WO2011099684A1 - Single domain antibody against muc1 - Google Patents

Single domain antibody against muc1 Download PDF

Info

Publication number
WO2011099684A1
WO2011099684A1 PCT/KR2010/006295 KR2010006295W WO2011099684A1 WO 2011099684 A1 WO2011099684 A1 WO 2011099684A1 KR 2010006295 W KR2010006295 W KR 2010006295W WO 2011099684 A1 WO2011099684 A1 WO 2011099684A1
Authority
WO
WIPO (PCT)
Prior art keywords
single domain
seq
domain antibody
muc1
amino acid
Prior art date
Application number
PCT/KR2010/006295
Other languages
French (fr)
Korean (ko)
Inventor
성승용
조남혁
최신규
장숙희
원해영
나혜영
문혜정
조성은
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2011099684A1 publication Critical patent/WO2011099684A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3092Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention provides a single domain antibody (single domain ant i body or nanoscale antibody or NanoMAb) comprising a MUCUmucin antigen 1) specific heavy chain variable region CDR (complementarity determining region) and its nucleotide sequence, a recombinant vector comprising the nucleotide sequence and
  • the present invention relates to a transformed host cell, a pharmaceutical composition for anticancer immunotherapy comprising the single domain antibody, and a composition for diagnosing cancer.
  • MUC1 glycoprotein Human mucin (Mucin 1, MUC1) glycoprotein is overexpressed in a variety of carcinomas, including breast cancer (86%), pancreatic cancer (903 ⁇ 4, colon cancer (74.5%), or liver cancer (70.8%), and plays an important role in the development of cancer.
  • the MUC1 antigen gene is located in the lq21-24 region of the chromosome and contains an intracellular region (69 amino acids), an extracellular region (repetitive sequence of 20 amino acids), and a transmembrane domain. Since MUC1 is known to be overexpressed in a variety of carcinomas, studies have been actively conducted to apply it as a target for the diagnosis and treatment of tumors expressing it, especially MUC1 specific antibodies for tumor diagnosis and treatment. In order to utilize as a tool for the mass production research is actively being conducted.
  • Targeted anticancer drugs are a method of developing antibodies or ligands of a protein by targeting a specific protein expressed in cancer cells. These drugs cannot bind or penetrate normal tissues and act specifically on cancer cells. It is believed to be a breakthrough drug that can eliminate.
  • immunotherapy based on therapeutic antibodies has been mainly studied.
  • This is a method of injecting a cancer cell-specific antibody, and when the antibody binds to a tumor-specific antigen, kills the cancer cell through a natural immune response caused by the antibody or necrosis of a carcinoma by binding a toxin or a drug to the antibody.
  • These therapeutic antibodies can be applied to various tumor diseases as long as they have specific targets for the disease, and if the biological role of the targets is known, the side effects can be easily predicted when the antigen is injected, and the half-life of the body is long. It has the advantage of being sustained and is being actively developed as a biotech medicine.
  • Single cell antibody has been used as an in vitro diagnostic agent (mainly pregnancy and ovulation diagnostic reagent) in the 1980s, and has been applied to a variety of diagnostic treatment field through active research and development since then.
  • Therapeutic antibodies that are actually forming the market include Zenapax, the first humanized antibody to be sold in 1997 by Roche, Switzerland, which has gained popularity as an immunosuppressant as an antiinterleukin-2 receptor antibody.
  • This product It is a product that combines a radioactive material with an antibody, and has been developed as an anticancer agent that induces death of cancer cells by transferring the radioactive material into cancer cells when the antibody binds to antigens of cancer cells.
  • Takeda Pharmaceutical Co., Ltd. acquired the domestic development and marketing rights of TRAIL-R1 single cell antibody for cancer treatment antibody discovered by US Human Genome Science (HGS).
  • This drug which uses protein antibody that is involved in immunity, is a humanized unicellular antibody to TRAIL-R1, a receptor that is involved in apoptosis, and has been shown to be effective in treating breast cancer, colon cancer or uterine cancer in animal experiments conducted by HGS. .
  • VHH heavy chain antibody
  • a single domain antibody When only the variable region of a heavy chain antibody (VHH) of a single domain antibody is used for anticancer target therapy, firstly, it is easy to select a desired antigen-specific antibody through genetic manipulation using genetic recombination. It can be mass-produced at low cost by overexpressing in coH, and is produced by genetic recombination with only single domain, so it has high solubility in aqueous solution, high homology with VH3 amino acid sequence of human antibody, and low immunogenicity. Since the size is small, the penetration efficiency into cancer tissue is higher than that of conventional antibodies.
  • VHH heavy chain antibody
  • the present inventors have attempted to develop a single domain antibody that can be used for the diagnosis and treatment of cancer tumors expressing MUC1 by specifically binding to mucin antigenl (MUCl) tumor antigen.
  • MUCl mucin antigenl
  • the variable region of a heavy chain antibody of the developed single domain antibody has specific binding ability and high affinity for MUCl tumor antigen, and diagnoses cancer tissues expressing MUC1 when combined with various functional molecules. And showed excellent efficacy as anti-tumor target therapy.
  • Another object of the present invention is to provide a nucleic acid molecule encoding the single domain antibody.
  • Another object of the present invention to provide a recombinant vector comprising the nucleic acid molecule.
  • Another object of the present invention to provide a host cell transformed with the recombinant vector.
  • Still another object of the present invention is to provide a pharmaceutical composition for anticancer immunotherapy comprising the single domain antibody.
  • Another object of the present invention to provide a cancer diagnostic composition comprising the single domain antibody.
  • a single domain antibody against MJC1 comprising a chain variable region having the following heavy chain CDR amino acid sequence: SEQ ID NO: 24 A group consisting of amino acid sequences consisting of SEQ ID NO: 30 sequence A CDR1 selected from the group consisting of an amino acid sequence consisting of the amino acid sequences consisting of SEQ ID NO: 31 to 37, and SEQ ID NO: 31 to the amino acid sequence consisting of SEQ ID NO: 38 to 44 CDR3 selected from the group consisting of:
  • the present inventors have tried to develop a single domain antibody that can be used for the diagnosis and treatment of MUC1-expressing carcinoma by specifically binding to MUC1 tumor antigen, resulting in the development of a variable region of a heavy antigen.
  • the chain antibody alone has a specific binding capacity and high affinity for MJC1 tumor antigen, and when combined with various functional molecules, MUC1 expresses excellent efficacy as a diagnostic and anti-tumor target therapy for cancer tissues expressing MUC1.
  • Single ' domain antibodies of the invention have specific binding capacity to MUC1.
  • variable region domain VH comprising an amino acid sequence having sufficient variable region to confer specificity to an antigen and a full length heavy chain comprising three constant region domains CHI, CH2 and CH3 It means all fragments.
  • single domain antibody as used to refer to MUC1 is a specific antibody against MUC1, the CDR is part of a single domain polypeptide, heavy chain antibodies, antibodies that are naturally free of light chains, conventional Single domain antibodies derived from 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies.
  • NanoMAb TM a single domain antibody is collectively referred to as NanoMAb TM.
  • Single domain antibodies can be derived from species such as mouse, human, camel, llama, goat, rabbit or cow.
  • Single domain antibodies used in the present invention are naturally occurring single domain antibodies known as light chain free heavy chain antibodies. Such single domain antibodies are disclosed in WO 94/04678, and for the sake of clarity these variable regions derived from heavy chain antibodies that are naturally free of light chains can be distinguished from VHH or nanobody to distinguish them from the VH of conventional four-chain immunoglobulins. nanobody).
  • the single domain antibody of the present invention is Camelidae variable region of a heavy chain antibody (VHH) derived from camel, dromedary, llama, alpaca and wild llama. Other species than Camellia may naturally produce light chain-free heavy chain antibodies. Such VHH is within the scope of the present invention.
  • the single domain antibody used in the present invention is a heavy chain variable region derived from an immunoglobulin that is naturally free of light chains, such as from Camellia, disclosed in WO 94/04678, and the single domain antibody molecule is about 10 times larger than the IgG molecule. Smaller, they are very stable as single polypeptides, even at extreme pH and temperature conditions. In addition, they are resistant to the action of proteases, unlike conventional antibodies, and can be mass-produced in high yield when expressed in vitro.
  • Single domain antibody of the present invention is CDR1 selected from the group consisting of amino acid sequences consisting of amino acid sequences consisting of SEQ ID NO: 24 to 30 of SEQ ID NO: 30, CDR2 selected from the group consisting of amino acid sequences consisting of SEQ ID NO: 31 to 37 And a CDR3 selected from the group consisting of the amino acid sequences consisting of SEQ ID NO: 38 to SEQ ID NO: 44.
  • CDR complementarity determining region
  • the single domain antibody of the present invention may include variants of amino acid sequences described in the attached sequence listing within the scope of specific recognition of MJC1.
  • changes can be made to the amino acid sequence of the antibody to improve the binding affinity and / or other biological properties of the antibody.
  • modifications include, for example, deletions, insertions and / or substitutions of amino acid sequence residues of the antibody.
  • amino acid variations are made based on the relative similarity of amino acid chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • amino acid chain substituents such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • arginine, lysine and histidine are all positively charged residues; Alanine, glycine Serine have a similar size; It can be seen that phenylalanine, tryptophan and tyrosine have a similar shape.
  • arginine, lysine and histidine; Alanine, glycine and serine; Phenylalanine, tryptophan and tyrosine are biologically equivalent functions.
  • the hydropathic index of amino acids can be considered.
  • Each amino acid is assigned a hydrophobic index according to its hydrophobicity and charge: isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); tyrosine (-1.3); Plin (-1.6); Histidine (-3.2); Glutamate (-3.5); glutamine (-3.5); Aspartate (-3.5); Asparagine (-3.5); Lysine (-3.9) and arginine (-4.5).
  • Hydrophobic amino acid indexes are very important in conferring the interactive biological function of proteins. It is known that substitution with amino acids having similar hydrophobicity indexes can retain similar biological activity. When introducing a mutation with reference to the hydrophobicity index, substitutions are made between amino acids that exhibit a difference in hydrophobicity index within the range of 2, more preferably within 1, and even more preferably within 0.5.
  • a single domain antibody or nucleic acid molecule encoding the same of the present invention is to be interpreted to include sequences that exhibit substantial identity with the sequences listed in the Sequence Listing.
  • the above substantial identity is at least 61% when the sequences of the present invention and any other sequences are aligned to the utmost, and the sequences are analyzed using algorithms commonly used in the art.
  • NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990), J. Mol. Biol. 215: 403-10) is accessible from the National Center for Biological Information (NBCI), and is available on the Internet in blastp, blasm, It can be used in conjunction with sequencing programs such as blastx, tblastn and tblastx.
  • BLSAT is accessible at http://www.ncbi.nlm.nih.gov/BLAST/. Sequence homology comparison method using this program is http: // ⁇ . ncbi.nlm.nih.gov/BLAST/blast_heli). You can check it in html.
  • the antibody heavy chain CDR amino acid sequence is an amino acid sequence comprising CDR1 of SEQ ID NO: 24, CDR2 of SEQ ID NO: 31 and CDR3 of SEQ ID NO: 38, CDR1 of SEQ ID NO: 25 , CDR2 of SEQ ID NO: 32 And an amino acid sequence comprising CDR3 of SEQ ID NO: 39, CDR1 of SEQ ID NO: 26, CDR2 of SEQ ID NO: 33, and CDR1 of SEQ ID NO: 40, CDR1 of SEQ ID NO: 27 , Amino acid sequence comprising CDR2 of SEQ ID NO: 34 and CDR3 of SEQ ID NO: 41, CDR1 of SEQ ID NO: 28, CDR2 of SEQ ID NO: 35, and CDR3 of SEQ ID NO: 42 , An amino acid sequence comprising CDR1 of SEQ ID NO: 29, CDR2 of SEQ ID NO: 36, and CDR3 of SEQ ID NO: 43, CDR
  • the single domain antibody of the present invention consists of SEQ ID NO: 1 to 7 consisting of four sites (FR1-FR4) and three complementarity determining sites (CDR1-CDR3) Selected from the group consisting of amino acid sequences.
  • Antibodies of the invention include not only antibodies of the amino acid sequences described above, but also monoclonal antibodies, humanized antibodies and chimeric antibodies comprising some or all of the amino acid sequences.
  • the monodomain antibody against MUC1 of the invention is at least a divalency antibody comprising at least two or more monodomain antibodies.
  • single domain antibodies may have the same amino acid sequence, and black may not all have the same sequence. It is within the scope of the present invention that a single domain antibody against MUC1 does not all share the same sequence but includes the same target, a single domain antibody against MUC1 against one or more of its antigens.
  • the single domain antibody of the present invention is further bound to a functional molecule.
  • MUC1 is a molecule that is generally expressed on the surface of epithelial cells
  • a functional molecule can be additionally bound to a single domain antibody against MUC1 and used for the prevention, treatment or diagnosis of carcinoma expressing MUC1.
  • the functional molecule additionally bound to the single domain antibody of the present invention is a chemical, peptide, polypeptide, nucleic acid, carbohydrate, lipid or inorganic particle, more preferably chemical, peptide, polypeptide Or inorganic particles.
  • the chemical is preferably a pharmacologically active substance, more preferably an anticancer agent, for example, abyssin, aclarubicin, acodazole, acromycin, adozelesin, alanosine, aldehydes.
  • an anticancer agent for example, abyssin, aclarubicin, acodazole, acromycin, adozelesin, alanosine, aldehydes.
  • Uosol TM Flutamide, Gallium Nitrate, Gemcitabine, Goserelin Acetate, Hepsulpam, Nutrimethylene Bisacetamide, Homohartontonin, Hydrazine Sulfate, 4-Hydroxyandrostenedione, Hydrourea, Idarubicin HC1, Iphosphamide, 4-Ipomeanol, Iproplatin, Isotretinoin, Leucovorin Calcium, Leproprolide Acetate, Levamisol, Liposome Daunorubicin , liposome capture doxorubicin , romastin , Methanol extracts of Rhodamine, Maitansine, Mechloretamine Hydrochloride, Melphalan, Menogaryl, Merbaron, 6-mercaptopurine, Mesna, Bacillus calete-guerine Methotrexate, N-methylformamide, Mifepristone, Mitoguazone, mitomycin-C, mitotan
  • anticancer agent most preferably methotrexate, doxorubicin, daunorubicin, cytosine arabinoside, etoposide, 5'-polourouracil, melfaran, chlorambucil, cyclophosphamide, cisplatin, binddesin, mai Tomycin, bleomycin, tamoxifen and taxol.
  • Peptides or polypeptides as functional molecules are not particularly limited and include hormones, hormone analogs, enzymes, inhibitors, signaling proteins or parts thereof, antibodies or parts thereof, short chain antibodies, binding proteins or binding domains, antigens, adhesion proteins , Structural proteins, regulatory proteins, toxin proteins, cytokines, transcriptional regulators, blood coagulation factors, and vaccines, but are not limited thereto.
  • the peptide or polypeptide additionally bound to the single domain antibody of the present invention is insulin, insulin-like growth factor 1 (IGF-1), growth hormone, erythropoietin, G-CSFs (granulocyte— colony) stimulating factors), GM-CSFs (granulocyte / macrophagea: olony stimulating factors), interferon alpha interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3 interleukin-4, interleukin-6, interleukin-2, EGFs (epidermal growth factors) calcitonin ), ACTH (adrenocorticotropic hormone), TNF (tumor necrosis factor), Atobisban, buserel in buseroelx, cetrorelix, deslorelin desmopressin ), Dynorphin A (1-13) elcatonin, eleidosin eptipifide, GHRH-II (growth hormone releasing hormone
  • the peptide or polypeptide as a functional ingredient of the present invention is a cell killing substance as lysine, lysine A chain, Pseudomonas exotoxin, diphtheria toxin, pokeweed antiviral protein, abrin ), Abrin A hex, Cobra Venom factor, gelonin, sapor in, modeccin, volkensin, viscumin, Clostridium perpringens force Lipase C and bovine pancreatic ribonucleases, more preferably diphtheria toxin.
  • Toxin proteins, as cell killing substances are fused with the single domain antibodies of the invention to produce recombinant immunotoxins.
  • the diphtheria toxin additionally bound to the present invention is bound directly to a single domain antibody or indirectly through a linker.
  • directly linked means a recombinant immunotoxin to which only diphtheria toxin and a single domain antibody are combined and not fused through a linker, and "indirectly coupled” means that the linker is interposed therebetween.
  • recombinant immunotoxin a diphtheria toxin and a single domain antibody are combined and fused.
  • the linker used in the present invention may be any compound or peptide linker used in the art as a linker depending on whether the functional molecule is a compound or a peptide that binds to a single domain antibody, and a linker suitable for the type of functional group in the single domain antibody may be used. You can choose.
  • the compound as a linker is N-succinimidyl iodoacetate, N_Hydroxysuccinimidyl Bromoacetate, or m-maleic.
  • N-Maleimidobenzoyl-N-hydroxyoxyccideimide ester M-Maleimidobenzoyl-N-hydroxyoxyccideimide ester, m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester, N-Malimidobutyryloxysuccinamide astere (N-Ma 1 eimi dobut yry 1 oxysucc i nam i de ester), (N—
  • Dissuccinimidyl Suberate Dissuccinimidyl Tartarate, Disulfosuccinimidyl Tartarate, Dithio- Bis- (succinimidyl propionate) (Dithio-bis- (succinimidyl propionate)), 3,3'-dithio-bis- (sulfosuccinimidyl-propionate) (3,3'-Di thio -bi s- (sulfosuccinimidyl -prop i onat e), ethylene glycol bis (Sthenimidyl succinate) and ethylene glycol bis (sulfosuccinimidyl succinate) (Ethylene Glycol bis (Sulfosuccinimidylsuccinate)), but is not limited thereto.
  • sequence of a suitable peptide linker used when the functional molecule bound to the single domain antibody is a peptide or polypeptide can be selected in consideration of the following factors: ( a ) which can be applied to a flexible extended structure ability; (b) the ability not to create secondary structures that interact with epitopes; And (c) the absence of a hydrophobic moiety or moiety that can react with the epitope.
  • Preferred peptide linkers include Gly, Asn and Ser residues.
  • linker sequence may consist of 1-50 amino acid residues.
  • Exemplary linker sequences include, “Gly Gly Gly Ser Gly Gly Gly Ser”, “Gly Gly Gly Gly Gly Ser Gly”.
  • the single domain antibody is selected from the group consisting of amino acid sequences consisting of SEQ ID NO: 8 to 14 Amino acid sequence.
  • the single domain antibody is selected from the group consisting of SEQ ID NOs: 17 to 23 Amino acid sequence.
  • the functional molecule additionally bound to the single domain antibody of the present invention is a contrast agent as a compound or inorganic particle (e.g. T1 contrast agent, T2 contrast agent such as superparamagnetic substance, radioisotope, etc.) ⁇ fluorescent markers (eg, fluorescent quantum dots) or staining material.
  • a contrast agent as a compound or inorganic particle
  • T1 contrast agent e.g. T1 contrast agent, T2 contrast agent such as superparamagnetic substance, radioisotope, etc.
  • fluorescent markers eg, fluorescent quantum dots
  • Nucleic acid molecules encoding single domain antibodies against MUC1 are provided.
  • nucleic acid molecule is meant to encompass DN gDNA and cDNA) and RNA molecules inclusively, and the nucleotides that are the basic structural units in nucleic acid molecules are natural nucleotides, as well as analogs in which sugar or base sites are modified. also included (analogue) (Scheit (1980), Nucleotide Analogs, John Wiley, New York; Uhlman and Peyman (1990), Chemical Reviews, 90: 543-584).
  • Nucleic acid molecules encoding a single domain antibody consisting of an amino acid sequence consisting of SEQ ID NO: 1 to 7 of the present invention is SEQ ID NO: 45 to 51, each consisting of SEQ ID NO: 8 to 14
  • Nucleic acid molecules encoding a recombinant immunotoxin in which a diphtheria toxin is directly bound to a single domain antibody composed of an amino acid sequence are SEQ ID NOs 52-58, respectively, and comprise an amino acid sequence consisting of SEQ ID NOs 17-23
  • Nucleic acid molecules encoding a recombinant immunotoxin wherein the constructed single domain antibody and diphtheria toxin are indirectly bound through a linker are SEQ ID NOs: 59-65, respectively.
  • Nucleic acid molecules of the invention are also construed to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above.
  • the above substantial identity is at least 80% when the nucleotide sequence of the present invention and any other sequence are arranged as maximally as possible and the sequence is analyzed using algorithms commonly used in the art.
  • nucleotide sequence exhibiting homology more preferably at least 90% homology, most preferably at least 953 ⁇ 4 homology.
  • a recombinant vector comprising a nucleic acid molecule encoding the aforementioned single domain antibody of the present invention or a nucleic acid molecule encoding the amino terminal region of MUC1.
  • vector refers to a gene of interest in a host cell. Plasmid vectors as a means for expression; Phageimide vector; Cosmid vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retrovirus vectors and adeno-associated virus vectors, and the like, and are preferably phagemid vectors or polamide vectors.
  • the nucleic acid molecule encoding a single domain antibody in the vector of the invention is operatively linked with the promoter.
  • operably linked means a functional binding between a nucleic acid expression control sequence (eg, an array of promoters, signal sequences, or transcriptional regulator binding sites) and other nucleic acid sequences, thereby The regulatory sequence will control the transcription and / or translation of said other nucleic acid sequence.
  • the vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al. (2001), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, This document is incorporated herein by reference.
  • Vectors of the invention can typically be constructed as vectors for cloning or vectors for expression.
  • the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts.
  • a strong promoter capable of promoting transcription for example, the tac promoter, the lac promoter, the lacUV5 promoter, the lpp promoter, the p promoter, the ⁇ promoter, the rac5 promoter, amp promoters, recA promoters, SP6 promoters, trp promoters and T7 promoters, etc.
  • E. coli e.g., HB101, BL21, DH5 ⁇ , etc.
  • the promoter and operator sites of the E is used as the host cell, the promoter and operator sites of the E.
  • coli tryptophan biosynthetic pathway (Yanofsky, C. (1984), J. Bacteriol., 158: 1018) -1024) and phage.
  • Left promoter of ⁇ (p promoter, Herskowitz, I. and Hagen, D. 1980), Ann. Rev. Genet. , 14: 399-445) can be used as regulatory sites.
  • plasmid such as in the art are vectors that can be used in the present invention: pSClOl, pGV1106, pACYC177, ColEl, pKT230, ⁇ ⁇ 290, PBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFRl, Made by manipulating pHVU, pGEX series, ET series and pUC19), phagemids (e.g. pComb3X), phages (e.g. gt4- ⁇ , ⁇ -Charon, ⁇ ⁇ and M13) or viruses (e.g. SV40 Can be.
  • a promoter derived from the genome of mammalian cells e.g., metallothionine promoter
  • a promoter derived from a mammalian virus e.g., adeno Late viral promoters, vaccinia virus 7.5k promoter, SV40 promoter, cytomegalovirus promoter and tk promoter of HSV
  • vaccinia virus 7.5k promoter e.g., SV40 promoter
  • cytomegalovirus promoter and tk promoter of HSV e.g., adeno Late viral promoters, vaccinia virus 7.5k promoter, SV40 promoter, cytomegalovirus promoter and tk promoter of HSV
  • the vector of the present invention may be fused with other sequences as needed to facilitate the purification of the amino terminus protein of MUC1 expressed therefrom, and the sequences to be fused include, for example, glutathione S-transferase (Pharmacia, USA), Maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x HisChexahistidine; Quiagen, USA) may be used, but is not limited thereto.
  • the MUC1 protein expressed by the vector of the invention is purified by affinity chromatography, preferably by Ni-affinity column.
  • the expression vector of the present invention as an optional marker, and may include antibiotic resistance genes commonly used in the art, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin And resistance genes for neomycin and tetracycline.
  • antibiotic resistance genes commonly used in the art, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin And resistance genes for neomycin and tetracycline.
  • the vector expressing the single domain antibody or MUC1 antigen of the present invention is preferably a system for expressing the single domain antibody and the MUC1 antigen in separate vectors, respectively.
  • the present invention provides a host cell comprising the vector of the present invention described above.
  • Host cells capable of stably and continuously cloning and expressing the vector of the present invention may use any host cell known in the art, for example, Escherichia coli, Bacillus subtilis and Bacillus thuringin Bacillus genus strains such as cis, Streptomyces, Pseudomonas (e.g. Pseudomonas putida), Proteus mirabilis or Staphylococcus (e.g. For example, but not limited to, prokaryotic host cells such as Staphylocus carnosus.
  • the host cell is preferably E. coli and more preferably E.
  • E. coli ER2537 E. coli ER2738, E. coli XL-1 Blue
  • E. coli BL21 DE3
  • E. coli JM109 E. coli DH Series
  • ⁇ ⁇ coli T0P10 E. coli TGI
  • E. coli HB1 Most preferably the host cell is E. coli ER2537, E. coli BL2KDE3) or E. coli TOP10.
  • E. coli can be used for mass production at low cost by overexpressing a single domain antibody.
  • the method of carrying the vector of the present invention into a host cell may be performed by CaC12 method (Cohen, SN et al. (1973), Proc. Natl. Acac. Sci. USA, 9: 2110-2114), one method (Cohen, SN et al. (1973), Proc. Natl. Acac. Sci. USA, 9: 2110-2114; and Hanahan, D. (1983), J. Mol. Biol., 166: 557-580) and electroporation methods ( Dower, WJ et al. (1988), Nucleic. Acids Res., 16: 6127-6145).
  • the present invention provides a method for preparing a single domain antibody against mucin antigenl (MUC1) comprising the following steps: (a) a nucleic acid molecule encoding the single domain antibody of the present invention as described above Culturing the host cell transformed with the recombinant vector comprising a; And (b) expressing a single domain antibody against MUC1 in said host cell.
  • MUC1 mucin antigenl
  • the culture of the host cell transformed in the single domain antibody production is It can be made according to the appropriate medium and culture conditions known in the art. This culture process can be used by those skilled in the art can be easily adjusted according to the strain selected. Such various culture methods can be found in various literatures (eg,
  • Cell culture is divided into a batch culture, a fed-batch, and a continuous culture method according to suspension culture, adhesion culture, and culture method according to the cell growth method.
  • the medium used for culturing must adequately meet the requirements of the particular strain.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation.
  • oxygen or oxygen-containing gas eg air
  • the temperature of the culture is usually 20 ° C to 45 ° C, preferably 25 ° C to 40 ° C.
  • Antibodies obtained by culturing the transformed host cell can be used without purification and can be further purified and purified using various conventional methods such as dialysis, salt precipitation and chromatography. Among them, a method using chromatography is most commonly used, and the type and order of columns can be selected from ion exchange chromatography, size exclusion chromatography, and affinity chromatography according to the characteristics of the antibody and the culture method.
  • the present invention provides a pharmaceutical composition for anticancer immunotherapy comprising (a) a pharmaceutically effective amount of a single domain antibody against MUC1 of the present invention, (b) a pharmaceutically acceptable carrier. to provide.
  • the present invention provides a cancer diagnostic composition comprising a single domain antibody against MUC1 of the present invention described above. Since the single domain antibody prepared by the above method specifically binds to the MUC1 tumor antigen, the single domain antibody may be used as a pharmaceutical composition for anticancer immunotherapy or a cancer diagnostic composition alone or in combination with a conventional pharmaceutically acceptable carrier.
  • the cancer to which the composition of the present invention is applied is a cancer expressing MUC1, and more preferably, bile duct cancer, bladder cancer, brain tumor, breast cancer, cervical cancer, chorionic cancer, colon cancer, endometrium Cancer, esophageal cancer, gastric cancer, multiple myeloma, AIDS-related leukemia and adult T-cell lymphoma / leukemia, intraepithelial cancer, liver cancer, lung cancer, lymphoma, neuroblastoma, oral cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, sarcoma, skin cancer, Testicular cancer, thyroid cancer or renal cell cancer, even more preferably breast cancer, prostate cancer, lung cancer, ovarian cancer, colon cancer, renal cell cancer or brain tumor, most preferably breast cancer.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are those commonly used in the preparation, lactose, textose, sucrose, sorbbi, manny, starch, acacia rubber, phosphate, alginate, Gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyridone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil Including, but not limited to.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • pharmaceutically effective amount means an amount sufficient to prevent or treat cancer expressing MUC1.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally, and in the case of parenteral administration, it may be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, intraarterial injection around cancer tissue, transdermal administration, or the like. have.
  • Appropriate dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and response to the patient. Can be.
  • the dosage of the pharmaceutical composition of the present invention is preferably 0.001-100 mg / kg (body weight) per day.
  • composition of the present invention can be easily carried out by those skilled in the art according to the present invention, 10006295
  • Formulated with pharmaceutically acceptable carriers and / or excipients may be prepared in unit dose form or may be prepared by incorporation into a multidose container.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium or in the form of an external preparation including axles, powders, granules, tablets, capsules or gargles, ointments, solids, cataplasmas, , May further include a dispersant or stabilizer.
  • the compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, i.e. in the form in which other therapeutic agents (functional molecules) are bound to the single domain antibody.
  • the functional molecule is a chemical, peptide, polypeptide, nucleic acid, carbohydrate, lipid or inorganic particle.
  • Functional molecules for the prevention or treatment of cancer by in vivo in the form of antibody-therapeutic conjugates including toxin proteins and enzymes as anti-cancer agents, peptides or polypeptides, preferably as chemicals, as described above It is omitted to avoid duplication of specification.
  • the present invention provides a diagnostic kit for detecting MUC1 tumor antigens comprising the single domain antibody of the present invention against MUC1 described above.
  • the single domain antibodies of the invention against the MUC1 tumor antigen can be applied to biological samples to diagnose the development of cancer in which MUC1 is expressed.
  • biological sample includes but is not limited to tissues, cells, whole blood, serum, plasma, tissue autopsy samples (brain, skin, lymph nodes, spinal cord, etc.), cell culture supernatant, ruptured eukaryotic cells, and the like. It is not limited. These biological samples may be reacted with a single domain antibody of the present invention, with or without manipulation, to confirm the occurrence of cancer expressing MUC1.
  • the formation of the antigen-antibody complexes described above can be performed by the colormetric method, the electrochemical method, the fluorescence method, the luminometry, the particle counting method, and the visual assessment. Alternatively, it can be detected by scintillation method (scinti 1 lat ion counting method).
  • Detection herein is for detecting antigen-antibody complexes and can be carried out using various labels.
  • Specific examples of the label include enzymes, fluorescent, ligands, luminescent, microparticles or radioisotopes.
  • Enzymes used as detection markers include acetylcholinesterase, alkaline phosphatase, ⁇ -D-galactosidase, horseradish peroxidase and ⁇ -latamase, and the like, and fluorescein , Eu 3 +, Eu 3 + chelate or creep includes a Tate or the like, and a ligand, including biotin derivatives, and to the light-emitting water and the like acridinium esters and isobutyl luminol derivative, the colloidal gold with fine particles And colored latex and the like, and radioisotopes include 57Co, 3H, 1251, and 1251-Bolton Hunter reagent reagents.
  • the antigen-antibody complex can be detected using enzyme immunosorbent adsorption (ELISA).
  • Enzyme immunosorbent methods include direct ELISA using labeled antibodies that recognize antigens attached to a solid support, and indirect ELISAs using labeled secondary antibodies that recognize captured antibodies in a complex of antibodies that recognize antigens attached to a solid support.
  • Various ELISA methods include indirect sandwich ELISAs using labeled secondary antibodies that recognize the antibody.
  • Antibodies of the invention may have a detection label, the detection label If not, the antibody of the present invention can be captured and can be identified by treating another antibody having a detection label.
  • a gene domain of a single domain antibody was constructed and a single domain antibody gene clone capable of specifically binding to the MUC1 protein was selected. And by developing a method that can be isolated and purified through the E. coli expression system proposed a method that can economically mass-produce MUC1 specific single domain antibodies, the produced single domain antibodies are produced in various tumors expressing MUC1 antigen It can be used for diagnosis and treatment.
  • the anti-MUC1 single domain antibody selected in the present invention can be used for diagnosis of tumors through in vivo imaging.
  • Mouse model tests expressing MJC1 positive tumors demonstrated that tumor-specific target imaging of selected antibodies was possible and suggested that it could be used as a tool for diagnosing various target-type cancer tissues in the future.
  • a recombinant immunotoxin was produced by fusing diphtheria toxin to the selected anti-MUC1 single domain antibody, and the MJC1 specific efficacy of the immunotoxin was demonstrated in cell culture model and in vivo tumor animal model. Therefore, it was suggested that the selected single domain antibody can be used as an anti-tumor target therapy through immunotoxin production.
  • [Brief Description of Drawings] 1 is a gel photograph showing total RNA samples isolated and purified from camel peripheral blood leukocytes. RNA isolated from a total of three camels # 1, # 2 and # 3 was purified by separate experiments of 1-10, 1-7 and 1-11, respectively.
  • Panel 2 shows a single domain antibody gene amplification strategy for single domain antibody construction.
  • Panel a) shows a cDNA production method of a single domain antibody gene
  • panel b) shows a schematic diagram of amplification strategy of the PCR method capable of specifically amplifying only a single domain antibody coding region in the produced cDNA.
  • Figure 3 panel a) is a gel image of the first amplified single domain antibody gene samples (about 650 bp) from cDNA samples and panel b) a gel image of the two-step enzyme chain reaction results (about 450 bp) samples Indicates.
  • # 1-3 on the left side of the panel is the camel individual number, and each gel photograph in the panel is the result of the amplification fragments obtained from the respective RNA samples prepared in FIG. M represents a 1 kb DNA size marker.
  • FIGS. 4 shows a strategy diagram for constructing a single domain antibody gene phagemid library.
  • FIG. 5 shows the results of experiments in which 10 clones were randomly selected from a phagemid library into which a single domain antibody gene was inserted to purify DNA, and treated with Sfil restriction enzymes to identify the inserted single domain antibody gene.
  • Figure 6 shows the results of the diversity evaluation of the produced single domain antibody library.
  • ompseq (5 '-AAGACAGCTAT CGCGATTGCAG- 3') and gback (5 '- GCCCCCTTATTAGCGTTTGCCATC -3' ) limit the gene PCR fragment amplified with the primer set BstOl RFLP analysis was performed by treatment with enzymes.
  • Figure 7 is a schematic diagram showing the recombinant DNA (a) and the check result of the expression and purification of MUC1-N protein with this, (b) used for the production of MUC1-N protein.
  • the gene fragment encoding the MUC1-N protein was cloned into the pET23d vector, which was then introduced into E. coli to express and purify the protein, and Western blot using Coomassie blue staining (CBB st a in) and anti-MUC1 antibody.
  • CBB st a in Coomassie blue staining
  • B E. coli lysate before protein purification (b, lane 1) and protein samples after purification (lane 2) were used for analysis, respectively.
  • FIG. 8 is a graph showing the panning results of the single domain antibody library for MUC1. Phage titers put in MUC1-adsorbed 96 well plates and phage titers separated after washing (0/1 ratio) were displayed for each panning step.
  • FIG. 9 shows analysis results of some antibody clones showing high affinity for MUC1 using ELISA in clones obtained through panning.
  • Anti-pi II Ab was used as a positive control and pComb3xTT phage sample as a negative control group, and the absorbance increase value obtained by dividing the absorbance of each test sample by the absorbance value of the negative control group.
  • Figure 10 shows the results of analyzing the amino acid sequence of the selected single domain antibody gene clones.
  • the human VH3 amino acid sequence and the sequence of the selected clones were compared and analyzed on the basis of IMGT numbering, and 4 FR (frame region) and 3 CDR (comp 1 ement arity determining reg) n (n CDR) n were displayed. Hallmark amino acid residues of the gene are indicated with a red box.
  • Panel 12 shows the results of confirming the reactivity of the anti-MUC1 single domain antibody to the MUC1 expressing cell line through confocal microscopy.
  • Panel a) shows the results of confirming MUC1 protein expression in MC38-MUC1 cells and MC38-pcDNA3.1 cells using anti-MUC1 antibody
  • FIG. 13 shows a sensorgram measuring the affinity of selected single domain antibody clones with MUC1 antigen.
  • Anti-MUC1 Ab plotted the positive control and assay results of selected single domain antibody clones VHH524, VHH530, VHH33 and VHH39.
  • Figure 14 is a table analyzing the affinity of the single domain antibody and JC1 antigen.
  • Figure 15 shows anti-MUC1 single domain antibody clones labeled with Q dots The results of in vivo imaging tests in the mouse tumor model used are shown.
  • White ellipses indicate tumor inoculation sites and gray arrows mark Q dot signals accumulated on the tumor site.
  • Panel a) of FIG. 16 shows a plasmid schematic for the production of diphtheria toxin and camel single domain antibody fusion protein
  • panel b) shows the cloning result.
  • DT (G4S) 2-VHH524 and DT (G4S) 2—VHH530 represents an immunotoxin with linke (G4S) 2] between diphtheria toxin and single domain antibody genes
  • DT-VHH524 and DT-VHH530 are single to diphtheria toxin Immunotoxins with direct fusion of domain antibodies are shown.
  • FIG. 17 shows the results of expression and purification of recombinant anti-MUC1 single domain antibody immunotoxin bound to diphtheria toxin followed by Western blot using Coomassie blue (CBB) staining and anti-His antibody.
  • CBB Coomassie blue
  • 18 is a sensorgram measuring the affinity of an immunotoxin for the MUC1 antigen.
  • 19 shows the results of affinity analysis of immune toxins for MUC1 antigen.
  • 20 is a graph showing the results of analysis of cell killing ability of recombinant immunotoxins on cells expressing MUC1.
  • Panel a) shows the results of analysis using DT (G4S) 2-VHH524, b) shows the results of analysis using DT-VHH524 immunotoxin, and
  • panel c) shows the cell killer test results of VHH524 clone without toxin binding.
  • FIG. 21 is a graph showing tumor growth inhibitory effects of selected immune toxins in tumor animal models expressing MUC1.
  • PBS is a negative control
  • VHH524 is a single domain antibody to which diphtheria toxin is not bound
  • DT (G4S) 2-VHH524 is an immunotoxin bound to diphtheria toxin.
  • RNA was isolated and purified 28 times from monocytes isolated from three camel peripheral blood (FIG. 1; numbers shown on the left of each panel are camel's individual number and lane number on electrophoresis picture with different RNA samples). Number), and the reverse transcriptase polymerase chain reaction was performed as a template to amplify the variable region of a heavy chain antibody (VHH) gene. Amplification of single domain antibody genes is followed by a two step polymerase chain reaction (PCR) (FIG. 2). The DNA fragment (approximately 650 bp) comprising a single domain antibody and a CH2 domain of a heavy chain antibody was synthesized via a first-stage polymerase chain reaction (Fig.
  • RNA sample number the number shown on the left of each panel is a camel individual. No., lane number of electrophoresis picture is different RNA sample number), which was subjected to two-step enzymatic chain polymerization again to obtain 28 DNA fragments (450-500 bp) samples containing only VHH (FIG. 3b). ).
  • the sequence of the primers used in the one-step polymerase chain reaction was VHBACK6: 5'-GATGTGCAGCTGCAGGCGTCTGGAGGAGG-3 '(SEQ ID NO: 66); CH2F0RT4: 5'-CGCCATCAAGGTACCAGTTGA_3 '(SEQ ID NO: 67), and the sequence of the primers used in the two-step polymerase chain reaction was VHBAC 4: 5' -CATGCCATGACTCGCGGCCCAGGCGGCCATGGCCGATGTGCAGCT-3 '(SEQ ID NO: 68); VHF0R36: 5'-TGAACTGGCCGGCCTGGCCTGAGGAGACGGTGACCTG-3 '(SEQ ID NO: 69).
  • VHBACK6 5'-GATGTGCAGCTGCAGGCGTCTGGAGGAGG-3 '(SEQ ID NO: 66)
  • CH2F0RT4 5'-CGCCATCAAGGTACCAGTTGA_3 '(SEQ ID NO:
  • Single domain antibody that combines all 28 samples obtained by polymerase chain reaction to produce a library of single domain antibodies
  • phagemid DNA was purified from 19 randomly selected colonies of E. coli, ompseq (5 '-AAGACAGCTATCGCGATTGCAG-3') (SEQ ID NO: 70) and gback (5 '-GCCCCCTTATTAGCGTTTGCCATC).
  • MUC1-N protein (10 / g / ml) was added to 50 ⁇ aliquots in 96 well plates for coating of MUC1 protein and coated overnight at 4 ° C.
  • 50 antibody antibody phage libraries were added to a 96 well plate to which the MUC1-N protein was attached, bound for 1 hour at room temperature, washed 10 times with PBS, and recovered by treatment with 50 trypsin solution (10 mg / ml).
  • the recovered phages were infected with E. coli ER2537 (New England Biolabs, Beverly, USA) in logarithmic growth phase, and then plated in ampicillin-added LB broth medium and incubated at 37 ° C for 18 hours.
  • Some phages were infected with E. coli ER2537 in logarithmic growth phase and then amplified using VCSM13 helper phage (Stratagene, La Jolla, Calif., USA) and used for panning.
  • the culture solution was centrifuged at 3,000 rpm for 20 minutes to recover the supernatant containing phage, and then the phage was precipitated with 5 X PEG / NaCl (20 polyethylene glycol -8000, 2.5 M NaCl) solution. Phage precipitate was recovered with PBS solution containing 1% bovine serum albumin (BSA; Sigma, St Louis, MO, USA), 0.03% sodium azide (Sigma, St Louis, M0, USA). MUCl specific single domain antibody phagemid library was selected by repeating five panning cycles and quantifying the phage to determine 0/1 ratio (FIG. 8).
  • MUC1-specific single domain antibody phagemids with high binding strength were selected from the single domain antibody phage clones by ELISA.
  • MUC1-N protein was immobilized in a 96 well plate and the recovered phage antibody was diluted in the same amount (1 ⁇ 10 10 PFU / ml) and reacted for 1 hour at phase silver.
  • HRP-bound anti-M13 antibody was added to PBS. Diluted 1: 3000, 50 ⁇ each was added and reacted at room temperature for 1 hour. After the reaction, the reaction was washed 10 times and reacted by adding 50 ⁇ substrate reagent (TMB substrate reagent; Sigma, St Louis, MO, USA).
  • MUC1 in these cell lines was confirmed by Western blot using anti-MUC1 antibody (clone VU4H5, Santa Cruz, CA, USA) (FIG. 12A). After fixing each MC38 cell line, the purified single domain antibody was reacted at room temperature for 1 hour, stained with an anti-His antibody conjugated with FITC, and observed for binding by confocal microscopy. Selected anti-MUC1 single domain antibody clones were confirmed to specifically react only to MC38-MUC1 cells at levels similar to the commercially available anti-MUC1 antibodies (clone VU4H5, Santa Cruz, CA, USA) (FIG. 12B). ).
  • Example 8 MUC1 Affinity Analysis of Single Domain Antibodies Using BIAC0RE
  • the affinity for the MUC1 protein of the purified single domain antibody was determined by BIAC0 E 2000 (Pharmacia Biosensor AB, Uppsala, Sweden). Purified MUC1 protein was immobilized on the CM5 sensor chip (Pharmacia Biosensor AB, Uppsala, Sweden) by amine coupling method. Blocking the sensor chip to which the MUC1 antigen was fixed with ethanolamine was carried out affinity experiment.
  • Single domain antibodies (VHH524) were labeled with Qdot 800 using the Qdot 800 Antibody Binding Kit (Invitrogen, Carlsbad, Calif., USA) following the method suggested by the manufacturer. Activated Qdot 800 was reacted with antibody molecules treated with DTT at room temperature for 1 hour. Then reaction was stopped by adding ⁇ -mercaptoethanol. Separation column is used to remove unbound Qdot 800 molecules and single domain antibody with fluorescent quantum dots Purified.
  • Experimental Example 11 Diagnostic Specificity Test of a Single Domain Antibody in an In vivo MUC1-positive Tumor Model
  • the E. coli expression system was used to produce recombinant immunotoxins in which selected anti-MUC1 single domain antibody genes were combined with diphtheria toxin genes (FIG. 16A).
  • the fragments were cloned into the EcoRI and Hindi II sites, respectively, and the selected single domain antibody genes were cloned into the Hindlll and Xhol sites at the C-terminus of the toxin.
  • the immunotoxin gene inserted into the prepared recombinant plasmid was confirmed using restriction enzymes (FIG. 16B).
  • the immunotoxin recombinant proteins were isolated and purified in E. coli in the same manner as in Example 6, and confirmed by Western blot using Coomassie blue staining and anti-His antibody (FIG. 17).
  • the affinity of the purified immunotoxin for the MUC1 protein was measured using BIAC0RE 2000 in the same manner as in Example 8 (FIG. 18).
  • the immunotoxin obtained through Coupling constants (Kon), dissociation constants (Koff), and affinity (Kd) are summarized in FIG. 19.
  • Experimental Example 13 Analysis of cytotoxicity of immunotoxin against cells expressing MUC1 antigen
  • cell killing assay was performed using MC38-MUC1 cell line and MC38-pcDNA3.1 cell line.
  • Each cell line lX104 / well was dispensed with 200 ⁇ in 96 well folate and treated with purified immunotoxin (50 j «g / ml-400 « g / ml) for 48 hours, followed by MTT (Sigma, St Louis, MO, USA).
  • MTT MTT
  • Cell viability was examined using the assay.
  • FIG. 20 in the experiments in which the linker introduced the immunotoxin (DT (G4S) 2-VHH524; FIG.
  • tumor model was established using MC38-MUC1 cell line and tumor growth was measured by administering 7 immunotoxins at 3 days interval one week after tumor injection.
  • FIG. 21A Purified immunotoxin was injected intravenously at 50 ⁇ , 25 g or 12.5 per mouse, and a group injected with PBS alone and a group injected with 100 / g of mouse without DT binding antibody (VHH524) as a control group. Five mice were used in each group, and tumor size was measured for 27 days after tumor injection. As can be seen in the results of FIG. 21B, the control group observed very fast growth of the tumor.

Abstract

The present invention relates to a single domain antibody (nanoscale antibody or NanoMAb) containing a mucin antigen 1 (MUC1) complementarity determining region (CDR) and a base sequence thereof, a mouse monoclonal antibody containing some or all of the base sequence or amino acid sequence, a humanized monoclonal antibody, a chimeric monoclonal antibody, a recombinant vector and a transformed host cell, and a pharmaceutical composition for the treatment of cancer or a composition for the diagnosis of cancer, containing some or all of an amino acid sequence constituting the single domain antibody or a polymer thereof. The antibody of the present invention has a specific and high affinity to the MUC1 tumor antigen, with only a variable region of a heavy chain antibody, and may be used for the diagnosis of cancerous tissues and as a therapeutic antitumor target, which binds various functional molecules to antibodies of the present invention to express MUC1.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
MUC 1에 대한 단일 도메인 항체 【기술 분야】  Single Domain Antibody Against MUC 1 [Technical Field]
본 발명은 MUCUmucin antigen 1) 특이적 중쇄 가변영역 CDR( complementarity determining region)을 포함하는 단일 도메인 항체 (single domain ant i body 또는 nanoscale antibody 또는 NanoMAb) 및 그의 염기서열, 상기 염기서열을 포함하는 재조합 백터 및 형질전환 된 숙주 세포, 상기 단일 도메인 항체를 포함하는 항암 면역 치료용 약제학적 조성물 및 암 진단용 조성물에 관한 것이다.  The present invention provides a single domain antibody (single domain ant i body or nanoscale antibody or NanoMAb) comprising a MUCUmucin antigen 1) specific heavy chain variable region CDR (complementarity determining region) and its nucleotide sequence, a recombinant vector comprising the nucleotide sequence and The present invention relates to a transformed host cell, a pharmaceutical composition for anticancer immunotherapy comprising the single domain antibody, and a composition for diagnosing cancer.
【배경 기술】 [Background technology]
사람 뮤신 (Mucin 1, MUC1) 당단백질은 유방암 (86%), 췌장암 (90¾ , 대장암 (74.5%) 또는 간암 (70.8%) 등 다양한 암종에서 과발현 되어 있으며, 암의 발생에 있어서도 중요한 역할을 하고 있는 것으로 알려져 있다. MUC1 항원 유전자는 염색체의 lq21-24 부위에 위치하며, 세포질 내 영역 (69개의 아미노산), 세포외 영역 (20개 아미노산의 반복적인 서열) 및 세포막에 걸친 영역 (transmembrane domain) 등으로 구성되어 있다. MUC1은 다양한 암종에서 과발현되는 것으로 알려져 있으므로 이를 발현하는 종양들의 진단 및 종양 치료를 위한 표적으로 응용하고자 하는 연구가 활발하게 진행되어져 왔다. 특히 MUC1 특이적 항체는 종양 진단 및 치료를 위한 도구로서 활용하기 위해 그 대량 생산을 위한 연구가 활발하게 진행되고 있다.  Human mucin (Mucin 1, MUC1) glycoprotein is overexpressed in a variety of carcinomas, including breast cancer (86%), pancreatic cancer (90¾, colon cancer (74.5%), or liver cancer (70.8%), and plays an important role in the development of cancer. The MUC1 antigen gene is located in the lq21-24 region of the chromosome and contains an intracellular region (69 amino acids), an extracellular region (repetitive sequence of 20 amino acids), and a transmembrane domain. Since MUC1 is known to be overexpressed in a variety of carcinomas, studies have been actively conducted to apply it as a target for the diagnosis and treatment of tumors expressing it, especially MUC1 specific antibodies for tumor diagnosis and treatment. In order to utilize as a tool for the mass production research is actively being conducted.
현재 암을 치료하기 위해서 외과적 수술, 화학치료와 방사선 치료법 등이 주로 사용되고 있다. 그러나 이러한 치료 방법은 정상 조직까지 파괴시키고, 환자에 따라 그 치료 효과가 다르며, 내성 종양이 재발하는 등의 다양한 부작용이 발생되는 문제점을 안고 있어 이에 대한 대책이 필요한 상황이다.  Currently, surgery, chemotherapy and radiation therapy are mainly used to treat cancer. However, the treatment method is to destroy the normal tissue, the treatment effect is different depending on the patient, there is a problem that various side effects such as recurrence of resistant tumors occur, there is a need for countermeasures.
따라서 암세포와 정상세포를 효과적으로 구별하여 이를 표적 치료할 수 있는 표적항암치료법 (targeted cancer therapy)개발이 현재 활발히 진행되고 있다. 표적항암제란 암세포에서 발현되는 특정 단백질올 표적으로 하여 그 단백질의 항체 또는 리간드를 약으로 개발하는 방법으로서, 이런 약제는 정상 조직에는 결합하거나 침투할 수 없고 암세포에 특이적으로 작용하므로 이전 항암제의 부작용을 없앨 수 있는 획기적인 약제로 여겨지고 있다. Therefore, the development of targeted cancer therapy, which can effectively distinguish cancer cells from normal cells and target them, is currently active. It's going on. Targeted anticancer drugs are a method of developing antibodies or ligands of a protein by targeting a specific protein expressed in cancer cells. These drugs cannot bind or penetrate normal tissues and act specifically on cancer cells. It is believed to be a breakthrough drug that can eliminate.
상기의 표적항암제 중 치료용 항체를 매개로 한 면역치료법이 주로 연구 되어 왔다. 이는 암세포 특이적인 항체를 주입하고, 이 항체가 종양특이항원에 결합하면 항체로 인해 일어나는 자연적인 면역반웅을 통해 암세포를 사멸시키거나, 항체에 독소나 약물을 결합시켜 암종을 괴사시키는 방법을 말한다.  Among the target anticancer drugs, immunotherapy based on therapeutic antibodies has been mainly studied. This is a method of injecting a cancer cell-specific antibody, and when the antibody binds to a tumor-specific antigen, kills the cancer cell through a natural immune response caused by the antibody or necrosis of a carcinoma by binding a toxin or a drug to the antibody.
이러한 치료용 항체는 질병에 특이적인 표적만 있다면 다양한 종양질환에 적용 가능하다는 점, 표적의 생물학적 역할이 파악된다면 그 항원을 투입하였올 때 부작용을 쉽게 예측할 수 있다는 점과 체내 반감기가 길어 장시간 약효를 유지할 수 있다는 장점을 가지고 있어 생명공학 의약품으로 활발히 개발되고 있다.  These therapeutic antibodies can be applied to various tumor diseases as long as they have specific targets for the disease, and if the biological role of the targets is known, the side effects can be easily predicted when the antigen is injected, and the half-life of the body is long. It has the advantage of being sustained and is being actively developed as a biotech medicine.
단세포군 항체는 1980년대 체외 진단제 (주로 임신 및 배란 진단용 시약)로 사용되어 왔으며, 그 이후로 활발한 연구개발을 통하여 다양한 진단 치료 분야에 응용되고 있다. 현재 세계적으로 약 260여개 업체에서 치료제 혹은 진단제 개발을 목적으로 단세포군 항체의 개발에 주력하고 있으며, 약 900여 종의 항체가 개발 중이거나 개발되어 임상시험을 진행하고 있다. 이중 약 30% 이상이 항암제 및 암 진단제와 관련이 있다. 실제로 시장을 형성하고 있는 치료용 항체로는 스위스 Roche사가 1997년에 판매하기 시작한 최초의 인간화 항체제제인 Zenapax가 있으며 이것은 항인터루킨 -2 수용체 항체로서 면역억제제로 인기를 얻었다. 이외에 미국의 Centocor사가 개발한 혈소판 웅집저해용 키메라 항체제제인 ReoPro가 있고, Genentech사와 IDEC Pharmaceut icals사가 공동으로 개발한 암치료용 키메라항체인 Rituxan, Genentech사가 개발한 유방암 치료제인 항상피세포 성장인자 수용체 (HER2)에 대한 인간화 항체 Herceptin이 있다. 그 밖에 Centocor t사의 인간화 항 TNF 항체제제인 Remicade, 미국 Medimmune사에 의해 개발되어 1998년부터 시판되고 있는 Synagis 등이 있으며, 2002년 2월 허가를 받은 미국 IDEC사의 Zevali가 있다. 이 제품은 항체에 방사선 물질을 결합한 제품으로, 항체가 암세포의 항원과 결합할 때 방사선 물질이 암세포 내로 전달됨으로써 암세포의 사멸을 유도하는 항암제로 개발되었다. 일본 다케다 약품은 미국 휴먼 게놈 사이언스 (HGS)사가 발견한 암치료용 항체의약품 TRAIL-R1 단세포군 항체의 자국내 개발 및 판매권올 취득하였다. 면역에 관여하는 단백질 항체를 의약품에 이용한 이 의약품은 세포사멸에 관여하는 수용체인 TRAIL-R1에 대한 인간화 단세포군 항체로서 HGS사가 실시한 동물실험에서 유방암, 대장암 또는 자궁암에 관한 치료효과가 확인되고 있다. Single cell antibody has been used as an in vitro diagnostic agent (mainly pregnancy and ovulation diagnostic reagent) in the 1980s, and has been applied to a variety of diagnostic treatment field through active research and development since then. Currently, about 260 companies around the world are focusing on the development of single-cell antibodies for the purpose of developing therapeutics or diagnostics, and about 900 antibodies are being developed or under development. More than about 30% of these are related to anticancer agents and cancer diagnostics. Therapeutic antibodies that are actually forming the market include Zenapax, the first humanized antibody to be sold in 1997 by Roche, Switzerland, which has gained popularity as an immunosuppressant as an antiinterleukin-2 receptor antibody. In addition, there is ReoPro, a platelet anti-chimeric antibody produced by Centocor in the United States, and Rituxan, a cancer therapy chimeric antibody developed jointly by Genentech and IDEC Pharmaceut icals, and the always-blood cell growth factor receptor developed by Genentech. There is a humanized antibody Herceptin against (HER2). Others include Centocor's humanized anti-TNF antibody, Remicade, Synagis, developed by Medimmune, USA, and marketed since 1998. Zevali, IDEC, USA, licensed in February 2002. This product It is a product that combines a radioactive material with an antibody, and has been developed as an anticancer agent that induces death of cancer cells by transferring the radioactive material into cancer cells when the antibody binds to antigens of cancer cells. Takeda Pharmaceutical Co., Ltd. acquired the domestic development and marketing rights of TRAIL-R1 single cell antibody for cancer treatment antibody discovered by US Human Genome Science (HGS). This drug, which uses protein antibody that is involved in immunity, is a humanized unicellular antibody to TRAIL-R1, a receptor that is involved in apoptosis, and has been shown to be effective in treating breast cancer, colon cancer or uterine cancer in animal experiments conducted by HGS. .
그러나 기존의 항체들은 구조가 복잡하고 분자량이 크기 때문에 상대적으로 불안정하며 쉽게 분해되는 단점이 있다. 따라서 항체를 대량 생산하거나 이를 생체내에서 활용하는데 많은 제한을 받게 된다. 단일 도메인 항체는 제작 과정이 간편하며 특이성이 높고 단백질 크기가 작으며 안정적인 특징을 가지고 있어 기존의 항체가 지니고 있는 문제점을 극복할 수 있는 대체제로 주목을 받고 있다.  However, existing antibodies have a disadvantage in that they are relatively unstable and easily degraded because of their complex structure and high molecular weight. Therefore, there are many limitations in mass production or utilization of antibodies in vivo. Single domain antibodies are attracting attention as an alternative to overcome the problems of existing antibodies because of their simple manufacturing process, high specificity, small protein size, and stable characteristics.
단일 도메인 항체의 항원 결합부위 (variable region of a heavy chain antibody, 이하 VHH) 만을 항암 표적 치료에 활용할 경우, 첫째 유전자 재조합을 이용한 유전 조작을 통하여 원하는 항원 특이적 항체를 선발하기 용이하며, 둘째 E. coH에서 과발현시켜 적은 비용으로 대량생산이 가능하며, 셋째 단일 도메인만으로 유전자 재조합하여 생산하므로 수용액내에서 용해도가 높고, 넷째 사람 항체의 VH3 아미노산 서열과 상동성이 높아 면역원성이 적으며, 다섯째 단백질의 크기가 작으므로 암 조직 내로의 침투 효율이 기존의 항체에 비해 높다는 장점이 있다. 본 명세서 전체에 걸쳐 다수의 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 있는 바, 이를 통하여 본 발명이 속하는 기술 분야의 수준 및 내용이 보다 명확하게 설명된다. 【발명의 상세한 설명】  When only the variable region of a heavy chain antibody (VHH) of a single domain antibody is used for anticancer target therapy, firstly, it is easy to select a desired antigen-specific antibody through genetic manipulation using genetic recombination. It can be mass-produced at low cost by overexpressing in coH, and is produced by genetic recombination with only single domain, so it has high solubility in aqueous solution, high homology with VH3 amino acid sequence of human antibody, and low immunogenicity. Since the size is small, the penetration efficiency into cancer tissue is higher than that of conventional antibodies. Throughout this specification many patent documents are referenced and their citations are indicated. The disclosure of the cited patent documents is hereby incorporated by reference in their entirety, whereby the level and content of the technical field to which the present invention pertains will be more clearly described. [Detailed Description of the Invention]
【기술적 과제】 본 발명자들은 MUCl (mucin antigenl) 종양항원에 특이적으로 결합함으로써 MUC1이 발현되는 암 종의 진단 및 치료에 이용될 수 있는 단일 도메인 항체를 개발하고자 하였다. 개발된 단일 도메인 항체의 항원 결합 부위 (variable region of a heavy chain antibody)는 MUCl 종양항원에 대하여 특이적 결합능 및 높은 친화도를 가지며, 다양한 기능성 분자들과 결합시켰을 때 MUC1이 발현되는 암조직의 진단 및 항종양 표적치료제로서 우수한 효능을 보임을 확인하였다. [Technical problem] The present inventors have attempted to develop a single domain antibody that can be used for the diagnosis and treatment of cancer tumors expressing MUC1 by specifically binding to mucin antigenl (MUCl) tumor antigen. The variable region of a heavy chain antibody of the developed single domain antibody has specific binding ability and high affinity for MUCl tumor antigen, and diagnoses cancer tissues expressing MUC1 when combined with various functional molecules. And showed excellent efficacy as anti-tumor target therapy.
따라서, 본 발명의 목적은 MUC1에 대한 단일 도메인 항체를 제공하는데 있다.  Accordingly, it is an object of the present invention to provide a single domain antibody against MUC1.
본 발명의 다른 목적은 상기 단일 도메인 항체를 코딩하는 핵산 분자를 제공하는데 있다.  Another object of the present invention is to provide a nucleic acid molecule encoding the single domain antibody.
본 발명의 또 다른 목적은 상기 핵산 분자를 포함하는 재조합 백터를 제공하는데 있다.  Another object of the present invention to provide a recombinant vector comprising the nucleic acid molecule.
본 발명의 다른 목적은 상기 재조합 백터로 형질전환 된 숙주세포를 제공하는데 있다.  Another object of the present invention to provide a host cell transformed with the recombinant vector.
본 발명의 또 다른 목적은 상기 단일 도메인 항체를 포함하는 항암 면역치료용 약제학적 조성물을 제공하는데 있다.  Still another object of the present invention is to provide a pharmaceutical composition for anticancer immunotherapy comprising the single domain antibody.
본 발명의 다른 목적은 상기 단일 도메인 항체를 포함하는 암 진단용 조성물을 제공하는데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.  Another object of the present invention to provide a cancer diagnostic composition comprising the single domain antibody. Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
【기술적 해결방법】 Technical Solution
본 발명의 일 양태에 따르면, 다음의 중쇄 CDR 아미노산 서열을 갖는 증쇄 가변영역을 포함하는 MJC1에 대한 단일 도메인 항체를 제공한다: 서열목톡 제 24서열 내지 서열목록 제 30서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR1, 서열목록 제 31서열 내지 서열목록 제 37서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR2 및 서열목록 제 38서열 내지 서열목록 제 44서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR3. 본 발명자들은 MUC1 종양항원에 특이적으로 결합함으로써 MUC1이 발현되는 암종의 진단 및 치료에 이용될 수 있는 단일 도메인 항체를 개발하고자 노력한 결과, 개발된 단일 도메인 항체는 항원 결합 부위 (variable region of a heavy chain antibody)만으로 MJC1 종양항원에 대하여 특이적 결합능 및 높은 친화도를 가지고 있으며, 다양한 기능성 분자들과 결합시켰을 때 MUC1이 발현되는 암조직의 진단 및 항종양 표적치료제로서 우수한 효능을 보임을 확인하였다. According to one aspect of the present invention, there is provided a single domain antibody against MJC1 comprising a chain variable region having the following heavy chain CDR amino acid sequence: SEQ ID NO: 24 A group consisting of amino acid sequences consisting of SEQ ID NO: 30 sequence A CDR1 selected from the group consisting of an amino acid sequence consisting of the amino acid sequences consisting of SEQ ID NO: 31 to 37, and SEQ ID NO: 31 to the amino acid sequence consisting of SEQ ID NO: 38 to 44 CDR3 selected from the group consisting of: The present inventors have tried to develop a single domain antibody that can be used for the diagnosis and treatment of MUC1-expressing carcinoma by specifically binding to MUC1 tumor antigen, resulting in the development of a variable region of a heavy antigen. The chain antibody alone has a specific binding capacity and high affinity for MJC1 tumor antigen, and when combined with various functional molecules, MUC1 expresses excellent efficacy as a diagnostic and anti-tumor target therapy for cancer tissues expressing MUC1.
본 발명의 단일' 도메인 항체는 MUC1에 대하여 특이적 결합능을 갖는다. Single ' domain antibodies of the invention have specific binding capacity to MUC1.
본 명세서에서 사용되는 용어 "중쇄" 는 항원에 특이성을 부여하기 위한 충분한 가변 영역을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VH 및 3 개의 불변 영역 도메인 CHI, CH2 및 CH3를 포함하는 전체길이 중쇄 및 이의 단편을 모두 의미한다.  As used herein, the term “heavy chain” refers to a variable region domain VH comprising an amino acid sequence having sufficient variable region to confer specificity to an antigen and a full length heavy chain comprising three constant region domains CHI, CH2 and CH3 It means all fragments.
본 명세서에서, MUC1을 언급하면서 사용되는 용어 "단일 도메인 항체 (single domain antibody)" 는 MUC1에 대한 특이 항체로서, CDR이 단일 도메인 폴리펩티드의 일부인 항체이며, 중쇄 항체, 경쇄가 자연적으로 없는 항체, 종래의 4-쇄 항체에서 유래한 단일 도메인 항체, 조작된 항체 및 항체에서 유래된 것 외의 단일 도메인 스캐폴드를 포함한다.  As used herein, the term "single domain antibody" as used to refer to MUC1 is a specific antibody against MUC1, the CDR is part of a single domain polypeptide, heavy chain antibodies, antibodies that are naturally free of light chains, conventional Single domain antibodies derived from 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies.
본 발명에서 단일 도메인 항체는 NanoMAbTM으로 통칭된다.  In the present invention, a single domain antibody is collectively referred to as NanoMAb ™.
단일 도메인 항체는 마우스, 사람, 낙타, 라마, 염소, 토끼 또는 소 등의 종으로부터 유래될 수 있다. 본 발명에 이용되는 단일 도메인 항체는 경쇄가 없는 중쇄 항체로 알려진 자연 발생 단일 도메인 항체이다. 그러한 단일 도메인 항체는 W0 94/04678호에 개시되어 있고, 명확히 하기 위하여 경쇄가 자연적으로 없는 중쇄 항체에서 유래된 이 가변성 영역은 종래의 4-쇄 면역글로불린의 VH와 구별하기 위하여 VHH 또는 나노바디 (nanobody)로 불리어 진다. 바람직하게는 본 발명의 단일 도메인 항체는 낙타, 단봉낙타, 라마, 알파카 및 야생라마 등에서 유래된 카멜리대 (Camelidae) VHH(variable region of a heavy chain antibody)이다. 카멜리대 외의 다른 종이 자연적으로 경쇄가 없는 중쇄 항체를 생산할 수도 있으며, 그러한 VHH는 본 발명의 범위 내이다. Single domain antibodies can be derived from species such as mouse, human, camel, llama, goat, rabbit or cow. Single domain antibodies used in the present invention are naturally occurring single domain antibodies known as light chain free heavy chain antibodies. Such single domain antibodies are disclosed in WO 94/04678, and for the sake of clarity these variable regions derived from heavy chain antibodies that are naturally free of light chains can be distinguished from VHH or nanobody to distinguish them from the VH of conventional four-chain immunoglobulins. nanobody). Preferably, the single domain antibody of the present invention is Camelidae variable region of a heavy chain antibody (VHH) derived from camel, dromedary, llama, alpaca and wild llama. Other species than Camellia may naturally produce light chain-free heavy chain antibodies. Such VHH is within the scope of the present invention.
본 발명에 이용되는 단일 도메인 항체는 W0 94/04678호에 개시된 카멜리대에서 유래한 것과 같은, 경쇄가 자연적으로 없는 면역글로불린에서 유래한 중쇄 가변 영역이고, 단일 도메인 항체 분자는 IgG 분자보다 약 10배 더 작으며, 이들은 단일 폴리펩티드로서 매우 안정하여 극한 pH와 온도 조건에서도 안정적 이다. 또한, 이들은 종래의 항체와는 달리 프로테아제의 작용에 대해 내성을 갖으며, 생체외 발현 시, 높은 수율로 대량 생산이 가능하다.  The single domain antibody used in the present invention is a heavy chain variable region derived from an immunoglobulin that is naturally free of light chains, such as from Camellia, disclosed in WO 94/04678, and the single domain antibody molecule is about 10 times larger than the IgG molecule. Smaller, they are very stable as single polypeptides, even at extreme pH and temperature conditions. In addition, they are resistant to the action of proteases, unlike conventional antibodies, and can be mass-produced in high yield when expressed in vitro.
본 발명의 단일 도메인 항체는 서열목록 제 24서열 내지 서열목록 제 30서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR1, 서열목록 제 31서열 내지 서열목록 제 37서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR2 및 서열목록 제 38서열 내지 서열목록 제 44서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR3을 포함한다.  Single domain antibody of the present invention is CDR1 selected from the group consisting of amino acid sequences consisting of amino acid sequences consisting of SEQ ID NO: 24 to 30 of SEQ ID NO: 30, CDR2 selected from the group consisting of amino acid sequences consisting of SEQ ID NO: 31 to 37 And a CDR3 selected from the group consisting of the amino acid sequences consisting of SEQ ID NO: 38 to SEQ ID NO: 44.
본 명세서에서, 용어 CDR( complementarity determining region)" 은 면역글로블린 중쇄의 고가변 영역 (hypervariable region)의 아미노산 서열을 의口 1한다 (Kabat et al . , Sequences of Proteins of Immunological Interest , 4th Ed. , U.S. Department of Health and Human Services, National Institutes of Health (1987)). 중쇄에는 3개의 CDR1, CDR2 및 CDR3이 포함되어 있다. CDR은 항체가 항원 또는 에피토프에 결합하는 데 있어서 주요한 접촉 잔기를 제공한다.  As used herein, the term CDR (complementarity determining region) "refers to the amino acid sequence of the hypervariable region of an immunoglobulin heavy chain (Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., US). Department of Health and Human Services, National Institutes of Health (1987)) The heavy chain contains three CDR1, CDR2 and CDR3 CDRs provide the major contact residues for the antibody to bind antigen or epitope.
본 발명의 단일 도메인 항체는, MJC1을 특이적으로 인식할 수 있는 범위 내에서 첨부한 서열목록에 기재된 아미노산 서열의 변이체를 포함할 수 있다. 예를 들면, 항체의 결합 친화도 및 /또는 기타 생물학적 특성을 개선시키기 위하여 항체의 아미노산 서열에 변화를 줄 수 있다. 이러한 변형은, 예를 들어 항체의 아미노산 서열 잔기의 결실, 삽입 및 /또는 치환을 포함한다.  The single domain antibody of the present invention may include variants of amino acid sequences described in the attached sequence listing within the scope of specific recognition of MJC1. For example, changes can be made to the amino acid sequence of the antibody to improve the binding affinity and / or other biological properties of the antibody. Such modifications include, for example, deletions, insertions and / or substitutions of amino acid sequence residues of the antibody.
이러한 아미노산 변이는 아미노산 결사슬 치환체의 상대적 유사성, 예컨대, 소수성, 친수성, 전하, 크기 등에 기초하여 이루어진다. 아미노산 결사슬 치환체의 크기, 모양 및 종류에 대한 분석에 의하여, 아르기닌, 라이신과 히스티딘은 모두 양전하를 띤 잔기이고; 알라닌, 글라이신과 세린은 유사한 크기를 갖으며; 페닐알라닌, 트립토판과 타이로신은 유사한 모양을 갖는다는 것을 알 수 있다. 따라서, 이러한 고려 사항에 기초하여, 아르기닌, 라이신과 히스티딘; 알라닌, 글라이신과 세린; 그리고 페닐알라닌, 트립토판과 타이로신은 생물학적으로 기능 균등물이라 할 수 있다. Such amino acid variations are made based on the relative similarity of amino acid chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like. By analysis of the size, shape and type of amino acid chain substituents, arginine, lysine and histidine are all positively charged residues; Alanine, glycine Serine have a similar size; It can be seen that phenylalanine, tryptophan and tyrosine have a similar shape. Thus, based on these considerations, arginine, lysine and histidine; Alanine, glycine and serine; Phenylalanine, tryptophan and tyrosine are biologically equivalent functions.
변이를 도입하는 데 있어서, 아미노산의 소수성 인덱스 (hydropathic index)가 고려될 수 있다. 각각의 아미노산은 소수성과 전하에 따라 소수성 인텍스가 부여되어 있다: 아이소루이신 (+4.5); 발린 (+4.2); 루이신 (+3.8); 페닐알라닌 (+2.8); 시스테인 /시스타인 (+2.5); 메티오닌 (+1.9); 알라닌 (+1.8); 글라이신 (-0.4); 쓰레오닌 (-0.7); 세린 (-0.8); 트립토판 (-0.9); 타이로신 (-1.3); 프를린 (-1.6); 히스티딘 (-3.2); 글루타메이트 (-3.5); 글루타민 (-3.5); 아스파르테이트 (-3.5); 아스파라긴 (-3.5); 라이신 (-3.9); 및 아르기닌 (-4.5).  In introducing mutations, the hydropathic index of amino acids can be considered. Each amino acid is assigned a hydrophobic index according to its hydrophobicity and charge: isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); tyrosine (-1.3); Plin (-1.6); Histidine (-3.2); Glutamate (-3.5); glutamine (-3.5); Aspartate (-3.5); Asparagine (-3.5); Lysine (-3.9) and arginine (-4.5).
단백질의 상호적인 생물학적 기능 (interactive biological function)을 부여하는 데 있어서 소수성 아미노산 인덱스는 매우 중요하다. 유사한 소수성 인덱스를 가지는 아미노산으로 치환하여야 유사한 생물학적 활성을 보유할 수 있다는 것은 공지된 사실이다. 소수성 인덱스를 참조하여 변이를 도입시키는 경우, 바람직하게는 士 2 이내, 보다 바람직하게는 士 1 이내, 보다 더 바람직하게는 士 0.5 이내의 소수성 인덱스 차이를 나타내는 아미노산사이에 치환을 한다.  Hydrophobic amino acid indexes are very important in conferring the interactive biological function of proteins. It is known that substitution with amino acids having similar hydrophobicity indexes can retain similar biological activity. When introducing a mutation with reference to the hydrophobicity index, substitutions are made between amino acids that exhibit a difference in hydrophobicity index within the range of 2, more preferably within 1, and even more preferably within 0.5.
한편, 유사한 친수성 값 (hydrophilicity value)을 가지는 아미노산 사이의 치환이 균등한 생물학적 활성을 갖는 단백질을 초래한다는 것도 잘 알려져 있다. 미국 특허 제 4, 554, 101호에 개시된 바와 같이, 다음의 친수성 값이 각각의 아미노산 잔기에 부여되어 있다: 아르기닌 (+3.0); 라이신 (+3.0); 아스팔테이트 (+3.0士 1); 글루타메이트 (+3.0士 1); 세린 (+0.3); 아스파라긴 (+0.2); 글루타민 (+0.2); 글라이신 (0); 쓰레오닌 (- 0.4); 프를린 (-0.5 士 1); 알라닌 (-0.5); 히스티딘 (-0.5); 시스테인 (- 1.0); 메티오닌 (-1.3); 발린 (-1.5); 루이신 (-1.8); 아이소루이신 (- 1.8); 타이로신 (-2.3); 페닐알라닌 (-2.5); 트립토판 (-3.4).  On the other hand, it is also well known that substitutions between amino acids having similar hydrophilicity values result in proteins with equivalent biological activity. As disclosed in US Pat. No. 4,554,101, the following hydrophilicity values are assigned to each amino acid residue: arginine (+3.0); Lysine (+3.0); Asphaltate (+3.0 士 1); Glutamate (+3.0 sul 1); Serine (+0.3); asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (-0.4); Plin (-0.5 士 1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); methionine (-1.3); Valine (-1.5); Leucine (-1.8); Isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).
친수성 값을 참조하여 변이를 도입시키는 경우, 바람직하게는 土 2 이내, 보다 바람직하게는 士 1 이내, 보다 더 바람직하게는 士 0.5 이내의 친수성 값 차이를 나타내는 아미노산사이에 치환을 한다. When introducing the mutation with reference to the hydrophilicity value, preferably within 土 2, more preferably within 士 1, even more preferably within ∗ 0.5 Substitutions are made between amino acids that exhibit a difference in hydrophilicity.
분자의 활성을 전체적으로 변경시키지 않는 단백질에서의 아미노산 교환은 당해 분야에 공지되어 있다 (H. Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/I le, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다.  Amino acid exchange in proteins that do not alter the activity of the molecule as a whole is known in the art (H. Neurath, R. L. Hill, The Proteins, Academic Press, New York, 1979). The most commonly occurring exchanges are amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Phe, Ala / Exchange between Pro, Lys / Arg, Asp / Asn, Leu / I le, Leu / Val, Ala / Glu, Asp / Gly.
상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명의 단일 도메인 항체 또는 이를 코딩하는 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성 (substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대웅되도록 배열 (align)하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 배열된 서열을 분석한 경우에 , 최소 61%의 상동성, 보다 바람직하게는 70%의 상동성, 보다 더 바람직하게는 80%의 상동성, 가장 바람직하게는 90¾의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 배열 방법은 당업계에 공지되어 있다. 서열 배열에 대한 다양한 방법 및 알고리즘은 Smith and Given the above-described variations with biologically equivalent activity, a single domain antibody or nucleic acid molecule encoding the same of the present invention is to be interpreted to include sequences that exhibit substantial identity with the sequences listed in the Sequence Listing. The above substantial identity is at least 61% when the sequences of the present invention and any other sequences are aligned to the utmost, and the sequences are analyzed using algorithms commonly used in the art. Means a sequence that exhibits homology of, more preferably 70% homology, even more preferably 80% homology, and most preferably 90¾ homology. Alignment methods for sequence comparison are known in the art. Various methods and algorithms for sequencing are described in Smith and
Wat ermanC 1981), Adv. Appl. Math. 2:482; Needleman and Wunsch(1970) , J. Mol. Bio. 48:443-53; Pearson and Li man (1988), Methods in Mol. Biol. 24: 307-31; Higgins and Sharp (1988), Gene 73:237—44; Higgins and Sharp (1989), CABI0S 5:151-3; Corpet et al.(1988), Nuc. Acids Res. 16:10881-90; Huang et a 1.(1992), Comp. Appl. BioSci . 8:155—65 and Pearson ef al.(1994), Meth. Mol. Biol. 24:30그 31에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al.(1990), J. Mol. Biol. 215:403- 10)은 NBCI (National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn and tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 http://www.ncbi .nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://丽. ncbi .nlm.nih.gov/BLAST/blast_heli). html에서 확인할 수 있다. 본 발명의 보다 바람직한 구현 예에 따르면, 본 발명의 단일 도메인 항체 중쇄 CDR 아미노산 서열은 서열목록 제 24서열의 CDR1, 서열목톡 제 31서열의 CDR2 및 서열목록 제 38서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 25서열의 CDR1, 서열목록 제 32서열의 CDR2 및 서열목톡 제 39서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 26서열의 CDR1, 서열목록 제 33서열의 CDR2 및 서열목록 제 40서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 27서열의 CDR1, 서열목록 제 34서열의 CDR2 및 서열목록 제 41서열의 CDR3을 포함하는 아미노산 서열, 서열목톡 제 28서열의 CDR1, 서열목록 제 35서열의 CDR2 및 서열목톡 제 42서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 29서열의 CDR1, 서열목록 제 36서열의 CDR2 및 서열목록 제 43서열의 CDR3을 포함하는 아미노산 서열, 그리고 서열목록 제 30서열의 CDR1, 서열목록 제 37서열의 CDR2 및 서열목록 제 44서열의 CDR3을 포함하는 아미노산 서열로 구성된 군으로부터 선택된다. Wat erman C 1981), Adv. Appl. Math. 2: 482; Needleman and Wunsch (1970), J. Mol. Bio. 48: 443-53; Pearson and Li man (1988), Methods in Mol. Biol. 24: 307-31; Higgins and Sharp (1988), Gene 73: 237—44; Higgins and Sharp (1989), CABI0S 5: 151-3; Corpet et al. (1988), Nuc. Acids Res. 16: 10881-90; Huang et a 1. (1992), Comp. Appl. BioSci. 8: 155—65 and Pearson ef al. (1994), Meth. Mol. Biol. 24:30 it is disclosed in 31. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990), J. Mol. Biol. 215: 403-10) is accessible from the National Center for Biological Information (NBCI), and is available on the Internet in blastp, blasm, It can be used in conjunction with sequencing programs such as blastx, tblastn and tblastx. BLSAT is accessible at http://www.ncbi.nlm.nih.gov/BLAST/. Sequence homology comparison method using this program is http: // 丽. ncbi.nlm.nih.gov/BLAST/blast_heli). You can check it in html. According to a more preferred embodiment of the invention, a single domain of the invention The antibody heavy chain CDR amino acid sequence is an amino acid sequence comprising CDR1 of SEQ ID NO: 24, CDR2 of SEQ ID NO: 31 and CDR3 of SEQ ID NO: 38, CDR1 of SEQ ID NO: 25 , CDR2 of SEQ ID NO: 32 And an amino acid sequence comprising CDR3 of SEQ ID NO: 39, CDR1 of SEQ ID NO: 26, CDR2 of SEQ ID NO: 33, and CDR1 of SEQ ID NO: 40, CDR1 of SEQ ID NO: 27 , Amino acid sequence comprising CDR2 of SEQ ID NO: 34 and CDR3 of SEQ ID NO: 41, CDR1 of SEQ ID NO: 28, CDR2 of SEQ ID NO: 35, and CDR3 of SEQ ID NO: 42 , An amino acid sequence comprising CDR1 of SEQ ID NO: 29, CDR2 of SEQ ID NO: 36, and CDR3 of SEQ ID NO: 43, CDR1 of SEQ ID NO: 30, CDR2 and SEQ ID NO: 37 of SEQ ID NO: 37 The list is selected from the group consisting of the amino acid sequence comprising a CDR3 sequence of claim 44.
본 발명의 가장 바람직한 구현예에 따르면, 본 발명의 단일 도메인 항체는 4개의 를 부위 (FR1-FR4)와 3개의 상보성 결정 부위 (CDR1-CDR3)로 이루어진 서열목록 제 1서열 내지 제 7서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된다.  According to the most preferred embodiment of the present invention, the single domain antibody of the present invention consists of SEQ ID NO: 1 to 7 consisting of four sites (FR1-FR4) and three complementarity determining sites (CDR1-CDR3) Selected from the group consisting of amino acid sequences.
본 발명의 항체는 상술한 아미노산 서열의 항체뿐만 아니라, 상기 아미노산 서열의 일부 또는 전부를 포함하는 단세포군항체 (monoclonal antibody), 인간화된 항체 및 키메릭 항체도 포함한다.  Antibodies of the invention include not only antibodies of the amino acid sequences described above, but also monoclonal antibodies, humanized antibodies and chimeric antibodies comprising some or all of the amino acid sequences.
본 발명의 변형예에 따르면, 본 발명의 MUC1에 대한 단일도메인 항체는 최소 2종 이상의 단일도메인 항체를 포함하는 2가 (divalency) 이상의 항체이다. 2가 이상의 항체에 있어서, 단일 도메인 항체들은 동일한 아미노산 서열을 가질 수 있고, 흑은 모두 동일한 서열을 갖지 않을 수도 있다. MUC1에 대한 단일 도메인 항체가 모두 동일한 서열을 공유하지는 않지만 동일한 표적, 하나 이상의 그 항원에 대한 MUC1에 대한 단일 도메인 항체를 포함하는 것은 본 발명의 범위 내이다.  According to a variant of the invention, the monodomain antibody against MUC1 of the invention is at least a divalency antibody comprising at least two or more monodomain antibodies. For bivalent or more antibodies, single domain antibodies may have the same amino acid sequence, and black may not all have the same sequence. It is within the scope of the present invention that a single domain antibody against MUC1 does not all share the same sequence but includes the same target, a single domain antibody against MUC1 against one or more of its antigens.
본 발명의 바람직한 구현 예에 따르면, 본 발명의 단일 도메인 항체는 기능성 분자가 추가적으로 결합되어 있다. MUC1은 상피세포 표면에 일반적으로 발현되는 분자이므로 MUC1에 대한 단일 도메인 항체에 기능성 분자를 추가적으로 결합하여 MUC1이 발현되는 암종의 예방, 치료 또는 진단에 이용할 수 있다. 본 발명의 바람직한 구현 예에 따르면, 본 발명의 단일 도메인 항체에 추가적으로 결합되는 기능성 분자는 화학물질, 펩타이드, 폴리펩타이드, 핵산, 탄수화물, 지질 또는 무기입자이고 보다 바람직하게는 화학물질, 펩타이드, 폴리펩타이드 또는 무기입자이다. According to a preferred embodiment of the present invention, the single domain antibody of the present invention is further bound to a functional molecule. Since MUC1 is a molecule that is generally expressed on the surface of epithelial cells, a functional molecule can be additionally bound to a single domain antibody against MUC1 and used for the prevention, treatment or diagnosis of carcinoma expressing MUC1. According to a preferred embodiment of the present invention, the functional molecule additionally bound to the single domain antibody of the present invention is a chemical, peptide, polypeptide, nucleic acid, carbohydrate, lipid or inorganic particle, more preferably chemical, peptide, polypeptide Or inorganic particles.
기능성 분자로서 화학물질은 바람직하게는 약리적 활성물질이고, 보다 바람직하게는 항암제이며, 예를 들어, 아시바이신, 아클라루비신, 아코다졸, 아크로나이신, 아도젤레신, 알라노신, 알데스루킨, 알로푸리놀 소듐, 알트레타민, 아미노글루테티미드, 아모나파이드, 암플리겐, 암사크린, 안드로겐스, 안구이딘, 아피디콜린 글리시네이트, 아사레이, 아스파라기나아제, 5-아자시티딘, 아자티오프린, 바실러스 칼메테- 구에린 (BCG), 베이커스 안티폴, 베타 -2—디옥시티오구아노신, 비스안트렌 HC1, 블레오마이신 설페이트, 불서판, 부티오닌 설폭시민, BWA 773U82, BW 502U83/HC1 , BW 7U85 메실레이트, 세라세미드, 카르베티머, 카르보플라틴, 카르무스틴, 클로람부실, 클로로퀴녹살린-설포나미드, 클로로조토신, 크로모마이신 A3, 시스플라틴, 클라드리빈, 코르티코스테로이드, 코리너박테리움 파르붐, CPT-11, 크리스나를, 사이클로사이티딘, 사이클로포스파미드, 시—이타라빈, 사이템베나, 다비스 말리에이트, 데카르바진, 닥티노마이신, 다우노루바이신 HC1, 디아자유리딘, 덱스라족산, 디언하이드로갈락티를, 디아지쿠온, 디브로모둘시를, 디데민 B, 디에틸디티오카르바메이트, 디클라이코알데하이드, 다이하이드로 -5- 아자사이틴, 독소루비신, 에치노마이신, 데다트렉세이트, 에델포신, 에플를니틴, 엘리옷스 용액, 엘사미트루신, 에피루비신, 에소루비신, 에스트라머스틴 포스페이트, 에스트로겐, 에타니다졸, 에티오포스, 에토포사이드, 파드라졸, 파자라빈, 펜레티나이드, 필그라스팀, 피나스테라이드, 플라본 아세트산, 플톡스유리딘, 플루다라빈 포스페이트, 5' -플루오로우라실, F!uosol™, 플루타미드, 갈륨 나이트레이트, 겜사이타빈, 고세레린 아세테이트, 헤프설팜, 핵사메틸렌 비스아세트아미드, 호모하링토닌, 하이드라진 설페이트, 4-하이드록시안드로스테네디온, 하이드로지우레아, 이다루비신 HC1, 이포스파미드, 4-이포메아놀, 이프로플라틴, 이소트레티노인, 류코보린 칼슘, 류프로라이드 아세테이트, 레바미솔, 리포좀 다우노루비신, 리포좀 포집 독소루비신, 로머스틴, 로니다민, 마이탄신 , 메클로레타민 하이드로클로라이드, 멜팔란 , 메노가릴, 메르바론, 6-머캅토푸린, 메스나, 바실러스 칼레테-구에린의 메탄올 추출물 메토트렉세이트, N-메틸포름아미드, 미페프리스톤, 미토구아존, 마이토마이신 -C, 미토탄, 미록산트론 하이드로클로라이드, 모노사이트 /마크로파아지 콜로니 -자극 인자, 나빌론, 나폭시딘, 네오카르지노스타틴, 옥트레오타이드 아세테이트, 오르마플라틴, 옥살리플라틴, 파크리탁셀, 팔라, 펜토스타틴, 피페라진디온, 피포브로만, 피라루비신, 피리트렉심, 피록산트론 하이드로클로라이드, PIXY-321, 플리카마이신, 포르피머 소듐, 프레드니무스틴, 프로카르바진, 프로게스틴스, 파이라조푸린, 라족산, 사르그라모스팀, 세무스틴, 스피로게르마늄, 스피로무스틴, 스트렙토나이그린, 스트랩토조신, 술로페너르, 수라민 소듐, 타목시펜, 탁소레레, 테가푸르, 테니포사이드, 테레프탈아미딘, 테록시론, 티오구아닌, 티오테파, 티미딘 인젝션, 티아조푸린, 토포테칸, 토레미펜, 트레티노인, 트리플루오페라진 하이드로클로라이드, 트리플루리딘, 트리메트렉세이트, TNF(tumor necrosis factor), 우라실 머스타드, 빈블라스틴 설페이트, 빈크리스틴 설페이트, 빈데신, 비노렐빈, 빈졸리딘, Yoshi 864, 조루비신, 사이토신아라비노시드, 에토포시드, 멜파란, 탁솔 및 이들의 흔합물이나 이에 한정되지 않는다. 항암제로 가장 바람직하게는 메토트렉세이트, 독소루비신, 다우노루비신, 사이토신아라비노시드, 에토포시드, 5' -폴루오로우라실, 멜파란, 클로람부실, 사이클로포스파마이드, 시스플라틴, 빈데신, 마이토마이신, 블레오마이신, 타목시펜 및 탁솔이다. As functional molecules, the chemical is preferably a pharmacologically active substance, more preferably an anticancer agent, for example, abyssin, aclarubicin, acodazole, acromycin, adozelesin, alanosine, aldehydes. , Allopurinol sodium, Althetamine, Aminoglutetimide, Amonapiide, Ampligen, Amsacrine, Androgens, Anguidine, Apidicholine glycinate, Asari, Asparaginase, 5-Aza Citidine, Azathioprine, Bacillus Calmette-Guerin (BCG), Bakers Antipole, Beta-2—Deoxythioguanosine, Bisantrene HC1, Bleomycin Sulfate, Bullionine, Butionine Suloximine, BWA 773U82, BW 502U83 / HC1, BW 7U85 mesylate, ceracemide, carbetimer, carboplatin, carmustine, chlorambucil, chloroquinoxaline-sulfonamide, chlorozotocin, chromomai Sin A3, Cisplatin, Cladribine, Corticosteroids, Corinbacterium Parboom, CPT-11, Crisna, Cyclocytidine, Cyclophosphamide, Ci-itarabine, Cytembena, Davies Maliate, Decarbazine , Dactinomycin, Daunorubicin HC1, Diazauridine, Dexauramic acid, Dihydrohydrogalacti, Diajikuon, Dibromodulci, Didemin B, Diethyldithiocarbamate , Diclico Aldehyde, Dihydro-5-Azacytin, Doxorubicin, Echinomycin, Deda trexate, Edelfosin, Eplenithine, Eliots solution, Elsamitrusine, Epirubicin, Esorubicin, Estramustine phosphate, Estrogen , Etanidazol, Ethiophos, Etoposide, Padrazole, Pazarabine, Penretinide, Filgrastim, Finasteride, Flavone Acetic Acid, Plutok Yuridine, Fludarabine Phosphate, 5'-Fluorouracil, F! Uosol ™, Flutamide, Gallium Nitrate, Gemcitabine, Goserelin Acetate, Hepsulpam, Nutrimethylene Bisacetamide, Homohartontonin, Hydrazine Sulfate, 4-Hydroxyandrostenedione, Hydrourea, Idarubicin HC1, Iphosphamide, 4-Ipomeanol, Iproplatin, Isotretinoin, Leucovorin Calcium, Leproprolide Acetate, Levamisol, Liposome Daunorubicin , liposome capture doxorubicin , romastin , Methanol extracts of Rhodamine, Maitansine, Mechloretamine Hydrochloride, Melphalan, Menogaryl, Merbaron, 6-mercaptopurine, Mesna, Bacillus calete-guerine Methotrexate, N-methylformamide, Mifepristone, Mitoguazone, mitomycin-C, mitotan, miroxanthrone hydrochloride, monosite / macrophage colony-stimulating factor, nabilone, napoxidine, neocarcinostatin, octreotide acetate, ormaplatin, Oxaliplatin, paclitaxel, pala, pentostatin, piperazinedione, fibrobromine, pyrarubicin, pyritrexime, pyroxanthrone hydrochloride, PIXY-321, plicamycin, porpimer sodium, prednisostin, pro Carbazine, Progestins, Pyrazopurin, Razoic Acid, Sargramothim, Semustine, Spirogermanium, Spyromus Tin, strepto-nigreen, straptozosin, sulofener, suramin sodium, tamoxifen, taxorere, tegapur, teniposide, terephthalamidine, theeroxrone, thioguanine, thiotepa, thymidine injection, thiazofurin , Topotecan, toremifene, tretinoin, trifluoroferrazine hydrochloride, trifluidine, trimetrexate, tumor necrosis factor, uracil mustard, vinblastine sulfate, vincristine sulfate, vindesine, vinorelbine Vinzolidine, Yoshi 864, zorubicin, cytosine arabinoside, etoposide, melparan, taxol and combinations thereof, but not limited to these. As the anticancer agent, most preferably methotrexate, doxorubicin, daunorubicin, cytosine arabinoside, etoposide, 5'-polourouracil, melfaran, chlorambucil, cyclophosphamide, cisplatin, binddesin, mai Tomycin, bleomycin, tamoxifen and taxol.
기능성 분자로서 펩타이드 또는 폴리펩타이드는 특별하게 제한되지 않으며, 호르몬, 호르몬 유사체, 효소, 효소저해제, 신호전달단백질 또는 그 일부분, 항체 또는 그 일부분, 단쇄항체, 결합단백질 또는 그 결합도메인, 항원, 부착단백질, 구조단백질, 조절단백질, 독소단백질, 사이토카인, 전사조절 인자, 혈액 응고 인자 및 백신 등을 포함하나, 이에 한정되지 않는다. 보다 상세하게는, 본 발명의 단일 도메인 항체에 추가적으로 결합되는 펩타이드 또는 폴리펩타이드는 인슐린, IGF- 1( insulin-like growth factor 1), 성장호르몬, 에리쓰로포이에틴, G-CSFs (granulocyte— colony stimulating factors) , GM-CSFs (granulocyte/macrophageᄀ: olony stimulating factors) , 인터페론 알파 인터페론 베타, 인터페론 감마, 인터루킨 -1 알파 및 베타, 인터루킨 -3 인터루킨 -4, 인터루킨 -6, 인터루킨 -2, EGFs (epidermal growth factors) 칼시토닌 (calcitonin), ACTH (adrenocorticotropic hormone) , TNF (tumor necrosis factor) , 아토비스반 (atobisban), 부세레린 (buserel in) 세트로렉릭스 (cetrorelix), 데스로레린 (deslorel in) 데스모프레신 (desmopressin), 디노르핀 A (dynorphin A) (1-13) 엘카토닌 (elcatonin), 엘레이도신 (eleidosin) 엡티피바타이드 (eptif ibatide), GHRH-II (growth hormone releasing hormone一 II), 고나도레린 (gonadorel in), 고세레린 (goserel in) 히스트레린 (histrelin), 류프로레린 (leuprorelin), 라이프레신 (lypressin) 옥트레오타이드 (octreotide), 옥시토신 (oxytocin), 피트레신 (pitressin) 세크레틴 (secret in), 신칼라이드 (sincal ide) , 테르리프레신 (ter 1 ipressin) 티모펜틴 (thymopentin), 티모신 (thymosine) αΐ 트리프토레린 (triptorelin), 바이발리루딘 (bivalirudin) 카르베토신 (carbetocin), 사이클로스포린, 액세딘 (exedine) 란레오타이드 (lanreotide) , LHRH (luteinizing hormone-releasing hormone) , 나파레린 (nafarelin), 부갑상선 호르몬, 프람린타이드 (pramlint ide) , T-20 (enfuvirtide), 타이말파신 (thymalfasin), 지코노타이드, 리신, 리신 A 사슬, 슈도모나스 외독소, 디프테리아 독소, 포크위드 (pokeweed) 항바이러스 단백질, 아브린 (abrin), 아브린 A 사슬, 코브라 베놈 인자, 겔로닌 (gelonin), 사포린 (saporin), 모데신 (modeccin), 볼켄신 (volkensin), 비스쿠민 (viscumin), 클로스트리듐 페르프링겐스 포스포리파제 C 및 보바인 췌장 리보뉴클레아제를 포함한다. Peptides or polypeptides as functional molecules are not particularly limited and include hormones, hormone analogs, enzymes, inhibitors, signaling proteins or parts thereof, antibodies or parts thereof, short chain antibodies, binding proteins or binding domains, antigens, adhesion proteins , Structural proteins, regulatory proteins, toxin proteins, cytokines, transcriptional regulators, blood coagulation factors, and vaccines, but are not limited thereto. More specifically, the peptide or polypeptide additionally bound to the single domain antibody of the present invention is insulin, insulin-like growth factor 1 (IGF-1), growth hormone, erythropoietin, G-CSFs (granulocyte— colony) stimulating factors), GM-CSFs (granulocyte / macrophagea: olony stimulating factors), interferon alpha interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3 interleukin-4, interleukin-6, interleukin-2, EGFs (epidermal growth factors) calcitonin ), ACTH (adrenocorticotropic hormone), TNF (tumor necrosis factor), Atobisban, buserel in buseroelx, cetrorelix, deslorelin desmopressin ), Dynorphin A (1-13) elcatonin, eleidosin eptipifide, GHRH-II (growth hormone releasing hormone I II), gonadorerin (gonadorel in), goserel in histrelin, leuprorelin, lypressin octreotide, oxytocin, pitressin secretin secret in), sincal ide, terri Ter 1 ipressin thymopentin, thymosine αΐ triptorelin, bivalirudin carbetocin, cyclosporin, exedine lanretide ( lanreotide, LHRH (luteinizing hormone-releasing hormone), naparlin, parathyroid hormone, pramlint ide, T-20 (enfuvirtide), thymalfasin, ziconotide, lysine, Lysine A chain, Pseudomonas exotoxin, diphtheria toxin, pokeweed antiviral protein, abrin, abrin A chain, cobra venom factor, gelonin, saporin, modecin ), Volkensin, biscumin, Clostridium FERRINGGENS phospholipase C and bovine pancreatic ribonucleases.
본 발명의 바람직한 구현예에 따르면, 본 발명의 기능성분자로서 펩타이드 또는 폴리펩타이드는 세포 살해 가능 물질로서 리신, 리신 A 사슬, 슈도모나스 외독소, 디프테리아 독소, 포크위드 (pokeweed) 항바이러스 단백질, 아브린 (abrin), 아브린 A 사술, 코브라 베놈 인자, 겔로닌 (gelonin), 사포린 (sapor in) , 모데신 (modeccin), 볼켄신 (volkensin), 비스쿠민 (viscumin), 클로스트리듐 페르프링겐스 포스포리파제 C 및 보바인 췌장 리보뉴클레아제을 포함하고, 보다 바람직하게는 디프테리아 독소이다. 세포 살해 가능 물질로서 독소 단백질은 본 발명의 단일 도메인 항체와 융합되어 재조합 면역 독소를 생성한다. According to a preferred embodiment of the present invention, the peptide or polypeptide as a functional ingredient of the present invention is a cell killing substance as lysine, lysine A chain, Pseudomonas exotoxin, diphtheria toxin, pokeweed antiviral protein, abrin ), Abrin A hex, Cobra Venom factor, gelonin, sapor in, modeccin, volkensin, viscumin, Clostridium perpringens force Lipase C and bovine pancreatic ribonucleases, more preferably diphtheria toxin. Toxin proteins, as cell killing substances, are fused with the single domain antibodies of the invention to produce recombinant immunotoxins.
본 발명의 보다 다른 바람직한 구현예에 따르면, 본 발명에 추가적으로 결합되는 디프테리아 독소는 단일 도메인 항체에 직접적으로 결합되거나 링커를 통하여 간접적으로 결합된다.  According to another preferred embodiment of the present invention, the diphtheria toxin additionally bound to the present invention is bound directly to a single domain antibody or indirectly through a linker.
본 발명에서 "직접적으로 결합" 된다라고 함은 링커를 통해서가 아닌 디프테리아 독소와 단일 도메인 항체만이 결합되어 융합되는 재조합 면역 독소를 의미하고, "간접적으로 결합" 된다라고 함은 링커를 사이에 두고 디프테리아 독소 및 단일 도메일 항체가 결합되어 융합되는 재조합 면역 독소를 의미한다.  In the present invention, "directly linked" means a recombinant immunotoxin to which only diphtheria toxin and a single domain antibody are combined and not fused through a linker, and "indirectly coupled" means that the linker is interposed therebetween. By recombinant immunotoxin, a diphtheria toxin and a single domain antibody are combined and fused.
본 발명에 이용되는 링커는 단일 도메인 항체에 결합되는 기능성 분자가 화합물 또는 펩타이드인지에 따라 당업계에서 링커로 이용되는 어떠한 화합물 또는 펩타이드 링커가 가능하며, 단일 도메인 항체에 있는 작용기 종류에 따라 적합한 링커를 선택할 수 있다. 예를 들어, 기능성 분자가 화합물인 경우에는 링커로서 화합물은 N-숙시니미딜 요오도아세테이드 (N-succinimidyl iodoacetate) , N_히드록시숙시니미딜 브로모아세테이트 (N_Hydroxysuccinimidyl Bromoacetate) , m- 말레이미도벤조일 -N-히드록시숙신이미드 에스테르 (m-Maleimidobenzoyl-N- hydr oxysucc i n i m i de ester) , m一말레이미도벤조일—N_ 히드록시설포숙신이미드에스테르 (m-Maleimidobenzoyl-N- hydroxysulfosuccinimide ester), N-말레이미도부티릴옥시숙신아미드 어 1스테르 ( N-Ma 1 e i m i dobut y r y 1 oxysucc i nam i de ester) , (N— The linker used in the present invention may be any compound or peptide linker used in the art as a linker depending on whether the functional molecule is a compound or a peptide that binds to a single domain antibody, and a linker suitable for the type of functional group in the single domain antibody may be used. You can choose. For example, when the functional molecule is a compound, the compound as a linker is N-succinimidyl iodoacetate, N_Hydroxysuccinimidyl Bromoacetate, or m-maleic. M-Maleimidobenzoyl-N-hydroxyoxyccideimide ester, m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester, N-Malimidobutyryloxysuccinamide astere (N-Ma 1 eimi dobut yry 1 oxysucc i nam i de ester), (N—
Ma 1 e i m i dobut yr y 1 oxysu 1 f osucc i nam i de ester) , Ε—말레이미도^ 1"프로산 히드라지드 · HC1 (E-Maleimidocaproic acid hydrazide - HC1 ) , [N一 말레이디도카프로일옥시-숙신아미드] ([N-(E-maleimidocaproyloxy)- succinamide]), [N—말레이미도카프로일옥시) -설포숙신아미드] ([N-(E- maleimidocaproyloxy)-sul fosuccinamide] ) , 말레이미도프로피온산 Ν- 히드록시숙신이미드 에스테르 (Maleimidopropionic Acid N- Hydroxysuccinimide Ester), 말레이미도프로피온산 N- 히드록시설포숙신이미드 에스테르 (Maleimidopropionic Acid N- Hydroxysulf osucc inimide Ester), 말레이미도프로피온산 히드라지드 · HC1 (Maleimidopropionic Acid Hydrazide · HC1), N-숙신이미딜 -3_(2- 피리딜디티오)프로피오네이트 (N-Succinimidyl-3-(2- pyridyldithio)propionate), N—숙시니미딜一4一Ma 1 eimi dobut yr y 1 oxysu 1 f osucc i nam i de ester), Ε—maleimido ^ 1 "proic acid hydrazideHCl1 (E-Maleimidocaproic acid hydrazide-HC1), [N 一 maledidocaproyloxy -Succinamide] ([N- (E-maleimidocaproyloxy)-succinamide]), [N-maleimidocaproyloxy) -sulfosuccinamide] ([N- (E- maleimidocaproyloxy) -sul fosuccinamide]), maleimido Maleimidopropionic Acid N-Hydroxysuccinimide Ester, Maleimidopropionic Acid N-Hydroxysulfosuccinimide Ester, Maleimidopropionic Acid N-Hydroxysuccinimide Ester, Maleimidopropionic Acid N-Hydroxysuccinimide Ester (Maleimidopropionic Acid HydrazideHc1), N-succinimidyl-3_ (2-pyridyldithio) propionate, N-succinimidyl
(요오도아세틸)아미노벤조에이트 (N-Succinimidyl-(4-iodoacetyl) aminobenzoate), 숙시니미딜 -(N_말레이미도메틸)시클로핵산 -1- 카르복실레이트 (Succinimidyl-(N-maleimidomethyl )cyclohexane~l- car boxy late), 숙시니미딜 -4- (말레이미도페닐)부틸레이트 (Succinimidyl-4- (p-maleimidophenyl )butyrate) , 설포숙시니미딜— (4一 요오도아세틸)아미노벤조에이트 (Sulfosuccinimidyl-(4- iodoacetyl )aminobenzoate) , 설포숙시니미딜一 4— (Ν— 말레이미도메틸)시클로핵산 -1-카르복실레이트 (Sulfosuccinimidyl— 4-(Ν- maleimi dome thy 1 ) eye 1 ohexane_l一 car boxy late) , 설포숙시니미딜 -4- ( - 말레이미도페닐 )부틸레이트 (Sul fosuccinimidyl-4-(p- maleimidophenyl )butyrate) , m-말레이미도벤조산 히드라지드 ' HCl (m- Maleimidobenzoic acid hydrazide HC1), 4-(N-말레이미도메틸)시클로핵산- 1-카르복실산 히드라지드 · Η(:1 ( 4- ( N-Ma 1 e i m i dome t hy 1 ) eye 1 ohexane- 1 - car boxy lie acid hydrazide · HC1), 4-(4-N-말레이미도페닐)부티르산 히드라지드 · HC1 (4-(4-N-maleimidophenyl )butyric acid hydrazide - HC1 ) , N-숙시니미딜 3-(2-피리딜디티오) 프로피오네이트 (N-succinimidyl 3_(2- pyridyldithio) propionate) , 비스 (설포숙시니미딜)수베레이트 (Bis(sulfosuccinimidyl)suberate), 1,2- 디 [3, -(2' -피리딜디티오)프로피온아미도] 부탄 (1,2-Di[3' -(Iodoacetyl) aminobenzoate (N-Succinimidyl- (4-iodoacetyl ) aminobenzoate), succinimidyl - (N_ maleimido-methyl) cyclohexane-1-carboxylate acid (Succinimidyl- (N-maleimidomethyl) cyclohexane ~ l-car boxy late), succinimidyl-4- (p-maleimidophenyl) butyrate, sulfosuccinimidyl— (4 一 iodoacetyl) aminobenzoate ( Sulfosuccinimidyl- (4- iodoacetyl) aminobenzoate), sulfosuccinimidyl 一 4— (Ν— maleimidomethyl) cyclonucleic acid-1-carboxylate (Sulfosuccinimidyl— 4- (Ν- maleimi dome thy 1) eye 1 ohexane_l 一car boxy late), Sulfosuccinimidyl-4-(-maleimidophenyl) butyrate, m-maleimidobenzoic acid hydrazide HC1), 4- (N-maleimidomethyl) cyclonucleic acid-1-carboxylic acid hydrazide Η (: 1 (4- (N-Ma 1 eimi dome t hy 1) e ye 1 ohexane- 1-car boxy lie acid hydrazide HC1), 4- (4-N-maleimidophenyl) butyric acid hydrazide HC1 (4- (4-N-maleimidophenyl) butyric acid hydrazide-HC1), N- Succinimidyl 3- (2-pyridyldithio) propionate (N-succinimidyl 3_ (2-pyridyldithio) propionate), bis (sulfosuccinimidyl) suberate (Bis (sulfosuccinimidyl) suberate), 1,2 Di [3 ,-(2'-pyridyldithio) propionamido] butane (1,2-Di [3 '-
(2, pyridyldithio)propionamido] Butane) , 디숙入 1니디밀 수베레이트 (Dissuccinimidyl Suberate), 디숙시니미딜 타르타레이트 (Dissuccinimidyl Tartarate), 디설포숙시니미딜 타르타레이트 (Disulfosuccinimdiyl Tartarate), 디티오-비스- (숙시니미딜 프로피오네이트) (Dithio-bis-(succinimidyl propionate)), 3,3 '-디티오- 비스- (설포숙시니미딜 -프로피오네이트) (3,3 ' -Di thio-bi s- ( sulfosuccinimidyl -prop i onat e) ) , 에틸렌 글리콜 비스 (숙시니미딜숙시네이트 (Ethylene Glycol bis(Succinimidyl succinate)) 및 에틸렌 글리콜 비스 (설포숙시니미딜숙시네이트) (Ethylene Glycol bis(Sulfosuccinimidylsuccinate))를 포함하나, 이에 한정되는 것은 아니다. 한편, 단일 도메인 항체에 결합되는 기능성 분자가 펩타이드 또는 폴리펩타이드인 경우에 이용되는 적합한 펩타이드 링커의 서열은 다음과 같은 요소를 고려하여 선택될 수 있다: (a) 유연하게 연장된 구조에 적용될 수 있는 능력; (b) 에피토프와 상호작용 하는 이차구조를 생성하지 않는 능력; 및 (c) 에피토프와 반웅할 수 있는 소수성 잔기 또는 전하를 갖는 잔기의 부재. 바람직한 펩타이드 링커는 Gly, Asn 및 Ser 잔기를 포함한다.(2 , pyridyldithio) propionamido] Butane), Dissuccinimidyl Suberate, Dissuccinimidyl Tartarate, Disulfosuccinimidyl Tartarate, Dithio- Bis- (succinimidyl propionate) (Dithio-bis- (succinimidyl propionate)), 3,3'-dithio-bis- (sulfosuccinimidyl-propionate) (3,3'-Di thio -bi s- (sulfosuccinimidyl -prop i onat e), ethylene glycol bis (Sthenimidyl succinate) and ethylene glycol bis (sulfosuccinimidyl succinate) (Ethylene Glycol bis (Sulfosuccinimidylsuccinate)), but is not limited thereto. On the other hand, the sequence of a suitable peptide linker used when the functional molecule bound to the single domain antibody is a peptide or polypeptide can be selected in consideration of the following factors: ( a ) which can be applied to a flexible extended structure ability; (b) the ability not to create secondary structures that interact with epitopes; And (c) the absence of a hydrophobic moiety or moiety that can react with the epitope. Preferred peptide linkers include Gly, Asn and Ser residues.
Thr 및 Ala과 같은 다른 중성 아미노산들도 링커 서열에 포함될 수 있다. 링커에 적합한 아미노산 서열은 Maratea et al.(1985), Gene 40: 39-46; Murphy et al.(1986), Proc. Natl. Acad Sci. USA 83:8258-8562; 미국 특허 제 4,935,233호, 제 4,751,180호 및 제 5,990, 275호에 개시되어 있다. 링커 서열은 1-50 아미노산 잔기로 구성될 수 있다. 예시적인 링커 서열은, "Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser" , "Gly Gly Gly Gly Ser GlyOther neutral amino acids such as Thr and Ala can also be included in the linker sequence. Suitable amino acid sequences for linkers are Maratea et al. (1985), Gene 40: 39-46; Murphy et al. (1986), Proc. Natl. Acad Sci. USA 83: 8258-8562; US Pat. Nos. 4,935,233, 4,751,180 and 5,990,275. The linker sequence may consist of 1-50 amino acid residues. Exemplary linker sequences include, “Gly Gly Gly Gly Ser Gly Gly Gly Ser”, “Gly Gly Gly Gly Gly Ser Gly”.
Gly Gly Gly Ser Gly Gly Gly Gly Ser", "Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser", "Gly Ser Thr Ser GlyGly Gly Gly Ser Gly Gly Gly Ser "," Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser "," Gly Ser Thr Ser Gly
Ser Gly Lys Pro Gly Ser Gly Glu Gly Ser Thr Lys Gly" 또는 "Gly SerSer Gly Lys Pro Gly Ser Gly Glu Gly Ser Thr Lys Gly "or" Gly Ser
Thr Ser Gly Lys Pro Ser Glu Gly Lys Gly" 이고, 바람직하게는 서열목록 제 15서열의 "Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser" 이다. Thr Ser Gly Lys Pro Ser Glu Gly Lys Gly ", preferably" Gly Gly Gly Gly Ser Gly Gly Gly Ser "of SEQ ID NO: 15.
본 발명의 가장 바람직한 구현예에 따르면, 본 발명에서 상기 디프테리아 독소가 단일 도메인 항체에 직접적으로 결합되는 경우에 단일 도메인 항체는 서열목록 계 8서열 내지 제 14서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택되는 아미노산 서열이다.  According to the most preferred embodiment of the present invention, when the diphtheria toxin is directly bound to a single domain antibody in the present invention, the single domain antibody is selected from the group consisting of amino acid sequences consisting of SEQ ID NO: 8 to 14 Amino acid sequence.
본 발명의 다른 가장 바람직한 구현예에 따르면, 본 발명에서 상기 디프테리아 독소가 단일 도메인 항체에 링커를 통하여 간접적으로 결합되는 경우에 단일 도메인 항체는 서열목록 제 17서열 내지 제 23서열로 구성된 군으로부터 선택되는 아미노산서열이다.  According to another most preferred embodiment of the present invention, in the present invention, when the diphtheria toxin is indirectly bound to a single domain antibody through a linker, the single domain antibody is selected from the group consisting of SEQ ID NOs: 17 to 23 Amino acid sequence.
본 발명의 보다 다른 바람직한 구현예에 따르면, 본 발명의 단일 도메인 항체에 추가적으로 결합되는 기능성 분자는 화합물질 또는 무기입자로서 조영제 (예컨대, T1 조영제, 초상자성 물질과 같은 T2 조영제, 방사성 동위 원소 등)ᅳ 형광 마커 (예컨대, 형광 양자점) 또는 염색 물질이다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의According to another preferred embodiment of the present invention, the functional molecule additionally bound to the single domain antibody of the present invention is a contrast agent as a compound or inorganic particle (e.g. T1 contrast agent, T2 contrast agent such as superparamagnetic substance, radioisotope, etc.) ᅳ fluorescent markers (eg, fluorescent quantum dots) or staining material. According to still another aspect of the present invention, the present invention provides a
MUC1에 대한 단일 도메인 항체를 코딩하는 핵산 분자를 제공한다. Nucleic acid molecules encoding single domain antibodies against MUC1 are provided.
본 명세서에서 용어 "핵산 분자" 는 DN gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다 (Scheit(1980), Nucleotide Analogs, John Wiley, New York; Uhlman 및 Peyman(1990) , Chemical Reviews, 90:543-584).  As used herein, the term “nucleic acid molecule” is meant to encompass DN gDNA and cDNA) and RNA molecules inclusively, and the nucleotides that are the basic structural units in nucleic acid molecules are natural nucleotides, as well as analogs in which sugar or base sites are modified. also included (analogue) (Scheit (1980), Nucleotide Analogs, John Wiley, New York; Uhlman and Peyman (1990), Chemical Reviews, 90: 543-584).
본 발명의 서열목록 제 1서열 내지 제 7서열로 이루어진 아미노산 서열로 구성된 단일 도메인 항체를 인코딩하는 핵산 분자는 각각 서열목록 제 45서열 내지 제 51서열이고, 서열목록 제 8서열 내지 제 14서열로 이루어진 아미노산 서열로 구성된 단일 도메인 항체에 디프테리아 독소가 직접적으로 결합된 재조합 면역 독소를 인코딩하는 핵산 분자는 각각 서열목록 제 52서열 내지 제 58서열이며, 서열목록 제 17서열 내지 제 23서열로 이루어진 아미노산 서열로 구성된 단일 도메인 항체 및 디프테리아 독소가 링커를 통하여 간접적으로 결합된 재조합 면역 독소를 인코딩하는 핵산 분자는 각각 서열목록 제 59서열 내지 제 65서열이다.  Nucleic acid molecules encoding a single domain antibody consisting of an amino acid sequence consisting of SEQ ID NO: 1 to 7 of the present invention is SEQ ID NO: 45 to 51, each consisting of SEQ ID NO: 8 to 14 Nucleic acid molecules encoding a recombinant immunotoxin in which a diphtheria toxin is directly bound to a single domain antibody composed of an amino acid sequence are SEQ ID NOs 52-58, respectively, and comprise an amino acid sequence consisting of SEQ ID NOs 17-23 Nucleic acid molecules encoding a recombinant immunotoxin wherein the constructed single domain antibody and diphtheria toxin are indirectly bound through a linker are SEQ ID NOs: 59-65, respectively.
본 발명의 핵산 분자는 상기한 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대웅되도록 배열하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 배열된 서열을 분석한 경우에, 최소 80%의 상동성, 보다 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95¾의 상동성을 나타내는 뉴클레오타이드 서열을 의미한다. 본 발명의 다른 양태에 따르면, 본 발명의 상술한 단일 도메인 항체를 인코딩하는 핵산 분자 또는 MUC1의 아미노 말단 부위를 인코딩하는 핵산분자를 포함하는 재조합 백터를 제공한다.  Nucleic acid molecules of the invention are also construed to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above. The above substantial identity is at least 80% when the nucleotide sequence of the present invention and any other sequence are arranged as maximally as possible and the sequence is analyzed using algorithms commonly used in the art. By nucleotide sequence exhibiting homology, more preferably at least 90% homology, most preferably at least 95¾ homology. According to another aspect of the present invention, there is provided a recombinant vector comprising a nucleic acid molecule encoding the aforementioned single domain antibody of the present invention or a nucleic acid molecule encoding the amino terminal region of MUC1.
본 명세서에서 용어 "백터" 는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 백터; 파아지미드 백터; 코즈미드 백터; 그리고 박테리오파아지 백터, 아데노바이러스 백터, 레트로바이러스 백터 및 아데노 -연관 바이러스 백터 같은 바이러스 백터 등올 포함되며, 바람직하게는 파아지미드 백터 또는 폴라스미드 백터이다. As used herein, the term "vector" refers to a gene of interest in a host cell. Plasmid vectors as a means for expression; Phageimide vector; Cosmid vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retrovirus vectors and adeno-associated virus vectors, and the like, and are preferably phagemid vectors or polamide vectors.
본 발명의 바람직한 구현예에 따르면, 본 발명의 백터에서 단일 도메인 항체를 코딩하는 핵산 분자는 프로모터와 작동적으로 결합 (operatively linked)되어 있다.  According to a preferred embodiment of the invention, the nucleic acid molecule encoding a single domain antibody in the vector of the invention is operatively linked with the promoter.
본 명세서에서, 용어 "작동적으로 결합된" 은 핵산 발현 조절 서열 (예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및 /또는 해독을 조절하게 된다. 본 발명의 백터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al.(2001), Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.  As used herein, the term “operably linked” means a functional binding between a nucleic acid expression control sequence (eg, an array of promoters, signal sequences, or transcriptional regulator binding sites) and other nucleic acid sequences, thereby The regulatory sequence will control the transcription and / or translation of said other nucleic acid sequence. The vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al. (2001), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, This document is incorporated herein by reference.
본 발명의 백터는 전형적으로 클로닝을 위한 백터 또는 발현을 위한 백터로서 구축될 수 있다. 또한, 본 발명의 백터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다.  Vectors of the invention can typically be constructed as vectors for cloning or vectors for expression. In addition, the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts.
본 발명의 백터가 발현 백터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, p 프로모터, ρΐλ프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터 , trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사 /해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli (예컨대, HB101, BL21, DH5 α 등)가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위 (Yanofsky, C.(1984), J. Bacteriol., 158:1018-1024) 그리고 파아지 . λ의 좌향 프로모터 (p 프로모터, Herskowitz, I. and Hagen, D. 1980), Ann. Rev. Genet . , 14:399-445)가 조절 부위로서 이용될 수 있다. 한편, 본 발명에 이용될 수 있는 백터는 당업계에서 종종 사용되는 플라스미드 (예: pSClOl, pGV1106, pACYC177, ColEl, pKT230, ΡΜΕ290, PBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFRl, pHVU, pGEX 시리즈, ET 시리즈 및 pUC19 등), 파아지미드 (예: pComb3X) , 파아지 (예: gt4 - λΒ, λ -Charon, λ Δζΐ 및 M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다. When the vector of the present invention is an expression vector and the prokaryotic cell is a host, a strong promoter capable of promoting transcription (for example, the tac promoter, the lac promoter, the lacUV5 promoter, the lpp promoter, the p promoter, the ρΐλ promoter, the rac5 promoter, amp promoters, recA promoters, SP6 promoters, trp promoters and T7 promoters, etc.), ribosome binding sites and transcription / detox termination sequences for initiation of translation. When E. coli (e.g., HB101, BL21, DH5 α, etc.) is used as the host cell, the promoter and operator sites of the E. coli tryptophan biosynthetic pathway (Yanofsky, C. (1984), J. Bacteriol., 158: 1018) -1024) and phage. Left promoter of λ (p promoter, Herskowitz, I. and Hagen, D. 1980), Ann. Rev. Genet. , 14: 399-445) can be used as regulatory sites. On the other hand, often used plasmid (such as in the art are vectors that can be used in the present invention: pSClOl, pGV1106, pACYC177, ColEl, pKT230, Ρ ΜΕ290, PBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFRl, Made by manipulating pHVU, pGEX series, ET series and pUC19), phagemids (e.g. pComb3X), phages (e.g. gt4-λΒ, λ -Charon, λ Δζΐ and M13) or viruses (e.g. SV40 Can be.
한편, 본 발명의 백터가 발현 백터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 유전체로부터 유래된 프로모터 (예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5Κ 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다. 본 발명의 백터는 그로부터 발현되는 MUC1의 아미노 말단부위 단백질의 정제를 용이하게 하기 위하여, 필요에 따라 다른 서열과 융합될 수도 있으며, 융합되는 서열은 예컨대, 글루타티온 S- 트랜스퍼라제 (Pharmacia, USA), 말토스 결합 단백질 (NEB, USA), FLAG (IBI, USA) 및 6x HisChexahistidine; Quiagen, USA) 등이 이용될 수 있으나, 이에 제한되지는 않는다. 바람직하게는 본 발명의 백터에 의해 발현된 MUC1 단백질은 친화성크로마토그래피, 바람직하게는 Ni-친화성 컬럼에 의해 정제된다.  On the other hand, when the vector of the present invention is an expression vector and the eukaryotic cell is a host, a promoter derived from the genome of mammalian cells (e.g., metallothionine promoter) or a promoter derived from a mammalian virus (e.g., adeno) Late viral promoters, vaccinia virus 7.5k promoter, SV40 promoter, cytomegalovirus promoter and tk promoter of HSV) can be used and generally have a polyadenylation sequence as a transcription termination sequence. The vector of the present invention may be fused with other sequences as needed to facilitate the purification of the amino terminus protein of MUC1 expressed therefrom, and the sequences to be fused include, for example, glutathione S-transferase (Pharmacia, USA), Maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x HisChexahistidine; Quiagen, USA) may be used, but is not limited thereto. Preferably the MUC1 protein expressed by the vector of the invention is purified by affinity chromatography, preferably by Ni-affinity column.
한편, 본 발명의 발현 백터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있으며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.  On the other hand, the expression vector of the present invention as an optional marker, and may include antibiotic resistance genes commonly used in the art, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin And resistance genes for neomycin and tetracycline.
본 발명의 단일 도메인 항체 또는 MUC1 항원을 발현하는 백터는, 바람직하게는 단일 도메인 항체와 MUC1 항원를 각각 별도의 백터에서 발현시키는 시스템이다.  The vector expressing the single domain antibody or MUC1 antigen of the present invention is preferably a system for expressing the single domain antibody and the MUC1 antigen in separate vectors, respectively.
본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 백터를 포함하는 숙주세포를 제공한다. 본 발명의 백터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, 에스케리치아 콜라이 (Escherichia coli), 바실러스 서브틸리스 및 바실러스 츄린겐시스와 같은 바실러스 속 균주, 스트렙토마이세스 (Streptomyces), 슈도모나스 (Pseudomonas) (예를 들면, 슈도모나스 푸티다 (Pseudomonas putida)), 프로테우스 미라빌리스 (Proteus mirabilis) 또는 스타필로코쿠스 (Staphylococcus) (예를 들면, 스타필로코쿠스 카르노수스 (Staphylocus carnosus))와 같은 원핵 숙주 세포를 포함하나 이로 제한되는 것은 아니다. 상기 숙주세포는 바람직하게는 E. coli이고 보다 바람직하게는 E. coli ER2537, E. coli ER2738, E. coli XL-1 Blue, E. coli BL21(DE3), E. coli JM109, E. coli DH 시리즈, Ε· coli T0P10, E. coli TGI 및 E. coli HB1이이다. 가장 바람직하게는 숙주세포는 E. coli ER2537, E. coli BL2KDE3) 또는 E. coli TOP10이다. 본 발명에서는 E. coli 을 이용하여 단일 도메인 항체를 과발현 시켜 적은 비용으로 대량 생산이 가능하다. According to another aspect of the present invention, the present invention provides a host cell comprising the vector of the present invention described above. Host cells capable of stably and continuously cloning and expressing the vector of the present invention may use any host cell known in the art, for example, Escherichia coli, Bacillus subtilis and Bacillus thuringin Bacillus genus strains such as cis, Streptomyces, Pseudomonas (e.g. Pseudomonas putida), Proteus mirabilis or Staphylococcus (e.g. For example, but not limited to, prokaryotic host cells such as Staphylocus carnosus. The host cell is preferably E. coli and more preferably E. coli ER2537, E. coli ER2738, E. coli XL-1 Blue, E. coli BL21 (DE3), E. coli JM109, E. coli DH Series, Ε · coli T0P10, E. coli TGI and E. coli HB1. Most preferably the host cell is E. coli ER2537, E. coli BL2KDE3) or E. coli TOP10. In the present invention, E. coli can be used for mass production at low cost by overexpressing a single domain antibody.
본 발명의 백터를 숙주 세포 내로 운반하는 방법은, CaC12 방법 (Cohen, S.N. et al.(1973), Proc. Natl. Acac. Sci. USA, 9:2110- 2114), 하나한 방법 (Cohen, S.N. et al.(1973), Proc. Natl. Acac. Sci. USA, 9:2110-2114; 및 Hanahan, D.(1983), J. Mol. Biol., 166:557-580) 및 전기 천공 방법 (Dower, W.J. et al.(1988), Nucleic. Acids Res. , 16:6127- 6145) 등에 의해 실시될 수 있다.  The method of carrying the vector of the present invention into a host cell may be performed by CaC12 method (Cohen, SN et al. (1973), Proc. Natl. Acac. Sci. USA, 9: 2110-2114), one method (Cohen, SN et al. (1973), Proc. Natl. Acac. Sci. USA, 9: 2110-2114; and Hanahan, D. (1983), J. Mol. Biol., 166: 557-580) and electroporation methods ( Dower, WJ et al. (1988), Nucleic. Acids Res., 16: 6127-6145).
숙주 세포 내로 주입된 백터는 숙주 세포 내에서 발현될 수 있으며, 이러한 경우에는 다량의 본 발명의 단일 도메인 항체 또는 MUC1 항원올 얻게 된다. 본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 MUC1 (mucin antigenl)에 대한 단일 도메인 항체의 제조방법을 제공한다: (a) 상술한 본 발명의 단일 도메인 항체를 코딩하는 핵산 분자를 포함하는 재조합 백터로 형질전환된 숙주세포를 배양하는 단계; 및 (b) 상기 숙주세포에서 MUC1에 대한 단일 도메인 항체를 발현시키는 단계.  The vector injected into the host cell can be expressed in the host cell, in which case a large amount of the single domain antibody or MUC1 antigen of the present invention is obtained. According to another aspect of the present invention, the present invention provides a method for preparing a single domain antibody against mucin antigenl (MUC1) comprising the following steps: (a) a nucleic acid molecule encoding the single domain antibody of the present invention as described above Culturing the host cell transformed with the recombinant vector comprising a; And (b) expressing a single domain antibody against MUC1 in said host cell.
상기 단일 도메인 항체 제조에서 형질전환된 숙주세포의 배양은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양과정은 당업자라면 선택되는 균주에 따라 용이하게 조정하여 사용할 수 있다. 이러한 다양한 배양 방법은 다양한 문헌 (예를 들면,The culture of the host cell transformed in the single domain antibody production is It can be made according to the appropriate medium and culture conditions known in the art. This culture process can be used by those skilled in the art can be easily adjusted according to the strain selected. Such various culture methods can be found in various literatures (eg,
James M. Lee, Biochemical Engineering, Prentice-Hal 1 International Editions, 138-176)에 개시되어 있다. 세포 배양은, 세포의 성장방식에 따라 현탁배양과 부착배양, 배양방법에 따라 회분식, 유가식 및 연속배양식의 방법으로 구분된다. 배양에 사용되는 배지는 특정한 균주의 요구조건을 적절하게 만족시켜야 하다. James M. Lee, Biochemical Engineering, Prentice-Hal 1 International Editions, 138-176. Cell culture is divided into a batch culture, a fed-batch, and a continuous culture method according to suspension culture, adhesion culture, and culture method according to the cell growth method. The medium used for culturing must adequately meet the requirements of the particular strain.
배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 -함유 기체 (예, 공기)를 주입한다. 배양물의 온도는 보통 20°C 내지 45°C, 바람직하게는 25 °C 내지 40 °C이다. During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture. In addition, during the culture, antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation. In addition, to maintain the aerobic state of the culture, oxygen or oxygen-containing gas (eg air) is injected into the culture. The temperature of the culture is usually 20 ° C to 45 ° C, preferably 25 ° C to 40 ° C.
형질전환 된 숙주세포를 배양하여 수득한 항체는 정제하지 않은 상태로 사용될 수 있으며 추가로 다양한 통상의 방법, 예를 들면 투석, 염 침전 및 크로마토그래피 등을 이용하여 고 순도로 정제하여 사용될 수 있다. 그 중에서 크로마토그래피를 이용하는 방법이 가장 많이 사용되며, 컬럼의 종류와 순서는 항체의 특성, 배양방법 등에 따라 이온교환 크로마토그래피, 크기배제 크로마토그래피, 친화성 크로마토그래피 둥에서 선택할 수 있다. 본 발명의 다른 양태에 따르면, 본 발명은 (a) 상술한 본 발명의 MUC1에 대한 단일 도메인 항체의 약제학적 유효량, (b) 약제학적으로 허용되는 담체를 포함하는 항암 면역치료용 약제학적 조성물을 제공한다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 MUC1에 대한 단일 도메인 항체를 포함하는 암 진단용 조성물을 제공한다. 상기 방법으로 제조한 단일 도메인 항체는 MUC1 종양 항원에 대하여 특이적으로 결합하므로 단일 도메인 항체 단독 또는 통상의 약제학적으로 허용되는 담체와 함께 항암 면역치료용 약제학적 조성물 또는 암 진단용 조성물로사용가능하다. 본 발명의 바람직한 구현 예에 따르면, 본 발명의 조성물이 적용되는 질환인 암은 MUC1을 발현하는 암이고, 보다 바람직하게는 담관암, 방광암, 뇌종양, 유방암, 자궁경부암, 융모암, 대장암, 자궁내막암, 식도암, 위암, 다발성 골수종, AIDS-관련 백혈병 및 성인 T-세포 림프종 /백혈병, 상피내암, 간암, 폐암, 림프종, 신경모세포종, 구강암, 난소암, 췌장암, 전립선암, 직장암, 육종, 피부암, 고환암, 갑상선암 또는 신세포암이고, 보다 더 바람직하게는 유방암, 전립선암, 폐암, 난소암, 대장암, 신세포암 또는 뇌종양이고, 가장 바람직하게는 유방암이다. Antibodies obtained by culturing the transformed host cell can be used without purification and can be further purified and purified using various conventional methods such as dialysis, salt precipitation and chromatography. Among them, a method using chromatography is most commonly used, and the type and order of columns can be selected from ion exchange chromatography, size exclusion chromatography, and affinity chromatography according to the characteristics of the antibody and the culture method. According to another aspect of the present invention, the present invention provides a pharmaceutical composition for anticancer immunotherapy comprising (a) a pharmaceutically effective amount of a single domain antibody against MUC1 of the present invention, (b) a pharmaceutically acceptable carrier. to provide. According to another aspect of the present invention, the present invention provides a cancer diagnostic composition comprising a single domain antibody against MUC1 of the present invention described above. Since the single domain antibody prepared by the above method specifically binds to the MUC1 tumor antigen, the single domain antibody may be used as a pharmaceutical composition for anticancer immunotherapy or a cancer diagnostic composition alone or in combination with a conventional pharmaceutically acceptable carrier. According to a preferred embodiment of the present invention, the cancer to which the composition of the present invention is applied is a cancer expressing MUC1, and more preferably, bile duct cancer, bladder cancer, brain tumor, breast cancer, cervical cancer, chorionic cancer, colon cancer, endometrium Cancer, esophageal cancer, gastric cancer, multiple myeloma, AIDS-related leukemia and adult T-cell lymphoma / leukemia, intraepithelial cancer, liver cancer, lung cancer, lymphoma, neuroblastoma, oral cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, sarcoma, skin cancer, Testicular cancer, thyroid cancer or renal cell cancer, even more preferably breast cancer, prostate cancer, lung cancer, ovarian cancer, colon cancer, renal cell cancer or brain tumor, most preferably breast cancer.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 텍스트로스, 수크로스, 솔비를, 만니를, 전분, 아카시아 고무, 인산 칼슴, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀를로스, 폴리비닐피를리돈, 셀를로스, 물, 시럽, 메틸 셀를로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed. , 1995)에 상세히 기재되어 있다.  Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are those commonly used in the preparation, lactose, textose, sucrose, sorbbi, manny, starch, acacia rubber, phosphate, alginate, Gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyridone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil Including, but not limited to. In addition to the above components, the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
용어 , "약제학적 유효량" 은 MUC1이 발현된 암을 예방 또는 치료하는 데 층분한 양을 의미한다. 본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 암조직 주변의 동맥내 주입, 경피 투여 등으로 투여할 수 있다.  The term, "pharmaceutically effective amount" means an amount sufficient to prevent or treat cancer expressing MUC1. The pharmaceutical composition of the present invention may be administered orally or parenterally, and in the case of parenteral administration, it may be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, intraarterial injection around cancer tissue, transdermal administration, or the like. have.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 투여량은 바람직하게는 1일 당 0.001- 100 mg/kg(체중)이다.  Appropriate dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and response to the patient. Can be. On the other hand, the dosage of the pharmaceutical composition of the present invention is preferably 0.001-100 mg / kg (body weight) per day.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 10006295 The pharmaceutical composition of the present invention can be easily carried out by those skilled in the art according to the present invention, 10006295
약제학적으로 허용되는 담체 및 /또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 액스제, 분말제, 과립제, 정제, 캅셀제 또는 가글제, 오인트먼트제, 고형제, 카타플라스마제를 포함하는 외형제의 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여, 즉 상기 단일 도메인 항체에 다른 치료제 (기능성 분자)가 결합된 형태로 투여될 수 있다. 본 발명의 바람직한 구현예에 따르면, 상기 기능성 분자 (치료제)는 화학물질, 펩타이드, 폴리펩타이드, 핵산, 탄수화물, 지질 또는 무기입자이다. Formulated with pharmaceutically acceptable carriers and / or excipients may be prepared in unit dose form or may be prepared by incorporation into a multidose container. The formulation may be in the form of a solution, suspension or emulsion in an oil or aqueous medium or in the form of an external preparation including axles, powders, granules, tablets, capsules or gargles, ointments, solids, cataplasmas, , May further include a dispersant or stabilizer. The compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, i.e. in the form in which other therapeutic agents (functional molecules) are bound to the single domain antibody. According to a preferred embodiment of the invention, the functional molecule (therapeutic agent) is a chemical, peptide, polypeptide, nucleic acid, carbohydrate, lipid or inorganic particle.
항체-치료제 결합체 형태로 생체내로 투입하여 암을 예방 또는 치료하기 위한 기능성 분자로서 바람직하게는 화학물질로서의 항암제, 펩타이드 또는 폴리펩타이드로서의 독소 단백질 및 효소를 포함하고, 이에 대한 내용은 상술한 내용과 동일하므로 명세서의 중복을 방지하기 위해서 생략한다ᅳ  Functional molecules for the prevention or treatment of cancer by in vivo in the form of antibody-therapeutic conjugates, including toxin proteins and enzymes as anti-cancer agents, peptides or polypeptides, preferably as chemicals, as described above It is omitted to avoid duplication of specification.
약제를 특이적 표적 부위로 표적화하는데 적당하고 바람직한 여러 가지 조건은 예를 들어 문헌 Trouet et al.(1982), Plenum Press, New York and London, 19-30에 보고 되어 있다. 유효한 치료제를 MUC1 항원에 대해 제조된 매우 특이성이 있는 항체를 사용하여 병소에 직접 표적화하여 표적 항암 치료를 함으로써 약품에 내성이 있는 종양을 치료할 때에 발생되는 많은 문제점들을 해결할 수 있다. 또한 병소로 표적화된 약품은 종양부위에서는 높은 농도로 약효를 상승시킬 수 있다 .  Various conditions suitable and desirable for targeting agents to specific target sites are reported, for example, in Trouet et al. (1982), Plenum Press, New York and London, 19-30. Many of the problems arising from the treatment of drug-resistant tumors can be addressed by targeted anticancer therapies by targeting effective therapies directly to the lesions using highly specific antibodies prepared against the MUC1 antigen. Drugs targeted to the lesion may also elevate the drug to high concentrations at the tumor site.
본 발명의 다른 양태에 따르면, 본 발명은 상술한 MUC1에 대한 본 발명의 단일 도메인 항체를 포함하는 MUC1 종양 항원 검출용 진단 키트를 제공한다.  According to another aspect of the present invention, the present invention provides a diagnostic kit for detecting MUC1 tumor antigens comprising the single domain antibody of the present invention against MUC1 described above.
MUC1 종양 항원에 대한 본 발명의 단일 도메인 항체는, 생물학적 시료에 적용되어 MUC1이 발현되는 암의 발생 여부를 진단할 수 있다. 본 명세서에서 사용된 용어 "생물학적 시료" 란 조직, 세포, 전혈, 혈청, 혈장, 조직 부검 시료 (뇌, 피부, 림프절, 척수 등), 세포 배양 상둥액, 파열된 진핵세포등을 들 수 있지만 이에 제한되지는 않는다. 이들 생물학적 시료를 조작하거나 조작하지 않은 상태로 본 발명의 단일 도메인 항체와 반응시켜서 MUC1이 발현되는 암의 발생 여부를 확인할 수 있다. The single domain antibodies of the invention against the MUC1 tumor antigen can be applied to biological samples to diagnose the development of cancer in which MUC1 is expressed. As used herein, the term "biological sample" includes but is not limited to tissues, cells, whole blood, serum, plasma, tissue autopsy samples (brain, skin, lymph nodes, spinal cord, etc.), cell culture supernatant, ruptured eukaryotic cells, and the like. It is not limited. These biological samples may be reacted with a single domain antibody of the present invention, with or without manipulation, to confirm the occurrence of cancer expressing MUC1.
상기한 항원-항체 복합체의 형성은 비색법 (colormetric method) , 전기화학법 (electrochemical method) , 형광법 (f luorimetric method) , 발광법 (luminometry), 입자계수법 (particle counting method) , 육안측정법 (visual assessment) 또는 섬광계수법 (scinti 1 lat ion counting method)으로 검출할 수 있다.  The formation of the antigen-antibody complexes described above can be performed by the colormetric method, the electrochemical method, the fluorescence method, the luminometry, the particle counting method, and the visual assessment. Alternatively, it can be detected by scintillation method (scinti 1 lat ion counting method).
본 명세서상의 "검출" 은 항원 -항체 복합체를 검출하기 위한 것으로 여러 가지 표지체를 사용하여 실시할 수 있다. 표지체의 구체적인 예로는 효소, 형광물, 리간드, 발광물, 미소입자 또는 방사성 동위원소를 포함한다. 검출 표지체로서 사용되는 효소로는 아세틸콜린에스테라제, 알칼라인 포스파타제, β-D-갈락토시다제, 호스래디쉬 퍼옥시다제 및 β-라타마제 등올 포함하며, 형광물로는 플루오레세인, Eu3 +, Eu3+ 킬레이트 또는 크립테이트 등을 포함하며, 리간드로는 바이오틴 유도체 등을 포함하며, 발광물로는 아크리디늄 에스테르 및 이소루미놀 유도체 등을 포함하며, 미소입자로는 콜로이드 금 및 착색된 라텍스 등을 포함하며, 방사성 동위원소로는 57Co, 3H, 1251 및 1251-볼톤 (Bonton) 헌터 (Hunter) 시약 둥을 포함한다. "Detection" herein is for detecting antigen-antibody complexes and can be carried out using various labels. Specific examples of the label include enzymes, fluorescent, ligands, luminescent, microparticles or radioisotopes. Enzymes used as detection markers include acetylcholinesterase, alkaline phosphatase, β-D-galactosidase, horseradish peroxidase and β-latamase, and the like, and fluorescein , Eu 3 +, Eu 3 + chelate or creep includes a Tate or the like, and a ligand, including biotin derivatives, and to the light-emitting water and the like acridinium esters and isobutyl luminol derivative, the colloidal gold with fine particles And colored latex and the like, and radioisotopes include 57Co, 3H, 1251, and 1251-Bolton Hunter reagent reagents.
바람직하게는, 항원 -항체 복합체를 효소면역흡착법 (ELISA)을 이용하여 검출할 수 있다. 효소면역흡착법 (ELISA)에는 고체 지지체에 부착된 항원을 인지하는 표지된 항체를 이용하는 직접적 ELISA, 고체 지지체에 부착된 항원을 인지하는 항체의 복합체에서 포획 항체를 인지하는 표지된 이차항체를 이용하는 간접적 ELISA, 고체 지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 표지된 또 다른 항체를 이용하는 직접적 샌드위치 ELISA, 고체 지지체에 부착된 항체와 항원의 복합체에서 항원올 인지하는 또 다른 항체와 반웅시킨 후 이 항체를 인지하는 표지된 2차 항체를 이용하는 간접적 샌드위치 ELISA 등 다양한 ELISA 방법을 포함한다. 본 발명의 항체는 검출 표지를 가질 수 있으며, 검출표지를 가지지 않올 경우는 본 발명의 항체를 포획할 수 있고 검출 표지를 가지는 또 다른 항체를 처리하여 확인할 수 있다. Preferably, the antigen-antibody complex can be detected using enzyme immunosorbent adsorption (ELISA). Enzyme immunosorbent methods (ELISA) include direct ELISA using labeled antibodies that recognize antigens attached to a solid support, and indirect ELISAs using labeled secondary antibodies that recognize captured antibodies in a complex of antibodies that recognize antigens attached to a solid support. Direct sandwich ELISA using another labeled antibody that recognizes the antigen in the complex of the antibody and the antibody attached to the solid support, followed by reaction with another antibody that recognizes the antigen in the complex of the antibody and the antigen attached to the solid support. Various ELISA methods include indirect sandwich ELISAs using labeled secondary antibodies that recognize the antibody. Antibodies of the invention may have a detection label, the detection label If not, the antibody of the present invention can be captured and can be identified by treating another antibody having a detection label.
【유리한 효과】 Advantageous Effects
본 발명의 특징 및 이점을 요약하면 다음과 같다:  The features and advantages of the present invention are summarized as follows:
(1) MUC1 특이적 단일 도메인 항체 클론의 개발  (1) Development of MUC1-specific Single Domain Antibody Clones
본 발명에서는 단일 도메인 항체의 유전자 라이브러리를 구축하고 이를 통하여 MUC1 단백질에 특이적으로 결합할 수 있는 단일 도메인 항체 유전자 클론을 선발하였다. 그리고 이를 E. coli 발현 시스템을 통하여 분리 정제할 수 있는 방법을 개발함으로서 MUC1 특이적 단일 도메인 항체를 경제적으로 대량생산할 수 있는 방법을 제시하였으며, 생산된 단일 도메인 항체는 MUC1 항원을 발현하는 다양한 종양의 진단 및 치료에 활용될 수 있다. (2) MUC1 양성 종양의 In vivo 이미징을 통한 진단  In the present invention, a gene domain of a single domain antibody was constructed and a single domain antibody gene clone capable of specifically binding to the MUC1 protein was selected. And by developing a method that can be isolated and purified through the E. coli expression system proposed a method that can economically mass-produce MUC1 specific single domain antibodies, the produced single domain antibodies are produced in various tumors expressing MUC1 antigen It can be used for diagnosis and treatment. (2) In Vivo Imaging of MUC1-positive Tumors
본 발명에서 선발된 항 -MUC1 단일 도메인 항체는 양자점 (quantum dot) 등의 이미징 프로브와 결합시킬 경우 In vivo 이미징을 통한 종양의 진단에 활용이 가능하다. MJC1 양성 종양을 발현하는 마우스 모델 시험에서 선발된 항체의 종양 특이적 표적 이미징이 가능함을 입증하였으며, 향후 다양한 표적지양형 암 조직 진단의 도구로 사용될 수 있음을 제시하였다.  When the anti-MUC1 single domain antibody selected in the present invention is combined with an imaging probe such as a quantum dot, the anti-MUC1 single domain antibody can be used for diagnosis of tumors through in vivo imaging. Mouse model tests expressing MJC1 positive tumors demonstrated that tumor-specific target imaging of selected antibodies was possible and suggested that it could be used as a tool for diagnosing various target-type cancer tissues in the future.
(3) 면역 독소 제조를 통한 항종양 표적 치료제로서의 활용 (3) Use as an anti-tumor target therapeutic agent through the production of immunotoxin
본 발명에서는 선발된 항 -MUC1 단일 도메인 항체에 디프테리아 독소를 융합시켜 재조합 면역독소를 생산하였으며, 이 면역 독소의 MJC1 특이적 유효성을 세포배양 모델 및 In vivo 종양 동물모델에서 입증하였다. 따라서 선발된 단일 도메인 항체는 면역 독소 제작을 통한 항종양 표적치료제로서도 활용될 수 있음을 제시 하였다. 【도면의 간단한 설명】 도 1은 낙타의 말초 혈액 백혈구로부터 분리 정제된 총 RNA 시료들을 보여주는 겔 사진이다. 총 3마리의 낙타 #1, #2 및 #3에서 분리 정제된 RNA를 각각 1-10, 1-7 및 1-11의 별개의 실험으로 분리 정제하였다. In the present invention, a recombinant immunotoxin was produced by fusing diphtheria toxin to the selected anti-MUC1 single domain antibody, and the MJC1 specific efficacy of the immunotoxin was demonstrated in cell culture model and in vivo tumor animal model. Therefore, it was suggested that the selected single domain antibody can be used as an anti-tumor target therapy through immunotoxin production. [Brief Description of Drawings] 1 is a gel photograph showing total RNA samples isolated and purified from camel peripheral blood leukocytes. RNA isolated from a total of three camels # 1, # 2 and # 3 was purified by separate experiments of 1-10, 1-7 and 1-11, respectively.
도 2는 단일 도메인 항체 제작을 위한 단일 도메인 항체 유전자 증폭 전략을 보여준다. 패널 a)는 단일 도메인 항체 유전자의 cDNA 제작 방법 그리고 패널 b)는 제작된 cDNA에서 단일 도메인 항체 코딩 부위만을 특이적으로 증폭할 수 있는 PCR 법의 증폭 전략 모식도를 보여준다.  2 shows a single domain antibody gene amplification strategy for single domain antibody construction. Panel a) shows a cDNA production method of a single domain antibody gene and panel b) shows a schematic diagram of amplification strategy of the PCR method capable of specifically amplifying only a single domain antibody coding region in the produced cDNA.
도 3의 패널 a)는 cDNA 시료들로부터 1차 증폭된 단일 도메인 항체 유전자 시료들 (약 650 bp)의 겔 사진 그리고 패널 b)는 2단계 효소연쇄중합 반웅 결과 (약 450 bp) 시료들의 겔 사진을 나타낸다. 패널 좌측의 #1-3은 낙타 개체 번호, 패널 내 각각의 겔 사진은 도 1에서 준비된 각각의 RNA시료들로부터 얻어진 증폭 절편들의 결과이다. M은 1 kb DNA 크기 마커를 나타낸다.  Figure 3 panel a) is a gel image of the first amplified single domain antibody gene samples (about 650 bp) from cDNA samples and panel b) a gel image of the two-step enzyme chain reaction results (about 450 bp) samples Indicates. # 1-3 on the left side of the panel is the camel individual number, and each gel photograph in the panel is the result of the amplification fragments obtained from the respective RNA samples prepared in FIG. M represents a 1 kb DNA size marker.
도 4는 단일 도메인 항체 유전자 파아지미드 라이브러리 구축을 위한 전략 모식도를 나타낸다. 도 1 및 3을 통하여 증폭된 절편이 삽입된 파아지미드 백터 DNA를 E. coli내로 도입한 다음 헬퍼 파아지를 이용하여 단일 도메인 항체 단백질이 발현이 되는 파아지가 생성되도록 하였다.  4 shows a strategy diagram for constructing a single domain antibody gene phagemid library. Phageimide vector DNA into which the fragments amplified through FIGS. 1 and 3 were inserted into E. coli and phages expressing single domain antibody proteins were generated using helper phage.
도 5는 단일 도메인 항체 유전자가 삽입된 파아지미드 라이브러리에서 10개의 클론올 임의로 선발하여 DNA를 정제하고 이를 Sfil 제한효소로 처리하여 삽입된 단일 도메인 항체 유전자를 확인한 실험 결과를 보여준다.  FIG. 5 shows the results of experiments in which 10 clones were randomly selected from a phagemid library into which a single domain antibody gene was inserted to purify DNA, and treated with Sfil restriction enzymes to identify the inserted single domain antibody gene.
도 6은 제작된 단일 도메인 항체 라이브러리의 다양성 평가 결과를 보여준다. 제작된 라이브러리의 다양성 확인을 위해 19개의 클론들을 임의로 선발하고, ompseq (5 '-AAGACAGCTAT CGCGATTGCAG-3 ' ) 및 gback (5 ' - GCCCCCTTATTAGCGTTTGCCATC -3 ' ) 프라이머 세트를 이용해 PCR증폭된 유전자 단편들을 BstOl 제한효소로 처리하여 RFLP 분석을 시행하였다. Figure 6 shows the results of the diversity evaluation of the produced single domain antibody library. To determine the diversity of the library, and optionally making the selection of 19 clones, ompseq (5 '-AAGACAGCTAT CGCGATTGCAG- 3') and gback (5 '- GCCCCCTTATTAGCGTTTGCCATC -3' ) limit the gene PCR fragment amplified with the primer set BstOl RFLP analysis was performed by treatment with enzymes.
'도 7은 MUC1-N 단백질의 생산을 위해 사용된 재조합 DNA 모식도 (a)와 이를 이용해 발현 및 정제된 MUC1-N 단백질의 확인 결과 (b)이다. MUC1-N 단백질을 암호화하는 유전자자 단편은 pET23d 백터에 클로닝 하였으며, 이를 E. coli에 도입하여 단백질을 발현 정제하고, 이를 쿠마시 블루 염색 (CBB st a in)과 항 -MUC1항체를 이용한 웨스턴 블롯으로 확인 하였다 (b). 단백질 정제 전의 E.coli 용해액 (b, 레인 1) 그리고 정제 후 (레인 2)의 단백질 시료가 각각 분석에 사용되었다. · "Figure 7 is a schematic diagram showing the recombinant DNA (a) and the check result of the expression and purification of MUC1-N protein with this, (b) used for the production of MUC1-N protein. The gene fragment encoding the MUC1-N protein was cloned into the pET23d vector, which was then introduced into E. coli to express and purify the protein, and Western blot using Coomassie blue staining (CBB st a in) and anti-MUC1 antibody. Check with (B). E. coli lysate before protein purification (b, lane 1) and protein samples after purification (lane 2) were used for analysis, respectively. ·
도 8은 MUC1에 대한 단일 도메인 항체 라이브러리의 패닝 (panning) 결과를 보여주는 그래프이다. MUC1이 흡착된 96 웰 플레이트에 넣어준 파지 역가와 세척 후 분리된 파지 역가 비율 (0/1 ratio)을 각 패닝단계별로 표시하였다.  8 is a graph showing the panning results of the single domain antibody library for MUC1. Phage titers put in MUC1-adsorbed 96 well plates and phage titers separated after washing (0/1 ratio) were displayed for each panning step.
도 9는 패닝을 통해 얻어진 클론들 증에서 ELISA법을 이용하여 MUC1에 대한 친화도가 높게 나타난 일부 항체 클론들의 분석결과를 보여 준다. 항 -pi II Ab은 양성 대조군 그리고 pComb3xTT 파아지 시료는 음성대조군으로 사용하였으며, 각 시험시료의 흡광도를 음성대조군의 흡광도 값으로 나누어 얻어진 흡광도 증가율 값을 나타낸다.  9 shows analysis results of some antibody clones showing high affinity for MUC1 using ELISA in clones obtained through panning. Anti-pi II Ab was used as a positive control and pComb3xTT phage sample as a negative control group, and the absorbance increase value obtained by dividing the absorbance of each test sample by the absorbance value of the negative control group.
도 10은 선발된 단일 도메인 항체 유전자 클론들의 아미노산 서열을 분석한 결과를 보여준다. 사람의 VH3 아미노산 서열과 선발된 클론들의 서열을 IMGT 넘버링 기준으로 배열하여 비교 분석하여 4개의 FR( framework region)과 3개의 CDR( comp 1 ement ar i t y determining reg )n)을 표시하였으며, 단일 도메인 항체 유전자의 홀마크 (hallmark) 아미노산 잔기들을 빨간색 박스로 표시하였다.  Figure 10 shows the results of analyzing the amino acid sequence of the selected single domain antibody gene clones. The human VH3 amino acid sequence and the sequence of the selected clones were compared and analyzed on the basis of IMGT numbering, and 4 FR (frame region) and 3 CDR (comp 1 ement arity determining reg) n (n CDR) n were displayed. Hallmark amino acid residues of the gene are indicated with a red box.
도 11은 E. coli에서 발현 및 정제된 단일 도메인 항체 클론들을 SDS-PAGE 실시 후 쿠마시 블루 염색 (CBB stain)과 항 -HA 항체 및 항 -His 항체를 이용한 웨스턴 블롯을 통해 분석한 결과를 보여 준다.  11 shows the results of analysis of single domain antibody clones expressed and purified in E. coli by Western blot using Coomassie blue staining (CBB stain), anti-HA antibody and anti-His antibody after SDS-PAGE. give.
도 12는 공초점 현미경분석을 통해 항 -MUC1 단일 도메인 항체의 MUC1 발현 세포주에 대한 반응성을 확인한 결과이다. 패널 a)는 항 -MUC1 항체를 이용하여 MC38-MUC1 세포와 MC38-pcDNA3.1 세포에서 MUC1 단백질 발현을 확인한 결과를 보여주고, 패널 b)는 선발된 단일 도메인 항체 클론 단백질들을 이용한 세포주들의 면역 형광 염색 결과를 보여준다.  12 shows the results of confirming the reactivity of the anti-MUC1 single domain antibody to the MUC1 expressing cell line through confocal microscopy. Panel a) shows the results of confirming MUC1 protein expression in MC38-MUC1 cells and MC38-pcDNA3.1 cells using anti-MUC1 antibody, panel b) immunofluorescence of cell lines using selected single domain antibody clone proteins. Show staining results.
도 13은 선발된 단일 도메인 항체 클론들과 MUC1 항원의 친화성을 측정한 센서그램 (sensergram)을 보여준다. 항 -MUC1 Ab은 양성 대조군, 그리고 선발된 단일 도메인 항체 클론인 VHH524, VHH530, VHH33 및 VHH39의 분석 결과를 도식화 하였다.  FIG. 13 shows a sensorgram measuring the affinity of selected single domain antibody clones with MUC1 antigen. Anti-MUC1 Ab plotted the positive control and assay results of selected single domain antibody clones VHH524, VHH530, VHH33 and VHH39.
도 14는 단일 도메인 항체와 JC1 항원의 친화도를 분석한 표이다. 도 15는 양자 점 (Q dot)이 표지된 항 -MUC1 단일 도메인 항체 클론을 이용한 마우스 종양 모델에서의 in vivo 이미징 시험 결과를 보여준다. 흰색 타원은 종양 접종 부위, 회색 화살표는 종양부위에 축적된 Q dot 신호를 표지한다. 14 is a table analyzing the affinity of the single domain antibody and JC1 antigen. Figure 15 shows anti-MUC1 single domain antibody clones labeled with Q dots The results of in vivo imaging tests in the mouse tumor model used are shown. White ellipses indicate tumor inoculation sites and gray arrows mark Q dot signals accumulated on the tumor site.
도 16의 패널 a)는 디프테리아독소와 낙타 단일 도메인 항체 융합 단백질의 제작을 위한 플라스미드 모식도를 보여주고, 패널 b)는 클로닝 결과를 보여준다. DT(G4S)2-VHH524와 DT(G4S)2— VHH530은 디프테리아 독소와 단일 도메인 항체 유전자 사이에 링케 (G4S)2]가 있는 면역 독소를 나타내고, DT-VHH524와 DT-VHH530은 디프테리아 독소와 단일 도메인 항체를 직접 융합시킨 면역독소를 나타낸다.  Panel a) of FIG. 16 shows a plasmid schematic for the production of diphtheria toxin and camel single domain antibody fusion protein, and panel b) shows the cloning result. DT (G4S) 2-VHH524 and DT (G4S) 2—VHH530 represents an immunotoxin with linke (G4S) 2] between diphtheria toxin and single domain antibody genes, and DT-VHH524 and DT-VHH530 are single to diphtheria toxin Immunotoxins with direct fusion of domain antibodies are shown.
도 17은 디프테리아 독소와 결합된 재조합 항 -MUC1 단일 도메인 항체 면역 독소를 발현 정제한 뒤, 쿠마쉬 블루 (CBB) 염색과 항 -His 항체를 이용한 웨스턴 블롯으로 분석한 결과이다.  FIG. 17 shows the results of expression and purification of recombinant anti-MUC1 single domain antibody immunotoxin bound to diphtheria toxin followed by Western blot using Coomassie blue (CBB) staining and anti-His antibody.
도 18은 MUC1 항원에 대한 면역 독소의 친화성을 측정한 센서그램이다.  18 is a sensorgram measuring the affinity of an immunotoxin for the MUC1 antigen.
도 19는 MUC1 항원에 대한 면역 독소의 친화도 분석 결과를 보여준다. 도 20은 MUC1을 발현하는 세포에 대한 재조합 면역독소의 세포 살해능 분석 결과를 보여주는 그래프이다. 패널 a)는 DT(G4S)2-VHH524를 사용한 분석 결과, b)는 DT-VHH524 면역독소를 사용한 분석 결과이며, 패널 c)는 독소가 결합되지 않은 VHH524클론의 세포 살해능 시험 결과를 보여준다.  19 shows the results of affinity analysis of immune toxins for MUC1 antigen. 20 is a graph showing the results of analysis of cell killing ability of recombinant immunotoxins on cells expressing MUC1. Panel a) shows the results of analysis using DT (G4S) 2-VHH524, b) shows the results of analysis using DT-VHH524 immunotoxin, and panel c) shows the cell killer test results of VHH524 clone without toxin binding.
도 21은 MUC1이 발현되는 종양 동물 모델에서 선발된 면역 독소의 종양 성장 억제 효과를 보여주는 그래프이다. PBS는 음성 대조군, VHH524는 디프테리아 독소가 결합이 되지 않은 단일 도메인 항체 그리고 DT(G4S)2-VHH524는 디프테리아 독소가 결합된 면역 독소를 나타낸다.  21 is a graph showing tumor growth inhibitory effects of selected immune toxins in tumor animal models expressing MUC1. PBS is a negative control, VHH524 is a single domain antibody to which diphtheria toxin is not bound, and DT (G4S) 2-VHH524 is an immunotoxin bound to diphtheria toxin.
【실시예】 EXAMPLE
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명 하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 실시예 Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for explaining the present invention in more detail, and the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention to those skilled in the art. Will be self-evident. EXAMPLE
실시예 1. 단일 도메인 항체의유전자 증폭 Example 1. Gene Amplification of Single Domain Antibodies
3마리의 낙타 말초혈액에서 분리된 단핵구들로부터 28회에 걸쳐 RNA를 분리 정제하고 (도 1; 각 패널의 좌측에 표시된 번호는 낙타의 개체 번호, 전기영동 사진의 lane별 번호는 서로 다른 RNA 시료 번호), 이를 주형으로 역전사 효소연쇄중합반웅을 실시하여 VHH(variable region of a heavy chain antibody) 유전자를 증폭하였다. 단일 도메인 항체 유전자의 증폭은 두 단계의 중합효소연쇄반응 (PCR)을 거친다 (도 2). 1 단계 중합효소연쇄반웅을 통해 중쇄 항체 (heavy chain antibody)의 단일 도메인 항체와 CH2 도메인을 포함하는 DNA 단편 (약 650 bp)을 합성하고 (도 3a;각 패널의 좌측에 표시된 번호는 낙타의 개체 번호, 전기영동 사진의 레인 별 번호는 서로 다른 RNA 시료 번호), 이를 주형으로 다시 2 단계 효소연쇄중합반응을 진행하여 VHH 만을 포함하는 28개의 DNA 단편 (450-500 bp)시료들을 얻었다 (도 3b). 1 단계 중합효소연쇄반웅에서 사용된 프라이머의 서열은 VHBACK6: 5 ' -GATGTGCAGCTGCAGGCGTCTGGAGGAGG- 3' (서열목록 제 66서열) ; CH2F0RT4: 5'-CGCCATCAAGGTACCAGTTGA_3' (서열목록 제 67서열)이고, 2 단계 증합효소연쇄반응에서 사용된 프라이머의 서열은 VHBAC 4: 5 ' -CATGCCATGACTCGCGGCCCAGGCGGCCATGGCCGATGTGCAGCT-3 '(서열목록 제 68서열); VHF0R36: 5 ' -TGAACTGGCCGGCCTGGCCTGAGGAGACGGTGACCTG- 3' (서열목록 제 69서열)이다. 실시예 2. 단일 도메인 항체의 라이브러리 제작  RNA was isolated and purified 28 times from monocytes isolated from three camel peripheral blood (FIG. 1; numbers shown on the left of each panel are camel's individual number and lane number on electrophoresis picture with different RNA samples). Number), and the reverse transcriptase polymerase chain reaction was performed as a template to amplify the variable region of a heavy chain antibody (VHH) gene. Amplification of single domain antibody genes is followed by a two step polymerase chain reaction (PCR) (FIG. 2). The DNA fragment (approximately 650 bp) comprising a single domain antibody and a CH2 domain of a heavy chain antibody was synthesized via a first-stage polymerase chain reaction (Fig. 3a; the number shown on the left of each panel is a camel individual. No., lane number of electrophoresis picture is different RNA sample number), which was subjected to two-step enzymatic chain polymerization again to obtain 28 DNA fragments (450-500 bp) samples containing only VHH (FIG. 3b). ). The sequence of the primers used in the one-step polymerase chain reaction was VHBACK6: 5'-GATGTGCAGCTGCAGGCGTCTGGAGGAGG-3 '(SEQ ID NO: 66); CH2F0RT4: 5'-CGCCATCAAGGTACCAGTTGA_3 '(SEQ ID NO: 67), and the sequence of the primers used in the two-step polymerase chain reaction was VHBAC 4: 5' -CATGCCATGACTCGCGGCCCAGGCGGCCATGGCCGATGTGCAGCT-3 '(SEQ ID NO: 68); VHF0R36: 5'-TGAACTGGCCGGCCTGGCCTGAGGAGACGGTGACCTG-3 '(SEQ ID NO: 69). Example 2. Library Construction of Single Domain Antibodies
단일 도메인 항체의 라이브러리를 제작하기 위해 중합효소연쇄반응으로 얻어진 28개의 시료를 모두 합친 단일 도메인 항체 Single domain antibody that combines all 28 samples obtained by polymerase chain reaction to produce a library of single domain antibodies
DNA 단편 시료와 파아지미드 (phagemid) 백터 pComb3X(Scr ipps Research.DNA fragment samples and phagemid vector pComb3X (Scr ipps Research.
Institute, La Jolla, CA, USA)를 SfiKNEB, Ipswich, MA, USA) 제한효소로 처리하고 이들을 라이게이션하여 재조합 DNA를 얻었으며 (도 4), 이를 E. coli ER2537에 전기 형질전환장치 (Gene Pulser, Bio-Rad, Hercules, CA, USA)를 이용하여 도입 하였다. 단일 도메인 항체 DNA 단편을 포함하는 파아지미드 백터로 형질전환 된 E. coli ER2537을 암피실린을 첨가한 SB 배지에서 2시간 배양 후, 헬퍼 파아지 (helper phage) VCSM13 (Stratagene, La Jolla, CA, USA)로 감염시켜 18시간 동안 배양하고 단일 도메인 항체 파아지 라이브러리를 회수하였다. 파아지미드 백터에 삽입된 단일 도메인 항체 DNA 단편의 존재 유무를 확인하기 위해서 형질전환 된 E. coli ER2537 집락들을 임의적으로 10개 선택하여 배양하고 파아지미드 DNA를 정제하였으며, 이를 Sfil 제한효소로 처리하여 백터에 삽입된 단일 도메인 항체 DNA 단편 (450-500 bp)들을 확인하였다 (도 5). 제작된 라이브러리의 다양성을 확인하기 위해서 임의로 선택한 19개의 E. coli 집락에서 파아지미드 DNA를 정제하고, ompseq (5' -AAGACAGCTATCGCGATTGCAG- 3' :) (서열목록 제 70서열)와 gback (5' -GCCCCCTTATTAGCGTTTGCCATC - 3' ) (서열목록 제기서열) 프라이머를 이용하여 단일 도메인 항체 DNA 단편을 증폭한 뒤 BstOl 제한효소 처리를 통한 RFLP 분석을 실시하였다. 도 6에서 볼 수 있는 바와 같이 분석된 19개의 클론들이 모두 다른 RFLP 패턴을 보이는 것으로 보아 층분한 다양성이 확보된 단일 도메인 항체 유전자 라이브러리를 생산하였음을 확인하였다. 실시예 3. 사람 MUC1 단백질의 발현 및 분리 정제 Institute, La Jolla, CA, USA) was treated with SfiKNEB, Ipswich, MA, USA) restriction enzymes and ligated to obtain recombinant DNA (FIG. 4), which was transformed into an E. coli ER2537 by an electrical transformation device (Gene Pulser). , Bio-Rad, Hercules, CA, USA). SB with Ampicillin E. coli ER2537 Transformed with Phagemid Vector Containing Single Domain Antibody DNA Fragments After 2 hours of incubation in the medium, it was infected with helper phage VCSM13 (Stratagene, La Jolla, Calif., USA), incubated for 18 hours, and single domain antibody phage libraries were recovered. To confirm the presence of a single domain antibody DNA fragment inserted into the phagemid vector, ten transformed E. coli ER2537 colonies were randomly selected and cultured, and the phagemid DNA was purified and treated with Sfil restriction enzymes. Single domain antibody DNA fragments (450-500 bp) inserted in were identified (FIG. 5). In order to confirm the diversity of the produced library, phagemid DNA was purified from 19 randomly selected colonies of E. coli, ompseq (5 '-AAGACAGCTATCGCGATTGCAG-3') (SEQ ID NO: 70) and gback (5 '-GCCCCCTTATTAGCGTTTGCCATC). 3 ') (SEQ ID NO: SEQ ID NO :) Amplified single domain antibody DNA fragments using the primers were subjected to RFLP analysis by BstOl restriction enzyme treatment. As shown in FIG. 6, all 19 clones analyzed showed different RFLP patterns, resulting in a single-domain antibody gene library with sufficient diversity. Example 3. Expression and Isolation Purification of Human MUC1 Protein
MUC1에 특이성이 높은 항체를 선별하기 위하여 MUC1의 아미노 말단 부위 (MUC1-N, 2-147 amino acids, NCBI accession no.: J05582)를 pET- 23d (+) 백터(1:1 1:1"0 ∞)에 클로닝 하여 단백질을 발현 시켰다. MUC1-N 단백질을 E. coli BL21-star(DE3) 균주 (Novagen, Madison, WI , USA)에서 발현시키고, E. coli을 용해시킨 뒤 그 상청액에서 Ni-NTA 컬럼 (Novagen, Madison, WI, USA)을 이용하여 정제하였다. 투석을 거쳐 이미다졸을 없애고 겔 전기영동 (polyacrylamide gel electrophoresis, PAGE)과 쿠마시 염색 및 항 -His 항체 (Cell Signaling Technology, Beverly, MA, USA)를 이용한 웨스턴블롯으로 발현된 단백질의 순도와 양올 분석하였다 (도 7b; 레인 1, 정제전의 E. coli 용해액, 레인 2, 단백질 정제 후 시료). 실시예 4. MUC1에 대한 단일 도메인 항체클론의 선택 Screening for antibodies with high specificity to MUC1 in the MUC1 amino-terminal part to (MUC1-N, 2-147 amino acids , NCBI accession no .: J05582) a pET- 23d (+) vector (1: 1: 1: 1 "0 ∞) expression of the protein MUC1-N protein was expressed in the E. coli BL21-star (DE3) strain (Novagen, Madison, WI, USA), the E. coli was dissolved and Ni- in the supernatant. Purified using an NTA column (Novagen, Madison, WI, USA), elimination of imidazole via dialysis, polyacrylamide gel electrophoresis (PAGE), coomassie staining and anti-His antibody (Cell Signaling Technology, Beverly, Purity and amount of protein expressed in Western blot using MA, USA) (FIG. 7b; lane 1, pre-purification E. coli lysate, lane 2, sample after protein purification) Example 4. Single for MUC1 Selection of Domain Antibody Clones
제작된 단일 도메인 항체 유전자 라이브러리로부터 MUC1을 인지하는 항체의 선택 및 검색은 Barbas (Barbas CF 3rd et a 1.(1991), Proc Natl Acad Sci U S A .88 (18) :7978-82 J의 파아지 디스플레이 방법을 사용하여 실시하였다. The selection and retrieval of antibodies that recognize MUC1 from the constructed single domain antibody gene library is described in Barbas (Barbas CF 3rd et a 1. (1991), Proc Natl The phage display method of Acad Sci USA .88 (18): 7978-82 J was carried out.
우선, MUC1 단백질의 고정을 위해 정제된 MUC1-N 단백질을 (10 /g/ml) 96 웰 플레이트에 50 ^씩 넣고 4°C에서 하룻밤동안 코팅 하였다. MUC1-N 단백질이 부착된 96 웰 플레이트에 항체 파아지 라이브러리를 50 씩 넣고 상온에서 1 시간 동안 결합시킨 후 PBS로 10회 세척하고, 트립신용액 (10 mg/ml) 50 로 처리하여 회수하였다. 회수된 파아지는 대수 증식기의 E.coli ER2537 (New England Biolabs, Beverly, USA)에 감염시킨 후 암피실린이 첨가된 LB 우무배지에 도말하여 37°C에서 18시간 배양하였다. 일부 파아지는 대수 증식기의 E.coli ER2537에 감염시킨 후 VCSM13 헬퍼 파아지 (Stratagene, La Jolla, CA, USA)를 이용하여 증폭한 다음 패닝 (panning)에 사용하였다. First, purified MUC1-N protein (10 / g / ml) was added to 50 ^ aliquots in 96 well plates for coating of MUC1 protein and coated overnight at 4 ° C. 50 antibody antibody phage libraries were added to a 96 well plate to which the MUC1-N protein was attached, bound for 1 hour at room temperature, washed 10 times with PBS, and recovered by treatment with 50 trypsin solution (10 mg / ml). The recovered phages were infected with E. coli ER2537 (New England Biolabs, Beverly, USA) in logarithmic growth phase, and then plated in ampicillin-added LB broth medium and incubated at 37 ° C for 18 hours. Some phages were infected with E. coli ER2537 in logarithmic growth phase and then amplified using VCSM13 helper phage (Stratagene, La Jolla, Calif., USA) and used for panning.
회수된 단일 도메인 항체 파아지 클론의 패닝을 위해 LB 우무배지에 형성된 집락을 암피실린이 첨가된 SB(SB/Amp) 액체배지 2 ml에 접종하여 37°C에서 250 rpm으로 4시간 진탕배양 하였다. 이때 집락을 확인하기 위하여 LB 우무배지에 접종하고 마스터 플레이트를 제작하였다. 파아지 형성을 위하여 VCSM13을 1010 pfu 첨가하여 실온에서 30 분 동안 정치하여 감염시킨 후 37°C에서 250 rpm으로 1시간 30분간 배양하고 카나마이신을 첨가하여 37°C에서 18 시간 동안 더 배양하였다. 배양액을 3,000 rpm으로 20 분 동안 원침시켜 파아지가 포함된 상청액을 회수한 다음, 5 X PEG/NaCl(20 polyethylene glycol -8000, 2.5 M NaCl)용액으로 파아지를 침전시켰다. 파아지 침전물은 1% 우혈청 알부민 (BSA; Sigma, St Louis, MO, USA), 0.03% 소듐 아지드 (Sigma, St Louis, M0, USA)가 포함된 PBS용액으로 회수하였다. MUCl 특이적 단일 도메인 항체 파아지미드 라이브러리는 5 회의 패닝과정을 반복 수행하여 선발하고 파이지를 정량하여 0/1 ratio를 결정하였다 (도 8). For panning of the recovered single-domain antibody phage clones, colonies formed on LB agar medium were inoculated in 2 ml of SB (SB / Amp) liquid medium to which ampicillin was added and shaken at 37 ° C for 250 hours at 250 rpm. At this time, in order to check the colony was inoculated in LB woofer medium and a master plate was prepared. The phage VCSM13 to the form 1010 to pfu, which was further cultured at 37 ° C and incubated for 1 hour and 30 minutes at 250 rpm at 37 ° C after the infection allowed to stand at room temperature for 30 minutes and addition of kanamycin for 18 hours. The culture solution was centrifuged at 3,000 rpm for 20 minutes to recover the supernatant containing phage, and then the phage was precipitated with 5 X PEG / NaCl (20 polyethylene glycol -8000, 2.5 M NaCl) solution. Phage precipitate was recovered with PBS solution containing 1% bovine serum albumin (BSA; Sigma, St Louis, MO, USA), 0.03% sodium azide (Sigma, St Louis, M0, USA). MUCl specific single domain antibody phagemid library was selected by repeating five panning cycles and quantifying the phage to determine 0/1 ratio (FIG. 8).
패닝 과정 후 단일 도메인 항체 파아지 클론들 중에서 결합력이 높은 MUC1 특이적 단일 도메인 항체 파아지미드를 ELISA법을 이용하여 선발하였다. 이를 위해 96 웰 플레이트에 MUC1-N 단백질을 고정시키고 회수된 파아지 항체를 동일한 양 (1X1010 PFU/ml)으로 희석하여 상은에서 1시간 반웅 시켰다. 5번 세척한 다음 HRP가 결합된 항 -M13 항체를 PBS에 1:3000 희석하여 50 ^씩 첨가하고 상온에서 1시간 반응시켰다. 반웅 끝나면 10 회 세척 하고 50 ^의 기질 시약 (TMB substrate reagent; Sigma, St Louis, MO, USA)을 첨가하여 반웅시켰다. 발색반웅이 일어난 후, 종결 용액 (stop solution) 50 fd 첨가한 다음 가볍게 흔들어서 450 nm에서 흡광도를 측정하였다. 각 클론에서 측정된 흡광도는 음성 대조군 (pComb3XTT, Tetanus toxin (TT)에 대한 단일 도메인 항체를 발현하는 파아지)에서 얻어진 홉광도 값으로 나누어 정규화 (normalization) 하고 흡광도 증가율을 비교 분석 하였으며, 파아지의 pill 단백질에 대한 항체를 양성 대조군으로 사용 하였다 (도 9). 이를 통하여 흡광도가 음성대조군에 비해 10배 이상 증가한 6개의 MUC1 특이적 단일 도메인 항체 클론들을 선발하였다. 실시예 5: 항체분절의 염기서열과 아미노산서열 분석의 예 After panning, MUC1-specific single domain antibody phagemids with high binding strength were selected from the single domain antibody phage clones by ELISA. To this end, MUC1-N protein was immobilized in a 96 well plate and the recovered phage antibody was diluted in the same amount (1 × 10 10 PFU / ml) and reacted for 1 hour at phase silver. After washing five times, HRP-bound anti-M13 antibody was added to PBS. Diluted 1: 3000, 50 ^ each was added and reacted at room temperature for 1 hour. After the reaction, the reaction was washed 10 times and reacted by adding 50 ^ substrate reagent (TMB substrate reagent; Sigma, St Louis, MO, USA). After the development of color reaction, absorbance was measured at 450 nm by adding 50 fd of stop solution and shaking gently. The absorbance measured in each clone was normalized by the hop absorbance values obtained from the negative control group (pComb3XTT, phage expressing a single domain antibody against Tetanus toxin (TT)), and the absorbance increase rate was compared and analyzed. Antibody against was used as a positive control (FIG. 9). This resulted in the selection of six MUC1-specific single domain antibody clones whose absorbance increased more than 10-fold compared to the negative control. Example 5: Example of nucleotide sequence and amino acid sequence analysis of antibody fragment
파아지 패닝과정과 ELISA를 통하여 선발된 MUC1 특이적 단일 도메인 항체 -파아지미드 클론들의 유전자 염기서열 분석은 Ompseq 프라이머 (5' - AAGACAGCTATCGCGATTGCAG-3' )(서열목록 제 70서열)를 사용하여 시행하였다. 염기서열 분석을 통하여 얻어진 염기서열 정보 및 아미노산 서열 정보는 MegAlign 소프트웨어 버젼 5(DNAStar, Inc. , Madison, WI , USA)를 이용하여 비교 분석하였다 (도 10). 사람 항체의 VH3부위와 얻어진 단일 도메인 항체 클론들의 아미노산 서열을 비교 분석한 결과 45-57%의 높은 상동성을 보임을 확인하였으며, IMGT(ImMunoGeneTics) 넘버링 (Lefranc MP et al. , (2003) Dev Corap Immunol; 27: 55-77.) 이후 확인한 결과 프레임워크 (framework)2 부위에 존재하는 일부 아미노산을 제외하고는 모든 클론들에서 단일 도메인 항체 홀마크 (hallmark) 아미노산 서열 (Ser 12, Phe 42, Arg 50, Gly 52; 빨간 박스 표시)이 확인 되었다 (도 10). 실시예 6: E. 에서 MUC1 특이적 단일 도메인 항체의 생산 및 정제  Gene sequencing of MUC1-specific single domain antibody-phagemid clones selected through phage panning and ELISA was performed using Ompseq primers (5′-AAGACAGCTATCGCGATTGCAG-3 ′) (SEQ ID NO: 70). Sequence information and amino acid sequence information obtained through sequencing were compared using MegAlign software version 5 (DNAStar, Inc., Madison, Wis., USA) (FIG. 10). A comparative analysis of the amino acid sequence of the VH3 region of the human antibody and the obtained single domain antibody clones showed high homology of 45-57%, and IMGT (ImMunoGeneTics) numbering (Lefranc MP et al., (2003) Dev Corap Immunol; 27: 55-77.). The results of subsequent confirmation showed that the single domain antibody hallmark amino acid sequence (Ser 12, Phe 42, Arg) was found in all clones except for some of the amino acids present in the framework2 site. 50, Gly 52; red box) (FIG. 10). Example 6: Production and Purification of MUC1 Specific Single Domain Antibodies in E.
ELISA분석을 통해 얻어진 MUC1 특이적 단일 도메인 항체 클론들 중에서 일부 클론들 (VHH524, 530, 33, 39)을 SB/Amp 배지에서 배양한 후 풀라스미드를 추출하였다. 추출된 플라스미드를 E.coli Among the MUC1-specific single domain antibody clones obtained by ELISA analysis, some clones (VHH524, 530, 33, 39) were incubated in SB / Amp medium, and the fulllasmid was extracted. Extracted plasmids from E. coli
To lOF'CStratagene, La Jolla, CA, USA)에 형질 전환시킨 후 SB/Amp 액체배지에 접종하여 37°C에서 250 rpm으로 18 시간 배양하였다. 배양액을 다시 SB/Amp 액체배지에 100분의 1로 접종하여 37°C에서 250 rpm으로 배양하였다. OD600에서 0.5가 될 때 IPTG(Sigma, St Louis, MO, USA)를 최종 ImM 되게 첨가하고 37°C에서 250 rpm으로 4시간 배양하여 단일 도메인 항체 단백질을 대량 발현시켰다. 과발현된 단일 도메인 항체 단백질들은 Ni-NTA 친화성 컬럼을 이용하여 정제하고 15% SDS-PAGE를 시행하여 쿠마시 블루 염색과 마우스 항 -HA 항체 및 항 -His항체 (Cell Signaling Technology, Beverly, MA, USA)를 이용한 웨스턴 블롯으로 확인하였다 (도 11). 실시예 7: 면역형광 염색법을 이용한 단일 도메인 항체의 MUC1 특이성 확인 선발된 H 클론들의 MUC1에 대한 반응성을 확인하기 위하여 대장암세포주 MC38세포 (ATCC, Manassas, VA, USA)에 MUC1을 발현하는 세포주인 MC38-MUC1 세포주와 pcDNA3.1 백터만으로 형질전환 된 MC38- pcDNA3.1을 사용하여 면역형광 염색을 실시하였다. 이 세포주들에서 MUC1이 발현되는지는 항 -MUC1항체 (clone VU4H5, Santa Cruz, CA, USA)를 이용한 웨스턴블롯으로 확인하였다 (도 12a). 각각의 MC38 세포주를 고정시킨 뒤 정제된 단일 도메인 항체를 실온에서 1시간 반응시키고 FITC가 결합된 항 -His 항체로 염색한 후 공초점 현미경으로 결합 유무를 관찰하였다. 선발된 항 -MUC1 단일 도메인 항체 클론들은 상업적으로 판매되는 항 -MUC1항체 (clone VU4H5, Santa Cruz, CA, USA)와 유사한 수준으로 MC38-MUC1세포에만 특이적으로 반웅함을 확인할 수 있었다 (도 12b). 실시예 8: BIAC0RE를 이용한 단일 도메인 항체의 MUC1 친화도 분석 To lOF'CStratagene, La Jolla, CA, USA) Inoculated into the liquid medium and incubated at 37 ° C at 250 rpm for 18 hours. Cultures were re-inoculated with one hundredth to SB / Amp liquid medium, and cultured at 250 rpm at 37 ° C. When the OD600 reached 0.5, IPTG (Sigma, St Louis, MO, USA) was added to the final ImM and incubated at 250 rpm for 4 hours at 37 ° C. to express a single domain antibody protein. Overexpressed single domain antibody proteins were purified using a Ni-NTA affinity column and subjected to 15% SDS-PAGE for Coomassie blue staining, mouse anti-HA antibodies and anti-His antibodies (Cell Signaling Technology, Beverly, MA, USA), and confirmed by Western blot (Fig. 11). Example 7: Confirmation of MUC1 specificity of single domain antibody using immunofluorescence staining In order to confirm the reactivity of the selected H clones against MUC1, the cell line expressing MUC1 in colon cancer cell line MC38 cells (ATCC, Manassas, VA, USA) Immunofluorescence staining was performed using MC38-PCDNA3.1 transformed with only MC38-MUC1 cell line and pcDNA3.1 vector. Expression of MUC1 in these cell lines was confirmed by Western blot using anti-MUC1 antibody (clone VU4H5, Santa Cruz, CA, USA) (FIG. 12A). After fixing each MC38 cell line, the purified single domain antibody was reacted at room temperature for 1 hour, stained with an anti-His antibody conjugated with FITC, and observed for binding by confocal microscopy. Selected anti-MUC1 single domain antibody clones were confirmed to specifically react only to MC38-MUC1 cells at levels similar to the commercially available anti-MUC1 antibodies (clone VU4H5, Santa Cruz, CA, USA) (FIG. 12B). ). Example 8: MUC1 Affinity Analysis of Single Domain Antibodies Using BIAC0RE
정제된 단일 도메인 항체의 MUC1 단백질에 대한 친화도는 BIAC0 E 2000 (Pharmacia Biosensor AB, Uppsala, . Sweden)으로 측정하였다. 정제된 MUC1 단백질은 CM5 센서 칩 (Pharmacia Biosensor AB, Uppsala, Sweden)에 아민 커플링 방법으로 고정하였다. 에탄올아민으로 MUC1항원을 고정한 센서 칩을 블록킹하고 친화도 실험을 진행하였다. 반응용액은 HBS 완층액 (10 mM HEPES, H 7.4, containing 150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20)을 사용하였으며, 항체 반웅액의 유속은 30 /zi/min으로 하였고 62.5 ηΜ-1 μΜ 사이의 서로 다른 농도의 단일 도메인 항체 단백질을 사용하여 결합상수 (Κοη)와 해리상수 (Koff)를 측정하였다 (도 13). 실험은 3회 반복하였으며 단일 도메인 항체의 MUC1항원에 대한 친화도 (Kd)는 Kd=Kon/Koff로 계산하였다 (도 14). 센서그램의 분석은 BIAevaluation 3.1 소프트웨어 (Pharmacia Biosensor)로 분석하였으며 반웅 후 CM5 칩 표면에 남은 단일 도메인 항체는 매 번 측정이 끝난 후 10 mM 글라이신 용액 (pH 2.5)으로 제거하였다. 도 14의 결과에서 볼 수 있는 바와 같이, 제조된 단일 도메인 항체의 친화도는 1.6 - 3.3 X 10-7M 정도로 측정되어, 양성대조군으로 사용한 항 -MUC1항체 (clone VU4H5, Santa Cruz, CA, USA) (0.2 X 10-7M)에 비하여 상대적으로 낮게 나타나고 있는데, 이들 간의 친화도 비교 시에는 양성대조군 항체가 두 개의 항원 결합부위를 갖고 있다는 사실을 고려해야 할 것이다. 실시예 9: MUC1이 발현되는 마우스 종양모델 수립 The affinity for the MUC1 protein of the purified single domain antibody was determined by BIAC0 E 2000 (Pharmacia Biosensor AB, Uppsala, Sweden). Purified MUC1 protein was immobilized on the CM5 sensor chip (Pharmacia Biosensor AB, Uppsala, Sweden) by amine coupling method. Blocking the sensor chip to which the MUC1 antigen was fixed with ethanolamine was carried out affinity experiment. The reaction solution was HBS complete solution (10 mM HEPES, H 7.4, containing 150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20) was used, and the flow rate of the antibody reaction solution was 30 / zi / min, and binding constants (Κοη) and dissociation constants (Koff) were determined using single domain antibody proteins of different concentrations between 62.5 ηΜ-1 μΜ. Measured (FIG. 13). The experiment was repeated three times and the affinity (Kd) for the MUC1 antigen of the single domain antibody was calculated as Kd = Kon / Koff (FIG. 14). The analysis of the sensorgram was analyzed by BIAevaluation 3.1 software (Pharmacia Biosensor), and the single domain antibody remaining on the surface of the CM5 chip after reaction was removed with 10 mM glycine solution (pH 2.5) after each measurement. As can be seen in the results of FIG. 14, the affinity of the prepared single domain antibody was measured to be 1.6-3.3 × 10 −7 M, and was used as a positive control anti-MUC1 antibody (clone VU4H5, Santa Cruz, CA, USA) It is relatively low compared to (0.2 X 10-7M), and the affinity comparison between them should take into account the fact that the positive control antibody has two antigen binding sites. Example 9: Establishment of a Mouse Tumor Model Expressing MUC1
C57BL/6 마우스에 MUC1이 발현되는 EL4-MUC1 세포주와 음성 대조군인 EL4-pcDNA3.1세포주 (Yang H et a 1.(2009), Clin Exp I隱 unol, The Tat- conjugated N一 terminal region of mucin antigen 1 (MUCl) induces protective immunity against MUCl一 expressing tumours)를 각각 1 X 106개 투여하여 마우스 종양 모델을 구축하였다. 종양세포를 주사한 마우스는 1 주 후부터 선명한 암 조직이 생성되었으며 본 발명에서는 세포를 주사한 2 주 후에 실험을 진행하였다. 실시예 10: MUC1항원에 특이적인 단일 도메인 항체와 형광 양자점 (quantum dot) 결합체 제조  EL4-MUC1 cell line expressing MUC1 in C57BL / 6 mice and EL4-pcDNA3.1 cell line as a negative control (Yang H et a 1. (2009), Clin Exp I 隱 unol, The Tat-conjugated N1 terminal region of mucin A mouse tumor model was constructed by administering 1 × 10 6 antigens (MUCl) induces protective immunity against MUCl one expressing tumours). Mice injected with tumor cells produced clear cancer tissues after 1 week, and in the present invention, experiments were performed after 2 weeks of cell injection. Example 10 Preparation of Fluorescent Quantum Dot Conjugates with a Single Domain Antibody Specific for MUC1 Antigen
단일 도메인 항체 (VHH524)는 Qdot 800 항체 결합 키트 (Invitrogen, Carlsbad, CA, USA)를 이용하여 제조사에서 제시한 방법에 따라 Qdot 800을 표지하였다. 활성화된 Qdot 800을 DTT로 처리된 항체분자와 상온에서 1시간 동안 반웅시켰다. 다음 β-머캅토에탄올을 첨가하여 반웅을 정지시켰다. 분리 컬럼 (separation column)을 이용하여 결합되지 않은 Qdot 800 분자들올 제거하고, 형광 양자점이 결합된 단일 도메인 항체를 정제하였다. 실험예 11: In vivo MUC1 양성 종양 모델에서 단일 도메인 항체의 진단적 특이성 시험 Single domain antibodies (VHH524) were labeled with Qdot 800 using the Qdot 800 Antibody Binding Kit (Invitrogen, Carlsbad, Calif., USA) following the method suggested by the manufacturer. Activated Qdot 800 was reacted with antibody molecules treated with DTT at room temperature for 1 hour. Then reaction was stopped by adding β-mercaptoethanol. Separation column is used to remove unbound Qdot 800 molecules and single domain antibody with fluorescent quantum dots Purified. Experimental Example 11: Diagnostic Specificity Test of a Single Domain Antibody in an In vivo MUC1-positive Tumor Model
제작된 MUC1 양성 종양 마우스 모델에서 단일 도메인 항체의 반웅 특이성을 평가하였다. 형광 양자 점 (quantum dot)이 결합된 단일 도메인 항체 100 ιΛ (300 pmo 1/100 를 마우스에 정맥주사하고 항체가 마우스 모델에서 종양 부위로 농축되는지를 In vivo 이미징 장비 (Maestro, CRI Inc. Woburn, MA, USA)를 이용하여 관찰하였다. 주사한 후 2 시간, 5 시간 및 24 시간 후에 관찰하였을 때, 2시간 후부터 MUC1이 발현이 되는 종양부위 (흰색 타원)에 단일 도메인 항체가 반웅함을 확인하였으며 (도 15 오른쪽 패널), MUC1을 발현하지 않는 종양에서는 항체가 축적되지 않는 것을 확인하였다 (도 15 왼쪽 패널). 간과 비장 부위로 추정되는 부위에서 비특적 항체 축적이 두 시험군 모두에서 확인 되었는데, 이 경우 5시간 이후에 신호 강도가줄어드는 것이 관찰되었다. 실시예 12: 디프테리아독소와 단일 도메인 항체가 결합된 면역독소의 발현 정제 및 MUC1 항원에 대한 친화도 분석  The reaction specificity of single domain antibodies in the MUC1 positive tumor mouse model constructed was evaluated. In vivo imaging equipment (Maestro, CRI Inc. Woburn, Intramuscular injection of 100 ιΛ (300 pmo 1/100) of a single domain antibody bound to fluorescent quantum dots into a mouse and concentration of the antibody into the tumor site in a mouse model MA, USA) When observed 2 hours, 5 hours and 24 hours after injection, it was confirmed that a single domain antibody reacted at the tumor site (white ellipse) where MUC1 is expressed after 2 hours. (Figure 15 right panel), it was confirmed that the antibody does not accumulate in tumors that do not express MUC1 (left panel of Figure 15.) Nonspecific antibody accumulation was observed in both the test group and the site estimated to be liver and spleen. In this case, a decrease in signal intensity was observed after 5 hours Example 12 Expression Purification of Diphtheria Toxin and Immunotoxin Combined with Single Domain Antibody and Familiarity with MUC1 Antigen Analysis
선별된 항 -MUC1 단일 도메인 항체 유전자를 디프테리아 독소 유전자와 결합시킨 재조합 면역독소를 생산하기 위하여 E. coli 발현 시스템을 사용하였다 (도 16a). pET-23a 백터 (Novagen, Madison, WI , USA)에 (G4S)2 링커를 연결시킨 디프테이라 독소 (DT)와 링커를 연결시키지 않은 독소의 A 서브유닛 (1—388 AA)을 암호화하는 유전자 단편을 EcoRI과 Hindi II site에 각각 클로닝하고 선발된 단일 도메인 항체 유전자를 독소의 C-말단부위의 Hindlll 및 Xhol site에 클로닝 하였다. 제조된 재조합 플라스미드에 삽입된 면역독소 유전자는 제한효소를 이용하여 확인하였다 (도 16b). 면역독소 재조합 단백질들은 실시예 6에서와 같은 방법으로 E. coli에서 분리 정제하고, 쿠마시 블루 염색과 항 His 항체를 이용한 웨스턴 블롯으로 확인 하였다 (도 17). 정제된 면역독소의 MUC1 단백질에 대한 친화도는 실시예 8에서와 같은 방법으로 BIAC0RE 2000을 이용하여 측정하였다 (도 18). 이를 통해 얻어진 면역독소의 결합상수 (Kon)와 해리상수 (Koff), 그리고 친화도 (Kd)는 도 19에 정리 하였다. 실험예 13: MUC1항원이 발현되는 세포에 대한 면역독소의 세포살해능 분석 시험 The E. coli expression system was used to produce recombinant immunotoxins in which selected anti-MUC1 single domain antibody genes were combined with diphtheria toxin genes (FIG. 16A). Gene encoding the subunit (1—388 AA) of the diphtheria toxin (DT) linking the (G4S) 2 linker to the pET-23a vector (Novagen, Madison, WI, USA) and the toxin without linking the linker The fragments were cloned into the EcoRI and Hindi II sites, respectively, and the selected single domain antibody genes were cloned into the Hindlll and Xhol sites at the C-terminus of the toxin. The immunotoxin gene inserted into the prepared recombinant plasmid was confirmed using restriction enzymes (FIG. 16B). The immunotoxin recombinant proteins were isolated and purified in E. coli in the same manner as in Example 6, and confirmed by Western blot using Coomassie blue staining and anti-His antibody (FIG. 17). The affinity of the purified immunotoxin for the MUC1 protein was measured using BIAC0RE 2000 in the same manner as in Example 8 (FIG. 18). Of the immunotoxin obtained through Coupling constants (Kon), dissociation constants (Koff), and affinity (Kd) are summarized in FIG. 19. Experimental Example 13: Analysis of cytotoxicity of immunotoxin against cells expressing MUC1 antigen
정제된 면역독소의 MUC1 특이적 세포살해능을 확인하기위하여 MC38- MUC1 세포주와 MC38-pcDNA3.1 세포주를 이용하여 세포살해능 분석 시험을 수행하였다. 각각의 세포주 lX104/well을 96 웰 폴레이트에 200 ≠ 분주하고 정제된 면역독소 (50 j«g/ml - 400 «g/ml)를 48시간 처리한 다음 MTT(Sigma, St Louis, MO, USA) 분석법을 이용하여 세포 생존율을 검사하였다. 도 20에서 볼 수 있는 바와 같이, 링커가 도입된 면역독소 (DT(G4S)2-VHH524; 도 20a)와 도입되지 않은 면역독소 (DT-VHH524; 도 20b)를 처리한 실험에서는 첨가된 면역독소의 농도 의존적으로 MUC1 항원을 발현하는 세포주에 대해 통계학적으로 유의한 세포 살해능올 보이는 것이 관찰되었으며 (*, p < 0.05), 링커를 도입한 면역독소의 경우 약간 우세한 세포 살해능을 나타내었다. 반면, DT와 결합되지 않은 항체의 경우 세포살해능을 거의 보이지 않는 것이 확인 되었다 (도 20c). 이러한 결과는 생산된 면역독소가 MUC1 항원 특이적으로 결합하여 그 살해능을 발휘할 수 있음을 의미한다. 실험예 14: MUC1 양성 종양 동물모델에서 면역독소의 종양성장 억제능 평가 시험  In order to confirm the MUC1-specific cell killing ability of the purified immunotoxin, cell killing assay was performed using MC38-MUC1 cell line and MC38-pcDNA3.1 cell line. Each cell line lX104 / well was dispensed with 200 ≠ in 96 well folate and treated with purified immunotoxin (50 j «g / ml-400« g / ml) for 48 hours, followed by MTT (Sigma, St Louis, MO, USA). Cell viability was examined using the assay. As can be seen in FIG. 20, in the experiments in which the linker introduced the immunotoxin (DT (G4S) 2-VHH524; FIG. 20A) and the unintroduced immunotoxin (DT-VHH524; FIG. 20B), the added immunotoxin was added. Statistically significant cell killing ability was observed for cell lines expressing MUC1 antigen in a concentration-dependent manner (*, p <0.05), and a slightly superior cell killing capacity was observed for the immunotoxin introduced with the linker. On the other hand, in the case of the antibody not bound to DT it was confirmed that almost no cell killing ability (Fig. 20c). This result means that the produced immunotoxin can bind specifically to the MUC1 antigen and exert its killing ability. Experimental Example 14 Evaluation of Tumor Growth Inhibition Activity of Immunotoxin in MUC1-positive Tumor Animal Model
정제된 면역독소가 MUC1양성 종양 동물모델에서 효능을 나타내는지 확인하기 위하여 MC38-MUC1 세포주를 이용한 종양모델을 수립하고 종양 주입 일주일 후부터 3일 간격으로 면역 독소를 7회 투여하면서 종양의 성장을 측정하였다 (도 21a). 정제된 면역독소는 마우스당 50 β , 25 g 또는 12.5 씩 정맥 주사하였으며, 대조군으로 PBS만을 주입한 그룹, DT가 결합하지 않은 항체 (VHH524)를 마우스당 100 /g씩 주사한 그룹을 사용하였다. 각 그룹에는 각각 5마리의 마우스들이 사용되었으며, 종양 주입 후 27일간 종양의 크기를 측정하였다. 도 21b의 결과에서 볼 수 있는 바와 같이, 대조군에서는 종양이 매우 빠르게 성장하는 것을 관찰할 수 있었으나, 면역독소를 주사한 그룹에서는 종양의 성장이 현처¾1 억제되는 것을 확인할 수 있었다 (*, p < 0.05). 이러한 결과는 제조된 면역독소가 생체내에 적용되었을 때에도 MJC1 양성 종양에 특이적으로 반웅하여 종양 성장을 억제하고 항종양능을 보일 수 있음을 의미한다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. In order to confirm the efficacy of purified immunotoxin in MUC1-positive tumor animal model, tumor model was established using MC38-MUC1 cell line and tumor growth was measured by administering 7 immunotoxins at 3 days interval one week after tumor injection. (FIG. 21A). Purified immunotoxin was injected intravenously at 50 β, 25 g or 12.5 per mouse, and a group injected with PBS alone and a group injected with 100 / g of mouse without DT binding antibody (VHH524) as a control group. Five mice were used in each group, and tumor size was measured for 27 days after tumor injection. As can be seen in the results of FIG. 21B, the control group observed very fast growth of the tumor. However, in the group injected with immunotoxin, it was confirmed that tumor growth was inhibited by ¾1 (* , p <0.05). These results indicate that even when the prepared immunotoxins are applied in vivo, they can specifically react to MJC1 positive tumors to inhibit tumor growth and exhibit antitumor activity. Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that this specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the invention will be defined by the appended claims and equivalents thereof.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
다음의 중쇄 CDR( comp 1 ement ar i t y determining region) 아미노산 서열을 갖는 중쇄 가변영역을 포함하는 MUC mucin antigen 1)에 대한 단일 도메인 항체 (single domain antibody): 서열목록 제 24서열 내지 서열목록 제 30서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR1, 서열목록 제 31서열 내지 서열목록 제 37서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR2 및 서열목톡 제 38서열 내지 서열목록 제 44서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택된 CDR3.  Single domain antibody against MUC mucin antigen 1) comprising a heavy chain variable region having the following heavy chain CDR amino acid sequence: SEQ ID NO: 24 to SEQ ID NO: 30 CDR1 selected from the group consisting of amino acid sequences consisting of CDR2 selected from the group consisting of amino acid sequences consisting of SEQ ID NO: 31 to 37, and SEQ ID NO: 37 consisting of amino acid sequences consisting of SEQ ID NO: 38 to SEQ ID NO: 44 CDR3 selected from the group.
【청구항 2] [Claim 2]
제 1 항에 있어서, 상기 중쇄 CDR 아미노산 서열은 서열목록 제 24서열의 CDR1, 서열목록 제 31서열의 CDR2 및 서열목록 제 38서열의 CDR3을 포함하는 아미노산 서열, 서열목특 제 25서열의 CDR1, 서열목록 제 32서열의 CDR2 및 서열목록 제 39서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 26서열의 CDR1, 서열목록 제 33서열의 CDR2 및 서열목록 제 40서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 27서열의 CDR1, 서열목록 제 34서열의 CDR2 및 서열목록 제 41서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 28서열의 CDR1, 서열목록 제 35서열의 CDR2 및 서열목록 제 42서열의 CDR3을 포함하는 아미노산 서열, 서열목록 제 29서열의 CDR1, 서열목록 제 36서열의 CDR2 및 서열목록 제 43서열의 CDR3을 포함하는 아미노산 서열, 그리고 서열목록 제 30서열의 CDR1, 서열목록 제 37서열의 CDR2 및 서열목록 제 44서열의 CDR3올 포함하는 아미노산 서열로 구성된 군으로부터 선택되는 아미노산 서열인 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 .  The amino acid sequence of claim 1, wherein the heavy chain CDR amino acid sequence comprises CDR1 of SEQ ID NO: 24, CDR2 of SEQ ID NO: 31 and CDR3 of SEQ ID NO: 38; CDR1 of SEQ ID NO: 25 Amino acid sequence comprising CDR2 of SEQ ID NO: 32 and CDR3 of SEQ ID NO: 39, CDR1 of SEQ ID NO: 26, CDR2 of SEQ ID NO: 33 and amino acid sequence comprising CDR3 of SEQ ID NO: 40 An amino acid sequence comprising CDR1 of SEQ ID NO: 27, CDR2 of SEQ ID NO: 34 and CDR3 of SEQ ID NO: 41, CDR1 of SEQ ID NO: 28, CDR2 of SEQ ID NO: 35, and SEQ ID NO: 42 of SEQ ID NO: 42 Amino acid sequence comprising CDR3, CDR1 of SEQ ID NO: 29, CDR2 of SEQ ID NO: 36 and CDR3 of SEQ ID NO: 43, and CDR1 of SEQ ID NO: 30, SEQ ID NO: A single domain antibody against MUC1, characterized in that the amino acid sequence selected from the group consisting of CDR2 of SEQ ID NO: 37 and CDR3 oligo of SEQ ID NO: 44.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 상기 단일 도메인 항체는 서열목록 계 1서열 내지 제 7서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택되는 아미노산 서열을 포함하는 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 . The single domain antibody of claim 1, wherein the single domain antibody comprises an amino acid sequence selected from the group consisting of amino acid sequences consisting of SEQ ID NOs: 1 to 7 sequences.
【청구항 4] [Claim 4]
제 1 항에 있어서, 상기 항체는 카멜리대 (Camelidae) VHH(variable region of a heavy chain antibody)인 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체.  According to claim 1, wherein the antibody is Camelidae (Camelidae) variable domain of a heavy chain antibody (VHH), characterized in that the single domain antibody against MUC1.
【청구항 5】 [Claim 5]
제 1 항에 있어서, 상기 단일 도메인 항체는 최소 2종 이상의 단일도메인 항체를 포함하는 2가 (divalency) 이상의 항체인 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 .  The single domain antibody of claim 1, wherein the single domain antibody is a divalent or higher antibody comprising at least two or more single domain antibodies.
【청구항 6】 [Claim 6]
제 1 항에 있어서, 상기 단일 도메인 항체는 기능성 분자가 추가적으로 결합되어 있는 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 .  The method of claim 1, wherein the single domain antibody is a single domain antibody against MUC1, characterized in that the functional molecule is further bound.
【청구항 7】 [Claim 7]
겨】 6 항에 있어서, 상기 기능성 분자는 화학물질, 펩타이드, 폴리펩타이드, 핵산, 탄수화물, 지질 또는 무기입자인 것을 특징으로 하는 而 C1에 대한 단일 도메인 항체 .  VII. The single-domain antibody against C1 of claim 6, wherein the functional molecule is a chemical, peptide, polypeptide, nucleic acid, carbohydrate, lipid or inorganic particle.
【청구항 8】 [Claim 8]
제 7 항에 있어서, 상기 기능성 분자는 화학물질로서 메토트렉세이트, 독소루비신, 다우노루비신, 사이토신아라비노시드, 에토포시드, 5' - 플루오로우라실, 멜파란, 클로람부실, 사이클로포스파마이드, 시스폴라틴, 빈데신, 마이토마이신, 블레오마이신, 타목시펜 및 탁솔로 구성된 군으로부터 선택되는 항암제인 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 .  The method of claim 7, wherein the functional molecule is a chemical substance methotrexate, doxorubicin, daunorubicin, cytosine arabinoside, etoposide, 5'- fluorouracil, melfaran, chlorambucil, cyclophosphamide, A single domain antibody against MUC1, characterized in that it is an anticancer agent selected from the group consisting of cisplatin, bindecine, mitomycin, bleomycin, tamoxifen and taxol.
【청구항 9】 [Claim 9]
제 7 항에 있어서, 상기 기능성 분자는 폴리펩타이드로서 리신, 리신 The method of claim 7, wherein the functional molecule is a lysine, lysine as a polypeptide
A 사슬, 슈도모나스 외독소, 디프테리아 독소, 포크위드 (pokeweed) 항바이러스 단백질, 아브린 (abrin), 아브린 A 사슬, 코브라 베놈 인자, 겔로닌 (gelonin), 사포린 (sapor in), 모데신 (modeccin), 볼켄신 (volkensin), 비스쿠민 (viscumin), 클로스트리듐 페르프링겐스 포스포리파제 C 및 보바인 췌장 리보뉴클레아제으로 구성된 군으로부터 선택되는 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 . A chain, Pseudomonas exotoxin, diphtheria toxin, pokeweed Antiviral Proteins, Abrin, Abrin A Chain, Cobra Venom Factor, Gelonin, Saporin, Modeccin, Volkensin, Viscumin , Clostridial Perpringens phospholipase C and Bovine pancreatic ribonuclease. A single domain antibody against MUC1.
【청구항 10] [Claim 10]
제 9 항에 있어서, 상기 폴리펩타이드는 디프테리아 독소인 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 .  10. The single domain antibody against MUC1 of claim 9, wherein the polypeptide is diphtheria toxin.
【청구항 111 [Claim 111]
제 10 항에 있어서, 상기 디프테리아 독소는 단일 도메인 항체에 직접적으로 결합되거나 링커를 통하여 간접적으로 결합되는 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 .  11. The single domain antibody to MUC1 of claim 10, wherein the diphtheria toxin is directly bound to a single domain antibody or indirectly through a linker.
【청구항 12】 [Claim 12]
제 11 항에 있어서, 상기 디프테리아 독소가 단일 도메인 항체에 직접적으로 결합되는 경우에 단일 도메인 항체는 서열목록 계 8서열 내지 제 14서열로 이루어진 아미노산 서열로 구성된 군으로부터 선택되는 아미노산 서열인 것을 특징을 하는 MUC1에 대한 단일 도메인 항체.  The method of claim 11, wherein when the diphtheria toxin is directly bound to a single domain antibody, the single domain antibody is an amino acid sequence selected from the group consisting of amino acid sequences consisting of SEQ ID NO: 8 to 14 sequences Single domain antibody against MUC1.
【청구항 13] [Claim 13]
제 11 항에 있어서, 상기 디프테리아 독소가 단일 도메인 항체에 링커를 통하여 간접적으로 결합되는 경우에 단일 도메인 항체는 서열목록 제 17서열 내지 제 23서열로 구성된 군으로부터 선택되는 아미노산 서열인 것올 특징을 하는 MUC1에 대한 단일 도메인 항체.  The method of claim 11, wherein when the diphtheria toxin is indirectly coupled to a single domain antibody through a linker, the single domain antibody is MUC1 characterized in that the amino acid sequence selected from the group consisting of SEQ ID NO: 17 to 23 sequence Single domain antibody against.
【청구항 14] [Claim 14]
제 7 항에 있어서, 상기 기능성 분자는 무기입자로서 조영제, 형광 마커 또는 염색 물질인 것을 특징으로 하는 MUC1에 대한 단일 도메인 항체 . 8. The single domain antibody against MUC1 of claim 7, wherein the functional molecule is an inorganic particle, a contrast agent, a fluorescent marker, or a staining material.
【청구항 15] [Claim 15]
상기 제 1 항 내지 제 14 항 중 어느 한 항의 MUC1에 대한 단일 도메인 항체를 코딩하는 핵산 분자 .  A nucleic acid molecule encoding a single domain antibody against MUC1 of any one of the preceding claims.
【청구항 16】 [Claim 16]
상기 제 15 항의 핵산 분자를 포함하는 재조합 백터 .  A recombinant vector comprising the nucleic acid molecule of claim 15.
【청구항 17] [Claim 17]
상기 제 16 항의 재조합 백터로 형 질전환 된 숙주세포 .  The host cell transformed with the recombinant vector of claim 16.
【청구항 18] [Claim 18]
(a) 상기 제 1 항 내지 제 14 항 중 어느 한 항의 MUC1에 대한 단일 도메인 항체의 약제학적 유효량 ; 및 (b) 약제학적으로 허용되는 담체를 포함하는 항암 면역치료용 약제학적 조성물 .  (a) a pharmaceutically effective amount of a single domain antibody against MUC1 of any one of claims 1-14; And (b) a pharmaceutically acceptable carrier.
【청구항 19】 [Claim 19]
상기 제 1 항 내지 제 14 항 중 어느 한 항의 MUC1에 대한 단일 도메인 항체를 포함하는 암 진단용 조성물 .  A cancer diagnostic composition comprising a single domain antibody against MUC1 of any one of claims 1 to 14.
PCT/KR2010/006295 2010-02-12 2010-09-15 Single domain antibody against muc1 WO2011099684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100013470A KR20110093427A (en) 2010-02-12 2010-02-12 Single domain antibody for mucin antigen 1
KR10-2010-0013470 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099684A1 true WO2011099684A1 (en) 2011-08-18

Family

ID=44367935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006295 WO2011099684A1 (en) 2010-02-12 2010-09-15 Single domain antibody against muc1

Country Status (2)

Country Link
KR (1) KR20110093427A (en)
WO (1) WO2011099684A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129978A2 (en) * 2012-02-28 2013-09-06 Общество с ограниченной ответственностью "Технофарма" Nano-antibody, specifically binding muc1 protein, and method for detecting muc1 protein with the aid of the nano-antibodies
CN103880956A (en) * 2014-03-10 2014-06-25 中国人民解放军第四军医大学 Anti-MUC1 monoclonal antibody as well as light chain and heavy chain variable regions thereof
WO2021072399A1 (en) * 2019-10-11 2021-04-15 Northeastern University Engineering bacillus subtilis as a versatile and stable platform for production of nanobodies
WO2022133074A1 (en) * 2020-12-18 2022-06-23 Bioardis, Llc Muc1 binding molecules and uses thereof
WO2023142297A1 (en) * 2022-01-29 2023-08-03 浙江纳米抗体技术中心有限公司 Muc1 binding molecule and application thereof
EP4098748A4 (en) * 2020-01-27 2024-02-28 Kao Corp Method for producing heavy chain variable domain of heavy-chain antibody

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433021B1 (en) * 2012-02-09 2014-08-29 고려대학교 산학협력단 Antibody-attached nanoparticles in proper orientation of antibody and the process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042596A (en) * 1995-12-19 1997-07-24 부그. 부크 Human mucin MUC8
KR20070059009A (en) * 2004-05-13 2007-06-11 리전츠 오브 더 유니버스티 오브 미네소타 Mucin3 egf-like domains

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042596A (en) * 1995-12-19 1997-07-24 부그. 부크 Human mucin MUC8
KR20070059009A (en) * 2004-05-13 2007-06-11 리전츠 오브 더 유니버스티 오브 미네소타 Mucin3 egf-like domains

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAHBARIZADEH ET AL.: "Over expression of anti-MUCl single-domain antibody fragments in the yeast pichia pastoris", MOLECULAR IMMUNOLOGY, vol. 43, no. 5, 25 March 2005 (2005-03-25), pages 426 - 435, XP005199516 *
RAHBARIZADEH ET AL.: "Production of novel recombinant single-domain antibodies against tandem repeat region ofMUCl mucin", HYBRIDOMA AND HYBRIDOMICS, vol. 23, no. 3, 24 March 2004 (2004-03-24), pages 151 - 159 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129978A2 (en) * 2012-02-28 2013-09-06 Общество с ограниченной ответственностью "Технофарма" Nano-antibody, specifically binding muc1 protein, and method for detecting muc1 protein with the aid of the nano-antibodies
RU2493165C1 (en) * 2012-02-28 2013-09-20 Общество с ограниченной ответственностью "Технофарма" Nanoantibody specifically binding muc1 protein, method of muc1 protein detection by nanoantibodies
WO2013129978A3 (en) * 2012-02-28 2013-11-28 Общество с ограниченной ответственностью "Технофарма" Nano-antibody, specifically binding muc1 protein, and method for detecting muc1 protein with the aid of the nano-antibodies
CN103880956A (en) * 2014-03-10 2014-06-25 中国人民解放军第四军医大学 Anti-MUC1 monoclonal antibody as well as light chain and heavy chain variable regions thereof
WO2021072399A1 (en) * 2019-10-11 2021-04-15 Northeastern University Engineering bacillus subtilis as a versatile and stable platform for production of nanobodies
EP4041296A4 (en) * 2019-10-11 2023-11-08 Northeastern University Engineering bacillus subtilis as a versatile and stable platform for production of nanobodies
EP4098748A4 (en) * 2020-01-27 2024-02-28 Kao Corp Method for producing heavy chain variable domain of heavy-chain antibody
WO2022133074A1 (en) * 2020-12-18 2022-06-23 Bioardis, Llc Muc1 binding molecules and uses thereof
WO2023142297A1 (en) * 2022-01-29 2023-08-03 浙江纳米抗体技术中心有限公司 Muc1 binding molecule and application thereof

Also Published As

Publication number Publication date
KR20110093427A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP7054948B2 (en) Protease cleavage resistance, Shiga toxin A subunit effector polypeptide and cell targeting molecule containing it
JP7360377B2 (en) Binding protein drug conjugates including anthracycline derivatives
CN111094341A (en) Antibodies having functional domains in the elbow region between the variable and constant domains
KR101529810B1 (en) Antibody-drug conjugates
WO2011099684A1 (en) Single domain antibody against muc1
JP7467526B2 (en) Engineered antibody compounds and conjugates thereof
TW202203977A (en) Antibody drug conjugates comprising sting agonists
EP3258969B1 (en) Immunoconjugates for specific induction of t cell cytotoxicity against a target cell
US20220372143A1 (en) Human antibodies binding to ror2
US20240092860A1 (en) Cd38-binding proteins comprising de-immunized shiga toxin a subunit effectors
IL298121A (en) Cd40 binding protein
JP2020506675A (en) VEGFR-2 antibody
KR20220099103A (en) Anti-FGFR3 Antibody and Use Thereof
WO2016207402A1 (en) Proteins comprising a mutated lair-1 fragment and uses thereof
KR102357951B1 (en) Antibodies Against Programmed death-ligand 1 and Uses Thereof
RU2786235C1 (en) Antibodies against programmed cell death ligand 1 and their use
JP2020504761A (en) Anti-VEGFR-2 urease conjugate
WO2023051712A1 (en) Anti-cd39 antibody-drug conjugate and use thereof
KR20240006506A (en) Anti-vaccinia virus antigen antibodies and related compositions and methods
KR20230021663A (en) Anti-Human Neurotensin Receptor 1 Antibodies and Uses Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845854

Country of ref document: EP

Kind code of ref document: A1