WO2011100987A1 - Method for assembling part of a generator, generator and wind turbine - Google Patents
Method for assembling part of a generator, generator and wind turbine Download PDFInfo
- Publication number
- WO2011100987A1 WO2011100987A1 PCT/EP2010/000961 EP2010000961W WO2011100987A1 WO 2011100987 A1 WO2011100987 A1 WO 2011100987A1 EP 2010000961 W EP2010000961 W EP 2010000961W WO 2011100987 A1 WO2011100987 A1 WO 2011100987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- generator
- magnet
- base element
- mounting plate
- welding
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2786—Outer rotors
- H02K1/2787—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/2789—Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2791—Surface mounted magnets; Inset magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/278—Surface mounted magnets; Inset magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
- H02K7/183—Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
- H02K7/1838—Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a method for assembling part of a generator. It further relates to a generator and to a wind turbine .
- Permanent magnet (PM) generator rotors for wind turbines are known in the art. Here rods or segments of permanent magnet material are mounted on the surface of a generator rotor on some rotor base construction. The purpose of the magnets is to induce current in generator stator coils which they pass when the generator rotor is rotating. It is of most importance that the magnets are sufficiently secured to the said rotor base construction as the distance between the magnets and the stator coils often is only a few millimetres.
- EP 1 860 755 A2 a permanent magnet rotor arrangement is provided.
- the arrangement includes a rotor having a radially outer rim.
- a circumferential array of magnet carriers is a fixed to the outer rim of the rotor by means of at least one screw or bolt.
- the bolts or screws penetrate the rotor base construction and are attached to a threaded portion of the mounting plate.
- a first objective of the present invention is to provide an advantageous method for assembling part of a generator.
- a second objective of the present invention is to provide an advantageous generator.
- a third objective of the present invention is to provide an advantageous wind turbine.
- the first objective is solved by the method for assembling part of a generator as claimed in claim 1.
- the second objective is solved by a generator as claimed in claim 6.
- the third objective is solved by a wind turbine as claimed in claim 14.
- the depending claims define further developments of the invention.
- a magnet assembly comprising at least one magnet and a mounting plating is fastened to a base element by welding the mounting plate to the base element.
- welding instead of bolts, nuts or screws has the advantage, that it is simple, effective and cost-effective.
- bolts, nuts or screws have to be mounted and tightened manually, while the spot welding can be performed by means of an industrial robot .
- the magnet assembly may be positioned and maintained in the position before welding it to the base element.
- the base element may be, for example, part of a rotor of the generator.
- a non-magnetized magnet may be used.
- the non- magnetized magnet can be magnetized after welding the mounting plate to the base element. Using a non-magnetized magnet is advantageous, because during the fastening process no attractive magnetic forces are acting between the magnet and the means for fastening.
- the mounting plate is welded to the base element by means of an industrial robot .
- Such industrial robot can perform multiple of the steps required for the mounting proc- ess.
- the industrial robot may pick up a prein- stalled magnet assembly from storage and may position it in a correct position on the generator base element.
- the base element may be, for example, a generator rotor base construe- tion.
- the industrial robot may maintain the position during fastening without the need of other holding means.
- the industrial robot can fasten the magnet assembly to the base element by welding the mounting plate to the base construction at a plurality of welding points, especially spot welding points, along the mounting plate construction.
- the mounting plate may be fastened to the base element by spot-welding the mounting plate to the base element. Braze-welding and/or hard-soldering is also possible.
- the permanent magnet assembly As to the number of welding points it must be ensured that enough points are made so that the permanent magnet assembly will maintain its position both during mounting and during operation.
- the permanent magnet assembly has to be able to withstand any magnetic attractive forces that may occur once the magnet is magnetized. Furthermore, by the present invention it is ensured that at least the process of fastening the permanent magnet assembly to the base construction is shortened in time as the time consuming process of tightening nuts to specific moment-level is replaced by a speedy industrial robot spot welding proc- ess.
- the inventive generator comprises a magnet assembly and a base element .
- the magnet assembly comprises at least one magnet and a mounting plate.
- the mounting plate is fastened to the base element by means of a number of welds, preferably spot-welds.
- the generator may comprise a rotor.
- the base element may be part of the rotor or the base element may be connected to the rotor.
- the magnet assembly can comprise at least one permanent magnet.
- the magnet can be segmented. This allows for an easy assembling.
- a number of permanent magnets may be connected to the same mounting plate.
- the magnet can be covered by a protective cover.
- the protective cover can comprise stainless steel or a plastic material.
- the protective cover may con- sist of stainless steel or a plastic material.
- the protective cover provides a protection of the magnet or of the magnet material against corrosion and other environmental influences .
- the generator may be a direct drive generator.
- the mounting plate may be fastened to the base element by means of a number of spot -welds and/or braze-welds and/or hard-soldering .
- the inventive wind turbine comprises an inventive generator, as previously described.
- the inventive wind turbine has the same advantages as the inventive generator has.
- welding comprises spot-welding, braze-welding and soldering, especially hard- soldering .
- Figure 1 schematically shows a wind turbine.
- Figure 2 schematically shows part of an inventive generator in a perspective view.
- FIG. 1 schematically shows a wind turbine 1.
- the wind turbine 1 comprises a tower 2, a nacelle 3 and a hub 4.
- the nacelle 3 is located on top of the tower 2.
- the hub 4 comprises a number of wind turbine blades 5.
- the hub 4 is mounted to the nacelle 3.
- the hub 4 is pivot -mounted such that it is able to rotate about a rotation axis 9.
- a generator 6 is located inside the nacelle 3.
- the wind turbine 1 is a di- rect drive wind turbine .
- FIG. 2 schematically shows part of an inventive generator 6 in a perspective view.
- the generator 6 comprises a magnet assembly 11 and a base element 12.
- the magnet assembly 11 com- prises at least one magnet 13 and a mounting plate 14.
- the magnet 13 is connected to the mounting plate 14.
- a permanent magnet 13 is glued onto the mounting plate 14.
- the mounting plate 14 is fastened to the base element 12 by spot -welding .
- the weld points are designated by reference nu- meral 15.
- the magnet 13 can be a permanent magnet.
- a non-magnetized magnet 13 is used, which is magnetized after spot-welding the mounting plate 14 onto the base element 12. This avoids disturbing attractive magnetic forces between the elements.
- the magnet 13 may be segmented. For example, a number of permanent magnets 13 may be glued onto one mounting plate 14.
- the base element 12 may be part of the rotor of the generator 6 or it may be connected to the rotor of the generator 6.
- the magnet 13 can be covered by a protective cover.
- the protective cover may comprise stainless steel or a plastic material.
- the protective cover provides a protection of the magnet material against corrosion and other environmental influences.
- spot-welds instead of spot-welds also braze-welds or hard- soldering is possible.
- the present invention provides a simple and cost- effective generator, especially for a wind turbine, and a simple and cost ef fective method for mounting of permanent magnet assemblies to a generator rotor base .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/578,001 US20130038070A1 (en) | 2010-02-16 | 2010-02-16 | Method for assembling part of a generator, generator and wind turbine |
CA2789825A CA2789825A1 (en) | 2010-02-16 | 2010-02-16 | Method for assembling part of a generator, generator and wind turbine |
JP2012553184A JP2013520149A (en) | 2010-02-16 | 2010-02-16 | Method for assembling a part of a generator, generator and windmill |
BR112012020378A BR112012020378A2 (en) | 2010-02-16 | 2010-02-16 | Method of mounting part of a generator, generator and wind turbine |
EP10716752A EP2526608A1 (en) | 2010-02-16 | 2010-02-16 | Method for assembling part of a generator, generator and wind turbine |
CN201080064049.3A CN102754310B (en) | 2010-02-16 | 2010-02-16 | For assembling the method for generator part, generator and wind turbine |
PCT/EP2010/000961 WO2011100987A1 (en) | 2010-02-16 | 2010-02-16 | Method for assembling part of a generator, generator and wind turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2010/000961 WO2011100987A1 (en) | 2010-02-16 | 2010-02-16 | Method for assembling part of a generator, generator and wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011100987A1 true WO2011100987A1 (en) | 2011-08-25 |
Family
ID=43828399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/000961 WO2011100987A1 (en) | 2010-02-16 | 2010-02-16 | Method for assembling part of a generator, generator and wind turbine |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130038070A1 (en) |
EP (1) | EP2526608A1 (en) |
JP (1) | JP2013520149A (en) |
CN (1) | CN102754310B (en) |
BR (1) | BR112012020378A2 (en) |
CA (1) | CA2789825A1 (en) |
WO (1) | WO2011100987A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013200476A1 (en) * | 2013-01-15 | 2014-02-27 | Siemens Aktiengesellschaft | Permanent magnet-excited two-pole synchronous machine e.g. wind force generator, for use as inner rotor machine in wind-power plant, has pockets comprising magnets that exhibits magnetization direction to form magnetic poles of rotor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013220562A1 (en) * | 2013-10-11 | 2015-04-16 | Robert Bosch Gmbh | Assembly for an electrical machine, method for manufacturing an assembly and electrical machine with an assembly |
EP3001540B1 (en) * | 2014-09-26 | 2018-03-21 | ALSTOM Renewable Technologies | Direct-drive wind turbines |
CN105914926A (en) * | 2016-06-30 | 2016-08-31 | 中科盛创(青岛)电气股份有限公司 | Riveted multi-block type magnetic steel assembly structure and mounting method therefor |
CN108301967A (en) * | 2018-02-28 | 2018-07-20 | 张跃 | A kind of wind power generation blade |
JP7468239B2 (en) * | 2020-08-06 | 2024-04-16 | 株式会社豊田自動織機 | Rotor for rotating electric machine and method for manufacturing the rotor for rotating electric machine |
GB2625466B (en) * | 2022-03-30 | 2024-10-23 | Yasa Ltd | A method of joining metal laminate to a rotor body |
GB2617146B (en) * | 2022-03-30 | 2024-04-24 | Yasa Ltd | Rotor for an axial flux machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60102851A (en) * | 1983-11-09 | 1985-06-07 | Toshiba Corp | Permanent magnet rotor and manufacture thereof |
JPS63174538A (en) * | 1987-01-13 | 1988-07-19 | Nippon Denso Co Ltd | Magnet motor |
JPH08223835A (en) * | 1995-02-09 | 1996-08-30 | Honda Motor Co Ltd | Permanent magnet rotor |
JP2001309586A (en) * | 2000-04-21 | 2001-11-02 | Jidosha Denki Kogyo Co Ltd | Small-sized motor and method of manufacturing the same |
JP2004040973A (en) * | 2002-07-05 | 2004-02-05 | Honda Motor Co Ltd | Rotor device |
WO2005072901A1 (en) * | 2004-01-30 | 2005-08-11 | Kyushu Musashi Seimitsu Kabushiki Kaisha | Method for welding outer rotor for generators to another member |
EP1589635A2 (en) * | 2003-01-28 | 2005-10-26 | HONDA MOTOR CO., Ltd. | Rotor for permanent magnet motor |
EP1860755A2 (en) | 2006-05-27 | 2007-11-28 | Converteam Ltd | Magnet retaining arrangement |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH663121A5 (en) * | 1983-10-03 | 1987-11-13 | Mavilor Syst Sa | AC SYNCHRONOUS SERVOMOTOR. |
US4612469A (en) * | 1983-11-10 | 1986-09-16 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Speed governor |
SE437627B (en) * | 1984-04-16 | 1985-03-11 | Torsteknik Ab | MANIPULATOR FOR COOPERATION WITH AN INDUSTRIAL ROBOT |
US4792712A (en) * | 1984-12-03 | 1988-12-20 | General Electric Company | Rotor having magnets with enclosing shells |
US4593850A (en) * | 1985-05-14 | 1986-06-10 | Honda Giken Kogyo Kabushiki Kaisha | Automatic welding apparatus |
US4641812A (en) * | 1985-05-23 | 1987-02-10 | Pneumo Corporation | Direct drive valve and force motor assembly including interchangeable stator assembly and alignment system or method |
US5212432A (en) * | 1989-10-20 | 1993-05-18 | Tokico, Ltd. | Industrial robot |
US5105114A (en) * | 1991-05-20 | 1992-04-14 | General Motors Corporation | Frame and magnet assembly for a dynamoelectric machine |
US5281881A (en) * | 1993-02-25 | 1994-01-25 | General Motors Corporation | Frame and magnet assembly for a dynamoelectric machine |
US5486730A (en) * | 1993-03-18 | 1996-01-23 | Solar Turbines Incorporated | Rotor assembly |
GB9311634D0 (en) * | 1993-06-03 | 1993-07-21 | Spooner Edward | Electromagnetic machine |
US5353490A (en) * | 1993-09-08 | 1994-10-11 | Allen-Bradley Company, Inc. | Modular product assembly platform |
JP3631808B2 (en) * | 1995-06-20 | 2005-03-23 | 本田技研工業株式会社 | Rotor for rotating machine, method for manufacturing the rotor, and magnet unit |
JPH08223885A (en) * | 1995-02-15 | 1996-08-30 | Olympus Optical Co Ltd | Motor for driving disk |
JP3855318B2 (en) * | 1996-10-07 | 2006-12-06 | 松下電器産業株式会社 | Permanent magnet rotor and manufacturing method thereof |
JP3722178B2 (en) * | 1996-12-19 | 2005-11-30 | 株式会社デンソー | Rotating electrical machine rotor joining method, welding apparatus used in the joining method, and rotating electrical machine rotor joined by the joining method |
JP3475818B2 (en) * | 1998-02-19 | 2003-12-10 | 株式会社デンソー | Armature of rotating electric machine and method of manufacturing armature |
JP2000060081A (en) * | 1998-08-04 | 2000-02-25 | Seiko Instruments Inc | Structure of rotor for motor, motor, and hard disk drive therewith |
CN1316815A (en) * | 2000-01-27 | 2001-10-10 | 东京零件工业股份有限公司 | Non-circular flat electric machine and its manufacturing machine |
FI113308B (en) * | 2001-06-14 | 2004-03-31 | Abb Oy | Permanent magnet element and electric machine |
US6936937B2 (en) * | 2002-06-14 | 2005-08-30 | Sunyen Co., Ltd. | Linear electric generator having an improved magnet and coil structure, and method of manufacture |
JP2005287107A (en) * | 2004-03-26 | 2005-10-13 | Aisin Seiki Co Ltd | Rotor of rotary electric machine |
US7154193B2 (en) * | 2004-09-27 | 2006-12-26 | General Electric Company | Electrical machine with double-sided stator |
JP2006034024A (en) * | 2004-07-20 | 2006-02-02 | Fuji Electric Systems Co Ltd | Permanent magnet rotor of dynamo-electric machine |
DE112005002827B4 (en) * | 2004-11-19 | 2014-02-20 | Richard Bergner Verbindungstechnik Gmbh & Co. Kg | Robotic hand and method for automatically setting an element |
US7692357B2 (en) * | 2004-12-16 | 2010-04-06 | General Electric Company | Electrical machines and assemblies including a yokeless stator with modular lamination stacks |
US7675210B2 (en) * | 2005-03-11 | 2010-03-09 | Panasonic Corporation | Hydrodynamic bearing and method for manufacturing the same, and spindle motor and method for manufacturing the same |
JP2006304409A (en) * | 2005-04-15 | 2006-11-02 | Nsk Ltd | Permanent magnet rotary machine |
US20070011873A1 (en) * | 2005-07-14 | 2007-01-18 | Teale David W | Methods for producing even wall down-hole power sections |
US7573168B2 (en) * | 2005-10-24 | 2009-08-11 | General Electric Company | Method and apparatus for assembling a permanent magnet pole assembly |
ES2544497T3 (en) * | 2007-03-23 | 2015-09-01 | Vestas Wind Systems A/S | Method for establishing a wind turbine generator with one or more permanent magnet (PM) rotors, wind turbine gondola and wind turbine |
JP4671997B2 (en) * | 2007-10-23 | 2011-04-20 | 三菱電機株式会社 | Rotor for rotating electrical machine and method for manufacturing the same |
ES2604077T3 (en) * | 2007-11-26 | 2017-03-02 | Siemens Aktiengesellschaft | Arrangement for a direct drive generator, direct drive generator, wind turbine and generator assembly procedure |
US7839049B2 (en) * | 2007-11-29 | 2010-11-23 | General Electric Company | Stator and stator tooth modules for electrical machines |
FI121291B (en) * | 2007-12-11 | 2010-09-15 | Abb Oy | Permanent magnetic module and electric machine rotor comprising said module |
US7781932B2 (en) * | 2007-12-31 | 2010-08-24 | General Electric Company | Permanent magnet assembly and method of manufacturing same |
US7791232B2 (en) * | 2008-05-02 | 2010-09-07 | Black & Decker Inc. | Power tool having an electronically commutated motor and double insulation |
JP5241366B2 (en) * | 2008-07-24 | 2013-07-17 | 三菱電機株式会社 | Rotating electric machine |
-
2010
- 2010-02-16 CN CN201080064049.3A patent/CN102754310B/en active Active
- 2010-02-16 JP JP2012553184A patent/JP2013520149A/en active Pending
- 2010-02-16 EP EP10716752A patent/EP2526608A1/en not_active Withdrawn
- 2010-02-16 CA CA2789825A patent/CA2789825A1/en not_active Abandoned
- 2010-02-16 US US13/578,001 patent/US20130038070A1/en not_active Abandoned
- 2010-02-16 BR BR112012020378A patent/BR112012020378A2/en not_active IP Right Cessation
- 2010-02-16 WO PCT/EP2010/000961 patent/WO2011100987A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60102851A (en) * | 1983-11-09 | 1985-06-07 | Toshiba Corp | Permanent magnet rotor and manufacture thereof |
JPS63174538A (en) * | 1987-01-13 | 1988-07-19 | Nippon Denso Co Ltd | Magnet motor |
JPH08223835A (en) * | 1995-02-09 | 1996-08-30 | Honda Motor Co Ltd | Permanent magnet rotor |
JP2001309586A (en) * | 2000-04-21 | 2001-11-02 | Jidosha Denki Kogyo Co Ltd | Small-sized motor and method of manufacturing the same |
JP2004040973A (en) * | 2002-07-05 | 2004-02-05 | Honda Motor Co Ltd | Rotor device |
EP1589635A2 (en) * | 2003-01-28 | 2005-10-26 | HONDA MOTOR CO., Ltd. | Rotor for permanent magnet motor |
WO2005072901A1 (en) * | 2004-01-30 | 2005-08-11 | Kyushu Musashi Seimitsu Kabushiki Kaisha | Method for welding outer rotor for generators to another member |
EP1860755A2 (en) | 2006-05-27 | 2007-11-28 | Converteam Ltd | Magnet retaining arrangement |
Non-Patent Citations (1)
Title |
---|
See also references of EP2526608A1 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013200476A1 (en) * | 2013-01-15 | 2014-02-27 | Siemens Aktiengesellschaft | Permanent magnet-excited two-pole synchronous machine e.g. wind force generator, for use as inner rotor machine in wind-power plant, has pockets comprising magnets that exhibits magnetization direction to form magnetic poles of rotor |
Also Published As
Publication number | Publication date |
---|---|
JP2013520149A (en) | 2013-05-30 |
BR112012020378A2 (en) | 2016-05-10 |
US20130038070A1 (en) | 2013-02-14 |
EP2526608A1 (en) | 2012-11-28 |
CN102754310B (en) | 2015-09-16 |
CA2789825A1 (en) | 2011-08-25 |
CN102754310A (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011100987A1 (en) | Method for assembling part of a generator, generator and wind turbine | |
US8664819B2 (en) | Method and apparatus for permanent magnet attachment in an electromechanical machine | |
EP2523316B1 (en) | Generator rotor, assembly method and related insertion tool | |
US9379583B2 (en) | Magnet assembly | |
US7355309B2 (en) | Permanent magnet rotor for a direct drive generator or a low speed motor | |
EP2731232B1 (en) | Generator for a wind turbine | |
EP2645536B1 (en) | Permanent magnet rotor | |
EP2525474B1 (en) | Generator rotor and method of assembling | |
EP2555383B1 (en) | Permanent magnet assembly with sliding fixing arrangement and method for fixing a permanent magnet onto a base plate | |
EP2555381A1 (en) | Permanent magnet assembly with flanged cover and method for fixing a permanent magnet onto a base plate | |
EP2649712B1 (en) | Electromagnetic generator and method of using same | |
US20140125063A1 (en) | Electrical Generator | |
US11923117B2 (en) | Magnetizing permanent magnets | |
CN109361274A (en) | A kind of modular direct-drive permanent-magnetism generator unit stator and direct-drive permanent-magnetism generator | |
EP3618234A1 (en) | Magnet arrangement for an electric generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080064049.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10716752 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6063/DELNP/2012 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2010716752 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010716752 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2789825 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012553184 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13578001 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012020378 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012020378 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120814 |