increased the emission intensity, but a long wavelength shift of 35 nm was observed from the absorption wavelength of the original GLuc. Such long-wavelength bioluminescence has high utility value for use as an excellent analysis signal in the future because the tissue permeability of the living body is improved.
Furthermore, in order to check the stability of the bioluminescence intensity, a substrate (dissolved in PBS buffer) was introduced into each mutant, and the change in bioluminescence with time was observed. When observed for 5 seconds for I90L, H95E, and Y97W, they show relatively stable luminescence intensity (Fig. 4A). The result of observation for a longer time (10 minutes) shows that the decrease in the original GLuc luminescence value (white circle) is severe. On the other hand, the emission values of I90L (black square) and I90V (gray triangle) showed relatively stable emission intensity (FIG. 4B). The results of observing the change in bioluminescence over time for a short time (5 seconds) after introducing a substrate (dissolved in Matthew modified buffer) into each mutant were the same (FIG. 4C). Moreover, after introducing a substrate (dissolved in Matthew modified buffer) into each mutant stepwise, the results of observing the change in bioluminescence over time for each step for one second (FIG. 4D) are also very high. It can be seen that it shows stable and strong bioluminescence.
As a substrate for the GLuc mutant, coelenterazine (CTZ), which is the standard substrate for GLuc, is preferable in that it exhibits high emission intensity, but by changing the type of coelenterazine, the wavelength at which the peak value is shown is slightly shifted. (Prior Patent Application No. 2009-101025).
(2-4)他のガウシア類ルシフェラーゼの改変体
 ガウシアときわめて類似したガウシア類海洋動物である、カイシア(Metridia pacifica又はMetridia longa)由来のガウシア類ルシフェラーゼ、具体的にはMpLuc1(Metridia pacifica由来)及びMLuc(Metridia longa由来)のルシフェラーゼにおいても、GLucのアミノ酸配列の90位に相当するMpLuc1の114位の位置の同類アミノ酸置換による変異体(MpLuc1-I114L変異体)及びMLucの123位の位置の同類アミノ酸置換による変異体(MLuc-I123L変異体)と共に、GLucのF89W/I90L/H95E/Y97W(Mon3)の変異体に対応するMpLuc1のY113W/I114L/H119E/Y121W変異体(MpLuc4)及びMLucのY122W/I123L/H128E/Y130W変異体(MLuc4)を作製し、その発光特性を計測したところ、GLuc改変体の場合と同様に生物発光強度が高まり、安定性も増し、かつ長波長側にシフトするという顕著な効果が達せられ(図5A~C、図6A~D)、GLucでの知見は全て他のガウシア類ルシフェラーゼに対しても適用できることが確かめられた。
(2-4) Variants of other Gaussia luciferases Gausia luciferases derived from caussia (Metridia pacifica or Metridia longa), which are Gausia marine animals very similar to Gaussia, specifically MpLuc1 (from Metridia pacifica) and In MLuc (from Metridia longa) luciferase, a mutant (MpLuc1-I114L mutant) due to conservative amino acid substitution at position 114 of MpLuc1, corresponding to position 90 of the amino acid sequence of GLuc, and conservative at position 123 of MLuc MpLuc1 Y113W / I114L / H119E / Y121W mutant (MpLuc4) and MLuc Y122W corresponding to the GLuc F89W / I90L / H95E / Y97W (Mon3) mutant as well as mutants due to amino acid substitution (MLuc-I123L mutant) / I123L / H128E / Y130W mutant (MLuc4) was prepared, and its luminescence characteristics were measured. As in the case of the GLuc variant, bioluminescence intensity increased, stability increased, and the wavelength shifted to longer wavelengths. Remarkable effect is achieved (FIGS. 5A ~ C, FIG. 6A ~ D), findings in GLuc was confirmed to be applicable also to all other Gaussia class luciferase.
(2-5)発光機能が向上した本発明に用いる変異発光酵素
 以上の結果からみて、海洋動物発光酵素(ガウシア類ルシフェラーゼ)において、GLucにおけるアミノ酸配列89位、90位、95位、97位、100位、108位、112位、115位、もしくは118位に相当するアミノ酸残基の1個以上に対して「同類アミノ酸置換(conservative amino acid replacement)」を施すことによって、発光酵素の輝度が高まると同時に発光強度が安定化し、又は長波長へのシフトが起こるという発光酵素活性機能の向上が達成できる。具体的には、同89位、90位、97位、108位、112位、115位、もしくは118位に対応する疎水性アミノ酸残基をそれぞれ他の疎水性アミノ酸残基に変異させた場合に、発光強度増加又は長波長へのシフトが起こるという発光酵素活性機能が向上する。特に、同90位、108位、112位、115位、もしくは118位の疎水性でかつ非極性アミノ酸残基から、他の疎水性でかつ非極性アミノ酸残基への変異、又は同89位もしくは97位の位置の芳香族アミノ酸残基から他の芳香族アミノ酸残基への変異を起こさせることで発光酵素の強度が高まると共に安定化し、しかも長波長へのシフトが起こる。また、同95位もしくは100位の位置の水素結合を形成する親水性アミノ酸残基から他の親水性アミノ酸残基への変異により長波長へのシフトが起こる。
 すなわち、本発明における発光機能が向上した変異発光酵素というとき、海洋動物発光酵素(ガウシア類ルシフェラーゼ)において、GLucにおけるアミノ酸位置89~118位までに相当する位置のアミノ酸残基のうち少なくとも1残基が置換されている変異発光酵素であって、当該置換が、同89位、90位、95位、97位、100位、108位、112位、115位、もしくは118位に相当する位置の少なくとも1つから選ばれた位置のアミノ酸残基に対して同類アミノ酸置換(conservative amino acid replacement)を施す置換が含まれている。
 好ましくは、同90位、108位、112位、115位、もしくは118位の疎水性でかつ非極性アミノ酸残基を、他の疎水性でかつ非極性アミノ酸残基への変異を含むか、同89位もしくは97位の位置の芳香族アミノ酸残基から他の芳香族アミノ酸残基への変異を含むか、又は同95位もしくは100位の位置の水素結合を形成する親水性アミノ酸残基から他の親水性アミノ酸残基への変異を含むものである。
 さらに好ましくは、GLucのアミノ酸配列上の89位に相当する位置をトリプトファンに、90位をロイシンもしくはバリンに、95位をグルタミン酸に、97位をトリプトファンに、108位をバリンに、112位をロイシンもしくはバリンに、115位をバリンに、又は118位をロイシンもしくはバリンに置換する場合が、特に顕著な発光強度増強を示し、長波長シフトも起こす。特に同90位でのロイシン変異体(GLuc-I90L、MpLuc1-I114L、MpLuc1-I114L)は、輝度も高いばかりか長波長シフトも顕著な優れた高輝度発光酵素である。他にも、同95位及び100位の位置での水素結合を形成する親水性アミノ酸であるグルタミン又はアスパラギンへの変異体は長波長シフトを起こさせる。
 このような1アミノ酸変異体だけではなく、2箇所以上の位置を同類置換させることでさらに高発光機能を持たせることができる。具体的には、GLucのアミノ酸配列上の90位に相当する位置のイソロイシンをロイシンに置換すると共に、同89位のトリプトファン置換又は115位でのロイシン置換を同時に行った2箇所変異体(GLuc-F89W/I90L、又はGLuc-I90L/I115L)、及び同90位のロイシン置換、同89位のトリプトファン置換、同95位のグルタミン酸置換と共に同97位のトリプトファン置換を同時に行った4箇所変異体(GLuc-F89W/I90L/H95E/Y97W(Mon3)、MpLuc-Y113W/I114L/H119E/Y121W(MpLuc4)及びMLuc-Y122W/I123L/H128E/Y130W(MLuc4))は、いずれも顕著な発光強度を示すと共に長波長側への顕著なシフトも起こす画期的な高輝度発光酵素である。
 なお、本発明において「変異発光酵素(改変ルシフェラーゼ)」というとき、活性中心に相当する領域である、GLucのアミノ酸配列上の89~118位までに相当する位置のアミノ酸配列中には、原則としてもとのガウシア類ルシフェラーゼのアミノ酸配列に対して、上記「同類アミノ酸置換」以外の変異がないことが望ましい。しかし、当該領域以外の配列であれば酵素全体の立体構造が大きく変わらない範囲内の変異であれば許容でき、特にN又はC末端部分の1部、例えば1~50、好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10アミノ酸残基が削除されている場合も含まれる。具体的には、上記改変後のガウシア類ルシフェラーゼのアミノ酸配列において、GLucのアミノ酸配列上の89~118位までに相当する領域を除くアミノ酸配列が、70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%の同一性のあるアミノ酸配列であると表現できる。
(2-5) Mutant luminescent enzyme used in the present invention with improved luminescent function From the above results, in marine animal luminescent enzyme (Gaussia luciferase), amino acid sequence 89th, 90th, 95th, 97th in GLuc, Luminescence of the luminescent enzyme is increased by applying “conservative amino acid replacement” to one or more amino acid residues corresponding to positions 100, 108, 112, 115, or 118. At the same time, it is possible to achieve an improvement in the function of the luminescent enzyme activity in which the luminescence intensity is stabilized or a shift to a longer wavelength occurs. Specifically, when the hydrophobic amino acid residues corresponding to the 89th, 90th, 97th, 108th, 112th, 115th, or 118th position are mutated to other hydrophobic amino acid residues, respectively. In addition, the function of luminescent enzyme activity is improved such that the luminescence intensity increases or shifts to a longer wavelength. In particular, mutations from hydrophobic and nonpolar amino acid residues at positions 90, 108, 112, 115, or 118 to other hydrophobic and nonpolar amino acid residues, or position 89 or By causing a mutation from the aromatic amino acid residue at position 97 to another aromatic amino acid residue, the intensity of the luminescent enzyme is increased and stabilized, and a shift to a longer wavelength occurs. In addition, a shift to a longer wavelength occurs due to a mutation from a hydrophilic amino acid residue that forms a hydrogen bond at the 95th or 100th position to another hydrophilic amino acid residue.
That is, when the mutant luminescent enzyme having an improved luminescent function in the present invention is used, in the marine animal luminescent enzyme (Gaussia luciferase), at least one of amino acid residues at positions corresponding to amino acid positions 89 to 118 in GLuc. Wherein the substitution is at least at a position corresponding to position 89, 90, 95, 97, 100, 108, 112, 115, or 118. Substitutions that include conservative amino acid replacements for amino acid residues at positions selected from one are included.
Preferably, a hydrophobic and nonpolar amino acid residue at position 90, 108, 112, 115, or 118 includes a mutation to another hydrophobic and nonpolar amino acid residue, or the same Others from the hydrophilic amino acid residue containing a mutation from the aromatic amino acid residue at position 89 or 97 to another aromatic amino acid residue or forming a hydrogen bond at position 95 or 100 Including a mutation to a hydrophilic amino acid residue.
More preferably, the position corresponding to position 89 on the amino acid sequence of GLuc is tryptophan, position 90 is leucine or valine, position 95 is glutamic acid, position 97 is tryptophan, position 108 is valine, position 112 is leucine. Alternatively, substitution of valine, position 115 with valine, or position 118 with leucine or valine shows particularly significant emission intensity enhancement and also a long wavelength shift. In particular, leucine mutants at position 90 (GLuc-I90L, MpLuc1-I114L, MpLuc1-I114L) are high-intensity luminescent enzymes that have not only high brightness but also remarkable long-wavelength shift. In addition, mutants to glutamine or asparagine, which are hydrophilic amino acids that form hydrogen bonds at positions 95 and 100, cause a long wavelength shift.
Not only such a single amino acid mutant but also two or more positions can be subjected to the same substitution, so that a higher light emission function can be provided. Specifically, the isoleucine at the position corresponding to position 90 on the amino acid sequence of GLuc was substituted with leucine, and at the same time, tryptophan substitution at position 89 or leucine substitution at position 115 (GLuc- F89W / I90L, or GLuc-I90L / I115L) and four mutants (Glucuc) in which substitution of leucine at position 90, substitution of tryptophan at position 89, substitution of glutamic acid at position 95 and tryptophan substitution at position 97 were performed simultaneously -F89W / I90L / H95E / Y97W (Mon3), MpLuc-Y113W / I114L / H119E / Y121W (MpLuc4) and MLuc-Y122W / I123L / H128E / Y130W (MLuc4)) all show significant emission intensity and long It is an epoch-making high-intensity luminescent enzyme that also causes a remarkable shift to the wavelength side.
In the present invention, when “mutant luminescent enzyme (modified luciferase)” is used, the amino acid sequence corresponding to positions 89 to 118 on the amino acid sequence of GLuc, which is a region corresponding to the active center, is in principle It is desirable that the amino acid sequence of the original Gaussia luciferase has no mutation other than the above-mentioned “similar amino acid substitution”. However, as long as it is a sequence other than the region, a mutation within the range in which the three-dimensional structure of the whole enzyme does not change greatly is acceptable, and in particular, a part of the N- or C-terminal portion, for example, 1 to 50, preferably 1 to 30, More preferably 1 to 20, even more preferably 1 to 10 amino acid residues are deleted. Specifically, in the amino acid sequence of the modified Gaussia luciferase, the amino acid sequence excluding the region corresponding to positions 89 to 118 on the GLuc amino acid sequence is 70% or more, preferably 80% or more, more preferably Can be expressed as an amino acid sequence having 90% or more, most preferably 95% identity.
(2-6)変異発光酵素遺伝子の哺乳動物適合性コドンへの変更について
 後述のように、本発明における変異発光酵素遺伝子をレポーター遺伝子として用いる場合は、典型的にはレポータージーンアッセイ法、ツーハイブリッド法などの従来から確立している宿主細胞系内で行われるものであり、本発明の変異発光酵素遺伝子を標的遺伝子のプロモーターと結合してベクターを作製し、宿主細胞へ導入し培養する一連の操作手順は全て周知方法が適用できる。
 そして、その際用いる変異発光酵素遺伝子は、用いる宿主細胞に応じて当該細胞に適したコドンに変更することで、宿主細胞内で発現しやすい塩基配列にする改変をしておくことが好ましい。また、ベクターに挿入するための制限酵素サイトを設ける改変も適宜行う必要がある。これらの工程も周知方法が適用できるが、1例として、ヒトなどの哺乳動物の生体内で用いる場合、又はインビトロの哺乳動物細胞内で用いることを想定した改変体を図7(A),(B)として示す。なお、その際の機能向上改変ストラテジーについては、先の出願(特願2009-101025号)に詳細に記載している。
(2-6) Change of mutant luminescent enzyme gene to mammal compatible codon As described later, when the mutant luminescent enzyme gene of the present invention is used as a reporter gene, typically, a reporter gene assay method or a two-hybrid method is used. A series of operations for producing a vector by combining the mutant luminescent enzyme gene of the present invention with a promoter of a target gene, introducing it into a host cell, and culturing it. All known procedures can be applied.
The mutant luminescent enzyme gene used at that time is preferably modified to a base sequence that is easily expressed in the host cell by changing it to a codon suitable for the cell depending on the host cell used. In addition, it is necessary to appropriately perform modification to provide a restriction enzyme site for insertion into a vector. A well-known method can also be applied to these steps, but as an example, when used in a living body of a mammal such as a human, or a modified body assumed to be used in a mammalian cell in vitro, FIG. 7 (A), ( Shown as B). The function improvement modification strategy at that time is described in detail in the previous application (Japanese Patent Application No. 2009-101025).
3.レポーター遺伝子を用いる分析システム
 レポーター遺伝子は、組換えDNA技術によって組換え蛋白質が作製される際の遺伝子発現の時期及び発現量の解析のために従来から用いられており、特に外部刺激に応答した発現時期及び発現量変化を示す指標として広く用いられている。本発明において、レポーター遺伝子を用いる分析システムというとき、典型的にはレポータージーンアッセイ、及びツーハイブリッドアッセイなどであるが、他にPSA(protein splicing assay)、PCA(protein complementation assay),fluorescence anisotropy等も含まれる。以下、典型的な分析システムである、レポータージーンアッセイ、及びツーハイブリッドアッセイについて詳細に説明する。
3. Analytical systems using reporter genes Reporter genes have been used for analysis of gene expression timing and expression levels when recombinant proteins are produced by recombinant DNA technology, especially in response to external stimuli. It is widely used as an index indicating the time and expression level change. In the present invention, an analysis system using a reporter gene is typically a reporter gene assay, a two-hybrid assay, etc., but also includes PSA (protein splicing assay), PCA (protein complementation assay), fluorescence anisotropy, etc. It is. Hereinafter, a reporter gene assay and a two-hybrid assay, which are typical analysis systems, will be described in detail.
(1)レポータージーンアッセイ
 レポータージーンアッセイ法は、外部刺激による転写因子の活性化及び遺伝子の発現調節の解析手段として繁用されているが、典型的には核内受容体を介したシグナル伝達を攪乱する内分泌攪乱物質(環境ホルモン)の検出に用いられている。核内受容体を介したシグナル伝達に関連した標的遺伝子(例えば、ホルモン応答性遺伝子)の発現は、リガンドと受容体の複合体が当該遺伝子の転写調節するシス領域(ホルモン応答配列;hormone response element)に結合することで引き起こされる。この各種ホルモン応答性遺伝子のシス領域の下流にルシフェラーゼなどのレポーター遺伝子を組み込んだプラスミドを細胞内に導入し、リガンドとなり得るホルモン分子又は内分泌攪乱物質量を生物発光量などで検出するアッセイ法である。
 その際の宿主細胞としては、一般的な遺伝子組換えに用いられる哺乳動物細胞のCOS細胞、CHO-K1細胞、HeLa細胞、HEK293細胞、NIH3T3細胞などが好ましく用いられるが、酵母細胞、大腸菌など細菌細胞、昆虫細胞などでも良いが、主要な用途としては、ヒトをはじめ哺乳動物の生体内で、又はインビトロの哺乳動物細胞内で用いる場合が多い。その際、本発明の変異発光酵素遺伝子は、用いる宿主細胞に応じて当該細胞に適したコドンに変更することで、宿主細胞内で発現しやすい塩基配列にする改変をしておくことが好ましい。また、ベクターに挿入するための制限酵素サイトを設ける改変も適宜行う必要があるが、これらの工程も周知方法が適用できる。
(1) Reporter gene assay The reporter gene assay method is frequently used as an analysis means of transcription factor activation and gene expression regulation by external stimulation, but typically disrupts signal transduction via nuclear receptors. Used to detect endocrine disruptors (environmental hormones). The expression of a target gene (eg, a hormone responsive gene) related to signal transduction through a nuclear receptor is expressed by a cis region (hormone response element) in which a complex of a ligand and a receptor regulates transcription of the gene. ). This is a method for detecting the amount of hormone molecules or endocrine disrupting substances that can serve as ligands based on the amount of bioluminescence, etc., by introducing a plasmid incorporating a reporter gene such as luciferase downstream of the cis region of these various hormone-responsive genes. .
As the host cell in this case, COS cells, CHO-K1 cells, HeLa cells, HEK293 cells, NIH3T3 cells, etc. of mammalian cells used for general gene recombination are preferably used. Bacteria such as yeast cells and Escherichia coli Although it may be a cell, an insect cell, etc., it is often used in a living body of a mammal including human beings or in a mammalian cell in vitro. In that case, it is preferable that the mutant luminescent enzyme gene of the present invention is modified to a base sequence that can be easily expressed in the host cell by changing to a codon suitable for the cell depending on the host cell to be used. In addition, it is necessary to appropriately perform modification to provide a restriction enzyme site for insertion into a vector, and well-known methods can be applied to these steps.
 レポータージーンアッセイ法において、従来から広く用いられていた、ホタルルシフェラーゼの場合、(ア)分子量が大きくて発現までに時間がかかるので、宿主細胞に大きな負担をかけることになり、(イ)発光強度が低いため、十分ルシフェラーゼ(レポーター)量が蓄積するまでに、通常刺激後1~2日の時間を待つ必要がある、という欠点は全て解消される。
 本発明の変異発光酵素を使用することによって、レポーターの発光強度が極めて高い(特にI90L変異体の場合は、従来のホタルルシフェラーゼより1万4千倍も強い)ため、刺激後にごく短時間で測定ができる利点があることから、従来より大幅に計測時間を短縮でき、かつ経時的な発光の安定性も高いので、遺伝子導入効率の悪い細胞株においても発光測定ができる。また、長波長側にシフトしているので、細胞膜、皮膚を通しての透過性が高まっているため、バックグラウンド値が下がり測定精度も高い。
 具体的に、本発明の変異発光酵素をこれらのレポータージーンアッセイに適用するためには、上流に当該アッセイに適した発現プロモーターを搭載している既知の真核細胞発現ベクターに当該発光酵素を繋いで、真核細胞に導入し、一定時間が過ぎた後、信号(刺激)有り無しの条件で測定に用いればよい(非特許文献20)。当該発光酵素を搭載できる、レポータージーンアッセイ用の発現ベクターとしては、公知のpTransLucentベクターを利用し、既知の方法を使って簡単に搭載させることができる。
In the case of firefly luciferase, which has been widely used in reporter gene assay methods, (a) the molecular weight is large and it takes time until expression, which places a heavy burden on the host cell. Since it is low, all the disadvantages that it is usually necessary to wait for 1-2 days after stimulation before a sufficient amount of luciferase (reporter) accumulates is eliminated.
By using the mutant luminescent enzyme of the present invention, the luminescence intensity of the reporter is extremely high (especially in the case of the I90L mutant, 14,000 times stronger than the conventional firefly luciferase), so it can be measured in a very short time after stimulation. Therefore, the measurement time can be significantly shortened compared to the prior art, and the stability of luminescence over time is high, so that luminescence can be measured even in cell lines with poor gene transfer efficiency. Further, since the shift to the long wavelength side increases the permeability through the cell membrane and the skin, the background value decreases and the measurement accuracy is high.
Specifically, in order to apply the mutant luminescent enzyme of the present invention to these reporter gene assays, the luminescent enzyme is linked to a known eukaryotic expression vector carrying an expression promoter suitable for the assay upstream. After introduction into a eukaryotic cell and after a certain period of time, it may be used for measurement under the condition that there is no signal (stimulation) (Non-patent Document 20). As an expression vector for reporter gene assay that can be equipped with the luminescent enzyme, a known pTransLucent vector can be used and can be easily mounted using a known method.
(2)ツー・ハイブリッド法
 ツーハイブリッド法(Two-hybrid法)はタンパク質間の相互作用を調べる手法の1つであり、1989年に酵母(Saccharomyces cerevisiae)を用いたyeast two-hybrid(Y2H)システムがまず構築された。転写活性化因子であるGAL4タンパク質のDNA結合ドメイン(DBD)と転写活性化ドメインが分離可能であることを利用して、GAL4DBDと任意のタンパク質A(bait)を融合タンパク質として発現させ、同時に細胞内で発現させた転写活性化ドメイン(TA)と融合タンパク質としたタンパク質B(prey)と相互作用をするかどうかを判定できる。前記蛋白質AとBが結合する場合にはDBDとTAが近接してDNA結合ドメイン(DBD)が、「UASG」塩基配列に結合するのでその下流に連結したレポーター遺伝子発現を促すことになる。レポーター遺伝子がルシフェラーゼであれば、その特異的な基質存在下で生物発光をモニターすれば、A,B両タンパク質の親和性が測定でき、タンパク質A(bait)と相互作用をするタンパク質、ペプチドのスクリーニングができる。その際のタンパク質B(prey)は発現ライブラリーによって提供させることもできる。
 宿主細胞としては、酵母細胞に限らず、大腸菌など細菌類や、哺乳動物細胞、昆虫細胞も用いられる。その際、酵母由来の転写活性化因子であるGAL4のDNA結合ドメイン(DBD)以外に、大腸菌由来のリプレッサータンパク質の「LexA」等を用いることもできる。これらをコードするDNAと、リガンド応答性転写調節因子のリガンド結合領域などbaitタンパク質(即ち、前記の任意の蛋白質A)をコードするDNAとを連結し、宿主細胞内で機能可能なプロモーターの下流に連結する。一方、「転写活性化因子の転写活性化領域」としては、例えば、GAL4の転写活性化領域、大腸菌由来のB42酸性転写活性化領域、ヘルペス単純ウイルスVP16の転写活性化領域等を用いることができる。これら転写活性化領域をコードするDNAと、preyタンパク質(即ち、前記の任意の蛋白質B)をコードするDNAとを連結し、宿主細胞内で機能可能なプロモーターの下流に連結する。具体的には例えば、転写調節因子GAL4のDNA結合領域をコードするDNAを有し、出芽酵母を宿主細胞において利用可能なベクターとして、プラスミドpGBT9(Clontech社製)等をあげることができ、GAL4の転写活性化領域をコードするDNAを有し、出芽酵母において利用可能なベクターとして、プラスミドpGAD424(Clontech社製)等をあげることができる。また、GAL4のDNA結合領域をコードするDNAを有し、哺乳類動物細胞において利用可能なベクターとして、pM(Clontech社製)、pBIND(Promega社製)等をあげることができ、単純ヘルペスウィルスVP16の転写活性化領域をコードするDNAを有し、哺乳類動物細胞において利用可能なベクターとして、pVP16(Clontech社製)、pACT(Promega社製)等をあげることができる。また、LexAのDNA結合領域をコードするDNAを有し、哺乳類動物細胞において利用可能なベクターとして、pLexA(Clontech社製)等をあげることができ、B42をコードするDNAを有し、哺乳類動物細胞において利用可能なベクターとして、pB42AD(Clontech社製)等をあげることができる。ツーハイブリッドシステム用のキットとして、Matchmaker Two-hybrid System(Clontech社製)、CheckMate Mammalian Two-Hybrid System(Promega)等も既に市販されていて、当該キット中にはホタルルシフェラーゼが発現するように組み込まれている。
 また、本発明の変異発光酵素をコードする遺伝子は、GAL4が結合する領域(「UASG」)などの下流にレポーター遺伝子として挿入したベクターを構築すればよい。例えば、哺乳動物宿主の場合であれば、市販のpG5Lucベクター(Promega)やpFR-Lucベクター(Stratagene)を利用し、当該ベクターに搭載されているホタルルシフェラーゼの代わりに挿入することができる。また、市販のpG5CATベクター(Clontech)のChloramphenicol acetyltransferase(CAT)の代わりに用いることもできる。
(2) Two-hybrid method The two-hybrid method (Two-hybrid method) is one of the methods to investigate the interaction between proteins. In 1989, the yeast two-hybrid (Y2H) system using yeast (Saccharomyces cerevisiae) was used. Was first built. GAL4DBD and any protein A (bait) can be expressed as a fusion protein using the fact that the DNA-binding domain (DBD) and transcriptional activation domain of the transcriptional activator GAL4 protein are separable. It can be determined whether or not it interacts with the transcription activation domain (TA) expressed in (1) and protein B (prey) as a fusion protein. When the proteins A and B bind to each other, DBD and TA are close to each other and the DNA binding domain (DBD) binds to the “UASG” base sequence, so that expression of a reporter gene linked downstream thereof is promoted. If the reporter gene is luciferase, the affinity of both A and B proteins can be measured by monitoring bioluminescence in the presence of the specific substrate, and screening for proteins and peptides that interact with protein A (bait) Can do. Protein B (prey) at that time can also be provided by an expression library.
Host cells are not limited to yeast cells, and bacteria such as E. coli, mammalian cells, and insect cells are also used. In this case, in addition to the DNA binding domain (DBD) of GAL4, which is a transcriptional activator derived from yeast, “LexA” of a repressor protein derived from E. coli can also be used. A DNA encoding these and a DNA encoding a bait protein (that is, the above-mentioned arbitrary protein A) such as a ligand-binding region of a ligand-responsive transcriptional regulator are ligated downstream of a promoter that can function in the host cell. Link. On the other hand, as the “transcription activation region of transcription activator”, for example, the transcription activation region of GAL4, the B42 acidic transcription activation region derived from E. coli, the transcription activation region of herpes simplex virus VP16, etc. can be used. . A DNA encoding these transcriptional activation regions and a DNA encoding a prey protein (that is, the above-mentioned arbitrary protein B) are linked and downstream of a promoter that can function in the host cell. Specifically, for example, the plasmid pGBT9 (manufactured by Clontech) can be used as a vector having DNA encoding the DNA binding region of the transcriptional regulatory factor GAL4 and allowing budding yeast to be used in host cells. As a vector having DNA encoding a transcription activation region and usable in budding yeast, plasmid pGAD424 (manufactured by Clontech) and the like can be mentioned. Examples of vectors that have a DNA encoding the DNA binding region of GAL4 and can be used in mammalian cells include pM (Clontech), pBIND (Promega), etc., and herpes simplex virus VP16 Examples of vectors having a DNA encoding a transcription activation region and usable in mammalian cells include pVP16 (manufactured by Clontech), pACT (manufactured by Promega), and the like. In addition, examples of vectors that have DNA encoding the DNA binding region of LexA and can be used in mammalian cells include pLexA (manufactured by Clontech) and the like. Examples of vectors that can be used in the above include pB42AD (manufactured by Clontech). As a kit for a two-hybrid system, Matchmaker Two-hybrid System (manufactured by Clontech), CheckMate Mammalian Two-Hybrid System (Promega), etc. are already on the market and are incorporated into the kit so that firefly luciferase is expressed. ing.
In addition, a gene encoding the mutant luminescent enzyme of the present invention may be constructed by inserting a vector inserted as a reporter gene downstream of a region to which GAL4 binds (“UASG”). For example, in the case of a mammalian host, a commercially available pG5Luc vector (Promega) or pFR-Luc vector (Stratagene) can be used instead of firefly luciferase mounted on the vector. It can also be used in place of the commercially available pG5CAT vector (Clontech) Chloramphenicol acetyltransferase (CAT).
4.レポーター遺伝子を用いる分析法における新規な計測法
 本発明の変異発光酵素の輝度が極めて高く安定していることから、本発明においてレポーター遺伝子を用いる各種分析法に適用できる新たな応答速度(kinetics)に基づく計測法を開発した。
 本発明のレポータージーンアッセイでは、外部刺激に応じて、レポーター蛋白質が発現されるところまでは従来のレポータージーンアッセイ法と同様であるが、発現されたレポーター遺伝子の酵素活性を計測する方法として、本願発明者らは以下のように応答速度(kinetics)に基づく計測法を考案した。
(1)本発明の変異発光酵素をレポーター遺伝子として含むプラスミドを細胞に導入し、ウェル内で培養する。
(2)被検物質(ホルモンなど)を添加して一定時間経過後、ライシス溶液(lysis)を添加して細胞を充分溶解(lysateを作成)する。
(3)ウェルプレートをプレートリーダーにセットし、基質添加後、単位時間あたり発光の上昇速度(即ち、RLU/sec)から、被検物質の応答刺激の強さを観測する。
(4)初期発光値と一定時間経過後の発光値の差から、上昇速度を計測する。
 上昇速度vは以下に表現できる。
  v=(RLU1-RLU0)/(t1-t0
 ここで、RLU0は初期発光強度(relative luminescence unit;RLU)、RLU1は一定時間(t1)経過後の発光強度を示す。
 このように、本発明の計測法は、発光応答速度を分析信号として利用するものである。
4). New measurement method in an analysis method using a reporter gene Since the brightness of the mutant luminescent enzyme of the present invention is extremely high and stable, a new kinetics applicable to various analysis methods using a reporter gene in the present invention is achieved. Based on the measurement method developed.
The reporter gene assay of the present invention is the same as the conventional reporter gene assay method until the reporter protein is expressed in response to an external stimulus. However, as a method for measuring the enzyme activity of the expressed reporter gene, the present inventor Devised a measurement method based on kinetics as follows.
(1) A plasmid containing the mutant luminescent enzyme of the present invention as a reporter gene is introduced into a cell and cultured in a well.
(2) A test substance (hormone or the like) is added, and after a certain period of time, a lysis solution (lysis) is added to sufficiently lyse cells (create a lysate).
(3) The well plate is set in a plate reader, and after adding the substrate, the intensity of response stimulus of the test substance is observed from the rate of increase in luminescence per unit time (ie, RLU / sec).
(4) The rising speed is measured from the difference between the initial light emission value and the light emission value after a certain period of time.
The rising speed v can be expressed as follows.
v = (RLU 1 -RLU 0 ) / (t 1 -t 0 )
Here, RLU 0 indicates the initial light emission intensity (relative luminescence unit; RLU), and RLU 1 indicates the light emission intensity after elapse of a predetermined time (t 1 ).
Thus, the measurement method of the present invention uses the light emission response speed as an analysis signal.
5.その他
 本発明におけるその他の用語や概念は、発明の実施形態の説明や実施例において詳しく規定する。なお、用語は基本的にはIUPAC-IUB Commission on Biochemical Nomenclatureによるものであり、あるいは当該分野において慣用的に使用される用語の意味に基づくものである。また発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。例えば、遺伝子工学および分子生物学的技術はJ.Sambrook,E.F.Fritsch & T.Maniatis,"Molecular Cloning:A Laboratory Manual(2nd edition)",Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York(1989);D.M.Glover et al.ed.,"DNA Cloning",2nd ed.,Vol.1 to 4,(The Practical Approach Series),IRL Press,Oxford University Press(1995);Ausubel,F.M.et al.,Current Protocols in Molecular Biology,John Wiley & Sons,New York,N.Y,1995;日本生化学会編、「続生化学実験講座1、遺伝子研究法II」、東京化学同人(1986);日本生化学会編、「新生化学実験講座2、核酸III(組換えDNA技術)」、東京化学同人(1992);R.Wu ed.,"Methods in Enzymology",Vol.68(Recombinant DNA),Academic Press,New York(1980);R.Wu et al.ed.,"Methods in Enzymology",Vol.100(Recombinant DNA,Part B) & 101(Recombinant DNA,Part C),Academic Press,New York(1983);R.Wu et al.ed.,"Methods in Enzymology",Vol.153(Recombinant DNA,Part D),154(Recombinant DNA,Part E) & 155(Recombinant DNA,Part F),Academic Press,New York(1987)などに記載の方法あるいはそこで引用された文献記載の方法またはそれらと実質的に同様な方法や改変法により行うことができる。また、本発明で使用する各種蛋白質やペプチド、あるいはそれらをコードするDNAについては、既存のデータベース(URL:http://www.ncbi.nlm.nih.gov/等)から入手することができる。
5. Others Other terms and concepts in the present invention are defined in detail in the description of the embodiments and examples of the present invention. The terms are basically based on the IUPAC-IUB Commission on Biochemical Nomenclature, or based on the meanings of terms commonly used in the field. Various techniques used for carrying out the invention can be easily and surely implemented by those skilled in the art based on known literatures and the like, except for the techniques that clearly indicate the source. For example, genetic engineering and molecular biology techniques are described in J. Sambrook, EFFritsch & T. Maniatis, “Molecular Cloning: A Laboratory Manual (2nd edition)”, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989); DMGlover et al.ed., "DNA Cloning", 2nd ed., Vol. 1 to 4, (The Practical Approach Series), IRL Press, Oxford University Press (1995); Ausubel, FM et al., Current Protocols in Molecular Biology , John Wiley & Sons, New York, NY, 1995; Japan Biochemical Society, “Sequel Biochemistry Experiment Course 1, Genetic Research Method II”, Tokyo Chemical Doujin (1986); Japan Biochemistry Society, “New Biochemistry Experiment Course 2” , Nucleic Acid III (Recombinant DNA Technology) ”, Tokyo Kagaku Dojin (1992); R. Weed.,“ Methods in Enzymology ”, Vol. 68 (Recombinant DNA), Academic Press, New York (1980); R. Wu et al.ed., "Methods in Enzymology", Vol. 100 (Recombinant DNA, Part B) & 101 (Recombinant DNA, Part C), Academic Press, New York (1983); R. Wu et al.ed., "Methods in Enzymology", Vol.153 (Recombinant DNA, Part D), 154 (Recombinant DNA, Part E) & 155 (Recombinant DNA, Part F), Academic Press, New York (1987), etc., the methods described in the literature cited therein, or methods substantially similar to them or modification methods. In addition, various proteins and peptides used in the present invention or DNAs encoding them can be obtained from existing databases (URL: http://www.ncbi.nlm.nih.gov/ etc.).
 以下、実施例を示して本発明をさらに詳細かつ具体的に説明するが、本発明は以下の例に限定されるものではない。
 なお、本明細書中に引用した技術文献、特許公報及び特許出願明細書中の記載内容は、本発明の記載内容として参照されるものとする。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail and concretely, this invention is not limited to the following examples.
In addition, the description content in the technical literature, the patent gazette, and the patent application specification cited in this specification shall be referred to as the description content of the present invention.
〔実施例1〕GLuc変異体を搭載したレポータージーンアッセイ
 本願発明者らによって開発された、GLuc変異体を用いた分析法の有用性を証明するために、従来のレポータージーンアッセイ系の一例であるpG5Luc(Promega)にGLuc変異体を搭載した、新規レポータージーンアッセイ系を構築した(図8)。まず、男性ホルモン応答配列(ARE)を上流に持つベクターを作成し、その下流に従来のGLucそのもの、又は本発明のGLuc変異体をコードする遺伝子を遺伝子工学的に連結した(図8A)。この新規ベクターをCOS-7細胞に導入し、男性ホルモン有り無しの条件で16時間刺激した。その後、細胞ライセットを作り、特異的な基質(coelenterazine)を添加し、生物発光値の相違を即時にプレートリーダーで計測した。
 その結果、従来型のGLucを搭載したレポータージーンアッセイ系に比べて、本発明のGLuc変異体(190L)を搭載した方がより強い発光強度の変化を示した(図8B)。この発光応答の解析法として、基質導入から一定時間(1秒)までの面積を取ることによって、男性ホルモンの生物活性を高輝度で観測できた(図8C)。
[Example 1] Reporter gene assay loaded with GLuc mutant In order to prove the usefulness of the analysis method using the GLuc mutant developed by the present inventors, pG5Luc (an example of a conventional reporter gene assay system) A new reporter gene assay system in which Promega) was loaded with the GLuc mutant was constructed (FIG. 8). First, a vector having an androgen response element (ARE) upstream was prepared, and a gene encoding the conventional GLuc itself or the GLuc mutant of the present invention was linked downstream thereof by genetic engineering (FIG. 8A). This new vector was introduced into COS-7 cells and stimulated for 16 hours in the presence or absence of androgen. Thereafter, cell lysates were prepared, a specific substrate (coelenterazine) was added, and the difference in bioluminescence value was immediately measured with a plate reader.
As a result, compared to the conventional reporter gene assay system equipped with GLuc, the luminescence intensity change was stronger when the GLuc mutant (190L) of the present invention was loaded (FIG. 8B). As an analysis method of the luminescence response, by taking an area from substrate introduction to a certain time (1 second), the biological activity of the male hormone could be observed with high luminance (FIG. 8C).
〔実施例2〕GLuc変異体を搭載したツーハイブリットアッセイ
 GLuc変異体を用いた分析法の有用性を証明するために、GLuc変異体を搭載したマンマリアン・ツーハイブリットアッセイ系を構築し、蛋白質―蛋白質間の相互作用を計測する実験を遂行した(図9)。
 この実験を遂行するために、従来の典型的なツーハイブリットアッセイ用プラスミドであるpACT、pBIND、pG5Lucをベースに、以下のプラスミド群をまず作製した:(1)ER LBDとGal4をコードするプラスミド、(2)SH2 ドメインとVP16をコードするプラスミド、(3)レポータージーンとして、従来のGLuc又は、当該発明の高輝度変異体(I90L)を搭載した、pG5プラスミド。
 前記プラスミド(1)(2)(3)をCOS-7細胞に共導入した後、女性ホルモン有り無しの条件で6時間刺激し、その後の発光値の変化を観測したところ、当該発明の高輝度変異体(I90L)を搭載したツーハイブリットアッセイがより強い発光値とS/N比を示した(図9B)。また、そのkineticsも同様の結果を示した(図9C、D)。
 更に女性ホルモン刺激時間依存的な発光値を観測するために、従来の典型的なツーハイブリットアッセイ用プラスミドであるpACT、pBIND、pG5Lucをベースに、以下のプラスミド群をまず作製した:(1)ER LBDとGal4をコードするプラスミド、(2)SH2 ドメインとVP16をコードするプラスミド、(3)レポータージーンとして、従来のGLuc又は、当該発明の高輝度変異体(9096)を搭載した、pG5プラスミド。
 上記プラスミド(1)(2)(3)を共導入した生細胞に、溶媒そのもの(0.5% DMSO)又は女性ホルモン(estrogen)刺激を0時間、3時間、6時間、18時間与えた後、細胞を回収し、その生物発光値を発光光度計で測定した(図9E)。その結果、本発明のGLuc変異体を搭載したプラスミドを保有する細胞が女性ホルモン刺激に対して優れたS/N比を示した。例えば、GLuc変異体を搭載した場合、3時間刺激で2倍まで発光値が上昇したが、従来のGLucでは区別ができなかった。この結果は、本願発明者らのGLuc変異体が高輝度であるため、従来に比べて大幅に短い時間刺激しても(即ち、少量が発現された場合)区別できるような強い発光上昇が観測できた。
[Example 2] Two-hybrid assay loaded with GLuc mutant In order to prove the usefulness of the analytical method using the GLuc mutant, a Manmarian two-hybrid assay system loaded with the GLuc mutant was constructed, An experiment to measure the interaction between proteins was performed (FIG. 9).
In order to carry out this experiment, the following plasmid groups were first prepared based on the conventional typical two-hybrid assay plasmids pACT, pBIND and pG5Luc: (1) plasmids encoding ER LBD and Gal4; (2) Plasmid encoding SH2 domain and VP16, (3) pG5 plasmid carrying conventional GLuc or high-intensity mutant (I90L) of the present invention as a reporter gene.
When the plasmids (1), (2) and (3) were co-introduced into COS-7 cells, stimulation was performed for 6 hours under the condition of female hormones, and changes in luminescence values were observed. The two-hybrid assay loaded with the mutant (I90L) showed a stronger luminescence value and S / N ratio (FIG. 9B). Moreover, the kinetics showed the same result (FIG. 9C, D).
Furthermore, in order to observe the luminescence value dependent on the female hormone stimulation time, the following plasmid groups were first prepared based on the conventional typical two-hybrid assay plasmids pACT, pBIND and pG5Luc: (1) ER A plasmid encoding LBD and Gal4, (2) a plasmid encoding SH2 domain and VP16, and (3) a pG5 plasmid carrying a conventional GLuc or the high-intensity mutant of the invention (9096) as a reporter gene.
After cells (1), (2) and (3) were co-introduced with the solvent itself (0.5% DMSO) or female hormone (estrogen) stimulation for 0, 3, 6, 18 hours, The bioluminescence value was measured with a luminescence photometer (FIG. 9E). As a result, the cells carrying the plasmid carrying the GLuc mutant of the present invention showed an excellent S / N ratio against female hormone stimulation. For example, when the GLuc mutant was loaded, the luminescence value increased up to 2 times after 3 hours of stimulation, but conventional GLuc could not be distinguished. This result shows that the GLuc mutant of the present inventors has a high brightness, and thus a strong luminescence increase that can be distinguished even when stimulated for a significantly shorter time than that of the conventional case (ie, when a small amount is expressed) is observed. did it.
〔実施例3〕ツーハイブリットアッセイにおける、プラスミド導入比の最適化 
 通常、マンマリアンツーハイブリットアッセイを遂行するためには、3つのプラスミド(蛋白質XとYを発現するプラスミドと、XY間の結合を認識する応答配列を持つプラスミド)を同一細胞内に導入する。この際、細胞に導入するプラスミドの比率は、アッセイの効率を左右する重要なファクターとなる。当実施例では、各プラスミドの導入比率を変えることによって、アッセイを遂行する上で、最適比率を検討した。まず、ER LBDを発現するpBINDとSrc SH2を発現するpACTプラスミド、そしてER LBD-SH2間の結合が起こったときに、その結合に応じてレポーター蛋白質を発現するpmG5プラスミドを作成した。次に、前記3種類のプラスミドの導入比率を変えてCOS-7細胞に導入し、女性ホルモン刺激有り無しの条件で発光値の相違を計測した。
 その結果を図10で示す。結果によれば、pACT:pBIND:pmG5の比率が、1:1:3の場合、最も優れた信号対バックグラウンド比(S/N比)を示した。全体的な傾向としては、pmG5の比率が高い方がS/N比が改善されることが観察された。
[Example 3] Optimization of plasmid introduction ratio in two-hybrid assay
Usually, in order to carry out a Mammalian two-hybrid assay, three plasmids (a plasmid expressing proteins X and Y and a plasmid having a response sequence that recognizes the bond between XY) are introduced into the same cell. At this time, the ratio of the plasmid introduced into the cell is an important factor that determines the efficiency of the assay. In this example, the optimum ratio was examined in performing the assay by changing the introduction ratio of each plasmid. First, pBIND that expresses ER LBD and pACT plasmid that expresses Src SH2, and a pmG5 plasmid that expresses a reporter protein in response to the binding between ER LBD and SH2 were prepared. Next, the introduction ratios of the three types of plasmids were changed and introduced into COS-7 cells, and the difference in luminescence value was measured under the condition with and without female hormone stimulation.
The result is shown in FIG. According to the results, when the ratio of pACT: pBIND: pmG5 was 1: 1: 3, the best signal-to-background ratio (S / N ratio) was shown. As an overall trend, it was observed that the higher the ratio of pmG5, the better the S / N ratio.
〔実施例4〕応答速度(kinetics)に基づくホルモン感受性の計測 
 本発明のレポータージーンアッセイでは、外部刺激に応じて、レポーター蛋白質が発現される。発現されたレポーターの酵素活性を計測する方法として、本願発明者らは以下の計測法を考案した。
(1)まず、96ウェルプレートに真核細胞を培養し、その後、当該発明のプラスミドを細胞に導入する。この時点で、アッセイの準備は完了する。
(2)次に、96ウェルプレートの各ウェルに女性ホルモン又は化学物質を添加し、一定時間後、ライシス溶液(lysis)を添加し、ライセット(lysate)を作成する。
(3)96ウェルプレートをプレートリーダーにセットし、基質添加後、単位時間あたり発光の上昇速度(即ち、RLU/sec)から、そもそものホルモン刺激の強さを観測する。
 図11(A)で示したように、COS-7細胞を使った場合、女性ホルモン刺激有り無しによって、初期発光値の上昇傾向が大きく異なる。この初期速度から女性ホルモンの濃度・性質を観測できる。このとき、上昇速度vは以下に表現できる。
  v=(RLU1-RLU0)/(t1-t0
 ここで、RLU1とRLU0はそれぞれ、一定時点での発光強度と初期発光強度(relative luminescence unit;RLU)を示す。
 この計算法によれば、0h刺激した場合(コントロール)は28.5RLU/secであるに対して、6h刺激の場合には、76.5RLU/secであった。この結果から、発光応答時間が分析信号として利用できるということが分かる。
[Example 4] Measurement of hormone sensitivity based on kinetics
In the reporter gene assay of the present invention, a reporter protein is expressed in response to an external stimulus. As a method for measuring the enzyme activity of the expressed reporter, the present inventors have devised the following measurement method.
(1) First, eukaryotic cells are cultured in a 96-well plate, and then the plasmid of the present invention is introduced into the cells. At this point, the assay preparation is complete.
(2) Next, a female hormone or chemical substance is added to each well of a 96-well plate, and after a certain period of time, a lysate solution (lysis) is added to prepare a lysate.
(3) A 96-well plate is set in a plate reader, and after the addition of a substrate, the intensity of hormone stimulation is observed from the rate of increase in luminescence per unit time (ie, RLU / sec).
As shown in FIG. 11 (A), when COS-7 cells are used, the rising tendency of the initial luminescence value is greatly different depending on the presence or absence of female hormone stimulation. The concentration and nature of female hormones can be observed from this initial velocity. At this time, the rising speed v can be expressed as follows.
v = (RLU 1 -RLU 0 ) / (t 1 -t 0 )
Here, RLU 1 and RLU 0 indicate the emission intensity at a certain time point and the initial emission intensity (relative luminescence unit; RLU), respectively.
According to this calculation method, when stimulated for 0 h (control), it was 28.5 RLU / sec, and when stimulated for 6 h, it was 76.5 RLU / sec. From this result, it can be seen that the light emission response time can be used as an analysis signal.
 図11(B)は、もっと詳しく調べた結果である。即ち、当該発明による高輝度変異体の一つである、9096を搭載したツーハイブリットシステムを作成した。このために、96穴プレートに培養したCOS-7細胞にpBIND-ER LBD,pACT-SH2と共に、9096を発現するpG5-9096を共導入した。その後、女性ホルモンの刺激時間に応じて、レポーター蛋白質の発現を誘導した。その後、細胞ライセットを作り、基質導入前後の発光値の上昇を計測した。各単位時間あたり生物発光の上昇速度(RLU/sec)は、それぞれ33.3RLU/sec(0時間刺激),43.3RLU/sec(3時間刺激),96.7RLU/sec(6時間刺激),150.0RLU/sec(18時間刺激)であった。各刺激時間の増加に伴い、発光強度の上昇速度が飛躍的に速くなることが分かった。 Fig. 11 (B) shows the result of a more detailed investigation. That is, a two-hybrid system equipped with 9096, which is one of the high-intensity mutants according to the present invention, was created. For this purpose, pG5-9096 expressing 9096 was co-introduced together with pBIND-ER LBD and pACT-SH2 into COS-7 cells cultured in 96-well plates. Thereafter, expression of the reporter protein was induced according to the stimulation time of the female hormone. Thereafter, a cell lysate was prepared, and the increase in luminescence value before and after substrate introduction was measured. The rate of increase in bioluminescence per unit time (RLU / sec) is 33.3 RLU / sec (0 hour stimulation), 43.3 RLU / sec (3 hour stimulation), 96.7 RLU / sec (6 hour stimulation), 150.0 RLU / sec (18 hour stimulation). It was found that the rate of increase in emission intensity dramatically increases with each stimulation time.
〔実施例5〕ツーハイブリットアッセイのリガンド選択性
 前記ツーハイブリットアッセイのリガンド選択性を検証するために、様々な、高輝度変異体を搭載したpG5プラスミドを作成し、女性ホルモン感受性を計測してみた(図12)。この実験のために、COS-7細胞をプレートに培養し、pBIND-ER LBD,pACT-SH2以外に、pG5-GLuc,pG5-I90L,pG5-8990,pG5-9096の何れかを、COS-7細胞に同時導入した。その後、女性ホルモン(E2)または、そのアンタゴニスト(OHT)有り無しの条件で発光値の相違を計測した。
 その結果、図12で示したように、従来のGLucそのものを搭載した場合に比べて、本発明のGLuc変異体を搭載した場合がより強い生物発光を担保できるということが分かった。また、OHTに比べてE2の方がER LBD-SH2結合を促進して、強い生物発光を誘導できることが分かった。
[Example 5] Ligand selectivity of the two-hybrid assay In order to verify the ligand selectivity of the two-hybrid assay, various pG5 plasmids carrying high-intensity mutants were prepared and female hormone sensitivity was measured. (FIG. 12). For this experiment, COS-7 cells were cultured on a plate, and in addition to pBIND-ER LBD and pACT-SH2, any of pG5-GLuc, pG5-I90L, pG5-8990, and pG5-9096 was added to COS-7. Co-introduced into cells. Thereafter, the difference in luminescence value was measured under the condition of female hormone (E2) or its antagonist (OHT).
As a result, as shown in FIG. 12, it was found that stronger bioluminescence can be ensured when the GLuc mutant of the present invention is mounted than when the conventional GLuc itself is mounted. It was also found that E2 promotes ER LBD-SH2 binding and induces strong bioluminescence compared to OHT.
〔実施例6〕ツーハイブリットアッセイのリガンド濃度依存性
 前記ツーハイブリットアッセイのリガンド濃度依存性を調べるために以下の実験を行った(図13)。細胞培養プレートにCOS-7細胞を培養し、pBIND-ER LBD、pACT-SH2、pG5-8990を同時導入した。様々な濃度のリガンド刺激を12時間行ったあと、その発光値変化を観測した。
 その結果、ER LBD-SH2間の結合は、女性ホルモン刺激に強く応答し(即ち、リガンド選択性を持ち)、その濃度は10-5 Mで発光強度が最高値に到達することが分かった。
[Example 6] Ligand concentration dependency of the two-hybrid assay The following experiment was conducted to examine the ligand concentration dependency of the two-hybrid assay (Fig. 13). COS-7 cells were cultured on a cell culture plate, and pBIND-ER LBD, pACT-SH2, and pG5-8990 were simultaneously introduced. After 12 hours of stimulation with various concentrations of ligand, changes in the luminescence values were observed.
As a result, it was found that the binding between ER LBD-SH2 strongly responded to female hormone stimulation (ie, had ligand selectivity), and the concentration reached 10 −5 M, and the luminescence intensity reached the maximum value.
〔実施例7〕本発明の変異発光酵素を用いた生物発光プローブ
 本願発明者らの高輝度生物発光酵素の優位性を証明するために、この酵素を利用した、新規生物発光プローブを作成した(8990N)。また、コントロールとして、従来のGLucそのものをベースにしたプローブも同時に合成した(SimGR3)。各プローブの分子構造は、図14(A)に示している。即ち、各プローブは、その内部にストレスホルモン受容体のリガンド結合ドメイン(glucocorticoid receptor ligand binding domain)を含有している。これによってストレスホルモン感受性を持つことになる。
 各プローブのストレスホルモン応答性を調べた結果、8990Nの方がより強い生物発光を示す上、リガンド刺激有り無しの条件で十分分離できる生物発光値を出していることが分かった(図14B、□と■)。■はストレスホルモン刺激を実施した場合を示す。一方、SimGR3はストレスホルモン刺激を有意に区別できなかった(○と●)。
[Example 7] Bioluminescent probe using the mutant luminescent enzyme of the present invention In order to prove the superiority of the high-luminance bioluminescent enzyme of the present inventors, a novel bioluminescent probe using this enzyme was prepared ( 8990N). As a control, a probe based on the conventional GLuc itself was also synthesized (SimGR3). The molecular structure of each probe is shown in FIG. That is, each probe contains a stress hormone receptor ligand-binding domain (glucocorticoid receptor ligand binding domain). This makes them stress hormone sensitive.
As a result of investigating the stress hormone responsiveness of each probe, it was found that 8990N showed stronger bioluminescence, and also produced a bioluminescence value that could be sufficiently separated under the condition with or without ligand stimulation (FIG. 14B, □). And ■). ■ indicates the case of stress hormone stimulation. On the other hand, SimGR3 could not distinguish stress hormone stimulation significantly (○ and ●).
〔実施例8〕GLuc変異体を用いた生体イメージング
 本発明のGLuc変異体の改良点(高輝度、長波長シフト、安定性等)を生かして、その生体系への応用可能性を検証した(図15)。
 まず、GLucの高輝度変異体である8990をコードする遺伝子を挿入したpcDNA3.1(8990)プラスミドを製作し、COS-7細胞に導入した。一方、コントロールとして、従来のGLucそのものをコードする遺伝子を挿入したpcDNA3.1(GLuc)プラスミドを同様にCOS-7細胞に導入した。その後、両形質変換細胞を、BALB/cヌードマウス(5週齢メス)の左と右の甲部・皮下組織に移植した。移植した細胞が安定化するまで12時間待ち、同量の基質(セレンテラジン)を注射した後、その発光値の程度を比較した(図15A)。その結果、8990を発現する形質変換細胞を移植した部位から、より強い生物発光を観測できた。
[Example 8] Biological imaging using GLuc mutant The improvement (high brightness, long wavelength shift, stability, etc.) of the GLuc mutant of the present invention was utilized to verify its applicability to biological systems ( FIG. 15).
First, a pcDNA3.1 (8990) plasmid inserted with a gene encoding 8990, a high-intensity mutant of GLuc, was constructed and introduced into COS-7 cells. On the other hand, as a control, pcDNA3.1 (GLuc) plasmid into which a gene encoding conventional GLuc itself was inserted was similarly introduced into COS-7 cells. Thereafter, both transformed cells were transplanted into the left and right upper / subcutaneous tissues of BALB / c nude mice (five weeks old female). After waiting for 12 hours until the transplanted cells were stabilized, the same amount of substrate (coelenterazine) was injected, and then the degree of the luminescence value was compared (FIG. 15A). As a result, stronger bioluminescence could be observed from the site where the transformed cells expressing 8990 were transplanted.
 更に、当該GLuc変異体を発現するマンマリアン・ツーハイブリットシステム(mammalian two-hybrid system)を搭載した生細胞を作成し、それを用いた生体イメージングシステムを試みた(図15B)。
 まず、女性ホルモン受容体(ER LBD)とSrc SH2ドメインをそれぞれBINDとACTにつないだプラスミドを作成した(pBINDとpACT)。一方、その応答系として、Gal4応答配列を上流に持ち、I90Lを発現するプラスミドも作成した(pG5-I90L)。このコントロールとして、従来のGLucそのものを発現するプラスミドを作成した(pG5-GLuc)。
Furthermore, a living cell equipped with a mammalian two-hybrid system expressing the GLuc mutant was prepared, and a biological imaging system using the same was tried (FIG. 15B).
First, plasmids were constructed by connecting the female hormone receptor (ER LBD) and Src SH2 domains to BIND and ACT, respectively (pBIND and pACT). On the other hand, as a response system, a plasmid having a Gal4 response element upstream and expressing I90L was also prepared (pG5-I90L). As a control, a plasmid expressing the conventional GLuc itself was prepared (pG5-GLuc).
 前記3種類のプラスミド(pBIND,pACT,pG5-I90L又はpG5-GLuc)をCOS-7細胞に共トランスフェクション(cotransfection)することで、形質変換細胞を作成した。この形質変換細胞をBALB/cヌードマウス(5週齢メス)の左と右の甲部・皮下組織にそれぞれ移植した。この時、左甲部にはコントロール(pG5-GLuc)、右甲部にはpG5-I90Lを持つ形質変換細胞がそれぞれ移植されたことになる。更に移植が安定化するまでに12時間を待った。
 後に、各マウスに女性ホルモン又は、溶媒(0.1% DMSO)を注射し、更に6時間後に発光強度を観察した(図15B)。その結果、女性ホルモン刺激を施したマウスの方が、より強い生物発光を示した。また、女性ホルモン刺激をしたマウス内でも、左甲部(GLuc発現)に比べて、右甲部(I90L発現)の方がより強い生物発光を示した。この結果は、女性ホルモン刺激によって、同量のGLuc又は、I90Lが発現されたとしても、I90Lの方が高輝度で安定的であるため、より強い生物発光を示したと解析できる。その具体的な発光強度は、図15(C)で示している。
The three types of plasmids (pBIND, pACT, pG5-I90L or pG5-GLuc) were co-transfected into COS-7 cells to produce transformed cells. The transformed cells were transplanted into the left and right upper and subcutaneous tissues of BALB / c nude mice (five-week-old female), respectively. At this time, the left upper part was transplanted with control (pG5-GLuc), and the right upper part was transplanted with transformed cells having pG5-I90L. Furthermore, 12 hours were allowed for the transplantation to stabilize.
Later, female hormone or solvent (0.1% DMSO) was injected into each mouse, and the luminescence intensity was observed after another 6 hours (FIG. 15B). As a result, mice subjected to female hormone stimulation showed stronger bioluminescence. Also, in the mouse stimulated with female hormones, the right upper (I90L expression) showed stronger bioluminescence than the left upper (GLuc expression). Even if the same amount of GLuc or I90L is expressed by female hormone stimulation, it can be analyzed that I90L showed higher bioluminescence because it was more stable and brighter. The specific light emission intensity is shown in FIG.
〔実施例9〕マンマリアンツーハイブリットアッセイを用いた生物発光特性の比較
 更にマンマリアンツーハイブリットアッセイ(mammalian two-hybrid assay)に当該生物発光酵素(I90L、8990)を搭載した場合と、公知のRLuc変異体のRLuc8.6-535を搭載した場合を比較した(図16)。ここで用いたRLuc8.6-535(非特許文献11)は、今まで開発された最も明るいとされていた人工生物発光酵素であり、A55T/C124A/S130A/K136R/A143M/M185V/M253L/S287L/A123S/D154M/E155G/D162E/I163L/V185Lという多数箇所に変異を有するRLuc変異体である。この実験における実験手法は、実施例2で示した方法と同様にER LBDとSrc SH2ドメインとの結合を可視化する系を用いた。その結果、同一条件で実験を進めた結果、8990の生物発光値(絶対値)がRLuc8.6-535に比べて11.4倍も強いことが確認できた。また、S/N比においても、8990はRLuc8.6-535に比べて2倍程度良いS/N比を示した。
 この結果は、本発明のGLuc変異体酵素を搭載したツーハイブリットアッセイが、他の発光酵素を搭載したアッセイ系に比べて優れていることを示すものである。
[Example 9] Comparison of bioluminescence characteristics using the Manmarian two-hybrid assay Further, when the bioluminescent enzyme (I90L, 8990) is mounted on the mammalian two-hybrid assay, the known RLuc The case of mounting the mutant RLuc8.6-535 was compared (FIG. 16). RLuc8.6-535 (Non-patent Document 11) used here is the brightest artificial bioluminescent enzyme developed so far, and is A55T / C124A / S130A / K136R / A143M / M185V / M253L / S287L. It is an RLuc mutant having mutations at multiple locations, / A123S / D154M / E155G / D162E / I163L / V185L. As an experimental method in this experiment, a system that visualizes the binding between the ER LBD and the Src SH2 domain was used in the same manner as the method shown in Example 2. As a result, it was confirmed that the bioluminescence value (absolute value) of 8990 was 11.4 times stronger than that of RLuc8.6-535 as a result of the experiment under the same conditions. As for the S / N ratio, 8990 showed an S / N ratio that was about twice as good as that of RLuc8.6-535.
This result shows that the two-hybrid assay equipped with the GLuc mutant enzyme of the present invention is superior to the assay system loaded with other luminescent enzymes.
〔実施例10〕真核細胞を用いた生物発光特性の比較
 本発明によるGLuc変異体酵素と従来の生物発光酵素との発光値の相違を計測した(図17)。まず、それぞれの生物発光酵素を発現するプラスミドを真核培養細胞(COS-7)に導入した後、16時間培養した。その後、細胞を回収し、ライセットを作成した。基質導入後の発光値をルミノメーターですぐ測定した。本発明者によって開発されたGLuc変異体酵素のうちのI90Lと、公知のGLuc変異体であるM43I変異体(非特許文献12)及び上記RLuc8.6-535の発光値を比較してみた。その結果、当該発明によるI90Lは、従来のM43IやRLuc8.6-535に比べて、5倍から20倍の強い生物発光を示した。
[Example 10] Comparison of bioluminescence characteristics using eukaryotic cells The difference in luminescence value between the GLuc mutant enzyme according to the present invention and the conventional bioluminescence enzyme was measured (Fig. 17). First, plasmids expressing the respective bioluminescent enzymes were introduced into eukaryotic cultured cells (COS-7) and then cultured for 16 hours. Thereafter, the cells were collected and a lyset was prepared. The luminescence value after substrate introduction was measured immediately with a luminometer. The luminescence values of I90L of the GLuc mutant enzyme developed by the present inventor, the M43I mutant (Non-patent Document 12), which is a known GLuc mutant, and RLuc8.6-535 were compared. As a result, I90L according to the present invention exhibited a bioluminescence that was 5 to 20 times stronger than conventional M43I and RLuc8.6-535.
〔実施例11〕B16皮膚癌細胞(melanoma)の体内転移のイメージング
 本発明で用いた高輝度生物発光を呈するGLuc変異体酵素の長所を生かして、生きたマウスの生体内における癌細胞の転移実験(metastesis)を行った結果を図18として示す。この実験のために、まずB16皮膚癌細胞(melanoma)に従来のGLucの遺伝子と本当該発明の高輝度生物発光酵素のI90L遺伝子を導入し、16時間培養した。その後、前記細胞をそれぞれ回収し、生きた生後6週齢BALB/cヌードマウスに静脈注射した。その後、同様に基質をマウスの静脈に注射し、その生物発光を小動物イメージング装置(IVIS Lumina XR(Xenogen))で観察した。
 その結果、マウス体内における生物発光強度は、肺部位が非常に強く光った(図18A)。この際、特にI90Lを発現する細胞を注射したマウスの方が選択的に強い生物発光を示すことから、本発明で用いたGLuc変異体酵素を用いた方が生体内における癌の転移過程を観察する上で優位であることが分かった。
 また、解剖を行い、その内臓をイメージングした結果からも、肺と子宮で強い生物発光を示していることが確認できた(図18B)。この結果は、図18Aで観察された生物発光が、肺や子宮に転移した癌細胞によるものであることを裏付けている。この結果からも本発明のGLuc変異体酵素は、生体イメージング、特に癌組織の有無、癌細胞の転移等の観察においても非常に優れた性能を発揮できることが示される。
[Example 11] Imaging of in vivo metastasis of B16 skin cancer cells (melanoma) Taking advantage of the GLuc mutant enzyme exhibiting high-intensity bioluminescence used in the present invention, cancer cell metastasis experiments in living mice The results of (metastesis) are shown in FIG. For this experiment, B16 skin cancer cells (melanoma) were first introduced with the conventional GLuc gene and the I90L gene of the high-intensity bioluminescent enzyme of the present invention and cultured for 16 hours. Thereafter, the cells were collected and intravenously injected into living 6-week-old BALB / c nude mice. Thereafter, the substrate was similarly injected into the vein of the mouse, and the bioluminescence was observed with a small animal imaging device (IVIS Lumina XR (Xenogen)).
As a result, the bioluminescence intensity in the mouse body was very intense in the lung region (FIG. 18A). At this time, especially the mice injected with cells expressing I90L selectively show strong bioluminescence, so the GLuc mutant enzyme used in the present invention observed the cancer metastasis process in vivo. It turned out to be superior in doing.
Further, from the result of dissection and imaging of the internal organs, it was confirmed that strong bioluminescence was shown in the lung and uterus (FIG. 18B). This result confirms that the bioluminescence observed in FIG. 18A is due to cancer cells that have metastasized to the lungs or uterus. This result also shows that the GLuc mutant enzyme of the present invention can exhibit very excellent performance in biological imaging, particularly in observation of the presence or absence of cancer tissue, cancer cell metastasis, and the like.

Claims (11)

  1.  外部刺激に応じた細胞内での標的遺伝子発現の時期又は発現量を解析するための分析法に用いるレポーター遺伝子であって、海洋動物発光酵素のアミノ酸配列において、ガウシアルシフェラーゼ(GLuc)のアミノ酸配列上の89~118位までに相当する位置のアミノ酸残基のうち少なくとも1残基が置換されており、当該置換が、同89位、90位、95位、97位、100位、108位、112位、115位、及び118位に相当する位置の少なくとも1つから選ばれた位置のアミノ酸残基に対して同類アミノ酸置換(conservative amino acid replacement)であり、それによって発光機能が向上した変異発光酵素をコードする遺伝子からなることを特徴とする、レポーター遺伝子。 A reporter gene used in an analysis method for analyzing the timing or amount of expression of a target gene in a cell in response to an external stimulus, the amino acid sequence of Gaussia luciferase (GLuc) in the amino acid sequence of marine animal luminescent enzyme At least one of the amino acid residues at positions corresponding to positions 89 to 118 above is substituted, and the substitution is the same at positions 89, 90, 95, 97, 100, 108, Mutation luminescence with conservative amino acid replacement for amino acid residues at positions selected from at least one of positions corresponding to positions 112, 115, and 118, thereby improving luminescence function A reporter gene comprising an enzyme-encoding gene.
  2.  前記変異発光酵素をコードする遺伝子が、海洋動物発光酵素のアミノ酸配列において、GLucのアミノ酸配列上の89位、90位、97位、108位、112位、115位、もしくは118位に相当する位置の疎水性アミノ酸残基から、他の疎水性アミノ酸残基への置換、又は同95位もしくは100位の位置の水素結合を形成する親水性アミノ酸残基から他の親水性アミノ酸残基への置換を含む同類アミノ酸置換が施された変異発光酵素をコードするものである、請求項1に記載のレポーター遺伝子。 The gene encoding the mutant luminescent enzyme is a position corresponding to position 89, 90, 97, 108, 112, 115, or 118 on the amino acid sequence of GLuc in the amino acid sequence of marine animal luminescent enzyme From one of the hydrophobic amino acid residues to another hydrophobic amino acid residue, or from one hydrophilic amino acid residue that forms a hydrogen bond at the 95th or 100th position to another hydrophilic amino acid residue The reporter gene according to claim 1, which encodes a mutant luminescent enzyme having a conservative amino acid substitution comprising:
  3.  前記同類アミノ酸置換が、海洋動物発光酵素のアミノ酸配列において、GLucのアミノ酸配列上の90位、108位、112位、115位、もしくは118位の位置に相当する位置のアミノ酸残基をロイシン(L)、トリプトファン(W)もしくはバリン(V)に置換するか、同89位もしくは97位の位置に相当する位置のアミノ酸残基をトリプトファン(W)に置換するか、同95位に相当する位置のアミノ酸残基をグルタミン酸(E)に置換するか、又は同100位に相当する位置のアミノ酸残基をアスパラギン(N)に置換することを含むものである、請求項2に記載のレポーター遺伝子。 In the amino acid sequence of the marine animal luminescent enzyme, the amino acid residue at the position corresponding to the 90th, 108th, 112th, 115th, or 118th position on the GLuc amino acid sequence is replaced with leucine (L ), Substituted with tryptophan (W) or valine (V), or substituted with tryptophan (W) for the amino acid residue at the position corresponding to position 89 or 97, or at the position corresponding to position 95 The reporter gene according to claim 2, comprising substituting an amino acid residue with glutamic acid (E) or substituting an amino acid residue at a position corresponding to position 100 with asparagine (N).
  4.  前記変異発光酵素をコードする遺伝子が、前記海洋動物発光酵素のアミノ酸配列において、GLucのアミノ酸配列上の90位に相当する位置のアミノ酸残基をロイシンに置換することを含む同類アミノ酸置換が施された変異発光酵素遺伝子である、請求項1~3のいずれかに記載のレポーター遺伝子。 In the amino acid sequence of the marine animal luminescent enzyme, the gene encoding the mutant luminescent enzyme is subjected to a conservative amino acid substitution including substituting an amino acid residue at a position corresponding to position 90 on the amino acid sequence of GLuc with leucine. The reporter gene according to any one of claims 1 to 3, which is a mutant luminescent enzyme gene.
  5.  前記海洋動物発光酵素が、ガウシアルシフェラーゼ(GLuc)並びにカイシアルシフェラーゼ(MLuc、MpLuc1、及びMpLuc2)から選択されたいずれかの発光酵素である、請求項1~4のいずれかに記載のレポーター遺伝子。 The reporter gene according to any one of claims 1 to 4, wherein the marine animal luminescent enzyme is any luminescent enzyme selected from Gaussia luciferase (GLuc) and Caucasian luciferase (MLuc, MpLuc1, and MpLuc2). .
  6.  請求項1~5のいずれかに記載のレポーター遺伝子を、外部刺激に対する応答配列又は外部刺激の応答により形成される融合蛋白に対する応答配列の下流に含んでなる発現ベクター。 An expression vector comprising the reporter gene according to any one of claims 1 to 5 downstream of a response sequence to an external stimulus or a response sequence to a fusion protein formed by a response to the external stimulus.
  7.  請求項6に記載の発現ベクターが導入された形質転換細胞。 A transformed cell into which the expression vector according to claim 6 has been introduced.
  8.  請求項7に記載の形質転換細胞を用いることを特徴とする、外部刺激に応じた細胞内での標的遺伝子発現の時期又は発現量を解析するための分析法。 An analysis method for analyzing the timing or expression level of a target gene in a cell in response to an external stimulus, wherein the transformed cell according to claim 7 is used.
  9.  前記外部刺激の強さを、基質添加後のレポーター遺伝子の発現に基づく生物発光の強度の上昇速度(RLU/sec)、又は応答曲線の面積を指標として定量化することを特徴とする、請求項8に記載の分析法。 The intensity of the external stimulus is quantified using an increase rate of bioluminescence intensity based on expression of a reporter gene after addition of a substrate (RLU / sec) or an area of a response curve as an index, 8. The analysis method according to 8.
  10.  前記分析法が、レポータージーンアッセイ法又はツーハイブリットアッセイ法である、請求項8又は9に記載の分析法。 The analysis method according to claim 8 or 9, wherein the analysis method is a reporter gene assay method or a two-hybrid assay method.
  11.  請求項10に記載のツーハイブリッドアッセイ法を構成する3種類のプラスミドの比率のうち、レポーター発現用プラスミドの割合を他のプラスミドの2倍以上に高めたことを特徴とする、分析法。 An analysis method characterized in that, among the ratios of the three types of plasmids constituting the two-hybrid assay method according to claim 10, the ratio of the plasmid for reporter expression is increased more than twice that of the other plasmids.
PCT/JP2011/050957 2010-02-19 2011-01-20 Analysis system using modified reporter gene WO2011102178A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-034281 2010-02-19
JP2010034281 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102178A1 true WO2011102178A1 (en) 2011-08-25

Family

ID=44482779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050957 WO2011102178A1 (en) 2010-02-19 2011-01-20 Analysis system using modified reporter gene

Country Status (1)

Country Link
WO (1) WO2011102178A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065047A1 (en) * 2012-10-26 2014-05-01 独立行政法人産業技術総合研究所 Artificial bioluminescent enzyme
JP2014100137A (en) * 2012-10-26 2014-06-05 National Institute Of Advanced Industrial & Technology Artificial bioluminescent enzyme
WO2015056762A1 (en) * 2013-10-18 2015-04-23 独立行政法人産業技術総合研究所 Luminescent substrate for use in artificial bioluminescent enzyme
CN106478774A (en) * 2015-08-25 2017-03-08 三生国健药业(上海)股份有限公司 A kind of signal peptide for protein expression
US11268106B2 (en) 2014-09-11 2022-03-08 Jnc Corporation Method for synthetic genes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507410A (en) * 1998-03-27 2002-03-12 プロルーム・リミテッド Luciferases, fluorescent proteins, nucleic acids encoding luciferases and fluorescent proteins and their use in diagnostics, high-throughput screening and novel items
WO2010119721A1 (en) * 2009-04-17 2010-10-21 独立行政法人産業技術総合研究所 Stable artificial bioluminescent enzyme having super-high brightness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507410A (en) * 1998-03-27 2002-03-12 プロルーム・リミテッド Luciferases, fluorescent proteins, nucleic acids encoding luciferases and fluorescent proteins and their use in diagnostics, high-throughput screening and novel items
WO2010119721A1 (en) * 2009-04-17 2010-10-21 独立行政法人産業技術総合研究所 Stable artificial bioluminescent enzyme having super-high brightness

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INOUE, S. ET AL.: "Identification of two catalytic domains in a luciferase secreted by the copepod Gaussia princeps", BIOCHEM.BIOPHYS. RES.COMMUN., vol. 365, no. 1, 2008, pages 96 - 101 *
MAGUIRE, C.A. ET AL.: "Gaussia luciferase variant for high-throughput functional screening applications", ANAL.CHEM., vol. 81, no. 16, 2009, pages 7102 - 7106 *
WELSH, J.P. ET AL.: "Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence", BIOCHEM.BIOPHYS.RES.COMMUN., vol. 389, no. 4, 2009, pages 563 - 568 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065047A1 (en) * 2012-10-26 2014-05-01 独立行政法人産業技術総合研究所 Artificial bioluminescent enzyme
JP2014100137A (en) * 2012-10-26 2014-06-05 National Institute Of Advanced Industrial & Technology Artificial bioluminescent enzyme
CN104781401B (en) * 2012-10-26 2018-06-05 独立行政法人产业技术综合研究所 Artificial bio-membrane's Luminescence Enzyme
US10533231B2 (en) 2012-10-26 2020-01-14 National Institute Of Advanced Industrial Science And Technology Artificial bioluminescent enzyme
WO2015056762A1 (en) * 2013-10-18 2015-04-23 独立行政法人産業技術総合研究所 Luminescent substrate for use in artificial bioluminescent enzyme
JPWO2015056762A1 (en) * 2013-10-18 2017-03-09 国立研究開発法人産業技術総合研究所 Luminescent substrate for use in artificial bioluminescent enzymes
US10214766B2 (en) 2013-10-18 2019-02-26 National Institute Of Advanced Industrial Science And Technology Luminescent substrate for use in artificial bioluminescent enzyme
US11268106B2 (en) 2014-09-11 2022-03-08 Jnc Corporation Method for synthetic genes
CN106478774A (en) * 2015-08-25 2017-03-08 三生国健药业(上海)股份有限公司 A kind of signal peptide for protein expression
CN106478774B (en) * 2015-08-25 2021-09-14 三生国健药业(上海)股份有限公司 Signal peptide for protein expression

Similar Documents

Publication Publication Date Title
Xing et al. Techniques for the analysis of protein-protein interactions in vivo
Fan et al. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein–protein interactions in living cells
WO2010119721A1 (en) Stable artificial bioluminescent enzyme having super-high brightness
US10928400B2 (en) Luciferase-based thermal shift assays
WO2011102178A1 (en) Analysis system using modified reporter gene
WO2014065047A1 (en) Artificial bioluminescent enzyme
EP3778650A1 (en) Fluorescent probe for branched chain amino acids and use thereof
US20180209968A1 (en) Drug discovery and protein-protein interaction assay using fluorescent protein exchange
Wang et al. Two-isophorone fluorophore-based design of a ratiometric fluorescent probe and its application in the sensing of biothiols
EP2436764B1 (en) Method for highly sensitive detection of protein-protein interaction
Ohmiya Simultaneous multicolor luciferase reporter assays for monitoring of multiple genes expressions
CN109897093B (en) Multiple improved orange/red fluorescent proteins
JP5110573B2 (en) Multicolor bioluminescence visualization probe set or single molecule type multicolor bioluminescence visualization probe
Lake et al. Luciferase fragment complementation imaging in preclinical cancer studies
CN1784496B (en) Multiple gene transcription activity determining system
EP3575779A1 (en) Method of detecting biological material, and chemiluminescent indicator used therein
Dimri et al. Dynamic monitoring of STAT3 activation in live cells using a novel STAT3 Phospho-BRET sensor
WO2007027919A2 (en) Complementation assays utilizing complexes of heteroproteins
JP6132350B2 (en) Artificial bioluminescent enzyme
US20220169682A1 (en) Split photoactive yellow protein complementation system and uses thereof
JP5454858B2 (en) Anchor peptides for bioluminescent and fluorescent probes
US20130122577A1 (en) Kit including sequence specific binding protein and method and device for determining nucleotide sequence of target nucleic acid
WO2024000408A1 (en) Luciferase mutant and use thereof
WO2009009908A1 (en) A recombmase based screening method for detecting molecular interactions comprising a single plasmid vector with two unique recombmase sites
Gottschalk et al. Detecting protein–protein interactions in living cells: development of a bioluminescence resonance energy transfer assay to evaluate the PSD-95/NMDA receptor interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP