WO2011101290A2 - Modules photovoltaïques pour serre agricole et procede de fabrication de tels modules - Google Patents

Modules photovoltaïques pour serre agricole et procede de fabrication de tels modules Download PDF

Info

Publication number
WO2011101290A2
WO2011101290A2 PCT/EP2011/052012 EP2011052012W WO2011101290A2 WO 2011101290 A2 WO2011101290 A2 WO 2011101290A2 EP 2011052012 W EP2011052012 W EP 2011052012W WO 2011101290 A2 WO2011101290 A2 WO 2011101290A2
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
light
photosynthesis
front plate
photovoltaic module
Prior art date
Application number
PCT/EP2011/052012
Other languages
English (en)
Other versions
WO2011101290A3 (fr
Inventor
Philippe Edouard Gravisse
François LE POULL
Original Assignee
Laboratoire De Physique Du Rayonnement Et De La Lumiere
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoire De Physique Du Rayonnement Et De La Lumiere filed Critical Laboratoire De Physique Du Rayonnement Et De La Lumiere
Priority to US13/579,424 priority Critical patent/US20130111810A1/en
Priority to EP11702843.1A priority patent/EP2537189B1/fr
Publication of WO2011101290A2 publication Critical patent/WO2011101290A2/fr
Publication of WO2011101290A3 publication Critical patent/WO2011101290A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the invention relates to photovoltaic photo modules for agricultural greenhouse to promote the cultivation of plant species.
  • photovoltaic cells In the techniques for producing conventional photovoltaic modules, it is known to have photovoltaic cells, generally opaque and anti-reflection treated, in materials with high transmittance in the solar spectrum on the front face and strongly reflecting on the rear face to serve as protection screen.
  • the compromise usually used by greenhouse or agronomists is then to hide the north side of agricultural greenhouses to dispose of photovoltaic modules by allowing solar energy to enter the greenhouse from the other sides to allow the growth of plant species. This compromise is penalizing for the photovoltaic function, which receives only indirect light on the North face, just as the crops under the greenhouses are deprived of the diffuse energy of the albedo resulting from the North celestial vault whose contribution the growth of plant species is not negligible.
  • the present invention aims in particular a photovoltaic module for agricultural greenhouse to promote the cultivation of plant species.
  • a photovoltaic module for a greenhouse comprises a front plate intended to be in contact with sunlight, a rear substrate and a set of photovoltaic cells arranged between the front plate and the rear substrate.
  • the photovoltaic module has an expansion coefficient substantially between 0.2 and 0.8, and comprises at least one layer of a light cascade doped material promoting the photosynthesis capable of absorbing sunlight in at least one wavelength range for reemitting it in at least a second wavelength range favorable for photosynthesis of at least one plant species.
  • At least one of the front plate and the rear substrate forms or is coated with the layer of light cascade doped material promoting photosynthesis.
  • all the photovoltaic cells are arranged in an organic matrix or between two organic films.
  • At least one of the organic matrix and the two organic films form the layer of light cascade doped material promoting photosynthesis.
  • the photosynthesis-promoting light cascade doped material absorbs sunlight in the wavelength range 300 to 400 nm to reemit it in the wavelength range 410 to 500. nm.
  • the photosynthesis-promoting light-cascade doped material absorbs sunlight in the wavelength range 510 to 590 nm to re-emit it in the 600 to 750 wavelength range. nm.
  • the front plate and the rear substrate of the photovoltaic module comprise glass, and at least one of the front plate and the rear substrate is coated with the layer of light cascade doped material. promoting photosynthesis.
  • the front plate and the rear substrate of the photovoltaic module comprise polymethyl methacrylate, and at least one of the front plate and the rear substrate form the layer of light cascade doped material. promoting photosynthesis.
  • the rear substrate forms or is coated with the photosynthesis light-cascade doped material layer
  • the front plate of the photovoltaic module forms or is coated with a layer of a cascade-doped material light-sensitive photovoltaic function capable of absorbing sunlight in at least one wavelength range for re-emitting in at least a second wavelength range of greater sensitivity of the photovoltaic cells.
  • the layer of light-cascade doped material favoring the photovoltaic function or promoting photosynthesis comprises a matrix comprising at least one compound chosen from the group comprising silicones, polycarbonates, ethylene-vinyl acetate, polyethylene, polymethyl methacrylate, polyvinyl butyral, glasses, and their derivatives.
  • the light cascade doped material promoting the photovoltaic function or photosynthesis comprises at least one compound chosen from the group comprising lanthanides, uranyl ion, N ring type aromatic ring compounds. , N being an integer selected from 3, 4, 5 or more, and derivatives thereof.
  • a greenhouse is covered on at least a part of its surface by at least one photovoltaic module according to the first subject of the present invention.
  • a method of manufacturing photovoltaic modules of the type comprises a front plate intended to be in contact with sunlight, a rear substrate and a set of photovoltaic cells arranged between the front plate and the rear substrate.
  • the method comprises at least the distribution steps of the photovoltaic cells on the rear substrate so that the photovoltaic module obtained has a coefficient of expansion comprised substantially between 0.2 and 0.8, and incorporation into or coating on one at the less than the front plate and the rear substrate of a photosynthesis-enhancing light-cascade doped material capable of absorbing sunlight in at least one wavelength range for re-emitting in at least a second wavelength range favorable for the photosynthesis of at least one plant species.
  • FIG. 1 shows a top view of a photovoltaic module according to one embodiment of the present invention.
  • FIG. 2 is a graph showing the spectral response of the two types of chlorophyll present in plant species.
  • FIG. 3 is a diagram showing the principle of operation of a light cascade.
  • FIG. 4 is a graph representing the solar spectrum and the solar spectrum modified by a photovoltaic module comprising a light cascade doped material promoting photosynthesis according to an embodiment of the present invention.
  • - Figure 5 is a graph showing the solar spectrum and solar spectrum modified by a photovoltaic module comprising a light cascade doped material promoting the photovoltaic function according to an embodiment of the present invention.
  • Figures 6a to 6d are cross-sections of photovoltaic modules according to embodiments of the present invention.
  • FIG. 7 represents an example of an agricultural greenhouse covered with several photovoltaic modules according to one embodiment of the present invention.
  • FIG. 1 shows a photovoltaic module according to one embodiment of the invention.
  • the photovoltaic module 101 includes a front or outer plate 103 for receiving sunlight, a rear or inner substrate 105, and a set of photovoltaic cells 107 disposed between the front plate 103 and the rear substrate 105 of the photovoltaic module.
  • the front plate 103 and the rear substrate 105 of the photovoltaic module 101 each comprise at least one compound chosen from the group comprising silicones, fluoropolymers, polycarbonates, ethylene-acetate and vinyl (EVA), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB), glasses, such as phosphate, silicate or borosilicate glasses, and their derivatives.
  • silicones fluoropolymers
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • PVB polyvinyl butyral
  • glasses such as phosphate, silicate or borosilicate glasses, and their derivatives.
  • the front plate 103 and the rear substrate 105 have an average thickness of between 0.5 and 5 mm.
  • the photovoltaic cells 107 are of the large-area junction diode type, unijunction or multijunction type.
  • the photovoltaic cells 107 are of the silicon type, such as amorphous silicon, monocrystalline or multicrystalline, or of the CdTe or CISG (copper-indium-selenium-gallium) type.
  • the set of photovoltaic cells 107 of the photovoltaic module 101 are arranged between two organic films or in an organic matrix 109.
  • This organic matrix 109 or these organic films comprise at least one compound chosen from the group comprising silicones, fluorinated polymers, polycarbonates, ethylene-vinyl acetate (EVA), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB), glasses, such as glasses phosphate, silicate or borosilicate, and their derivatives.
  • the organic matrix 109 has an average thickness of between 2.5 and 4 mm. In one embodiment of the invention, the organic films have an average thickness of between 200 and 600 ⁇ m.
  • Each photovoltaic cell 107 has for example a constant nominal voltage of 0.5V.
  • the power of the photovoltaic cells 107 depends on the intensity of the generated current which depends on the surface of each photovoltaic cell 107.
  • a photovoltaic module 101 according to one embodiment of the invention thus makes it possible to generate a voltage of the order of 19V to be able to serve an electrochemical charge battery of 12-15V.
  • a photovoltaic module 101 may typically comprise 40 photovoltaic cells 107.
  • the photovoltaic cells 107 of the photovoltaic module 101 are connected by electrical connectors 111, for example tinned copper, to one another in series and to a connection box 113 associated with the photovoltaic module 101.
  • the amount of light energy entering an agricultural greenhouse for the growth of the plant species and the amount of photovoltaic current delivered by all the photovoltaic cells 107 are determined by the "expansion coefficient" of a photovoltaic module 101.
  • the expansion coefficient of the photovoltaic module 101 is defined by the ratio of the area of the set of photovoltaic cells 107 to the total photon collection area of the photovoltaic module 101.
  • an expansion coefficient of less than 1, advantageously between 0.2 and 0.8, makes it possible to ensure the photovoltaic function of the photovoltaic cells 107 while promoting the illumination of the plant species.
  • the expansion coefficient is between 0.4 and 0.6.
  • the Applicant has notably advantageously shown that the photovoltaic modules 101 according to one embodiment of the invention, in which the expansion coefficient of the photovoltaic modules is 0.5 and in which the photovoltaic modules comprise a layer of light cascade doped material promoting photosynthesis. , allow a yield increase of the order of 50% in diffuse illumination and that, moreover, the plant species cultivated under agricultural greenhouses covered with the photovoltaic module 101 have production yields which can range from 1.25 to 1.50 compared to to those of traditional sheltered crops.
  • the photovoltaic cells 107 used in a photovoltaic module 101 are of square or circular shape, "wafer" type.
  • the use of photovoltaic cells 107 of "wafer” shape gives a coefficient of natural expansion, allows better sunshine on plant species and avoids a loss of material during the manufacture of photovoltaic cells 107.
  • the coverage area of an agricultural greenhouse by a photovoltaic module 101 is advantageously shared at 50% on the surface of photovoltaic cells 107 and 50. % on the surface of the rear or inner substrate 105 is not covered by the photovoltaic cells 107.
  • This configuration allows the photovoltaic module to have an expansion coefficient of 0.5.
  • the spectral quality of the light received by the plant species is also a very important parameter.
  • the majority of plant species with green leaves do not absorb the wavelengths included in the ultraviolet radiation (wavelengths between 300 and 400 nm) and green radiation (wavelengths) ranges. wave between 510 and 590 nm).
  • the other wavelengths correspond to the absorption spectral range of a chromoprotein commonly called phytochrome.
  • This phytochrome exists in two forms of isomers, chlorophyll A and chlorophyll B.
  • Figure 2 shows that chlorophyll A, curve 221, and chlorophyll B, curve 223, absorb sunlight in the blue (wavelengths between 410 and 500 nm) and red radiation (lengths of blue) wavelengths between 600 and 750 nm). It is at the level of this phytochrome that the process of photosynthesis is realized.
  • the photons are converted into a reducing agent (enzyme) of carbon dioxide and oxidizing water.
  • Photoperiodism is determined by the photophase, a period of sensitivity to the light of the plant species, followed by a scotophase, a period of insensitivity to the light of the plant species.
  • the plant species can be classified in three main categories with respect to photoperiodism: the so-called long-day hemperiodic species, the so-called short-day nyctiperiodic species and the species that are indifferent to photoperiodism.
  • the applicant has shown that by combining a photovoltaic module with an expansion coefficient of less than 1 and the use of a specific material to optimize the spectral quality of the light received by the plant species, the yield of the greenhouses while keeping the photovoltaic function.
  • the modification of the solar spectrum by the photovoltaic module 101 according to one embodiment of the present invention is carried out thanks to the presence of a band shift material, or otherwise called “light cascade”, capable of absorbing sunlight in at least one wavelength range for reemitting it in at least a second range of wavelengths favorable for photosynthesis of the plant species.
  • a band shift material or otherwise called “light cascade”
  • this type of material will be named “luminous cascade doped material promoting photosynthesis”.
  • the photosynthesis-promoting light cascade doped material absorbs sunlight in the 300 to 400 nm wavelength range for re-emitting in the wavelength range 410 to 500 nm.
  • the light-cascade doped material promoting photosynthesis can also, simultaneously or alternatively with the previous embodiment of the invention, absorb sunlight in the wavelength range 510 to 590 nm to re-emit it in the range of lengths. wave 600 to 750 nm.
  • the purpose of a light cascade is to mobilize at the level of an element of interest the maximum energy in the range of greater spectral sensitivity of this element for a maximum of efficiency of this element.
  • the solar energy used is defined by the overlap area of the emission spectra of sunlight and the spectral range of interest for the element under consideration. So, given the specificity of the element under consideration and the fact that the energy recovered by the element is a function of the intensity of the light beam received by the element, that is to say the number of photons transported, one of the means of increasing the efficiency of the element under consideration is to render usable the photons of the part of the solar spectrum outside the range of greater sensitivity of the considered element.
  • the so-called "light cascade” method transforms photons having a wavelength outside the higher sensitivity range of the element under consideration by using the luminescent and / or fluorescent properties of certain chemical compounds.
  • type optically active materials MO A or optically active crystals COA taken as intermediates in the transport of energy from sunlight.
  • the compounds are chosen so that their absorption spectra constitute successive absorption / emission zones making it possible to cover the entire solar spectrum in the visible zone (frequency or wavelength overlap).
  • FIG. 3 showing the principle of operation of a light cascade.
  • a solar radiation 301 of determined wavelength ⁇ , ⁇ 2 , ⁇ 3 , ⁇ 5 can be absorbed by the chemical compound whose absorption spectrum comprises this value ⁇ , ⁇ 2 , ⁇ 3 , ⁇ 5 .
  • the photons which made it possible to excite the molecules of this compound are thus permanently extracted from the incident light beam 301.
  • the return to the ground state stable state of the molecules at a given temperature
  • the photons thus generated are found to correspond to the absorption spectrum of another chemical compound that will take over.
  • a given compound can absorb either the emission of the compound which precedes it in the sequence of compounds used, or the part of the emission of the solar spectrum which corresponds to it.
  • the doped matrix 333 intermediate between the incident solar radiation 331 of wavelength ⁇ , ⁇ 2 , ⁇ 3 , ⁇ 5 and an element of interest 335, comprises active centers A, B, C, D corresponding to the various compounds MO A or COA constituting the doped matrix 333.
  • the active centers A convert the photons of wavelength ⁇ corresponding to the near ultraviolet into photons of wavelength ⁇ 2 corresponding to the blue
  • the active centers B convert the photons of wavelength ⁇ 2 corresponding to blue to photons of wavelength ⁇ 3 corresponding to green
  • the active centers C convert the photons of corresponding wavelength ⁇ 3 to green in photons of wavelength corresponding to yellow
  • the active centers D convert the photons of wavelength corresponding to yellow into photons of wavelength ⁇ 5 corresponding to red.
  • the sun rays entering the matrix doped 333 include photons that are striking the element of interest 335 without having undergone a transformation (represented by the broken arrows in FIG. 3), either striking the active centers A, B, C, D and / or the element of interest 335 having undergone one or more transformations (represented by the continuous arrows in Figure 3).
  • the photovoltaic module 101 makes it possible to concentrate all the wavelength bands of the solar radiation which are favorable to the growth and development of the plant species. This is illustrated in FIG. 4, where it is observable that the solar spectrum as modified 441 by a photovoltaic module 101 according to one embodiment of the invention absorbs sunlight in the wavelength range 300 to 400 nm for re-emitting in the wavelength range 410-500 nm, and also absorbs sunlight in the wavelength range 510-590 nm to re-emit in the wavelength range 600-750 nm.
  • optically active compounds are dispersed in the photosensitive light cascade doped material to form a light cascade at two or more levels.
  • These optically active compounds have an absorbency in wavelengths that are not favorable for photosynthesis of plant species, ie, 300 to 400 nm and 510 to 590 nm, for example, and exhibit overlapping absorption and emission spectra. according to the principle previously explained, so as to obtain the desired energy transfer.
  • These optically active compounds must also be compatible with the photosensitive light-cascade doped material in which they are dispersed.
  • the photosensitive light cascade doped material is included in or coated on at least one of the front plate 103 and the rear substrate 105.
  • the light cascade doped material promoting photosynthesis may be included in the organic matrix 109 or in at least one of the two organic films between which the photo voltaic cells 107 are arranged.
  • the light-cascade doped dopant material promoting photosynthesis is coated on at least one of the front plate 103 and the rear substrate 105.
  • the light-cascade doped dopant material promoting photosynthesis then comprises a matrix in one embodiment of the invention, comprising at least one selected compound in the group comprising silicones, fluorinated polymers, polycarbonates, ethylene vinyl acetate (EVA), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB), glasses, such as than phosphate, silicate or borosilicate glasses and their derivatives.
  • a matrix in one embodiment of the invention comprising at least one selected compound in the group comprising silicones, fluorinated polymers, polycarbonates, ethylene vinyl acetate (EVA), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB), glasses, such as than phosphate, silicate or borosilicate glasses and their derivatives.
  • the optically active compounds included in the photosynthesis-promoting light cascade doped material are selected from the group consisting of lanthanides, uranyl ion, N ring type aromatic ring compounds, N being an integer selected from 3, 4, 5 or more, and derivatives thereof.
  • the lanthanides are chosen from the group comprising praseodymium, neodymium, samarium, europium, and their derivatives.
  • the N ring type aromatic cyclic compounds are chosen from the group comprising diphenyloxazole, uranine S, rhodamine B, anthracene, pentacene, uvitex® , naphthacene, hexacene, yellow 8G, red GG, and their derivatives.
  • the concentration of the various optically active compounds present in the light cascade doped material promoting photosynthesis depends essentially on the thickness of the light-cascade doped material layer promoting photosynthesis. Said concentration meets the Beer-Lambert law.
  • concentrations of the optically active compounds may be between 10 -3 and 10 -6 % by weight.
  • the Applicant has advantageously shown that a change in the concentration of said optically active compounds causes an offset and / or an enlargement of the emission spectrum of said compounds, hence the possibility of influencing the modification of the solar spectrum by playing on concentrations.
  • the rear substrate 105 of the photovoltaic module 101 comprises or is coated a light cascade doped material promoting photosynthesis and the front plate 103 of the photovoltaic module 101 comprises or is coated with a "light cascade doped doped material favoring the photovoltaic function", which is a band shift material (light cascade), capable of absorbing sunlight in at least one wavelength range for reemitting it in at least a second wavelength range of greater sensitivity of the photovoltaic cells 107.
  • the light-cascade doped material favoring the function photovoltaic can be included in the matrix or at least one of the two organic films between which the photo voltaic cells 107 are arranged.
  • the photovoltaic module 101 thus makes it possible to shift the solar spectrum towards the wavelength ranges of greater sensitivity of the photovoltaic cells 107.
  • the zone 557 illustrates the range of greater sensitivity of an example of photovoltaic cell in mono or polycrystalline silicon.
  • the absorption and emission curves 559 of four optically active compounds of absorption peaks respectively ⁇ ⁇ ⁇ , ⁇ ⁇ 2 , ⁇ ⁇ 3 , ⁇ ⁇ 4 and emission peaks ⁇ ⁇ ⁇ , ⁇ 2 , e 3 , e 4 illustrates an example of a luminous cascade of a light cascade doped material favoring the photovoltaic function.
  • two or more optically active compounds are dispersed in the light cascade doped material promoting the photovoltaic function to form a light cascade at two or more levels.
  • These optically active compounds have an absorbing power in the wavelengths outside the higher sensitivity range of the photovoltaic cells 107, and have absorption and emission spectra overlapping according to the principle previously explained, so as to obtain the desired energy transfer.
  • These optically active compounds must also be compatible with the light cascade doped material promoting the photovoltaic function in which they are dispersed.
  • the photovoltaic cells 107 used are of the monocrystalline silicon or multicrystalline silicon type.
  • optically active compounds must absorb wavelengths 300 to 640 nm and re-emit in the range 650 to 750 nm.
  • the photovoltaic cells 107 used are of the amorphous silicon type.
  • optically active compounds must absorb wavelengths 300 to 540 nm and re-emit in the range 550 to 650 nm.
  • the light-cascade doped material promoting the photovoltaic function comprises a matrix comprising at least one compound chosen from the group comprising silicones, fluorinated polymers, polycarbonates, ethylene-vinyl acetate (EVA), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl butyral (PVB), glasses, such as phosphate, silicate or borosilicate glasses, and their derivatives.
  • silicones ethylene-vinyl acetate
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • PVB polyvinyl butyral
  • glasses such as phosphate, silicate or borosilicate glasses, and their derivatives.
  • the optically active compounds included in the photovoltaic function-promoting light cascade doped material are selected from the group consisting of lanthanides, uranyl ion, N ring-type aromatic ring compounds, N being an integer selected from 3, 4, 5 or more, and their derivatives.
  • the lanthanides are chosen from the group comprising praseodymium, neodymium, samarium, europium, and their derivatives.
  • the N ring type aromatic cyclic compounds are chosen from the group comprising diphenyloxazole, uranine S, rhodamine B, anthracene, pentacene, uvitex® , naphthacene, hexacene, yellow 8G, red GG, and their derivatives.
  • the concentration of the various optically active compounds present in the light cascade doped material promoting photosynthesis depends essentially on the thickness of the light-cascade doped material layer promoting photosynthesis. Said concentration meets the Beer-Lambert law.
  • concentrations of the optically active compounds may be between 10 -3 and 10 -6 % by weight.
  • a change in the concentration of said optically active compounds results in an offset and / or an enlargement of the emission spectrum of said compounds, hence the possibility of influencing the modification of the solar spectrum by varying the concentrations.
  • the photovoltaic module 101 comprises a material both doped light cascade promoting photosynthesis and doped light cascade favoring the photovoltaic function.
  • FIG. 6a to 6d are cross-sections of photovoltaic modules according to embodiments of the present invention.
  • a photovoltaic module 601 comprises a rear substrate 605, a front plate 603, and a set of photovoltaic cells 607 arranged in an organic matrix 609 disposed between the front plate. 603 and the rear substrate 605.
  • the front plate 605 comprises a light cascade doped material promoting photosynthesis, the organic matrix 609 and the rear substrate 605 comprising a neutral transparent material.
  • the rear substrate 605 comprises a light cascade doped material promoting photosynthesis, the organic matrix 609 and the front plate 603 comprising a neutral transparent material.
  • the front plate 603 and / or the organic matrix 609 may comprise a light cascade doped material promoting the photovoltaic function.
  • the organic matrix 609 comprises a light cascade doped material promoting photosynthesis, the front plate 603 and the rear substrate 605 comprising a neutral transparent material.
  • the front plate 603 may comprise a light cascade doped material promoting the photovoltaic function.
  • the organic matrix 609 can be replaced by two organic films between which the photovoltaic cells are arranged.
  • a photovoltaic module 601 comprises a rear substrate 605 comprising a neutral transparent material and coated with a film 661 of light-cascade doped material promoting photosynthesis, a front plate 603 comprising a neutral transparent material, and a set of photovoltaic cells 607 disposed in an organic matrix 609 comprising a neutral transparent material and disposed between the front plate 603 and the rear substrate 605.
  • At least one of the organic matrix 609 and the front plate 603 comprises a light cascade doped material promoting the photovoltaic function.
  • the organic matrix can be replaced by two organic films between which the photovoltaic cells 607 are arranged.
  • the lower organic film is substituted for the film 661 of doped material.
  • luminous cascade favoring photosynthesis.
  • the higher organic film may comprise a light cascade doped material promoting the photovoltaic function.
  • a photovoltaic module 601 comprises a front plate 603 comprising a neutral transparent material and coated with a film 663 of light cascade doped material promoting photosynthesis and / or doped cascade photovoltaic function promoting light, a backing substrate 605 comprising a neutral transparent material, and a set of photovoltaic cells 607 disposed in an organic matrix 609 comprising a neutral transparent material and disposed between the front plate 603 and the rear substrate 605.
  • At least one of the organic matrix 609 and the rear substrate 605 comprises a light cascade doped material promoting photosynthesis.
  • the organic matrix may be replaced by two organic films between which the photovoltaic cells 607 are arranged.
  • the upper organic film is substituted for the film 663 comprising the material doped luminous cascade.
  • the lower organic film may in a further variant of this embodiment of the invention comprise a light cascade doped material promoting photosynthesis.
  • a photovoltaic module 601 comprises a rear substrate 605 comprising a neutral transparent material and coated with a film 661 of light-cascade doped material promoting photosynthesis, a front plate 603 comprising a neutral transparent material and coated with a film 663 of light cascade doped material promoting the photovoltaic function, and a set of photovoltaic cells 607 disposed in an organic matrix 609 comprising a neutral transparent material and disposed between the front plates 603 and the substrate rear 605.
  • a photosynthesis module 601 comprises a front plate 603 and a rear substrate 605 comprising extra-white glass, as well as a set of photovoltaic cells 607 disposed in a matrix comprising ethylene- clear vinyl acetate.
  • the rear substrate 605 is coated with a film comprising doped polyethylene light cascade promoting photosynthesis.
  • a photovoltaic module 601 comprises a front plate 603 comprising transparent polymethyl methacrylate and a rear substrate 605 comprising light-cascade doped polymethyl methacrylate promoting photosynthesis, as well as a set of photovoltaic cells 607 arranged in a transparent polymethyl methacrylate matrix.
  • a photovoltaic module 601 comprises a front plate 603 comprising light-cascade doped polymethyl methacrylate favoring the photovoltaic function and a rear substrate 605 comprising light-cascade doped methyl polymethacrylate promoting photosynthesis, and a set of photovoltaic cells 607 disposed between two organic films comprising a neutral transparent material.
  • a photovoltaic module comprises a front plate 603 comprising transparent glass, a rear substrate 605 comprising a transparent fluoropolymer, and a set of photovoltaic cells 607 arranged between two organic films comprising ethylene-vinyl acetate, the upper film comprising a light cascade doped material promoting the photovoltaic function and the lower film comprising a light cascade doped material promoting photosynthesis.
  • a greenhouse is covered on at least a portion of its surface by at least one photovoltaic module.
  • Figure 7 shows an example of an agricultural greenhouse 771 covered with photovoltaic modules 701 including a set of photovoltaic cells 707 according to an embodiment of the present invention.
  • the present invention also relates to a method of manufacturing photovoltaic modules of the type comprising a front plate intended to be in contact with sunlight, a rear substrate and a set of photovoltaic cells (107, 707) arranged between the front plate (103). and the rear substrate (105).
  • the method comprises at least the steps of distributing the photovoltaic cells on the rear substrate so that the photovoltaic module obtained has a coefficient of expansion of between 0.2 and 0.8, and of incorporation into or coating on one of the less than the front plate and the rear substrate of a photosynthesis-enhancing light-cascade doped material capable of absorbing sunlight in at least one wavelength range for re-emitting in at least a second wavelength range favorable for the photosynthesis of at least one plant species.
  • the photovoltaic modules according to the embodiments of the present invention may be bivalent or multifunctional. They promote the growth of plant species placed under an agricultural greenhouse equipped with such modules, and, concomitantly, they promote the production of photoelectric current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Environmental Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Cultivation Of Plants (AREA)
  • Photovoltaic Devices (AREA)
  • Greenhouses (AREA)

Abstract

Un module photovoltaïque (101, 701) pour serre agricole comprend une plaque avant (103) destinée à être en contact avec la lumière solaire, un substrat arrière (105) et un ensemble de cellules photovoltaïques (107, 707) disposées entre la plaque avant (103) et le substrat arrière (105). Le module photovoltaïque (101, 701) a un coefficient de foisonnement compris sensiblement entre 0,2 et 0,8 et comprend au moins une couche d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale.

Description

MODULES PHOTOVOLTAÏQUES POUR SERRE AGRICOLE ET PROCEDE DE
FABRICATION DE TELS MODULES
DOMAINE DE L'INVENTION
L'invention est relative à des modules photo voltaïques pour serre agricole permettant de favoriser la culture d'espèces végétales.
DESCRIPTION DE L'ART ANTERIEUR
Dans les techniques de réalisation de modules photovoltaïques classiques, il est connu de disposer des cellules photovoltaïques, généralement opaques et traitées anti-reflets, dans des matériaux à transmittance élevée dans le spectre solaire en face avant et fortement réflecteurs en face arrière pour servir d'écran de protection.
A l'initiative de certains industriels, l'utilisation des générateurs photovoltaïques se généralise et leurs applications intéressent de plus en plus le domaine agricole, où ils sont apposés sur les toits des bâtiments ruraux ou sur des serres agricoles.
Les modules photovoltaïques utilisés, disposés sur des serres agricoles, entrent en compétition avec les espèces végétales pour l'utilisation de la lumière solaire disponible qui bénéficie alors en priorité à la fonction photovoltaïque des modules photovoltaïques au détriment de la photosynthèse et de la croissance des espèces végétales. Le compromis généralement utilisé par les serristes ou agronomes est alors d'occulter le versant Nord de des serres agricoles pour y disposer les modules photovoltaïques en laissant l'énergie solaire entrer dans la serre par les autres côtés pour permettre la croissance des espèces végétales. Ce compromis est pénalisant pour la fonction photovoltaïque qui ne reçoit alors qu'une lumière indirecte sur la face Nord, de même que les cultures sous les serres sont privées de l'énergie diffuse de l'albédo issue de la voûte céleste Nord dont la contribution à la croissance des espèces végétales n'est pas négligeable.
La présente invention vise notamment un module photovoltaïque pour serre agricole permettant de favoriser la culture d'espèces végétales.
BREVE DESCRIPTION DE L'INVENTION
Selon un premier aspect de la présente invention, un module photovoltaïque pour serre agricole comprend une plaque avant destinée à être en contact avec la lumière solaire, un substrat arrière et un ensemble de cellules photovoltaïques disposées entre la plaque avant et le substrat arrière. Le module photovoltaïque a un coefficient de foisonnement compris sensiblement entre 0,2 et 0,8, et comprend au moins une couche d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale.
Selon une variante du premier objet de la présente invention, l'un au moins de la plaque avant et du substrat arrière forme ou est revêtu de la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
Selon une autre variante du premier objet de la présente invention, l'ensemble des cellules photovoltaïques sont disposées dans une matrice organique ou entre deux films organiques.
Selon une autre variante du premier objet de la présente invention, l'un au moins de la matrice organique et des deux films organiques forme la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
Selon une autre variante du premier objet de la présente invention, le matériau dopé cascade lumineuse favorisant la photosynthèse absorbe la lumière solaire dans la plage de longueurs d'onde 300 à 400 nm pour la réémettre dans la plage de longueurs d'onde 410 à 500 nm.
Selon une autre variante du premier objet de la présente invention, le matériau dopé cascade lumineuse favorisant la photosynthèse absorbe la lumière solaire dans la plage de longueurs d'onde 510 à 590 nm pour la réémettre dans la plage de longueurs d'onde 600 à 750 nm.
Selon une autre variante du premier objet de la présente invention, la plaque avant et le substrat arrière du module photovoltaïque comprennent du verre, et au moins l'un de la plaque avant et du substrat arrière est revêtu de la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
Selon une autre variante du premier objet de la présente invention, la plaque avant et le substrat arrière du module photovoltaïque comprennent du polyméthacrylate de méthyle, et au moins l'un de la plaque avant et du substrat arrière forme la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
Selon une autre variante du premier objet de la présente invention, le substrat arrière forme ou est revêtu de la couche de matériau dopé cascade lumineuse photosynthèse, et la plaque avant du module photovoltaïque forme ou est revêtue d'une couche d'un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde de plus grande sensibilité des cellules photovoltaïques. Selon une encore une autre variante du premier objet de la présente invention, la couche de matériau dopé cascade lumineuse favorisant la fonction photovoltaïque ou favorisant la photosynthèse comprend une matrice comprenant au moins un composé choisi dans le groupe comprenant les silicones, les poly carbonates, l'éthylène-acétate de vinyle, le polyéthylène, le polyméthacrylate de méthyle, le polyvinyle butyrale, les verres, et leurs dérivés.
Selon une variante du premier objet de la présente invention, le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque ou la photosynthèse comprend au moins un composé choisi dans le groupe comprenant les lanthanides, l'ion uranyl, les composés cycliques aromatiques du type à N noyaux, N étant un entier choisi parmi 3, 4, 5 ou plus, et leurs dérivés.
Selon un deuxième aspect de la présente invention, une serre agricole est recouverte sur au moins une partie de sa surface par au moins un module photovoltaïque selon le premier objet de la présente invention.
Selon un troisième aspect de l'invention, un procédé de fabrication de modules photovoltaïques du type comprend une plaque avant destinée à être en contact avec la lumière solaire, un substrat arrière et un ensemble de cellules photovoltaïques disposées entre la plaque avant et le substrat arrière Le procédé comprend au moins les étapes de répartition des cellules photovoltaïques sur le substrat arrière afin que le module photovoltaïque obtenu ait un coefficient de foisonnement compris sensiblement entre 0,2 et 0,8, et d'incorporation dans ou revêtement sur l'un au moins de la plaque avant et du substrat arrière d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale.
BREVE DESCRIPTION DES DESSINS
D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description qui suit, illustrée par les figures suivantes:
- la Figure 1 représente une vue de dessus d'un module photovoltaïque selon un mode de réalisation de la présente invention.
- la Figure 2 est un graphique représentant la réponse spectrale des deux types de chlorophylle présents dans les espèces végétales.
- la Figure 3 est un schéma représentant le principe de fonctionnement d'une cascade lumineuse.
- la Figure 4 est un graphique représentant le spectre solaire et le spectre solaire modifié par un module photovoltaïque comprenant un matériau dopé cascade lumineuse favorisant la photosynthèse selon un mode de réalisation de la présente invention. - la Figure 5 est un graphique représentant le spectre solaire et le spectre solaire modifié par un module photovoltaïque comprenant un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque selon un mode de réalisation de la présente invention.
- les Figures 6a à 6d sont des coupes transversales de modules photovoltaïques selon des modes de réalisation de la présente invention.
- la Figure 7 représente un exemple de serre agricole recouverte de plusieurs modules photovoltaïques selon un mode de réalisation de la présente invention.
DESCRIPTION DETAILLEE
La Figure 1 représente un module photovoltaïque selon un mode de réalisation de l'invention. Le module photovoltaïque 101 comprend une plaque avant ou extérieure 103 destinée à recevoir la lumière solaire, un substrat arrière ou intérieur 105, ainsi qu'un ensemble de cellules photovoltaïques 107 disposées entre la plaque avant 103 et le substrat arrière 105 du module photovoltaïque.
Selon un mode de réalisation de la présente invention, la plaque avant 103 et le substrat arrière 105 du module photovoltaïque 101 comprennent chacun au moins un composé choisi dans le groupe comprenant les silicones, les polymères fluorés, les polycarbonates, l'éthylène- acétate de vinyle (EVA), le polyéthylène (PE), le polyméthacrylate de méthyle (PMMA), le polyvinyle butyrale (PVB), les verres, tel que les verres au phosphate, silicate ou borosilicate, et leurs dérivés.
Selon un mode de réalisation de la présente invention, la plaque avant 103 et le substrat arrière 105 ont une épaisseur moyenne comprise entre 0,5 et 5 mm.
Selon un mode de réalisation de la présente invention, les cellules photovoltaïques 107 sont du type diode à jonction de grande surface, du type unijonction ou multijonction. Les cellules photovoltaïques 107 sont du type au silicium, tel que du silicium amorphe, monocristallin ou multicristallin, ou du type CdTe ou CISG (Cuivre-indium-sélénium-gallium).
L'ensemble des cellules photovoltaïques 107 du module photovoltaïque 101 selon un mode de réalisation de l'invention sont disposées entre deux films organiques ou dans une matrice organique 109. Cette matrice organique 109 ou ces films organiques comprennent au moins un composé choisi dans le groupe comprenant les silicones, les polymères fluorés, les polycarbonates, l'éthylène-acétate de vinyle (EVA), le polyéthylène (PE), le polyméthacrylate de méthyle (PMMA), le polyvinyle butyrale (PVB), les verres, tel que les verres au phosphate, silicate ou borosilicate, et leurs dérivés. Selon un mode de réalisation de la présente invention, la matrice organique 109 a une épaisseur moyenne comprise entre 2.5 et 4 mm. Dans un mode de réalisation de l'invention, les films organiques ont une épaisseur moyenne comprise entre 200 et 600 um.
Chaque cellule photovoltaïque 107 possède par exemple une tension nominale constante de 0.5V. La puissance des cellules photovoltaïques 107 dépend de l'intensité du courant généré qui dépend de la surface de chaque cellule photovoltaïque 107. Un module photovoltaïque 101 selon un mode de réalisation de l'invention permet ainsi de générer une tension de l'ordre de 19V pour pouvoir servir une batterie de charge électrochimique de 12- 15V. Un module photovoltaïque 101 peut comprendre typiquement 40 cellules photovoltaïques 107.
Selon un mode de réalisation de la présente invention, les cellules photovoltaïques 107 du module photovoltaïque 101 sont connectées par des connecteurs électriques 111, par exemple en cuivre étamé, entre elles en série et à une boîte de connexion 113 associée au module photovoltaïque 101.
Dans une application du module photovoltaïque 101 à la couverture de serre agricole, la quantité d'énergie lumineuse entrant dans une serre agricole pour la croissance des espèces végétales et la quantité de courant photovoltaïque délivrée par l'ensemble des cellules photovoltaïques 107 sont déterminées par le "coefficient de foisonnement" d'un module photovoltaïque 101. Le coefficient de foisonnement du module photovoltaïque 101 est défini par le rapport de la surface de l'ensemble des cellules photovoltaïques 107 sur la surface totale de collection de photons du module photovoltaïque 101.
La déposante a montré qu'un coefficient de foisonnement inférieur à 1, avantageusement compris entre 0,2 et 0,8, permet d'assurer la fonction photovoltaïque des cellules photovoltaïques 107 tout en favorisant l'illumination des espèces végétales. Selon un autre mode de réalisation de l'invention, le coefficient de foisonnement est compris entre 0,4 et 0,6.
La déposante a notamment avantageusement montré que les modules photovoltaïques 101 selon un mode de réalisation de l'invention, dans lequel le coefficient de foisonnement des modules photovoltaïques est de 0.5 et dans lequel les modules photovoltaïques comprennent une couche de matériau dopé cascade lumineuse favorisant la photosynthèse, permettent une augmentation de rendement de l'ordre de 50% en éclairement diffus et que par ailleurs les espèces végétales cultivées sous des serres agricoles recouvertes du module photovoltaïque 101 connaissent des rendements de production pouvant aller de 1,25 à 1,50 par rapport à ceux des cultures sous abris classiques.
Les cellules photovoltaïques 107 utilisées dans un module photovoltaïque 101 selon un mode de réalisation de la présente invention sont de forme carré ou circulaire, type "wafer". Dans un mode de réalisation préféré de la présente invention, l'utilisation de cellules photovoltaïques 107 de forme "wafer" donne un coefficient de foisonnement naturel, permet un meilleur ensoleillement sur des espèces végétales et permet d'éviter une perte de matière lors de la fabrication des cellules photovoltaïques 107.
Dans un mode de réalisation préféré de la présente invention, pour un rayonnement solaire normalisé de AM 1,5, la surface de couverture d'une serre agricole par un module photovoltaïque 101 est avantageusement partagée à 50% en surface de cellules photovoltaïques 107 et 50% en surface du substrat arrière ou intérieure 105 n'étant pas couvert par les cellules photovoltaïques 107. Cette configuration permet au module photovoltaïque d'avoir un coefficient de foisonnement de 0.5.
Cependant en période de déficit lumineux ou de lumière diffuse, en zone septentrionale par exemple, la priorité doit être mise sur la surface de collection de photons. On peut alors diminuer le coefficient de foisonnement du module photovoltaïque 101 et de privilégier les entrées de lumière dans la serre agricole.
En effet, dans le domaine de la physiologie végétale, outre la nécessité d'une terre fertile, d'un entretien constant d'un point vu nutritif, traitement phytosanitaire, équilibre de pH, densité, la lumière est un autre paramètre d'importance également à prendre en compte. Une quantité minimum de lumière est nécessaire pour que le processus de photosynthèse puisse s'opérer. Toutefois, un excès de lumière est à éviter pour épargner aux espèces végétales un échauffement inutile provoquant une saturation de la fonction chlorophyllienne.
Par ailleurs, la qualité spectrale de la lumière reçue par les espèces végétales est également un paramètre très important. En effet, la majorité des espèces végétales ayant des feuilles vertes n'absorbe pas ou peu les longueurs d'onde comprises dans les domaines du rayonnement ultraviolet (longueurs d'onde comprises entre 300 et 400 nm) et du rayonnement vert (longueurs d'onde comprises entre 510 et 590 nm).
Les autres longueurs d'ondes correspondent au domaine spectrale d'absorption d'une chromoprotéine communément appelée phytochrome. Ce phytochrome existe sous deux formes d'isomères, la chlorophylle A et la chlorophylle B. La Figure 2 est un graphique (Energie relative A%o=f(longueur d'onde λ)) représentant les spectres d'absorption des deux types de chlorophylle présent dans les espèces végétales. La Figure 2 montre que la chlorophylle A, courbe 221, et la chlorophylle B, courbe 223, absorbent la lumière solaire dans les domaines de rayonnement du bleu (longueurs d'onde comprises entre 410 et 500 nm) et de rayonnement du rouge (longueurs d'onde comprises entre 600 et 750 nm). C'est au niveau de ce phytochrome que se réalise le processus de photosynthèse. Les photons sont convertis en agent réducteur (enzyme) de dioxyde de carbone et oxydant de l'eau. Ces réduction et oxydation simultanées donnent naissance à un chaînon glucidique satisfaisant aux besoins énergétiques et à la croissance des espèces végétales.
Un autre paramètre lumineux d'importance pour la croissance des espèces végétales est le photopériodisme. Le photopériodisme est déterminé par la photophase, période de sensibilité à la lumières de l'espèce végétale, à laquelle succède une scotophase, période d'insensibilité à la lumière de l'espèce végétale. Les espèces végétales peuvent être classées en trois grandes catégories vis-à-vis du photopériodisme: les espèces hémépériodiques dites de jour long, les espèces nyctipériodiques dites de jour court et les espèces indifférentes au photopériodisme.
La déposante a montré qu'en combinant un module photovoltaïque avec un coefficient de foisonnement inférieur à 1 et l'utilisation d'un matériau spécifique permettant d'optimiser la qualité spectrale de la lumière reçue par les espèces végétales, on pouvait augmenter le rendement des serres tout en gardant la fonction photovoltaïque.
La modification du spectre solaire par le module photovoltaïque 101 selon un mode de réalisation de la présente invention est effectuée grâce à la présence d'un matériau à décalage de bande, ou autrement appelé à "cascade lumineuse", susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse des espèces végétales. Dans la suite de la description, ce type de matériau sera nommé "matériau dopé cascade lumineuse favorisant la photosynthèse".
Dans un mode de réalisation de la présente invention, le matériau dopé cascade lumineuse favorisant la photosynthèse absorbe la lumière solaire dans la plage de longueurs d'onde 300 à 400 nm pour la réémettre dans la plage de longueurs d'onde 410 à 500 nm. Le matériel dopé cascade lumineuse favorisant la photosynthèse peut également, de manière simultanée ou alternative au précédent mode de réalisation de l'invention, absorber la lumière solaire dans la plage de longueurs d'onde 510 à 590 nm pour la réémettre dans la plage de longueurs d'onde 600 à 750 nm.
Le but d'une cascade lumineuse est de mobiliser au niveau d'un élément d'intérêt le maximum d'énergie dans la plage de plus grande sensibilité spectrale de cet élément pour un maximum de rendement de cet élément.
En principe, l'énergie solaire utilisée est définie par la zone de recouvrement des spectres d'émission de la lumière solaire et de la gamme spectrale d'intérêt pour l'élément considéré. Donc, compte tenu de la spécificité de l'élément considéré et du fait que l'énergie récupérée par l'élément est fonction de l'intensité du faisceau lumineux reçu par l'élément, c'est-à-dire du nombre de photons transportés, l'un des moyens d'augmenter le rendement de l'élément considéré est de rendre utilisables les photons de la partie du spectre solaire située en dehors de la plage de plus grande sensibilité dudit élément considéré.
Le procédé utilisé, dit de "cascade lumineuse", transforme des photons ayant une longueur d'onde située en dehors de la plage de plus grande sensibilité de l'élément considéré en utilisant les propriétés luminescentes et/ou fluorescentes de certains composés chimiques, du type matériaux optiquement actifs MO A ou cristaux optiquement actifs COA, pris comme intermédiaires dans le transport de l'énergie issue de la lumière solaire.
Les composés sont choisis de façon que leurs spectres d'absorption constituent des zones successives d'absorption/émission permettant de couvrir la totalité du spectre solaire dans la zone visible (recouvrement en fréquences ou en longueurs d'ondes).
La Figure 3 représentant le principe de fonctionnement d'une cascade lumineuse. Une radiation solaire 301 de longueur d'onde déterminée λι, λ2, λ3, λ5 peut être absorbée par le composé chimique dont le spectre d'absorption comprend cette valeur λι, λ2, λ3, λ5. Les photons qui ont permis d'exciter les molécules de ce composé (phénomène d'absorption) sont ainsi extraits définitivement du faisceau lumineux incident 301. Le retour à l'état fondamental (état stable des molécules à une température donnée) peut s'effectuer en partie et de façon avantageuse par une émission radiative (fluorescence et/ou phosphorescence). Les photons ainsi engendrés se trouvent correspondre au spectre d'absorption d'un autre composé chimique qui prendra le relais.
Un composé donné peut absorber soit l'émission du composé qui le précède dans la séquence de composés utilisés, soit la partie de l'émission du spectre solaire qui lui correspond. Comme illustré par la Figure 3, la matrice dopée 333, intermédiaire entre le rayonnement solaire incident 331 de longueur d'onde λι, λ2, λ3, λ5 et un élément d'intérêt 335, comprend des centres actifs A, B, C, D correspondant aux divers composés MO A ou COA constituant la matrice dopée 333. A titre d'exemple, les centres actifs A convertissent les photons de longueur d'onde λι correspondant au proche ultra- violet en photons de longueur d'onde λ2 correspondant au bleu, les centres actifs B convertissent les photons de longueur d'onde λ2 correspondant au bleu en photons de longueur d'onde λ3 correspondant au vert, les centres actifs C convertissent les photons de longueur d'onde λ3 correspondant au vert en photons de longueur d'onde correspondant au jaune, et les centres actifs D convertissent les photons de longueur d'onde correspondant au jaune en photons de longueur d'onde λ5 correspondant au rouge. Les rayons solaires pénétrant dans la matrice dopées 333 comprennent des photons qui soit frappent l'élément d'intérêt 335 sans avoir subit de transformation (représentés par les flèches discontinues sur la Figure3), soit frappent les centres actifs A, B, C, D et/ou l'élément d'intérêt 335 ayant subit une ou plusieurs transformations (représentés par les flèches continues sur la Figure 3).
Ce principe de "cascade lumineuse" est appliqué pour favoriser la photosynthèse d'espèces végétales. La Figure 4 est un graphique (Energie relative=f(longueur d'onde)) représentant le spectre solaire 443 et le spectre solaire modifié 441 par un module photovoltaïque 101 comprenant un matériau dopé cascade lumineuse favorisant la photosynthèse selon un mode de réalisation de la présente invention.
Le module photovoltaïque 101 selon un mode de réalisation de la présente invention permet de concentrer l'ensemble des bandes de longueurs d'onde du rayonnement solaire qui sont favorables à la croissance et au développement des espèces végétales. Ceci est illustré par la Figure 4, où il est observable que le spectre solaire tel que modifié 441 par un module photovoltaïque 101 selon un mode de réalisation de l'invention absorbe la lumière solaire dans la plage de longueurs d'onde 300 à 400 nm pour la réémettre dans la plage de longueurs d'onde 410 à 500 nm, et absorbe également la lumière solaire dans la plage de longueurs d'onde 510 à 590 nm pour la réémettre dans la plage de longueurs d'onde 600 à 750 nm.
Pour modifier le spectre solaire, deux composés optiquement actifs ou plus sont dispersés dans le matériau dopé cascade lumineuse favorisant la photosynthèse afin de former une cascade lumineuse à deux niveaux ou plus. Ces composés optiquement actifs ont un pouvoir absorbant dans les longueurs d'onde non favorables à la photosynthèse des espèces végétales, i.e., 300 à 400 nm et 510 à 590 nm par exemple, et présentent des spectres d'absorption et d'émission se chevauchant selon le principe précédemment expliqué, de façon à obtenir le report d'énergie souhaité. Ces composés optiquement actifs doivent également être compatibles avec le matériau dopé cascade lumineuse favorisant la photosynthèse dans lequel ils sont dispersés.
Selon un mode de réalisation de l'invention, le matériau dopé cascade lumineuse favorisant la photosynthèse est compris dans ou revêtu sur l'un au moins de la plaque avant 103 et du substrat arrière 105. Alternativement, le matériau dopé cascade lumineuse favorisant la photosynthèse peut être compris dans la matrice organique 109 ou dans l'un au moins des deux films organiques entre lesquels sont disposées les cellules photo voltaïques 107.
Selon un autre mode de réalisation de l'invention, le matériau dopé cascade lumineuse favorisant la photosynthèse est revêtu sur l'un au moins de la plaque avant 103 et du substrat arrière 105. Le matériau dopé cascade lumineuse favorisant la photosynthèse comprend alors une matrice, dans un mode de réalisation de l'invention, comprenant au moins un composé choisi dans le groupe comprenant les silicones, les polymères fluorés, les polycarbonates, l'éthylène- acétate de vinyle (EVA), le polyéthylène (PE), le polyméthacrylate de méthyle (PMMA), le polyvinyle butyrale (PVB), les verres, tel que les verres au phosphate, silicate ou borosilicate, et leurs dérivés.
Dans un mode de réalisation de l'invention, les composés optiquement actifs compris dans le matériau dopé cascade lumineuse favorisant la photosynthèse sont choisis dans le groupe comprenant les lanthanides, l'ion uranyl, les composés cycliques aromatiques du type à N noyaux, N étant un entier choisi parmi 3, 4, 5 ou plus, et leurs dérivés. Selon un mode de réalisation particulier de l'invention, les lanthanides sont choisis dans le groupe comprenant le praséodyme, le néodyme, le samarium, l'europium, et leurs dérivés. Selon un mode de réalisation particulier de l'invention, les composés cycliques aromatiques du type à N noyaux sont choisis dans le groupe comprenant le diphenyl oxazole, l'uranine S, la rhodamine B, l'anthracène, le pentacène, l'uvitex MD, le naphtacène, l'hexacène, le jaune 8G, le rouge GG, et leurs dérivés.
La concentration des divers composés optiquement actifs présents dans le matériau dopé cascade lumineuse favorisant la photosynthèse dépend essentiellement de l'épaisseur de la couche de matériau dopé cascade lumineuse favorisant la photosynthèse. Ladite concentration répond à la loi de Beer-Lambert. Uniquement à titre d'exemple, pour une plaque contenant le matériau dopé cascade lumineuse favorisant la photosynthèse ayant une épaisseur de 3 mm, les concentrations des composés optiquement actifs peuvent être comprises entre 10"3 et 10"6 %poids. La déposante a avantageusement montré qu'une modification au niveau de la concentration desdits composés optiquement actifs entraîne un décalage et/ou un élargissement du spectre d'émission desdits composés, d'où la possibilité d'influer sur la modification du spectre solaire en jouant sur les concentrations.
La déposante a montré qu'on pouvait également, selon une variante de réalisation, favoriser la fonction photovoltaïque du module photovoltaïque 101. Pour cela, selon un mode de réalisation de la présente invention, le substrat arrière 105 du module photovoltaïque 101 comprend ou est revêtu d'un matériau dopé cascade lumineuse favorisant la photosynthèse et la plaque avant 103 du module photovoltaïque 101 comprend ou est revêtue d'un "matériau dopé cascade lumineuse favorisant la fonction photovoltaïque", qui est un matériau à décalage de bande (cascade lumineuse), susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde de plus grande sensibilité des cellules photovoltaïques 107. Alternativement, le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque peut être compris dans la matrice organique 109 ou dans l'un au moins des deux films organiques entre lesquels sont disposées les cellules photo voltaïques 107.
Le module photovoltaïque 101 selon un mode de réalisation de la présente invention permet ainsi de décaler le spectre solaire vers les plages de longueurs d'onde de plus grande sensibilité des cellules photovoltaïques 107. Ceci est illustré par la Figure 5. La courbe 551 illustre le spectre solaire, la courbe 553 illustre le spectre d'énergie solaire transformé par un module photovoltaïque 101 selon un mode de réalisation de l'invention et la courbe 555 illustre la réponse spectrale d'une cellule photovoltaïque en silicium mono ou poly cristallin. La zone 557 illustre la plage de plus grande sensibilité d'un exemple de cellule photovoltaïque en silicium mono ou polycristallin. Les courbes d'absorption et d'émission 559 de quatre composés optiquement actifs de pics d'absorption respectivement λαι, λα2, λα3, λα4 et de pics d'émission λει, β2, e3, e4 illustre un exemple de cascade lumineuse d'un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque.
Pour modifier le spectre solaire, deux composés optiquement actifs ou plus sont dispersés dans le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque afin de former une cascade lumineuse à deux niveaux ou plus. Ces composés optiquement actifs ont un pouvoir absorbant dans les longueurs d'onde hors du domaine de plus grande sensibilité des cellules photovoltaïques 107, et présentent des spectres d'absorption et d'émission se chevauchant selon le principe précédemment expliqué, de façon à obtenir le report d'énergie souhaité. Ces composés optiquement actifs doivent également être compatibles avec le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque dans lequel ils sont dispersés.
Dans un mode de réalisation de la présente invention, les cellules photovoltaïques 107 utilisées sont du type au silicium monocristallin ou multicristallin. Dans ce cas, les composés optiquement actifs doivent absorber les longueurs d'onde 300 à 640 nm et réémettre dans le domaine 650 à 750 nm.
Selon un mode de réalisation de la présente invention, les cellules photovoltaïques 107 utilisées sont du type au silicium amorphe. Dans ce cas, les composés optiquement actifs doivent absorber les longueurs d'onde 300 à 540 nm et réémettre dans le domaine 550 à 650 nm.
Lorsque le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque est revêtu sur l'un au moins de la plaque avant 103 et du substrat arrière 105, il comprend une matrice comprenant au moins un composé choisi dans le groupe comprenant les silicones, les polymères fluorés, les polycarbonates, l'éthylène-acétate de vinyle (EVA), le polyéthylène (PE), le polyméthacrylate de méthyle (PMMA), le polyvinyle butyrale (PVB), les verres, tel que les verres au phosphate, silicate ou borosilicate, et leurs dérivés. Dans un mode de réalisation de l'invention, les composés optiquement actifs compris dans le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque sont choisis dans le groupe comprenant les lanthanides, l'ion uranyl, les composés cycliques aromatiques du type à N noyaux, N étant un entier choisi parmi 3, 4, 5 ou plus, et leurs dérivés. Selon un mode de réalisation particulier de l'invention, les lanthanides sont choisis dans le groupe comprenant le praséodyme, le néodyme, le samarium, l'europium, et leurs dérivés. Selon un mode de réalisation particulier de l'invention, les composés cycliques aromatiques du type à N noyaux sont choisis dans le groupe comprenant le diphenyl oxazole, l'uranine S, la rhodamine B, l'anthracène, le pentacène, l'uvitex MD, le naphtacène, l'hexacène, le jaune 8G, le rouge GG, et leurs dérivés.
La concentration des divers composés optiquement actifs présents dans le matériau dopé cascade lumineuse favorisant la photosynthèse dépend essentiellement de l'épaisseur de la couche de matériau dopé cascade lumineuse favorisant la photosynthèse. Ladite concentration répond à la loi de Beer-Lambert. Uniquement à titre d'exemple, pour une plaque contenant le matériau dopé cascade lumineuse favorisant la photosynthèse ayant une épaisseur de 3 mm, les concentrations des composés optiquement actifs peuvent être comprises entre 10"3 et 10"6 %poids. Une modification au niveau de la concentration desdits composés optiquement actifs entraîne un décalage et/ou un élargissement du spectre d'émission desdits composés, d'où la possibilité d'influer sur la modification du spectre solaire en jouant sur les concentrations.
Selon une variante de réalisation de la présente invention, le module photovoltaïque 101 comprend un matériau à la fois dopé cascade lumineuse favorisant la photosynthèse et dopé cascade lumineuse favorisant la fonction photovoltaïque.
Un module photovoltaïque selon des modes de réalisation de la présente invention va maintenant être décrit en référence au Figures 6a à 6d. Ces modes de réalisation du module photovoltaïque ne sont donnés qu'à titre d'exemple et ne constituent pas une limitation de l'objet de la présente invention. Les Figures 6a à 6d sont des coupes transversales de modules photovoltaïques selon des modes de réalisation de la présente invention.
Selon un mode de réalisation de la présente invention, illustré par la Figure 6a, un module photovoltaïque 601 comprend un substrat arrière 605,, une plaque avant 603, et un ensemble de cellules photovoltaïques 607 disposées dans une matrice organique 609 disposée entre la plaque avant 603 et le substrat arrière 605.
Dans une première variante de ce mode de réalisation, la plaque avant 605 comprend un matériau dopé cascade lumineuse favorisant la photosynthèse, la matrice organique 609 et le substrat arrière 605 comprenant un matériau transparent neutre. Dans une seconde variante de ce mode de réalisation, le substrat arrière 605 comprend un matériau dopé cascade lumineuse favorisant la photosynthèse, la matrice organique 609 et la plaque avant 603 comprenant un matériau transparent neutre. De manière concomitante à cette seconde variante, la plaque avant 603 et/ou la matrice organique 609 peuvent comprendre un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque.
Dans une troisième variante de ce mode de réalisation, la matrice organique 609 comprend un matériau dopé cascade lumineuse favorisant la photosynthèse, le plaque avant 603 et le substrat arrière 605 comprenant un matériau transparent neutre. De manière concomitante à cette troisième variante, la plaque avant 603 peut comprendre un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque.
Dans toutes les variantes de ce mode de réalisation de l'invention, la matrice organique 609 peut être remplacée par deux films organiques entre lesquels sont disposées les cellules photovoltaïques.
Selon un mode de réalisation de la présente invention, illustré par la Figure 6b, un module photovoltaïque 601 comprend un substrat arrière 605 comprenant un matériau transparent neutre et revêtu d'un film 661 de matériau dopé cascade lumineuse favorisant la photosynthèse, une plaque avant 603 comprenant un matériau transparent neutre, et un ensemble de cellules photovoltaïques 607 disposées dans une matrice organique 609 comprenant un matériau transparent neutre et disposée entre la plaque avant 603 et le substrat arrière 605.
Selon une première variante de ce mode de réalisation de la présente invention, l'une au moins de la matrice organique 609 et de la plaque avant 603 comprend un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque.
Dans une seconde variante de ce mode de réalisation de l'invention, la matrice organique peut être remplacée par deux films organiques entre lesquels sont disposées les cellules photovoltaïques 607. Dans ce cas, le film organique inférieur vient se substituer au film 661 de matériau dopé cascade lumineuse favorisant la photosynthèse. Le film organique supérieur peut dans une variante supplémentaire de ce mode de réalisation de l'invention comprendre un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque.
Selon un mode de réalisation de la présente invention, illustré par la Figure 6c, un module photovoltaïque 601 comprend une plaque avant 603 comprenant un matériau transparent neutre et revêtue d'un film 663 de matériau dopé cascade lumineuse favorisant la photosynthèse et/ou dopé cascade lumineuse favorisant la fonction photovoltaïque, un substrat arrière 605 comprenant un matériau transparent neutre, et un ensemble de cellules photovoltaïques 607 disposées dans une matrice organique 609 comprenant un matériau transparent neutre et disposée entre la plaque avant 603 et le substrat arrière 605.
Selon une première variante de ce mode de réalisation de la présente invention, l'un au moins de la matrice organique 609 et du substrat arrière 605 comprend un matériau dopé cascade lumineuse favorisant la photosynthèse.
Dans une seconde variante de ce mode de réalisation de l'invention, la matrice organique peut être remplacée par deux films organiques entre lesquels sont disposées les cellules photovoltaïques 607. Dans ce cas, le film organique supérieur vient se substituer au film 663 comprenant le matériau dopé cascade lumineuse. Le film organique inférieur peut dans une variante supplémentaire de ce mode de réalisation de l'invention comprendre un matériau dopé cascade lumineuse favorisant la photosynthèse.
Selon un mode de réalisation de la présente invention, illustré par la Figure 6d, un module photovoltaïque 601 comprend un substrat arrière 605 comprenant un matériau transparent neutre et revêtu d'un film 661 de matériau dopé cascade lumineuse favorisant la photosynthèse, une plaque avant 603 comprenant un matériau transparent neutre et revêtue d'un film 663 de matériau dopé cascade lumineuse favorisant la fonction photovoltaïque, et un ensemble de cellules photovoltaïques 607 disposées dans une matrice organique 609 comprenant un matériau transparent neutre et disposée entre la plaques avant 603 et le substrat arrière 605.
Dans un mode de réalisation particulier de la présente invention, un module photosynthèse 601 comprend une plaque avant 603 et un substrat arrière 605 comprenant du verre extra blanc, ainsi qu'un ensemble de cellules photovoltaïques 607 disposées dans une matrice comprenant de l'éthylène-acétate de vinyle transparent. Le substrat arrière 605 est revêtu d'un film comprenant du polyéthylène dopé cascade lumineuse favorisant la photosynthèse.
Dans un autre mode de réalisation particulier de la présente invention, un module photovoltaïque 601 comprend une plaque avant 603 comprenant du polyméthacrylate de méthyle transparent et un substrat arrière 605 comprenant du polyméthacrylate de méthyle dopé cascade lumineuse favorisant la photosynthèse, ainsi qu'un ensemble de cellules photovoltaïques 607 disposées dans une matrice de polyméthacrylate de méthyle transparent.
Dans un autre mode de réalisation particulier de la présente invention, un module photovoltaïque 601 comprend une plaque avant 603 comprenant du polyméthacrylate de méthyle dopé cascade lumineuse favorisant la fonction photovoltaïque et un substrat arrière 605 comprenant du polyméthacrylate de méthyle dopé cascade lumineuse favorisant la photosynthèse, ainsi qu'un ensemble de cellules photovoltaïques 607 disposées entre deux films organiques comprenant un matériau transparent neutre. Selon un autre mode de réalisation de l'invention, un module photovoltaïque comprend une plaque avant 603 comprenant du verre transparent, un substrat arrière 605 comprenant un polymère fluoré transparent, et un ensemble de cellule photovoltaïques 607 disposées entre deux films organiques comprenant de l'éthylène-acétate de vinyle, le film supérieur comprenant un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque et le film inférieur comprenant un matériau dopé cascade lumineuse favorisant la photosynthèse.
Selon un mode de réalisation de la présente invention, une serre agricole est recouverte sur au moins une partie de sa surface par au moins un module photovoltaïque. La Figure 7 représente un exemple de serre agricole 771 recouverte de modules photovoltaïques 701 comprenant un ensemble de cellules photovoltaïques 707 selon un mode de réalisation de la présente invention.
La présente invention concerne également un procédé de fabrication de modules photovoltaïques du type comprenant une plaque avant destinée à être en contact avec la lumière solaire, un substrat arrière et un ensemble de cellules photovoltaïques (107, 707) disposées entre la plaque avant (103) et le substrat arrière (105). Le procédé comprend au moins les étapes de répartition des cellules photovoltaïques sur le substrat arrière afin que le module photovoltaïque obtenu ait un coefficient de foisonnement compris entre 0,2 et 0,8, et d'incorporation dans ou de revêtement sur l'un au moins de la plaque avant et du substrat arrière d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale.
L'invention ainsi décrite présente notamment les avantages suivants.
Les modules photovoltaïques selon les modes de réalisation de la présente invention peuvent être bivalents ou multifonctions. Ils favorisent la croissance des espèces végétales placées sous une serre agricole équipée de tels modules, et, concomitamment, ils favorisent la production de courant photoélectrique.
L'invention, bien qu'ayant été décrite dans un exemple particulier de réalisation illustrée par les différentes figures, s'étend à l'ensemble des variantes et modifications apparaissant de manière évidente à l'homme du métier, dans la limite des caractéristiques techniques définies dans les revendications.

Claims

REVENDICATIONS
1. Module photo voltaïque (101, 701) pour serre agricole comprenant
une plaque avant (103) destinée à être en contact avec la lumière solaire;
un substrat arrière (105); et
un ensemble de cellules photovoltaïques (107, 707) disposées entre la plaque avant (103) et le substrat arrière (105);
caractérisé en ce que
le coefficient de foisonnement du module photo voltaïque (101, 701) est compris sensiblement entre 0,2 et 0,8; et
le module photovoltaïque (101, 701) comprend au moins une couche d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale.
2. Module photovoltaïque (101, 701) selon la revendication 1, caractérisé en ce que l'un au moins de la plaque avant (103) et du substrat arrière (105) forme ou est revêtu de la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
3. Module photovoltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble des cellules photovoltaïques (107, 707) sont disposées dans une matrice organique (109) ou entre deux films organiques.
4. Module photovoltaïque (101, 701) selon la revendication 3, caractérisé en ce que l'un au moins de la matrice organique (109) et des deux films organiques forme la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
5. Module photovoltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau dopé cascade lumineuse favorisant la photosynthèse absorbe la lumière solaire dans la plage de longueurs d'onde 300 à 400 nm pour la réémettre dans la plage de longueurs d'onde 410 à 500 nm.
6. Module photo voltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau dopé cascade lumineuse favorisant la photosynthèse absorbe la lumière solaire dans la plage de longueurs d'onde 510 à 590 nm pour la réémettre dans la plage de longueurs d'onde 600 à 750 nm.
7. Module photo voltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que
la plaque avant (103) et le substrat arrière (105) du module photovoltaïque (101, 701) comprennent du verre; et
au moins l'un de la plaque avant (103) et du substrat arrière (105) est revêtu de la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
8. Module photovoltaïque (101, 701) selon l'une quelconque des revendications 1 à 6, caractérisé en ce que
la plaque avant (103) et le substrat arrière (105) du module photovoltaïque (101, 701) comprennent du polyméthacrylate de méthyle; et
au moins l'un de la plaque avant (103) et du substrat arrière (105) forme la couche de matériau dopé cascade lumineuse favorisant la photosynthèse.
9. Module photovoltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que
le substrat arrière (105) forme ou est revêtu de la couche de matériau dopé cascade lumineuse photosynthèse; et
la plaque avant (103) du module photovoltaïque (101, 701) forme ou est revêtue d'une couche d'un matériau dopé cascade lumineuse favorisant la fonction photovoltaïque susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde de plus grande sensibilité des cellules photovoltaïques (107, 707).
10. Module photovoltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche de matériau dopé cascade lumineuse favorisant la fonction photovoltaïque ou favorisant la photosynthèse comprend une matrice comprenant au moins un composé choisi dans le groupe comprenant les silicones, les poly carbonates, l'éthylène-acétate de vinyle, le polyéthylène, le polyméthacrylate de méthyle, le polyvinyle butyrale, les verres, et leurs dérivés.
11. Module photovoltaïque (101, 701) selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau dopé cascade lumineuse favorisant la fonction photovoltaïque ou la photosynthèse comprend au moins un composé choisi dans le groupe comprenant les lanthanides, l'ion uranyl, les composés cycliques aromatiques du type à N noyaux, N étant un entier choisi parmi 3, 4, 5 ou plus, et leurs dérivés.
12. Serre agricole (705) caractérisée en ce qu'elle est recouverte sur au moins une partie de sa surface par au moins un module photovoltaïque (101, 701) selon l'une quelconque des revendications précédentes.
13. Procédé de fabrication de modules photovoltaïques du type comprenant
une plaque avant destinée à être en contact avec la lumière solaire;
un substrat arrière; et
un ensemble de cellules photovoltaïques (107, 707) disposées entre la plaque avant (103) et le substrat arrière (105);
le procédé étant caractérisé en ce qu'il comprend au moins les étapes de
répartition des cellules photovoltaïques sur le substrat arrière afin que le module photovoltaïque obtenu ait un coefficient de foisonnement compris sensiblement entre 0,2 et 0,8; et
incorporation dans ou revêtement sur l'un au moins de la plaque avant et du substrat arrière d'un matériau dopé cascade lumineuse favorisant la photosynthèse susceptible d'absorber la lumière solaire dans au moins une plage de longueurs d'onde pour la réémettre dans au moins une deuxième plage de longueurs d'onde favorables à la photosynthèse d'au moins une espèce végétale.
PCT/EP2011/052012 2010-02-19 2011-02-11 Modules photovoltaïques pour serre agricole et procede de fabrication de tels modules WO2011101290A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/579,424 US20130111810A1 (en) 2010-02-19 2011-02-11 Photovoltaic modules for an agricultural greenhouse and method for manufacturing such modules
EP11702843.1A EP2537189B1 (fr) 2010-02-19 2011-02-11 Modules photovoltaïques pour serre agricole et procede de fabrication de tels modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000696A FR2956775B1 (fr) 2010-02-19 2010-02-19 Modules photovoltaiques pour serre agricole et procede de fabrication de tels modules
FR10/00696 2010-02-19

Publications (2)

Publication Number Publication Date
WO2011101290A2 true WO2011101290A2 (fr) 2011-08-25
WO2011101290A3 WO2011101290A3 (fr) 2012-12-27

Family

ID=43242913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/052012 WO2011101290A2 (fr) 2010-02-19 2011-02-11 Modules photovoltaïques pour serre agricole et procede de fabrication de tels modules

Country Status (4)

Country Link
US (1) US20130111810A1 (fr)
EP (1) EP2537189B1 (fr)
FR (1) FR2956775B1 (fr)
WO (1) WO2011101290A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2010327C2 (en) * 2013-02-19 2014-08-21 Havecon Kassenbouw B V Greenhouse comprising a panel with a pv-cell and a light dispersion area.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993409B1 (fr) * 2012-07-16 2015-04-10 Physique Du Rayonnement Et De La Lumiere Lab De Revetement optiquement actif pour l'amelioration du rendement de conversion photosolaire
US9960294B2 (en) 2013-01-04 2018-05-01 Nitto Denko Corporation Highly fluorescent and photo-stable chromophores for wavelength conversion
JP6258659B2 (ja) * 2013-10-23 2018-01-10 三井化学東セロ株式会社 太陽電池モジュール
WO2015168439A1 (fr) 2014-04-30 2015-11-05 Nitto Denko Corporation Chromophores fluorescents revêtus d'un oxyde inorganique destinés à être utilisés dans des films de conversion de longueur d'onde très photostables
FR3042643B1 (fr) 2015-10-16 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule photovoltaique pour serre agricole

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2346858A1 (fr) * 1976-03-31 1977-10-28 Gravisse Philippe Dispositif amplificateur d'energie rayonnante
GB8602304D0 (en) * 1986-01-30 1986-03-05 Dakubu S Dihydropyridine condensation products
ITSV20050007A1 (it) * 2005-02-04 2006-08-05 Giacomo Roccaforte Elemento di copertura per serre agricole o simili
JP2009129686A (ja) * 2007-11-22 2009-06-11 Kiso Micro Kk 太陽電池システム
US8383929B2 (en) * 2008-07-18 2013-02-26 Solyndra Llc Elongated photovoltaic devices, methods of making same, and systems for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2010327C2 (en) * 2013-02-19 2014-08-21 Havecon Kassenbouw B V Greenhouse comprising a panel with a pv-cell and a light dispersion area.

Also Published As

Publication number Publication date
FR2956775B1 (fr) 2012-03-09
EP2537189B1 (fr) 2015-10-28
EP2537189A2 (fr) 2012-12-26
WO2011101290A3 (fr) 2012-12-27
FR2956775A1 (fr) 2011-08-26
US20130111810A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
EP2537189B1 (fr) Modules photovoltaïques pour serre agricole et procede de fabrication de tels modules
US20170288080A1 (en) Luminescent Electricity-Generating Window for Plant Growth
WO1996002948A1 (fr) Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obtenu et photopile comprenant un tel materiau ou dispositif
FR2996356A1 (fr) Composant photovoltaique a fort rendement de conversion
RU2013148840A (ru) Способ и устройство для интегрирования инфракрасного (ик) фотоэлектрического элемента на тонкопленочный фотоэлектрический элемент
EP1186057A1 (fr) Generateurs photovoltaiques a cascade lumineuse et variation de flux electromagnetique
CN103025913A (zh) 用于多结太阳能电池的减反射涂层
EP2396829B1 (fr) Double vitrage a haut rendement photovoltaique
WO2012107701A1 (fr) Materiau de modulation de la lumiere solaire
EP2873099A1 (fr) Revetement optiquement actif pour l'amelioration du rendement de conversion photosolaire
FR2988163A1 (fr) Panneau solaire a haut rendement
EP3000136B1 (fr) Procédé de fabrication d'un système photovoltaïque à concentration de lumière
FR2941566A1 (fr) Convertisseur photovoltaique a duree de vie augmentee.
EP3152787A1 (fr) Dispositif photovoltaïque et procédé de fabrication associé
Fathi et al. Design of Building Integrated Photovoltaic (BIPV) and integration of photons converters
WO2010092157A2 (fr) Generateur photovoltaïque a trois dimensions
FR2792460A1 (fr) Generateurs photovoltaiques a cascade lumineuse et variation de flux electromagnetique
WO2020030522A1 (fr) Module photovoltaïque présentant un motif
Serrano Quantum Cutting Processes in Rare-earth doped fluorides for Photovoltaic applications
FR3042260A1 (fr) Panneau solaire photovoltaique dont la transparence varie en fonction de la position relative du soleil
FR3077929A1 (fr) Dispositif optique photonique et plasmonique rapporte a un module photovoltaique
FR3003091A1 (fr) Technique de reduction de la perte d encapsulation de cellules solaires dans la fabrication d un module photovoltaique en silicium cristallin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11702843

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011702843

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13579424

Country of ref document: US