WO2011099051A1 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
WO2011099051A1
WO2011099051A1 PCT/JP2010/000792 JP2010000792W WO2011099051A1 WO 2011099051 A1 WO2011099051 A1 WO 2011099051A1 JP 2010000792 W JP2010000792 W JP 2010000792W WO 2011099051 A1 WO2011099051 A1 WO 2011099051A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
amount
selective reduction
reduction catalyst
injection
Prior art date
Application number
PCT/JP2010/000792
Other languages
French (fr)
Japanese (ja)
Inventor
羽賀久夫
フィッシャーミハエル
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112010005244T priority Critical patent/DE112010005244T5/en
Priority to PCT/JP2010/000792 priority patent/WO2011099051A1/en
Publication of WO2011099051A1 publication Critical patent/WO2011099051A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purifying apparatus for an internal combustion engine, and more particularly relates to an exhaust purifying apparatus for an internal combustion engine provided with a selective reduction catalyst for reducing NO x in the exhaust passage in the presence of a reducing agent.
  • a device for selectively reducing NO x in exhaust by adding a reducing agent is provided in an exhaust passage.
  • a selective reduction catalyst for selectively reducing NO x in exhaust by adding a reducing agent is provided in an exhaust passage.
  • the added urea is hydrolyzed to form ammonia (NH 3 ), and NH 3 selectively reduces NO x in exhaust gas. .
  • Patent Document 1 discloses an exhaust gas purification apparatus for an internal combustion engine.
  • the amount of HC supplied to the exhaust gas purification is controlled by controlling the interval between the main injection amount of fuel and the sub injection.
  • the injection amount of the reducing agent When properly controlling the injection amount of the reducing agent, if the injection amount of the reducing agent reaches a flow rate lower than the injection resolution that can be controlled by the injector, specify the injection time that corresponds to the injection amount. Even injection as specified may not be guaranteed.
  • the selective reduction catalyst has an ability to adsorb NH 3 , and the NH 3 adsorbable amount tends to decrease depending on the temperature and the degree of deterioration of the selective reduction catalyst. For this reason, if the reducing agent is constantly injected at a constant interval, the reducing agent becomes excessive to exceed the NH 3 adsorbable amount, and the NH 3 slip from the exhaust pipe increases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-323835
  • the present invention appropriately controls the injection amount of the reducing agent to suppress a large amount of NH 3 slips larger than the NH 3 adsorbable amount from the selective reduction catalyst.
  • the purpose is to
  • the present invention provides an exhaust purification system of an internal combustion engine.
  • the exhaust gas purification apparatus is provided in an exhaust gas passage of an internal combustion engine, and is configured to capture NH 3 which is a reducing agent, and to reduce NO x flowing in the exhaust gas passage using captured NH 3
  • a reduction catalyst for supplying a reducing agent to the upstream side of the selective reduction catalyst in the exhaust passage
  • reducing agent supply amount setting means for setting the supply amount of reducing agent by the reducing agent supply means
  • the agent supply amount setting means sets the supply amount of the reducing agent based on the minimum supply time and sets the supply amount of the reducing agent, when the supply time shorter than the controllable minimum supply time has to be set. Increase the feed interval.
  • the present invention it is possible to precisely adjust (secure) the required amount of the reducing agent supplied by controlling the reducing agent supplying time and the supplying interval of the reducing agent by the reducing agent supplying means with high accuracy. As a result, it is possible to avoid the lack of purification of NO x and the increase of the slip amount of NH 3 .
  • the system further comprises means for calculating the purification rate of the selective reduction catalyst and means for determining the degree of deterioration of the selective reduction catalyst from the purification rate, and the reducing agent supply amount setting means And / or reducing the feed time of the reducing agent and / or increasing the feed interval.
  • the catalyst temperature detection means for detecting the temperature of the selective reduction catalyst, and the NH 3 storage capacity in the selective reduction catalyst are set according to the temperature of the selective reduction catalyst and the degree of deterioration of the selective reduction catalyst.
  • Means for calculating the amount of NH 3 in the selective reduction catalyst, and the reducing agent supply amount setting means calculates the difference between the calculated amount of NH 3 and the NH 3 storage capacity in the selective reduction catalyst.
  • the supply amount of the reducing agent by the reducing agent supply means is set based on the above.
  • FIG. 1 is a schematic view showing a configuration of an engine and its exhaust gas purification apparatus according to one embodiment of the present invention.
  • NH 3 storage amount capable is a diagram illustrating a control flow of the injection time and the injection interval of urea water when reduced.
  • FIG. 1 is a schematic view showing a configuration of an internal combustion engine (hereinafter referred to as “engine”) 1 and an exhaust gas purification device 2 according to an embodiment of the present invention.
  • the engine 1 is a gasoline engine or a diesel engine, and is mounted on a vehicle (not shown).
  • the exhaust purification device 2 is provided downstream of the oxidation catalyst 21 provided in the exhaust passage 11 of the engine 1 and the oxidation catalyst 21 of the exhaust passage 11, and nitrogen oxides in the exhaust flowing through the exhaust passage 11 (hereinafter Selective reduction catalyst 23 for purifying NO x )) in the presence of a reducing agent, a urea water injection device 25 for supplying urea water as a reducing agent upstream of the selective reduction catalyst 23 in the exhaust passage 11, and electronic control A unit (hereinafter referred to as "ECU") 3 is included.
  • ECU electronic control A unit
  • the ECU 3 is a computer including a central processing unit (CPU) and a memory.
  • the memory can store computer programs for realizing various control of the vehicle and data, tables, and maps necessary for the execution of the programs.
  • the ECU 3 receives data sent from each part (sensor etc.) of the vehicle, performs calculation, and generates a control signal for controlling each part of the vehicle.
  • the urea water injection device 25 includes a tank 251 and an injector 253.
  • the tank 251 stores urea water, and is connected to the injector 253 via the urea water supply passage 254 and a pump (not shown).
  • the tank 251 is provided with a urea water level sensor 255.
  • the sensor 255 detects the level of urea water in the tank 251, and outputs a detection signal corresponding to the level to the ECU 3.
  • the injector 253 is connected to the ECU 3 and injects urea water into the exhaust passage 11 in accordance with a control signal from the ECU 3. That is, the injector 253 injects a predetermined amount of urea water into the exhaust passage 11 at the injection time (second / one shot) and the injection interval (second, cycle (Hz)) set by the ECU 3.
  • the oxidation catalyst 21 is provided on the upstream side of the selective reduction catalyst 23 and the injector 253 in the exhaust passage 11, and converts the NO that occupies most of the NO x in the exhaust into NO 2 , thereby the selective reduction catalyst Promote the reduction of NO x at 23
  • the selective reduction catalyst 23 includes at least one selective reduction catalyst 231.
  • the selective reduction catalyst may further have two or more reduction catalysts downstream of the selective reduction catalyst 231.
  • Selective reduction catalyst 23 in an atmosphere of ammonia as a reducing agent is present, to selectively reduce NO x in the exhaust.
  • ammonia hereinafter referred to as "NH 3 ”
  • NH 3 ammonia
  • Selective reduction catalyst 231 also has a function of storing (adsorbing) the NH 3, NO x is reduced and purified by NH 3 that is stored.
  • FIG. 2 is a view showing the relationship between the temperature of the selective reduction catalyst and the NH 3 storage capacity.
  • the NH 3 storage capacity tends to be large at low temperatures and to decrease as the temperature is high. This NH 3 storage capacity tends to further decrease as the selective reduction catalyst 231 degrades.
  • the catalyst temperature sensor 27, and the NO x sensors 28, 29, the crank angle position sensor 14, the accelerator opening sensor 15, and the urea water remaining amount warning light 16 are connected to the ECU 3.
  • the NH 3 sensor 26 detects the concentration of ammonia in the exhaust after the selective reduction catalyst 231 in the exhaust passage 11 (hereinafter referred to as “NH 3 concentration”), and sends a detection signal corresponding to the detected NH 3 concentration to the ECU 3 .
  • the catalyst temperature sensor 27 detects the temperature of the selective reduction catalyst 231 (hereinafter referred to as “catalyst temperature”), and sends a detection signal corresponding to the detected catalyst temperature to the ECU 3.
  • the NO x sensors 28, 29 detect the concentration of NO x in the exhaust flowing into or out of the selective reduction catalyst 231, and send a detection signal corresponding to the detected NO x to the ECU 3.
  • the crank angle position sensor 14 detects the rotation angle of the crankshaft of the engine 1, generates a pulse every one crank angle, and sends the pulse signal to the ECU 3.
  • the ECU 3 calculates the rotational speed NE of the engine 1 based on this pulse signal.
  • the crank angle position sensor 14 further generates a cylinder identification pulse at a predetermined crank angle position of a specific cylinder and sends it to the ECU 3.
  • the accelerator opening sensor 15 detects a depression amount of an accelerator pedal (not shown) of the vehicle (hereinafter referred to as “accelerator opening”), and sends a detection signal corresponding to the detected accelerator opening to the ECU 3.
  • the ECU 3 calculates the required torque of the engine 1 according to the accelerator opening degree and the rotation speed.
  • the urea water remaining amount warning light 16 is provided, for example, on a meter panel of the vehicle, and lights up in response to the remaining amount of urea water in the tank 251 becoming smaller than a predetermined remaining amount. This warns the driver that the remaining amount of urea water in the tank 251 has decreased.
  • FIG. 3 is a block diagram showing the configuration (function) of the ECU 3 of FIG. The function of each block is realized by the CPU of the ECU 3 reading out and executing a control program stored in a memory (not shown).
  • the NH 3 amount calculation means 301 of the selective reduction catalyst calculates the NH 3 amount (estimated amount) to be stored (adsorbed) on the selective reduction catalyst 231 of FIG. It means for setting the NH 3 storage amount capable 302 sets the NH 3 storage possible amount in the selective reduction catalyst depending on the temperature and the degree of degradation of the selective reduction catalyst 231.
  • the reducing agent supply amount setting unit 303 supplies the reducing agent (urea water) supplied amount (injection amount) by the urea water injection device 25 based on the difference between the calculated NH 3 amount and the NH 3 storage possible amount in the selective reduction catalyst.
  • the reducing agent supply amount setting unit 303 injects urea water by the minimum injection time when the injection time shorter than the minimum injection time controllable by the injector 253 of the urea water injection device 25 has to be set.
  • the injection interval of urea water is extended to adjust the supply amount of urea water.
  • FIG. 4 is a diagram showing an example of control of injection time and injection interval of urea water by the reducing agent supply amount setting means 303. As shown in FIG. (A) is a conventional example shown for comparison, (b) is an example of the present invention.
  • an injection command amount 41 smaller than the lower limit injection amount for securing the accuracy of the injector 253 is set.
  • the injector 253 injects urea water at an injection time (opening time) T1 shorter than the accuracy ensuring interval (opening time) T0 and at a predetermined injection interval T2 in order to satisfy the injection instruction amount 41.
  • the injection time (opening time) T1 can not be sufficiently controlled, the actual injection amount per shot varies.
  • the fluctuation of the NH 3 storage amount at the selective reduction catalyst 231 becomes large, and the NH 3 storage amount becomes extremely small relative to the NH 3 storable amount, or conversely becomes excessive. It passes by.
  • NH 3 strips of the downstream side of the exhaust pipe (T / P) NO x amount increases or exiting, or the exhaust pipe to the (T / P) of the selective reduction catalyst 23 is increased.
  • the reducing agent supply amount setting means 303 Control is made to inject urea water at accuracy guarantee interval (opening time) T0.
  • the injection interval of urea water is set to T3 (> T2), which is longer than T2 in (a), in order to prevent the injection amount of urea water from increasing as a whole.
  • the means 305 for determining the degree of deterioration of the selective reduction catalyst determines the degree of deterioration of the selective reduction catalyst based on the calculated purification rate R.
  • the determination is performed as follows, for example.
  • the purification rate R is (i) a predetermined value R1 or less (R ⁇ R1)
  • the deterioration degree is determined to be "large”
  • R2 or more larger than R1 R> R2
  • the degree of deterioration is judged to be "small”
  • the reducing agent supply amount setting unit 303 injects urea water by shortening the injection time (opening time) of the urea water by the injector 253 or prolonging the injection interval according to the determined degree of deterioration. Control the quantity. For example, as the above-mentioned degree of deterioration progresses from “small”-> “medium”-> “large”, the injection time (opening time) of urea water is shortened stepwise and the degree of deterioration is "large”. When the accuracy guarantee interval (opening time) T0 is set. Similarly, as the degree of deterioration progresses from "small”-> “medium”-> “large”, the injection interval (period) of urea water is gradually lengthened.
  • FIG. 5 is a view showing an example of injection control of urea water corresponding to the deterioration of the selective reduction catalyst.
  • the purification rate R represented by the equation (1) decreases with the passage of time, and the catalyst is deteriorated.
  • the injection time (opening time) of urea water is shortened, and finally the accuracy guarantee interval (opening time) when the degree of deterioration is "large” ) make it to be T0.
  • the injection interval of urea water is gradually increased from T2 to T3.
  • the injection amount of urea aqueous solution is suppressed, and as shown in (c), the actual NH 3 storage amount can be reduced to correspond to the NH 3 storage possible amount which decreases with the deterioration of the catalyst. .
  • FIG. 6 is a diagram showing a control flow of injection time and injection interval of urea water when the NH 3 storable amount in the catalyst decreases due to deterioration or the like.
  • the NH 3 storage capacity V1 is calculated according to the degree of deterioration of the catalyst.
  • the NH 3 storage capacity map A stored in the memory of the ECU 3 is used.
  • the NH 3 storage capacity V 1 decreases as the catalyst temperature rises (FIG. 2) and as the deterioration progresses (c in FIG. 5).
  • 1 shot (injection) injection amount of each of the urea solution in terms of the amount of NH 3 with the formula B of hydrolysis determines the supply amount of NH 3 V2.
  • the amount of NH 3 V 3 consumed in the NO x reduction reaction is determined as follows. It is converted into the amount of NO and NO 2 amount using the NO x conversion map the concentration of NO x detected by the NO x sensor 28 is stored in advance in ECU3 memory. Similarly, the purification (reduction) rates F1 and F2 for NO and NO 2 are obtained from the NO x purification rate map stored in the memory of the ECU 3. The reduced NO amount and the reduced NO 2 amount are calculated by respectively multiplying the NO amount and the NO 2 amount by F 1 and F 2 . From each of the reduction reaction formulas C ((1) to (3)) in FIG. 6, the amount of NH 3 corresponding to the amount of reduced NO and the amount of reduced NO 2 is determined. The total amount of NH 3 obtained for each formula is the amount of NH 3 V 3 consumed in the NO x reduction reaction.
  • Amount NH 3 which remaining by subtracting the consumption amount of NH 3 V3 from the supply NH 3 amount V2 (V2-V3) and by adding over a predetermined injection period (number of shots), the catalyst at a predetermined injection period (number of shots) Calculate the NH 3 amount V4 stored inside.
  • the correction amount T1 of the injection time of the urea water is calculated from the magnitude of the difference (V1-V4) between the NH 3 storage possible amount V1 and the storage NH 3 amount V4 previously obtained. That is, for example, when the difference (V1-V4) is large, the correction amount T1 is set large so as to increase the injection amount, and conversely, when the difference is small (including minus), the correction amount is decreased. Set T1 small.
  • the injection amount for each shot (injection) of urea water is multiplied by a predetermined conversion factor, and an injection period (opening period) T2 corresponding to the injection amount is calculated.
  • the correction amount T1 is subtracted from the injection period (opening period) T2 to determine the injection injection period (T2-T1) after correction.
  • the injector 253 is instructed to perform this injection period (T2-T1).
  • the injection interval (T3 ⁇ T2 / T1) obtained by multiplying the ratio (T2 / T1) to the injection interval T3 before correction is instructed to the injector 253 as the injection interval after correction.
  • This ratio (T2 / T1) corresponds to a coefficient that decreases the injection interval in accordance with the increase or decrease of the injection injection period (T2-T1) after correction in order to secure (maintain) a predetermined injection flow rate.
  • FIG. 7 shows an example of control for securing a predetermined flow rate with the injection time (opening time) as the accuracy guarantee interval.
  • FIG. 8 is a configuration example for controlling the injection time (opening time) and the injection interval.
  • (a) is an example of securing the instructed flow rate of 0.26 g / min by injecting it for 1 minute in a 1 Hz cycle with an accuracy ensuring interval of 10 ms.
  • (B) is an example in which when the indicated flow rate becomes 0.13 g / min which is half of (a), the indicated flow rate is secured by injecting for 1 minute in 0.5 Hz cycle of accuracy guarantee interval 10 ms. .
  • the divided injection cycle (interval) in which the indicated flow rate is half of (a) is twice as large as (a).
  • (C) is secured by injecting the indicated flow rate for 1 minute in a 0.1 Hz cycle with a precision guarantee interval of 10 ms, when the indicated flow rate reaches 0.026 g / min, which is one-tenth of (a).
  • the injection period (interval) is 10 times as large as (a), as the indicated flow rate becomes 1/10 of (a).
  • the ECU 3 instructs the valve opening time of the injection valve of the injector 253 as the energization period TA (ms).
  • the comparator 43 compares whether TA (ms) is greater than 10 ms. 10 ms is the accuracy guarantee interval (opening time) of the injection valve of the injector 253. If TA is greater than 10 ms, the TA value is selected by the selector 44 and is output as it is as the energization period. When TA is 10 ms or less, 10 ms is selected in the selector 44, and is output as an energization period.
  • FIG. 9 is a diagram showing a flow of injection amount control of urea water.
  • the control flow is executed at predetermined control cycles by calling a control program stored in the memory by the ECU 3.
  • step S1 it is determined whether the failure flag of the urea water injection device 25 is "1".
  • the failure flag is set to “1” when it is determined that the urea water injection device has failed in a determination process not shown, and is set to “0” otherwise. If the determination is Yes, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends. If the determination is No, the process proceeds to step S2.
  • step S2 it is determined whether the deterioration flag of the selective reduction catalyst is "1".
  • the catalyst deterioration flag is set to “1” when it is determined that the selective reduction catalyst 231 of FIG. 1 has failed in the determination process (not shown), and is set to “0” otherwise. If the determination is Yes, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends. If the determination is No, the process proceeds to step S3.
  • step S3 it is determined whether the residual amount of urea water is less than a predetermined value.
  • the remaining amount of urea water indicates the remaining amount of urea water in the urea water tank 251 of FIG. 1 and is calculated based on the output of the level sensor. If the determination is Yes, the process proceeds to step S4, and if the determination is No, the process proceeds to step S5.
  • step S4 the warning light for the urea water remaining amount is turned on, and the process proceeds to step S16. After the urea water injection amount is set to "0", this process is ended.
  • step S5 it is determined whether the warm-up timer value of the oxidation catalyst 21 of FIG. 1 is larger than a predetermined value.
  • the catalyst warm-up timer value measures the warm-up time of the oxidation catalyst 21 after the engine start. If this determination is Yes, the process proceeds to step S6. If the determination is No, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends.
  • step S6 it is determined whether the sensor failure flag is "0". This sensor failure flag is set to “1” when it is determined that at least one of the NH 3 sensor 26, the catalyst temperature sensor 27 and the NO x sensor 28, 29 in FIG. 1 has failed in the determination process not shown. Otherwise, it is set to "0". If this determination is Yes, the process proceeds to step S7. If the determination is No, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends.
  • step S7 it is determined whether the activation flag of the NH 3 sensor 26 is one.
  • the NH 3 sensor activation flag is set to “1” when it is determined that the NH 3 sensor 26 has reached the active state in a determination process not shown, and is set to “0” otherwise. If this determination is Yes, the process proceeds to step S8. If the determination is No, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends.
  • step S8 it is determined whether or not the aqueous urea solution is hydrolyzed to generate NH 3 . Specifically, it is determined whether the temperature of the selective reduction catalyst 23 is equal to or higher than a predetermined hydrolyzable temperature (for example, about 160 ° C.) of urea water. When this determination is Yes, it is judged that urea aqueous solution is hydrolyzed and that NH 3 can be generated, and the process moves to step S9. If the determination is No, the process proceeds to step S16, the urea water injection amount is set to "0", and the process ends.
  • a predetermined hydrolyzable temperature for example, about 160 ° C.
  • step S9 calculation of the urea water injection amount is started.
  • step S10 it is determined whether the urea water injection amount is equal to or more than a predetermined amount.
  • the predetermined amount refers to the flow rate injected at the accuracy guarantee interval (for example, 10 ms) of the injector 253 already described. If the determination is Yes, the process proceeds to step S11, where the degree of deterioration of the selective reduction catalyst 231 is determined. The determination method is as described above. Then, in the next step S12, the injection time and injection interval of the injector 253 are set in accordance with the determined degree of deterioration.
  • the setting method is as described above with reference to FIGS.
  • step S10 determines whether an injection time shorter than the accuracy guarantee interval (for example, 10 ms) is set. If the determination in step S10 is No, that is, if an injection time shorter than the accuracy guarantee interval (for example, 10 ms) is set, then in step S13, the accuracy guarantee interval (for example, 10 ms) is set as the injection time. Thereby, the error of the actual injection amount by the injector 253 is suppressed.
  • step S14 the injection interval required to secure a predetermined injection flow rate is determined. The determination method is as described above with reference to FIGS. Finally, in step S15, the injector 253 is instructed of the urea water injection time (opening period) and injection interval (cycle) determined in step S12, S13, or S14.
  • the embodiment described above is an example and is not limited thereto.
  • the invention is applicable to engines having any number of cylinders.
  • the present invention is also applicable to an engine such as a direct injection gasoline engine.
  • the present invention is applicable not only to the aqueous urea solution supply according to the above-described embodiment as the reducing agent supply but also to the case where gaseous NH 3 is directly supplied.
  • NH 3 gas can be directly supplied by using an NH 3 gas supply device instead of the urea water injection device 25.

Abstract

Disclosed is an exhaust gas purification device for an internal combustion engine. The exhaust gas purification device is equipped with a selective reduction catalyst that is provided in the exhaust passage of the internal combustion engine, captures the reducing agent NH3, and uses the captured NH3 to reduce NOx flowing through the aforementioned exhaust passage; a reducing agent supply means that supplies the reducing agent upstream of the selective reduction catalyst in the exhaust passage; and a reducing agent supply setting means that sets the amount of the reducing agent supplied by the reducing agent supply means. In cases in which it is necessary to set a shorter supply period than the minimum supply period that can be controlled by the reducing agent supply means, the reducing agent supply setting means sets the supplied amount of the reducing agent on the basis of said minimum supply period while lengthening the intervals between the supply of said reducing agent.

Description

内燃機関の排気浄化装置Exhaust purification system for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関し、より具体的には、還元剤の存在下において排気通路中のNOを還元する選択還元触媒を備える内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purifying apparatus for an internal combustion engine, and more particularly relates to an exhaust purifying apparatus for an internal combustion engine provided with a selective reduction catalyst for reducing NO x in the exhaust passage in the presence of a reducing agent.
 従来、排気中のNOを浄化する排気浄化装置の1つとして、還元剤を添加することで排気中のNOを選択的に還元する選択還元触媒を排気通路に設けた装置が提案されている。例えば、還元剤として尿素水を用いる尿素添加式の選択還元触媒では、添加された尿素を加水分解させてアンモニア(NH)を生成し、NHにより排気中のNOを選択的に還元する。 Conventionally, as one of exhaust purification devices for purifying NO x in exhaust, a device has been proposed in which a selective reduction catalyst for selectively reducing NO x in exhaust by adding a reducing agent is provided in an exhaust passage. There is. For example, in a urea addition type selective reduction catalyst using urea water as a reducing agent, the added urea is hydrolyzed to form ammonia (NH 3 ), and NH 3 selectively reduces NO x in exhaust gas. .
 このような選択還元触媒では、還元剤の噴射量が最適な量よりも少ない場合には、NOの還元に消費されるNHが不足することでNOの還元率が低下し、最適な量よりも多い場合には、NOの還元に余剰となったNHが排出する。このため、選択還元触媒を備える排気浄化装置では、還元剤の噴射量を適切に制御することが重要となっている。 In such a selective reduction catalyst, if less than the injection amount is optimum amount of the reducing agent, the reduction rate of the NO x by NH 3 to be consumed in the reduction of the NO x is insufficient is reduced, optimal If the amount is larger than the amount, excess NH 3 is exhausted for the reduction of NO x . For this reason, in the exhaust gas purification apparatus provided with the selective reduction catalyst, it is important to appropriately control the injection amount of the reducing agent.
 特開2001-323835号公報(特許文献1)は、内燃機関の排気浄化装置を開示する。この排気浄化装置では、燃料の主噴射量と副噴射の間隔を制御することにより、排気浄化へのHC供給量を制御する。 Japanese Patent Application Laid-Open No. 2001-323835 (Patent Document 1) discloses an exhaust gas purification apparatus for an internal combustion engine. In this exhaust gas control apparatus, the amount of HC supplied to the exhaust gas purification is controlled by controlling the interval between the main injection amount of fuel and the sub injection.
特開2001-323835号公報JP 2001-323835 A
 還元剤の噴射量を適切に制御しようとする際、還元剤の噴射指示量が噴射器において制御可能な噴射分解能以下の流量となってしまうと、その指示量に見合った噴射時間を指定しても指示量通りの噴射が保証されない可能性がある。 When properly controlling the injection amount of the reducing agent, if the injection amount of the reducing agent reaches a flow rate lower than the injection resolution that can be controlled by the injector, specify the injection time that corresponds to the injection amount. Even injection as specified may not be guaranteed.
 また、選択還元触媒はNHを吸着する能力を有しており、このNH吸着可能量は選択還元触媒の温度および劣化具合に応じて低下する傾向がある。このため、絶えず一定間隔で還元剤を噴射すると還元剤が過剰となってそのNH吸着可能量を超えてしまい、排気管からのNHスリップが多くなってしまう。 In addition, the selective reduction catalyst has an ability to adsorb NH 3 , and the NH 3 adsorbable amount tends to decrease depending on the temperature and the degree of deterioration of the selective reduction catalyst. For this reason, if the reducing agent is constantly injected at a constant interval, the reducing agent becomes excessive to exceed the NH 3 adsorbable amount, and the NH 3 slip from the exhaust pipe increases.
 しかしながら、特開2001-323835号公報(特許文献1)に記載の排気浄化装置は、還元剤の噴射量を制御する技術を開示するものではない。 However, the exhaust gas purification apparatus described in Japanese Patent Application Laid-Open No. 2001-323835 (Patent Document 1) does not disclose a technique for controlling the injection amount of the reducing agent.
 そこで、本発明は、選択還元触媒を備える内燃機関の排気浄化装置において、還元剤の噴射量を適切に制御して、選択還元触媒からのNH吸着可能量以上の多量なNHスリップを抑制することを目的とする。 Therefore, in the exhaust gas purification apparatus for an internal combustion engine provided with a selective reduction catalyst, the present invention appropriately controls the injection amount of the reducing agent to suppress a large amount of NH 3 slips larger than the NH 3 adsorbable amount from the selective reduction catalyst. The purpose is to
 本発明は、内燃機関の排気浄化装置を提供する。その排気浄化装置は、その排気浄化装置は、内燃機関の排気通路に設けられ、還元剤であるNHを捕捉すると共に、捕捉したNHを用いて前記排気通路を流れるNOを還元する選択還元触媒と、排気通路内の選択還元触媒の上流側に還元剤を供給する還元剤供給手段と、還元剤供給手段による還元剤の供給量を設定する還元剤供給量設定手段とを備え、還元剤供給量設定手段は、還元剤供給手段が制御可能な最低供給時間よりも短い供給時間を設定しなければならない場合、当該最低供給時間に基づき還元剤の供給量を設定すると共に当該還元剤の供給間隔を長くする。 The present invention provides an exhaust purification system of an internal combustion engine. The exhaust gas purification apparatus is provided in an exhaust gas passage of an internal combustion engine, and is configured to capture NH 3 which is a reducing agent, and to reduce NO x flowing in the exhaust gas passage using captured NH 3 A reduction catalyst, reducing agent supply means for supplying a reducing agent to the upstream side of the selective reduction catalyst in the exhaust passage, and reducing agent supply amount setting means for setting the supply amount of reducing agent by the reducing agent supply means The agent supply amount setting means sets the supply amount of the reducing agent based on the minimum supply time and sets the supply amount of the reducing agent, when the supply time shorter than the controllable minimum supply time has to be set. Increase the feed interval.
 本発明によれば、還元剤供給手段による還元剤の供給時間と供給間隔を適切に制御することにより必要となる還元剤の供給量を精度よくかつ過不足なく調整(確保)することができる。その結果、NOの浄化不足およびNHのスリップ量の増加を回避することが可能となる。 According to the present invention, it is possible to precisely adjust (secure) the required amount of the reducing agent supplied by controlling the reducing agent supplying time and the supplying interval of the reducing agent by the reducing agent supplying means with high accuracy. As a result, it is possible to avoid the lack of purification of NO x and the increase of the slip amount of NH 3 .
 本発明の一形態によると、選択還元触媒の浄化率を算出する手段と、浄化率から選択還元触媒の劣化度を判定する手段とをさらに備え、還元剤供給量設定手段は、劣化度に応じて、還元剤の供給時間を短くすることおよび供給間隔を長くすることの少なくともいずれか一方をおこなう。 According to one aspect of the present invention, the system further comprises means for calculating the purification rate of the selective reduction catalyst and means for determining the degree of deterioration of the selective reduction catalyst from the purification rate, and the reducing agent supply amount setting means And / or reducing the feed time of the reducing agent and / or increasing the feed interval.
 本発明の一形態によれば、選択還元触媒の劣化度をも考慮して必要となる還元剤の供給量を精度よくかつ過不足なく調整(確保)することが可能となる。 According to one aspect of the present invention, it is possible to accurately adjust (secure) the necessary amount of the reducing agent supplied in consideration of the deterioration degree of the selective reduction catalyst.
 本発明の一形態によると、選択還元触媒の温度を検出する触媒温度検出手段と、選択還元触媒の温度および選択還元触媒の劣化度に応じて当該選択還元触媒内のNHストレージ可能量を設定する手段と、選択還元触媒内のNH量を算出する手段とをさらに備え、還元剤供給量設定手段は、算出されたNH量と選択還元触媒内のNHストレージ可能量との差分に基づき還元剤供給手段による還元剤の供給量を設定する。 According to one aspect of the present invention, the catalyst temperature detection means for detecting the temperature of the selective reduction catalyst, and the NH 3 storage capacity in the selective reduction catalyst are set according to the temperature of the selective reduction catalyst and the degree of deterioration of the selective reduction catalyst. Means for calculating the amount of NH 3 in the selective reduction catalyst, and the reducing agent supply amount setting means calculates the difference between the calculated amount of NH 3 and the NH 3 storage capacity in the selective reduction catalyst. The supply amount of the reducing agent by the reducing agent supply means is set based on the above.
 本発明の一形態によれば、選択還元触媒の温度および劣化度に応じて必要となる還元剤の供給量を精度よくかつ過不足なく調整(確保)することが可能となる。 According to one aspect of the present invention, it becomes possible to adjust (secure) the amount of supply of the reducing agent, which is necessary according to the temperature and the degree of deterioration of the selective reduction catalyst, with high accuracy and without excess or deficiency.
 本発明の一形態によると、選択還元触媒内のNHストレージ可能量を設定する手段は、前記劣化度に応じて前記選択還元触媒内のNHストレージ可能量を小さくする。 According to an embodiment of the present invention, means for setting the NH 3 storage possible amount in the selective reduction catalyst to reduce the NH 3 storage amount capable of the selective reduction the catalyst in accordance with the deterioration degree.
本発明の一実施例に従う、エンジンとその排気浄化装置の構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of an engine and its exhaust gas purification apparatus according to one embodiment of the present invention. 選択還元触媒における温度とNHストレージ量との関係を示す図である。Is a graph showing the relationship between the temperature and the NH 3 storage amount of the selective reduction catalyst. ECU3の構成(機能)を示すブロック図である。It is a block diagram showing composition (function) of ECU3. 尿素水の噴射時間と噴射間隔の制御例を示す図である。It is a figure which shows the example of control of injection time and injection interval of urea water. 選択還元触媒の劣化に対応した尿素水の噴射制御の例を示す図である。It is a figure which shows the example of injection control of the urea water corresponding to deterioration of the selective reduction catalyst. NHストレージ可能量が低下した場合の尿素水の噴射時間および噴射間隔の制御フローを示す図である。NH 3 storage amount capable is a diagram illustrating a control flow of the injection time and the injection interval of urea water when reduced. 噴射時間(開弁時間)を精度保障間隔として所定の流量を確保する制御例を示す図である。It is a figure showing an example of control which secures a predetermined flow as an accuracy guarantee interval as injection time (opening time). 噴射時間(開弁時間)と噴射間隔を制御するための構成例である。It is an example of composition for controlling injection time (valve opening time) and injection interval. 尿素水の噴射量制御のフローを示す図である。It is a figure which shows the flow of injection amount control of urea water.
 図面を参照しながら本発明の実施の形態を説明する。図1は、本発明の一実施形態に係る内燃機関(以下「エンジン」という)1及びその排気浄化装置2の構成を示す模式図である。エンジン1は、ガソリンエンジン又はディーゼルエンジンであり、図示しない車両に搭載されている。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a configuration of an internal combustion engine (hereinafter referred to as “engine”) 1 and an exhaust gas purification device 2 according to an embodiment of the present invention. The engine 1 is a gasoline engine or a diesel engine, and is mounted on a vehicle (not shown).
 排気浄化装置2は、エンジン1の排気通路11に設けられた酸化触媒21と、排気通路11の酸化触媒21の下流側に設けられ、排気通路11を流れる排気中の窒素酸化物(以下、「NO」という)を還元剤の存在下で浄化する選択還元触媒23と、排気通路11の選択還元触媒23の上流側に還元剤としての尿素水を供給する尿素水噴射装置25と、電子制御ユニット(以下、「ECU」という)3を含む。 The exhaust purification device 2 is provided downstream of the oxidation catalyst 21 provided in the exhaust passage 11 of the engine 1 and the oxidation catalyst 21 of the exhaust passage 11, and nitrogen oxides in the exhaust flowing through the exhaust passage 11 (hereinafter Selective reduction catalyst 23 for purifying NO x )) in the presence of a reducing agent, a urea water injection device 25 for supplying urea water as a reducing agent upstream of the selective reduction catalyst 23 in the exhaust passage 11, and electronic control A unit (hereinafter referred to as "ECU") 3 is included.
 ECU3は、中央演算処理装置(CPU)およびメモリを備えるコンピュータである。メモリには、車両の様々な制御を実現するためのコンピュータ・プログラムおよび該プログラムの実施に必要なデータ、テーブルおよびマップを格納することができる。ECU3は、後述するように、車両の各部(センサ等)から送られてくるデータを受け取って演算を行い、車両の各部を制御するための制御信号を生成する。 The ECU 3 is a computer including a central processing unit (CPU) and a memory. The memory can store computer programs for realizing various control of the vehicle and data, tables, and maps necessary for the execution of the programs. As will be described later, the ECU 3 receives data sent from each part (sensor etc.) of the vehicle, performs calculation, and generates a control signal for controlling each part of the vehicle.
 尿素水噴射装置25は、タンク251と、噴射器253とを備える。タンク251は、尿素水を貯蔵するものであり、尿素水供給路254及び図示しないポンプを介して、噴射器253に接続されている。このタンク251には、尿素水のレベルセンサ255が設けられている。このセンサ255は、タンク251内の尿素水の水位を検出し、この水位に対応する検出信号をECU3に出力する。噴射器253は、ECU3に接続されており、ECU3からの制御信号に応じて尿素水を排気通路11内に噴射する。すなわち、噴射器253は、ECU3が設定した噴射時間(秒/1ショット)および噴射間隔(秒、周期(Hz))で所定量の尿素水を排気通路11内に噴射する。 The urea water injection device 25 includes a tank 251 and an injector 253. The tank 251 stores urea water, and is connected to the injector 253 via the urea water supply passage 254 and a pump (not shown). The tank 251 is provided with a urea water level sensor 255. The sensor 255 detects the level of urea water in the tank 251, and outputs a detection signal corresponding to the level to the ECU 3. The injector 253 is connected to the ECU 3 and injects urea water into the exhaust passage 11 in accordance with a control signal from the ECU 3. That is, the injector 253 injects a predetermined amount of urea water into the exhaust passage 11 at the injection time (second / one shot) and the injection interval (second, cycle (Hz)) set by the ECU 3.
 酸化触媒21は、排気通路11のうち選択還元触媒23及び噴射器253よりも上流側に設けられ、排気中のNOの大部分を占めるNOをNOに変換し、これにより、選択還元触媒23におけるNOの還元を促進させる。 The oxidation catalyst 21 is provided on the upstream side of the selective reduction catalyst 23 and the injector 253 in the exhaust passage 11, and converts the NO that occupies most of the NO x in the exhaust into NO 2 , thereby the selective reduction catalyst Promote the reduction of NO x at 23
 選択還元触媒23は、少なくとも1つの選択還元触媒231を含む。選択還元触媒は、さらに2以上の還元触媒を選択還元触媒231よりも下流側に設けてもよい。選択還元触媒231は、還元剤であるアンモニアが存在する雰囲気下で、排気中のNOを選択的に還元する。具体的には、尿素水噴射装置25により尿素水を噴射すると、加水分解により尿素からアンモニア(以下、「NH」という)が生成され、このNHにより選択還元触媒23において排気中のNO(NOとNO)が選択的に還元される。 The selective reduction catalyst 23 includes at least one selective reduction catalyst 231. The selective reduction catalyst may further have two or more reduction catalysts downstream of the selective reduction catalyst 231. Selective reduction catalyst 231, in an atmosphere of ammonia as a reducing agent is present, to selectively reduce NO x in the exhaust. Specifically, when urea aqueous solution is injected by the aqueous urea solution injector 25, ammonia (hereinafter referred to as "NH 3 ") is generated from urea by hydrolysis, and this NH 3 causes NO x in exhaust gas in the selective reduction catalyst 23 (NO and NO 2 ) are selectively reduced.
 選択還元触媒231はNHを貯蔵(吸着)する機能も有し、貯蔵されたNHによってもNOが還元浄化される。図2は、選択還元触媒における温度とNHストレージ可能量との関係を示す図である。NHストレージ可能量は、低温において大きく、高温になるほど減少する傾向がある。このNHストレージ可能量は、さらに選択還元触媒231が劣化するにつれて減少する傾向がある。 Selective reduction catalyst 231 also has a function of storing (adsorbing) the NH 3, NO x is reduced and purified by NH 3 that is stored. FIG. 2 is a view showing the relationship between the temperature of the selective reduction catalyst and the NH 3 storage capacity. The NH 3 storage capacity tends to be large at low temperatures and to decrease as the temperature is high. This NH 3 storage capacity tends to further decrease as the selective reduction catalyst 231 degrades.
 ECU3には、NHセンサ26、触媒温度センサ27、及びNOセンサ28、29の他、クランク角度位置センサ14、アクセル開度センサ15、及び尿素水残量警告灯16が接続されている。 In addition to the NH 3 sensor 26, the catalyst temperature sensor 27, and the NO x sensors 28, 29, the crank angle position sensor 14, the accelerator opening sensor 15, and the urea water remaining amount warning light 16 are connected to the ECU 3.
 NHセンサ26は、排気通路11のうち選択還元触媒231後の排気のアンモニアの濃度(以下、「NH濃度」という)を検出し、検出したNH濃度に対応した検出信号をECU3に送る。 The NH 3 sensor 26 detects the concentration of ammonia in the exhaust after the selective reduction catalyst 231 in the exhaust passage 11 (hereinafter referred to as “NH 3 concentration”), and sends a detection signal corresponding to the detected NH 3 concentration to the ECU 3 .
 触媒温度センサ27は、選択還元触媒231の温度(以下、「触媒温度」という)を検出し、検出した触媒温度に対応した検出信号をECU3に送る。NOセンサ28、29は、選択還元触媒231に流入あるいは流出する排気のNOの濃度を検出し、検出したNOに対応する検出信号をECU3に送る。 The catalyst temperature sensor 27 detects the temperature of the selective reduction catalyst 231 (hereinafter referred to as “catalyst temperature”), and sends a detection signal corresponding to the detected catalyst temperature to the ECU 3. The NO x sensors 28, 29 detect the concentration of NO x in the exhaust flowing into or out of the selective reduction catalyst 231, and send a detection signal corresponding to the detected NO x to the ECU 3.
 クランク角度位置センサ14は、エンジン1のクランク軸の回転角度を検出するとともに、クランク角1度毎にパルスを発生し、そのパルス信号をECU3に送る。ECU3では、このパルス信号に基づいて、エンジン1の回転数NEを算出する。クランク角度位置センサ14は、さらに特定気筒の所定クランク角度位置で気筒識別パルスを生成して、ECU3に送る。 The crank angle position sensor 14 detects the rotation angle of the crankshaft of the engine 1, generates a pulse every one crank angle, and sends the pulse signal to the ECU 3. The ECU 3 calculates the rotational speed NE of the engine 1 based on this pulse signal. The crank angle position sensor 14 further generates a cylinder identification pulse at a predetermined crank angle position of a specific cylinder and sends it to the ECU 3.
 アクセル開度センサ15は、車両の図示しないアクセルペダルの踏み込み量(以下、「アクセル開度」という)を検出し、検出したアクセル開度に対応する検出信号をECU3に送る。ECU3では、このアクセル開度及び回転数に応じて、エンジン1の要求トルクが算出される。 The accelerator opening sensor 15 detects a depression amount of an accelerator pedal (not shown) of the vehicle (hereinafter referred to as “accelerator opening”), and sends a detection signal corresponding to the detected accelerator opening to the ECU 3. The ECU 3 calculates the required torque of the engine 1 according to the accelerator opening degree and the rotation speed.
 尿素水残量警告灯16は、例えば、車両のメータパネルに設けられ、タンク251内の尿素水の残量が所定の残量より少なくなったことに応じて点灯する。これにより、タンク251内の尿素水の残量が少なくなったことを運転者に警告する。 The urea water remaining amount warning light 16 is provided, for example, on a meter panel of the vehicle, and lights up in response to the remaining amount of urea water in the tank 251 becoming smaller than a predetermined remaining amount. This warns the driver that the remaining amount of urea water in the tank 251 has decreased.
 図3は、図1のECU3の構成(機能)を示すブロック図である。各ブロックの機能は、ECU3が有するCPUがメモリ(図示なし)に格納された制御用プログラムを読み出して実行することによって実現される。選択還元触媒のNH量算出手段301は、図1の選択還元触媒231にストレージ(吸着)されるNH量(推定量)を算出する。NHストレージ可能量を設定する手段302は、選択還元触媒231の温度および劣化度に応じて選択還元触媒内のNHストレージ可能量を設定する。 FIG. 3 is a block diagram showing the configuration (function) of the ECU 3 of FIG. The function of each block is realized by the CPU of the ECU 3 reading out and executing a control program stored in a memory (not shown). The NH 3 amount calculation means 301 of the selective reduction catalyst calculates the NH 3 amount (estimated amount) to be stored (adsorbed) on the selective reduction catalyst 231 of FIG. It means for setting the NH 3 storage amount capable 302 sets the NH 3 storage possible amount in the selective reduction catalyst depending on the temperature and the degree of degradation of the selective reduction catalyst 231.
 還元剤供給量設定手段303は、算出されたNH量と選択還元触媒内のNHストレージ可能量との差分に基づき尿素水噴射装置25による還元剤(尿素水)の供給量(噴射量)を設定する。その際、還元剤供給量設定手段303は、尿素水噴射装置25の噴射器253が制御可能な最低噴射時間よりも短い噴射時間を設定しなければならない場合、最低噴射時間により尿素水を噴射すると共に尿素水の噴射間隔を長くして尿素水の供給量を調整する。 The reducing agent supply amount setting unit 303 supplies the reducing agent (urea water) supplied amount (injection amount) by the urea water injection device 25 based on the difference between the calculated NH 3 amount and the NH 3 storage possible amount in the selective reduction catalyst. Set At that time, the reducing agent supply amount setting unit 303 injects urea water by the minimum injection time when the injection time shorter than the minimum injection time controllable by the injector 253 of the urea water injection device 25 has to be set. At the same time, the injection interval of urea water is extended to adjust the supply amount of urea water.
 図4は、還元剤供給量設定手段303による尿素水の噴射時間と噴射間隔の制御の例を示す図である。(a)は比較のために示した従来例であり、(b)は本発明の一実施例である。 FIG. 4 is a diagram showing an example of control of injection time and injection interval of urea water by the reducing agent supply amount setting means 303. As shown in FIG. (A) is a conventional example shown for comparison, (b) is an example of the present invention.
 図4(a)の従来例において、噴射器253の精度を保障する下限噴射量より小さい噴射指示量41が設定されたとする。噴射器253は、その噴射指示量41を満たすために、精度保障間隔(開弁時間)T0よりも短い噴射時間(開弁時間)T1でかつ所定の噴射間隔T2で尿素水を噴射する。しかし、その噴射時間(開弁時間)T1は制御が十分にできないために、実際の1ショット当たりの噴射量がばらついてしまう。この場合、図に示すように、選択還元触媒231でのNHストレージ量の変動が大きくなって、NHストレージ量がNHストレージ可能量に対して極端に少なくなったり、逆に過剰になり過ぎたりする。その結果、選択還元触媒23の下流側の排気管(T/P)から出るNO量が増加したり、あるいは排気管(T/P)へのNHストリップ量が増加してしまう。 In the conventional example shown in FIG. 4A, it is assumed that an injection command amount 41 smaller than the lower limit injection amount for securing the accuracy of the injector 253 is set. The injector 253 injects urea water at an injection time (opening time) T1 shorter than the accuracy ensuring interval (opening time) T0 and at a predetermined injection interval T2 in order to satisfy the injection instruction amount 41. However, since the injection time (opening time) T1 can not be sufficiently controlled, the actual injection amount per shot varies. In this case, as shown in the figure, the fluctuation of the NH 3 storage amount at the selective reduction catalyst 231 becomes large, and the NH 3 storage amount becomes extremely small relative to the NH 3 storable amount, or conversely becomes excessive. It passes by. As a result, NH 3 strips of the downstream side of the exhaust pipe (T / P) NO x amount increases or exiting, or the exhaust pipe to the (T / P) of the selective reduction catalyst 23 is increased.
 図4(b)の本発明の一実施例では、噴射器253の精度を保障する下限噴射量より小さい噴射指示量41が指示される場合においても、還元剤供給量設定手段303は、噴射器253が精度保障間隔(開弁時間)T0で尿素水を噴射するように制御する。その際、全体の尿素水の噴射量が増加してしまうことを防ぐために、尿素水の噴射間隔を(a)のT2より長いT3(>T2)に設定する。これにより、噴射器253による1ショット当たりの噴射量のばらつきが小さくなって、図に示すように、選択還元触媒231でのNHストレージ量の変動が比較的小さくなる。その結果、選択還元触媒23の下流側の排気管(T/P)から出るNO量の増加および排気管(T/P)へのNHストリップ量の増加を抑制、回避することができる。 In the embodiment of the present invention shown in FIG. 4 (b), even when the injection instruction amount 41 smaller than the lower limit injection amount for securing the accuracy of the injector 253 is indicated, the reducing agent supply amount setting means 303 Control is made to inject urea water at accuracy guarantee interval (opening time) T0. At this time, the injection interval of urea water is set to T3 (> T2), which is longer than T2 in (a), in order to prevent the injection amount of urea water from increasing as a whole. As a result, the variation in the injection amount per shot by the injector 253 becomes smaller, and as shown in the drawing, the variation in the NH 3 storage amount in the selective reduction catalyst 231 becomes relatively smaller. As a result, it is an increase in NH 3 strips of the amount of NO x increases and the exhaust pipe exiting from the downstream side of the exhaust pipe (T / P) of the selective reduction catalyst 23 (T / P) inhibition, to avoid.
 図3に戻って、選択還元触媒の浄化率を算出する手段304は、エンジン1が所定の運転状態にあるときのNOセンサ28、29のNO濃度出力N1、N2を用いて、浄化率Rを式(1)から算出する。選択還元触媒が劣化してくるにつれて触媒の下流側のNOセンサのNO濃度出力N2が大きくなる。
      R=(N1-N2)/N1     (1)
Returning to FIG. 3, the means 304 for calculating the purification rate of the selective reduction catalyst uses the NO x concentration outputs N 1, N 2 of the NO x sensors 28, 29 when the engine 1 is in a predetermined operation state. Calculate R from equation (1). Concentration of NO x output N2 of the NO x sensor downstream of the catalyst increases as the selective reduction catalyst deteriorates.
R = (N1-N2) / N1 (1)
 選択還元触媒の劣化度を判定する手段305は、算出された浄化率Rに基づき選択還元触媒の劣化度を判定する。その判定は例えば次のようにおこなう。浄化率Rが、(i)所定の値R1以下(R<R1)となったときに劣化度“大”と判定し、(ii)R1より大きい所定の値R2以上(R>R2)のとき劣化度“小”と判定し、(iii)R1とR2の間(R2>R>R1)のとき劣化度“中”と判定する。 The means 305 for determining the degree of deterioration of the selective reduction catalyst determines the degree of deterioration of the selective reduction catalyst based on the calculated purification rate R. The determination is performed as follows, for example. When the purification rate R is (i) a predetermined value R1 or less (R <R1), the deterioration degree is determined to be "large", and (ii) a predetermined value R2 or more larger than R1 (R> R2) The degree of deterioration is judged to be "small", and (iii) it is judged that the degree of deterioration is "medium" when R1 and R2 (R2> R> R1).
 還元剤供給量設定手段303は、判定された劣化度に応じて噴射器253による尿素水の噴射時間(開弁時間)を短くしたり、あるいは噴射間隔を長くしたりして、尿素水の噴射量を制御する。例えば、上述した劣化度が“小”―>“中”―>“大”と進むにつれて、尿素水の噴射時間(開弁時間)を段階的に短くしていき、劣化度が“大”のときに精度保障間隔(開弁時間)T0となるようにする。同様に、劣化度が“小”―>“中”―>“大”と進むにつれて、尿素水の噴射間隔(周期)を段階的に長くしていく。 The reducing agent supply amount setting unit 303 injects urea water by shortening the injection time (opening time) of the urea water by the injector 253 or prolonging the injection interval according to the determined degree of deterioration. Control the quantity. For example, as the above-mentioned degree of deterioration progresses from "small"-> "medium"-> "large", the injection time (opening time) of urea water is shortened stepwise and the degree of deterioration is "large". When the accuracy guarantee interval (opening time) T0 is set. Similarly, as the degree of deterioration progresses from "small"-> "medium"-> "large", the injection interval (period) of urea water is gradually lengthened.
 図5は、選択還元触媒の劣化に対応した尿素水の噴射制御の例を示す図である。(a)に示すように、(1)式で表わされる浄化率Rは時間経過とともに小さくなり、触媒は劣化していく。その劣化の進み具合に応じて、(b)に示すように、尿素水の噴射時間(開弁時間)を短くし、最終的に劣化度が“大”のときに精度保障間隔(開弁時間)T0となるようにする。また、尿素水の噴射間隔をT2からT3へと段階的に長くしていく。その結果、尿素水の噴射量が抑制されて、(c)に示すように、触媒の劣化に伴い減少するNHストレージ可能量に対応するように、実際のNHストレージ量を減らすことができる。同時に排気管(T/P)へのNHストリップ量の増加を抑制(回避)することができる。 FIG. 5 is a view showing an example of injection control of urea water corresponding to the deterioration of the selective reduction catalyst. As shown in (a), the purification rate R represented by the equation (1) decreases with the passage of time, and the catalyst is deteriorated. Depending on the progress of the deterioration, as shown in (b), the injection time (opening time) of urea water is shortened, and finally the accuracy guarantee interval (opening time) when the degree of deterioration is "large" ) Make it to be T0. In addition, the injection interval of urea water is gradually increased from T2 to T3. As a result, the injection amount of urea aqueous solution is suppressed, and as shown in (c), the actual NH 3 storage amount can be reduced to correspond to the NH 3 storage possible amount which decreases with the deterioration of the catalyst. . At the same time, it is possible to suppress (avoid) the increase in the amount of NH 3 stripping to the exhaust pipe (T / P).
 図6は、劣化等により触媒内のNHストレージ可能量が低下した場合の尿素水の噴射時間および噴射間隔に制御フローを示す図である。触媒の劣化度に応じたNHストレージ可能量V1を算出する。その際、ECU3のメモリに格納されているNHストレージ可能量マップAを利用する。既に述べたように、NHストレージ可能量V1は触媒温度が上がる程(図2)および劣化が進行する程(図5のc)減少する。尿素水の1ショット(噴射)毎の噴射量を加水分解の式Bを用いてNH量に換算して、供給NH量V2を求める。 FIG. 6 is a diagram showing a control flow of injection time and injection interval of urea water when the NH 3 storable amount in the catalyst decreases due to deterioration or the like. The NH 3 storage capacity V1 is calculated according to the degree of deterioration of the catalyst. At that time, the NH 3 storage capacity map A stored in the memory of the ECU 3 is used. As already mentioned, the NH 3 storage capacity V 1 decreases as the catalyst temperature rises (FIG. 2) and as the deterioration progresses (c in FIG. 5). 1 shot (injection) injection amount of each of the urea solution in terms of the amount of NH 3 with the formula B of hydrolysis determines the supply amount of NH 3 V2.
 NO還元反応で消費されるNH量V3は以下のように求める。NOセンサ28で検知したNO濃度を予めECU3のメモリに格納されているNO変換マップを用いてNO量とNO量に換算する。同様にECU3のメモリに格納されているNO浄化率マップから、NOとNOのそれぞれに対する浄化(還元)率F1とF2を求める。F1、F2をNO量、NO量にそれぞれ乗算して、還元NO量と還元NO量を算出する。図6中の還元反応式C((1)~(3))のそれぞれから、還元NO量と還元NO量に対応するNH量を求める。各式について得られるNH量の合計がNO還元反応で消費されるNH量V3となる。 The amount of NH 3 V 3 consumed in the NO x reduction reaction is determined as follows. It is converted into the amount of NO and NO 2 amount using the NO x conversion map the concentration of NO x detected by the NO x sensor 28 is stored in advance in ECU3 memory. Similarly, the purification (reduction) rates F1 and F2 for NO and NO 2 are obtained from the NO x purification rate map stored in the memory of the ECU 3. The reduced NO amount and the reduced NO 2 amount are calculated by respectively multiplying the NO amount and the NO 2 amount by F 1 and F 2 . From each of the reduction reaction formulas C ((1) to (3)) in FIG. 6, the amount of NH 3 corresponding to the amount of reduced NO and the amount of reduced NO 2 is determined. The total amount of NH 3 obtained for each formula is the amount of NH 3 V 3 consumed in the NO x reduction reaction.
 供給NH量V2から消費NH量V3を引いて残ったNH量(V2-V3)を所定の噴射期間(ショット数)に渡って加算して、所定の噴射期間(ショット数)において触媒内にストレージされるNH量V4を算出する。先に求めたNHストレージ可能量V1とストレージNH量V4との差分(V1-V4)の大きさから尿素水の噴射時間の補正量T1を算出する。すなわち、例えば差分(V1-V4)が大きい場合には噴射量を増加させるように補正量T1を大きく設定し、逆に差分が小さい(マイナスを含む)場合は噴射量を減少させるように補正量T1を小さく設定する。 Amount NH 3 which remaining by subtracting the consumption amount of NH 3 V3 from the supply NH 3 amount V2 (V2-V3) and by adding over a predetermined injection period (number of shots), the catalyst at a predetermined injection period (number of shots) Calculate the NH 3 amount V4 stored inside. The correction amount T1 of the injection time of the urea water is calculated from the magnitude of the difference (V1-V4) between the NH 3 storage possible amount V1 and the storage NH 3 amount V4 previously obtained. That is, for example, when the difference (V1-V4) is large, the correction amount T1 is set large so as to increase the injection amount, and conversely, when the difference is small (including minus), the correction amount is decreased. Set T1 small.
 尿素水の1ショット(噴射)毎の噴射量に予め定めた所定の換算係数を乗算して、その噴射量に対応する噴射期間(開弁期間)T2を算出する。この噴射期間(開弁期間)T2から補正量T1を減算して、補正後の噴射射期間(T2-T1)を求める。この噴射射期間(T2-T1)を噴射器253に指示する。補正前の噴射間隔T3に対して、比(T2/T1)を乗算して得られる噴射間隔(T3×T2/T1)を補正後の噴射間隔として噴射器253に指示する。この比(T2/T1)は、所定の噴射流量を確保(維持)するために補正後の噴射射期間(T2-T1)の増減に応じて逆に噴射間隔を減増させる係数に相当する。 The injection amount for each shot (injection) of urea water is multiplied by a predetermined conversion factor, and an injection period (opening period) T2 corresponding to the injection amount is calculated. The correction amount T1 is subtracted from the injection period (opening period) T2 to determine the injection injection period (T2-T1) after correction. The injector 253 is instructed to perform this injection period (T2-T1). The injection interval (T3 × T2 / T1) obtained by multiplying the ratio (T2 / T1) to the injection interval T3 before correction is instructed to the injector 253 as the injection interval after correction. This ratio (T2 / T1) corresponds to a coefficient that decreases the injection interval in accordance with the increase or decrease of the injection injection period (T2-T1) after correction in order to secure (maintain) a predetermined injection flow rate.
 図7と図8を用いて、上述した図4~図6の例において利用される、噴射器253の噴射時間(開弁時間)と噴射間隔の制御方法について説明する。図7は、噴射時間(開弁時間)を精度保障間隔として所定の流量を確保する制御例である。図8は、噴射時間(開弁時間)と噴射間隔を制御するための構成例である。 The control method of the injection time (opening time) and the injection interval of the injector 253, which are used in the above-described examples of FIGS. 4 to 6, will be described using FIGS. 7 and 8. FIG. FIG. 7 shows an example of control for securing a predetermined flow rate with the injection time (opening time) as the accuracy guarantee interval. FIG. 8 is a configuration example for controlling the injection time (opening time) and the injection interval.
 図7において、(a)は指示流量0.26g/minを精度保障間隔10msの1Hz周期で1分間噴射することにより確保する例である。(b)は、指示流量が(a)の半分の0.13g/minになった場合に、その指示流量を精度保障間隔10msの0.5Hz周期で1分間噴射することにより確保する例である。(b)では指示流量が(a)の半分になった分噴射周期(間隔)が(a)の2倍になっている。(c)は、さらに指示流量が(a)の10分の1の0.026g/minになった場合に、その指示流量を精度保障間隔10msの0.1Hz周期で1分間噴射することにより確保する例である。(c)では指示流量が(a)の10分の1になった分、噴射周期(間隔)が(a)の10倍になっている。このように、噴射時間(開弁時間)を精度保障間隔とした場合であっても噴射間隔を調整することにより必要となる噴射流量を確保することが可能となる。 In FIG. 7, (a) is an example of securing the instructed flow rate of 0.26 g / min by injecting it for 1 minute in a 1 Hz cycle with an accuracy ensuring interval of 10 ms. (B) is an example in which when the indicated flow rate becomes 0.13 g / min which is half of (a), the indicated flow rate is secured by injecting for 1 minute in 0.5 Hz cycle of accuracy guarantee interval 10 ms. . In (b), the divided injection cycle (interval) in which the indicated flow rate is half of (a) is twice as large as (a). (C) is secured by injecting the indicated flow rate for 1 minute in a 0.1 Hz cycle with a precision guarantee interval of 10 ms, when the indicated flow rate reaches 0.026 g / min, which is one-tenth of (a). This is an example of In (c), the injection period (interval) is 10 times as large as (a), as the indicated flow rate becomes 1/10 of (a). As described above, even when the injection time (the valve opening time) is the accuracy guarantee interval, it is possible to secure the necessary injection flow rate by adjusting the injection interval.
 図8において、ECU3が、噴射器253の噴射弁の開弁時間をその通電期間TA(ms)として指示したとする。なお、TAは1ms単位で設定される(TA=n(ms)、nは任意の整数)。比較器43において、TA(ms)が10msより大きいか否かが比較される。10msは噴射器253の噴射弁の精度保障間隔(開弁時間)である。TAが10msより大きい場合、選択器44においてそのTA値が選択され、通電期間としてそのまま出力される。TAが10ms以下である場合、選択器44において10msが選択され、通電期間として出力される。 In FIG. 8, it is assumed that the ECU 3 instructs the valve opening time of the injection valve of the injector 253 as the energization period TA (ms). The TA is set in units of 1 ms (TA = n (ms), n is an arbitrary integer). The comparator 43 compares whether TA (ms) is greater than 10 ms. 10 ms is the accuracy guarantee interval (opening time) of the injection valve of the injector 253. If TA is greater than 10 ms, the TA value is selected by the selector 44 and is output as it is as the energization period. When TA is 10 ms or less, 10 ms is selected in the selector 44, and is output as an energization period.
 さらに、比較器45において、TAが1msから10msまでの1ms毎の各値に等しいか否かが判定される。TAが1msから10msまでのいずれかの値に等しい場合、その値に対応する周期46が選択される。例えば、TA=1msの場合、0.1Hzが選択される。TAが10ms以上である場合は周期として1Hzが選択される。選択された周期は選択器47に送られて、そこで通電間隔、すなわち噴射間隔として出力される。 Furthermore, in the comparator 45, it is determined whether TA is equal to each value of 1 ms to 10 ms every 1 ms. If TA is equal to any value between 1 ms and 10 ms, then the period 46 corresponding to that value is selected. For example, in the case of TA = 1 ms, 0.1 Hz is selected. When TA is 10 ms or more, 1 Hz is selected as the period. The selected cycle is sent to the selector 47, where it is output as the energization interval, ie, the injection interval.
 図9は、尿素水の噴射量制御のフローを示す図である。この制御フローは、ECU3がメモリに格納する制御プログラムを呼び出して所定の制御周期毎に実行される。 FIG. 9 is a diagram showing a flow of injection amount control of urea water. The control flow is executed at predetermined control cycles by calling a control program stored in the memory by the ECU 3.
 ステップS1では、尿素水噴射装置25の故障フラグが「1」であるか否かを判別する。この故障フラグは、図示しない判定処理において尿素水噴射装置が故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYesの場合には、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。この判別がNoの場合には、ステップS2に移る。 In step S1, it is determined whether the failure flag of the urea water injection device 25 is "1". The failure flag is set to “1” when it is determined that the urea water injection device has failed in a determination process not shown, and is set to “0” otherwise. If the determination is Yes, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends. If the determination is No, the process proceeds to step S2.
 ステップS2では、選択還元触媒の劣化フラグが「1」であるか否かを判別する。この触媒劣化フラグは、図示しない判定処理において図1の選択還元触媒231が故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYesの場合には、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。この判別がNoの場合には、ステップS3に移る。 In step S2, it is determined whether the deterioration flag of the selective reduction catalyst is "1". The catalyst deterioration flag is set to “1” when it is determined that the selective reduction catalyst 231 of FIG. 1 has failed in the determination process (not shown), and is set to “0” otherwise. If the determination is Yes, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends. If the determination is No, the process proceeds to step S3.
 ステップS3では、尿素水残量が所定値未満であるか否かを判別する。この尿素水残量は、図1の尿素水タンク251内の尿素水の残量を示し、レベルセンサの出力に基づいて算出される。この判別がYesの場合には、ステップS4に移り、Noの場合には、ステップS5に移る。 In step S3, it is determined whether the residual amount of urea water is less than a predetermined value. The remaining amount of urea water indicates the remaining amount of urea water in the urea water tank 251 of FIG. 1 and is calculated based on the output of the level sensor. If the determination is Yes, the process proceeds to step S4, and if the determination is No, the process proceeds to step S5.
 ステップS4では、尿素水残量の警告灯を点灯し、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。 In step S4, the warning light for the urea water remaining amount is turned on, and the process proceeds to step S16. After the urea water injection amount is set to "0", this process is ended.
 ステップS5では、図1の酸化触媒21の暖機タイマ値が所定値より大きいか否かを判別する。この触媒暖機タイマ値は、エンジン始動後の酸化触媒21の暖機時間を計時するものである。この判別がYesの場合には、ステップS6に移る。この判別がNoの場合には、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。 In step S5, it is determined whether the warm-up timer value of the oxidation catalyst 21 of FIG. 1 is larger than a predetermined value. The catalyst warm-up timer value measures the warm-up time of the oxidation catalyst 21 after the engine start. If this determination is Yes, the process proceeds to step S6. If the determination is No, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends.
 ステップS6では、センサ故障フラグが「0」であるか否かを判別する。このセンサ故障フラグは、図示しない判定処理において図1のNHセンサ26、触媒温度センサ27およびNOセンサ28、29の少なくともいずれか1つが故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYesの場合には、ステップS7に移る。この判別がNoの場合には、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。 In step S6, it is determined whether the sensor failure flag is "0". This sensor failure flag is set to “1” when it is determined that at least one of the NH 3 sensor 26, the catalyst temperature sensor 27 and the NO x sensor 28, 29 in FIG. 1 has failed in the determination process not shown. Otherwise, it is set to "0". If this determination is Yes, the process proceeds to step S7. If the determination is No, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends.
 ステップS7では、NHセンサ26の活性フラグが1であるか否かを判別する。このNHセンサ活性フラグは、図示しない判定処理においてNHセンサ26が活性状態に達したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYesの場合には、ステップS8に移る。この判別がNoの場合には、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。 In step S7, it is determined whether the activation flag of the NH 3 sensor 26 is one. The NH 3 sensor activation flag is set to “1” when it is determined that the NH 3 sensor 26 has reached the active state in a determination process not shown, and is set to “0” otherwise. If this determination is Yes, the process proceeds to step S8. If the determination is No, the process proceeds to step S16, and after the urea water injection amount is set to "0", the process ends.
 ステップS8では、尿素水が加水分解されてNHが発生可能な状態か否かを判別する。具体的には、選択還元触媒23の温度が尿素水の加水分解可能な所定温度(例えば約160℃)以上であるか否かを判別する。この判別がYesである場合には、尿素水が加水分解されてNHが発生可能と判断して、ステップS9に移る。この判別がNoである場合には、ステップS16に移り、尿素水噴射量を「0」に設定した後に、この処理を終了する。 In step S8, it is determined whether or not the aqueous urea solution is hydrolyzed to generate NH 3 . Specifically, it is determined whether the temperature of the selective reduction catalyst 23 is equal to or higher than a predetermined hydrolyzable temperature (for example, about 160 ° C.) of urea water. When this determination is Yes, it is judged that urea aqueous solution is hydrolyzed and that NH 3 can be generated, and the process moves to step S9. If the determination is No, the process proceeds to step S16, the urea water injection amount is set to "0", and the process ends.
 ステップS9において尿素水噴射量の算出を開始する。最初にステップS10において、尿素水噴射量が所定量以上か否かを判別する。ここで所定量とは、既に説明した噴射器253の精度保障間隔(例えば10ms)で噴射される流量を言う。この判別がYesである場合には、ステップS11に移り、選択還元触媒231の劣化度が判定される。その判定方法は既に述べた通りである。そして、次のステップS12において、判定された劣化度に応じて、噴射器253の噴射時間および噴射間隔が設定される。その設定方法は図5、6等を参照しながら既に述べた通りである。 In step S9, calculation of the urea water injection amount is started. First, in step S10, it is determined whether the urea water injection amount is equal to or more than a predetermined amount. Here, the predetermined amount refers to the flow rate injected at the accuracy guarantee interval (for example, 10 ms) of the injector 253 already described. If the determination is Yes, the process proceeds to step S11, where the degree of deterioration of the selective reduction catalyst 231 is determined. The determination method is as described above. Then, in the next step S12, the injection time and injection interval of the injector 253 are set in accordance with the determined degree of deterioration. The setting method is as described above with reference to FIGS.
 ステップS10の判別がNoである場合、すなわち精度保障間隔(例えば10ms)よりも短い噴射時間が設定される場合、ステップS13において、噴射時間として精度保障間隔(例えば10ms)が設定される。これにより噴射器253による実噴射量の誤差が抑制される。次のステップS14において、所定の噴射流量を確保するために必要となる噴射間隔が決定される。その決定方法は、図6~8を参照しながら既に述べた通りである。最後に、ステップS15において、ステップS12、S13、またはS14において決定された尿素水の噴射時間(開弁期間)および噴射間隔(周期)が噴射器253に指示される。 If the determination in step S10 is No, that is, if an injection time shorter than the accuracy guarantee interval (for example, 10 ms) is set, then in step S13, the accuracy guarantee interval (for example, 10 ms) is set as the injection time. Thereby, the error of the actual injection amount by the injector 253 is suppressed. In the next step S14, the injection interval required to secure a predetermined injection flow rate is determined. The determination method is as described above with reference to FIGS. Finally, in step S15, the injector 253 is instructed of the urea water injection time (opening period) and injection interval (cycle) determined in step S12, S13, or S14.
 上述した実施形態は一例でありこれに限定されるものではない。本発明は、任意の数の気筒を有するエンジンに適用可能である。また、本発明は、直接噴射式のガソリンエンジン等のエンジンにも適用可能である。さらに、本発明は、還元剤供給として、上述した一実施形態である尿素水供給のみならず、ガス状のNHを直接供給する場合等において適用可能である。例えば、図1の一実施形態を利用する場合、尿素水噴射装置25の代わりにNHガス供給装置を用いることにより、NHガスを直接供給することができる。 The embodiment described above is an example and is not limited thereto. The invention is applicable to engines having any number of cylinders. The present invention is also applicable to an engine such as a direct injection gasoline engine. Furthermore, the present invention is applicable not only to the aqueous urea solution supply according to the above-described embodiment as the reducing agent supply but also to the case where gaseous NH 3 is directly supplied. For example, when using the embodiment of FIG. 1, NH 3 gas can be directly supplied by using an NH 3 gas supply device instead of the urea water injection device 25.

Claims (4)

  1.  内燃機関の排気浄化装置であって、
     内燃機関の排気通路に設けられ、還元剤であるNHを捕捉すると共に、捕捉したNHを用いて前記排気通路を流れるNOを還元する選択還元触媒と、
     前記排気通路内の前記選択還元触媒の上流側に前記還元剤を供給する還元剤供給手段と、
     前記還元剤供給手段による還元剤の供給量を設定する還元剤供給量設定手段とを備え、
     前記還元剤供給量設定手段は、前記還元剤供給手段が制御可能な最低供給時間よりも短い供給時間を設定しなければならない場合、当該最低供給時間に基づき還元剤の供給量を設定すると共に当該還元剤の供給間隔を長くする、内燃機関の排気浄化装置。
    An exhaust gas purification apparatus for an internal combustion engine
    Provided in an exhaust passage of an internal combustion engine, as well as capturing the NH 3 as a reducing agent, a selective reduction catalyst for reducing NO x flowing through the exhaust passage by using the NH 3 was captured,
    Reductant supply means for supplying the reductant upstream of the selective reduction catalyst in the exhaust passage;
    A reducing agent supply amount setting unit configured to set a supply amount of the reducing agent by the reducing agent supply unit;
    When the reducing agent supply amount setting means has to set a supply time shorter than the minimum supply time controllable by the reducing agent supply means, the reducing agent supply amount is set based on the minimum supply time, An exhaust gas purification apparatus for an internal combustion engine, which extends the supply interval of the reducing agent.
  2.  前記選択還元触媒の浄化率を算出する手段と、
     前記浄化率から前記選択還元触媒の劣化度を判定する手段とをさらに備え、
     前記還元剤供給量設定手段は、前記劣化度に応じて、前記還元剤の供給時間を短くすることおよび供給間隔を長くすることの少なくともいずれか一方をおこなう、請求項1に記載の排気浄化装置。
    A means for calculating a purification rate of the selective reduction catalyst;
    Means for determining the degree of deterioration of the selective reduction catalyst from the purification rate;
    The exhaust gas purification apparatus according to claim 1, wherein the reducing agent supply amount setting means performs at least one of shortening the supply time of the reducing agent and prolonging the supply interval according to the degree of deterioration. .
  3.  前記選択還元触媒の温度を検出する触媒温度検出手段と、
     前記選択還元触媒の温度および選択還元触媒の劣化度に応じて当該選択還元触媒内のNHストレージ可能量を設定する手段と、
     前記選択還元触媒内のNH量を算出する手段とをさらに備え、
     前記還元剤供給量設定手段は、算出されたNH量と前記選択還元触媒内のNHストレージ可能量との差分に基づき前記還元剤供給手段による還元剤の供給量を設定する、請求項2に記載の排気浄化装置。
    Catalyst temperature detection means for detecting the temperature of the selective reduction catalyst;
    A means for setting the NH 3 storable amount in the selective reduction catalyst according to the temperature of the selective reduction catalyst and the deterioration degree of the selective reduction catalyst;
    And means for calculating the amount of NH 3 in the selective reduction catalyst,
    The reducing agent supply amount setting means sets the supply amount of the reducing agent by the reducing agent supply means based on the difference between the calculated NH 3 amount and the NH 3 storable amount in the selective reduction catalyst. The exhaust purification device described in.
  4.  前記選択還元触媒内のNHストレージ可能量を設定する手段は、前記劣化度に応じて前記選択還元触媒内のNHストレージ可能量を小さくする、請求項3に記載の排気浄化装置。 It said means for setting the NH 3 storage amount capable of selective reduction in catalyst decreases the NH 3 storage amount capable of the selective reduction the catalyst according to the deterioration degree, the exhaust purifying apparatus according to claim 3.
PCT/JP2010/000792 2010-02-09 2010-02-09 Exhaust gas purification device for internal combustion engine WO2011099051A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112010005244T DE112010005244T5 (en) 2010-02-09 2010-02-09 Emission cleaning device
PCT/JP2010/000792 WO2011099051A1 (en) 2010-02-09 2010-02-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000792 WO2011099051A1 (en) 2010-02-09 2010-02-09 Exhaust gas purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2011099051A1 true WO2011099051A1 (en) 2011-08-18

Family

ID=44367365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000792 WO2011099051A1 (en) 2010-02-09 2010-02-09 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
DE (1) DE112010005244T5 (en)
WO (1) WO2011099051A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073085A (en) * 2016-12-21 2019-07-30 珀金斯发动机有限公司 A kind of improved selective catalytic reduction system operating
JP2019157725A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Abnormality diagnosis device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293743A (en) * 2002-04-03 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006242094A (en) * 2005-03-03 2006-09-14 Hino Motors Ltd Exhaust emission control device
JP2007327377A (en) * 2006-06-07 2007-12-20 Hitachi Ltd Exhaust emission control device
JP2008255936A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009127474A (en) * 2007-11-21 2009-06-11 Nippon Soken Inc Exhaust emission control device
JP2009138626A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Abnormality detection device for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323835A (en) 2000-05-15 2001-11-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293743A (en) * 2002-04-03 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006242094A (en) * 2005-03-03 2006-09-14 Hino Motors Ltd Exhaust emission control device
JP2007327377A (en) * 2006-06-07 2007-12-20 Hitachi Ltd Exhaust emission control device
JP2008255936A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009127474A (en) * 2007-11-21 2009-06-11 Nippon Soken Inc Exhaust emission control device
JP2009138626A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Abnormality detection device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073085A (en) * 2016-12-21 2019-07-30 珀金斯发动机有限公司 A kind of improved selective catalytic reduction system operating
JP2020514604A (en) * 2016-12-21 2020-05-21 パーキンス エンジンズ カンパニー リミテッドPerkins Engines Company Ltd Improved selective catalytic reduction system
US11162402B2 (en) 2016-12-21 2021-11-02 Perkins Engines Company Limited Selective catalytic reduction system
CN110073085B (en) * 2016-12-21 2021-12-31 珀金斯发动机有限公司 Improved selective catalytic reduction system
JP2019157725A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Abnormality diagnosis device

Also Published As

Publication number Publication date
DE112010005244T5 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
US8413425B2 (en) Control device and control method for exhaust gas purification apparatus, and internal combustion engine exhaust gas purification apparatus
JP5284408B2 (en) Exhaust gas purification system for internal combustion engine
JP4875744B2 (en) Catalyst degradation judgment device for exhaust purification system
JP5351186B2 (en) Exhaust gas purification system for internal combustion engine
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
EP2949894B1 (en) Exhaust gas purification device for internal combustion engine
WO2014199777A1 (en) Control device, exhaust purification device for internal combustion engine, and method for controlling exhaust purification device
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP4305643B2 (en) Exhaust gas purification device for internal combustion engine
US7513105B2 (en) Exhaust gas purifying system and abnormality determining method therefor
JP5553631B2 (en) Exhaust gas purification device for internal combustion engine
US10161329B2 (en) Upstream NOx estimation
JP6911479B2 (en) Exhaust gas purification system control device
WO2014097391A1 (en) System for purifying exhaust of internal combustion engine
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP2008019790A (en) Exhaust emission control system for internal combustion engine
WO2011099051A1 (en) Exhaust gas purification device for internal combustion engine
JP2007170337A (en) Exhaust emission control device of internal combustion engine
JP6112093B2 (en) Exhaust purification system
JP2009030459A (en) Exhaust emission control device of internal combustion engine
JP2009299597A (en) Exhaust emission control device for vehicular internal combustion engine
JP5553629B2 (en) Exhaust gas purification device for internal combustion engine
JP5553630B2 (en) Exhaust gas purification device for internal combustion engine
WO2013190657A1 (en) Exhaust purification device for internal combustion engine
JP7347345B2 (en) Purification control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010005244

Country of ref document: DE

Ref document number: 1120100052441

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP