WO2011102165A1 - Crane sway sensor and crane - Google Patents

Crane sway sensor and crane Download PDF

Info

Publication number
WO2011102165A1
WO2011102165A1 PCT/JP2011/050635 JP2011050635W WO2011102165A1 WO 2011102165 A1 WO2011102165 A1 WO 2011102165A1 JP 2011050635 W JP2011050635 W JP 2011050635W WO 2011102165 A1 WO2011102165 A1 WO 2011102165A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
target
led array
light
array element
Prior art date
Application number
PCT/JP2011/050635
Other languages
French (fr)
Japanese (ja)
Inventor
陽一郎 津村
顕夫 池田
雅人 小林
伸郎 吉岡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011102165A1 publication Critical patent/WO2011102165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements

Definitions

  • the present invention relates to a crane runout sensor and a crane.
  • This application claims priority based on Japanese Patent Application No. 2010-034785 filed in Japan on February 19, 2010, the contents of which are incorporated herein by reference.
  • a first target and a second target that are each formed in a substantially square shape and emit irradiation light upwards
  • the first target and the second target are respectively imaged from above and arranged on one end and the other end of the upper surface of the image, and an image based on the composite image information of the imaged first target and second target
  • the gravity center position of each target is calculated, and the deflection angle is detected based on the temporal change of the gravity center position.
  • the optical axis of the irradiation light emitted from the first target and the second target is blocked when the weather is rainy or foggy, and the position of the center of gravity Cannot be calculated, and there is a problem that erroneous detection occurs.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a crane runout sensor and a crane that can accurately detect runout with a simple configuration.
  • the present invention employs the following means. That is, the crane shake sensor according to the present invention includes an imaging unit installed downward on the crane body and a plurality of LED chips arranged in an array, provided on a hanging tool suspended from the crane body. And a target portion having an LED array element that emits irradiation light upward from the light emitting surface formed by the plurality of LED chips, and d is the shortest distance from the center of gravity of the light emitting surface of the target portion to the edge.
  • the maximum stroke between the imaging unit and the target unit is L MAX and the instantaneous viewing angle of the imaging device of the imaging unit is Q, the following relationship is satisfied.
  • the target unit including the LED array element in which the light emitting surface is formed by the plurality of LED chips arranged in an array is provided, the light source of the target unit is configured by a single element.
  • the structure of the drive circuit which controls a target part can be simplified, the structure of the crane runout sensor whole can be simplified.
  • the sufficient light emitting area of the target unit is ensured by satisfying the relationship of the above formula, even if the weather is rain or fog, any irradiation light from the target unit Will reach each image sensor of the imaging unit, and erroneous detection of the target unit can be suppressed.
  • the target unit includes a lens that collects and equalizes the irradiation light emitted from the LED array element. According to this configuration, since the lens that collects and equalizes the irradiation light emitted from the target unit is provided, the irradiation light can reach the imaging element without being diffused.
  • the wavelength of the irradiation light of the LED array element is longer than the peak wavelength of the sunlight spectrum. According to this configuration, since the wavelength of the irradiation light of the target unit is longer than the peak wavelength of the sunlight spectrum, it becomes easy to distinguish the irradiation light from the target unit and sunlight, and the target in the image captured by the imaging unit Department becomes clear. As a result, the target portion can be accurately identified, and the shake can be detected more accurately.
  • the light emission intensity per unit area of the LED array element has a strength that saturates at a level equal to or higher than the minimum sensitivity of the imaging element of the imaging unit and is stronger than outside light in the case of the maximum stroke L MAX.
  • the intensity is saturated at or above the minimum sensitivity of the imaging element of the imaging unit and is stronger than the external light.
  • This irradiation light can reach the image sensor of the imaging unit.
  • the output can be increased and irradiation light with sufficient intensity can reach the image pickup device of the image pickup unit without being restricted by the light emission intensity unlike the laser semiconductor.
  • the crane according to the present invention includes the crane body, a hanging tool suspended from the crane body, and any one of the crane runout sensors. According to this configuration, since any one of the crane shake sensors described above is provided, it is possible to accurately detect the swing of the hanger without complicating the overall configuration. Further, it is possible to appropriately control the swing of the hanging tool based on the detection result.
  • the shake can be accurately detected with a simple configuration.
  • the crane of the present invention it is possible to accurately detect the swing of the hoist without complicating the overall configuration.
  • FIG. 1 is a schematic configuration diagram of a crane runout sensor 1 according to an embodiment of the present invention. It is a schematic structure enlarged view of the image pick-up part 10 concerning the embodiment of the present invention. It is a schematic structure enlarged view of the target part 20 which concerns on embodiment of this invention. It is a graph which shows the relationship between the light emission wavelength band n and the solar spectrum S of the LED array element 21 which concerns on embodiment of this invention. It is a schematic block diagram of the crane run-out sensor 1 which concerns on embodiment of this invention, Comprising: The hanging tool W has displaced the state from the state of FIG.
  • FIG. 1 is a schematic configuration diagram of a crane shake sensor 1 according to an embodiment of the present invention.
  • the crane runout sensor 1 is disposed on a crane body C and a hanging tool W suspended from the crane body C, and the swing angle ⁇ of the hanging tool W (see FIG. 5). Is detected.
  • the crane body C and the suspension tool W can be relatively displaced in the vertical direction.
  • the crane shake sensor 1 includes four pairs of an imaging unit 10 and a target unit 20 that form a pair.
  • FIG. 2 is an enlarged schematic diagram of the imaging unit 10.
  • the imaging unit 10 is disposed below the crane body C and includes a camera 11, an optical lens 12, and an optical filter 13.
  • the camera 11 is being fixed to the lower surface c1 of the crane main body C in the state which faced the downward direction of the crane main body C, as shown in FIG.
  • Each camera 11 is electrically connected to an image processing device (not shown), and transfers image data to the image processing device (not shown).
  • the optical lens 12 is fixed below the camera 11 and has a focal length f of, for example, 30 mm.
  • the optical lens 12 has the entire upper projection surface of the target unit 20 paired with the camera 11 within the viewing angle of the camera 11 even when the crane body C and the suspension tool W are the farthest and closest. Can have a viewing angle ⁇ .
  • a lens driving device not shown
  • an image of the focused target unit 20 is sent to the camera 11.
  • the optical filter 13 reduces the influence of sunlight, and the transmission wavelength band bf (see FIG. 4) is designed based on the emission wavelength band n of the irradiation light from the target unit 20. Specifically, the center of the transmission wavelength band bf is designed to overlap the peak of the emission wavelength band n of the irradiation light from the LED array element 21 described later, and the transmission wavelength band bf becomes relatively narrow. Yes.
  • FIG. 3 is an enlarged schematic view of the target unit 20. As shown in FIG. 3, each target unit 20 includes an LED array element 21 and a lens 22.
  • the LED array element 21 is one in which sixty LED bare chips (AlGaAs) are mounted in an array on a single AIN ceramic substrate and covered with a clear silicon resin.
  • sixty LED bare chips are gathered in a substantially circular and dense manner, and a light emitting surface 21a having a shape suitable for calculating the center of gravity (for example, a circular shape) is formed as a whole. .
  • a shape suitable for calculating the center of gravity for example, a circular shape
  • the number of LED bare chips is plural, it can be changed as appropriate.
  • Two or more LED array elements 21 are disposed at least at the four corners of the rectangular upper surface (upper part) w1 of the hanger W, and face the paired imaging units 10, and irradiate upward. It comes to emit light.
  • the irradiation angle of the irradiation light of the LED array element 21 is +60 degrees to ⁇ 60 degrees when the vertical axis is 0 degrees. Note that the irradiation angle of the irradiation light can be changed as appropriate.
  • FIG. 4 is a graph showing the relationship between the emission wavelength band n of the LED array element 21 and the solar spectrum S.
  • the emission wavelength band n of the LED array element 21 is set to be longer than the peak wavelength of the solar spectrum S. More specifically, it is set to the wavelength region of the atmospheric absorption line in the near infrared region where the light intensity of sunlight is relatively low. More specifically, the emission wavelength band n of the LED array element 21 is set in the range of 700 nm to 1000 nm.
  • the light emission intensity per unit area of the LED array element 21 is the maximum stroke L MAX (described later) between the target unit 20 and the imaging unit 10 when the crane body C and the hanging tool W are farthest from each other. In addition, the intensity is saturated at or above the minimum sensitivity of the image sensor of the camera 11 and is stronger than sunlight. Since the LED array element 21 is one element, the drive circuit for the LED array element 21 is relatively simplified.
  • the lens 22 is specifically composed of a condenser lens and is fixed above the LED array element 21.
  • the lens 22 condenses and uniformizes the irradiation light emitted from the LED array element 21.
  • the lens 22 enlarges the light emitting surface 21a of the LED array element 21 and projects it upward. More specifically, the illumination light emitted from the LED array element 21 at an irradiation angle of +60 degrees to ⁇ 60 degrees is collected upward by the lens 22 at a predetermined projection angle ⁇ that satisfies the following expression (2). Project.
  • the stroke L between the target unit 20 and the imaging unit 10 is such that the maximum stroke L MAX when the crane main body C and the lifting tool W are farthest is 40 m, and the minimum stroke L MIN when the crane body C is closest is 3 m. Is set to
  • the radius of the light emitting surface 21 a of the LED array element 21 is d
  • the maximum stroke between the LED array element 21 and the camera 11 is L MAX
  • the instantaneous viewing angle of the imaging element of the camera 11 is Q
  • equation (1) is satisfy
  • the size of the image sensor of the camera 11 described above is 10 ⁇ 10 ⁇ m
  • the focal length f of the optical lens 12 is 30 mm
  • the instantaneous viewing angle Q is 0.33 mrad. That is, in this embodiment, since the maximum stroke L MAX is 40 m, the diameter (light emitting area diameter) of the LED array element 21 is 1.3 cm or more. However, even in the case of minimum stroke L MIN, so that the entire LED array device 21 is imaged, the diameter of the LED array device 21 (light emitting area diameter) is set smaller than the viewing angle ⁇ in the case of minimum stroke L MIN ing.
  • FIG. 5 is a schematic configuration diagram of the crane shake sensor 1 when the suspension tool W is shaken.
  • the projection angle ⁇ of the lens 22 satisfies the relationship of the following formula (2), where X is the maximum shake amount of the hanging tool W in the horizontal direction. X / L ⁇ / 2 Formula (2)
  • the crane shake sensor 1 having the above-described configuration images the target unit 20 paired by each imaging unit 10, and performs the image processing based on the composite image information of the captured target unit 20 to obtain the center of gravity of each LED array element 21.
  • the position is calculated, and the deflection angle ⁇ (see FIG. 5) is detected based on the temporal change in the position of the center of gravity.
  • the target unit 20 including the LED array element 21 in which the light emitting surface 21a is formed by a plurality of LED chips arranged in an array is provided, the light source of the target unit 20 is a single light source. It is comprised with the element of.
  • the structure of the drive circuit which controls the target part 20 can be simplified, the structure of the crane runout sensor 1 whole can be simplified.
  • simplifying the configuration of the drive circuit that controls the target unit 20 it is possible to reduce administrative and operational labor and costs. That is, in the prior art, if a part of the element breaks down, an error occurs in the detection of the center of gravity of the target.
  • the light emitting element has a large light emission intensity per unit area but a small light emitting area, so that the light emitting optical axis is blocked in the case of rain, fog, etc. A false detection occurred.
  • the lens 22 that collects and equalizes the irradiation light emitted from the target unit 20 since the lens 22 that collects and equalizes the irradiation light emitted from the target unit 20 is provided, the irradiation light can reach the image sensor without being diffused. That is, if the irradiation light is diffused, the ratio of the irradiation light reaching the camera 11 is reduced and the luminance needs to be increased. However, since the irradiation light is condensed and uniformed by the lens 22, the light emitting surface 21a. It is possible to increase the proportion of the irradiation light that reaches the camera 11 while suppressing an increase in the brightness of the camera 11.
  • the target unit 20 does not deviate from the imaging range of the imaging unit 10 and the target unit 20 captures an image on the imaging unit 10. Will be. Thereby, the erroneous detection which arises when the target part 20 remove
  • the projection angle is different between the horizontal direction and the vertical direction. Therefore, in order to make the projection angle uniform in both directions, it is necessary to configure a special optical system. It was.
  • the LED array element 21 is used as described above, a simple optical system is used to project in both directions in the horizontal direction and the vertical direction. It is possible to control the projection angle ⁇ .
  • the light emission wavelength band n of the LED array element 21 is set in the near infrared region where the light intensity of sunlight is relatively low, it becomes easy to distinguish the irradiation light from the target unit 20 and sunlight. In the image captured by the imaging unit 10, the target unit 20 becomes clear. As a result, the target unit 20 can be accurately identified, and the shake can be accurately detected. Furthermore, since the emission wavelength band n of the LED array element 21 is set to the wavelength range of the atmospheric absorption line in the near infrared range, it is less susceptible to sunlight and more accurately detects vibration. It becomes possible.
  • the oscillation wavelength band of the irradiation light of the semiconductor laser element is very narrow, and therefore the transmission wavelength band of the optical filter needs to be very narrow.
  • the transmission wavelength band of the optical filter becomes narrower, it becomes more difficult to manufacture the center wavelength constant, and the yield deteriorates. For this reason, it is necessary to confirm the oscillation wavelength for each semiconductor laser element and select an optical filter corresponding to the wavelength.
  • the center wavelength of the oscillation wavelength of the semiconductor laser element changes according to the element temperature, there is a high possibility that the wavelength of the irradiation light will be out of the transmission wavelength band of the optical filter. If the wavelength of the irradiation light deviates from the transmission wavelength band of the optical filter, most of the irradiation light is blocked by the optical filter, and the irradiation light received by the image sensor of the camera 11 becomes slight. End up. On the other hand, since the LED array element 21 described above has a wider emission wavelength band than the semiconductor laser element, the transmission wavelength band of the optical filter 13 can be easily managed.
  • the wavelength band of the irradiation light becomes wide, even if the center wavelength of the optical filter is shifted in the manufacturing process (indicated by symbols bf ′ and bf ′′ in FIG. 4), the light reception on the imaging unit 10 side. Large fluctuations in the amount of light are eliminated, and erroneous detection of the target unit 20 can be suppressed. In other words, since the LED array element 21 having a wide emission wavelength band is used for the target unit 20, it is not necessary to select the optical filter 13.
  • the intensity is saturated at or above the minimum sensitivity of the imaging element of the imaging unit 10 and stronger than the external light. Irradiation light can reach the image sensor of the imaging unit 10.
  • the detection rate of the imaging unit 10 improves as the brightness of the light source of the target unit increases.
  • a conventional technique using a semiconductor laser element as a target portion it is necessary to take safety measures from the viewpoint of eye protection in order to increase the luminance beyond the laser class determined by the JIS standard.
  • the LED array element 21 can increase the output and reach the imaging element of the imaging unit 10 with sufficient output without being restricted by the emission intensity.
  • the LED array element 21 uses an LED chip, it has the following advantageous effects as compared with a target using a semiconductor laser element.
  • the LED array element 21 is more resistant to heat and impact than the semiconductor laser element. For this reason, since it is not necessary to take measures against heat and impact, the weight can be reduced as compared with a target using a semiconductor laser element.
  • the LED array element 21 is more excellent in stability and electrical stability with respect to the external environment than the semiconductor laser element. For this reason, it becomes a long life and can obtain the outstanding operativity.
  • the crane according to the present invention includes the crane body, a hanging tool suspended from the crane body, and any one of the crane runout sensors.
  • the runout of the hoisting tool W can be accurately detected without complicating the overall configuration. Further, it is possible to appropriately control the swing of the hanging tool W based on the detection result.
  • the light emitting surface 21a of the LED array element 21 is formed in a circular shape so that the center of gravity can be easily calculated, but may be in other shapes (for example, square, regular polygon, rectangular shape). Good.
  • d in the formula (1) as the shortest distance from the center of gravity of the light emitting surface of the target to the edge, even if the weather is rain or fog, the irradiation light from the target unit is imaged. The element can be reached.
  • the type of crane is not particularly mentioned, but the present invention can be applied to a movable type or a derrick including a fixed type.
  • the configuration of the drive circuit that controls the target unit can be simplified, the configuration of the entire crane runout sensor can be simplified. Further, even if the weather is rain or fog, any irradiation light from the target unit reaches each imaging element of the imaging unit, so that erroneous detection of the target unit can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control And Safety Of Cranes (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A crane sway sensor capable of accurately detecting sway using a simple configuration. A crane sway sensor is provided with: an image-capturing section (10) which is provided to the crane body (C) and is oriented below the crane body (C); and a target section (20) which is provided to a lifting device (W) suspended from the crane body (C) and facing the image-capturing section (10) and which has an LED array element for emitting illumination light upward and having a light emitting surface formed by LED chips arranged in an array. If the minimum distance from the center of gravity of the light-emitting surface of the target section (20) to the edge thereof is d, the maximum stroke between the image-capturing section (10) and the target section (20) is LMAX, and the instantaneous angle of field of view of the image-capturing element of the image-capturing section (10) is Q, the crane sway sensor satisfies the following relationship: Q × LMAX < d

Description

クレーン振れセンサ及びクレーンCrane run-out sensor and crane
 本発明は、クレーン振れセンサ及びクレーンに関するものである。
 本願は、2010年2月19日に、日本に出願された特願2010-034785号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a crane runout sensor and a crane.
This application claims priority based on Japanese Patent Application No. 2010-034785 filed in Japan on February 19, 2010, the contents of which are incorporated herein by reference.
 周知のように、コンテナクレーン等の各種のクレーンにおいては、クレーン本体に吊り下げられる吊り具の振れ角や振れ量を検出し、この検出値に基づいて吊り具の振れを制御するものがある。 As is well known, in various types of cranes such as container cranes, there are some which detect the swing angle and the swing amount of the suspension suspended from the crane body and control the swing of the suspension based on the detected value.
 例えば、下記特許文献1に記載された吊り具の振れ角を検出する装置では、それぞれ略正方形に形成されて上方に向けて照射光を発する第一のターゲットと第二のターゲットとを、吊り具の上面の一方端と他方端とに配置し、第一のターゲットと第二のターゲットとをそれぞれ上方から撮像し、撮像された第一のターゲットと第二のターゲットとの合成画像情報に基づく画像処理によって、各ターゲットの重心位置を算出し、これら重心位置の時間的変化に基づいて振れ角を検出している。 For example, in an apparatus for detecting a swing angle of a hanging tool described in Patent Document 1 below, a first target and a second target that are each formed in a substantially square shape and emit irradiation light upwards The first target and the second target are respectively imaged from above and arranged on one end and the other end of the upper surface of the image, and an image based on the composite image information of the imaged first target and second target Through the processing, the gravity center position of each target is calculated, and the deflection angle is detected based on the temporal change of the gravity center position.
特許第2907325号公報Japanese Patent No. 2907325
 しかしながら、従来の技術においては、第一のターゲット及び第二のターゲットに複数の発光素子を集合させたものを用いているので、複数の発光素子を制御する必要があり、発光素子の駆動回路が複雑になってしまうという問題があった。 However, in the prior art, since a plurality of light emitting elements are assembled on the first target and the second target, it is necessary to control the plurality of light emitting elements, and a drive circuit for the light emitting elements is provided. There was a problem of becoming complicated.
 また、発光素子の発光面積が不適切な場合には、天候が雨や霧のときに、第一のターゲット及び第二のターゲットが発した照射光の光軸が遮られてしまって、重心位置を算出することができなり、誤検出が生じてしまうという問題があった。 In addition, when the light emitting area of the light emitting element is inappropriate, the optical axis of the irradiation light emitted from the first target and the second target is blocked when the weather is rainy or foggy, and the position of the center of gravity Cannot be calculated, and there is a problem that erroneous detection occurs.
 本発明は、このような事情を考慮してなされたもので、その目的は、簡素な構成で正確に振れを検出することができるクレーン振れセンサ及びクレーンを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a crane runout sensor and a crane that can accurately detect runout with a simple configuration.
 上記目的を達成するために、本発明は以下の手段を採用している。
 すなわち、本発明に係るクレーン振れセンサは、クレーン本体に下方に向けて設置された撮像部と、前記クレーン本体に吊り下げられた吊り具に設けられ、アレイ状に配列された複数のLEDチップを有し、前記複数のLEDチップにより形成された発光面から上方へ向けて照射光を発するLEDアレイ素子を有するターゲット部とを備え、前記ターゲット部の発光面の重心から縁までの最短距離をd、前記撮像部と前記ターゲット部との間の最大ストロークをLMAX、前記撮像部の撮像素子の瞬時視野角をQとした場合に、以下の関係を満たすことを特徴とする。
   Q×LMAX<d
 この構成によれば、アレイ状に配列された複数のLEDチップにより発光面が形成されるLEDアレイ素子を有するターゲット部を備えるので、ターゲット部の光源が単体の素子で構成されることとなる。これにより、ターゲット部を制御する駆動回路の構成を簡略化することができるので、クレーン振れセンサ全体の構成を簡素にすることができる。
 また、上記構成によれば、上式の関係を満たすことでターゲット部の十分な発光面積が確保されるので、天候が雨や霧の場合であっても、ターゲット部からのいずれかの照射光が撮像部の各撮像素子に到達することとなり、ターゲット部の誤検出を抑制することができる。
In order to achieve the above object, the present invention employs the following means.
That is, the crane shake sensor according to the present invention includes an imaging unit installed downward on the crane body and a plurality of LED chips arranged in an array, provided on a hanging tool suspended from the crane body. And a target portion having an LED array element that emits irradiation light upward from the light emitting surface formed by the plurality of LED chips, and d is the shortest distance from the center of gravity of the light emitting surface of the target portion to the edge. When the maximum stroke between the imaging unit and the target unit is L MAX and the instantaneous viewing angle of the imaging device of the imaging unit is Q, the following relationship is satisfied.
Q x L MAX <d
According to this configuration, since the target unit including the LED array element in which the light emitting surface is formed by the plurality of LED chips arranged in an array is provided, the light source of the target unit is configured by a single element. Thereby, since the structure of the drive circuit which controls a target part can be simplified, the structure of the crane runout sensor whole can be simplified.
In addition, according to the above configuration, since the sufficient light emitting area of the target unit is ensured by satisfying the relationship of the above formula, even if the weather is rain or fog, any irradiation light from the target unit Will reach each image sensor of the imaging unit, and erroneous detection of the target unit can be suppressed.
 また、前記ターゲット部は、前記LEDアレイ素子が発した照射光を集光して均一化するレンズを備えることを特徴とする。
 この構成によれば、ターゲット部が発した照射光を集光して均一化するレンズを備えるので、照射光を拡散させないで撮像素子に到達させることができる。
In addition, the target unit includes a lens that collects and equalizes the irradiation light emitted from the LED array element.
According to this configuration, since the lens that collects and equalizes the irradiation light emitted from the target unit is provided, the irradiation light can reach the imaging element without being diffused.
 また、水平方向における前記吊り具の各ストロークでの最大振れ量をX、前記レンズの投影角をP(実施形態におけるβ)とした場合に、以下の関係を満たすことを特徴とする。
   X/L<P/2
 この構成によれば、上式の関係を満たすので、例えば、振れによって吊り具が変位したとしてもターゲット部が撮像部の撮像範囲から外れない。これにより、撮像部の撮像範囲からターゲット部が外れて生じる誤検出を抑制することができる。
Further, when the maximum shake amount in each stroke of the lifting tool in the horizontal direction is X and the projection angle of the lens is P (β in the embodiment), the following relationship is satisfied.
X / L <P / 2
According to this configuration, since the relationship of the above equation is satisfied, for example, even if the hanging tool is displaced due to shaking, the target unit does not deviate from the imaging range of the imaging unit. As a result, it is possible to suppress erroneous detection that occurs when the target unit is out of the imaging range of the imaging unit.
 また、前記LEDアレイ素子の照射光の波長は、太陽光スペクトルのピーク波長よりも長いことを特徴とする。
 この構成によれば、ターゲット部の照射光の波長が太陽光スペクトルのピーク波長よりも長いので、ターゲット部からの照射光と太陽光とが区別され易くなり、撮像部で撮像された画像においてターゲット部が明確になる。これにより、ターゲット部を正確に識別することができ、より正確に振れを検出することが可能となる。
In addition, the wavelength of the irradiation light of the LED array element is longer than the peak wavelength of the sunlight spectrum.
According to this configuration, since the wavelength of the irradiation light of the target unit is longer than the peak wavelength of the sunlight spectrum, it becomes easy to distinguish the irradiation light from the target unit and sunlight, and the target in the image captured by the imaging unit Department becomes clear. As a result, the target portion can be accurately identified, and the shake can be detected more accurately.
 また、前記LEDアレイ素子の単位面積あたりの発光強度は、前記最大ストロークLMAXの場合に、前記撮像部の撮像素子の最低感度以上で飽和する強さ且つ外光よりも強いことを特徴とする。
 この構成によれば、LEDアレイ素子の単位面積あたりの発光強度が最大ストロークLMAXの場合に、撮像部の撮像素子の最低感度以上で飽和する強さ且つ外光よりも強いので、十分な強さの照射光を撮像部の撮像素子に到達させることができる。また、レーザ半導体のように発光強度の制約を受けることなく、出力を増大させて十分な強さの照射光を撮像部の撮像素子に到達させることができる。
Further, the light emission intensity per unit area of the LED array element has a strength that saturates at a level equal to or higher than the minimum sensitivity of the imaging element of the imaging unit and is stronger than outside light in the case of the maximum stroke L MAX. .
According to this configuration, when the light emission intensity per unit area of the LED array element is the maximum stroke L MAX , the intensity is saturated at or above the minimum sensitivity of the imaging element of the imaging unit and is stronger than the external light. This irradiation light can reach the image sensor of the imaging unit. Moreover, the output can be increased and irradiation light with sufficient intensity can reach the image pickup device of the image pickup unit without being restricted by the light emission intensity unlike the laser semiconductor.
 さらに、本発明に係るクレーンは、前記クレーン本体と、前記クレーン本体に吊り下げられた吊り具と、上記のいずれかのクレーン振れセンサとを備えることを特徴とする。
 この構成によれば、上記のいずれかのクレーン振れセンサを備えるので、全体構成を複雑にすることなく、吊り具の振れを正確に検出することができる。また、この検出結果に基づいて吊り具の振れを適切に制御することが可能となる。
Furthermore, the crane according to the present invention includes the crane body, a hanging tool suspended from the crane body, and any one of the crane runout sensors.
According to this configuration, since any one of the crane shake sensors described above is provided, it is possible to accurately detect the swing of the hanger without complicating the overall configuration. Further, it is possible to appropriately control the swing of the hanging tool based on the detection result.
 本発明に係るクレーン振れセンサによれば、簡素な構成で正確に振れを検出することができる。
 また、本発明に係るクレーンによれば、全体構成を複雑にすることなく、吊り具の振れを正確に検出することができる。
According to the crane shake sensor according to the present invention, the shake can be accurately detected with a simple configuration.
In addition, according to the crane of the present invention, it is possible to accurately detect the swing of the hoist without complicating the overall configuration.
本発明の実施形態に係るクレーン振れセンサ1の概略構成図である。1 is a schematic configuration diagram of a crane runout sensor 1 according to an embodiment of the present invention. 本発明の実施形態に係る撮像部10の概略構成拡大図である。It is a schematic structure enlarged view of the image pick-up part 10 concerning the embodiment of the present invention. 本発明の実施形態に係るターゲット部20の概略構成拡大図である。It is a schematic structure enlarged view of the target part 20 which concerns on embodiment of this invention. 本発明の実施形態に係るLEDアレイ素子21の発光波長帯nと太陽スペクトルSとの関係を示すグラフである。It is a graph which shows the relationship between the light emission wavelength band n and the solar spectrum S of the LED array element 21 which concerns on embodiment of this invention. 本発明の実施形態に係るクレーン振れセンサ1の概略構成図であって、図1の状態から吊り具Wが変位した状態を示している。It is a schematic block diagram of the crane run-out sensor 1 which concerns on embodiment of this invention, Comprising: The hanging tool W has displaced the state from the state of FIG.
 以下、図面を参照し、本発明の実施の形態について説明する。
 図1は、本発明の実施形態に係るクレーン振れセンサ1の概略構成図である。
 図1に示すように、クレーン振れセンサ1は、クレーン本体Cと、このクレーン本体Cに吊り下げられた吊り具Wとに配設されており、吊り具Wの振れ角θ(図5参照)を検出するものである。これらクレーン本体C及び吊り具Wは、相対的に上下方向に変位することができる。
 このクレーン振れセンサ1は、対をなす撮像部10とターゲット部20とを四対備えている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a crane shake sensor 1 according to an embodiment of the present invention.
As shown in FIG. 1, the crane runout sensor 1 is disposed on a crane body C and a hanging tool W suspended from the crane body C, and the swing angle θ of the hanging tool W (see FIG. 5). Is detected. The crane body C and the suspension tool W can be relatively displaced in the vertical direction.
The crane shake sensor 1 includes four pairs of an imaging unit 10 and a target unit 20 that form a pair.
 図2は、撮像部10の概略構成拡大図である。
 撮像部10は、クレーン本体Cの下部に配設されており、カメラ11と、光学レンズ12と、光学フィルタ13とを備えている。
FIG. 2 is an enlarged schematic diagram of the imaging unit 10.
The imaging unit 10 is disposed below the crane body C and includes a camera 11, an optical lens 12, and an optical filter 13.
 カメラ11は、図2に示すように、クレーン本体Cの下方に向けられた状態で、クレーン本体Cの下面c1に固定されている。各カメラ11は、それぞれ画像処理装置(不図示)に電気的に接続されており、画像データを画像処理装置(不図示)に転送する。 The camera 11 is being fixed to the lower surface c1 of the crane main body C in the state which faced the downward direction of the crane main body C, as shown in FIG. Each camera 11 is electrically connected to an image processing device (not shown), and transfers image data to the image processing device (not shown).
 光学レンズ12は、カメラ11の下方に固定されており、焦点距離fが例えば30mmのものである。この光学レンズ12は、クレーン本体Cと吊り具Wとが最も離れた場合と最も近づいた場合とにおいても、カメラ11の視野角内に、カメラ11と対をなすターゲット部20の上部投影面全体を収めることが可能な、視野角αを持つ。
 光学レンズ12が、レンズ駆動装置(不図示)により駆動されることにより、焦点の合ったターゲット部20の像がカメラ11に送られる。
The optical lens 12 is fixed below the camera 11 and has a focal length f of, for example, 30 mm. The optical lens 12 has the entire upper projection surface of the target unit 20 paired with the camera 11 within the viewing angle of the camera 11 even when the crane body C and the suspension tool W are the farthest and closest. Can have a viewing angle α.
When the optical lens 12 is driven by a lens driving device (not shown), an image of the focused target unit 20 is sent to the camera 11.
 光学フィルタ13は、太陽光の影響を低減するものであり、ターゲット部20からの照射光の発光波長帯nに基づいて透過波長帯bf(図4参照)が設計されている。具体的には、透過波長帯bfの中心が、後述のLEDアレイ素子21からの照射光の発光波長帯nのピークと重なるように設計されており、透過波長帯bfが比較的に狭くなっている。 The optical filter 13 reduces the influence of sunlight, and the transmission wavelength band bf (see FIG. 4) is designed based on the emission wavelength band n of the irradiation light from the target unit 20. Specifically, the center of the transmission wavelength band bf is designed to overlap the peak of the emission wavelength band n of the irradiation light from the LED array element 21 described later, and the transmission wavelength band bf becomes relatively narrow. Yes.
 図3は、ターゲット部20の概略構成拡大図である。
 図3に示すように、各ターゲット部20は、LEDアレイ素子21と、レンズ22とを備えている。
FIG. 3 is an enlarged schematic view of the target unit 20.
As shown in FIG. 3, each target unit 20 includes an LED array element 21 and a lens 22.
 LEDアレイ素子21は、六十個のLEDベアチップ(AlGaAs)を一枚のAINセラミックス基板上にアレイ状に多実装し、クリアシリコン樹脂で被覆したものである。このLEDアレイ素子21は、六十個のLEDベアチップが略円形に、且つ、密に集合しており、全体的に見て重心算出に適した形状(例えば、円形)の発光面21aを形成する。
 なお、LEDベアチップの数は、複数個であれば適宜変更可能である
The LED array element 21 is one in which sixty LED bare chips (AlGaAs) are mounted in an array on a single AIN ceramic substrate and covered with a clear silicon resin. In this LED array element 21, sixty LED bare chips are gathered in a substantially circular and dense manner, and a light emitting surface 21a having a shape suitable for calculating the center of gravity (for example, a circular shape) is formed as a whole. .
In addition, if the number of LED bare chips is plural, it can be changed as appropriate.
 このLEDアレイ素子21は、吊り具Wの矩形状となった上面(上部)w1の少なくとも四隅に二つ以上配設されて対となった撮像部10に対向しており、上方に向けて照射光を発するようになっている。このLEDアレイ素子21の照射光の照射角度は、鉛直軸を0度とした場合に、+60度~-60度となっている。なお、照射光の照射角度は、適宜変更可能である。 Two or more LED array elements 21 are disposed at least at the four corners of the rectangular upper surface (upper part) w1 of the hanger W, and face the paired imaging units 10, and irradiate upward. It comes to emit light. The irradiation angle of the irradiation light of the LED array element 21 is +60 degrees to −60 degrees when the vertical axis is 0 degrees. Note that the irradiation angle of the irradiation light can be changed as appropriate.
 図4は、LEDアレイ素子21の発光波長帯nと太陽スペクトルSとの関係を示すグラフである。
 図4に示すように、LEDアレイ素子21の発光波長帯nは太陽スペクトルSのピーク波長よりも長くなるように設定されている。より具体的には、太陽光の光強度が比較的に低くなる近赤外域のうちの大気の吸収ラインの波長域に設定されている。さらに具体的には、LEDアレイ素子21の発光波長帯nは700nm~1000nmの範囲内に設定されている。
 また、このLEDアレイ素子21の単位面積あたりの発光強度は、クレーン本体Cと吊り具Wとが最も離れた場合におけるターゲット部20と撮像部10との最大ストロークLMAX(後述する。)の場合に、カメラ11の撮像素子の最低感度以上で飽和する強さ且つ太陽光よりも強くなっている。
 このLEDアレイ素子21は、素子としては一つであるために、LEDアレイ素子21の駆動回路が比較的に簡略化されている。
FIG. 4 is a graph showing the relationship between the emission wavelength band n of the LED array element 21 and the solar spectrum S.
As shown in FIG. 4, the emission wavelength band n of the LED array element 21 is set to be longer than the peak wavelength of the solar spectrum S. More specifically, it is set to the wavelength region of the atmospheric absorption line in the near infrared region where the light intensity of sunlight is relatively low. More specifically, the emission wavelength band n of the LED array element 21 is set in the range of 700 nm to 1000 nm.
The light emission intensity per unit area of the LED array element 21 is the maximum stroke L MAX (described later) between the target unit 20 and the imaging unit 10 when the crane body C and the hanging tool W are farthest from each other. In addition, the intensity is saturated at or above the minimum sensitivity of the image sensor of the camera 11 and is stronger than sunlight.
Since the LED array element 21 is one element, the drive circuit for the LED array element 21 is relatively simplified.
 図3に戻って、レンズ22は、具体的には、コンデンサレンズからなり、LEDアレイ素子21の上方に固定されている。このレンズ22は、LEDアレイ素子21から発せられた照射光を集光して均一化する。レンズ22は、LEDアレイ素子21の発光面21aを拡大して上方に投影する。より具体的には、LEDアレイ素子21から照射角度+60度~-60度で発せられた照射光を、レンズ22が集光して後述する式(2)を満たす所定の投影角βで上方に投影する。 Returning to FIG. 3, the lens 22 is specifically composed of a condenser lens and is fixed above the LED array element 21. The lens 22 condenses and uniformizes the irradiation light emitted from the LED array element 21. The lens 22 enlarges the light emitting surface 21a of the LED array element 21 and projects it upward. More specifically, the illumination light emitted from the LED array element 21 at an irradiation angle of +60 degrees to −60 degrees is collected upward by the lens 22 at a predetermined projection angle β that satisfies the following expression (2). Project.
 このようなターゲット部20と撮像部10との間のストロークLは、クレーン本体Cと吊り具Wとが最も離れた場合の最大ストロークLMAXが40m、最も近づいた場合の最小ストロークLMINが3mに設定されている。 The stroke L between the target unit 20 and the imaging unit 10 is such that the maximum stroke L MAX when the crane main body C and the lifting tool W are farthest is 40 m, and the minimum stroke L MIN when the crane body C is closest is 3 m. Is set to
 クレーン振れセンサ1は、LEDアレイ素子21の発光面21aの半径をd、LEDアレイ素子21とカメラ11との間の最大ストロークをLMAX、カメラ11の撮像素子の瞬時視野角をQとした場合に、以下の式(1)の関係を満たしている。
   Q×LMAX<d・・・式(1)
 本実施形態では、上述したカメラ11の撮像素子の大きさが10×10μm、光学レンズ12の焦点距離fが30mmとなっており、瞬時視野角Qが0.33mradとなっている。つまり、本実施形態では、最大ストロークLMAXが40mであるため、LEDアレイ素子21の径(発光面積径)が1.3cm以上となっている。
 但し、最小ストロークLMINの場合においても、LEDアレイ素子21全体が撮像されるように、最小ストロークLMINの場合に視野角αよりもLEDアレイ素子21の径(発光面積径)が小さく設定されている。
In the crane shake sensor 1, the radius of the light emitting surface 21 a of the LED array element 21 is d, the maximum stroke between the LED array element 21 and the camera 11 is L MAX , and the instantaneous viewing angle of the imaging element of the camera 11 is Q Furthermore, the relationship of the following formula | equation (1) is satisfy | filled.
Q × L MAX <d (1)
In the present embodiment, the size of the image sensor of the camera 11 described above is 10 × 10 μm, the focal length f of the optical lens 12 is 30 mm, and the instantaneous viewing angle Q is 0.33 mrad. That is, in this embodiment, since the maximum stroke L MAX is 40 m, the diameter (light emitting area diameter) of the LED array element 21 is 1.3 cm or more.
However, even in the case of minimum stroke L MIN, so that the entire LED array device 21 is imaged, the diameter of the LED array device 21 (light emitting area diameter) is set smaller than the viewing angle α in the case of minimum stroke L MIN ing.
 図5は、吊り具Wが振れた場合におけるクレーン振れセンサ1の概略構成図である。
 レンズ22の投影角βは、水平方向における吊り具Wの最大振れ量をXとした場合に、以下の式(2)の関係を満たしている。
   X/L<β/2・・・式(2)
 本実施形態では、ストロークL=40mの場合における最大振れ量X=±8.5mを基準に定めており、投影角βが+12度~-12度となっている。すなわち、照射角度+60度~-60度で発せられた照射光が、レンズ22によって+12度~-12度で投影される。
FIG. 5 is a schematic configuration diagram of the crane shake sensor 1 when the suspension tool W is shaken.
The projection angle β of the lens 22 satisfies the relationship of the following formula (2), where X is the maximum shake amount of the hanging tool W in the horizontal direction.
X / L <β / 2 Formula (2)
In this embodiment, the maximum shake amount X = ± 8.5 m when the stroke L = 40 m is set as a reference, and the projection angle β is +12 degrees to −12 degrees. That is, irradiation light emitted at an irradiation angle of +60 degrees to −60 degrees is projected by the lens 22 at +12 degrees to −12 degrees.
 上記構成からなるクレーン振れセンサ1は、各撮像部10により対となったターゲット部20を撮像して、撮像されたターゲット部20の合成画像情報に基づく画像処理によって、各LEDアレイ素子21の重心位置を算出し、これら重心位置の時間的変化に基づいて振れ角θ(図5参照)を検出する。 The crane shake sensor 1 having the above-described configuration images the target unit 20 paired by each imaging unit 10, and performs the image processing based on the composite image information of the captured target unit 20 to obtain the center of gravity of each LED array element 21. The position is calculated, and the deflection angle θ (see FIG. 5) is detected based on the temporal change in the position of the center of gravity.
 上記構成からなるクレーン振れセンサ1によれば、アレイ状に配列された複数のLEDチップにより発光面21aが形成されるLEDアレイ素子21を有するターゲット部20を備えるので、ターゲット部20の光源が単体の素子で構成されることとなる。これにより、ターゲット部20を制御する駆動回路の構成を簡略化することができるので、クレーン振れセンサ1全体の構成を簡素にすることができる。
 さらに、ターゲット部20を制御する駆動回路の構成を簡略化することにより、管理上・運用上の労力やコストも低減させることができる。すなわち、従来の技術においては、素子の一部が故障するとターゲットの重心検出に誤差が生じてしまうために、複数の素子を正常に点灯させるための保守点検作業に手間が掛かっていた。
 これに対して、クレーン振れセンサ1によれば、LEDアレイ素子21が一つの素子なので、故障した場合にはLEDアレイ素子21全体を交換すれば良く、保守点検作業が容易となる。これにより、保守点検作業に伴う労力やコストを低減させることが可能となる。
According to the crane shake sensor 1 having the above-described configuration, since the target unit 20 including the LED array element 21 in which the light emitting surface 21a is formed by a plurality of LED chips arranged in an array is provided, the light source of the target unit 20 is a single light source. It is comprised with the element of. Thereby, since the structure of the drive circuit which controls the target part 20 can be simplified, the structure of the crane runout sensor 1 whole can be simplified.
Furthermore, by simplifying the configuration of the drive circuit that controls the target unit 20, it is possible to reduce administrative and operational labor and costs. That is, in the prior art, if a part of the element breaks down, an error occurs in the detection of the center of gravity of the target. Therefore, it takes time to perform maintenance and inspection work for normally lighting a plurality of elements.
On the other hand, according to the crane run-out sensor 1, since the LED array element 21 is one element, if the failure occurs, the entire LED array element 21 may be replaced, and maintenance work becomes easy. Thereby, it becomes possible to reduce the labor and cost accompanying a maintenance inspection work.
 また、上記構成によれば、上述した式(1)の関係を満たすことでターゲット部20の十分な発光面積が確保されるので、天候が雨や霧の場合であっても、ターゲット部20からのいずれかの照射光が撮像部10の各撮像素子に到達することとなり、ターゲット部20の誤検出を抑制することができる。
 すなわち、従来の技術において、ターゲット部に半導体レーザ素子を用いたものでは、発光素子は単位面積あたりの発光強度は大きいが発光面積が小さいため、雨天・霧等の場合に発光光軸が遮られて誤検出が発生してしまっていた。また、従来の技術において、砲弾型のように一素子を樹脂モールドしたLEDをターゲット部の光源に用いたものでは、発光素子の単位面積あたりの発光強度も発光面積も小さいため、雨天・霧等の場合に発光光軸が遮られ誤検出が発生してしまっていた。
 しかしながら、クレーン振れセンサ1のターゲット部20では、上述したように十分な発光面積が確保されるので、発光源サイズが大きくなる。これにより、天候が雨や霧の場合であっても、撮像されるターゲット形状を安定させることができる。
Moreover, according to the said structure, since sufficient light emission area of the target part 20 is ensured by satisfy | filling the relationship of Formula (1) mentioned above, even if it is a case where the weather is rain or fog, from the target part 20 Any one of the above will reach each imaging element of the imaging unit 10, and erroneous detection of the target unit 20 can be suppressed.
In other words, in the conventional technology using a semiconductor laser element in the target portion, the light emitting element has a large light emission intensity per unit area but a small light emitting area, so that the light emitting optical axis is blocked in the case of rain, fog, etc. A false detection occurred. In addition, in the conventional technology, an LED in which one element is resin-molded, such as a shell type, is used as a light source of the target unit, so that the light emission intensity per unit area and the light emission area of the light emitting element are small. In this case, the light-emitting optical axis was blocked and erroneous detection occurred.
However, since the sufficient light emitting area is secured in the target unit 20 of the crane shake sensor 1 as described above, the light emitting source size is increased. Thereby, even if the weather is rain or fog, the target shape to be imaged can be stabilized.
 また、ターゲット部20が発した照射光を集光して均一化するレンズ22を備えるので、照射光を拡散させないで撮像素子に到達させることができる。つまり、照射光が拡散してしまうとカメラ11に到達する照射光の割合が少なくなり、輝度を増加させる必要があるが、レンズ22によって照射光を集光して均一化するので、発光面21aの輝度を増加させることを抑止しつつ、カメラ11に到達する照射光の割合を多くすることができる。 Also, since the lens 22 that collects and equalizes the irradiation light emitted from the target unit 20 is provided, the irradiation light can reach the image sensor without being diffused. That is, if the irradiation light is diffused, the ratio of the irradiation light reaching the camera 11 is reduced and the luminance needs to be increased. However, since the irradiation light is condensed and uniformed by the lens 22, the light emitting surface 21a. It is possible to increase the proportion of the irradiation light that reaches the camera 11 while suppressing an increase in the brightness of the camera 11.
 また、上述した式(2)の関係を満たすので、例えば、振れによって吊り具Wが変位したとしてもターゲット部20が撮像部10の撮像範囲から外れずに、ターゲット部20が撮像部10に撮像されることとなる。これにより、撮像部10の撮像範囲からターゲット部20が外れて生じる誤検出を抑制することができる。
 また、ターゲット部に半導体レーザ素子を用いたものでは、投影角度が水平方向と垂直方向とで異なるために、投影角度を双方向で均一にするためには特殊な光学系を構成する必要があった。
 これに対して、クレーン振れセンサ1のターゲット部20では、上述したようにLEDアレイ素子21を用いるので、水平方向及び垂直方向の双方向で当方的に投影されるために、単純な光学系で投影角βを制御することが可能となる。
Further, since the relationship of the above-described formula (2) is satisfied, for example, even if the hanging tool W is displaced due to shaking, the target unit 20 does not deviate from the imaging range of the imaging unit 10 and the target unit 20 captures an image on the imaging unit 10. Will be. Thereby, the erroneous detection which arises when the target part 20 remove | deviates from the imaging range of the imaging part 10 can be suppressed.
In addition, in the case where a semiconductor laser element is used for the target portion, the projection angle is different between the horizontal direction and the vertical direction. Therefore, in order to make the projection angle uniform in both directions, it is necessary to configure a special optical system. It was.
On the other hand, in the target unit 20 of the crane shake sensor 1, since the LED array element 21 is used as described above, a simple optical system is used to project in both directions in the horizontal direction and the vertical direction. It is possible to control the projection angle β.
 また、LEDアレイ素子21の発光波長帯nが、太陽光の光強度が比較的に低くなる近赤外域に設定されているので、ターゲット部20からの照射光と太陽光とが区別され易くなり、撮像部10で撮像された画像においてターゲット部20が明確になる。これにより、ターゲット部20を正確に識別することができ、正確に振れを検出することが可能となる。
 さらに、LEDアレイ素子21の発光波長帯nが、近赤外域のうちの大気の吸収ラインの波長域に設定されているので、太陽光の影響をより受け難くなり、より正確に振れを検出することが可能となる。
Moreover, since the light emission wavelength band n of the LED array element 21 is set in the near infrared region where the light intensity of sunlight is relatively low, it becomes easy to distinguish the irradiation light from the target unit 20 and sunlight. In the image captured by the imaging unit 10, the target unit 20 becomes clear. As a result, the target unit 20 can be accurately identified, and the shake can be accurately detected.
Furthermore, since the emission wavelength band n of the LED array element 21 is set to the wavelength range of the atmospheric absorption line in the near infrared range, it is less susceptible to sunlight and more accurately detects vibration. It becomes possible.
 ここで、照射光のみを透過させる光学フィルタを用いる場合には、太陽光による影響を低減させるために透過波長帯が狭く且つその波長帯での透過率が高くなったフィルタ特性がよい。
 従来技術においてターゲット部に半導体レーザ素子を用いたものでは、半導体レーザ素子の照射光の発振波長帯が非常に狭いことから光学フィルタの透過波長帯も非常に狭くする必要がある。一般に、光学フィルタの透過波長帯が狭くなるほど中心波長を一定に製作することが難しくなり、歩留まりが悪くなる。このため、半導体レーザ素子の個体毎に発振波長を確認し、それに応じた光学フィルタを選定する必要がある。
 しかしながら、半導体レーザ素子は、素子温度に応じて発振波長の中心波長が変化するために、照射光の波長が光学フィルタの透過波長帯から外れてしまう恐れが高い。照射光の波長が光学フィルタの透過波長帯から外れてしまうと、照射光の大部分が光学フィルタで遮断されることとなり、カメラ11の撮像素子に受光される照射光が僅かなものとなってしまう。
 これに対して、上述したLEDアレイ素子21は、半導体レーザ素子と比較して、発光波長帯が広いため、光学フィルタ13の透過波長帯の管理が容易となる。つまり、照射光の波長帯が広くなることから、製作過程において光学フィルタの中心波長がズレてしまったとしても(図4において符号bf´,bf´´で示す。)、撮像部10側の受光光量に大きな変動がなくなり、ターゲット部20の誤検知を抑制することができる。換言すれば、ターゲット部20に発光波長帯が広いLEDアレイ素子21を用いているので、光学フィルタ13を選定する必要がない。
Here, in the case of using an optical filter that transmits only irradiation light, in order to reduce the influence of sunlight, a filter characteristic with a narrow transmission wavelength band and a high transmittance in the wavelength band is good.
In the conventional technique using a semiconductor laser element as a target portion, the oscillation wavelength band of the irradiation light of the semiconductor laser element is very narrow, and therefore the transmission wavelength band of the optical filter needs to be very narrow. In general, as the transmission wavelength band of the optical filter becomes narrower, it becomes more difficult to manufacture the center wavelength constant, and the yield deteriorates. For this reason, it is necessary to confirm the oscillation wavelength for each semiconductor laser element and select an optical filter corresponding to the wavelength.
However, since the center wavelength of the oscillation wavelength of the semiconductor laser element changes according to the element temperature, there is a high possibility that the wavelength of the irradiation light will be out of the transmission wavelength band of the optical filter. If the wavelength of the irradiation light deviates from the transmission wavelength band of the optical filter, most of the irradiation light is blocked by the optical filter, and the irradiation light received by the image sensor of the camera 11 becomes slight. End up.
On the other hand, since the LED array element 21 described above has a wider emission wavelength band than the semiconductor laser element, the transmission wavelength band of the optical filter 13 can be easily managed. That is, since the wavelength band of the irradiation light becomes wide, even if the center wavelength of the optical filter is shifted in the manufacturing process (indicated by symbols bf ′ and bf ″ in FIG. 4), the light reception on the imaging unit 10 side. Large fluctuations in the amount of light are eliminated, and erroneous detection of the target unit 20 can be suppressed. In other words, since the LED array element 21 having a wide emission wavelength band is used for the target unit 20, it is not necessary to select the optical filter 13.
 また、LEDアレイ素子21の単位面積あたりの発光強度が最大ストロークLMAXの場合に、撮像部10の撮像素子の最低感度以上で飽和する強さ且つ外光よりも強いので、十分な強さの照射光を撮像部10の撮像素子に到達させることができる。 In addition, when the light emission intensity per unit area of the LED array element 21 is the maximum stroke L MAX , the intensity is saturated at or above the minimum sensitivity of the imaging element of the imaging unit 10 and stronger than the external light. Irradiation light can reach the image sensor of the imaging unit 10.
 ここで、ターゲット部の光源は高輝度化する程に撮像部10の検出率が向上する。
 従来技術においてターゲット部に半導体レーザ素子を用いたものでは、JIS規格で決められているレーザクラスを超えて高輝度化するために、眼の保護の観点から安全処置を講じる必要がある。
 これに対して、LEDアレイ素子21は、発光強度の制約を受けることなく、出力を増大させて十分な強さの照射光を撮像部10の撮像素子に到達させることができる。
Here, the detection rate of the imaging unit 10 improves as the brightness of the light source of the target unit increases.
In a conventional technique using a semiconductor laser element as a target portion, it is necessary to take safety measures from the viewpoint of eye protection in order to increase the luminance beyond the laser class determined by the JIS standard.
On the other hand, the LED array element 21 can increase the output and reach the imaging element of the imaging unit 10 with sufficient output without being restricted by the emission intensity.
 また、LEDアレイ素子21は、LEDチップを用いるので、半導体レーザ素子を用いたターゲットと比較して以下の有利な効果を有する。第一に、LEDアレイ素子21は、半導体レーザ素子よりも熱及び衝撃に強い。このため、熱及び衝撃対策を施さなくてもよいので、半導体レーザ素子を用いたターゲットに比べて軽量化することができる。第二に、LEDアレイ素子21は、半導体レーザ素子よりも外部環境に対する安定性及び電気的安定性に優れる。このため、高寿命となり、優れた運用性を得ることができる。
 さらに、本発明に係るクレーンは、前記クレーン本体と、前記クレーン本体に吊り下げられた吊り具と、上記のいずれかのクレーン振れセンサとを備えることを特徴とする。
Moreover, since the LED array element 21 uses an LED chip, it has the following advantageous effects as compared with a target using a semiconductor laser element. First, the LED array element 21 is more resistant to heat and impact than the semiconductor laser element. For this reason, since it is not necessary to take measures against heat and impact, the weight can be reduced as compared with a target using a semiconductor laser element. Secondly, the LED array element 21 is more excellent in stability and electrical stability with respect to the external environment than the semiconductor laser element. For this reason, it becomes a long life and can obtain the outstanding operativity.
Furthermore, the crane according to the present invention includes the crane body, a hanging tool suspended from the crane body, and any one of the crane runout sensors.
 また、このようなクレーン振れセンサ1を備えるクレーンによれば、全体構成を複雑にすることなく、吊り具Wの振れを正確に検出することができる。また、この検出結果に基づいて吊り具Wの振れを適切に制御することが可能となる。 Further, according to the crane including the crane runout sensor 1 as described above, the runout of the hoisting tool W can be accurately detected without complicating the overall configuration. Further, it is possible to appropriately control the swing of the hanging tool W based on the detection result.
 なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上述した実施の形態では、重心を算出しやすいようにLEDアレイ素子21の発光面21aを円形に構成したが、その他の形状(例えば、正方形、正多角形、矩形状)であってもよい。これら場合には、式(1)におけるdをターゲットの発光面の重心から縁までの最短距離とすることで、天候が雨や霧の場合であっても、ターゲット部からの照射光を各撮像素子に到達させることができる。
Note that the operation procedure shown in the above-described embodiment, various shapes and combinations of the constituent members, and the like are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
For example, in the above-described embodiment, the light emitting surface 21a of the LED array element 21 is formed in a circular shape so that the center of gravity can be easily calculated, but may be in other shapes (for example, square, regular polygon, rectangular shape). Good. In these cases, by setting d in the formula (1) as the shortest distance from the center of gravity of the light emitting surface of the target to the edge, even if the weather is rain or fog, the irradiation light from the target unit is imaged. The element can be reached.
 また、上述した実施の形態では、クレーンの種類について特に言及しなかったが、固定式の他、移動式やデリックを含むものに本発明を適用することが可能である。 In the above-described embodiment, the type of crane is not particularly mentioned, but the present invention can be applied to a movable type or a derrick including a fixed type.
 ターゲット部を制御する駆動回路の構成を簡略化することができるので、クレーン振れセンサ全体の構成を簡素にすることができる。また、天候が雨や霧の場合であっても、ターゲット部からのいずれかの照射光が撮像部の各撮像素子に到達するので、ターゲット部の誤検出を抑制することができる。 Since the configuration of the drive circuit that controls the target unit can be simplified, the configuration of the entire crane runout sensor can be simplified. Further, even if the weather is rain or fog, any irradiation light from the target unit reaches each imaging element of the imaging unit, so that erroneous detection of the target unit can be suppressed.
 1  クレーン振れセンサ
 10  撮像部
 11  カメラ
 12  光学レンズ
 13  光学フィルタ
 20  ターゲット部
 21  LEDアレイ素子
 21a  発光面
 22  レンズ
 C  クレーン本体
 d  発光面の半径(ターゲット部の発光面の重心から縁までの最短距離)
 L  ストローク
 LMAX  最大ストローク
 Q  瞬時視野角
 W  吊り具
 X  水平方向における吊り具Wの最大振れ量
DESCRIPTION OF SYMBOLS 1 Crane shake sensor 10 Imaging part 11 Camera 12 Optical lens 13 Optical filter 20 Target part 21 LED array element 21a Light emission surface 22 Lens C Crane main body d Radius of light emission surface (the shortest distance from the gravity center of the light emission surface of a target part to an edge)
L Stroke L MAX Maximum Stroke Q Instantaneous Viewing Angle W Lifting Tool X Maximum amount of swinging of the lifting tool W in the horizontal direction

Claims (6)

  1.  クレーン本体に下方に向けて設置された撮像部と、
     前記クレーン本体に吊り下げられた吊り具に設けられ、アレイ状に配列された複数のLEDチップを有し、前記複数のLEDチップにより形成された発光面から上方へ向けて照射光を発するLEDアレイ素子を有するターゲット部とを備え、
     前記ターゲット部の発光面の重心から縁までの最短距離をd、前記撮像部と前記ターゲット部との間の最大ストロークをLMAX、前記撮像部の撮像素子の瞬時視野角をQとした場合に、以下の関係を満たすことを特徴とするクレーン振れセンサ。
       Q×LMAX<d
    An imaging unit installed downward on the crane body;
    An LED array which is provided on a hanging tool suspended from the crane body, has a plurality of LED chips arranged in an array, and emits irradiation light upward from a light emitting surface formed by the plurality of LED chips. A target portion having an element,
    When the shortest distance from the center of gravity of the light emitting surface of the target unit to the edge is d, the maximum stroke between the imaging unit and the target unit is L MAX , and the instantaneous viewing angle of the imaging device of the imaging unit is Q A crane runout sensor satisfying the following relationship:
    Q x L MAX <d
  2.  前記ターゲット部は、前記LEDアレイ素子が発した照射光を集光して均一化するレンズを備えることを特徴とする請求項1に記載のクレーン振れセンサ。 2. The crane shake sensor according to claim 1, wherein the target unit includes a lens that collects and equalizes the irradiation light emitted from the LED array element.
  3.  水平方向における前記吊り具の各ストロークでの最大振れ量をX、前記レンズの投影角をPとした場合に、以下の関係を満たすことを特徴とする請求項2に記載のクレーン振れセンサ。
       X/L<P/2
    3. The crane shake sensor according to claim 2, wherein the following relation is satisfied, where X is a maximum shake amount in each stroke of the suspension tool in the horizontal direction and P is a projection angle of the lens.
    X / L <P / 2
  4.  前記LEDアレイ素子の照射光の波長は、太陽光スペクトルのピーク波長よりも長いことを特徴とする請求項1から3のうちいずれか一項に記載のクレーン振れセンサ。 The crane shake sensor according to any one of claims 1 to 3, wherein a wavelength of irradiation light of the LED array element is longer than a peak wavelength of a sunlight spectrum.
  5.  前記LEDアレイ素子の単位面積あたりの発光強度は、前記最大ストロークLMAXの場合に、前記撮像部の撮像素子の最低感度以上で飽和する強さ且つ外光よりも強いことを特徴とする請求項1から4のうちいずれか一項に記載のクレーン振れセンサ。 The light emission intensity per unit area of the LED array element has a strength that saturates at or above a minimum sensitivity of the image pickup device of the image pickup unit and is stronger than outside light in the case of the maximum stroke L MAX. The crane runout sensor according to any one of 1 to 4.
  6.  前記クレーン本体と、
     前記クレーン本体に吊り下げられた吊り具と、
     請求項1から5のうちいずれか一項に記載のクレーン振れセンサとを備えることを特徴とするクレーン。
    The crane body;
    A hanging tool suspended from the crane body;
    A crane comprising the crane runout sensor according to any one of claims 1 to 5.
PCT/JP2011/050635 2010-02-19 2011-01-17 Crane sway sensor and crane WO2011102165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-034785 2010-02-19
JP2010034785A JP2013107709A (en) 2010-02-19 2010-02-19 Crane sway sensor and crane

Publications (1)

Publication Number Publication Date
WO2011102165A1 true WO2011102165A1 (en) 2011-08-25

Family

ID=44482767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050635 WO2011102165A1 (en) 2010-02-19 2011-01-17 Crane sway sensor and crane

Country Status (2)

Country Link
JP (1) JP2013107709A (en)
WO (1) WO2011102165A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145038A (en) * 2013-03-15 2013-06-12 上海海事大学 Double-lifting-appliance travelling bridge tilt angle measuring equipment based on position sensor and measuring method of measuring equipment
CN104860202A (en) * 2015-06-19 2015-08-26 上海海事大学 Device and method for measuring swinging angle of double-lifting tool bridge crane
CN105016208A (en) * 2015-07-24 2015-11-04 上海海事大学 Double-sling bridge crane swinging angle measuring device and method thereof
CN109592564A (en) * 2017-09-30 2019-04-09 南京中高知识产权股份有限公司 It is adapted to detect for the suspension transferring machine and its working method of container unbalance-loading value

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112573374A (en) * 2020-12-15 2021-03-30 西安飞机工业(集团)有限责任公司 Hanging object gravity center adjusting system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861916A (en) * 1994-08-19 1996-03-08 Digital Stream:Kk Optical position and posture detection device
JPH08175786A (en) * 1994-12-22 1996-07-09 Hitachi Zosen Corp Cargo swinging angle detection device in crane device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861916A (en) * 1994-08-19 1996-03-08 Digital Stream:Kk Optical position and posture detection device
JPH08175786A (en) * 1994-12-22 1996-07-09 Hitachi Zosen Corp Cargo swinging angle detection device in crane device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145038A (en) * 2013-03-15 2013-06-12 上海海事大学 Double-lifting-appliance travelling bridge tilt angle measuring equipment based on position sensor and measuring method of measuring equipment
CN104860202A (en) * 2015-06-19 2015-08-26 上海海事大学 Device and method for measuring swinging angle of double-lifting tool bridge crane
CN105016208A (en) * 2015-07-24 2015-11-04 上海海事大学 Double-sling bridge crane swinging angle measuring device and method thereof
CN109592564A (en) * 2017-09-30 2019-04-09 南京中高知识产权股份有限公司 It is adapted to detect for the suspension transferring machine and its working method of container unbalance-loading value

Also Published As

Publication number Publication date
JP2013107709A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2011102165A1 (en) Crane sway sensor and crane
KR101474191B1 (en) Luminous module and visual inspection system using the same
JP3139491U (en) Movement sensing module
CN110784657B (en) Image pickup apparatus, control method thereof, computer-readable storage medium, and monitoring system
JP2008051764A (en) Range finding sensor, and electronic device having sensor mounted
JP2014179736A (en) Camera module
JP2014017094A (en) Lighting system and vehicular head lamp
CN1818613A (en) Detection device
JP2010256182A (en) Reflection type photoelectric sensor
JP2013115625A (en) Image processing system, vehicle having the same, image processing method, and program
JP6629688B2 (en) Optical module
JP6229005B2 (en) Optical detector
JP2007292756A (en) High performance reflective optical encoder
JP2013509699A5 (en)
CN106568504A (en) Photoelectric switch
JP5944349B2 (en) Light emitting diode phosphor position grasping device, component mounter equipped with light emitting diode phosphor position grasping device, light emitting diode phosphor position grasping method, and lens mounting method
JP2013096891A (en) Image processing system
JP7118466B2 (en) light sensor
JP2018151286A (en) Object detector
JP2017073388A (en) Lighting module generating specific lateral rectangular lighting window
JP2015510680A5 (en)
JP6601761B2 (en) Infrared detector
WO2022255146A1 (en) Light emitting device, and distance measuring device
TWI777503B (en) Detection device for fluid
KR101406157B1 (en) Window Assembly For CCTV Camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP