JP2008255936A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008255936A
JP2008255936A JP2007100648A JP2007100648A JP2008255936A JP 2008255936 A JP2008255936 A JP 2008255936A JP 2007100648 A JP2007100648 A JP 2007100648A JP 2007100648 A JP2007100648 A JP 2007100648A JP 2008255936 A JP2008255936 A JP 2008255936A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
storage
storage capacity
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007100648A
Other languages
Japanese (ja)
Other versions
JP4720773B2 (en
Inventor
Toshisuke Toshioka
俊祐 利岡
Tomihisa Oda
富久 小田
Kazuhiro Ito
和浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007100648A priority Critical patent/JP4720773B2/en
Publication of JP2008255936A publication Critical patent/JP2008255936A/en
Application granted granted Critical
Publication of JP4720773B2 publication Critical patent/JP4720773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a large amount of ammonia generating compound from being discharged from a catalyst even when the easiness of storage of ammonia generating compound by the catalyst is changed. <P>SOLUTION: The catalyst 27 suitable for reducing NOx contained in an exhaust gas using ammonia under excessive oxygen is disposed in the exhaust passage of an engine. A urea solution is supplied from an addition control valve 32 to the catalyst 27 to store a part of the urea supplied to the catalyst 27 in the catalyst 27 and reduce NOx contained in the exhaust gas by the ammonia generated from the urea stored in the catalyst 27. It is determined whether or not the storage capacity of the catalyst 27 is larger than an allowable upper limit predetermined beforehand. When the storage capacity of the catalyst 27 is determined to be larger than the allowable upper limit, the supply of the urea solution is prohibited. The storage capacity of the catalyst 27 is corrected based on the degree of easiness of storage which represents the easiness of storage of the urea solution by the catalyst 27. Then, it is determined whether or not the corrected storage capacity is larger than the allowable upper limit. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

酸素過剰のもとでアンモニアにより排気ガス中のNOxを還元するのに適した触媒を機関排気通路内に配置し、この触媒に尿素水溶液を供給し、触媒に供給された尿素の一部を触媒内に貯蔵すると共に触媒内に貯蔵されている尿素から発生したアンモニアにより排気ガス中のNOxを還元するようにした内燃機関が公知である(特許文献1,2参照)。   A catalyst suitable for reducing NOx in the exhaust gas with ammonia under an excess of oxygen is disposed in the engine exhaust passage, an aqueous urea solution is supplied to the catalyst, and part of the urea supplied to the catalyst is catalyzed. An internal combustion engine in which NOx in exhaust gas is reduced by ammonia generated from urea stored in a catalyst while being stored in the catalyst is known (see Patent Documents 1 and 2).

米国特許第5,628,186号明細書US Pat. No. 5,628,186 国際特許公開第99/67511号International Patent Publication No. 99/67511

上述の内燃機関では、触媒に供給された尿素の一部は触媒内にいったん貯蔵され、この貯蔵された尿素からアンモニアといった尿素由来物質が生成される。この尿素由来物質の一部はNOxを還元するのに用いられ、残りはNOx還元に用いられることなく触媒から排出される。この場合、触媒から排出される尿素由来物質の量は触媒内に貯蔵された尿素の量が多くなるほど多くなる。したがって、触媒内に多量の尿素が貯蔵されると、多量の尿素由来物質が触媒から好ましくなく排出されるおそれがある。   In the internal combustion engine described above, a part of the urea supplied to the catalyst is once stored in the catalyst, and a urea-derived substance such as ammonia is generated from the stored urea. A part of this urea-derived substance is used to reduce NOx, and the rest is discharged from the catalyst without being used for NOx reduction. In this case, the amount of urea-derived substances discharged from the catalyst increases as the amount of urea stored in the catalyst increases. Therefore, if a large amount of urea is stored in the catalyst, a large amount of urea-derived substances may be undesirably discharged from the catalyst.

この点、機関から排出されたNOxの量に見合う量だけ尿素水溶液を触媒に供給するようにすれば、触媒内に多量の尿素が貯蔵されるのを阻止することができ、したがって多量の尿素由来物質が触媒から排出されるのを阻止できると考えられる。しかしながら、機関から排出されたNOx量又はこれに見合う尿素量を正確に求めるのは困難である。あるいは、触媒に貯蔵されている尿素の量を求め、この尿素貯蔵量が許容上限を越えないように触媒に供給される尿素水溶液の量を制御すれば、触媒内に多量の尿素が貯蔵されるのを阻止することができると考えられる。しかしながら、触媒に貯蔵されている尿素の量を正確に求めることは困難である。いずれにしても、触媒から多量の尿素由来物質が排出されるのを確実に阻止することができないという問題点がある。触媒に供給される尿素水溶液の量を減量すれば触媒内に多量の尿素が貯蔵されるのを阻止することができるけれども、この場合にはNOxを良好に還元することができなくなる。   In this regard, if a urea aqueous solution is supplied to the catalyst in an amount commensurate with the amount of NOx discharged from the engine, it is possible to prevent a large amount of urea from being stored in the catalyst. It is thought that the substance can be prevented from being discharged from the catalyst. However, it is difficult to accurately determine the amount of NOx discharged from the engine or the amount of urea commensurate with it. Alternatively, if the amount of urea stored in the catalyst is obtained and the amount of urea aqueous solution supplied to the catalyst is controlled so that the urea storage amount does not exceed the allowable upper limit, a large amount of urea is stored in the catalyst. It is thought that it can be prevented. However, it is difficult to accurately determine the amount of urea stored in the catalyst. In any case, there is a problem that it is impossible to reliably prevent a large amount of urea-derived material from being discharged from the catalyst. If the amount of the urea aqueous solution supplied to the catalyst is reduced, it is possible to prevent a large amount of urea from being stored in the catalyst, but in this case, NOx cannot be reduced well.

また、例えば触媒の劣化度合いや触媒における排気ガスの空間速度に応じて触媒の尿素の貯蔵し易さが変動するので、触媒の劣化度合い等をも考慮して触媒への尿素供給量を決定する必要がある。   Further, for example, the ease of storing urea in the catalyst varies depending on the degree of deterioration of the catalyst and the space velocity of the exhaust gas in the catalyst, so the urea supply amount to the catalyst is determined in consideration of the degree of deterioration of the catalyst and the like. There is a need.

前記課題を解決するために本発明によれば、酸素過剰のもとでアンモニアにより排気ガス中のNOxを還元するのに適した触媒を機関排気通路内に配置し、該触媒にアンモニア発生化合物を供給するための供給手段と、該アンモニア発生化合物の供給量を制御するための供給制御手段とを具備し、該触媒は、触媒に供給された該アンモニア発生化合物の少なくとも一部を触媒内に貯蔵すると共に該触媒内に貯蔵されているアンモニア発生化合物からアンモニアを生成して該生成したアンモニアにより排気ガス中のNOxを還元する機能を有し、該触媒の貯蔵容量があらかじめ定められた許容上限容量よりも大きいか否かを判断する判断手段をさらに具備し、前記供給制御手段は、該触媒の貯蔵容量が該許容上限容量よりも大きいと判断されたときにアンモニア発生化合物の供給を禁止する内燃機関の排気浄化装置であって、前記触媒のアンモニア発生化合物の貯蔵し易さを表す貯蔵易度に基づき該触媒の貯蔵容量を補正する補正手段をさらに具備し、前記判断手段は、該補正された貯蔵容量が許容上限容量よりも大きいか否かを判断する。   In order to solve the above problems, according to the present invention, a catalyst suitable for reducing NOx in exhaust gas with ammonia under an excess of oxygen is disposed in the engine exhaust passage, and an ammonia generating compound is added to the catalyst. A supply means for supplying and a supply control means for controlling the supply amount of the ammonia generating compound, wherein the catalyst stores at least a part of the ammonia generating compound supplied to the catalyst in the catalyst. And having a function of generating ammonia from the ammonia generating compound stored in the catalyst and reducing NOx in the exhaust gas by the generated ammonia, and the storage capacity of the catalyst is a predetermined allowable upper limit capacity Further comprising a judging means for judging whether or not the storage capacity of the catalyst is larger than the allowable upper limit capacity. An exhaust gas purification apparatus for an internal combustion engine that prohibits the supply of an ammonia generating compound at the time, and further comprises a correcting means for correcting the storage capacity of the catalyst based on the degree of storage indicating the ease of storing the ammonia generating compound of the catalyst. The determining means determines whether the corrected storage capacity is larger than an allowable upper limit capacity.

触媒のアンモニア発生化合物の貯蔵し易さが変動したときにも、多量のアンモニア発生化合物が触媒から排出されるのを阻止することができる。   Even when the ease of storage of the ammonia-generating compound in the catalyst varies, it is possible to prevent a large amount of the ammonia-generating compound from being discharged from the catalyst.

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明はガソリン機関にも適用することができる。   FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine. The present invention can also be applied to a gasoline engine.

図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアフローメータ8を介してエアクリーナ9に連結される。吸気ダクト6内には電気制御式スロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気後処理装置20に連結される。   Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the air flow meter 8. An electrically controlled throttle valve 10 is arranged in the intake duct 6, and a cooling device 11 for cooling intake air flowing in the intake duct 6 is arranged around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the exhaust aftertreatment device 20.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路12を介して互いに連結され、EGR通路12内には電気制御式EGR制御弁13が配置される。また、EGR通路12周りにはEGR通路12内を流れるEGRガスを冷却するための冷却装置14が配置される。図1に示される実施例では機関冷却水が冷却装置14内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管15を介してコモンレール16に連結され、このコモンレール16は電子制御式の吐出量可変な燃料ポンプ17を介して燃料タンク18に連結される。燃料タンク18内の燃料は燃料ポンプ17によってコモンレール16内に供給され、コモンレール16内に供給された燃料は各燃料供給管15を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 12, and an electrically controlled EGR control valve 13 is disposed in the EGR passage 12. A cooling device 14 for cooling the EGR gas flowing in the EGR passage 12 is disposed around the EGR passage 12. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 14, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 16 via a fuel supply pipe 15, and this common rail 16 is connected to a fuel tank 18 via an electronically controlled variable discharge pump 17. The fuel in the fuel tank 18 is supplied into the common rail 16 by the fuel pump 17, and the fuel supplied into the common rail 16 is supplied to the fuel injection valve 3 through each fuel supply pipe 15.

排気後処理装置20は排気管21を介して排気タービン7bの出口に連結された上流側触媒コンバータ22と、排気管23を介して上流側触媒コンバータ22に連結された下流側触媒コンバータ24とを具備する。上流側触媒コンバータ22内には上流側から順に触媒25及び触媒26が配置され、下流側触媒コンバータ24内には上流側から順に触媒27及び触媒28が配置される。触媒25,26,28は酸化機能を有する触媒、例えば酸化触媒又は三元触媒から構成される。これに対し、触媒27は酸素過剰のもとでアンモニアにより排気ガス中のNOxを還元するのに適したNOx選択還元触媒から構成される。また、触媒25,27,28はハニカム担体上に担持されており、触媒26は排気ガス中の微粒子を捕集するためのパティキュレートフィルタ上に担持されている。排気管23には下流側触媒コンバータ24内に流入する排気ガスの温度を検出するための温度センサ29が配置される。下流側触媒コンバータ24内に流入する排気ガスの温度は触媒27の温度を表している。   The exhaust aftertreatment device 20 includes an upstream catalytic converter 22 connected to the outlet of the exhaust turbine 7b via an exhaust pipe 21, and a downstream catalytic converter 24 connected to the upstream catalytic converter 22 via an exhaust pipe 23. It has. In the upstream catalytic converter 22, a catalyst 25 and a catalyst 26 are arranged in order from the upstream side, and in the downstream catalytic converter 24, a catalyst 27 and a catalyst 28 are arranged in order from the upstream side. The catalysts 25, 26 and 28 are composed of a catalyst having an oxidation function, for example, an oxidation catalyst or a three-way catalyst. On the other hand, the catalyst 27 is composed of a NOx selective reduction catalyst suitable for reducing NOx in the exhaust gas with ammonia under an excess of oxygen. The catalysts 25, 27, and 28 are carried on a honeycomb carrier, and the catalyst 26 is carried on a particulate filter for collecting fine particles in the exhaust gas. The exhaust pipe 23 is provided with a temperature sensor 29 for detecting the temperature of the exhaust gas flowing into the downstream catalytic converter 24. The temperature of the exhaust gas flowing into the downstream catalytic converter 24 represents the temperature of the catalyst 27.

一方、アンモニアを発生するアンモニア発生化合物を含む液体がタンク30内に貯えられており、タンク30内に貯えられているアンモニア発生化合物を含む液体は供給ポンプ31及び電磁制御式添加制御弁32を介して排気管23内に供給される。   On the other hand, a liquid containing an ammonia generating compound that generates ammonia is stored in the tank 30, and the liquid containing the ammonia generating compound stored in the tank 30 is supplied via a supply pump 31 and an electromagnetically controlled addition control valve 32. And is supplied into the exhaust pipe 23.

電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。エアフローメータ8は吸入空気量に比例した出力電圧を発生し、この出力電圧は対応するAD変換器47を介して入力ポート45に入力される。一方、温度センサ29の出力信号はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。アクセルペダル49にはアクセルペダル49の踏み込み量に比例した出力電圧を発生する負荷センサ50が接続され、負荷センサ50の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。さらに、入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ51が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁3、スロットル弁10駆動装置、EGR制御弁13、燃料ポンプ17、供給ポンプ31、及び添加制御弁32に接続される。   The electronic control unit 40 is composed of a digital computer, and is connected to each other by a bidirectional bus 41. A ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45 and an output port 46 are connected. It comprises. The air flow meter 8 generates an output voltage proportional to the amount of intake air, and this output voltage is input to the input port 45 via the corresponding AD converter 47. On the other hand, the output signal of the temperature sensor 29 is input to the input port 45 via the corresponding AD converter 47. A load sensor 50 that generates an output voltage proportional to the amount of depression of the accelerator pedal 49 is connected to the accelerator pedal 49, and the output voltage of the load sensor 50 is input to the input port 45 via the corresponding AD converter 47. Further, the input port 45 is connected to a crank angle sensor 51 that generates an output pulse every time the crankshaft rotates, for example, 30 °. On the other hand, the output port 46 is connected to the fuel injection valve 3, the throttle valve 10 drive device, the EGR control valve 13, the fuel pump 17, the supply pump 31, and the addition control valve 32 through corresponding drive circuits 48.

さて、前述したように触媒27上流の排気管23内にはアンモニア発生化合物を含む液体が供給される。アンモニアを発生しうるアンモニア発生化合物については種々の化合物が存在し、したがってアンモニア発生化合物として種々の化合物を用いることができる。本発明による実施例ではアンモニア発生化合物として尿素を用いており、アンモニア発生化合物を含む液体として尿素水溶液を用いている。したがって以下、触媒27上流の排気管23内に尿素水溶液を供給する場合を例にとって本発明を説明する。   As described above, the liquid containing the ammonia generating compound is supplied into the exhaust pipe 23 upstream of the catalyst 27. There are various types of ammonia generating compounds capable of generating ammonia, and therefore various compounds can be used as the ammonia generating compound. In the embodiment according to the present invention, urea is used as the ammonia generating compound, and an aqueous urea solution is used as the liquid containing the ammonia generating compound. Therefore, hereinafter, the present invention will be described by taking as an example the case of supplying a urea aqueous solution into the exhaust pipe 23 upstream of the catalyst 27.

一方、前述したように触媒27はNOx選択還元触媒からなり、図1に示す実施例ではこのNOx選択還元触媒としてチタニアを担体とし、この担体上に酸化バナジウムを担持した触媒V/TiO(以下、バナジウム・チタニア触媒という。)、又はゼオライトを担体とし、この担体上に銅を担持した触媒Cu/ZSM5(以下、銅ゼオライト触媒という。)が用いられている。 On the other hand, as described above, the catalyst 27 is composed of a NOx selective reduction catalyst. In the embodiment shown in FIG. 1, the catalyst V 2 O 5 / TiO having titania as a carrier as the NOx selective reduction catalyst and vanadium oxide supported on this carrier. 2 (hereinafter referred to as “vanadium / titania catalyst”) or a catalyst Cu / ZSM5 (hereinafter referred to as “copper zeolite catalyst”) using zeolite as a carrier and copper supported on this carrier is used.

過剰酸素を含んでいる排気ガス中に尿素水溶液を供給すると排気ガス中に含まれるNOは触媒27上において尿素CO(NHから発生するアンモニアNHにより還元される(例えば2NH+2NO+1/2O→2N+3HO)。 When urea aqueous solution is supplied to exhaust gas containing excess oxygen, NO contained in the exhaust gas is reduced on the catalyst 27 by ammonia NH 3 generated from urea CO (NH 2 ) 2 (for example, 2NH 3 + 2NO + 1 / 2O 2 → 2N 2 + 3H 2 O).

すなわち、供給された尿素水溶液中の尿素はまず触媒27上に付着する。このとき触媒27の温度が例えばほぼ350℃以上のように高ければ尿素が一気に熱分解してアンモニアが発生される。   That is, urea in the supplied urea aqueous solution first adheres on the catalyst 27. At this time, if the temperature of the catalyst 27 is as high as, for example, approximately 350 ° C. or higher, urea is thermally decomposed at once and ammonia is generated.

一方、触媒27の温度がほぼ132℃からほぼ350℃までのときには尿素が触媒27内にいったん貯蔵され、次いで触媒27内に貯蔵されている尿素からアンモニアが少しずつ発生され放出される。この場合のアンモニア発生は触媒27上において尿素が形態変化するためであると考えられている。すなわち、尿素はほぼ132℃においてビウレットに変化し、ビウレットはほぼ190℃においてシアヌル酸に変化し、シアヌル酸はほぼ360℃においてシアン酸又はイソシアン酸に変化する。あるいは、触媒27内に貯蔵されてからの経過時間が長くなるにつれて尿素はビウレットに変化し、ビウレットはシアヌル酸に変化し、シアヌル酸はシアン酸又はイソシアン酸に変化する。このような形態変化の過程で少しずつアンモニアが発生するものと考えられている。   On the other hand, when the temperature of the catalyst 27 is approximately 132 ° C. to approximately 350 ° C., urea is once stored in the catalyst 27, and then ammonia is gradually generated and released from the urea stored in the catalyst 27. The generation of ammonia in this case is considered to be due to the form change of urea on the catalyst 27. That is, urea changes to biuret at approximately 132 ° C., biuret changes to cyanuric acid at approximately 190 ° C., and cyanuric acid changes to cyanic acid or isocyanic acid at approximately 360 ° C. Or as the elapsed time after storing in the catalyst 27 becomes long, urea changes to biuret, biuret changes to cyanuric acid, and cyanuric acid changes to cyanic acid or isocyanic acid. It is considered that ammonia is generated little by little in the process of such morphological change.

触媒27の温度が尿素の熱分解温度であるほぼ132℃以下のときに触媒27に尿素水溶液を供給すると尿素水溶液中の尿素は触媒27内に貯蔵され、このとき貯蔵された尿素からはアンモニアはほとんど発生しない。   When the aqueous solution of urea is supplied to the catalyst 27 when the temperature of the catalyst 27 is approximately 132 ° C. or lower, which is the thermal decomposition temperature of urea, urea in the aqueous urea solution is stored in the catalyst 27, and ammonia is stored from the urea stored at this time. It hardly occurs.

しかしながら、その後に例えば機関加速運転が行われて触媒27の温度が高くなると、触媒27内に貯蔵されている尿素から上述したアンモニア、ビウレット、シアヌル酸、シアン酸又はイソシアン酸などが生成され、さらにこれら生成物と排気ガス中の炭化水素HCとが反応してシアン化水素が生成される場合がある。このようにして尿素から生成される尿素由来物質の一部は排気ガス中のNOxを還元するのに用いられるが、残りはNOx還元することなく触媒27から排出されてしまう。   However, after that, for example, when the engine acceleration operation is performed and the temperature of the catalyst 27 increases, the above-described ammonia, biuret, cyanuric acid, cyanic acid, or isocyanic acid is generated from urea stored in the catalyst 27, and In some cases, these products react with hydrocarbon HC in the exhaust gas to produce hydrogen cyanide. A part of the urea-derived substance generated from urea in this way is used to reduce NOx in the exhaust gas, but the rest is discharged from the catalyst 27 without reducing NOx.

触媒27から排出される尿素由来物質の量は触媒27内に貯蔵された尿素の量が多くなるほど多くなる。したがって、触媒27内に多量の尿素が貯蔵されると、多量の尿素由来物質が触媒27から好ましくなく排出されるおそれがある。   The amount of urea-derived substance discharged from the catalyst 27 increases as the amount of urea stored in the catalyst 27 increases. Therefore, if a large amount of urea is stored in the catalyst 27, a large amount of urea-derived material may be undesirably discharged from the catalyst 27.

一方、触媒27内に貯蔵され得る尿素の量には限界があり、すなわち触媒27内には貯蔵容量までしか尿素を貯蔵することができない。この貯蔵容量は触媒27の雰囲気例えば触媒27の温度に応じて変動し、したがって触媒27の貯蔵容量が大きいときには触媒27内に多量の尿素を貯蔵することができ、触媒27の貯蔵容量が小さいときには触媒27内に少量の尿素しか貯蔵することができない。   On the other hand, the amount of urea that can be stored in the catalyst 27 is limited, that is, urea can be stored in the catalyst 27 only to the storage capacity. The storage capacity varies depending on the atmosphere of the catalyst 27, for example, the temperature of the catalyst 27. Therefore, when the storage capacity of the catalyst 27 is large, a large amount of urea can be stored in the catalyst 27, and when the storage capacity of the catalyst 27 is small. Only a small amount of urea can be stored in the catalyst 27.

そうすると、触媒27の貯蔵容量が大きいときに触媒27への尿素水溶液の供給を禁止すれば、触媒27内に多量の尿素が貯蔵されるのを阻止することができる。これが本発明の基本的な考え方である。   Then, if the supply of the urea aqueous solution to the catalyst 27 is prohibited when the storage capacity of the catalyst 27 is large, it is possible to prevent a large amount of urea from being stored in the catalyst 27. This is the basic idea of the present invention.

すなわち本発明による実施例では、触媒27の貯蔵容量があらかじめ定められた許容上限容量よりも大きいか否かが判断され、触媒27の貯蔵容量が許容上限容量よりも大きいと判断されたときには尿素水溶液の供給が禁止される。この場合、触媒27の貯蔵容量を直接求めるのは困難である。一方、触媒27の貯蔵容量SCは図2に示されるように、触媒27の温度TCが低いときには高いときに比べて大きくなり、触媒27の温度TCがTCXのときに触媒27の貯蔵容量SCが許容上限量SCUとなる。   That is, in the embodiment according to the present invention, it is determined whether or not the storage capacity of the catalyst 27 is larger than a predetermined allowable upper limit capacity, and when it is determined that the storage capacity of the catalyst 27 is larger than the allowable upper limit capacity, the urea aqueous solution Supply is prohibited. In this case, it is difficult to directly determine the storage capacity of the catalyst 27. On the other hand, as shown in FIG. 2, the storage capacity SC of the catalyst 27 is larger when the temperature TC of the catalyst 27 is low than when it is high, and the storage capacity SC of the catalyst 27 is when the temperature TC of the catalyst 27 is TCX. The allowable upper limit amount SCU.

そこで本発明による実施例では、触媒27の貯蔵容量SCが許容上限容量SCUとなる温度TCを設定温度TCXに設定し、触媒27の温度TCがこの設定温度TCXよりも低いときに触媒27の貯蔵容量SCが許容上限容量SCUよりも大きいと判断するようにし、このとき尿素水溶液の供給が禁止される。一方、触媒27の温度が設定温度TCXよりも高いときには触媒27の貯蔵容量SCが許容上限容量SCUよりも小さいと判断され、このとき尿素水溶液の供給が許容される。すなわち、例えば機関から排出されるNOx量に応じた量だけ尿素水溶液が触媒27に供給される。このようにすると、触媒27内に貯蔵された尿素の量が許容上限容量SCUを越えることがない。したがって、触媒27内に実際に貯蔵されている尿素量を求めなくても、多量の尿素が触媒27内に貯蔵されるのを阻止することができる。   Therefore, in the embodiment according to the present invention, the temperature TC at which the storage capacity SC of the catalyst 27 reaches the allowable upper limit capacity SCU is set to the set temperature TCX, and the storage of the catalyst 27 is performed when the temperature TC of the catalyst 27 is lower than the set temperature TCX. It is determined that the capacity SC is larger than the allowable upper limit capacity SCU, and at this time, the supply of the urea aqueous solution is prohibited. On the other hand, when the temperature of the catalyst 27 is higher than the set temperature TCX, it is determined that the storage capacity SC of the catalyst 27 is smaller than the allowable upper limit capacity SCU, and at this time, the supply of the urea aqueous solution is permitted. That is, for example, the urea aqueous solution is supplied to the catalyst 27 by an amount corresponding to the amount of NOx discharged from the engine. In this way, the amount of urea stored in the catalyst 27 does not exceed the allowable upper limit capacity SCU. Therefore, it is possible to prevent a large amount of urea from being stored in the catalyst 27 without obtaining the amount of urea actually stored in the catalyst 27.

許容上限容量SCUはどのように設定してもよい。例えば、触媒27からその後に排出される尿素由来物質、例えばアンモニア、シアン化水素、及びイソシアン酸のうち少なくとも一つの濃度がそれぞれの許容上限値を越えないように、許容上限容量SCUを設定することができる。あるいは、触媒27からその後に排出されるアンモニア、シアン化水素、及びイソシアン酸すべての濃度がそれぞれの許容上限値を越えないように、許容上限容量SCUを設定することもできる。   The allowable upper limit capacity SCU may be set in any way. For example, the allowable upper limit capacity SCU can be set so that the concentration of at least one of urea-derived substances, for example, ammonia, hydrogen cyanide, and isocyanic acid discharged after the catalyst 27 does not exceed the respective allowable upper limit values. . Alternatively, the allowable upper limit capacity SCU can be set so that the concentrations of ammonia, hydrogen cyanide, and isocyanate all subsequently discharged from the catalyst 27 do not exceed the allowable upper limit values.

ところで、触媒27のNOx浄化率EFFは図3に示されるように、触媒27の温度TCが下限温度TCELよりも低いか又は上限温度TCEHよりも高いと許容下限率EFFLよりも低くなり、触媒27の温度TCが下限温度TCELから上限温度TCEHまでであると許容下限率EFFLよりも高くなる。上述した設定温度TCXはこの下限温度TCELよりも高くなっている。   By the way, as shown in FIG. 3, the NOx purification rate EFF of the catalyst 27 becomes lower than the allowable lower limit rate EFFL when the temperature TC of the catalyst 27 is lower than the lower limit temperature TCEL or higher than the upper limit temperature TCEH. When the temperature TC is between the lower limit temperature TCEL and the upper limit temperature TCEH, the allowable lower limit ratio EFFL is higher. The set temperature TCX described above is higher than the lower limit temperature TCEL.

ここで、例えば機関が始動された後の尿素水溶液の供給開始タイミングについて考える。図4においてXで示されるように機関が始動されると、触媒27の温度TCが徐々に上昇する。このとき尿素水溶液の供給は停止されている。次いで、図4にYで示されるように触媒27の温度TCが下限温度TCELに達しても、尿素水溶液の供給は開始されない。次いで図4にZで示されるように触媒27の温度TCが設定温度TCXに達すると、尿素水溶液の供給が開始される。すなわち、本発明による実施例では、触媒27がNOx還元のために十分に活性化していても尿素水溶液の供給が開始されず、触媒27の温度TCが多量の尿素由来物質の排出を阻止できる温度まで上昇するとようやく尿素水溶液の供給が開始されるのである。   Here, for example, consider the supply start timing of the urea aqueous solution after the engine is started. When the engine is started as indicated by X in FIG. 4, the temperature TC of the catalyst 27 gradually increases. At this time, the supply of the urea aqueous solution is stopped. Next, even if the temperature TC of the catalyst 27 reaches the lower limit temperature TCEL as indicated by Y in FIG. 4, the supply of the urea aqueous solution is not started. Next, as indicated by Z in FIG. 4, when the temperature TC of the catalyst 27 reaches the set temperature TCX, the supply of the urea aqueous solution is started. That is, in the embodiment according to the present invention, even if the catalyst 27 is sufficiently activated for NOx reduction, the supply of the urea aqueous solution is not started, and the temperature TC of the catalyst 27 can prevent the discharge of a large amount of urea-derived substances. At last, the supply of the aqueous urea solution starts.

さて、時間の経過と共に触媒27が劣化する。触媒27が劣化すると尿素水溶液が触媒27に貯蔵されにくくなり、触媒27の貯蔵容量SCが小さくなる。その結果、触媒27の貯蔵容量SCが許容上限容量SCUとなる温度である設定温度TCXは触媒27が劣化すると低くなる。すなわち、図5に示されるように、触媒27が新品のときすなわち触媒27の劣化度合いDTがゼロのときの設定温度TCXを基本設定温度TCXBと称すれば、触媒27の劣化度合いDTが大きくなると設定温度TCXは基本設定温度TCXBよりも低くなり、触媒27の劣化度合いDTが大きいときには劣化度合いDTが小さいときに比べて設定温度TCXは低くなる。   Now, the catalyst 27 deteriorates with time. When the catalyst 27 deteriorates, the urea aqueous solution becomes difficult to be stored in the catalyst 27, and the storage capacity SC of the catalyst 27 becomes small. As a result, the set temperature TCX, which is the temperature at which the storage capacity SC of the catalyst 27 becomes the allowable upper limit capacity SCU, becomes lower as the catalyst 27 deteriorates. That is, as shown in FIG. 5, when the set temperature TCX when the catalyst 27 is new, that is, when the deterioration degree DT of the catalyst 27 is zero, is referred to as a basic set temperature TCXB, the deterioration degree DT of the catalyst 27 increases. The set temperature TCX is lower than the basic set temperature TCXB. When the deterioration degree DT of the catalyst 27 is large, the set temperature TCX is lower than when the deterioration degree DT is small.

したがって、触媒27が劣化したときにも触媒27の温度TCが基本設定温度TCXBよりも低いということで尿素水溶液の供給を禁止するようにすると、触媒27の実際の貯蔵容量SCが許容上限容量SCUよりも少ないにもかかわらず尿素水溶液の供給が禁止されることになる。   Therefore, even when the catalyst 27 is deteriorated, if the supply of the urea aqueous solution is prohibited because the temperature TC of the catalyst 27 is lower than the basic set temperature TCXB, the actual storage capacity SC of the catalyst 27 becomes the allowable upper limit capacity SCU. However, the supply of the urea aqueous solution is prohibited in spite of being less.

そこで本発明による実施例では、図6に示されるように触媒27の劣化度合いDTが大きいときには小さいときに比べて小さくなる補正係数kを導入し、この補正係数kでもって基本設定温度TCXBを補正することにより設定温度TCXを算出するようにしている(TCX=TCXB・k)。触媒27の温度TCがこのようにして補正された設定温度TCXよりも低いときには尿素水溶液の供給が禁止される。その結果、触媒27が劣化したときに、触媒27の貯蔵容量SCが許容上限容量SCUよりも小さいときに尿素水溶液の供給が禁止されるのが阻止される。   Therefore, in the embodiment according to the present invention, as shown in FIG. 6, when the deterioration degree DT of the catalyst 27 is large, a correction coefficient k that is smaller than that when it is small is introduced, and the basic set temperature TCXB is corrected with this correction coefficient k. Thus, the set temperature TCX is calculated (TCX = TCXB · k). When the temperature TC of the catalyst 27 is lower than the set temperature TCX corrected in this way, the supply of the urea aqueous solution is prohibited. As a result, when the catalyst 27 deteriorates, the supply of the urea aqueous solution is prevented when the storage capacity SC of the catalyst 27 is smaller than the allowable upper limit capacity SCU.

なお、触媒27bの劣化度合いDTは例えば触媒27内に流入したHCの積算量や触媒27の温度の積算値によって表すことができる。   The deterioration degree DT of the catalyst 27b can be expressed by, for example, an integrated amount of HC flowing into the catalyst 27 or an integrated value of the temperature of the catalyst 27.

図7は本発明による実施例の尿素水溶液の供給制御を実行するためのルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。   FIG. 7 shows a routine for executing the supply control of the urea aqueous solution according to the embodiment of the present invention, and this routine is executed by interruption every predetermined time.

図7を参照するとまず初めにステップ100において図6のマップから補正係数kが算出される。続くステップ101では設定温度TCXが補正される(TCX=TCX・k)。続くステップ102では触媒27の温度TCが補正された設定温度TCXよりも低いか否かが判別される。TC≧TCXのときには次いでステップ103に進み、尿素水溶液の供給が許容される。これに対し、TC<TCXのときには次いでステップ104に進み、尿素水溶液の供給が禁止される。   Referring to FIG. 7, first, at step 100, the correction coefficient k is calculated from the map of FIG. In the subsequent step 101, the set temperature TCX is corrected (TCX = TCX · k). In the following step 102, it is determined whether or not the temperature TC of the catalyst 27 is lower than the corrected set temperature TCX. When TC ≧ TCX, the routine proceeds to step 103 where the urea aqueous solution is allowed to be supplied. On the other hand, when TC <TCX, the routine proceeds to step 104 where the urea aqueous solution supply is prohibited.

次に、本発明による別の実施例を説明する。   Next, another embodiment according to the present invention will be described.

触媒27における排気ガスの空間速度が高くなると尿素水溶液が触媒27に貯蔵されにくくなり、触媒27の貯蔵容量SCが小さくなる。逆に、触媒27における排気ガスの空間速度が低くなると尿素水溶液が触媒27に貯蔵されやすくなり、触媒27の貯蔵容量SCが大きくなる。その結果、触媒27の貯蔵容量SCが許容上限容量SCUとなる温度である設定温度TCXは触媒27における空間速度が高くなると大きくなり、空間速度が低くなると大きくなる。すなわち、図8に示されるように、触媒27における排気ガスの空間速度SVがあらかじめ定められた基本空間速度SVBのときの設定温度TCXを基本設定温度TCXBと称すれば、空間速度SVが高くなると設定温度TCXは基本設定温度TCXBよりも低くなり、空間速度SVが低くなると設定温度TCXは高くなる。   When the space velocity of the exhaust gas in the catalyst 27 increases, the urea aqueous solution becomes difficult to be stored in the catalyst 27, and the storage capacity SC of the catalyst 27 decreases. On the contrary, when the space velocity of the exhaust gas in the catalyst 27 is lowered, the urea aqueous solution is easily stored in the catalyst 27, and the storage capacity SC of the catalyst 27 is increased. As a result, the set temperature TCX, which is the temperature at which the storage capacity SC of the catalyst 27 becomes the allowable upper limit capacity SCU, increases as the space velocity in the catalyst 27 increases, and increases as the space velocity decreases. That is, as shown in FIG. 8, if the set temperature TCX when the exhaust gas space velocity SV is a predetermined basic space velocity SVB is referred to as a basic set temperature TCXB, the space velocity SV increases. The set temperature TCX is lower than the basic set temperature TCXB, and the set temperature TCX increases as the space velocity SV decreases.

そこで本発明による実施例では、図9に示されるように触媒27における排気ガスの空間速度SVが高いときには低いときに比べて小さくなる補正係数kを導入し、この補正係数kでもって基本設定温度TCXBを補正することにより設定温度TCXを算出するようにしている(TCX=TCXB・k)。触媒27の温度TCがこのようにして補正された設定温度TCXよりも低いときには尿素水溶液の供給が禁止される。すなわち、本発明による別の実施例では、図7のステップ100において図9のマップから補正係数kが算出される。   Therefore, in the embodiment according to the present invention, as shown in FIG. 9, a correction coefficient k is introduced which becomes smaller when the space velocity SV of the exhaust gas in the catalyst 27 is high than when it is low. The set temperature TCX is calculated by correcting TCXB (TCX = TCXB · k). When the temperature TC of the catalyst 27 is lower than the set temperature TCX corrected in this way, the supply of the urea aqueous solution is prohibited. That is, in another embodiment according to the present invention, the correction coefficient k is calculated from the map of FIG. 9 in step 100 of FIG.

ここで、触媒27のアンモニア発生化合物の貯蔵し易さを貯蔵易度で表すとすると、触媒27の劣化度合いが大きいときには小さいときに比べて触媒27の貯蔵易度が小さくなり、触媒27における排気ガスの空間速度が高いときには低いときに比べて触媒27の貯蔵易度が小さくなる。そうすると、一般化して言えば、触媒27の貯蔵易度に基づき触媒27の貯蔵容量を補正し、補正された貯蔵容量が許容上限容量よりも大きいか否かを判断しているということになる。この場合、貯蔵易度が小さいときには貯蔵易度が大きいときに比べて小さくなるように貯蔵容量が補正される。   Here, if the ease of storing the ammonia generating compound of the catalyst 27 is expressed by the ease of storage, the degree of storage of the catalyst 27 becomes smaller when the degree of deterioration of the catalyst 27 is large than when the degree of deterioration is small. When the gas space velocity is high, the degree of storage of the catalyst 27 becomes smaller than when the gas space velocity is low. Then, in general terms, the storage capacity of the catalyst 27 is corrected based on the storage ease of the catalyst 27, and it is determined whether or not the corrected storage capacity is larger than the allowable upper limit capacity. In this case, the storage capacity is corrected so as to be smaller when the degree of storage is small than when the degree of storage is large.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. 触媒の貯蔵容量を示す線図である。It is a diagram which shows the storage capacity of a catalyst. NOx浄化率を示す線図である。It is a diagram which shows a NOx purification rate. 本発明による実施例を説明するためのタイムチャートである。It is a time chart for demonstrating the Example by this invention. 触媒の劣化度合いに応じて変動する触媒の貯蔵容量を示す線図である。It is a diagram which shows the storage capacity of the catalyst which fluctuates according to the deterioration degree of a catalyst. 補正係数のマップを示す線図である。It is a diagram which shows the map of a correction coefficient. 尿素水溶液の供給制御ルーチンを示すフローチャートである。It is a flowchart which shows the supply control routine of urea aqueous solution. 触媒における排気ガスの空間速度に応じて変動する触媒の貯蔵容量を示す線図である。It is a diagram which shows the storage capacity of the catalyst which fluctuates according to the space velocity of the exhaust gas in a catalyst. 本発明による別の実施例における補正係数のマップを示す線図である。It is a diagram which shows the map of the correction coefficient in another Example by this invention.

符号の説明Explanation of symbols

1 機関本体
5 排気マニホルド
27 触媒
29 温度センサ
32 添加制御弁
1 Engine Body 5 Exhaust Manifold 27 Catalyst 29 Temperature Sensor 32 Addition Control Valve

Claims (7)

酸素過剰のもとでアンモニアにより排気ガス中のNOxを還元するのに適した触媒を機関排気通路内に配置し、該触媒にアンモニア発生化合物を供給するための供給手段と、該アンモニア発生化合物の供給量を制御するための供給制御手段とを具備し、該触媒は、触媒に供給された該アンモニア発生化合物の少なくとも一部を触媒内に貯蔵すると共に該触媒内に貯蔵されているアンモニア発生化合物からアンモニアを生成して該生成したアンモニアにより排気ガス中のNOxを還元する機能を有し、該触媒の貯蔵容量があらかじめ定められた許容上限容量よりも大きいか否かを判断する判断手段をさらに具備し、前記供給制御手段は、該触媒の貯蔵容量が該許容上限容量よりも大きいと判断されたときにアンモニア発生化合物の供給を禁止する内燃機関の排気浄化装置であって、前記触媒のアンモニア発生化合物の貯蔵し易さを表す貯蔵易度に基づき該触媒の貯蔵容量を補正する補正手段をさらに具備し、前記判断手段は、該補正された貯蔵容量が許容上限容量よりも大きいか否かを判断する内燃機関の排気浄化装置。   A catalyst suitable for reducing NOx in the exhaust gas with ammonia under an excess of oxygen is disposed in the engine exhaust passage, supply means for supplying the ammonia generating compound to the catalyst, Supply control means for controlling a supply amount, and the catalyst stores at least a part of the ammonia generating compound supplied to the catalyst in the catalyst and is stored in the catalyst. A determination means for determining whether or not the storage capacity of the catalyst is larger than a predetermined allowable upper limit capacity, having a function of generating ammonia from the catalyst and reducing NOx in the exhaust gas by the generated ammonia; And the supply control means prohibits the supply of the ammonia generating compound when it is determined that the storage capacity of the catalyst is larger than the allowable upper limit capacity. An exhaust gas purification apparatus for an internal combustion engine, further comprising a correcting means for correcting the storage capacity of the catalyst based on the storage ease indicating the ease of storing the ammonia generating compound of the catalyst, wherein the determining means comprises the correction An exhaust purification device for an internal combustion engine that determines whether or not the stored storage capacity is greater than an allowable upper limit capacity. 前記補正手段は、前記貯蔵易度が小さいときには該貯蔵易度が大きいときに比べて小さくなるように前記貯蔵容量を補正する請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the correction unit corrects the storage capacity so that the storage capacity is smaller when the storage ease is smaller than when the storage ease is large. 前記貯蔵易度は、前記触媒の劣化度合いが大きいときには該触媒の劣化度合いが小さいときに比べて小さくなる請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the ease of storage is smaller when the degree of deterioration of the catalyst is large than when the degree of deterioration of the catalyst is small. 前記貯蔵易度は、前記触媒における排気ガスの空間速度が高いときには該空間速度が低いときに比べて小さくなる請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the ease of storage is smaller when the space velocity of the exhaust gas in the catalyst is high than when the space velocity is low. 前記触媒の貯蔵容量は、該触媒の温度が低いときには該触媒の温度が高いときに比べて大きくなっており、前記判断手段は、該触媒の温度が、該触媒の貯蔵容量が前記許容上限容量となる温度に設定された設定温度よりも低いときに該触媒の貯蔵容量が該許容上限容量よりも大きいと判断する請求項1に記載の内燃機関の排気浄化装置。   The storage capacity of the catalyst is larger when the temperature of the catalyst is lower than when the temperature of the catalyst is high, and the judging means determines that the temperature of the catalyst is higher than the allowable upper limit capacity of the catalyst. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the catalyst storage capacity is determined to be larger than the allowable upper limit capacity when the temperature is lower than a set temperature set to be a temperature. 前記補正手段は、前記貯蔵易度に基づき前記設定温度を補正し、前記判断手段は、該触媒の温度が該補正された設定温度よりも低いときに該触媒の貯蔵容量が該許容上限容量よりも大きいと判断する請求項5に記載の内燃機関の排気浄化装置。   The correction means corrects the set temperature based on the storage ease, and the determination means has a storage capacity of the catalyst that is higher than the allowable upper limit capacity when the temperature of the catalyst is lower than the corrected set temperature. The exhaust emission control device for an internal combustion engine according to claim 5, wherein the exhaust gas purification device is determined to be larger. 前記供給制御手段は、前記補正された触媒の貯蔵容量が前記許容上限容量よりも小さいと判断されたときにアンモニア発生化合物の供給を許容する請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the supply control unit permits the supply of the ammonia generating compound when it is determined that the corrected storage capacity of the catalyst is smaller than the allowable upper limit capacity.
JP2007100648A 2007-04-06 2007-04-06 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4720773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100648A JP4720773B2 (en) 2007-04-06 2007-04-06 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100648A JP4720773B2 (en) 2007-04-06 2007-04-06 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008255936A true JP2008255936A (en) 2008-10-23
JP4720773B2 JP4720773B2 (en) 2011-07-13

Family

ID=39979729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100648A Expired - Fee Related JP4720773B2 (en) 2007-04-06 2007-04-06 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4720773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099051A1 (en) * 2010-02-09 2011-08-18 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067511A1 (en) * 1998-06-23 1999-12-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
JP2003286828A (en) * 2002-03-27 2003-10-10 Mitsubishi Fuso Truck & Bus Corp NOx CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006017115A (en) * 2004-06-30 2006-01-19 Robert Bosch Gmbh Method for operating catalyst used for purifying exhaust gas of internal combustion engine and device for performing the method
JP2006022729A (en) * 2004-07-08 2006-01-26 Hino Motors Ltd Control method of exhaust emission control device
JP2008255937A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067511A1 (en) * 1998-06-23 1999-12-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
JP2003286828A (en) * 2002-03-27 2003-10-10 Mitsubishi Fuso Truck & Bus Corp NOx CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006017115A (en) * 2004-06-30 2006-01-19 Robert Bosch Gmbh Method for operating catalyst used for purifying exhaust gas of internal combustion engine and device for performing the method
JP2006022729A (en) * 2004-07-08 2006-01-26 Hino Motors Ltd Control method of exhaust emission control device
JP2008255937A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099051A1 (en) * 2010-02-09 2011-08-18 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP4720773B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4710863B2 (en) Exhaust gas purification device for internal combustion engine
JP4211749B2 (en) Exhaust gas purification device for internal combustion engine
US8171723B2 (en) Abnormality detection system and abnormality detection method for internal combustion engine
US8516808B2 (en) Exhaust purification device of internal combustion engine
JP4730336B2 (en) Exhaust gas recirculation control device for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP4432917B2 (en) Exhaust gas purification device for internal combustion engine
EP2133524B1 (en) Apparatus for purifying exhaust gas in internal combustion engine
JP2009257226A (en) Exhaust emission control device for internal combustion engine
JP6149940B2 (en) Exhaust gas purification device for internal combustion engine
JP4737143B2 (en) Exhaust gas purification device for internal combustion engine
US10947885B2 (en) Passive nitric oxide storage catalyst management
EP2264291B1 (en) Exhaust gas purification system for internal combustion engine
JP4720773B2 (en) Exhaust gas purification device for internal combustion engine
JP4211747B2 (en) Exhaust gas purification device for internal combustion engine
JP2008286001A (en) Exhaust emission control device of internal combustion engine
JP4211748B2 (en) Exhaust gas purification device for internal combustion engine
JP3685063B2 (en) Exhaust gas purification device for internal combustion engine
JP4779774B2 (en) Exhaust gas purification device for internal combustion engine
JP2011117458A (en) Exhaust emission control device of internal combustion device
JP2010038022A (en) Exhaust emission control device of internal-combustion engine
JP2008255942A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees