WO2011098625A1 - Sistema y método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado - Google Patents

Sistema y método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado Download PDF

Info

Publication number
WO2011098625A1
WO2011098625A1 PCT/ES2010/000460 ES2010000460W WO2011098625A1 WO 2011098625 A1 WO2011098625 A1 WO 2011098625A1 ES 2010000460 W ES2010000460 W ES 2010000460W WO 2011098625 A1 WO2011098625 A1 WO 2011098625A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
values
magnitude
deformation
support structure
Prior art date
Application number
PCT/ES2010/000460
Other languages
English (en)
French (fr)
Inventor
Julio Garcia Espinosa
Alberto Fernandez Alonso
Original Assignee
Centre Internacional De Métodes Numèrics En Enginyeria
Compass Ingenieria Y Sstemas, Sa
Totalmar Servicios Náuticos, Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Internacional De Métodes Numèrics En Enginyeria, Compass Ingenieria Y Sstemas, Sa, Totalmar Servicios Náuticos, Sl filed Critical Centre Internacional De Métodes Numèrics En Enginyeria
Publication of WO2011098625A1 publication Critical patent/WO2011098625A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • G01L5/102Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors located at a non-interrupted part of the flexible member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/04Fastening or guiding equipment for chains, ropes, hawsers, or the like
    • B63B21/08Clamping devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands

Definitions

  • the present invention concerns, in general, in a first and second aspects, a system and a force measurement method applicable to the measurement of the force applied to a mechanical system, by using deformation sensors arranged in a supporting structure of said mechanical system, and in particular a system and method that allow determining the magnitude and direction of traction of said applied force.
  • a third aspect of the invention concerns an anchor piece with an integrated measuring system, which allows determining the magnitude and direction of the force applied to it.
  • Various systems are known for measuring the tensile forces applied on a mechanical system, comprising one or more deformation sensors arranged on different elements of the mechanical system.
  • a measurement system which includes an extensiometric gauge arranged on the axis of a pulley in order to measure the deformation suffered by it, and from this deformation infer the tension suffered by the passing cable by the pulley.
  • a system in the application EP2017594A2 includes a strain gauge arranged on a fixed axis of a pulley in order to measure the force applied on a cable passing through it.
  • a load measurement system acting on a pulley comprising several strain gauges arranged at different points of a fixed support structure on which the axis of a pulley is fixed.
  • This provision is intended to overcome the disadvantages of those who suffer from the provisions of gauges on the pulley axis, in particular those related to the need to change the axle to another, which implies that it is necessary to remove the gauges and replace them on the new axis, reconfigure them, etc.
  • a pulley with a support structure is proposed, in particular installed on a sailboat, on which one or more plus strain gauges, to measure the tensile force applied on it from the deformations detected.
  • the proposed pulley comprises a local electronic system, fixed to the support structure, and connected to the gauges for the treatment of the signals coming from them and the sending of the treated signals, wirelessly, to a receiver of a central unit of treatment and calculation. It is not indicated in said patent that said central processing and calculation unit is provided, nor does it implement any methodology, which allows to determine the direction of pull or traction of the force applied from the signals coming from the gauges.
  • EP0236955B1 a method is proposed to continuously measure the angle, with respect to a fixed vertical axis parallel to the plane of the ship, and the longitudinal tension of a cable when it passes through a pulley with a fixed axis mounted on the bow or the stern of a ship, during the installation of a heavy electric cable in a seabed from said ship, through said pulley.
  • Said tension and said angle are calculated from several parameters, including the acceleration and mass of the cable, of the pulley rotation, the inertia of rotation, the stiffness of the cable, friction losses, as well as from the measurement of the force exerted on the fixed axis of the pulley, in particular and as regards the angle from the horizontal and vertical components of said force, measured for example by means of strain gauges arranged on the axis orthogonally to each other : one to measure the horizontal component and the other to measure the vertical component.
  • strain gauges arranged on the axis orthogonally to each other : one to measure the horizontal component and the other to measure the vertical component.
  • the present invention concerns, in a first aspect, a force measurement system applicable to the measure of magnitude and direction of the force applied to a mechanical system comprising, at a minimum, a support structure susceptible to deformation and a traction system connected to said support structure that transmits a tensile force to said support structure.
  • the force measurement system proposed by the first aspect of the invention comprises, in a manner known per se:
  • said electronic system comprises:
  • a processing unit in connection with said memory and with said deformation sensors, and intended to process the output signals of at least said deformation sensors, received by the electronic system at a given time, in relation to said recorded values, to determine said magnitude of said traction force and also, in a unique way, the direction of pull or traction, with respect to said determined reference system, or vector or angle in the work plane of the traction system, of the traction force to which said support structure is subjected.
  • the proposed measuring system is adapted to determine the said direction of traction both when determined by a single angle (for example when the force is always exerted in a vertical plane) and when it includes two angles (for example one on a horizontal plane and other respect to the vertical).
  • At least part of the deformation sensors are oriented according to different vectors, so that they can be detect deformations in different areas of the support structure according to various orientations.
  • the proposed measurement system is a continuous measurement system.
  • the measurement system proposed by the first aspect of the invention is applied to a mechanical system whose traction system comprises one or more pulleys.
  • Said electronic system is divided, for an example of embodiment, into a local unit, arranged on or near the support structure, and a remote unit, both units being communicated with each other via a wireless communication path or via cable.
  • this is or comprises one or more elements of the group that includes the following traction elements: a cable, a rope, a chain and a bar.
  • strain sensors are strain gauges.
  • the load supported by the pulling element and the direction of pulling thereof is thus determined.
  • the measurement system proposed by the first aspect of the invention is applied, for an exemplary embodiment, to the measure of the magnitude and direction of pull of the force applied to a mechanical system that is part of a rigging of a sailboat .
  • a second aspect of the invention concerns a force measurement method applicable to the measurement of the force applied to a mechanical system, comprising:
  • said step b) comprises processing said detection values, obtained at a given time, in relation to detection values, theoretical, or obtained by numerical calculation , and / or experimental, previously recorded correlated with values of a plurality of different tensile forces, in magnitude and in the direction of pull or traction, with respect to the same system of determined reference, or vector or angle in the work plane of the traction system, to determine said magnitude of said traction force and also, univocally, the direction of pull or traction, with respect to said determined reference system, of the tensile force to which said support structure is subjected at said given time.
  • step a) comprises detecting deformations according to two or more vectors with different orientations.
  • the method comprises, according to an embodiment, obtaining said experimental detection values, to carry out said prior registration thereof, by performing a plurality of stages a) and b) prior, for said plurality of different tensile forces. regarding whose values, both of magnitude and of direction of fire, are correlated.
  • the method comprises performing a series of theoretical calculations or simulations or by numerical calculation taking into account at least defining parameters of the support structure, of its restrictions and displacement freedoms, if applicable, and perform said calculations for theoretical values of a plurality of different tensile forces, in magnitude and in the direction of pull or traction, applied to the parameterized support structure, in order to obtain a plurality of theoretical values, or obtained by numerical calculation, of detection or deformation to be recorded correlated with those relative to the forces that caused them.
  • the method comprises obtaining them by performing a plurality of stages a) and b) prior, for said plurality of different tensile forces with respect to whose values, both of magnitude and of direction or angle of shot, are correlated.
  • said processing of said step b) comprises comparing said detection values obtained at a given time with said previously recorded detection values.
  • the method comprises, depending on the exemplary embodiment, obtaining said detection values to carry out said prior registration thereof, for the entire application range of the system or only for a given application range covering certain detection values. of deformations and tensile forces, in magnitude and angle of shot.
  • the method comprises determining said tensile force exerted at said given time, both in terms of its magnitude and its direction of fire. , correlating the values detected at that given time with those registered.
  • the method comprises determining said tensile force exerted at said given time, so that It refers to its magnitude as to its direction and shot, by using an interpolation, extrapolation or prediction method based on these correlated recorded detection values.
  • the processing of said step b) comprises, for another embodiment, executing an algorithm that implements a neural network, taking as input data said detection values obtained at a given time, to obtain as output the values of the magnitude of the tensile force and its angle of shot.
  • the method comprises training and validating said neural network from said detection values, theoretical, or obtained by numerical calculation, and / or experimental, previously registered.
  • the measurement method proposed by the second aspect of the invention comprises determining the said direction of traction both when it includes a single angle and when it includes two angles, each in a respective plane.
  • a third aspect of the invention concerns an anchoring part of a mechanical system, with integrated measuring system, which allows determining the magnitude and direction of the force applied thereon, which comprises:
  • the anchoring piece proposed by the third aspect of the invention includes a closed housing which houses at least said part of said electronic system, which comprises, unlike conventional proposals:
  • a processing unit in connection with said memory and with said deformation sensors, and intended to process the output signals of at least said deformation sensors, received by the electronic system at a given time, in relation to said recorded values, to determine said magnitude of said traction force and also, in a unique way, the direction of pull or traction, with respect to said determined reference system, or vector or angle in the work plane of the traction system, of the traction force to which said anchor piece is subjected.
  • the electronic system housed, at least in part, in the anchoring piece proposed by the third aspect of the invention implements, for an exemplary embodiment, the method proposed by the second aspect of the invention.
  • Fig. 1 is a schematic view of the measurement system proposed by the first aspect of the present invention applied to a mechanical system comprising a root, illustrated in perspective, for an exemplary embodiment, said root being also representative of the workpiece.
  • anchor with integrated measuring system proposed by the third aspect of the invention, for an exemplary embodiment;
  • Fig. 2 is a graph showing a series of deformation values detected by the deformation sensors illustrated in Fig. 1, correlated with the force and angle of shot for which they have been obtained;
  • Fig. 3 shows, in perspective, the measurement system proposed by the first aspect of the invention applied to a mechanical system other than that of Fig. 1, for another embodiment;
  • Fig. 4 shows, schematically, a mechanical system analogous to that of Fig. 3, which includes a pulley through which a traction element runs
  • Fig. 5 is a schematic representation of the rooting of Fig. 1 included in a mechanical system with a system of three pulleys through which the carcass of the largest of a sailboat, not illustrated, runs.
  • Fig. 1 the force measurement system proposed by the first aspect of the invention is illustrated, for an exemplary embodiment for which it is applied to a mechanical system with a support structure comprising an anchor piece 4 with a first part 4a attached to a fixed structure and a second part, or mobile part 4b, attached to said first part 4a so that it is movable thereon according to at least one degree of freedom, than in the example of realization of the Fig. 1 is the one corresponding to the articulated displacement around the axis E of the movable part 4b with respect to the 4a.
  • Said set of parts or parts 4a, 4b joined together constitute, for the exemplary embodiment illustrated, a rooting of a sailboat, although for other embodiments these are part of a mechanical system of another nature.
  • the part 4b is directly fixed on a fixed structure without freedom of movement.
  • Fig. 1 it can be seen how, with reference to the anchoring or rooting part 4, said first part 4a is guided on a guide 5 of said fixed structure, constituted by the deck of the ship or fixed to it, being able to move along its length and to be fixed, part 4a, selectively in a certain position along said guide 5.
  • Fig. 5 illustrates the arrangement of the rooting 4 (illustrated schematically) included in a mechanical system that includes a system of three pulleys 3, 13, 23 through which the notch 10 of the largest of a ship runs sail (not illustrated) in the direction towards the bow, with a rope attached to the boom (not illustrated).
  • a rope 11 can also be seen attached to the drive 4 to move it by traction along the guide 5 (see Fig. 1).
  • the movable part 4b illustrated there comprises two walls 4b1, 4b2 with different inclination and converging in a connection point with a traction element 6 of the traction system, so that each of the two deformation sensors G1, G2 of the measurement system proposed by the first aspect of the invention is fixed to a flat face of a respective of said two walls 4b1, 4b2.
  • the electronic system of the measurement system proposed by the invention is divided into a local unit U1, arranged on or, for another embodiment not illustrated, close to the support structure, and a remote unit U2, both units U1, U2 being communicated with each other via a wireless communication path C or, for another embodiment not illustrated, via cable.
  • the electronic system comprises visual indication means 8 provided to show visual signals, representative of the tensile force determined by the processing unit.
  • Said visual indication means are arranged, in Fig. 1, on the remote unit U2, although for another exemplary embodiment, not illustrated, these are arranged on the local unit U1.
  • Particularly part 4b constitutes a housing for said local unit U1, which is advantageously closed.
  • the units of force in KN and those of deformation of the gauges in m have been indicated.
  • the values indicated in the graph of Fig. 2 correspond to said registered values for forces of 2,3KN, 3.6KN and 5, 1
  • said correlation being carried out by consulting said graph with the deformation values obtained in the G1 and G2 gauges at a given time.
  • the proposed method comprises using corresponding interpolation / extrapolation / prediction algorithms when the values detected at a given time are outside the range of recorded values.
  • FIG. 3 Another example of the measurement system proposed by the first aspect of the invention is illustrated in Fig. 3, for which it is applied to a mechanical system whose support structure comprises a support part 1 of the axis 3a of a pulley 3.
  • said support piece 1 comprises two substantially parallel walls 1 a, 1 b, each fixed to a respective end of said axis 3a, said pulley 3 being arranged between said two walls 1 a, 1 b.
  • the measuring system comprises three deformation sensors G1, G2, G3 fixed to two respective areas of a flat face of one of said walls 1 a, 1 b, oriented in a manner not aligned with each other (For another exemplary embodiment, the measuring system comprises only two sensors G1, G2 arranged on the same or on different walls 1 a, 1 b, on corresponding flat faces), the electronic system memory having recorded values of output signals also from the third deformation sensor G3, previously obtained for said plurality of different tensile forces, and the processing unit also being in connection with the third deformation sensor G3, and intended to also compare the output signals of the same with said recorded values, to carry out the determination of the magnitude and the direction of pull of the tensile force to which the support piece 1 is subjected by a cable or rope (not illustrated) that circulates around the contour of the pulley 3.
  • the measuring system comprises a housing formed by two pieces 7a, 7b, both fixed to the support piece 1, one of them 7a in an articulated manner, and which houses part of the system inside electronic, the previously called local unit U1, or the entire electronic system if it is not divided into two parts, as well as the power battery (not shown).
  • the two pieces 7a, 7b are preferably closed tightly, in order to protect the components housed therein.
  • the measurement system illustrated therein comprises a fourth deformation sensor G4 on a flat face of the wall 1 b, and oriented as the sensor G3.
  • the purpose of this sensor is to enable the verification of the symmetry of the results, comparing those obtained for G3 with those of G4.
  • FIG. 4 A mechanical system analogous to that of Fig. 3 is illustrated schematically in Fig. 4, which includes a pulley 3 through which a cable 6 that exerts a tensile force in the direction indicated by the arrow illustrated, and with the indicated draft angle ⁇ , which in this case corresponds to a direction of traction defined in a vertical plane that coincides with the work plane, but which, as previously mentioned, for another embodiment example for that the work plane in which the traction direction is defined does not correspond only to a single plane, both the system and the proposed method comprise determining the two angles of the respective components of the traction direction, in each of the plans in which it is included.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

El método comprende: a) detectar las deformaciones sufridas por unas zonas de una estructura de soporte causadas por una fuerza de tracción; y b) analizar unos valores de detección, correspondientes a dichas deformaciones detectadas, para determinar, de manera unívoca, la magnitud y la dirección de tiro de dicha fuerza de tracción, mediante el procesado de dichos valores de detección, obtenidos en un momento dado, en relación con unos valores de deformación registrados previamente para una pluralidad de fuerzas de tracción diferentes. El sistema comprende unos sensores de deformación (G1, G2) y un sistema electrónico en conexión con los mismos que incluye una serie de elementos previstos para implementar el método propuesto. La pieza de anclaje incluye un sistema como el propuesto.

Description

Sistema v método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado
Sector de la técnica
La presente invención concierne, en general, en un primer y un segundo aspectos, a un sistema y a un método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, mediante la utilización de unos sensores de deformación dispuestos en una estructura de soporte de dicho sistema mecánico, y en particular a un sistema y un método que permiten determinar la magnitud y la dirección de tracción de dicha fuerza aplicada.
Un tercer aspecto de la invención concierne a una pieza de anclaje con sistema de medida integrado, que permite determinar la magnitud y la dirección de la fuerza aplicada sobre la misma.
Estado de la técnica anterior
Son conocidos diversos sistemas para medir las fuerzas de tracción aplicadas sobre un sistema mecánico, que comprenden uno o más sensores de deformación dispuestos sobre diferentes elementos del sistema mecánico.
Por el documento de patente GB2136582A se conoce un sistema de medida que incluye una galga extensiométrica dispuesta sobre el eje de una polea con el fin de medir la deformación sufrida por el mismo, y a partir de esta deformación inferir la tensión que sufre el cable que pasa por la polea.
En la solicitud EP2017594A2 también se propone un sistema que incluye una galga extensiométrica dispuesta sobre un eje fijo de una polea con el fin de medir la fuerza aplicada sobre un cable que pasa por la misma.
En la patente GB2089053 se propone un sistema de medida de la carga que actúa sobre una polea, que comprende varias galgas extensiométricas dispuestas en diferentes puntos de una estructura fija de soporte en la cual se encuentra fijado el eje de una polea. Con tal disposición se pretende superar los inconvenientes de los que adolecen las disposiciones de galgas sobre el eje de la polea, en particular los relativos a la necesidad de cambiar el eje por otro, lo que implica que sea necesario retirar las galgas y volverlas a colocar en el nuevo eje, reconfigurarlas, etc.
En la patente FR2923293 se propone una polea con una estructura de soporte, en particular instalada en un barco de vela, en la cual se encuentran dispuestas una o más galgas extensiométricas, para medir la fuerza de tracción aplicada sobre la misma a partir de las deformaciones detectadas. La polea propuesta comprende un sistema electrónico local, fijado a la estructura de soporte, y conectado a las galgas para el tratamiento de las señales provinentes de las mismas y el envío de las señales tratadas, de manera inalámbrica, a un receptor de una unidad central de tratamiento y cálculo. No se indica en dicha patente que la mencionada unidad central de tratamiento y cálculo esté prevista, ni implemente ninguna metodología, que permita determinar la dirección de tiro o tracción de la fuerza aplicada a partir de las señales provinentes de las galgas.
En la patente EP0236955B1 se propone un método para medir de manera continua el ángulo, respecto a un eje fijo vertical paralelo al plano de crujía del barco, y la tensión longitudinal de un cable cuando pasa por una polea con un eje fijo montado sobre la proa o la popa de un barco, durante la instalación de un cable eléctrico pesado en un lecho marítimo desde dicho barco, a través de dicha polea. Dicha tensión y dicho ángulo se calculan a partir de varios parámetros, incluyendo la aceleración y la masa del cable, del giro de la polea, la inercia de giro, la rigidez del cable, las pérdidas por fricción, así como a partir de la medida de la fuerza ejercida sobre el eje fijo de la polea, en particular y por lo que se refiere al ángulo a partir de las componentes horizontal y vertical de dicha fuerza, medidas por ejemplo mediante unas galgas extensiométricas dispuestas en el eje de manera ortogonal entre sí: una para medir la componente horizontal y la otra para medir la componente vertical. La disposición de las galgas en el eje de la polea tiene las desventajas comentadas anteriormente.
Explicación de la invención
Aparece necesario ofrecer una alternativa al estado de la técnica que cubra las lagunas halladas en el mismo, en particular las referentes a la determinación de la magnitud de la fuerza de tracción ejercida sobre un sistema mecánico, tal como un arraigo, por parte de un sistema o elemento de tracción, así como también de la dirección de tiro o tracción con el cual ésta es ejercida, sin la limitación de que esa dirección esté en una dirección determinada del espacio, como en el caso de EP0236955B1 , o sin la necesidad de utilizar un sistema complejo de sensores como el de EP0236955B1 , y que permita determinar tanto la magnitud como la dirección de tiro de manera unívoca, utilizando solamente unos sensores de deformación dispuestos en distintas zonas de una estructura de soporte, que no incluyen el eje de una polea.
Para ello la presente invención concierne, en un primer aspecto, a un sistema de medida de fuerzas aplicable a la medida de magnitud y dirección de la fuerza aplicada a un sistema mecánico que comprende, como mínimo, una estructura de soporte susceptible de deformación y un sistema de tracción conectado a dicha estructura de soporte que transmite una fuerza de tracción a dicha estructura de soporte.
El sistema de medida de fuerzas propuesto por el primer aspecto de la invención comprende, de manera en sí conocida:
- dos o más sensores de deformación fijados a dos o más respectivas zonas de dicha estructura de soporte para detectar la deformación de cada una de dichas zonas como resultado de la acción de dicha fuerza de tracción transmitida por dicho sistema de tracción a la estructura de soporte; y
- un sistema electrónico en conexión con dichos sensores de deformación para recibir unas señales de salida de los mismos y determinar la magnitud de dicha fuerza de tracción, en función de las deformaciones detectadas.
A diferencia de los sistemas de medida convencionales citados en el apartado anterior, en el sistema de medida propuesto por la presente invención el mencionado sistema electrónico comprende:
- una o más memorias donde se encuentran registradas las relaciones entre unos valores de señales de salida de dichos sensores de deformación y unos valores de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, respecto a un sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, para los cuales dichos valores de señales de salida registrados han sido obtenidos previamente, así como donde también se encuentran registrados los valores incluidos en dichas relaciones, y
- una unidad de procesamiento en conexión con dicha memoria y con dichos sensores de deformación, y prevista para procesar las señales de salida de al menos dichos sensores de deformación, recibidas por el sistema electrónico en un momento dado, en relación con dichos valores registrados, para determinar dicha magnitud de dicha fuerza de tracción y también, de manera unívoca, la dirección de tiro o tracción, respecto a dicho sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, de la fuerza de tracción a la que es sometida dicha estructura de soporte.
El sistema de medida propuesto está adaptado para determinar la referida dirección de tracción tanto cuando está determinada por un sólo ángulo (por ejemplo cuando la fuerza se ejerce siempre en un plano vertical) como cuando incluye dos ángulos (por ejemplo uno sobre un plano horizontal y otro respecto a la vertical).
Según un ejemplo de realización al menos parte de los sensores de deformación se encuentran orientados según vectores distintos entre sí, de manera que se puedan detectar deformaciones en zonas distintas de la estructura de soporte según varias orientaciones.
En general el sistema de medida propuesto es un sistema de medida continua.
Para un ejemplo de realización el sistema de medida propuesto por el primer aspecto de la invención, está aplicado a un sistema mecánico cuyo sistema de tracción comprende una o más poleas.
El mencionado sistema electrónico se encuentra dividido, para un ejemplo de realización, en una unidad local, dispuesta sobre o próxima a la estructura de soporte, y una unidad remota, estando ambas unidades comunicadas entre sí a través de una vía de comunicación inalámbrica o vía cable.
En cuanto al mencionado sistema de tracción, éste es o comprende uno o más elementos del grupo que incluye los siguientes elementos de tracción: un cable, una cuerda, una cadena y una barra.
Para un ejemplo de realización los sensores de deformación son unas galgas extensiométricas.
Al determinar la fuerza, en magnitud y en dirección de tiro o tracción, aplicada a la estructura de soporte, se determina así la carga soportada por el elemento de tracción y la dirección de tiro del mismo.
El sistema de medida propuesto por el primer aspecto de la invención está aplicado, para un ejemplo de realización, a la medida de la magnitud y dirección de tiro de la fuerza aplicada a un sistema mecánico que forma parte de una jarcia de un barco de vela.
Un segundo aspecto de la invención concierne a un método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, que comprende:
a) detectar las deformaciones sufridas por al menos dos respectivas zonas de una estructura de soporte causadas por una fuerza de tracción ejercida por parte de un sistema de tracción conectado a dicha estructura de soporte; y
b) analizar unos valores de detección, correspondientes a dichas deformaciones detectadas, para determinar la magnitud de dicha fuerza de tracción ejercida.
A diferencia de los métodos de medida de fuerzas convencionales, en el propuesto por la presente invención dicha etapa b) comprende procesar dichos valores de detección, obtenidos en un momento dado, en relación con unos valores de detección, teóricos, u obtenidos por cálculo numérico, y/o experimentales, registrados previamente correlacionados con unos valores de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, respecto a un mismo sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, para determinar dicha magnitud de dicha fuerza de tracción y también, de manera unívoca, la dirección de tiro o tracción, respecto a dicho sistema de referencia determinado, de la fuerza de tracción a la que es sometida dicha estructura de soporte en dicho momento dado.
Para un ejemplo de realización la etapa a) comprende detectar deformaciones según dos o más vectores con orientaciones distintas entre sí.
El método comprende, según un ejemplo de realización, obtener dichos valores de detección experimentales, para llevar a cabo dicho registro previo de los mismos, mediante la realización de una pluralidad de etapas a) y b) previas, para dicha pluralidad de fuerzas de tracción diferentes respecto a cuyos valores, tanto de magnitud como de dirección de tiro, se encuentran correlacionados.
Cuando los valores de detección a registrar previamente son o incluyen valores teóricos u obtenidos por cálculo numérico, el método comprende realizar una serie de cálculos o simulaciones teóricas o por cálculo numérico teniendo en cuenta como mínimo parámetros definitorios de la estructura de soporte, de sus restricciones y libertades de desplazamiento, si es el caso, y realizar dichos cálculos para unos valores teóricos de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, aplicadas a la estructura de soporte parametrizada, con el fin de obtener una pluralidad de valores teóricos, u obtenidos por cálculo numérico, de detección o deformación a registrar correlacionados con los relativos a las fuerzas que los han causado.
Por lo que se refiere a los valores de detección experimentales para llevar a cabo dicho registro previo de los mismos, el método comprende obtenerlos mediante la realización de una pluralidad de etapas a) y b) previas, para dicha pluralidad de fuerzas de tracción diferentes respecto a cuyos valores, tanto de magnitud como de dirección o ángulo de tiro, se encuentran correlacionados.
Según un ejemplo de realización, dicho procesamiento de dicha etapa b) comprende comparar dichos valores de detección obtenidos en un momento dado con dichos valores de detección registrados previamente.
El método comprende, en función del ejemplo de realización, obtener dichos valores de detección para llevar a cabo dicho registro previo de los mismos, para todo el rango de aplicación del sistema o únicamente para un rango de aplicación determinado que abarca unos determinados valores de detección de deformaciones y de fuerzas de tracción, en magnitud y ángulo de tiro. Cuando dichos valores de deformaciones detectadas en dicha etapa a) se encuentran incluidos en dichos valores de detección registrados, el método comprende determinar dicha fuerza de tracción ejercida en dicho momento dado, tanto por lo que se refiere a su magnitud como a su dirección de tiro, correlacionando los valores detectados en dicho momento dado con los registrados.
En cambio, cuando dichos valores de deformaciones detectadas en dicha etapa a) no se encuentran incluidos en dichos valores de detección registrados para dicho rango de aplicación determinado, el método comprende determinar dicha fuerza de tracción ejercida en dicho momento dado, tanto por lo que se refiere a su magnitud como a su dirección e tiro, mediante la utilización de un método de interpolación, extrapolación o predicción basado en dichos valores de detección registrados correlacionados.
De manera alternativa, el procesamiento de dicha etapa b) comprende, para otro ejemplo de realización, ejecutar un algoritmo que implementa una red neuronal, tomando como datos de entrada dichos valores de detección obtenidos en un momento dado, para obtener como salida los valores de la magnitud de la fuerza de tracción y de su ángulo de tiro.
El método comprende entrenar y validar a dicha red neuronal a partir de dichos valores de detección, teóricos, u obtenidos por cálculo numérico, y/o experimentales, registrados previamente.
De igual manera que el sistema propuesto por el primer aspecto de la invención, el método de medida propuesto por el segundo aspecto de la invención comprende determinar la referida dirección de tracción tanto cuando ésta incluye un sólo ángulo como cuando incluye dos ángulos, cada uno en un respectivo plano.
Un tercer aspecto de la invención concierne a una pieza de anclaje de un sistema mecánico, con sistema de medida integrado, que permite determinar la magnitud y dirección de la fuerza aplicada sobre la misma, que comprende:
- dos o más sensores de deformación fijados a dos o más respectivas zonas de dicha pieza de anclaje, orientados de manera no alineada entre sí, para detectar la deformación de cada una de dichas dos o más zonas como resultado de la acción de una fuerza de tracción transmitida por un sistema de tracción conectado a dicha pieza de anclaje; y
- al menos una parte de un sistema electrónico dispuesto en dicha pieza de anclaje y en conexión con dichos sensores de deformación para recibir unas señales de salida de los mismos y determinar la magnitud de dicha fuerza de tracción, en función de las deformaciones detectadas. La pieza de anclaje propuesta por el tercer aspecto de la invención incluye un alojamiento cerrado que alberga en su interior a al menos dicha parte de dicho sistema electrónico, el cual comprende, a diferencia de las propuestas convencionales:
- una o más memorias donde se encuentran registradas las relaciones entre unos valores de señales de salida de dichos sensores de deformación y unos valores de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, respecto a un mismo sistema de referencia determinado, o ángulo o vector en el plano de trabajo del sistema de tracción, para los cuales dichos valores de señales de salida registrados han sido obtenidos previamente, así como donde también se encuentran registrados los valores incluidos en dichas relaciones, y
- una unidad de procesamiento en conexión con dicha memoria y con dichos sensores de deformación, y prevista para procesar las señales de salida de al menos dichos sensores de deformación, recibidas por el sistema electrónico en un momento dado, en relación con dichos valores registrados, para determinar dicha magnitud de dicha fuerza de tracción y también, de manera unívoca, la dirección de tiro o tracción, respecto a dicho sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, de la fuerza de tracción a la que es sometida dicha pieza de anclaje.
El sistema electrónico alojado, al menos en parte, en la pieza de anclaje propuesta por el tercer aspecto de la invención, implementa, para un ejemplo de realización, el método propuesto por el segundo aspecto de la invención.
Breve descripción de los dibujos
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:
la Fig. 1 es una vista esquemática del sistema de medida propuesto por el primer aspecto de la presente invención aplicado a un sistema mecánico que comprende un arraigo, ilustrado en perspectiva, para un ejemplo de realización, siendo dicho arraigo representativo también de la pieza de anclaje con sistema de medida integrado propuesta por el tercer aspecto de la invención, para un ejemplo de realización;
la Fig. 2 es una gráfica que muestra una serie de valores de deformaciones detectadas mediante los sensores de deformación ilustrados en la Fig. 1 , correlacionados con la fuerza y el ángulo de tiro para los cuales han sido obtenidos; la Fig. 3 muestra, en perspectiva, al sistema de medida propuesto por el primer aspecto de la invención aplicado a un sistema mecánico distinto al de la Fig. 1 , para otro ejemplo de realización;
la Fig. 4 muestra, de manera esquemática, un sistema mecánico análogo al de la Fig. 3, que incluye una polea a través de la cual discurre un elemento de tracción, y la Fig. 5 es una representación esquemática del arraigo de la Fig. 1 incluido en un sistema mecánico con un sistema de tres poleas a través de las cuales discurre la escota de la mayor de un barco de vela, no ilustrado. Descripción detallada de unos ejemplos de realización
En la Fig. 1 se ilustra el sistema de medida de fuerzas propuesto por el primer aspecto de la invención, para un ejemplo de realización para el que éste está aplicado a un sistema mecánico con una estructura de soporte que comprende una pieza de anclaje 4 con una primera parte 4a unida a una estructura fija y una segunda parte, o parte móvil 4b, unida a dicha primera parte 4a de manera que es desplazable respecto a la misma según al menos una grado de libertad, que en el ejemplo de realización de la Fig. 1 es el correspondiente al desplazamiento articulado alrededor del eje E de la parte móvil 4b respecto a la 4a.
Dicho conjunto de piezas o partes 4a, 4b unidas entre sí constituyen, para el ejemplo de realización ilustrado, un arraigo de un barco de vela, aunque para otros ejemplos de realización éstas forman parte de un sistema mecánico de otra índole.
Asimismo, para otro ejemplo de realización, no ilustrado, la pieza 4b se encuentra directamente fijada sobre una estructura fija sin libertad de movimiento.
En la Fig. 1 se aprecia cómo, con referencia a la pieza de anclaje o arraigo 4, dicha primera parte 4a se encuentra guiada sobre una guía 5 de dicha estructura fija, constituida por la cubierta del barco o fijada a la misma, pudiendo desplazarse a su largo y ser fijada, la parte 4a, de manera selectiva en una posición determinada a lo largo de dicha guía 5.
En la Fig. 5 se ilustra la disposición del arraigo 4 (ilustrado de manera esquemática) incluido en un sistema mecánico que incluye un sistema de tres poleas 3, 13, 23 a través de las cuales discurre la escota 10 de la mayor de un barco de vela (no ilustrado) en dirección hacia proa, con un cabo fijado a la botavara (no ilustrada). En dicha Fig. 5 puede verse asimismo un cabo 11 unido al arraigo 4 para desplazarlo por tracción a lo largo de la guía 5 (ver Fig. 1 ).
Siguiendo con la descripción de la Fig. 1 , la parte móvil 4b allí ilustrada comprende dos paredes 4b1 , 4b2 con diferente inclinación y que convergen en un punto de conexión con un elemento de tracción 6 del sistema de tracción, de manera que cada uno de los dos sensores de deformación G1 , G2 del sistema de medida propuesto por el primer aspecto de la invención se encuentra fijado a una cara plana de una respectiva de dichas dos paredes 4b1 , 4b2.
Para el ejemplo de realización ilustrado por la Fig. 1 el sistema electrónico del sistema de medida propuesto por la invención se encuentra dividido en una unidad local U1 , dispuesta sobre o, para otro ejemplo de realización no ilustrado, próxima a la estructura de soporte, y una unidad remota U2, estando ambas unidades U1 , U2 comunicadas entre sí a través de una vía de comunicación inalámbrica C o, para otro ejemplo de realización no ilustrado, vía cable.
Según un ejemplo de realización el sistema electrónico comprende unos medios de indicación visual 8 previstos para mostrar unas señales visuales, representativas de la fuerza de tracción determinada por la unidad de procesamiento. Dichos medios de indicación visual se hallan dispuestos, en la Fig. 1 , en la unidad remota U2, aunque para otro ejemplo de realización, no ilustrado, éstos se disponen en la unidad local U1.
En particular la parte 4b constituye un alojamiento para dicha unidad local U1 , el cual está ventajosamente cerrado.
La descripción del arraigo 4 o pieza de anclaje hecha con referencia a la Fig. 1 es también válida para la pieza de anclaje con sistema de medida integrado propuesta por el tercer aspecto de la invención, la cual, tal y como se aprecia en la Fig. 1 , define un alojamiento cerrado para la unidad local U1 , que en este caso está cerrado por sendas tapas 12, 13.
En la Fig. 2 se muestra una gráfica que muestra una serie de valores de deformaciones detectadas mediante los sensores de deformación G1 , G2 ilustrados en la Fig. 1 , correlacionados con la fuerza y el ángulo de tiro, correspondiente al ángulo en el plano de trabajo, para el cual han sido obtenidos. En dicha gráfica se han indicado las unidades de fuerza en KN y las de deformación de las galgas en m.
Según el ejemplo de realización del método propuesto por el segundo aspecto de la invención, descrito en un apartado anterior, y relativo a la realización del procesamiento de la etapa a) en la forma de una correlación de los valores detectados en un momento dado con los registrados, los valores indicados en la gráfica de la Fig. 2 corresponden a dichos valores registrados para unas fuerzas de 2,3KN, 3.6KN y 5, 1
KN, y unos valores del ángulo de tiro de la escota 10 (indicado como α en la Fig. 5) de
0, 5, 10, 15 y 20 grados, llevándose a cabo dicha correlación consultando dicha gráfica con los valores de deformación obtenidos en las galgas G1 y G2 en un momento dado.
Si dichos valores son, por ejemplo, de 1 ,48 E-5 m para la galga G1 y de 7,24 E- 5 m para la galga G2, consultando dichos valores en la gráfica de la Fig. 2, resulta directo, por correlación, determinar que la magnitud de la fuerza corresponde a una fuerza de tracción de 5,1 KN y que el ángulo de tiro es de 15 grados.
Debe tenerse en cuenta que, para la disposición ilustrada en la Fig. 5, se deduce que la carga soportada en la parte superior del arraigo 4, es decir la ejercida por el elemento de tracción 6, es el doble de la carga de la escota 10. La evaluación de esta carga se hace a partir de fórmulas empíricas que dan una estimación de ese valor a partir de la velocidad del viento, manteniendo constantes el resto de parámetros, tal y como se ha mencionado anteriormente.
Las medidas se han tomado habiendo restringido todos los movimientos del arraigo 4, a excepción del anteriormente comentado desplazamiento articulado alrededor del eje E de la parte móvil 4b respecto a la 4a (es decir del plano de trabajo respecto a E), por lo que el ángulo de tiro a, y por tanto el de la tensión sufrida por el arraigo 4 y el elemento de tracción 6, que es proporcional a a, se encuentra incluido en un plano z-x, siendo z la dirección vertical del plano de trabajo, y x la dirección horizontal que sigue la guía 5 (ver Fig. 1 ).
El método propuesto comprende utilizar unos correspondientes algoritmos de interpolación/extrapolación/predicción cuando los valores detectados en un momento dado están fuera del rango de valores registrados.
En la Fig. 3 se ilustra otro ejemplo de realización del sistema de medida propuesto por el primer aspecto de la invención, para el cual éste está aplicado a un sistema mecánico cuya estructura de soporte comprende una pieza de soporte 1 del eje 3a de una polea 3.
Puede verse cómo dicha pieza de soporte 1 comprende dos paredes 1 a, 1 b sustancialmente paralelas, cada una de ellas fijada a un respectivo extremo de dicho eje 3a, quedando dicha polea 3 dispuesta entre dichas dos paredes 1 a, 1 b.
También se observa en dicha Fig. 3 que el sistema de medida comprende tres sensores de deformación G1 , G2, G3 fijados a dos respectivas zonas de una cara plana de una de dicha paredes 1 a, 1 b, orientados de manera no alineada entre sí (para otro ejemplo de realización no ilustrado el sistema de medida comprende únicamente dos sensores G1 , G2 dispuestos en la misma o en paredes diferentes 1 a, 1 b, en unas correspondientes caras planas), teniendo la memoria del sistema electrónico registrados unos valores de señales de salida también del tercer sensor de deformación G3, obtenidos previamente para dicha pluralidad de fuerzas de tracción diferentes, y estando la unidad de procesamiento también en conexión con el tercer sensor de deformación G3, y prevista para comparar también las señales de salida de la misma con dichos valores registrados, para llevar a cabo la determinación de la magnitud y la dirección de tiro de la fuerza de tracción a la que es sometida la pieza de soporte 1 por parte de un cable o cuerda (no ilustrado) que circula por el contorno de la polea 3.
En dicha Fig. 3 se observa cómo el sistema de medida comprende una carcasa formada por dos piezas 7a, 7b, ambas fijadas a la pieza de soporte 1 , una de ellas 7a de manera articulada, y que alberga en su interior a parte del sistema electrónico, la anteriormente denominada unidad local U1 , o a todo el sistema electrónico si éste no se encuentra dividido en dos partes, así como a la batería de alimentación (no ilustrada). Las dos piezas 7a, 7b se cierran preferentemente de manera estanca, con el fin de proteger a los componentes alojados por las mismas.
Tal y como se muestra en la Fig. 3, el sistema de medida allí ¡lustrado comprende un cuarto sensor de deformación G4 sobre una cara plana de la pared 1 b, y orientado como el sensor G3. Tal sensor tiene como fin posibilitar la comprobación de la simetría de los resultados, comparando los obtenidos para G3 con los de G4.
En la Fig. 4 se ilustra, de manera esquemática, un sistema mecánico análogo al de la Fig. 3, que incluye una polea 3 a través de la cual discurre un cable 6 que ejerce una fuerza de tracción en el sentido indicado por la flecha ilustrada, y con el ángulo de tiro β indicado, que en este caso corresponde a una dirección de tracción definida en un plano vertical que coincide con el plano de trabajo, pero que tal y como se ha comentado anteriormente, para otro ejemplo de realización para el que el plano de trabajo en el que se encuentra definida la dirección de tracción no se corresponda únicamente con un solo plano, tanto el sistema como el método propuestos comprenden determinar los dos ángulos de las respectivas componentes de la dirección de tracción, en cada uno de los planos en los que se encuentre incluida.
Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas.

Claims

Reivindicaciones
1. - Sistema de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico que comprende:
- al menos una estructura de soporte susceptible de deformación;
- al menos un sistema de tracción conectado a dicha estructura de soporte, que es al menos una, para transmitir una fuerza de tracción a dicha estructura de soporte; donde dicho sistema de medida de fuerzas comprende:
- al menos dos sensores de deformación (G1 , G2) fijados a dos respectivas zonas de dicha estructura de soporte, que es al menos una, para detectar la deformación de cada una de dichas dos zonas como resultado de la acción de dicha fuerza de tracción transmitida por dicho sistema de tracción a dicha estructura de soporte, que es al menos una;
- un sistema electrónico en conexión con dichos sensores de deformación (G1 , G2), que son al menos dos, para recibir unas señales de salida de dichos sensores de deformación (G1 , G2) y determinar la magnitud de dicha fuerza de tracción, en función de las deformaciones detectadas,
estando dicho sistema de medida caracterizado porque dicho sistema electrónico comprende:
- al menos una memoria en la que se encuentran registrados unos valores de señales de salida de dichos sensores de deformación (G1 , G2) correlacionados con unos valores de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, respecto a un mismo sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, para los cuales dichos valores de señales de salida registrados han sido obtenidos previamente, y
- una unidad de procesamiento en conexión con dicha memoria y con dichos sensores de deformación, y prevista para procesar las señales de salida de al menos dichos sensores de deformación (G1 , G2), recibidas por el sistema electrónico en un momento dado, en relación con dichos valores registrados, para determinar dicha magnitud de dicha fuerza de tracción y también, de manera unívoca, la dirección de tiro o tracción, respecto a dicho sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, de la fuerza de tracción a la que es sometida dicha estructura de soporte.
2. - Sistema según la reivindicación 1 , caracterizado porque al menos parte de dichos sensores de deformación (G1 , G2) se encuentran orientados según vectores distintos entre sí.
3. - Sistema de medida según la reivindicación 1 ó 2, caracterizado porque está aplicado a un sistema mecánico cuyo sistema de tracción comprende al menos una polea (3).
4. - Sistema de medida según la reivindicación 3, caracterizado porque está aplicado a un sistema mecánico cuya estructura de soporte comprende una pieza de soporte (1) del eje (3a) de dicha polea (3).
5. - Sistema de medida según la reivindicación 4, caracterizado porque está aplicado a un sistema mecánico en el cual dicha pieza de soporte (1 ) comprende dos paredes (1 a, 1 b), cada una de ellas fijada a un respectivo extremo de dicho eje (3a), quedando dicha polea (3) dispuesta entre dichas dos paredes (1 a, 1 b), y porque dichos dos sensores de deformación (G1 , G2) se encuentran fijados a dos respectivas zonas de una cara plana de una de dicha paredes (1 a, 1 b), orientados de manera no alineada entre sí, o a cada una de dos respectivas zonas de dos correspondientes caras planas de dichas dos paredes (1 a, 1 b).
6.- Sistema de medida según la reivindicación 5, caracterizado porque comprende al menos un tercer sensor de deformación (G3) fijado a otra zona de dicha cara plana de dicha pared (1 a, 1 b), orientada no paralelamente respecto a los otros dos sensores de deformación (G1 , G2), y porque dicha memoria, que es al menos una, tiene registrados unos valores de señales de salida de dicho tercer sensor de deformación (G3), obtenidos previamente para dicha pluralidad de fuerzas de tracción diferentes, y porque dicha unidad de procesamiento también está en conexión con dicho tercer sensor de deformación (G3), y prevista para comparar también las señales de salida de la misma con dichos valores registrados, para llevar a cabo dicha determinación de la magnitud y dirección de tiro de la fuerza de tracción a la que es sometida la pieza de soporte (1).
7.- Sistema de medida según la reivindicación 1 , 2 ó 3, caracterizado porque está aplicado a un sistema mecánico sometido a tracción en el cual dicha estructura de soporte comprende una pieza de anclaje (4) con al menos una primera parte (4a) unida a una estructura fija.
8.- Sistema de medida según la reivindicación 7, caracterizado porque está aplicado a un sistema mecánico sometido a tracción en el cual dicha pieza de anclaje (4) es un arraigo, y porque comprende una segunda parte o parte móvil (4b) unida a dicha primera parte (4a) de manera que es desplazable respecto a la misma según al menos un grado de libertad.
9.- Sistema de medida según la reivindicación 7 u 8, caracterizado porque está aplicado a un sistema mecánico sometido a tracción en el cual dicha pieza de anclaje (4) o dicha segunda parte (4b) comprende al menos dos paredes (4b1 , 4b2) unidas por un extremo a un elemento en conexión con un elemento de tracción (6) de dicho sistema de tracción, y porque cada uno de dichos dos sensores de deformación (G1 , G2) se encuentra fijado a una cara plana de una respectiva de dichas dos paredes (4b1 , 4b2).
10. - Sistema de medida según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho sistema electrónico se encuentra dividido en al menos una unidad local (U1), dispuesta sobre o próxima a dicha estructura de soporte, y una unidad remota (U2), estando ambas unidades (U1 , U2) comunicadas entre sí a través de una vía de comunicación inalámbrica (C) o vía cable.
1 1. - Sistema de medida según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende una carcasa (7a, 7b) fijada a dicha estructura de soporte y que alberga en su interior a al menos parte (U1 ) de dicho sistema electrónico.
12. - Sistema de medida según la reivindicación según cualquiera de las reivindicaciones 1 a 1 1 , caracterizado porque está aplicada a un sistema mecánico sometido a tracción en el cual parte de dicha estructura de soporte constituye un alojamiento para al menos parte (U1 ) de dicho sistema electrónico.
13. - Sistema de medida según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho sistema electrónico comprende unos medios de indicación visual (8) previstos para mostrar unas señales visuales, representativas de la fuerza de tracción determinada por dicha unidad de procesamiento.
14. - Sistema de medida según la reivindicación 1 , caracterizado porque dicho sistema de tracción es o comprende al menos un elemento de tracción (6) del grupo que incluye los siguientes elementos de tracción: un cable, una cuerda, una cadena y una barra.
15. - Sistema de medida según cualquiera de las reivindicaciones anteriores, caracterizado porque está aplicado a la medida de la fuerza aplicada a un sistema mecánico que forma parte de una jarcia de un barco de vela.
16. - Método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, del tipo que comprende:
a) detectar las deformaciones sufridas por al menos dos respectivas zonas de una estructura de soporte causadas por una fuerza de tracción ejercida por parte de un sistema de tracción conectado a dicha estructura de soporte;
b) analizar unos valores de detección, correspondientes a dichas deformaciones detectadas, para determinar la magnitud de dicha fuerza de tracción ejercida, estando dicho método caracterizado porque dicha etapa b) comprende procesar dichos valores de detección, obtenidos en un momento dado, en relación con unos valores de detección, teóricos, u obtenidos por cálculo numérico, y/o experimentales, registrados previamente correlacionados con unos valores de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, respecto a un mismo sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, para determinar dicha magnitud de dicha fuerza de tracción y también, de manera unívoca, la dirección de tiro o tracción, respecto a dicho sistema de referencia determinado, de la fuerza de tracción a la que es sometida dicha estructura de soporte en dicho momento dado.
17. - Método según la reivindicación 16, caracterizado porque dicha etapa a) comprende detectar deformaciones según al menos dos vectores con orientaciones distintas entre sí.
18. - Método según la reivindicación 16 ó 17, caracterizado porque dicho procesamiento de dicha etapa b) comprende comparar dichos valores de detección obtenidos en un momento dado con dichos valores de detección registrados previamente.
19. - Método según la reivindicación 18, caracterizado porque comprende obtener dichos valores de detección para llevar a cabo dicho registro previo de los mismos, únicamente para un rango de aplicación determinado que abarca unos determinados valores de detección de deformaciones y de fuerzas de tracción, en magnitud y dirección de tiro.
20. - Método según la reivindicación 16 ó 19, caracterizado porque cuando dichos valores de deformaciones detectadas en dicha etapa a) se encuentran incluidos en dichos valores de detección registrados, el método comprende determinar dicha fuerza de tracción ejercida en dicho momento dado, tanto por lo que se refiere a su magnitud como a su dirección de tiro, correlacionando los valores detectados en dicho momento dado con los registrados.
21. - Método según la reivindicación 20, caracterizado porque cuando dichos valores de deformaciones detectadas en dicha etapa a) no se encuentran incluidos en dichos valores de detección registrados para dicho rango de aplicación determinado, el método comprende determinar dicha fuerza de tracción ejercida en dicho momento dado, tanto por lo que se refiere a su magnitud como a su dirección de tiro, mediante la utilización de un método de interpolación, extrapolación o predicción basado en dichos valores de detección registrados correlacionados.
22.- Método según la reivindicación 16, caracterizado porque dicho procesamiento de dicha etapa b) comprende ejecutar un algoritmo que implementa una red neuronal, tomando como datos de entrada dichos valores de detección obtenidos en un momento dado.
23.- Método según la reivindicación 22, caracterizado porque comprende entrenar y validar a dicha red neuronal a partir de al menos dichos valores de detección, teóricos, u obtenidos por cálculo numérico, y/o experimentales, registrados previamente.
24. - Método según la reivindicación 16, caracterizado porque comprende obtener dichos valores de detección experimentales para llevar a cabo dicho registro previo de los mismos, mediante la realización de una pluralidad de etapas a) y b) previas, para dicha pluralidad de fuerzas de tracción diferentes respecto a cuyos valores, tanto de magnitud como de dirección de tiro, se encuentran correlacionados.
25. - Pieza de anclaje con sistema de medida integrado, del tipo que comprende: - al menos dos sensores de deformación (G1 , G2) fijados a dos respectivas zonas de dicha pieza de anclaje (4, 14), orientados de manera no alineada entre sí, para detectar la deformación de cada una de dichas dos zonas como resultado de la acción de una fuerza de tracción transmitida por un sistema de tracción conectado a dicha pieza de anclaje;
- al menos una parte (U1) de un sistema electrónico dispuesto en dicha pieza de anclaje y en conexión con dichos sensores de deformación (G1 , G2), que son al menos dos, para recibir unas señales de salida de dichos sensores de deformación (G1 , G2) y determinar la magnitud de dicha fuerza de tracción, en función de las deformaciones detectadas,
estando dicha pieza de anclaje caracterizada porque define un alojamiento cerrado que alberga en su interior a al menos dicha parte (U1) de dicho sistema electrónico, el cual comprende:
- al menos una memoria en la que se encuentran registrados unos valores de señales de salida de dichos sensores de deformación (G1 , G2) correlacionados con unos valores de una pluralidad de fuerzas de tracción diferentes, en magnitud y en dirección de tiro o tracción, respecto a un mismo sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, para los cuales dichos valores de señales de salida registrados han sido obtenidos previamente, y
- una unidad de procesamiento en conexión con dicha memoria y con dichos sensores de deformación, y prevista para procesar las señales de salida de al menos dichos sensores de deformación (G1 , G2), recibidas por el sistema electrónico en un momento dado, en relación con dichos valores registrados, para determinar dicha magnitud de dicha fuerza de tracción y también, de manera unívoca, la dirección de tiro o tracción, respecto a un mismo sistema de referencia determinado, o vector o ángulo en el plano de trabajo del sistema de tracción, de la fuerza de tracción a la que es sometida dicha pieza de anclaje.
PCT/ES2010/000460 2009-11-26 2010-11-12 Sistema y método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado WO2011098625A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902240A ES2362966B1 (es) 2009-11-26 2009-11-26 Sistema y método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado.
ESP200902240 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011098625A1 true WO2011098625A1 (es) 2011-08-18

Family

ID=44225671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000460 WO2011098625A1 (es) 2009-11-26 2010-11-12 Sistema y método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado

Country Status (2)

Country Link
ES (1) ES2362966B1 (es)
WO (1) WO2011098625A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203772A (ja) * 2019-06-18 2020-12-24 宮▲崎▼機械システム株式会社 テーピング装置および張力検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216894A1 (en) * 2002-04-09 2003-11-20 The Board Of Trustees Of The University Methods and systems for modeling material behavior
US20050103100A1 (en) * 2003-10-27 2005-05-19 Sumitomo Rubber Industries, Ltd. System and method for determining tire force
EP2017594A2 (en) * 2007-07-10 2009-01-21 Mytrak Health System Inc. Force sensing system for a tensioned flexible member
FR2923293A1 (fr) * 2007-11-05 2009-05-08 Karver Soc Par Actions Simplif Poulie a capteur d'effort integre.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216894A1 (en) * 2002-04-09 2003-11-20 The Board Of Trustees Of The University Methods and systems for modeling material behavior
US20050103100A1 (en) * 2003-10-27 2005-05-19 Sumitomo Rubber Industries, Ltd. System and method for determining tire force
EP2017594A2 (en) * 2007-07-10 2009-01-21 Mytrak Health System Inc. Force sensing system for a tensioned flexible member
FR2923293A1 (fr) * 2007-11-05 2009-05-08 Karver Soc Par Actions Simplif Poulie a capteur d'effort integre.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203772A (ja) * 2019-06-18 2020-12-24 宮▲崎▼機械システム株式会社 テーピング装置および張力検出装置

Also Published As

Publication number Publication date
ES2362966B1 (es) 2012-05-23
ES2362966A1 (es) 2011-07-18

Similar Documents

Publication Publication Date Title
ES2328568T3 (es) Sistema de amarre con control activo.
ES2806808T3 (es) Dispositivo para monitorizar datos operativos y/o determinar el estado de descarte de un cable cuando se utiliza en polipastos
ES2651368T3 (es) Dispositivo para reconocer el estado de recambio de un cable de fibras altamente resistente durante su utilización en equipos de izado
US9120653B2 (en) Method of monitoring crane safety during the setup procedure, as well as crane and crane control
ES2555502T3 (es) Dispositivo para reconocer el estado de recambio de un cable de fibras altamente resistente durante su utilización en equipos de izado
TWI405705B (zh) 具有車廂之升降設備、升降設備用之轉向滾輪及在升降車廂中配置載重感測器之方法
US10479151B2 (en) Trailer coupling comprising a sensor
ES2867899T3 (es) Dispositivo para la determinación del estado de desgaste de un cable al emplearlo en equipos elevadores
JP6619480B2 (ja) エレベーターかごの荷重の指標を提供するエレベーター末端装置
GB2483004A (en) High Tension cable measurement system and assembly
FI3889028T3 (fi) Aluksen kiinnitysköyden valvontajärjestelmä, aluksen kiinnityksen hallintajärjestelmä, aluksen kiinnitysköyden valvontamenetelmä ja aluksen kiinnityksen hallintamenetelmä
WO2011098625A1 (es) Sistema y método de medida de fuerzas aplicable a la medida de la fuerza aplicada a un sistema mecánico, y pieza de anclaje con sistema de medida integrado
EP3369964B1 (en) Smartlink
ES2274206T3 (es) Mecanismo de elevacion con dispositivo para determinar la carga.
EP1788365B1 (en) Load cell for elevators and similar
JP2011251041A5 (es)
US9682845B2 (en) Rope load detecting device for detecting the total rope load in multiple elevator ropes
FI122429B (fi) Menetelmä henkilönostimen puomin taipuman mittaamiseksi, henkilönostin sekä mittausjärjestelmä
KR20160043875A (ko) 크레인 모니터링 장치
EP3762696B1 (en) A sensor for measuring the flex of a pole
KR102158587B1 (ko) 병렬케이블 로봇용 케이블장력 감지를 위한 윈치 드럼
ITMI20070092U1 (it) Apparecchio di misura della forza di trazione
JP2012215497A (ja) 電線被覆の劣化診断装置
US20210008414A1 (en) A method and system for measuring a rowing profile
CN110371590A (zh) 一种同层布置输煤皮带重锤车式拉紧装置的主厂房

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845615

Country of ref document: EP

Kind code of ref document: A1