WO2011098651A1 - Synthetic sequence of nucleotides coding for bovine recombinant prochymosin a, expression vector comprising said sequence, escherichia coli cell converted by means of said vector, and the process of the obtainment of said bovine recombinant prochymosin a - Google Patents

Synthetic sequence of nucleotides coding for bovine recombinant prochymosin a, expression vector comprising said sequence, escherichia coli cell converted by means of said vector, and the process of the obtainment of said bovine recombinant prochymosin a Download PDF

Info

Publication number
WO2011098651A1
WO2011098651A1 PCT/ES2011/070089 ES2011070089W WO2011098651A1 WO 2011098651 A1 WO2011098651 A1 WO 2011098651A1 ES 2011070089 W ES2011070089 W ES 2011070089W WO 2011098651 A1 WO2011098651 A1 WO 2011098651A1
Authority
WO
WIPO (PCT)
Prior art keywords
prochymosin
sequence
nucleotide sequence
expression
bovine
Prior art date
Application number
PCT/ES2011/070089
Other languages
Spanish (es)
French (fr)
Inventor
Umberto Bambozzi
Hugo Gabriel Menzella
Original Assignee
Umberto Bambozzi
Hugo Gabriel Menzella
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umberto Bambozzi, Hugo Gabriel Menzella filed Critical Umberto Bambozzi
Publication of WO2011098651A1 publication Critical patent/WO2011098651A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6478Aspartic endopeptidases (3.4.23)
    • C12N9/6483Chymosin (3.4.23.4), i.e. rennin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/23Aspartic endopeptidases (3.4.23)
    • C12Y304/23004Chymosin (3.4.23.4), i.e. rennin

Definitions

  • the present invention pertains to the field of recombinant proteins, in particular that of bovine recombinant chymosin A. More particularly, the present invention relates to synthetic nucleotide sequences encoding a recombinant bovine prochymosin A, expression vectors comprising said sequence, Escherichia coli cells transformed with said vector; and processes for obtaining said chymosin A.
  • the protein prochymosin A is produced by the main cells of the stomach of mammals. After its secretion this inactive precursor is exposed to pH gastric, where through a process of limited self-protection is transformed into the enzyme chymosin.
  • This enzyme also known as renin, is responsible for the proteolysis of milk k-caseins. This process results in coagulation of the same, which subsequently facilitates the action of other digestive enzymes.
  • chymosin begins to be gradually replaced by pepsin, another protease that has different properties.
  • Chymosin is a monomeric protein and has a molecular weight of 35.6 kDa and after removal of the propeptide has 323 amino acids.
  • Bovine rennet from calves under 30 days old, rich in chymosin produces the best yields in cheese making.
  • the sacrifice of such young animals has not been practiced for decades for economic reasons, which is why the cheese industry sought alternatives for the replacement of this precious product.
  • Curds of adult animals, rich in pepsin, as well as different proteases of microbial origin were used as the main milk coagulating agent until the appearance of recombinant bovine chymosin in the market in 1990. It is produced in yeasts, filamentous fungi or Jan . coli and its use in the food industry has grown remarkably over the past decade. This product has been approved for use in human food in 1992 in the United States of America and since 1994 in England. Currently, most cheese producers in the world use this recombinant protein to obtain quality cheeses.
  • Recombinant prochymosin A accumulates in E. coli in inactive protein aggregates called inclusion bodies.
  • the renaturation of the protein contained in these inclusion bodies has been carried out using different strategies for its implementation on an industrial scale at low cost (Marson et al .; 1984, Menzella et al .; 2002, Tang, et al .; 1994, Wei, et al .; 1999).
  • a common way to increase production levels by fermentation of a given protein is to increase the amount of mRNA available by using strong promoters or by using multiple copies of the coding gene.
  • the increases in production obtained by these methods are limited by the translation efficiency of said mRNA molecules.
  • each amino acid can be encoded by an average of three different codons.
  • a sequence of 300 amino acids can be theoretically encoded by some 3 300 different DNA sequences.
  • the frequency with which different codons are used by different organisms varies significantly and correlates with the corresponding populations of tRNA (transfer RNA) in the cell. Because the presence of unusual codons is strictly associated with low levels of protein production and incorporation of erroneous amino acids, the use of codons has been identified as the most important factor in obtaining high levels of expression of heterologous sequences in microorganisms since it allows increase the efficiency of the translation process (Gustafsson, et al .;
  • SA discloses a DNA sequence encoding chymosin where said sequence has been modified in 100% of the possible changes in its sequence with respect to the wild coding sequence of bovine chymosin.
  • a synthetic sequence is obtained where the most abundant codon in Aspergillus Niger awamori variety has been selected for each amino acid to express said sequence in this filamentous fungus.
  • This process known as the "one codon - an amino acid” design strategy, has been shown to result in poor yields since a gene of these characteristics with a high level of transcription can generate an imbalance in the cellular tRNA pool which affects the growth and viability of the producing microorganism with the consequent decrease in the final production of the desired protein
  • the document GB2200118, by Alellix Inc, discloses the coding sequences of prochymosin A that have been modified, partially or totally, by using the design system "a codon-an amino acid" mentioned above.
  • This document proposes the expression of said sequences in yeast cells such as Saccharomyces cerevisiae and filamentous fungi such as Aspergillus sp. This paper does not show trials that confirm results in the optimization of the expression with respect to the wild sequence and it is observed that the final results would result in limitations such as those observed in the aforementioned modifications.
  • US2006099588 discloses nucleotide sequences that code for bovine chymosin with new glycosylation sites so as to improve production yields, said new sequences modify the sequence with respect to the natural one in order to incorporate new glycosylation sites.
  • the present invention aims to provide a synthetic nucleotide sequence encoding recombinant bovine prochymosin A selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No.
  • sequence of the present invention is that sequence that has at least 95 percent homology with respect to SEQ ID No. 2.
  • Recombinant bovine prochymosin A encoded by the synthetic nucleotide sequence of the present invention has the amino acid sequence of amino acids SEQID No. 8.
  • said synthetic nucleotide sequence is under the control of a promoter selected from the set comprised of lac promoter, tac promoter, PBAD promoter, present in said vector.
  • the expression vector of the present invention comprises the synthetic nucleotide sequence SEQID No. 2.
  • Another object of the present invention is to provide a transgenic Escherichia coli cell comprising the synthetic nucleotide sequence selected from the set comprised of the sequences SEQID No. 1, SEQID No. 2, SEQID
  • said cell comprises the synthetic nucleotide sequence SEQID No. 2.
  • the cell of the present invention comprises synthetic sequence of the present invention under the control of a promoter selected from the set comprised of lac promoter, tac promoter, PBAD promoter.
  • said sequence is EQ ID No. 2.
  • step i) of said process comprises transforming said cell with an expression vector comprising a nucleotide sequence selected from the set comprised of SEQID N ° 2, SEQID N ° 3, SEQID N ° 4, SEQID N No. 5, SEQID No. 6.
  • said sequence is EQ ID No. 2.
  • step iv) the process for obtaining prochymosin A of the present invention is carried out by ion exchange chromatography.
  • the step of obtaining bovine recombinant chymosin A comprises reacting the prochymosin A obtainable from step iv) with an acid solution; preferably, said acid solution is a hydrochloric acid solution that is added until the pH reaches a value of 2.
  • the recombinant bovine chymosin A obtainable by said process has the amino acid sequence SEQ ID No. 9.
  • the nucleotide sequence of the present invention increases the expression of bovine recombinant prochymosin A in Escherichia coli by at least 8% relative to the expression of the wild sequence. More preferably at least 20%; more preferably still at least 40%; more preferably still, at least 70% relative to the expression of the wild sequence.
  • Another object of the present invention is the use of said synthetic nucleotide sequence of the present invention to obtain an Escherichia coli cell expressing said recombinant bovine prochymosin A; preferably, said nucleotide sequence is used for the construction of said expression vector comprising said sequence, which is then used for the transformation of said Escherichia coli cell.
  • Another object of the present invention is the use of said synthetic nucleotide sequence of the present invention in a process for obtaining bovine prochymosin A, which comprises the steps of expressing said nucleotide sequence in an Escherichia coli cell that contains it, recovering the expressed prochymosin A, from the inclusion bodies, solubilize said recombinant prochymosin A and purify it.
  • said method further comprises an activation step of said prochymosin A to obtain the commercially active form of said molecule, the recombinant bovine chymosin A.
  • Another object of the present invention is the use of said synthetic nucleotide sequence of the present invention in a process for obtaining bovine prochymosin A, which comprises the steps of expressing said nucleotide sequence in an Escherichia coli cell that contains it, recovering the expressed prochymosin A, from the inclusion bodies, solubilize said recombinant prochymosin A and purify it.
  • said method further comprises an activation step of
  • Escherichia Coli comprising said sequence of the invention in a process for obtaining recombinant bovine prochymosin A.
  • the present invention provides a recombinant bovine chymosin A obtainable by said process. Detailed description of the invention
  • the present invention is related to a synthetic nucleotide sequence coding for a prochymosin A, an expression vector containing said synthetic nucleotide sequence, likewise the present invention is related to an Escherichia coli cell comprising said expression vector.
  • the present invention is also related to an alternative process for obtaining bovine recombinant prochymosin A. Said process comprises culturing said Escherichia coli cell transformed with said expression vector containing said synthetic nucleotide sequence encoding said bovine prochymosin A, then obtaining a biologically active chymosin A from said prochymosin A.
  • the main object of the present invention is to provide a synthetic nucleotide sequence that codes for a recombinant bovine prochymosin A.
  • Said sequence is selected from the set comprised of the sequences SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No.
  • SEQ ID No. 6 Said sequence results in surprisingly higher expression levels relative to expression levels relative to the wild sequence when used to transform an Escherichia coli cell for recombinant prochymosin production. Said increase in Expression levels are at least 8 percent, preferably 20 percent, more preferably 40 percent, more preferably still, 70 percent relative to the expression level of the wild nucleotide sequence.
  • the synthetic nucleotide sequence of the present invention comprises modifications in specific nucleotides at specific positions with respect to a particular codon in order to replace the codons that are rarely used in the host cell by synonymous codons.
  • the codon synonym for each particular amino acid is chosen from the group of codons that encodes said amino acid with a frequency similar to that found in the Escherichia coli genome .
  • the modifications introduced in the nucleotide sequence do not imply a modification in the amino acid that encodes, as a result of the condition that the genetic code is degenerated and that some amino acids can be encoded by more than one codon, in this way they are generated silent modifications in the coding nucleotide sequence.
  • the synthetic nucleotide sequence of the present invention encodes the same protein as its natural counterpart, although it has been optimized to increase expression levels in Escherichia coli and thus reduce both costs and production times on an industrial scale.
  • the present invention provides a synthetic nucleotide sequence encoding a bovine recombinant prochymosin A where said sequence exhibits surprisingly higher levels of expression than those obtained by wild nucleotide sequence expression and those reported in the state of the art such as optimized by the method of "a codon-an amino acid".
  • the synthetic nucleotide sequence object of the present invention has less than 85 percent homology with its natural counterpart. More preferably, the synthetic nucleotide sequence of the present invention has less than 77 percent homology with respect to the natural nucleotide sequence encoding bovine prochymosin A.
  • the synthetic nucleotide sequence of the present invention is selected from the set comprised of the sequences SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 6; more preferably, the synthetic nucleotide sequence of the present invention is SEQ ID No.
  • the synthetic nucleotide sequence of the present invention encodes a polypeptide whose amino acid sequence is SEQ ID No. 8, identical to the natural bovine prochymosin A sequence. From said prochymosin A and by proteolytic treatment by adding HC1 by adjusting to the appropriate pH or by enzymatic digestion, the active recombinant bovine chymosin is obtained, whose sequence is SEQ ID N ° 9.
  • Another object of the present invention is to provide an expression vector comprising the synthetic nucleotide sequence of the present invention for expression in a microorganism, selected from the set comprising
  • Escherichia coli and Bacillus subtilis preferably Escherichia coli.
  • Said vector is selected from a wide variety of commercially available expression vectors for Escherichia coli cells.
  • said vector further comprises a promoter that controls the expression of the synthetic nucleotide sequence of the present invention.
  • the vector used for cloning and expression of the synthetic nucleotide sequence of the present invention is selected from those vectors in which the sequence Synthetic of the invention is under control of the promoters selected from the set comprised of Plac, Ptac, PBAD.
  • the transgenic Escherichia coli cell of the present invention comprises an expression vector for cells of
  • Escherichia coli where said synthetic nucleotide sequence is cloned and placed under control of at least one promoter of those known promoters for commercial use.
  • said transgenic Escherichia coli cell comprises a vector where said vector has been selected those vectors in which the synthetic sequence is under control of the promoters selected from the set comprised of Plac, Ptac, PBAD.
  • Escherichia coli is the W 3110.
  • a process for obtaining the Escherichia coli cells of the present invention comprises the steps of: a) cloning a synthetic nucleotide sequence of the present invention into a suitable expression vector; b) transform an Escherichia coli cell with the expression vector obtained in step a).
  • said step a) comprises cloning the synthetic nucleotide sequence into a suitable vector, wherein said sequence has been selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5, SEQID N ° 6.
  • said sequence is the sequence SEQID N ° 2.
  • Said synthetic nucleotide sequence is cloned into an expression vector for commercial use for Escherichia coli cells; preferably, said vector is selected from the set of those vectors in which the synthetic sequence of the invention is under control of the promoters selected from the set comprised of Plac, Ptac, PBAD.
  • the recombinant bovine prochymosin A expressed by the Escherichia coli cells of the present invention has the amino acid sequence SEQ ID 8; from said prochymosin A and by proteolytic treatment, according to methods known in the state of the art, such as Acidic treatment or enzymatic digestion can be obtained from recombinant bovine chymosin A, whose amino acid sequence is SEQ ID N ° 9.
  • Another object of the present invention is to provide a process for obtaining recombinant bovine prochymosin A, said process comprises the steps of: i) culturing the transformed Escherichia coli cell of the present invention with the expression vector of the present invention; ii) recover prochymosin A expressed in step i) from the inclusion bodies; iii) solubilize prochymosin
  • a recombinant bovine iv) purifying said prochymosin A.
  • prochymosin A treatment obtained by step iv) recombinant bovine chymosin A is obtained.
  • bovine chymosin A is obtained.
  • Escherichia coli of said process are obtained by a step of cloning the synthetic nucleotide sequence of the present invention into a suitable vector, where said sequence has been selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4 , SEQID N ° 5, SEQID N ° 6.
  • said sequence is the sequence SEQID N ° 2.
  • Another alternative treatment for the production of bovine recombinant chymosin A comprises treating the bovine recombinant prochymosin A obtained by the process of the present invention with a proteolytic enzyme such as chymosin itself.
  • Said recombinant bovine chymosin A is derived from recombinant bovine prochymosin A encoded by the synthetic nucleotide sequence selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5,
  • said sequence is the sequence SEQID N ° 2.
  • the synthetic nucleotide sequence of the present invention can be synthesized from oligonucleotides of approximately 40 nucleotides where the desired modifications are introduced , said overlapping oligonucleotides are then assembled by a process called PCA (polymerase cycling assembly) (Smith, et al .; 2003) that allows to obtain the synthetic nucleotide sequence of the present invention.
  • PCA polymerase cycling assembly
  • the process for obtaining bovine recombinant prochymosin A of the present invention comprises cloning said synthetic nucleotide sequence of the present invention into a suitable expression vector, then transforming an Escherichia coli cell with said vector and sowing in a suitable culture medium said Escherichia coli strain transformed with said expression vector comprising the synthetic nucleotide sequence of the present invention; fermenting the strain of transgenic Escherichia coli obtained, said fermentation step can be carried out for a period of between 20 to 24 hours; then an inducer is added to said culture, which according to the expression vector used can be IPTG or L-arabinose, the culture conditions are maintained for a period of between 5 to 15 hours in order to induce the expression of prochymosin A, preferably 10 hours.
  • Renchymalization of prochymosin is carried out by dilution of the denatured protein solution, at a concentration of between 1.5 and 2.5 mg / mL, preferably of
  • bovine recombinant prochymosin A is purified by either ion exchange chromatography, affinity chromatography; preferably ion exchange chromatography.
  • the process described in the present invention allows to obtain higher yields compared to a production process of bovine recombinant chymosin A using the wild sequence.
  • Expression levels from transgenic Escherichia coli strains with an expression vector such as those of the present invention allow for a higher yield at the same time of expression, the same being 8% higher with respect to its wild counterpart; preferably 19%; more preferably 40%; more preferably still, 70% higher using the nucleotide sequence of the present invention with respect to its wild counterpart.
  • Expression levels obtained during the production process of bovine recombinant prochymosin A by expression of the synthetic nucleotide sequence of the present invention show higher levels, up to 76%, with respect to those optimized sequences known in the state of the art.
  • the process was divided into an assembly reaction and an amplification reaction.
  • the assembly reaction was carried out by mixing 2 ul of a 100 uM solution of each oligonucleotide with 48 ⁇ of a solution containing 0.5 ⁇ of Expand High Fidelity polymerase (5 units / ⁇ , Roche), 1.0 ⁇ of 10 mM dNTPs, 5.0 ⁇ of 10x PCR buffer, 3.0 ⁇ of MgCl 2 25 mM, and 38.5 ⁇ of water.
  • the mixture was incubated in a thermal cycler using the following program: 5 minutes of denaturation at 95 ° C and 25 cycles of 95 ° C for 30 s, 50 ° C for 30 s, and 72 ° C for 90 s.
  • the sequence of the upper external oligonucleotide is formed in all cases by the first 16 bases of each sequence and the sequence of the lower external oligonucleotide is formed in all cases by the complementary reverse sequence of the last 16 bases of each sequence.
  • the mixture was incubated in a thermal cycler using the following program: 5 minutes of denaturation at 95 ° C and 30 cycles of 95 ° C for 30 s, 60 ° C for 30 s, and 72 ° C for 90 s.
  • oligonucleotides used to obtain the synthetic nucleotide sequence of the present invention are listed below.
  • Table I List of oligonucleotides used to synthesize the sequence SEQ ID No. 2. The sequences are shown in the 5 '-3'. The lowercase sequence corresponds to an extra non-coding sequence added to complete the oligonucleotides.
  • R oligonucleotides gone for the negative strand.
  • F oligonucleotides for the positive strand:
  • Table II codon frequency in Escherichia coli W3110. The table shows: [triplet] [amino acid] [fraction] [frequency: every thousand] ([number])
  • prochymosin A under the control of the pBAD promoters in strain W3110, the coding sequences were inserted into the vector pBAD 18 (Guzman, et al .; 1995) to obtain the plasmids pVUl (containing the sequence SEQ ID No. 7) and pVU2 (containing the sequence SE ID N ° 2) and pVU3 containing the wild nucleotide sequence of the bovine prochymosin, SEQ ID No. 1.
  • prochymosin A under control of the tac and lacuv5 promoters in strain W3110, the sequence containing the araC regulator and the pBAD promoter of the plasmids pVU2 and pVU3 was replaced by a synthetic DNA fragment containing the lacUV5 promoter (to obtain the plasmids pVU2 * and pVU3 *), or the tac promoter (to obtain plasmids pUV2 ** and pVU3 **).
  • the corresponding sequences were amplified by PCR with specific oligonucleotides overlapping the first and last 16 bases of each reading frame flanked with the TCTAGAAGGAGATATACAT sequences, containing an Xbal site and a ribosome binding site and AAGCTT, containing a HinDIII site.
  • the resulting amplification product and pBAD 18 vector were digested for 1 hour with the enzymes Xbal and HinDIII (New England Biolabs) and separated and purified on agarose gel.
  • the resulting DNA fragments were ligated using T4 DNA ligase (New England Biolabs) and the resulting ligation mixture was used to electroporate the DH5a strain.
  • the transforming colonies were selected in LB medium supplemented with ampicillin and subsequently grown in liquid LB medium to obtain plasmid preparations. The identity of the plasmids obtained was verified first by digestion with the enzymes Xbal and HinDIII and then by sequencing.
  • the corresponding sequences were amplified by PCR with specific oligonucleotides overlapping the first 16 bases of each reading frame containing extensions at the 5 ' end to incorporate: a recognition site for the enzyme of BglII restriction, the corresponding promoter (tac or lacUV5) and a ribosome binding site.
  • the lower oligonucleotide overlaps the last 16 bases of each reading frame and in both cases has a HinDIII site added to the 3 ' end immediately after the termination codon.
  • the amplification products containing each of the promoters and the pET 21b vector were digested with BgLII and HinDIII (New England Biolabs) for 1 hour with and separated and purified on agarose gel.
  • the resulting DNA fragments were ligated using T4 DNA ligase (New England Biolabs) and the resulting ligation mixture was used to electroporate the strain DH5V.
  • the transforming colonies were selected in LB medium supplemented with kanamycin and subsequently grown in liquid LB medium to obtain plasmid preparations. The identity of the plasmids obtained was verified first by digestion with the enzymes Xbal and HinDIII and then by sequencing.
  • the constructed vectors were introduced in all cases into the Escherichia coli W3110 strain by electroporation and the recombinant clones selected in LB plates supplemented with ampicillin or kanamycin.
  • prochymosin A contained in each sample was purified by ion exchange chromatography as described by Tichy et al. (Tichy, et al.; 1993).
  • Purified natural bovine chymosin (Sigma) was used as a control.
  • One unit of activity is defined as the amount of enzyme capable of coagulating 10 mL of milk in one minute at 30 ° C (Foltman; 1966).
  • Table IV Comparison of the amount of protein recovered as inclusion bodies and coagulant activity and specific activity of each sample.
  • a, b and c values obtained from five independent experiments. In all cases the standard deviation was less than 3%. From the data shown in Table IV, an increase of approximately 71% in the expression of recombinant prochymosin A is observed when the synthetic nucleotide sequence of the present invention is used with respect to expression using the wild nucleotide sequence of the bovine prochymosin. From the measurement of the coagulant activity per liter of culture, it is observed that the recombinant product obtained from the synthetic nucleotide sequence of the present invention exhibits enzymatic activity, demonstrating biological recovery characteristics of the inclusion bodies identical to those obtained by the product obtainable from the wild sequence. It can also be seen from the values obtained from the VUl sequence, that obtained by the optimization system "a codon-an amino acid", does not result in improvements in the expression and obtaining of recombinant bovine prochymosin A.
  • the first is a nucleotide sequence optimized for expression in Escherichia coli by the method of "a codon-an amino acid” ; the second is the nucleotide sequence of the present invention.
  • REPLACEMENT SHEET (Rule 26) - Tian J, Gong H, Sheng N, Z ou X, Gulari E, Gao X, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. (2004) Nature, 432: 1050-1054.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A synthetic sequence of nucleotides coding for bovine recombinant prochymosin A selected from the group comprising SeqID No. 2, SeqID No. 3, SeqID No. 4, SeqID No. 5, SeqID No. 6. An expression vector comprising the synthetic sequence of nucleotides of the present invention. A transgenic cell of Escherichia coli comprising said synthetic sequence of nucleotides and a process for the production of prochymosin A with said cell.

Description

SECUENCIA DE NUCLEOTIDOS SINTÉTICA QUE CODIFICA PARA PROQUIMOSINA A RECOMBINANTE BOVINA, VECTOR DE EXPRESIÓN QUE COMPRENDE DICHA SECUENCIA, CÉLULA DE ESCHERICHIA COLI TRANSFORMADA CON DICHO VECTOR Y PROCESO DE SEQUENCE OF SYNTHETIC NUCLEOTID THAT CODIFIES FOR BOVINE RECOMBINANT, EXPRESSION VECTOR THAT INCLUDES SUCH SEQUENCE, TRANSFORMED COLOR ESCHERICHIA CELL WITH SUCH VECTOR AND PROCESS OF
OBTENCIÓN DE DICHA PROQUIMOSINA A RECOMBINANTE BOVINA. OBTAINING SUCH PROCHEMOSINE A BOVINE RECOMBINANT.
Campo de la invención: La presente invención pertenece al campo de las proteínas recombinantes , en particular al de la quimosina A recombinante bovina. Más particularmente, la presente invención está relacionada con secuencias nucleotídicas sintéticas que codifican para una proquimosina A recombinante bovina, vectores de expresión que comprenden dicha secuencia, células de Escherichia coli transformadas con dicho vector; y procesos de obtención de dicha quimosina A. Field of the invention: The present invention pertains to the field of recombinant proteins, in particular that of bovine recombinant chymosin A. More particularly, the present invention relates to synthetic nucleotide sequences encoding a recombinant bovine prochymosin A, expression vectors comprising said sequence, Escherichia coli cells transformed with said vector; and processes for obtaining said chymosin A.
Estado de la Técnica State of the Art
La proteína proquimosina A es producida por las células principales del estomago de los mamíferos. Luego de su secreción este precursor inactivo queda expuesto al pH gástrico, donde a través de un proceso de autoproteólisis limitado se transforma en la enzima quimosina. Esta enzima, también conocida como renina, es responsable de la proteólisis de las k-caseinas de la leche. Este proceso da como resultado la coagulación de la misma, lo que posteriormente facilita la acción de otras enzimas digestivas. En los terneros, a partir de los 30 días de vida la quimosina comienza a ser gradualmente reemplazada por la pepsina, otra proteasa que posee distintas propiedades. La quimosina es una proteina monomérica y tiene un peso molecular de 35,6 kDa y luego de la remoción del propéptido posee 323 aminoácidos. Pertenece a la familia de las aspartil proteasas, caracterizadas por poseer una gran cantidad de residuos ácidos e hidroxilados y una baja cantidad de residuos básicos. Esta familia de proteasas contiene en su sitio activo dos residuos de aspartato esenciales para su actividad y su eficiencia catalítica es máxima a valores de pH entre 2 y 3 (Foltman; 1966) . Existen dos variantes alélicas denominadas quimosina A y B. La variante A (SEQ ID N°l) tiene una actividad específica un 20% más elevada que la variante B, y se diferencia por poseer un residuo de aspartato en la posición 244 en lugar de un residuo de glicina. El análisis por cristalografía de rayos X de esta proteína reveló que posee una forma bilobular, con un surco central que aloja el péptido sustrato (Albert et al.; 1998, Neuman et al . , 1991; Nugent et al . , 1996) . Se observa que posee una estructura rica en lámina beta y un tamaño de 6,5 x 5 x 4 nm. The protein prochymosin A is produced by the main cells of the stomach of mammals. After its secretion this inactive precursor is exposed to pH gastric, where through a process of limited self-protection is transformed into the enzyme chymosin. This enzyme, also known as renin, is responsible for the proteolysis of milk k-caseins. This process results in coagulation of the same, which subsequently facilitates the action of other digestive enzymes. In calves, after 30 days of life, chymosin begins to be gradually replaced by pepsin, another protease that has different properties. Chymosin is a monomeric protein and has a molecular weight of 35.6 kDa and after removal of the propeptide has 323 amino acids. It belongs to the family of aspartyl proteases, characterized by having a large amount of acidic and hydroxylated residues and a low amount of basic waste. This family of proteases contains in its active site two aspartate residues essential for its activity and its catalytic efficiency is maximum at pH values between 2 and 3 (Foltman; 1966). There are two allelic variants called chymosin A and B. Variant A (SEQ ID No. 1) has a specific activity 20% higher than variant B, and is differentiated by having an aspartate residue at position 244 instead of a glycine residue. X-ray crystallography analysis of this protein revealed that it has a bilobular shape, with a central groove that houses the substrate peptide (Albert et al .; 1998, Neuman et al. , 1991; Nugent et al. , nineteen ninety six) . It is observed that it has a structure rich in beta sheet and a size of 6.5 x 5 x 4 nm.
El cuajo bovino de terneros menores a 30 días, rico en quimosina, produce los mejores rendimientos en la elaboración de quesos. Sin embargo, el sacrificio de animales tan jóvenes no se practica desde hace décadas por motivos económicos, por lo cual la industria quesera buscó alternativas para la sustitución de este preciado producto. Cuajos de animales adultos, ricos en pepsina, como asi también distintas proteasas de origen microbiano eran utilizados como el principal agente coagulante de leche hasta la aparición en el mercado de la quimosina bovina recombinante en 1990. La misma es producida en levaduras, hongos filamentosos o en E . coli y su uso en la industria alimenticia ha crecido en forma notable durante la última década. Este producto ha sido aprobado para el uso en la alimentación humana en 1992 en Estados Unidos de América y desde 1994 en Inglaterra. Actualmente la mayoría de los productores de queso del mundo utilizan esta proteína recombinante para la obtención de quesos de calidad. Bovine rennet from calves under 30 days old, rich in chymosin, produces the best yields in cheese making. However, the sacrifice of such young animals has not been practiced for decades for economic reasons, which is why the cheese industry sought alternatives for the replacement of this precious product. Curds of adult animals, rich in pepsin, as well as different proteases of microbial origin were used as the main milk coagulating agent until the appearance of recombinant bovine chymosin in the market in 1990. It is produced in yeasts, filamentous fungi or Jan . coli and its use in the food industry has grown remarkably over the past decade. This product has been approved for use in human food in 1992 in the United States of America and since 1994 in England. Currently, most cheese producers in the world use this recombinant protein to obtain quality cheeses.
La proquimosina A recombinante se acumula en E. coli en agregados de proteína inactivos denominados cuerpos de inclusión. La renaturalización de la proteína contenida en estos cuerpos de inclusión ha sido llevada a cabo utilizando distintas estrategias para su implementación en escala industrial a bajo costo (Marson et al.; 1984, Menzella et al.; 2002, Tang, et al.; 1994, Wei, et al.; 1999). Recombinant prochymosin A accumulates in E. coli in inactive protein aggregates called inclusion bodies. The renaturation of the protein contained in these inclusion bodies has been carried out using different strategies for its implementation on an industrial scale at low cost (Marson et al .; 1984, Menzella et al .; 2002, Tang, et al .; 1994, Wei, et al .; 1999).
Una forma habitual de aumentar los niveles de producción por fermentación de una determinada proteina es aumentar la cantidad de mRNA disponible mediante el uso de promotores fuertes o utilizando múltiples copias del gen codificante. Sin embargo, los incrementos en la producción obtenidos por estos métodos están limitados por la eficiencia de traducción de dichas moléculas de mRNA. A common way to increase production levels by fermentation of a given protein is to increase the amount of mRNA available by using strong promoters or by using multiple copies of the coding gene. However, the increases in production obtained by these methods are limited by the translation efficiency of said mRNA molecules.
El código genético es degenerado y cada aminoácido puede ser codificado por un promedio de tres codones distintos. De esta forma, una secuencia de 300 aminoácidos puede ser codificada en teoría por unas 3300 secuencias de ADN distintas. La frecuencia con la cual los distintos codones son utilizados por distintos organismos varía significativamente y se correlaciona con las correspondientes poblaciones de tRNA (RNA de transferencia) en la célula. Debido a que la presencia de codones inusuales está estrictamente asociada a bajos niveles de producción de proteína e incorporación de aminoácidos erróneos, el uso de codones ha sido identificado como el factor más importante para obtener altos niveles de expresión de secuencias heterólogas en microorganismos ya que permite aumentar la eficiencia del proceso de traducción (Gustafsson, et al.;The genetic code is degenerated and each amino acid can be encoded by an average of three different codons. In this way, a sequence of 300 amino acids can be theoretically encoded by some 3 300 different DNA sequences. The frequency with which different codons are used by different organisms varies significantly and correlates with the corresponding populations of tRNA (transfer RNA) in the cell. Because the presence of unusual codons is strictly associated with low levels of protein production and incorporation of erroneous amino acids, the use of codons has been identified as the most important factor in obtaining high levels of expression of heterologous sequences in microorganisms since it allows increase the efficiency of the translation process (Gustafsson, et al .;
2004) . 2004).
En la actualidad se han realizado diversos intentos por lograr la optimización de la expresión de proteínas foráneas, en particular, de quimosina, como ejemplos de lo antes mencionado se pueden citar: modificación de microorganismos para incrementar la expresión de proteínas foráneas, en particular quimosina: Nisshimori, et al.; 1984, Martson, et al.; 1984, Tichy, et al.; 1994, Menzella, et al.; 2002, Vallejo, et al.; 2008, Nemoto, et al.; 2009. At present, various attempts have been made to achieve the optimization of the expression of foreign proteins, in particular, of chymosin, as examples of the aforementioned can be cited: modification of microorganisms to increase the expression of foreign proteins, in particular chymosin: Nisshimori, et al .; 1984, Martson, et al .; 1984, Tichy, et al .; 1994, Menzella, et al .; 2002, Vallejo, et al .; 2008, Nemoto, et al .; 2009
Existe en el estado de la técnica gran cantidad de documentos en los que se divulgan métodos de producción alternativos de quimosina, como ejemplos de ello son documentos: EP0048521; EP0116778, EP0121775, GB2091271, WO2005094185, US4935369, US5525484, US5955297 y otros. Estos documentos mencionan diferentes alternativas, tales como modificaciones en los procesos de producción, modificaciones en los vectores de expresión, modificaciones en las secuencias promotoras de expresión, para lograr mejoras en el rendimiento y producción de quimosina, ya sea utilizando sistemas de expresión para levaduras, hongos filamentosos, bacterias y/o plantas. Estos documentos buscan resolver el problema principal que resulta de la limitación de expresar una secuencia de nucleótidos de un organismo en otro microorganismo, aunque ninguno de ellos considera la optimización de la secuencia de nucleótidos codificante, siendo éste un factor limitante en la expresión de secuencias heterólogas en la búsqueda de niveles de producción óptimos. There is a large number of documents in the state of the art in which alternative production methods of chymosin are disclosed, as examples of these are documents: EP0048521; EP0116778, EP0121775, GB2091271, WO2005094185, US4935369, US5525484, US5955297 and others. These documents mention different alternatives, such as modifications in the production processes, modifications in the expression vectors, modifications in the expression promoter sequences, to achieve improvements in the yield and production of chymosin, whether using expression systems for yeasts, filamentous fungi, bacteria and / or plants. These documents seek to solve the main problem that results from the limitation of expressing a nucleotide sequence of an organism in another microorganism, although none of them considers the optimization of the coding nucleotide sequence, this being a limiting factor in the expression of heterologous sequences in the search for optimal production levels.
Se han realizado intentos por obtener secuencias de nucleótidos optimizadas para la expresión de proquimosina en microorganismos foráneos, ya sea por la modificación o rediseño de la secuencia de nucleótidos codificante, ejemplo de ello son los documentos: EP1231272, GB2200118, GB2123005, EP0077109, US7390936. El documento de patente EP1231272, de Laboratorios OvejeroAttempts have been made to obtain optimized nucleotide sequences for the expression of prochymosin in foreign microorganisms, either by modification or redesign of the coding nucleotide sequence, examples of which are the documents: EP1231272, GB2200118, GB2123005, EP0077109, US7390936. Patent document EP1231272, of Laboratorios Ovejero
S.A., divulga una secuencia de ADN que codifica para quimosina donde dicha secuencia ha sido modificada en el 100% de los cambios posibles de su secuencia respecto de la secuencia codificante salvaje de la quimosina bovina. Mediante estas modificaciones se obtiene una secuencia sintética donde se ha seleccionado para cada aminoácido el codón más abundante en Aspergillus Niger variedad awamori para expresar dicha secuencia en este hongo filamentoso. Este proceso, conocido como estrategia de diseño "un codón - un aminoácido" se ha demostrado que puede resultar en pobres rendimientos ya que un gen de estas características con un elevado nivel de transcripción puede generar un desequilibrio en el pool de tRNA celular lo cual afecta el crecimiento y la viabilidad del microorganismo productor con la consecuente disminución de la producción final de la proteina deseadaSA, discloses a DNA sequence encoding chymosin where said sequence has been modified in 100% of the possible changes in its sequence with respect to the wild coding sequence of bovine chymosin. Through these modifications a synthetic sequence is obtained where the most abundant codon in Aspergillus Niger awamori variety has been selected for each amino acid to express said sequence in this filamentous fungus. This process, known as the "one codon - an amino acid" design strategy, has been shown to result in poor yields since a gene of these characteristics with a high level of transcription can generate an imbalance in the cellular tRNA pool which affects the growth and viability of the producing microorganism with the consequent decrease in the final production of the desired protein
(Gustafsson, et al.; 2004). (Gustafsson, et al .; 2004).
El documento GB2200118, de Alellix Inc, divulga las secuencias codificantes de proquimosina A que han sido modificados, parcial o totalmente, mediante la utilización del sistema de diseño "un codón-un aminoácido" mencionado anteriormente. Este documento propone la expresión de dichas secuencias en células de levaduras tales como Saccharomyces cerevisiae y hongos filamentosos tales como Aspergillus sp . En este documento no se muestran ensayos que confirmen resultados en la optimización de la expresión respecto de la secuencia salvaje y se observa que los resultados finales resultarían en limitaciones como las observadas en las modificaciones antes mencionadas. En el documento GB2123005, de Genex Corp, los inventores, teniendo en cuenta el hecho de que el código genético es degenerado, han divulgado a modo teórico todas las combinaciones posibles modificaciones que pueden realizarse en la secuencia de nucleótidos codificante de proquimosina A, de modo que la secuencia sea optimizada para su expresión en Escherichia coli. En este documento no se define ninguna secuencia de nucleótidos específica, tampoco se hace una selección de secuencias, tampoco se divulgan ensayos que demuestren mejoras en los niveles de expresión de proquimosina, por lo tanto no anticipa, ni sugiere de ninguna manera para un experto en la materia la presente invención. The document GB2200118, by Alellix Inc, discloses the coding sequences of prochymosin A that have been modified, partially or totally, by using the design system "a codon-an amino acid" mentioned above. This document proposes the expression of said sequences in yeast cells such as Saccharomyces cerevisiae and filamentous fungi such as Aspergillus sp. This paper does not show trials that confirm results in the optimization of the expression with respect to the wild sequence and it is observed that the final results would result in limitations such as those observed in the aforementioned modifications. In GB2123005, of Genex Corp, the inventors, taking into account the fact that the genetic code is degenerated, have theoretically disclosed all possible combinations that can be made in the nucleotide sequence encoding prochymosin A, so that the sequence be optimized for expression in Escherichia coli. No specific nucleotide sequence is defined in this document, nor is a sequence selection made, nor are trials disclosed that demonstrate improvements in expression levels of Prochymosin, therefore, does not anticipate or suggest the present invention in any way to a person skilled in the art.
El documento de US2006099588 , divulga secuencias de nucleótidos que codifican para la quimosina bovina con nuevos sitios de glicosilación de manera que mejoran los rendimientos de producción, dichas nuevas secuencias modifican la secuencia respecto de la natural con el fin de incorporar nuevos sitios de glicosilación. US2006099588 discloses nucleotide sequences that code for bovine chymosin with new glycosylation sites so as to improve production yields, said new sequences modify the sequence with respect to the natural one in order to incorporate new glycosylation sites.
Si bien los documentos antes mencionados divulgan secuencias de nucleótidos alternativas con el fin de lograr mejoras en los niveles de expresión de proquimosina en diversos microorganismos, dichos documentos no sugieren ni anticipan tampoco resultados semejantes a los obtenidos mediante las secuencias de nucleótidos sintéticas de la presente invención, que permitan obtener un incremento de hasta aproximadamente un 70 por ciento en los niveles de expresión relativo a la secuencia salvaje en la producción de proquimosina A recombinante bovina empleando Escherichia coli como microorganismo de expresión. La secuencia de nucleótidos sintética de la presente invención cumple con el objetivo de lograr mayores rendimientos, disminuyendo los costos y el tiempo requeridos en los procesos de producción de proteínas recombinantes , en particular proquimosina A recombinante bovina . Breve descripción de la Invención While the aforementioned documents disclose alternative nucleotide sequences in order to achieve improvements in the levels of prochymosin expression in various microorganisms, such documents do not suggest or anticipate results similar to those obtained by the synthetic nucleotide sequences of the present invention. , which allow an increase of up to about 70 percent in expression levels relative to the wild sequence in the production of recombinant bovine prochymosin A using Escherichia coli as an expression microorganism. The synthetic nucleotide sequence of the present invention meets the objective of achieving higher yields, decreasing the costs and time required in the production processes of recombinant proteins, in particular bovine recombinant prochymosin A. Brief Description of the Invention
La presente invención tiene por objeto proveer una secuencia de nucleótidos sintética que codifica para proquimosina A recombinante bovina seleccionada del conjunto comprendido por SEQID N° 2, SEQID N° 3, SEQID N° 4, SEQID N°The present invention aims to provide a synthetic nucleotide sequence encoding recombinant bovine prochymosin A selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No.
5, SEQID N° 6. Preferentemente, dicha secuencia es la SEQID N°2. En una forma de realización la secuencia de la presente invención es aquella secuencia que posee al menos un 95 por ciento de homología respecto a la SEQ ID N°2. La proquimosina A recombinante bovina codificada por la secuencia de nucleótidos sintética de la presente invención tiene la secuencia de aminoácidos de aminoácidos SEQID N°8. 5, SEQID No. 6. Preferably, said sequence is SEQID No. 2. In one embodiment, the sequence of the present invention is that sequence that has at least 95 percent homology with respect to SEQ ID No. 2. Recombinant bovine prochymosin A encoded by the synthetic nucleotide sequence of the present invention has the amino acid sequence of amino acids SEQID No. 8.
Es otro objeto de la presente invención el proveer un vector de expresión que comprende dicha secuencia de nucleótidos sintética de la presente invención. En una forma de realización, dicha secuencia de nucleótidos sintética se encuentra bajo el control de un promotor seleccionado del conjunto comprendido por promotor lac, promotor tac, promotor PBAD, presente en dicho vector. En una forma de realización más preferida el vector de expresión de la presente invención comprende la secuencia de nucleótidos sintética SEQID N°2. It is another object of the present invention to provide an expression vector comprising said synthetic nucleotide sequence of the present invention. In one embodiment, said synthetic nucleotide sequence is under the control of a promoter selected from the set comprised of lac promoter, tac promoter, PBAD promoter, present in said vector. In a more preferred embodiment, the expression vector of the present invention comprises the synthetic nucleotide sequence SEQID No. 2.
Otro objeto de la presente invención es el de proveer una célula de Escherichia coli transgénica que comprende la secuencia de nucleótidos sintética seleccionada del conjunto comprendido por las secuencias SEQID N°l, SEQID N°2, SEQIDAnother object of the present invention is to provide a transgenic Escherichia coli cell comprising the synthetic nucleotide sequence selected from the set comprised of the sequences SEQID No. 1, SEQID No. 2, SEQID
N°3, SEQID N°4, SEQID N°5, SEQID N° 6. Preferentemente, dicha célula comprende la secuencia de nucleótidos sintética SEQID N°2. En una forma de realización la célula de la presente invención comprende secuencia sintética de la presente invención bajo el control de un promotor seleccionado del conjunto comprendido por promotor lac, promotor tac, promotor PBAD . No. 3, SEQID No. 4, SEQID No. 5, SEQID No. 6. Preferably, said cell comprises the synthetic nucleotide sequence SEQID No. 2. In one embodiment the cell of the present invention comprises synthetic sequence of the present invention under the control of a promoter selected from the set comprised of lac promoter, tac promoter, PBAD promoter.
Es otro objeto de la presente invención el de proveer un polipéptido con actividad aspartil proteasa codificado por la secuencia de nucleótidos seleccionada del conjunto comprendido por SEQID N° 2, SEQID N° 3, SEQID N° 4, SEQID N° 5, SEQID N° 6. Preferentemente, dicha secuencia es la EQ ID N°2. Es otro objeto de la presente invención el proveer un proceso de obtención de una proquimosina A recombinante bovina caracterizado porque comprende: i)- cultivar dicha célula de Escherichia coli transgénica transformada con un vector de expresión que comprende una secuencia de nucleótidos seleccionado del conjunto comprendido por SEQIDIt is another object of the present invention to provide a polypeptide with aspartyl protease activity encoded by the nucleotide sequence selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5, SEQID No. 6. Preferably, said sequence is EQ ID No. 2. It is another object of the present invention to provide a process for obtaining a recombinant bovine prochymosin A characterized in that it comprises: i) - culturing said transgenic Escherichia coli cell transformed with an expression vector comprising a nucleotide sequence selected from the set comprising SEQID
N°l, SEQID N°2, SEQID N°3, SEQID N°4, SEQID N°5, SEQID N° 6 ; ii ) -recuperar la proquimosina A expresada en el paso i) a partir de los cuerpos de inclusión; iii)- solubilizar la proquimosina A recombinante bovina; iv) - purificar dicha proquimosina bovina recombinante. Dicha proquimosina A recombinante bovina puede ser convertida a quimosina A mediante proteólisis de la proquimosina A obtenida en el paso iv) . En una forma de realización, el paso i) de dicho proceso comprende transformar dicha célula con un vector de expresión que comprende una secuencia de nucleótidos seleccionada del conjunto comprendido por SEQID N° 2, SEQID N° 3, SEQID N° 4, SEQID N° 5, SEQID N° 6. Preferentemente, dicha secuencia es la EQ ID N°2. En una forma de realización preferida el paso iv) el proceso de obtención de proquimosina A de la presente invención es llevado a cabo por cromatografía de intercambio iónico. En otra forma preferida, el paso de obtención de quimosina A recombinante bovina comprende hacer reaccionar la proquimosina A obtenible del paso iv) con una solución ácida; preferentemente, dicha solución ácida es una solución de ácido clorhídrico que se agrega hasta que el pH llegue a un valor de 2. La quimosina A recombinante bovina obtenible por dicho proceso tiene la secuencia de aminoácidos SEQ ID n°9. No. 1, SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5, SEQID No. 6; ii) - recover the prochymosin A expressed in step i) from the inclusion bodies; iii) - solubilize bovine recombinant prochymosin A; iv) - purify said recombinant bovine prochymosin. Said prochymosin A Recombinant bovine can be converted to chymosin A by proteolysis of prochymosin A obtained in step iv). In one embodiment, step i) of said process comprises transforming said cell with an expression vector comprising a nucleotide sequence selected from the set comprised of SEQID N ° 2, SEQID N ° 3, SEQID N ° 4, SEQID N No. 5, SEQID No. 6. Preferably, said sequence is EQ ID No. 2. In a preferred embodiment, step iv) the process for obtaining prochymosin A of the present invention is carried out by ion exchange chromatography. In another preferred form, the step of obtaining bovine recombinant chymosin A comprises reacting the prochymosin A obtainable from step iv) with an acid solution; preferably, said acid solution is a hydrochloric acid solution that is added until the pH reaches a value of 2. The recombinant bovine chymosin A obtainable by said process has the amino acid sequence SEQ ID No. 9.
La secuencia de nucleótidos de la presente invención incrementa la expresión de proquimosina A recombinante bovina en Escherichia coli en al menos un 8% relativo a la expresión de la secuencia salvaje. Más preferentemente al menos un 20%; más preferentemente aún al menos un 40%; más preferentemente aún, al menos un 70% relativo a la expresión de la secuencia salvaje . Otro objeto de la presente invención es el uso de dicha secuencia de nucleótidos sintética de la presente invención para la obtención de una célula de Escherichia coli que expresa dicha proquimosina A bovina recombinante; preferentemente, dicha secuencia de nucleótidos se usa para la construcción de dicho vector de expresión que comprende dicha secuencia, que luego se utiliza para la transformación de dicha célula Escherichia coli. The nucleotide sequence of the present invention increases the expression of bovine recombinant prochymosin A in Escherichia coli by at least 8% relative to the expression of the wild sequence. More preferably at least 20%; more preferably still at least 40%; more preferably still, at least 70% relative to the expression of the wild sequence. Another object of the present invention is the use of said synthetic nucleotide sequence of the present invention to obtain an Escherichia coli cell expressing said recombinant bovine prochymosin A; preferably, said nucleotide sequence is used for the construction of said expression vector comprising said sequence, which is then used for the transformation of said Escherichia coli cell.
Otro objeto de la presente invención es el uso de dicha secuencia de nucleótidos sintética de la presente invención en un proceso de obtención de proquimosina A bovina, que comprende los pasos de expresar dicha secuencia de nucleótidos en una célula de Escherichia coli que la contiene, recuperar la proquimosina A expresada, a partir de los cuerpos de inclusión, solubilizar dicha proquimosina A recombinante y purificarla. Opcionalmente, dicho método comprende, además un paso de activación de dicha proquimosina A para obtener la forma comercialmente activa de dicha molécula, la quimosina A bovina recombinante. Otro objeto de la presente invención es el uso de dichaAnother object of the present invention is the use of said synthetic nucleotide sequence of the present invention in a process for obtaining bovine prochymosin A, which comprises the steps of expressing said nucleotide sequence in an Escherichia coli cell that contains it, recovering the expressed prochymosin A, from the inclusion bodies, solubilize said recombinant prochymosin A and purify it. Optionally, said method further comprises an activation step of said prochymosin A to obtain the commercially active form of said molecule, the recombinant bovine chymosin A. Another object of the present invention is the use of said
Escherichia Coli que comprende dicha secuencia de la invención en un proceso para la obtención de proquimosina A bovina recombinante. Escherichia Coli comprising said sequence of the invention in a process for obtaining recombinant bovine prochymosin A.
Además la presente invención provee una qimosina A recombinante bovina obtenible mediante dicho proceso. Descripción detallada de la invención Furthermore, the present invention provides a recombinant bovine chymosin A obtainable by said process. Detailed description of the invention
La presente invención está relacionada con una secuencia de nucleótidos sintética que codifica para una proquimosina A, un vector de expresión que contiene dicha secuencia de nucleótidos sintética, asimismo la presente invención está relacionada con una célula de Escherichia coli que comprende dicho vector de expresión. La presente invención está relacionada, además, con un proceso alternativo de obtención de proquimosina A recombinante bovina. Dicho proceso comprende cultivar dicha célula de Escherichia coli transformada con dicho vector de expresión que contiene dicha secuencia de nucleótidos sintética que codifica para dicha proquimosina A bovina, luego obtener a partir de dicha proquimosina A una quimosina A biológicamente activa. The present invention is related to a synthetic nucleotide sequence coding for a prochymosin A, an expression vector containing said synthetic nucleotide sequence, likewise the present invention is related to an Escherichia coli cell comprising said expression vector. The present invention is also related to an alternative process for obtaining bovine recombinant prochymosin A. Said process comprises culturing said Escherichia coli cell transformed with said expression vector containing said synthetic nucleotide sequence encoding said bovine prochymosin A, then obtaining a biologically active chymosin A from said prochymosin A.
El objeto principal de la presente invención es el de proveer de una secuencia de nucleótidos sintética que codifica para una proquimosina A recombinante bovina. Dicha secuencia es seleccionada del conjunto comprendido por las secuencias SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N°The main object of the present invention is to provide a synthetic nucleotide sequence that codes for a recombinant bovine prochymosin A. Said sequence is selected from the set comprised of the sequences SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No.
5, SEQ ID N° 6. Dicha secuencia resulta en niveles de expresión sorprendentemente superiores respecto a los niveles de expresión relativo a la secuencia salvaje cuando se la utiliza para transformar una célula de Escherichia coli para producción de proquimosina recombinante. Dicho incremento en los niveles de expresión es de al menos un 8 por ciento, preferentemente un 20 por ciento, más preferentemente un 40 por ciento, más preferentemente aún, un 70 por ciento relativo al nivel de expresión de la secuencia de nucleótidos salvaje. 5, SEQ ID No. 6. Said sequence results in surprisingly higher expression levels relative to expression levels relative to the wild sequence when used to transform an Escherichia coli cell for recombinant prochymosin production. Said increase in Expression levels are at least 8 percent, preferably 20 percent, more preferably 40 percent, more preferably still, 70 percent relative to the expression level of the wild nucleotide sequence.
La secuencia de nucleótidos sintética de la presente invención comprende modificaciones en nucleótidos específicos en posiciones específicas con respecto a un codón en particular para así reemplazar los codones que son raramente utilizados en la célula hospedadora por codones sinónimos. A diferencia de la estrategia "un codón - un aminoácido", en las secuencias aquí descritas el codón sinónimo para cada aminoácido en particular es elegido entre el grupo de codones que codifica dicho aminoácido con una frecuencia similar a la hallada en el genoma de Escherichia coli. Es así como las modificaciones introducidas en la secuencia de nucleótidos no implican una modificación en el aminoácido que codifica, resultado de la condición de que el código genético es degenerado y que algunos aminoácidos pueden estar codificados por más de un codón, de esta manera se generan modificaciones silenciosas en la secuencia de nucleótidos codificante. The synthetic nucleotide sequence of the present invention comprises modifications in specific nucleotides at specific positions with respect to a particular codon in order to replace the codons that are rarely used in the host cell by synonymous codons. Unlike the "one codon - an amino acid" strategy, in the sequences described here the codon synonym for each particular amino acid is chosen from the group of codons that encodes said amino acid with a frequency similar to that found in the Escherichia coli genome . Thus, the modifications introduced in the nucleotide sequence do not imply a modification in the amino acid that encodes, as a result of the condition that the genetic code is degenerated and that some amino acids can be encoded by more than one codon, in this way they are generated silent modifications in the coding nucleotide sequence.
La secuencia de nucleótidos sintética de la presente invención codifica la misma proteína que su contraparte natural, aunque ha sido optimizada para incrementar los niveles de expresión en Escherichia coli y de esta manera reducir tanto los costos como los tiempos en la producción a escala industrial. La presente invención provee una secuencia de nucleótidos sintética que codifica para una proquimosina A recombinante bovina donde dicha secuencia presenta niveles de expresión sorprendentemente superiores a los obtenidos por la expresión de la secuencia de nucleótidos salvaje y aquellas reportadas en el estado de la técnica tales como las optimizadas por el método de "un codón-un aminoácido". The synthetic nucleotide sequence of the present invention encodes the same protein as its natural counterpart, although it has been optimized to increase expression levels in Escherichia coli and thus reduce both costs and production times on an industrial scale. The present invention provides a synthetic nucleotide sequence encoding a bovine recombinant prochymosin A where said sequence exhibits surprisingly higher levels of expression than those obtained by wild nucleotide sequence expression and those reported in the state of the art such as optimized by the method of "a codon-an amino acid".
La secuencia de nucleótidos sintética objeto de la presente invención posee menos de un 85 por ciento de homología con su contraparte natural. Más preferentemente, la secuencia de nucleótidos sintética de la presente invención tiene menos de un 77 por ciento de homología respecto de la secuencia de nucleótidos natural que codifica para la proquimosina A bovina. Preferentemente, la secuencia de nucleótidos sintética de la presente invención es seleccionada del conjunto comprendido por las secuencias SEQ ID N° 2, SEQ ID N° 3, SEQ ID N° 4, SEQ ID N° 5, SEQ ID N° 6 ; más preferentemente, la secuencia de nucleótidos sintética de la presente invención es la SEQ ID N°2 que posee un 76% de homología respecto a su contraparte salvaje; es de destacar que el porcentaje de homología que posee la secuencia de nucleótidos sintética de la presente invención respecto a su contraparte salvaje de origen bovino es similar al porcentaje de homología que posee dicha secuencia de nucleótidos sintética respecto a la homología que con la quimosina de búfalo con 76%, un 74% respecto a quimosina de oveja y 71% respecto a quimosina de dromedario, de acuerdo a ensayos de alineamientos. La secuencia de nucleótidos sintética de la presente invención codifica para un polipéptido cuya secuencia de aminoácidos es SEQ ID N°8, idéntica a la secuencia de la proquimosina A bovina natural. A partir de dicha proquimosina A y por tratamiento proteolítico por agregado de HC1 ajusfando al pH adecuado o bien por digestión enzimática se obtiene la quimosina bovina recombinante activa, cuya secuencia es la SEQ ID N°9. The synthetic nucleotide sequence object of the present invention has less than 85 percent homology with its natural counterpart. More preferably, the synthetic nucleotide sequence of the present invention has less than 77 percent homology with respect to the natural nucleotide sequence encoding bovine prochymosin A. Preferably, the synthetic nucleotide sequence of the present invention is selected from the set comprised of the sequences SEQ ID No. 2, SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 6; more preferably, the synthetic nucleotide sequence of the present invention is SEQ ID No. 2 which has a 76% homology with respect to its wild counterpart; It is noteworthy that the percentage of homology possessing the synthetic nucleotide sequence of the present invention with respect to its wild counterpart of bovine origin is similar to the percentage of homology possessed by said nucleotide sequence. synthetic with respect to homology than with buffalo chymosin with 76%, 74% with respect to sheep chymosin and 71% with respect to dromedary chymosin, according to alignment tests. The synthetic nucleotide sequence of the present invention encodes a polypeptide whose amino acid sequence is SEQ ID No. 8, identical to the natural bovine prochymosin A sequence. From said prochymosin A and by proteolytic treatment by adding HC1 by adjusting to the appropriate pH or by enzymatic digestion, the active recombinant bovine chymosin is obtained, whose sequence is SEQ ID N ° 9.
Otro objeto de la presente invención es el de proveer un vector de expresión que comprende la secuencia de nucleótidos sintética de la presente invención para su expresión en un microorganismo, seleccionado del conjunto comprendido porAnother object of the present invention is to provide an expression vector comprising the synthetic nucleotide sequence of the present invention for expression in a microorganism, selected from the set comprising
Escherichia coli y Bacillus subtilis, preferentemente Escherichia coli. Dicho vector es seleccionado a partir de una amplia variedad de vectores de expresión de uso comercial para células de Escherichia coli. En una forma de realización preferida, dicho vector comprende además, un promotor que controla la expresión de la secuencia de nucleótidos sintética de la presente invención. Preferentemente, el vector utilizado para el clonado y expresión de la secuencia de nucleótidos sintética de la presente invención es seleccionado de aquellos vectores en los que la secuencia sintética de la invención se encuentra bajo control de los promotores seleccionados del conjunto comprendido por Plac, Ptac, PBAD . Escherichia coli and Bacillus subtilis, preferably Escherichia coli. Said vector is selected from a wide variety of commercially available expression vectors for Escherichia coli cells. In a preferred embodiment, said vector further comprises a promoter that controls the expression of the synthetic nucleotide sequence of the present invention. Preferably, the vector used for cloning and expression of the synthetic nucleotide sequence of the present invention is selected from those vectors in which the sequence Synthetic of the invention is under control of the promoters selected from the set comprised of Plac, Ptac, PBAD.
Es otro objeto de la presente invención proveer una célula de Escherichia coli transgénica; preferentemente, una célula de Escherichia coli transgénica que expresan proquimosina A recombinante bovina; más preferentemente las células de Escherichia coli de la presente invención expresan una proquimosina A recombinante bovina codificada por la secuencia de nucleótidos sintética seleccionada del conjunto comprendido por las secuencias SEQID N°2, SEQID N°3, SEQID N°4, SEQID N°5, SEQID N°6; más preferentemente aún la célula de Escherichia coli de la presente invención expresa una proquimosina A recombinante bovina codificada por la secuencia de nucleótidos sintética SEQID N° 2. It is another object of the present invention to provide a transgenic Escherichia coli cell; preferably, a transgenic Escherichia coli cell expressing bovine recombinant prochymosin A; more preferably the Escherichia coli cells of the present invention express a recombinant bovine prochymosin A encoded by the synthetic nucleotide sequence selected from the set comprised of the sequences SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5 , SEQID N ° 6; more preferably, the Escherichia coli cell of the present invention expresses a recombinant bovine prochymosin A encoded by the synthetic nucleotide sequence SEQID No. 2.
La célula de Escherichia coli transgénica de la presente invención comprende un vector de expresión para células deThe transgenic Escherichia coli cell of the present invention comprises an expression vector for cells of
Escherichia coli donde dicha secuencia de nucleótidos sintética es clonada y puesta bajo control de al menos un promotor de aquellos promotores conocidos de uso comercial.Escherichia coli where said synthetic nucleotide sequence is cloned and placed under control of at least one promoter of those known promoters for commercial use.
Más preferentemente, dicha célula de Escherichia coli transgénica comprende un vector donde dicho vector ha sido seleccionado aquellos vectores en los que la secuencia sintética se encuentra bajo control de los promotores seleccionados del conjunto comprendido por Plac, Ptac, PBAD. En una forma de realización más preferida, dicha célula deMore preferably, said transgenic Escherichia coli cell comprises a vector where said vector has been selected those vectors in which the synthetic sequence is under control of the promoters selected from the set comprised of Plac, Ptac, PBAD. In a more preferred embodiment, said cell of
Escherichia coli es la W 3110. Escherichia coli is the W 3110.
A continuación se describe un proceso de obtención de las células Escherichia coli de la presente invención: dicho proceso comprende los pasos de: a) clonar una secuencia de nucleótidos sintética de la presente invención en un vector de expresión adecuado; b) transformar una célula de Escherichia coli con el vector de expresión obtenido en el paso a) . En una forma de realización preferida, dicho paso a) comprende clonar la secuencia de nucleótidos sintética en un vector adecuado, donde dicha secuencia ha sido seleccionada del conjunto comprendido por SEQID N°2, SEQID N°3, SEQID N°4, SEQID N°5, SEQID N°6. Preferentemente, dicha secuencia es la secuencia SEQID N°2. Dicha secuencia de nucleótidos sintética es clonada en un vector de expresión de uso comercial para células de Escherichia coli; preferentemente, dicho vector es seleccionado del conjunto de aquellos vectores en los que la secuencia sintética de la invención se encuentra bajo control de los promotores seleccionados del conjunto comprendido por Plac, Ptac, PBAD . A process for obtaining the Escherichia coli cells of the present invention is described below: said process comprises the steps of: a) cloning a synthetic nucleotide sequence of the present invention into a suitable expression vector; b) transform an Escherichia coli cell with the expression vector obtained in step a). In a preferred embodiment, said step a) comprises cloning the synthetic nucleotide sequence into a suitable vector, wherein said sequence has been selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5, SEQID N ° 6. Preferably, said sequence is the sequence SEQID N ° 2. Said synthetic nucleotide sequence is cloned into an expression vector for commercial use for Escherichia coli cells; preferably, said vector is selected from the set of those vectors in which the synthetic sequence of the invention is under control of the promoters selected from the set comprised of Plac, Ptac, PBAD.
La proquimosina A recombinante bovina expresada por las células de Escherichia coli de la presente invención presenta la secuencia de aminoácidos SEQ ID 8; a partir de dicha proquimosina A y por tratamiento proteolitico, de acuerdo a métodos conocidos en el estado de la técnica, tales como tratamiento ácido o digestión enzimática puede obtenerse la quimosina A recombinante bovina, cuya secuencia de aminoácidos es la SEQ ID N°9. The recombinant bovine prochymosin A expressed by the Escherichia coli cells of the present invention has the amino acid sequence SEQ ID 8; from said prochymosin A and by proteolytic treatment, according to methods known in the state of the art, such as Acidic treatment or enzymatic digestion can be obtained from recombinant bovine chymosin A, whose amino acid sequence is SEQ ID N ° 9.
Otro objeto de la presente invención es el de proveer un proceso para obtener proquimosina A recombinante bovina, dicho proceso comprende los pasos de: i) cultivar la célula de Escherichia coli transformada de la presente invención con el vector de expresión de la presente invención; ii) recuperar la proquimosina A expresada en el paso i) a partir de los cuerpos de inclusión; iii) solubilizar la proquimosinaAnother object of the present invention is to provide a process for obtaining recombinant bovine prochymosin A, said process comprises the steps of: i) culturing the transformed Escherichia coli cell of the present invention with the expression vector of the present invention; ii) recover prochymosin A expressed in step i) from the inclusion bodies; iii) solubilize prochymosin
A recombinante bovina; iv) purificar dicha proquimosina A. Además, por tratamiento proteolitico de la proquimosina A obtenida por el paso iv) se obtiene quimosina A recombinante bovina . En una forma de realización preferida las células deA recombinant bovine; iv) purifying said prochymosin A. In addition, by recombinant prochymosin A treatment obtained by step iv) recombinant bovine chymosin A is obtained. In a preferred embodiment the cells of
Escherichia coli de dicho proceso son obtenidas mediante un paso de clonar la secuencia de nucleótidos sintética de la presente invención en un vector adecuado, donde dicha secuencia ha sido seleccionada del conjunto comprendido por SEQID N°2, SEQID N°3, SEQID N°4, SEQID N°5, SEQID N°6.Escherichia coli of said process are obtained by a step of cloning the synthetic nucleotide sequence of the present invention into a suitable vector, where said sequence has been selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4 , SEQID N ° 5, SEQID N ° 6.
Preferentemente, dicha secuencia es la secuencia SEQID N°2. Preferably, said sequence is the sequence SEQID N ° 2.
En otra forma de realización preferida, el paso de obtención de quimosina A comprende someter a proteólisis la proquimosina A recombinante bovina, donde dicho tratamiento de proteólisis puede ser llevado a cabo por autoproteólisis por tratamiento de dicha proquimosina A recombinante bovina con una solución ácida, preferentemente de HC1 pH=2. Otro tratamiento, alternativo, para la producción de quimosina A recombinante bovina comprende tratar la proquimosina A recombinante bovina obtenida por el proceso de la presente invención con una enzima proteolitica tal como la propia quimosina. Dicha quimosina A recombinante bovina deriva de la proquimosina A recombinante bovina codificada por la secuencia de nucleótidos sintética seleccionada del conjunto comprendido por SEQID N°2, SEQID N°3, SEQID N°4, SEQID N°5,In another preferred embodiment, the step of obtaining chymosin A comprises subjecting the recombinant bovine prochymosin A to proteolysis, wherein said proteolysis treatment can be carried out by self-protection. by treating said recombinant bovine prochymosin A with an acid solution, preferably HC1 pH = 2. Another alternative treatment for the production of bovine recombinant chymosin A comprises treating the bovine recombinant prochymosin A obtained by the process of the present invention with a proteolytic enzyme such as chymosin itself. Said recombinant bovine chymosin A is derived from recombinant bovine prochymosin A encoded by the synthetic nucleotide sequence selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5,
SEQID N°6. Preferentemente, dicha secuencia es la secuencia SEQID N°2. SEQID N ° 6. Preferably, said sequence is the sequence SEQID N ° 2.
A continuación se describe un proceso preferido de producción de la proquimosina A recombinante y quimosina A recombinante bovina de la presente invención: la secuencia de nucleótidos sintética de la presente invención puede ser sintetizada a partir de oligonucleótidos de aproximadamente 40 nucleótidos donde se introducen las modificaciones deseadas, dichos oligonucleótidos , solapados, son luego ensamblados mediante un proceso denominado PCA (polymerase cycling assembly) (Smith, et al.; 2003) que permite obtener la secuencia de nucleótidos sintética de la presente invención. Es importante destacar que la optimización del uso de codones puede ser llevada a cabo por múltiples métodos utilizando distintos programas de computación o incluso en forma manual según tablas de frecuencias disponibles en bases de datos públicas similares a la Tabla II. A preferred process of producing the recombinant prochymosin A and recombinant bovine chymosin A of the present invention is described below: the synthetic nucleotide sequence of the present invention can be synthesized from oligonucleotides of approximately 40 nucleotides where the desired modifications are introduced , said overlapping oligonucleotides are then assembled by a process called PCA (polymerase cycling assembly) (Smith, et al .; 2003) that allows to obtain the synthetic nucleotide sequence of the present invention. It is important to note that the codon usage optimization can be carried out by multiple methods using different computer programs or even in manually according to frequency tables available in public databases similar to Table II.
El proceso de obtención de proquimosina A recombinante bovina de la presente invención comprende clonar dicha secuencia de nucleótidos sintética de la presente invención en un vector de expresión adecuado, luego transformar una célula de Escherichia coli con dicho vector y se siembra en un medio de cultivo adecuado dicha cepa de Escherichia coli transformada con dicho vector de expresión que comprende la secuencia de nucleótidos sintética de la presente invención; fermentar la cepa de Escherichia coli transgénica obtenida, dicho paso de fermentación puede ser llevado a cabo por un periodo de entre 20 a 24 horas; luego se agrega a dicho cultivo un inductor, que según el vector de expresión utilizado puede ser IPTG o L-arabinosa, se mantienen las condiciones del cultivo por un periodo de entre 5 a 15 horas con el fin de inducir la expresión de proquimosina A, preferentemente 10 horas. Luego de este periodo el cultivo es centrifugado a una velocidad de entre 8.000 y 12.000 g durante 15 min a una temperatura de 4°C. Luego, las células son resuspendidas en un medio adecuado tal como EDTA lOmM o Tris 50 mM pH=8, preferentemente, Tris 50mM pH=8; y Usadas por ejemplo por tratamiento con una solución alcalina y centrifugados a 10000 g durante 10 a 20 min a 4°C donde la fracción insoluble es recogida y se lava una o más veces, preferentemente dos, con una solución HM [2 M urea, 10 mMThe process for obtaining bovine recombinant prochymosin A of the present invention comprises cloning said synthetic nucleotide sequence of the present invention into a suitable expression vector, then transforming an Escherichia coli cell with said vector and sowing in a suitable culture medium said Escherichia coli strain transformed with said expression vector comprising the synthetic nucleotide sequence of the present invention; fermenting the strain of transgenic Escherichia coli obtained, said fermentation step can be carried out for a period of between 20 to 24 hours; then an inducer is added to said culture, which according to the expression vector used can be IPTG or L-arabinose, the culture conditions are maintained for a period of between 5 to 15 hours in order to induce the expression of prochymosin A, preferably 10 hours. After this period the culture is centrifuged at a speed of between 8,000 and 12,000 g for 15 min at a temperature of 4 ° C. Then, the cells are resuspended in a suitable medium such as 10 mM EDTA or 50 mM Tris pH = 8, preferably 50mM Tris pH = 8; and Used for example by treatment with an alkaline solution and centrifuged at 10,000 g for 10 to 20 min at 4 ° C where the insoluble fraction is collected and washed one or more times, preferably two, with an HM solution [2 M urea, 10 mM
EDTA pH=8, 1% Tritón X100] ó una solución de glicina 50mM pH=8. Los cuerpos de inclusión obtenidos son disueltos en urea desionizada 8 M preparada en KH2P04 50 mM pH=10,5. La solución resultante se incuba durante un periodo de entre 1 aEDTA pH = 8, 1% Triton X100] or a 50mM glycine solution pH = 8. The inclusion bodies obtained are dissolved in 8M deionized urea prepared in 50 mM KH2P04 pH = 10.5. The resulting solution is incubated for a period of between 1 to
3 horas, preferentemente 2 horas, a 30°C y luego se centrifuga a 10000 g durante 15 min a 20°C. La renaturalización de proquimosina se lleva a cabo por dilución de la solución de proteína desnaturalizada, a una concentración de entre 1,5 y 2,5 mg/mL, preferentemente de3 hours, preferably 2 hours, at 30 ° C and then centrifuged at 10,000 g for 15 min at 20 ° C. Renchymalization of prochymosin is carried out by dilution of the denatured protein solution, at a concentration of between 1.5 and 2.5 mg / mL, preferably of
2,0 mg/ml, en 1 L de solución de KH2P04 50mM pH=10,5. La solución resultante se incuba a 4°C por 12 horas y se lleva a pH=8 por agregado de HC1 1 N. La solución luego es dializada contra Tris 50 mM pH=8 durante 12 horas a una temperatura de 4°C. Finalmente la proquimosina A recombinante bovina es purificada ya sea por cromatografía de intercambio iónico, cromatografía de afinidad; preferentemente cromatografía de intercambio iónico. La solución de proquimosina A recombinante bovina pura recuperada de la columna cromatográfica es tratada para obtener quimosina A, dicho tratamiento es llevado acabo por un proceso que comprende al menos un paso de contactar dicha solución de proquimosina A con una solución ácida hasta obtener un pH=2 por agregado de HC1 para que, mediante un proceso de autoproteólisis , se transforma en su forma quimosina A biológicamente activa. Finalmente, el pH es llevado a 6,3 y se agrega un estabilizante tal como benzoato de sodio o se liofiliza. 2.0 mg / ml, in 1 L of 50mM KH2P04 solution pH = 10.5. The resulting solution is incubated at 4 ° C for 12 hours and brought to pH = 8 by addition of 1 N HC1. The solution is then dialyzed against 50 mM Tris pH = 8 for 12 hours at a temperature of 4 ° C. Finally, bovine recombinant prochymosin A is purified by either ion exchange chromatography, affinity chromatography; preferably ion exchange chromatography. The solution of pure bovine recombinant prochymosin A recovered from the chromatographic column is treated to obtain chymosin A, said treatment is carried out by a process comprising at least one step of contacting said solution of prochymosin A with an acid solution until obtaining a pH = 2 by adding HC1 so that, through a process of self-protection, it is transformed into its biologically active chymosin A form. Finally, the pH is brought to 6.3 and a stabilizer such as sodium benzoate is added or lyophilized.
El proceso descrito en la presente invención, utilizando la secuencia de nucleótidos sintética de la presente invención permite obtener rendimientos superiores comparados con un proceso de producción de quimosina A recombinante bovina empleando la secuencia salvaje. Los niveles de expresión a partir de cepas de Escherichia coli transgénicas con un vector de expresión como los de la presente invención permiten que a iguales tiempos de expresión el rendimiento sea superior, siendo el mismo un 8% superior respecto a su contraparte salvaje; preferentemente un 19%; más preferentemente un 40%; más preferentemente aún, un 70% superior empleando la secuencia de nucleótidos de la presente invención respecto de su contraparte salvaje. The process described in the present invention, using the synthetic nucleotide sequence of the present invention allows to obtain higher yields compared to a production process of bovine recombinant chymosin A using the wild sequence. Expression levels from transgenic Escherichia coli strains with an expression vector such as those of the present invention allow for a higher yield at the same time of expression, the same being 8% higher with respect to its wild counterpart; preferably 19%; more preferably 40%; more preferably still, 70% higher using the nucleotide sequence of the present invention with respect to its wild counterpart.
Los niveles de expresión obtenidos durante el proceso de producción de proquimosina A recombinante bovina mediante la expresión de la secuencia de nucleótidos sintética de la presente invención muestran niveles superiores, de hasta un 76%, respecto a aquellas secuencias optimizadas conocidas en el estado el arte. Expression levels obtained during the production process of bovine recombinant prochymosin A by expression of the synthetic nucleotide sequence of the present invention show higher levels, up to 76%, with respect to those optimized sequences known in the state of the art.
Esta invención se encuentra mejor ilustrada según los siguientes ejemplos, los cuales no deben ser interpretados como una limitación impuesta al alcance de la misma. Por el contrario, debe entenderse claramente que puede recurrirse a otras realizaciones, modificaciones y equivalentes de la misma que luego de leerse la presente descripción, puede sugerir a aquellos entendidos en el tema sin apartarse del espíritu de la presente invención y/o alcance de las reivindicaciones anexas. This invention is best illustrated according to the following examples, which should not be construed as a limitation imposed on the scope thereof. On the contrary, it should be clearly understood that recourse can be made to Other embodiments, modifications and equivalents thereof that after reading the present description, may suggest to those understood in the subject without departing from the spirit of the present invention and / or scope of the appended claims.
Ejemplos Examples
Ejemplo 1 Example 1
Obtención de la secuencia de nucleótidos sintética SEQID a 2. Para la construcción de las secuencias de nucleótidos sintéticas de la presente invención se utilizó el programa GeMS, este programa genera las secuencias de ADN sintético y, automáticamente, las secuencias de los oligonucleótidos solapados de 40 bases que se utilizaron como material para la síntesis de ambas hebras de las secuencias finales mediante el proceso de ensamblado denominado PCA (polymerase cycling assembly) (Smith, et al.; 2003) . Una vez ingresada la secuencia natural al programa GeMS, el mismo puede proveer múltiples secuencias con codones sinónimos a partir de las frecuencias solicitadas para cada uno de los codones, según la tabla II. Obtaining the synthetic nucleotide sequence SEQID a 2. For the construction of the synthetic nucleotide sequences of the present invention the GeMS program was used, this program generates the synthetic DNA sequences and, automatically, the sequences of the overlapping oligonucleotides of 40 bases that were used as material for the synthesis of both strands of the final sequences by means of the assembly process called PCA (polymerase cycling assembly) (Smith, et al .; 2003). Once the natural sequence has been entered into the GeMS program, it can provide multiple sequences with synonyms codons from the frequencies requested for each of the codons, according to Table II.
Para llevar a cabo la síntesis de cada gen, el proceso se dividió en una reacción de ensamblado y una de amplificación. La reacción de ensamblado se llevo a cabo mezclando 2 ul de una solución 100 uM de cada oligonucleótido con 48 μΐ de una solución conteniendo 0.5 μΐ de Expand High Fidelity polymerase (5 unidades/μΐ, Roche), 1.0 μΐ de dNTPs 10 mM, 5.0 μΐ de 10x PCR buffer, 3.0 μΐ de MgCl2 25 mM, y 38.5 μΐ de agua. La mezcla fue incubada en un termociclador utilizando el siguiente programa: 5 minutos de desnaturalización a 95°C y 25 ciclos de 95°C por 30 s, 50°C por 30 s, y 72°C por 90 s. To carry out the synthesis of each gene, the process was divided into an assembly reaction and an amplification reaction. The assembly reaction was carried out by mixing 2 ul of a 100 uM solution of each oligonucleotide with 48 μΐ of a solution containing 0.5 μΐ of Expand High Fidelity polymerase (5 units / μΐ, Roche), 1.0 μΐ of 10 mM dNTPs, 5.0 μΐ of 10x PCR buffer, 3.0 μΐ of MgCl 2 25 mM, and 38.5 μΐ of water. The mixture was incubated in a thermal cycler using the following program: 5 minutes of denaturation at 95 ° C and 25 cycles of 95 ° C for 30 s, 50 ° C for 30 s, and 72 ° C for 90 s.
Para la reacción de amplificación, se utilizaron 2 ul de la reacción de ensamblado y 48 μΐ de una solución conteniendo 0.5 μΐ de Expand High Fidelity polymerase (5 unidades/μΐ,For the amplification reaction, 2 ul of the assembly reaction and 48 μΐ of a solution containing 0.5 μΐ of Expand High Fidelity polymerase (5 units / μΐ,
Roche), 1.0 μΐ de dNTPs 10 mM, 5.0 μΐ de 10x PCR buffer, 3.0 μΐ de MgCl2 25 mM, 39. μΐ de agua, y 1.0 μΐ de oligonucleótidos externos. La secuencia del oligonucleótido externo superior está formada en todos los casos por las primeras 16 bases de cada secuencia y la secuencia del oligonucleótido externo inferior está formada en todos los casos por la secuencia reversa complementaria de las últimas 16 bases de cada secuencia. La mezcla fue incubada en un termociclador utilizando el siguiente programa: 5 minutos de desnaturalización a 95°C y 30 ciclos de 95°C por 30 s, 60°C por 30 s, y 72°C por 90 s. A continuación se listan los oligonucleótidos empleados para la obtención de la secuencia de nucleótidos sintética de la presente invención. Tabla I: Lista de oligonucleót idos utilizados para sintetizar la secuencia SEQ ID N°2. Las secuencias se muestran en sentido 5 '-3'. La secuencia en minúscula corresponde a secuencia extra no codificante agregada para completar los oligonucleót idos . R, oligonucleót idos para la hebra negativa. F, oligonucleót idos para la hebra positiva: Roche), 1.0 μΐ of 10 mM dNTPs, 5.0 μΐ of 10x PCR buffer, 3.0 μΐ of 25 mM MgCl 2 , 39. μΐ of water, and 1.0 μΐ of external oligonucleotides. The sequence of the upper external oligonucleotide is formed in all cases by the first 16 bases of each sequence and the sequence of the lower external oligonucleotide is formed in all cases by the complementary reverse sequence of the last 16 bases of each sequence. The mixture was incubated in a thermal cycler using the following program: 5 minutes of denaturation at 95 ° C and 30 cycles of 95 ° C for 30 s, 60 ° C for 30 s, and 72 ° C for 90 s. The oligonucleotides used to obtain the synthetic nucleotide sequence of the present invention are listed below. Table I: List of oligonucleotides used to synthesize the sequence SEQ ID No. 2. The sequences are shown in the 5 '-3'. The lowercase sequence corresponds to an extra non-coding sequence added to complete the oligonucleotides. R, oligonucleotides gone for the negative strand. F, oligonucleotides for the positive strand:
Figure imgf000027_0001
F380 GGCTCCATGCAAGGCATTCTGGGTTATGACACAGT (SEQ ID N°31)
Figure imgf000027_0001
F380 GGCTCCATGCAAGGCATTCTGGGTTATGACACAGT (SEQ ID No. 31)
R396 TCAACAATATTGGACACAGTCACTGTGTCATAACCCAGAA (SEQ ID N°32)R396 TCAACAATATTGGACACAGTCACTGTGTCATAACCCAGAA (SEQ ID No. 32)
F415 GACTGTGTCCAATATTGTTGATATTCAACAAACTGTGGGC (SEQ ID N°33)F415 GACTGTGTCCAATATTGTTGATATTCAACAAACTGTGGGC (SEQ ID N ° 33)
R436 GTTCCTGGGTGCTCAGGCCCACAGTTTGTTGAATA (SEQ ID N°34)R436 GTTCCTGGGTGCTCAGGCCCACAGTTTGTTGAATA (SEQ ID No. 34)
F455 CTGAGCACCCAGGAACCAGGTGACGTATTCACGTA (SEQ ID N°35)F455 CTGAGCACCCAGGAACCAGGTGACGTATTCACGTA (SEQ ID No. 35)
R471 AGAATACCATCAAATTCTGCGTACGTGAATACGTCACCTG (SEQ ID N°36)R471 AGAATACCATCAAATTCTGCGTACGTGAATACGTCACCTG (SEQ ID No. 36)
F490 CGCAGAATTTGATGGTATTCTGGGCATGGCGTATCCG (SEQ ID N°37)F490 CGCAGAATTTGATGGTATTCTGGGCATGGCGTATCCG (SEQ ID No. 37)
R511 TATTCGCTCGCCAGAGACGGATACGCCATGCCC (SEQ ID N°38)R511 TATTCGCTCGCCAGAGACGGATACGCCATGCCC (SEQ ID No. 38)
F527 TCTCTGGCGAGCGAATATAGCATACCGGTGTTTGA (SEQ ID N°39)F527 TCTCTGGCGAGCGAATATAGCATACCGGTGTTTGA (SEQ ID No. 39)
R544 GGTGACGGTTCATCATGTTATCAAACACCGGTATGCTA (SEQ ID N°40)R544 GGTGACGGTTCATCATGTTATCAAACACCGGTATGCTA (SEQ ID No. 40)
F562 TAACATGATGAACCGTCACCTGGTGGCTCAGGATCT (SEQ ID N°41)F562 TAACATGATGAACCGTCACCTGGTGGCTCAGGATCT (SEQ ID No. 41)
R582 CGATCCATGTAAACCGAAAAGAGATCCTGAGCCACCA (SEQ ID N°42)R582 CGATCCATGTAAACCGAAAAGAGATCCTGAGCCACCA (SEQ ID No. 42)
F598 CTTTTCGGTTTACATGGATCGCAACGGCCAGGAATCA (SEQ ID N°43)F598 CTTTTCGGTTTACATGGATCGCAACGGCCAGGAATCA (SEQ ID No. 43)
R619 CCCCCAACGTCAGCATTGATTCCTGGCCGTTG (SEQ ID N°44)R619 CCCCCAACGTCAGCATTGATTCCTGGCCGTTG (SEQ ID No. 44)
F635 ATGCTGACGTTGGGGGCGATCGACCCGTCATATTA (SEQ ID N°45)F635 ATGCTGACGTTGGGGGCGATCGACCCGTCATATTA (SEQ ID No. 45)
R651 GTGCAAACTCCCCGTGTAATATGACGGGTCGATCG (SEQ ID N°46)R651 GTGCAAACTCCCCGTGTAATATGACGGGTCGATCG (SEQ ID No. 46)
F670 CACGGGGAGTTTGCACTGGGTCCCGGTTACGG (SEQ ID N°47)F670 CACGGGGAGTTTGCACTGGGTCCCGGTTACGG (SEQ ID No. 47)
R686 TGCCAGTACTGCTGCACCGTAACCGGGACCCA (SEQ ID N°48)R686 TGCCAGTACTGCTGCACCGTAACCGGGACCCA (SEQ ID No. 48)
F702 TGCAGCAGTACTGGCAGTTTACCGTAGATTCTGTTACCA (SEQ ID N°49)F702 TGCAGCAGTACTGGCAGTTTACCGTAGATTCTGTTACCA (SEQ ID No. 49)
R718 CCACCACAACGTCACTGATGGTAACAGAATCTACGGTAAAC (SEQ ID N°50)R718 CCACCACAACGTCACTGATGGTAACAGAATCTACGGTAAAC (SEQ ID No. 50)
F741 TCAGTGACGTTGTGGTGGCTTGCGAAGGCGGCTG (SEQ ID N°51)F741 TCAGTGACGTTGTGGTGGCTTGCGAAGGCGGCTG (SEQ ID No. 51)
R759 TATCCAGGATTGCCTGGCAGCCGCCTTCGCAAG (SEQ ID N°52)R759 TATCCAGGATTGCCTGGCAGCCGCCTTCGCAAG (SEQ ID No. 52)
F775 CCAGGCAATCCTGGATACCGGCACCAGCAAACT (SEQ ID N°53)F775 CCAGGCAATCCTGGATACCGGCACCAGCAAACT (SEQ ID No. 53)
R792 TGAGCTAGGCCCCACAAGTTTGCTGGTGCCGG (SEQ ID N°54)R792 TGAGCTAGGCCCCACAAGTTTGCTGGTGCCGG (SEQ ID No. 54)
F808 TGTGGGGCCTAGCTCAGATATTCTCAACATTCAGCAAGC (SEQ ID N°55)F808 TGTGGGGCCTAGCTCAGATATTCTCAACATTCAGCAAGC (SEQ ID No. 55)
R824 CTGGGTGGCGCCGATGGCTTGCTGAATGTTGAGAATATC (SEQ ID N°56)R824 CTGGGTGGCGCCGATGGCTTGCTGAATGTTGAGAATATC (SEQ ID No. 56)
F847 CATCGGCGCCACCCAGAATCAGTATGGTGAGTTTGATATC (SEQ ID N°57)F847 CATCGGCGCCACCCAGAATCAGTATGGTGAGTTTGATATC (SEQ ID No. 57)
R863 GTACGACAGGTTATCACAATCGATATCAAACTCACCATACTGATT (SEQ ID N°58)R863 GTACGACAGGTTATCACAATCGATATCAAACTCACCATACTGATT (SEQ ID N ° 58)
F887 GATTGTGATAACCTGTCGTACATGCCTACCGTCGTATTC (SEQ ID N°59)F887 GATTGTGATAACCTGTCGTACATGCCTACCGTCGTATTC (SEQ ID No. 59)
R908 CGGATACATCTTTCCATTAATTTCGAATACGACGGTAGGCAT (SEQ ID N°60) F926 GAAATTAATGGAAAGATGTATCCGTTGACCCCGTCAGCATA (SEQ ID N°61)R908 CGGATACATCTTTCCATTAATTTCGAATACGACGGTAGGCAT (SEQ ID No. 60) F926 GAAATTAATGGAAAGATGTATCCGTTGACCCCGTCAGCATA (SEQ ID No. 61)
R950 CTTGGTCCTGGCTTGTATATGCTGACGGGGTCAA (SEQ ID N°62)R950 CTTGGTCCTGGCTTGTATATGCTGACGGGGTCAA (SEQ ID No. 62)
F967 TACAAGCCAGGACCAAGGTTTTTGTACTTCGGGTTTTC (SEQ ID N°63)F967 TACAAGCCAGGACCAAGGTTTTTGTACTTCGGGTTTTC (SEQ ID No. 63)
R984 TGAGAGTGATTCTCGGACTGAAAACCCGAAGTACAAAAAC (SEQ ID N°64)R984 TGAGAGTGATTCTCGGACTGAAAACCCGAAGTACAAAAAC (SEQ ID No. 64)
F1005 AGTCCGAGAATCACTCTCAAAAATGGATTCTGGGAGACGTA (SEQ ID N°65)F1005 AGTCCGAGAATCACTCTCAAAAATGGATTCTGGGAGACGTA (SEQ ID No. 65)
R1024 ACGGAATAATATTCACGAATGAATACGTCTCCCAGAATCCATTTT (SEQ ID N°66)R1024 ACGGAATAATATTCACGAATGAATACGTCTCCCAGAATCCATTTT (SEQ ID No. 66)
F1046 TTCATTCGTGAATATTATTCCGTCTTTGATCGGGCGAACA (SEQ ID N°67)F1046 TTCATTCGTGAATATTATTCCGTCTTTGATCGGGCGAACA (SEQ ID No. 67)
R1069 GCCAGACCGACCAAATTGTTCGCCCGATCAAAG (SEQ ID N°68)R1069 GCCAGACCGACCAAATTGTTCGCCCGATCAAAG (SEQ ID No. 68)
F1086 ATTTGGTCGGTCTGGCCAAAGCGATCCTGTTCAG (SEQ ID N°69)F1086 ATTTGGTCGGTCTGGCCAAAGCGATCCTGTTCAG (SEQ ID No. 69)
R1102 CTGAACAGGATCGCTTTG (SEQ ID N°70) R1102 CTGAACAGGATCGCTTTG (SEQ ID No. 70)
La secuencia así obtenida fue insertada en los vectores de expresión como se describe en el ejemplo 2. The sequence thus obtained was inserted into the expression vectors as described in example 2.
Tabla II: frecuencia de los codones en Escherichia coli W3110. En la tabla se muestran: [triplete] [amino ácido] [fracción] [frecuencia: cada mil] ([número]) Table II: codon frequency in Escherichia coli W3110. The table shows: [triplet] [amino acid] [fraction] [frequency: every thousand] ([number])
Figure imgf000030_0001
Figure imgf000030_0001
Ejemplo 2 Example 2
Construcción de vectores de expresión con los promotores PlacUV5, Ptac y PBAD las secuencias SEQ ID N7, SEQ ID N2 y SEQ ID 21. Para los diferentes ensayos comparativos de niveles de expresión y actividad biológica se emplearon, además, la secuencia de nucleótidos salvaje SEQ ID N°l y una secuencia obtenida por el método de optimización "un codón-un aminoácido", SEQ I D N ° 7. Se construyeron diversos sistemas de expresión con el fin de comparar los niveles de expresión, y la actividad enzimática de la quimosina obtenida por dichos sistemas a partir de la secuencia de nucleótidos sintética SEQ ID N°2, la secuencia SEQ ID N°7 y la secuencia salvaje SEQ ID N°l. Asimismo se emplearon tres vectores de expresión diferentes en los cuales se dejaba a dichas secuencias bajo el control de los promotores PlacUV5 y Ptac, vectores inducidos por IPTG y el vector PBAD inducido por L-arabinosa. Construction of expression vectors with the PlacUV5, Ptac and PBAD promoters, the sequences SEQ ID N 7, SEQ ID N 2 and SEQ ID 21. For the different comparative tests of expression levels and biological activity, the sequence was also used. from wild nucleotides SEQ ID No. 1 and a sequence obtained by the "one codon-an amino acid" optimization method, SEQ ID No. 7. Various expression systems were constructed in order to compare expression levels, and enzymatic activity of the chymosin obtained by said systems from the synthetic nucleotide sequence SEQ ID No. 2, the sequence SEQ ID No. 7 and the wild sequence SEQ ID No. 1. Likewise, three different expression vectors were used in which said sequences were left under the control of the PlacUV5 and Ptac promoters, vectors induced by IPTG and the PBAD vector induced by L-arabinose.
Para la expresión de proquimosina A bajo control del promotores pBAD en la cepa W3110, las secuencias codificantes fueron insertadas en el vector pBAD 18 (Guzman, et al.; 1995) para obtener los plásmidos pVUl (conteniendo la secuencia SEQ ID N°7) y pVU2 (conteniendo la secuencia SE ID N°2) y pVU3 conteniendo la secuencia de nucleótidos salvaje de la proquimosina A bovina, SEQ ID N°l. Para la expresión de proquimosina A bajo control del promotores tac y lacuv5 en la cepa W3110, la secuencia conteniendo el regulador araC y el promotor pBAD de los plásmidos pVU2 y pVU3 fue reemplazada por un fragmento de ADN sintético conteniendo el promotor lacUV5 (para obtener los plásmidos pVU2* y pVU3*), o el promotor tac (para obtener los plásmidos pUV2** y pVU3**) . For the expression of prochymosin A under the control of the pBAD promoters in strain W3110, the coding sequences were inserted into the vector pBAD 18 (Guzman, et al .; 1995) to obtain the plasmids pVUl (containing the sequence SEQ ID No. 7) and pVU2 (containing the sequence SE ID N ° 2) and pVU3 containing the wild nucleotide sequence of the bovine prochymosin, SEQ ID No. 1. For the expression of prochymosin A under control of the tac and lacuv5 promoters in strain W3110, the sequence containing the araC regulator and the pBAD promoter of the plasmids pVU2 and pVU3 was replaced by a synthetic DNA fragment containing the lacUV5 promoter (to obtain the plasmids pVU2 * and pVU3 *), or the tac promoter (to obtain plasmids pUV2 ** and pVU3 **).
Para expresar los genes bajo control del promotor pBAD, las secuencias correspondientes fueron amplificadas por PCR con oligonucleótidos específicos solapando las primeras y últimas 16 bases de cada marco de lectura flanqueados con las secuencias TCTAGAAGGAGATATACAT, conteniendo un sitio Xbal y un sitio de unión al ribosoma y AAGCTT, conteniendo un sitio HinDIII. El producto de amplificación resultante y vector pBAD 18 fueron digeridos durante 1 hora con las enzimas Xbal y HinDIII (New England Biolabs) y separados y purificados en gel de agarosa. Los fragmentos de ADN resultantes fueron ligados utilizando T4 DNA ligasa (New England Biolabs) y la mezcla de ligación resultante fue utilizada para transformar por electroporacion la cepa DH5a. Las colonias transformantes fueron seleccionadas en medio LB suplementado con ampicilina y posteriormente crecidas en medio LB liquida para obtener preparaciones de plásmido. La identidad de los plásmidos obtenidos se verifico primero por digestión con las enzimas Xbal y HinDIII y luego por secuenciación . Para expresar los genes bajo control del promotores lacUV5 y tac, las secuencias correspondientes fueron amplificadas por PCR con oligonucleótidos específicos solapando las primeras 16 bases de cada marco de lectura conteniendo extensiones en el extremo 5' para incorporar: un sitio de reconocimiento para la enzima de restricción BglII, el promotor correspondiente (tac o lacUV5) y un sitio de unión al ribosoma. To express the genes under control of the pBAD promoter, the corresponding sequences were amplified by PCR with specific oligonucleotides overlapping the first and last 16 bases of each reading frame flanked with the TCTAGAAGGAGATATACAT sequences, containing an Xbal site and a ribosome binding site and AAGCTT, containing a HinDIII site. The resulting amplification product and pBAD 18 vector were digested for 1 hour with the enzymes Xbal and HinDIII (New England Biolabs) and separated and purified on agarose gel. The resulting DNA fragments were ligated using T4 DNA ligase (New England Biolabs) and the resulting ligation mixture was used to electroporate the DH5a strain. The transforming colonies were selected in LB medium supplemented with ampicillin and subsequently grown in liquid LB medium to obtain plasmid preparations. The identity of the plasmids obtained was verified first by digestion with the enzymes Xbal and HinDIII and then by sequencing. To express the genes under control of the lacUV5 and tac promoters, the corresponding sequences were amplified by PCR with specific oligonucleotides overlapping the first 16 bases of each reading frame containing extensions at the 5 ' end to incorporate: a recognition site for the enzyme of BglII restriction, the corresponding promoter (tac or lacUV5) and a ribosome binding site.
La extensión del oligonucleótido superior utilizada para en el caso del promotor tac fue la siguiente: The extension of the upper oligonucleotide used for in the case of the tac promoter was as follows:
5 'AGATCTTTGACAGCGCACCGGGCTTTGTGTATAATCTTCTGGCGTCGACCAGCAGGAGG AGCGCGACA-3 ' 5 'AGATCTTTGACAGCGCACCGGGCTTTGTGTATAATCTTCTGGCGTCGACCAGCAGGAGG AGCGCGACA-3 '
La extensión del oligonucleótido superior utilizada para en el caso del promotor lacUV5 fue la siguiente: The extension of the upper oligonucleotide used in the case of the lacUV5 promoter was as follows:
5 'AGATCTTTTACAGCGCACCGGGCTTTGTGTATAATCTTCTGGCGTCGACCAGCAGGAGG AGCGCGACA-3 ' 5 'AGATCTTTTACAGCGCACCGGGCTTTGTGTATAATCTTCTGGCGTCGACCAGCAGGAGG AGCGCGACA-3 '
El oligonucleótido inferior solapa las ultimas 16 bases de cada marco de lectura y posee en ambos casos un sitio HinDIII agregado al extremo 3 ' inmediatamente después del codon de terminación. Los productos de amplificación conteniendo cada uno de los promotores y el vector pET 21b fueron digeridos con BgLII y HinDIII (New England Biolabs) durante 1 hora con las y separados y purificados en gel de agarosa. Los fragmentos de ADN resultantes fueron ligados utilizando T4 DNA ligasa (New England Biolabs) y la mezcla de ligación resultante fue utilizada para transformar por electroporación la cepa DH5V. Las colonias transformantes fueron seleccionadas en medio LB suplementado con kanamicina y posteriormente crecidas en medio LB liquida para obtener preparaciones de plásmido. La identidad de los plásmidos obtenidos se verifico primero por digestión con las enzimas Xbal y HinDIII y luego por secuenciación . The lower oligonucleotide overlaps the last 16 bases of each reading frame and in both cases has a HinDIII site added to the 3 ' end immediately after the termination codon. The amplification products containing each of the promoters and the pET 21b vector were digested with BgLII and HinDIII (New England Biolabs) for 1 hour with and separated and purified on agarose gel. The resulting DNA fragments were ligated using T4 DNA ligase (New England Biolabs) and the resulting ligation mixture was used to electroporate the strain DH5V. The transforming colonies were selected in LB medium supplemented with kanamycin and subsequently grown in liquid LB medium to obtain plasmid preparations. The identity of the plasmids obtained was verified first by digestion with the enzymes Xbal and HinDIII and then by sequencing.
Los vectores construidos fueron introducidos en todos los casos en la cepa de Escherichia coli W3110 por electroporación y los clones recombinantes seleccionados en placas de LB suplementadas con ampicilina o kanamicina. The constructed vectors were introduced in all cases into the Escherichia coli W3110 strain by electroporation and the recombinant clones selected in LB plates supplemented with ampicillin or kanamycin.
Ejemplo 3 Example 3
Producción y ensayos de actividad de quimosina A recombinante bovina a partir de las cepas seleccionadas del ejemplo anterior a) - Producción de proquimosina A recombinante bovina a partir de un cultivo de Escherichia coli Production and assays of bovine recombinant chymosin A activity from the strains selected from the previous example a) - Production of bovine recombinant prochymosin A from a culture of Escherichia coli
A partir de las células obtenidas del ejemplo anterior, se cultivaron en un medio como el que se describe en la tabla Tabla III- Medio de cultivo From the cells obtained from the previous example, they were grown in a medium such as that described in the table Table III- Culture medium
Figure imgf000035_0001
Figure imgf000035_0001
Composición de elementos traza en g/L de HC1 5 M: S04Fe 10Composition of trace elements in g / L of HC1 5 M: S04Fe 10
M, ZnS04.7H20 2.5 M, CuS04.5H20 1 M, MnS04.5H20 1 M,M, ZnS04.7H20 2.5 M, CuS04.5H20 1 M, MnS04.5H20 1 M,
Na2B407.10H2O 0.2 M, CaC12.2 H20 5 M, NaMo04.2H20 1 M, COC12.6H20 1 M. Na2B407.10H2O 0.2 M, CaC12.2 H20 5 M, NaMo04.2H20 1 M, COC12.6H20 1 M.
Los cultivos fueron crecidos a 30°C en erlenmeyer de 100 mL de capacidad conteniendo 10 mL de medio HM hasta una DO590=0.5 y luego inducidos por agregado de L-arabinosa (0.2%) o IPTG (lmM) por un periodo de 10 horas. b) - Recuperación de la proquimosina a partir de los cuerpos de inclusión: The cultures were grown at 30 ° C in 100 ml capacity erlenmeyer containing 10 mL of HM medium to a OD 5 90 = 0.5 and then induced by aggregate of L-arabinose (0.2%) or IPTG (lmM) for a period of 10 hours. b) - Recovery of prochymosin from the inclusion bodies:
Para obtener proquimosina A soluble a partir de cuerpos de inclusión producidos en Escherichia coli, 100 mL de cultivos fueron centrifugados en todos los casos a 10.000 g durante 15 minutos a una temperatura de 4°C. Las células fueron resuspendidas en 5 mL de Tris 50 mM pH=8 y lisadas a través de 5 ciclos de compresión-descompresión utilizando una prensa de Frenen con una presión de trabajo de 900 psi. Los cultivos Usados fueron centrifugados a 10000 g durante 15 min a 4°C y la fracción insoluble recogida fue lavada dos veces con solución HM [2 M urea, 10 mM EDTA pH=8, 1% Tritón X100] . Los cuerpos de inclusión obtenidos fueron disueltos en urea desionizada 8 M preparada en KH2P04 50 mM pH=10,5. La solución resultante fue incubada durante 2 h a 30°C y centrifugada a 10000 g durante 15 min a 20°C. En todos los casos se comprobó, mediante análisis por geles desnaturalizantes de poliacrilamida seguidos de densitometria, que más del 95% de la proteina presente en la solución obtenida era proquimosina. La renaturalización de proquimosina A fue llevada a cabo diluyendo 40 mL de solución de proteina desnaturalizada, a una concentración igual a 20 mg/mL, en 1 L de solución de KH2P04 50mM pH=10,5. La solución resultante se incubo a 4°C por 12 h y luego se llevo a pH=8 por agregado de HC1 1 N. La solución fue luego dializada contra Tris 50 mM pH=8 duranteTo obtain soluble prochymosin A from inclusion bodies produced in Escherichia coli, 100 mL of cultures were centrifuged in every case at 10,000 g for 15 minutes at a temperature of 4 ° C. The cells were resuspended in 5 mL of 50 mM Tris pH = 8 and lysed through 5 compression-decompression cycles using a Frenen press with a working pressure of 900 psi. The cultures used were centrifuged at 10,000 g for 15 min at 4 ° C and the insoluble fraction collected was washed twice with HM solution [2 M urea, 10 mM EDTA pH = 8, 1% Triton X100]. The inclusion bodies obtained were dissolved in 8M deionized urea prepared in 50 mM KH2P04 pH = 10.5. The resulting solution was incubated for 2 h at 30 ° C and centrifuged at 10,000 g for 15 min at 20 ° C. In all cases it was proved, by analysis by denaturing polyacrylamide gels followed by densitometry, that more than 95% of the protein present in the solution obtained was prochymosin. The renaturation of prochymosin A was carried out by diluting 40 mL of denatured protein solution, at a concentration equal to 20 mg / mL, in 1 L of 50mM KH2P04 solution pH = 10.5. The resulting solution was incubated at 4 ° C for 12 h and then brought to pH = 8 by addition of 1 N HC1. The solution was then dialyzed against 50 mM Tris pH = 8 for
12 h a una temperatura de 4°C. Finalmente la proquimosina A contenida en cada muestra fue purificada por cromatografía de intercambio iónico como lo describieron Tichy y colaboradores (Tichy, et al . ; 1993) . c) - Activación de la proquimosina A a quimosina A: La solución de proquimosina A pura recuperada de la columna cromatográfica fue acidificada hasta pH=2 por agregado de HC1 e incubada 15 min a 20 °C para que, mediante un proceso de autoproteólisis , se transforme en quimosina A. El pH fue llevado luego a 6,3 para medir la actividad enzimática . d) -Ensayos de medición de la actividad enzimática 12 h at a temperature of 4 ° C. Finally, the prochymosin A contained in each sample was purified by ion exchange chromatography as described by Tichy et al. (Tichy, et al.; 1993). c) - Activation of prochymosin A to chymosin A: The pure prochymosin A solution recovered from the chromatographic column was acidified to pH = 2 by addition of HC1 and incubated 15 min at 20 ° C so that, by a process of self-protection, it was transformed into chymosin A. The pH was then brought to 6.3 to measure enzyme activity. d) - Enzyme activity measurement tests
La actividad de la quimosina obtenida en el paso anterior fue medida sobre una suspensión de leche en polvo descremada al 12% conteniendo 10 mM CaCl y 20 mM KH2P04 pH=6,3, determinando el tiempo de coagulación de la misma a 30 °C. Quimosina bovina natural purificada (Sigma) fue usada como testigo. Una unidad de actividad se define como la cantidad de enzima capaz de coagular 10 mL de leche en un minuto a 30°C (Foltman; 1966) . e) - Ensayo comparativo de la cantidad de proteina recuperada proquimosina recuperada. The activity of the chymosin obtained in the previous step was measured on a suspension of 12% skimmed milk powder containing 10 mM CaCl and 20 mM KH2P04 pH = 6.3, determining the coagulation time thereof at 30 ° C. Purified natural bovine chymosin (Sigma) was used as a control. One unit of activity is defined as the amount of enzyme capable of coagulating 10 mL of milk in one minute at 30 ° C (Foltman; 1966). e) - Comparative test of the amount of protein recovered recovered prochymosin.
Para la cuantificación de proteínas los cultivos fueron crecidos en todos los casos como se describe en el ejemplo 3 e inducidos mediante el agregado de IPTG en los casos de los promotores lacUV5 y tac o L-arabinosa en el caso del promotor pBAD . Los extractos celulares obtenidos por sonicación fueron separados en geles de poliacrlamida al 12% en presencia de SDS y tenidos utilizando Sypro (Molecular Probes, USA) . Los geles fueron escaneados utilizando un scanner Typhoon y las bandas cuantificadas usando cantidades conocidas de albúmina bobina como estándar. For protein quantification, cultures were grown in all cases as described in example 3 and induced by the addition of IPTG in the cases of lacUV5 and tac or L-arabinose promoters in the case of the pBAD promoter. The cellular extracts obtained by sonication were separated in 12% polyacrylamide gels in the presence of SDS and taken using Sypro (Molecular Probes, USA). The Gels were scanned using a Typhoon scanner and bands quantified using known amounts of albumin coil as standard.
Tabla IV - Comparativo de cantidad de proteína recuperada como cuerpos de inclusión y actividad coagulante y actividad especifica de cada muestra. Table IV - Comparison of the amount of protein recovered as inclusion bodies and coagulant activity and specific activity of each sample.
Figure imgf000038_0001
Figure imgf000038_0001
a, b y c: valores obtenidos de cinco experimentos independientes. En todos los casos la desviación estándar fue menor al 3%. A partir de los datos mostrados en la tabla IV se observa un incremento de aproximadamente un 71% en la expresión de proquimosina A recombinante cuando se utiliza la secuencia de nucleótidos sintética de la presente invención respecto de la expresión utilizando la secuencia de nucleótidos salvaje de la proquimosina A bovina. A partir de la medición de la actividad coagulante por litro de cultivo, se observa que el producto recombinante obtenido a partir de la secuencia de nucleótidos sintética de la presente invención presenta actividad enzimática, demostrando características biológicas de recuperación de los cuerpos de inclusión idénticas a las obtenidas por el producto obtenible a partir de la secuencia salvaje. Asimismo puede observarse de los valores obtenidos a partir de la secuencia VUl, aquella obtenida por el sistema de optimización "un codón-un aminoácido", no resulta en mejoras en la expresión y obtención de proquimosina A bovina recombinante . a, b and c: values obtained from five independent experiments. In all cases the standard deviation was less than 3%. From the data shown in Table IV, an increase of approximately 71% in the expression of recombinant prochymosin A is observed when the synthetic nucleotide sequence of the present invention is used with respect to expression using the wild nucleotide sequence of the bovine prochymosin. From the measurement of the coagulant activity per liter of culture, it is observed that the recombinant product obtained from the synthetic nucleotide sequence of the present invention exhibits enzymatic activity, demonstrating biological recovery characteristics of the inclusion bodies identical to those obtained by the product obtainable from the wild sequence. It can also be seen from the values obtained from the VUl sequence, that obtained by the optimization system "a codon-an amino acid", does not result in improvements in the expression and obtaining of recombinant bovine prochymosin A.
Ejemplo 4 Example 4
Cuantificación de los niveles de expresión de proquimosina A recombinante codificado por las secuencias SEQ ID N22, SEQ ID 23, SEQ ID N≤4, SEQ ID N≤5, SEQ ID ≤6 y SEQ ID ≤7 relativo a los niveles obtenidos por la secuencia salvaje SEQ ID 21. Siguiendo el mismo procedimiento descrito en el ejemplo 1 se obtuvieron las secuencias: SEQ ID N°3, SEQ ID N°4, SEQ ID N°5, SEQ ID N°6. Quantification of recombinant prochymosin A expression levels encoded by the sequences SEQ ID N 2 2, SEQ ID 23, SEQ ID N≤4, SEQ ID N≤5, SEQ ID ≤6 and SEQ ID ≤7 relative to the levels obtained by the wild sequence SEQ ID 21. Following the same procedure described in Example 1, the sequences were obtained: SEQ ID No. 3, SEQ ID No. 4, SEQ ID No. 5, SEQ ID No. 6.
Para la cuantificación de los niveles de expresión los cultivos fueron crecidos en todos los casos como se describe en el ejemplo 3 e inducidos mediante el agregado de L- arabinosa. Los extractos celulares obtenidos por sonicación fueron separados en geles de poliacrlamida al 12% en presencia de SDS y tenidos utilizando Sypro (Molecular Probes, USA) . Los geles fueron escaneados utilizando un scanner Typhoon y la intensidad de las bandas cuantificada por densitometria utilizando el software del scanner. Todos los valores de densitometria obtenidos fueron divididos por el valor obtenido para la SEQ ID N°l para obtener los valores normalizados mostrados en la Tabla V. For quantification of expression levels, cultures were grown in all cases as described in example 3 and induced by the addition of L-arabinose. The cellular extracts obtained by sonication were separated in 12% polyacrylamide gels in the presence of SDS and taken using Sypro (Molecular Probes, USA). The gels were scanned using a Typhoon scanner and the intensity of the bands quantified by densitometry using the scanner software. All densitometry values obtained were divided by the value obtained for SEQ ID No. 1 to obtain the normalized values shown in Table V.
Tabla V - Niveles de expresión relativo a la secuencia salvaje Table V - Expression levels relative to the wild sequence
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000040_0001
Figure imgf000041_0001
Ejemplo 5 Example 5
Comparación del uso de codones entre las secuencias SEQ ID ≤7 y SEQ ID ≤2 : Comparison of codon usage between the sequences SEQ ID ≤7 and SEQ ID ≤2:
A continuación se muestra la frecuencia del uso de codones entre las secuencias SEQ ID N° 7 y SEQ ID N°2, la primera es una secuencia de nucleótidos optimizada para su expresión en Escherichia coli mediante el método de "un codón- un aminoácido"; la segunda es la secuencia de nucleótidos de la presente invención. Below is the frequency of codon use between the sequences SEQ ID No. 7 and SEQ ID No. 2, the first is a nucleotide sequence optimized for expression in Escherichia coli by the method of "a codon-an amino acid" ; the second is the nucleotide sequence of the present invention.
Tabla VI: Frecuencia del uso de codones Table VI: Frequency of codon usage
Figure imgf000041_0002
Figure imgf000041_0002
De este cuadro, se observa que los codones utilizados para la construcción de la secuencia de nucleótidos SEQID N°7 (VU1), secuencia de nucleótidos que utiliza para cada aminoácido un único codón, siendo este el encontrado con mayor frecuencia en el genoma de la bacteria Escherichia coli y los codones utilizados en la secuencia SEQID N°2 (VU2) . De esta comparación se observa que de acuerdo a documentos previos no seria de esperar los resultados de expresión de la secuencia de invención dado que la selección de codones no es la óptima para su expresión en Escherichia coli. From this table, it is observed that the codons used for the construction of the nucleotide sequence SEQID No. 7 (VU1), a nucleotide sequence that uses a single codon for each amino acid, this being the most frequently found in the genome of the Escherichia coli bacteria and the codons used in the sequence SEQID No. 2 (VU2). From this comparison it is observed that according to previous documents the results of expression of the invention sequence would not be expected since the codon selection is not optimal for its expression in Escherichia coli.
Referencias References
- Albert, A., Blundell, T. L . , Dhanaraj , V., Dónate, L. E . , Groves, M . , Guruprasad, K. , Nugent, P. G. , Orprayoon, P. , Pitts, J. E., Rufino, S., Srinivasan, N., Williams, M., & Wilsher, J. (1998) Protein engineering aspartic proteinases. Site-directed mutagenesis, biochemical characterisation, and X-ray analysis of chymosins with substituted single amino acid substitutions and loop replacements . Adv. Exp. Med. Biol, 436: 169-177.  - Albert, A., Blundell, T. L. , Dhanaraj, V., Dónate, L. E. Groves, M. , Guruprasad, K., Nugent, P. G., Orprayoon, P., Pitts, J. E., Rufino, S., Srinivasan, N., Williams, M., & Wilsher, J. (1998) Protein engineering aspartic proteinases. Site-directed mutagenesis, biochemical characterization, and X-ray analysis of chymosins with substituted single amino acid substitutions and loop replacements. Adv. Exp. Med. Biol, 436: 169-177.
- Andrianantoandro E , Basu S, Karig DK, Weiss R.Synthetic biology: new engineering rules for an emerging discipline (2006) Molecular Systems Biology 2 : 2006. - Andrianantoandro E, Basu S, Karig DK, Weiss R. Synthetic biology: new engineering rules for an emerging discipline (2006) Molecular Systems Biology 2: 2006.
- Bhandari P and Gowrishankar J. An Escherichia coli strain useful for efficient overproduc ion of cloned genes product with NaCl as inducer . (1997) J Bacteriol. 179:4403-4406.  - Bhandari P and Gowrishankar J. An Escherichia coli strain useful for efficient overproduction of cloned genes product with NaCl as inducer. (1997) J Bacteriol. 179: 4403-4406.
- Cardoza RE, Gutiérrez S, Ortega N, Colina A, Casqueiro J, Martin JF. (2003) . Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences . Biotechnol Bioeng. 83:249-259.  - Cardoza RE, Gutiérrez S, Ortega N, Colina A, Casqueiro J, Martin JF. (2003). Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnol Bioeng. 83: 249-259.
- Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. (2000) . Proc Nati Acad Sci U S A. 97: 6640-6645.  - Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. (2000). Proc Nati Acad Sci U S A. 97: 6640-6645.
- Foltman, B. (1966) A review on prorennin and rennin. Trav Lab Carlsberg. 35: 143-231.  - Foltman, B. (1966) A review on prorennin and rennin. Trav Lab Carlsberg. 35: 143-231.
- Gustafsson C, Govindarajan S, Minshull J. (2004) Codon bias and heterologous protein expression. Trends Biotechnol .  - Gustafsson C, Govindarajan S, Minshull J. (2004) Codon bias and heterologous protein expression. Trends Biotechnol.
22:346-353 22: 346-353
- Guzman LM, Belin D, Carson MJ, Beckwith J.Tight regulation, modulation, and high-level expression by vectors containing  - Guzman LM, Belin D, Carson MJ, Beckwith J.Tight regulation, modulation, and high-level expression by vectors containing
42 42
HOJA DE REEMPLAZO (Regla 26) the arabinose PBAD promoter. (1995) J Bacteriol . 177: 4121- 4130. REPLACEMENT SHEET (Rule 26) the arabinose PBAD promoter. (1995) J Bacteriol. 177: 4121-4130.
- Jáyaraj , S., Reid, R. and Santi D. GeMS : an advanced software package for designing synthetic genes. Nucleic Acids Res. 2005; 33:3011-3016  - Jáyaraj, S., Reid, R. and Santi D. GeMS: an advanced software package for designing synthetic genes. Nucleic Acids Res. 2005; 33: 3011-3016
- Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high- capacity AraE transporter. (2001) Microbiology. 147: 3241- 3247.  - Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD. Homogeneous expression of the P (BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. (2001) Microbiology. 147: 3241-3247.
- Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch , Santi DV. Total synthesis of long DNA sequences : synthesis of a contiguous 32-kb polyketide synthase gene cluster. (2004) Proc Nati Acad Sci U S A. 101:15573-15578.  - Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch, Santi DV. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. (2004) Proc Nati Acad Sci U S A. 101: 15573-15578.
- Makrides SC. Strategies for achieving high level expression of genes in E. coli. (1996) Microbiol Rev. 60: 512-38 - Makrides SC. Strategies for achieving high level expression of genes in E. coli. (1996) Microbiol Rev. 60: 512-38
- arston, F. A., Lowe, P. A., Doel, M. T., Schoemaker, J. . , White, S., & Angal, S. (1984) Purification of calf prochymosin (prorennin) synthesized in Escherichia coli. Biotechnology (N. Y. ), 2: 800-804.  - arston, F. A., Lowe, P. A., Doel, M. T., Schoemaker, J.. , White, S., & Angal, S. (1984) Purification of calf prochymosin (prorennin) synthesized in Escherichia coli. Biotechnology (N. Y.), 2: 800-804.
- Menzella, HG, Ceccarelli, EA, Gramajo, HC. Novel Escherichia coli strain allows efficient recombinant protein production using lactose as inducer . (2003) Biotechnol Bioeng. 82:809-17. - Menzella, HG, Ceccarelli, EA, Gramajo, HC. Novel Escherichia coli strain allows efficient recombinant protein production using lactose as inducer. (2003) Biotechnol Bioeng. 82: 809-17.
- Menzella, HG, Gramajo, H, Ceccarelli EA. (2002) High recovery of prochymosin from inclusión bodies using controlled air oxidation. Protein Expression and Purification. 25: 248- 255 - Menzella, HG, Gramajo, H, Ceccarelli EA. (2002) High recovery of prochymosin from inclusion bodies using controlled air oxidation. Protein Expression and Purification. 25: 248-255
- Newman, . , Safro, M . , Frazao, C., Khan, G. , Zdanov, A., Tickle, I. J., Blundell, T. L . , & Andreeva, N. (1991) X-ray analyses of aspartic proteinases . IV. Structure and refinement  - Newman,. , Safro, M. , Frazao, C., Khan, G., Zdanov, A., Tickle, I. J., Blundell, T. L. , & Andreeva, N. (1991) X-ray analyzes of aspartic proteinases. IV. Structure and refinement
43 43
HOJA DE REEMPLAZO (Regla 26) at 2.2 A resolution of bovine chymosin. J Mol. Biol, 221: REPLACEMENT SHEET (Rule 26) at 2.2 A resolution of bovine chymosin. J Mol. Biol, 221:
1295-1309. 1295-1309.
- Nemoto T, Watanabe T, Mizogami Y, Maruyama J, Kitamoto K. (2009) Isolation of Aspergillus oryzae mutants for  - Nemoto T, Watanabe T, Mizogami Y, Maruyama J, Kitamoto K. (2009) Isolation of Aspergillus oryzae mutants for
heterologous protein production from a double proteinase gene disruptant . Appl Microbiol Biotechnol. 82:1105-14. heterologous protein production from a double proteinase gene disruptant. Appl Microbiol Biotechnol. 82: 1105-14.
- Nishimori K, Shimizu N, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T. (1984) Expression of cloned calf prochymosin cDNA under control of the tryptophan promoter. Gene 1:41-49.  - Nishimori K, Shimizu N, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T. (1984) Expression of cloned calf prochymosin cDNA under control of the tryptophan promoter. Gene 1: 41-49.
- Nugent, P. G., Albert, A., Orprayoon, P., Wilsher, J. ,- Nugent, P. G., Albert, A., Orprayoon, P., Wilsher, J.,
Pitts, J. E . , Blundell, T. L. , & Dhanaraj , V. (1996) Protein engineering loops in aspartic proteinases : site-directed mutagenesis, biochemical characterization and X-ray analysis of chymosin with a replaced loop from rhizopuspepsin. Protein Eng, 9: 885-893. Pitts, J. E. , Blundell, T. L., & Dhanaraj, V. (1996) Protein engineering loops in aspartic proteinases: site-directed mutagenesis, biochemical characterization and X-ray analysis of chymosin with a replaced loop from rhizopuspepsin. Protein Eng, 9: 885-893.
- Patnaik R. Engineering Complex Phenotypes in Industrial Strains. (2008) Biotechnol Prog. 1:38-47  - Patnaik R. Engineering Complex Phenotypes in Industrial Strains. (2008) Biotechnol Prog. 1: 38-47
- Reisinger, S., Patel, K. and Santi D. Total synthesis of multi-kilobase DNA sequences from oligonucleotides . (2006) Nat Protocols. 1:2596-2600  - Reisinger, S., Patel, K. and Santi D. Total synthesis of multi-kilobase DNA sequences from oligonucleotides. (2006) Nat Protocols. 1: 2596-2600
- Siegele DA, Hu JC. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represente mixed populations. (1997) . Proc Nati Acad Sci U S A. 94: 8168-8172.  - Siegele DA, Hu JC. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represent mixed populations. (1997). Proc Nati Acad Sci U S A. 94: 8168-8172.
- Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC.. - Smith HO, Hutchison CA 3rd, Pfannkoch C, Venter JC ..
Generating a synthetic genome by whole genome assembly: Generating a synthetic genome by whole genome assembly:
phiX174 bacteriophage from synthetic oligonucleotides. (2003) Proc Nati Acad Sci U S A. 100:15440-15445 phiX174 bacteriophage from synthetic oligonucleotides. (2003) Proc Nati Acad Sci U S A. 100: 15440-15445
- Tang, B., Zhang, S., & Yang, K. (1994) Assisted refolding of recombinant prochymosin with the aid of protein disulphide isomerase. Biochem J, 301: 17-20.  - Tang, B., Zhang, S., & Yang, K. (1994) Assisted refolding of recombinant prochymosin with the aid of protein disulphide isomerase. Biochem J, 301: 17-20.
44 44
HOJA DE REEMPLAZO (Regla 26) - Tian J, Gong H, Sheng N, Z ou X, Gulari E, Gao X, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. (2004) Nature, 432:1050-1054. REPLACEMENT SHEET (Rule 26) - Tian J, Gong H, Sheng N, Z ou X, Gulari E, Gao X, Church G. Accurate multiplex gene synthesis from programmable DNA microchips. (2004) Nature, 432: 1050-1054.
- Tichy PJ, Kaprálek F, Jecmen P. Improved procedure for a high-yield recovery of enzymatically active recombinant calf chymosin from Escherichia coli inclusión bodies. (1993) . - Tichy PJ, Kaprálek F, Jecmen P. Improved procedure for a high-yield recovery of enzymatically active recombinant calf chymosin from Escherichia coli inclusion bodies. (1993).
Protein Expr Purif. 4:59-63. Protein Expr Purif. 4: 59-63.
- Villalobos A, Ness JE, Gustafsson C, inshull J, - Villalobos A, Ness JE, Gustafsson C, inshull J,
Govindarajan S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments . (2006) . BMC Govindarajan S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. (2006). BMC
Bioinformatics . 7: 285-289. Bioinformatics 7: 285-289.
- Vallejo JA, Ageitos JM, Poza M, Villa TG. (2008) . Cloning and expression of buffalo active chymosin in Pichia pastoris. J Agrie Food Chem. 56:10606-10.  - Vallejo JA, Ageitos JM, Poza M, Villa TG. (2008). Cloning and expression of buffalo active chymosin in Pichia pastoris. J Agrie Food Chem. 56: 10606-10.
- Wei, C, Tang, B., Zhang, Y., & Yang, K. (1999) Oxidative refolding of recombinant prochymosin. Biochem J, 340, 345-351. - Wei, C, Tang, B., Zhang, Y., & Yang, K. (1999) Oxidative refolding of recombinant prochymosin. Biochem J, 340, 345-351.
45 Four. Five
HOJA DE REEMPLAZO (Regla 26) REPLACEMENT SHEET (Rule 26)

Claims

1/098651 1/098651
Reivindicaciones : Claims:
Descrita que ha sido la invención y la manera de llevarla a la práctica se declara reivindicar como propio: Described that the invention has been and the way to put it into practice is declared to claim as its own:
Una secuencia de nucleótidos sintética que codifica para proquimosina A recombinante bovina caracterizada porque dicha secuencia es seleccionada del conjunto comprendido por SEQID N° 2, SEQID N° 3, SEQID N° 4, SEQID N° 5, SEQID N° 6. A synthetic nucleotide sequence encoding recombinant bovine prochymosin A characterized in that said sequence is selected from the set comprised of SEQID No. 2, SEQID No. 3, SEQID No. 4, SEQID No. 5, SEQID No. 6.
La secuencia de nucleótidos sintética de acuerdo con la reivindicación 1 caracterizada porque dicha secuencia es la SEQID N°2. The synthetic nucleotide sequence according to claim 1 characterized in that said sequence is SEQID No. 2.
La secuencia de nucleótidos sintética de acuerdo con la reivindicación 1, caracterizada porque posee al menos un 95 por ciento de homología respecto a la SEQ ID N°2. The synthetic nucleotide sequence according to claim 1, characterized in that it has at least 95 percent homology with respect to SEQ ID No. 2.
Un polipéptido con actividad aspartil proteasa caracterizado porque es codificado por la secuencia de nucleótidos de acuerdo con la reivindicación 1. A polypeptide with aspartyl protease activity characterized in that it is encoded by the nucleotide sequence according to claim 1.
Una proquimosina A recombinante bovina caracterizada porque es codificada por la secuencia de nucleótidos sintética de la reivindicación 1. A recombinant bovine prochymosin A characterized in that it is encoded by the synthetic nucleotide sequence of claim 1.
La proquimosina A recombinante de acuerdo con la reivindicación 5 caracterizada porque posee la secuencia de aminoácidos de acuerdo con la secuencia SEQID N°8. The recombinant prochymosin A according to claim 5 characterized in that it has the amino acid sequence according to the sequence SEQID No. 8.
7- Un vector de expresión caracterizado porque comprende la secuencia de nucleótidos sintética de la reivindicación 1. 7- An expression vector characterized in that it comprises the synthetic nucleotide sequence of claim 1.
8- El vector de expresión de acuerdo con la reivindicación 7 caracterizado porque dicha secuencia de nucleótidos 8- The expression vector according to claim 7 characterized in that said nucleotide sequence
46 46
HOJA DE REEMPLAZO (Regla 26) sintética se encuentra bajo el control de un promotor seleccionado del conjunto comprendido por promotor lac, promotor tac, promotor PBAD. REPLACEMENT SHEET (Rule 26) Synthetic is under the control of a promoter selected from the set comprised of lac promoter, tac promoter, PBAD promoter.
Una célula de Escherichia coli transgénica , caracterizada porque dicha célula comprende la secuencia de nucleótidos sintética de la reivindicación 1. A transgenic Escherichia coli cell, characterized in that said cell comprises the synthetic nucleotide sequence of claim 1.
La célula de acuerdo con la reivindicación 9 caracterizada porque dicha secuencia sintética se encuentra en un vector de expresión bajo el control de un promotor seleccionado del conjunto comprendido por promotor lac, promotor tac, promotor PBAD. The cell according to claim 9 characterized in that said synthetic sequence is in an expression vector under the control of a promoter selected from the set comprised of lac promoter, tac promoter, PBAD promoter.
La célula de acuerdo con la reivindicación 10 caracterizada porque dicha célula es la Escherichia coli derivada de la cepa W3110. The cell according to claim 10 characterized in that said cell is Escherichia coli derived from strain W3110.
Un proceso de obtención de una proquimosina A recombinante bovina caracterizado porque comprende: A process for obtaining a recombinant bovine prochymosin A characterized in that it comprises:
i) - cultivar una célula de Escherichia coli transgénica transformada con un vector de expresión que comprende una secuencia de nucleótidos de acuerdo con la reivindicación 1; ii) -recuperar la proquimosina A expresada en el paso i) a partir de los cuerpos de inclusión iii) - solubilizar la proquimosina A recombinante bovina obtenida en el ii) ; iv) - purificar dicha proquimosina A recombinante bovina .  i) - culturing a transgenic Escherichia coli cell transformed with an expression vector comprising a nucleotide sequence according to claim 1; ii) - recover the prochymosin A expressed in step i) from the inclusion bodies iii) - solubilize the recombinant bovine prochymosin A obtained in ii); iv) - purify said bovine recombinant prochymosin A.
47 47
HOJA DE REEMPLAZO (Regla 26) 13- El proceso de acuerdo con la reivindicación 12 caracterizado porque el paso i) comprende transformar dicha célula con un vector de expresión de acuerdo con la reivindicación 8. 14- El proceso de acuerdo con la reivindicación 12, caracterizado porque el paso iv) es llevado a cabo por cromatografía de intercambio iónico. REPLACEMENT SHEET (Rule 26) 13- The process according to claim 12 characterized in that step i) comprises transforming said cell with an expression vector according to claim 8. 14- The process according to claim 12, characterized in that step iv) is carried out by ion exchange chromatography.
15- El proceso de obtención de proquimosina A recombinante bovina de acuerdo con la reivindicación 12 caracterizado porque comprende, además, un paso donde la proquimosina A obtenida en paso iv) es sometida a proteólisis con una solución ácida para obtener quimosina A. 15. The process for obtaining bovine recombinant prochymosin A according to claim 12, characterized in that it further comprises a step where the prochymosin A obtained in step iv) is subjected to proteolysis with an acid solution to obtain chymosin A.
16- El proceso de acuerdo con la reivindicación 15 caracterizado porque dicha solución ácida es una solución de ácido clorhídrico que se agrega hasta que el pH llegue a un valor de 2. 16- The process according to claim 15 characterized in that said acid solution is a hydrochloric acid solution that is added until the pH reaches a value of 2.
17- La quimosina A recombinante bovina obtenible por el proceso de acuerdo con la reivindicación 15, caracterizada porque dicha quimosina tiene la secuencia de aminoácidos SEQ ID n°9. 17- The recombinant bovine chymosin A obtainable by the process according to claim 15, characterized in that said chymosin has the amino acid sequence SEQ ID No. 9.
18- La secuencia de nucleótidos de acuerdo con la reivindicación 1 caracterizada porque incrementa la expresión de proquimosina recombinante bovina en Escherichia coli en al menos un 8% relativo a la expresión de la secuencia salvaje. 18- The nucleotide sequence according to claim 1 characterized in that it increases the expression of bovine recombinant prochymosin in Escherichia coli by at least 8% relative to the expression of the wild sequence.
19- La secuencia de nucleótidos de acuerdo con la reivindicación 1 caracterizada porque incrementa la expresión de proquimosina A recombinante bovina en 19- The nucleotide sequence according to claim 1 characterized in that it increases the expression of bovine recombinant prochymosin A in
48 48
HOJA DE REEMPLAZO (Regla 26) Escherichia coli en al menos un 20% relativo a la expresión de la secuencia salvaje. REPLACEMENT SHEET (Rule 26) Escherichia coli by at least 20% relative to the expression of the wild sequence.
20- La secuencia de nucleótidos de acuerdo con la reivindicación 1 caracterizada porque incrementa la expresión de proquimosina A recombinante bovina en20- The nucleotide sequence according to claim 1 characterized in that it increases the expression of bovine recombinant prochymosin A in
Escherichia coli en al menos un 40% relativo a la expresión de la secuencia salvaje. Escherichia coli by at least 40% relative to the expression of the wild sequence.
21- La secuencia de nucleótidos de acuerdo con la reivindicación 1 caracterizada porque incrementa la expresión de proquimosina A recombinante bovina en21- The nucleotide sequence according to claim 1 characterized in that it increases the expression of bovine recombinant prochymosin A in
Escherichia coli en al menos un 70% relativo a la expresión de la secuencia salvaje. Escherichia coli by at least 70% relative to the expression of the wild sequence.
49 49
HOJA DE REEMPLAZO (Regla 26)  REPLACEMENT SHEET (Rule 26)
PCT/ES2011/070089 2010-02-11 2011-02-11 Synthetic sequence of nucleotides coding for bovine recombinant prochymosin a, expression vector comprising said sequence, escherichia coli cell converted by means of said vector, and the process of the obtainment of said bovine recombinant prochymosin a WO2011098651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP100100388 AR075403A1 (en) 2010-02-11 2010-02-11 SEQUENCE OF SYNTHETIC NUCLEOTID THAT CODIFIES FOR BOVINE RECOMBINANT, EXPRESSION VECTOR THAT INCLUDES SUCH SEQUENCE, TRANSFORMED COLOR ESCHERICHIA CELL WITH SUCH VECTOR AND PROCESSING PROCEDURE FOR BOINA RECOMBINATION
ARP20100100388 2010-02-11

Publications (1)

Publication Number Publication Date
WO2011098651A1 true WO2011098651A1 (en) 2011-08-18

Family

ID=43857549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070089 WO2011098651A1 (en) 2010-02-11 2011-02-11 Synthetic sequence of nucleotides coding for bovine recombinant prochymosin a, expression vector comprising said sequence, escherichia coli cell converted by means of said vector, and the process of the obtainment of said bovine recombinant prochymosin a

Country Status (2)

Country Link
AR (1) AR075403A1 (en)
WO (1) WO2011098651A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123005A (en) * 1982-07-01 1984-01-25 Genex Corp Bovine calf chymosin
GB2200118A (en) * 1987-01-23 1988-07-27 Allelix Inc Synthetic chymosin-and prochymosin-encoding DNA segments
EP1231272A2 (en) * 2001-02-08 2002-08-14 Laboratorios Ovejero S.A. Procedure for obtaining bovine chymosin (rennin), curd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123005A (en) * 1982-07-01 1984-01-25 Genex Corp Bovine calf chymosin
GB2200118A (en) * 1987-01-23 1988-07-27 Allelix Inc Synthetic chymosin-and prochymosin-encoding DNA segments
EP1231272A2 (en) * 2001-02-08 2002-08-14 Laboratorios Ovejero S.A. Procedure for obtaining bovine chymosin (rennin), curd

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG, ZHEN ET AL.: "Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis", WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, vol. 26, no. 5, 22 November 2009 (2009-11-22), pages 895 - 901 *
HARRIS, T.J. ET AL.: "Molecular cloning and nucleotide sequence of cDNA coding for calf preprochymosin", NUCLEIC ACIDS RESEARCH, vol. 10, no. 7, 1982, pages 2177 - 2187 *
MENZELLA, H.G.: "Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli", MICROBIAL CELL FACTORIES, vol. 10, no. 15, March 2011 (2011-03-01), pages E1 - E8 *
WELCH, M. ET AL.: "Design parameters to control synthetic gene expression in Escherichia coli.", PLOS ONE, vol. 4, no. 9, September 2009 (2009-09-01), pages E7002 *

Also Published As

Publication number Publication date
AR075403A1 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
CN110128521B (en) Auxiliary protein for producing recombinant fusion protein, encoding gene, recombinant fusion protein, recombinant expression vector and preparation method
CN102712679B (en) Bacterial host strain expressing recombinant DSBC and having reduced TSP activity
CN102712694A (en) Bacterial host strain comprising a mutant spr gene and a wild-type tsp gene
US11377674B2 (en) Recombinant strain expressing phospholipase D and application thereof
CN102762732A (en) Bacterial host strain comprising a mutant SPR gene and having reduced TSP activity
CN106086102B (en) Engineering bacterium for producing trans-4-hydroxy-L-proline and construction method and application thereof
Wang et al. Codon preference optimization increases prokaryotic cystatin C expression
CN107384899B (en) Fungus-derived acidic protease g412 and gene and application thereof
US20150010944A1 (en) Modified sak gene for the production of recombinant proteins
WO2015015518A2 (en) Process for production of insulin and insulin analogues
CN107988190B (en) Acid protease and coding gene and application thereof
EA038578B1 (en) Preparation of wheat cysteine protease triticain-alpha produced in soluble form and method of producing same
US20150020238A1 (en) Plant producing human enterokinase light chain protein and uses thereof
WO2011098651A1 (en) Synthetic sequence of nucleotides coding for bovine recombinant prochymosin a, expression vector comprising said sequence, escherichia coli cell converted by means of said vector, and the process of the obtainment of said bovine recombinant prochymosin a
CN110819612A (en) Screening of novel autocleavage-resistant alkaline protease
RU2015105274A (en) METHOD FOR PRODUCING PROTEINS OF FAMILY CYSTEINE PROTEASES (Triticum aestivum) AND PROTEIN TRITIKAIN-ALPH PROTEIN OBTAINED BY THIS METHOD
JP2020522999A (en) Glucose oxidase CnGODA and its gene and use
Yang et al. Expression of gloshedobin, a thrombin-like enzyme from the venom of Gloydius shedaoensis, in Escherichia coli
CN116478969A (en) Collagenase mutant, method for promoting secretory expression of recombinant collagenase and application thereof
CN110564742B (en) Recombinant strain modified by yebN gene and construction method and application thereof
Osadská et al. Optimization of expression of untagged and histidine-tagged human recombinant thrombin precursors in Escherichia coli
RU2697375C2 (en) Plasmid vector prh15a for producing methionine-free interferon alpha-2b, bacterial strain escherichia coli bl21 de3 - producer of methionine-free interferon alpha-2b and method for producing methionine-free interferon alpha-2b
KR101840535B1 (en) Recombinant levansucrase expression vector
RU2729403C1 (en) Recombinant plasmid pet32-trex vic, which provides for synthesis of prochymosin vicugna pacos chimeric protein, and escherichia coli bl21(de3)plyse pet32-trx vic-producer of prochymosin vicugna pacos chimeric protein
CN113957071B (en) Combined DNA fragment with double promoter and double secretion signal functions and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 29-11-2012)

122 Ep: pct application non-entry in european phase

Ref document number: 11741938

Country of ref document: EP

Kind code of ref document: A1