WO2011096442A1 - Folding method and folding system using press brake - Google Patents

Folding method and folding system using press brake Download PDF

Info

Publication number
WO2011096442A1
WO2011096442A1 PCT/JP2011/052168 JP2011052168W WO2011096442A1 WO 2011096442 A1 WO2011096442 A1 WO 2011096442A1 JP 2011052168 W JP2011052168 W JP 2011052168W WO 2011096442 A1 WO2011096442 A1 WO 2011096442A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
workpiece
angle
bending
target
Prior art date
Application number
PCT/JP2011/052168
Other languages
French (fr)
Japanese (ja)
Inventor
志剛 王
Original Assignee
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学 filed Critical 国立大学法人岐阜大学
Priority to DE112011100452T priority Critical patent/DE112011100452T5/en
Priority to JP2011552802A priority patent/JP5737657B2/en
Publication of WO2011096442A1 publication Critical patent/WO2011096442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • B21D5/0272Deflection compensating means

Definitions

  • the present invention relates to a bending method and a bending processing system using a press brake that bends a workpiece to a target angle by relatively pushing an upper die into a V groove of a lower die. is there.
  • the conventional typical press brake has a lower mold having a V-groove opposed to a lower position of the upper mold and moves the upper and lower molds relatively close to and away from each other.
  • the workpiece is bent at a predetermined angle by relatively pushing the upper die into the V groove of the lower die.
  • a press brake of a type in which the ram with the upper mold attached is moved up and down, a workpiece such as a plate shape is supported on the lower mold, and the pressure applied by the upper mold moved down together with the ram is applied.
  • the workpiece is bent at a predetermined angle. That is, the angle at which the workpiece is bent is determined by the moving distance of the upper die that moves from the contact to the lower end position (the amount of pressing of the upper die (stroke)).
  • the bending angle of the workpiece when the upper die for pressing the workpiece is unloaded and removed from the die is larger than the bending angle when the workpiece is pressurized with the upper die by the spring back. It is generally known that For this reason, in order to bend the workpiece to a target angle, the upper die is determined based on the workpiece material, plate thickness, upper and lower mold shapes, V-groove angle and width, machine rigidity, etc. The amount of indentation is calculated, and the workpiece is bent. In the present specification, the bending angle of the workpiece when the workpiece is sandwiched between the upper and lower molds is referred to as the “clipping angle”, and the bending angle of the workpiece when unloaded and spring-backed is expressed as “ It is called “finish angle”.
  • the above-described pressing amount of the upper mold is created by previously creating a database of the influence of calculation factors such as workpiece material, plate thickness, upper and lower mold shapes, V-groove angle and width, and machine rigidity. It is calculated based on the calculation factor that is stored in the database.
  • the database does not completely match the values based on the workpieces used for actual machining, press brakes, etc., and has slight errors. Therefore, the final workpiece finishing angle can be determined by a single bending process. It was difficult to set the target value.
  • a test bending process is performed in order to check the processing accuracy according to the calculated amount of pressing of the upper die and to correct the amount of pressing of the upper die.
  • the bending work is performed on the work for trial bending, the finishing angle of the work subjected to the bending work is measured, and the pushing amount of the upper mold is increased or decreased according to the finishing angle of the work.
  • the next workpiece is bent on the basis of the corrected amount of pressing of the upper die, and the process of measuring the finished angle and re-correcting the amount of pressing of the upper die is repeated several times. Through repeated trial and error, an accurate upper die push-in amount that can bend the workpiece to the final target angle is obtained.
  • the present invention has been proposed to solve this problem in view of the above-mentioned problems inherent in the prior art, and the final target finish angle of the workpiece by performing a single bending process. It is an object of the present invention to provide a bending method and a bending system using a press brake capable of obtaining the pressing amount of the upper die corresponding to the above.
  • a bending method using a press brake according to claim 1 of the present application, When the upper mold (26) is relatively pushed into the V-groove (20) of the lower mold (18) disposed opposite to the upper mold (26), the lower mold (18) Bending using a press brake that makes the workpiece (W) contact the inclined surface of the V-groove (20) and performs a bending process so that the finished angle of the workpiece (W) becomes a predetermined target finished angle ( ⁇ T ).
  • a processing method Set the finished angle ( ⁇ 1 ) of the workpiece (W) obtained by bending in the air bend state when the workpiece (W) is unloaded when the workpiece (W) contacts the inclined surface of the V-groove (20). Set under conditions that are larger than the specific finish angle ( ⁇ F ), and push the upper die (26) into the V groove (20) with the set push amount (St 1 ) corresponding to the set finish angle ( ⁇ 1 ). Then, the workpiece (W) is bent, and the measured finished angle ( ⁇ M ) of the workpiece (W) bent at the set push-in amount (St 1 ) is measured.
  • the measured finishing angle ( ⁇ M ) and the set pushing amount (St 1 ) A point determined by a specific indentation amount (St F ) that is the indentation amount of the upper die (26) corresponding to the specific finishing angle ( ⁇ F ) and the specific finishing angle ( ⁇ F ) And passing through the measurement point and the inflection point, with the target indentation amount (St T ) as the indentation amount of the upper die (26) corresponding to the target finish angle ( ⁇ T ) as the machining point.
  • Bending is performed by calculating the target pushing amount (St T ) so that the inclination (f1) of the straight line and the inclination (f2) of the straight line passing through the inflection point and the processing point satisfy a predetermined relationship. Is the gist.
  • the bending method using the press brake according to claim 2 is:
  • the target push-in amount (St T ) is the width (V) of the V groove (20) of the lower mold (18) and the plate thickness (t) of the workpiece (W)
  • the measurement point and the inflection The gist is that the slope (f1) of the straight line passing through the point and the slope (f2) of the straight line passing through the inflection point and the machining point are calculated so as to satisfy the relationship of the following formula (f).
  • the bending method using the press brake according to claim 4 is:
  • the bending method using the press brake according to claim 7 is:
  • the set finishing angle ( ⁇ 1 ) is set to a range of 0.1 ° ⁇ ⁇ 1 ⁇ F ⁇ 7 °.
  • a folding system using a press brake according to claim 8 of the present application is provided.
  • Calculating means (36) The mold driving means so that the upper mold (26) is pushed into the V groove (20) according to the set pushing amount (St 1 ) or the target pushing amount (St T ) calculated by the calculating means (36).
  • the calculating means (36) is configured to measure the measured finish angle ( ⁇ M ) in a St- ⁇ graph representing the relationship between the pushing amount (St) of the upper die (26) and the finish angle ( ⁇ ) of the workpiece (W).
  • a point determined by the set push amount (St 1 ) as a measurement point a specific push amount that is a push amount of the upper die (26) corresponding to the specific finish angle ( ⁇ F ) and the specific finish angle ( ⁇ F ) (St F) and an inflection point a point defined by the target pushing amount of the push-in amount of the target finish angle upper die corresponding to ( ⁇ T) (26) to (St T) in the case of the processing point
  • the target indentation amount (St T T ) so that the slope (f1) of the straight line passing through the measurement point and the inflection point and the slope (f2) of the straight line passing through the inflection point and the machining point satisfy a predetermined relationship.
  • Said drive control means (40) is folded for the first time by controlling the driving of the said mold driving means (28) bending is performed according to the settings pushing amount calculated by said calculating means (36) (St 1), Calculated by the calculating means (36) based on the actually measured finishing angle ( ⁇ M ) and the set push-in amount (St 1 ) of the workpiece (W) input to the input means (32) after the first bending process.
  • the gist is that the second and subsequent bending processes are executed by the drive control means (40) drivingly controlling the mold drive means (28) in accordance with the target pushing amount (St T ).
  • the bending processing system by the press brake according to claim 9 of the present application is:
  • the calculation means (36) uses the width (V) of the V groove (20) of the lower mold (18) and the plate thickness (t) of the work (W)
  • the measurement in the St- ⁇ graph is performed.
  • the target pushing amount so that the relationship between the slope (f1) of the straight line passing through the point and the inflection point and the slope (f2) of the straight line passing through the inflection point and the machining point satisfies the relationship of the following formula (f):
  • the gist is that it is set to calculate (St T ).
  • the bending processing system by the press brake is: Storage means for storing a bend factor data table indicating a correspondence relationship between the finish angle ( ⁇ ) of the work (W) and the bend factor (A) calculated from the machining conditions and the finish angle ( ⁇ ) of the work (W) (38)
  • the calculating means (36)
  • the bending system by the press brake according to claim 11 of the present application is: The calculating means (36)
  • the bending system by the press brake according to claim 12 of the present application is:
  • the drive control means (40) drives and controls the mold drive means (28) to execute the first bending process. Then, the drive control means (40) drives and controls the mold drive means (28) in accordance with the corrected target push amount (St T ') calculated by the calculation means (36), so that the second and subsequent bendings are performed.
  • the gist is that the processing is performed.
  • the bending system by the press brake according to claim 13 of the present application is The tip of the upper mold is formed in an arc shape
  • the drive control unit drives and controls the mold driving unit, and the first bending process is executed.
  • the gist is that the drive control means controls the mold drive means according to the calculated R bending correction target push-in amount (St T ′′) so that the second and subsequent bending processes are executed.
  • the bending system by the press brake according to claim 14 of the present application is:
  • the setting means (34) sets the set finishing angle ( ⁇ 1 ) in a range of 0.1 ° ⁇ ⁇ 1 ⁇ F ⁇ 7 °.
  • the workpiece is folded to a target finish angle that requires the workpiece to contact the inclined surface of the V groove of the lower mold during the bending process.
  • the target push-in amount corresponding to the target finish angle can be calculated by bending the workpiece once, reducing the number of times the workpiece is bent before the product can be manufactured. Productivity can be improved.
  • it is not necessary to measure the bending angle of the workpiece during the bending process it is not necessary to use sensors for the upper and lower molds, and general-purpose molds that are generally used can be used. It is possible to easily bend the workpiece to the target finish angle without being restricted by this.
  • the workpiece when the inclination of the straight line passing through the measurement point and the inflection point and the inclination of the straight line passing through the inflection point and the machining point are satisfied, the workpiece can be accurately obtained. Can be bent to the target finish angle.
  • the bend factor based on the formula (i)
  • the workpiece can be bent with higher accuracy.
  • FIG. 9 is a St- ⁇ graph showing the relationship between the amount of pressing of the upper die and the workpiece finishing angle, and is a schematic diagram showing the relationship between measurement points, inflection points, and machining points in workpiece bending.
  • work with the width V 8mm of V groove in the 1st experiment example. It is a graph which shows the experimental result at the time of bending a workpiece
  • work with the width V 10mm of V groove in the 1st experiment example. It is a graph which shows the experimental result at the time of bending a workpiece
  • variety V 12mm of V groove in the 1st experiment example.
  • V groove width (V) / plate thickness (t) the relationship between V groove width (V) / plate thickness (t) and bend factor value (A 100 ) / V groove width (V) at a finishing angle of 100 ° is shown.
  • FIG. It is the graph which showed the relationship between pushing amount (St) and processing load (W).
  • a V-groove width (V) / plate thickness (t) is a graph showing the relationship between the coefficient (k 1).
  • FIG. 1 is a schematic view showing a press brake 10 according to the first embodiment.
  • the press brake 10 is provided with a lower table 16 on a bed 14 positioned at the lower part of the front surface of a pair of left and right side frames 12, 12 formed in a C shape, and a lower mold 18 is detachable on the lower table 16.
  • a ram 22 is provided on the upper front surface of the side frames 12 and 12 so as to be movable up and down.
  • a holder 24 is provided at a lower end portion of the ram 22 at a position facing a lower mold 18 mounted on the lower table 16, and an upper mold 26 is detachably attached to the holder 24.
  • cylinder rods of hydraulic cylinders arranged as an example of the mold drive means 28 are connected to the upper left and right ends of the ram 22 at the upper positions of the left and right side frames 12 and 12, respectively. By driving this, the ram 22 is moved up and down to move the upper mold 26 up and down.
  • the mold driving means 28 is not limited to a hydraulic cylinder, and other conventionally known means such as a ball screw driven by a servo motor can be employed.
  • a V-shaped groove 20 (hereinafter referred to as a V-groove) that opens upward is formed on the upper surface of the lower mold 18 so as to extend in the width direction of the press brake 10.
  • the press brake 10 is of a type in which the upper die 26 moved downward is pushed into the V groove 20 of the lower die 18 to bend the workpiece W.
  • the workpiece W can be bent similarly. That is, when the upper mold 26 is relatively pushed into the V groove 20 of the lower mold 18 disposed opposite to the upper mold 26, any of the upper and lower upper molds 26 moves up and down. There may be.
  • the press brake 10 is provided with a control device 30 for controlling the press brake 10, and based on the workpiece machining conditions input to the input means 32 (input terminal) connected to the control device 30.
  • the pushing amount of the upper die 26 (the amount of downward movement of the upper die 26 after coming into contact with the workpiece W) is calculated, and the upper die 26 is pushed into the V groove 20 by the calculated pushing amount.
  • the mold drive control means 40 provided in the control device 30 drives the mold drive means 28 so that the ram 22 moves up and down.
  • the input means 32 includes an angle (for example, 80 °, 88 °, 90 °, etc.) of the V groove 20 of the lower mold 18, a width dimension (V) of the V groove 20 of the lower mold 18, and an upper mold.
  • Mold information such as the tip angle of the mold 26 (for example, 80 °, 88 °, 90 °, etc.) is input, and workpiece information such as the material of the workpiece W and the thickness (t) of the workpiece W is input. Is done.
  • the input means 32 receives a target finish angle of the workpiece W (hereinafter referred to as a target finish angle ( ⁇ T )) in the final product bent by the press brake 10, and the first time.
  • the finished angle of the workpiece W measured after the bending process hereinafter referred to as the measured finished angle ( ⁇ M ) is input. Based on these input values, the first bending process is performed.
  • the control device 30 determines the finishing angle of the workpiece W that is bent in the first bending process based on the input values (the processing condition and the target finishing angle ( ⁇ T ) of the workpiece W) input to the input means 32.
  • a setting unit 34 for setting a set finishing angle ( ⁇ 1 ) is provided, and a setting that is a pressing amount of the upper die 26 based on the setting finishing angle ( ⁇ 1 ) set by the setting unit 34.
  • the setting means 34 is referred to as a finished angle of the workpiece W (hereinafter referred to as a specific finished angle ( ⁇ F )) when the workpiece W is unloaded when the workpiece W comes into contact with the inclined surface of the V groove 20 of the lower mold 18. ) Is set so as to set the set finishing angle ( ⁇ 1 ) under the condition of greater than. It has been experimentally confirmed that the specific finishing angle ( ⁇ F ) is determined depending on the thickness (t) of the workpiece W and the width dimension (V) of the V groove 20 for each material of the workpiece W, The value of V / t and the specific finishing angle ( ⁇ F ) have the relationship shown in FIG.
  • an inflection point expression represented by the following expression (a) obtained by approximating each curve shown in FIG. 4 with a quadratic function is set in the setting means 34, and the workpiece W input to the input means 32 is set.
  • the specific finishing angle ( ⁇ F ) is calculated based on the machining conditions (specifically, the width dimension (V) of the V-groove 20, the plate thickness (t) of the workpiece W, the material of the workpiece W), and the identification
  • the set finishing angle ( ⁇ 1 ) is set under conditions that are larger than the finishing angle ( ⁇ F ).
  • a, b, and c are coefficients specific to the material of the workpiece W. Table 1 shows the coefficient values for an example of the workpiece W when the angle of the V groove 20 of the lower mold 18 is 88 °. Show.
  • the setting means 34 of the press brake 10 sets the set finishing angle ( ⁇ 1 ) in a range of 0.1 ° ⁇ ⁇ 1 ⁇ F ⁇ 7 °.
  • the calculation means 36 calculates the target finish angle ( ⁇ T ) using changes in the slopes f1 and f2 of the straight lines before and after (a point specified by the specific pushing amount (St F ) and the specific finish angle ( ⁇ F )).
  • the set finishing angle ( ⁇ 1 ) is set within the range of 0.1 ° ⁇ ⁇ 1 ⁇ F ⁇ 7 °, and the measurement point (the set push amount (St 1 ) and the point specified by the actually measured finishing angle ( ⁇ M )) ) by the close as possible to the inflection point, calculate child target pushing amount (St 1) with high precision It becomes possible.
  • the set finishing angle ( ⁇ 1 ) when the set finishing angle ( ⁇ 1 ) is set in the range of ⁇ 1 ⁇ F ⁇ 0.1 °, the workpiece W becomes V during bending due to the dimensional error of the plate thickness (t) of the workpiece W. There is a possibility that the bending characteristics of the workpiece will change greatly in contact with the inclined surface of the groove 20, and 0.1 ° ⁇ ⁇ 1 ⁇ F is preferable. If high-precision bending is not required, the set finishing angle ( ⁇ 1 ) may be set so that the value of ⁇ 1 - ⁇ F falls outside the above range.
  • the set pushing amount (St 1 ) is calculated by the calculation means 36 based on the setting finish angle ( ⁇ 1 ).
  • the set push-in amount (St 1 ) is determined based on the finish angle of the work W bent and unloaded in the air bend state, the push-in amount of the upper die 26, from the geometric shape of the work W bending. It is calculated from the relational expression showing the relationship of
  • the correction amount ⁇ is calculated by calculation of the bending of material mechanics, and is subtracted from the pushing amount of the upper die 26. In this way, by correcting the elastic recovery correction amount ⁇ , the bending angle ( ⁇ ) in the equation (e) can be regarded as a finished angle.
  • the arc length A means the length of the arc portion of the workpiece bending portion in the mathematical formula, but the bent portion of the workpiece W that is actually bent is not a complete arc. , A is referred to as “bend factor (A)”.
  • the bend factor (A) is the processing conditions of the workpiece W (specifically, the angle ( ⁇ ) of the V groove 20, the width dimension (V) of the V groove 20, the material of the workpiece W, the plate thickness (t) of the workpiece W) ) And the value determined based on the relationship with the finished angle of the workpiece W during bending. Therefore, in the first embodiment, a bend factor data table indicating the relationship between the finished angle ( ⁇ ) of the workpiece W and the bend factor (A) obtained by the finite element analysis method is stored in the storage unit 38 for each machining condition of the workpiece W. It is remembered. Table 2 shows an example of the bend factor data table stored in the storage means 38, and FIG.
  • the calculation means 36 calculates the bend factor (A 1 ) corresponding to the set finishing angle ( ⁇ 1 ) set by the setting means 34 based on the machining conditions of the workpiece W input to the input means 32. Obtained from the bend factor data table stored in the storage means 38.
  • the calculating unit 36 sets the set push-in amount (St 1 ) and measured. Based on the finishing angle ( ⁇ M ), the target pressing amount (St T ) that is the pressing amount of the upper mold 26 corresponding to the target finishing angle ( ⁇ T ) is set.
  • the calculation means 36 is a St- ⁇ graph representing the relationship between the pushing amount (St) of the upper die 26 and the finish angle ( ⁇ ) of the workpiece W, and the measured finish angle ( ⁇ M ) and Using the point determined by the set push amount (St 1 ) as a measurement point, the specific push amount (St F ) that becomes the push amount of the upper mold 26 corresponding to the specific finish angle ( ⁇ F ) and the specific finish angle ( ⁇ F ) ) and inflection points the point defined by, when said target finishing angle (theta T) target pushing amount of the push-in amount of the upper die 26 corresponding to the (St T) was processed point, surveying a fixed point and The target indentation amount (St T ) is calculated so that the inclination (f1) of the straight line passing through the inflection point and the inclination (f2) of the straight line passing through the inflection point and the machining point satisfy a predetermined relationship. Is set.
  • ⁇ M in the above equation (e) from the actually measured finishing angle ( ⁇ M ) and the set push amount (St 1 ) of the workpiece W input to the input means 32.
  • the measurement point and the inflection point in the St- ⁇ graph are specified, and the slope of the straight line passing through the measurement point and the inflection point ( f1) is calculated.
  • the calculating means 36 calculates the measurement point and the inflection point in the St- ⁇ graph when the width dimension (V) of the V groove 20 of the lower mold 18 and the plate thickness (t) of the workpiece W are set.
  • the relationship between the inclination (f1) of the straight line passing through and the inclination (f2) of the straight line passing through the inflection point and the machining point passes through the inflection point and the machining point so as to satisfy the relationship of the following formula (f).
  • the inclination (f2) of the straight line is determined, and corresponds to the target finish angle ( ⁇ T ) of the workpiece W input to the input means 32 on the straight line of the inclination (f2) passing through the inflection point and the machining point.
  • the pushing amount is calculated as a target pushing amount (St T ). Then, when the target pushing amount (St T ) is calculated by the calculating means 36, the mold of the control device 30 is pushed so that the upper mold 26 is pushed into the V groove 20 by the calculated target pushing amount (St T ).
  • the mold drive control means 40 controls the mold drive means 28 to execute the second and subsequent bending processes.
  • the control device 30 moves the die 30 so that the upper die 26 is pushed into the V groove 20 by the calculated target pushing amount (St T ).
  • the drive means 28 is driven and controlled, and the second and subsequent bending processes are executed.
  • the work W whose final finishing angle ( ⁇ L ) after being bent by the second and subsequent bending processes is in the range of ⁇ 0.25 ° ⁇ ⁇ L ⁇ T ⁇ 0.25 °.
  • the input means 32 has an angle ( ⁇ ) of the V groove 20 of the lower mold 18 of 88 °, a tip angle of the upper mold 26 of 88 °, and a target finish angle ( ⁇ T ) of the workpiece W.
  • the workpiece W was bent under the input of 90 °.
  • the target push amount (St T ) corresponding to the target finish angle ( ⁇ T ) can be calculated by performing the first bending of the workpiece W, In the second and subsequent work bending processes, high-precision bending is performed by pressing the upper mold 26 into the V-groove 20 based on the target pressing amount (St T ).
  • the target finish is achieved by performing the first bending work W.
  • the target push amount (St T ) corresponding to the angle ( ⁇ T ) can be calculated.
  • the upper die 26 is moved to the V-groove based on the target push amount (St T ). By being pushed into 20, a highly accurate bending process is performed.
  • the experimental results are shown in FIGS. 25 to 27 and Table 9.
  • the target push-in corresponding to the target finish angle ( ⁇ T ) is performed.
  • the amount (St T ) can be calculated.
  • the upper die 26 is pushed into the V-groove 20 based on the target pushing amount (St T ).
  • a highly accurate bending process is performed in a range of .25 ° ⁇ ⁇ L ⁇ T ⁇ 0.25 °.
  • the processing conditions of the workpiece W (specifically, the angle ( ⁇ ) of the V groove 20, the width dimension (V) of the V groove 20, the material of the workpiece W, the plate thickness (t) of the workpiece W). set the bend factor data table in advance a database of values of the bend factor (a 1) each, the bend factor corresponding to the set set finishing angle by setting means 34 ( ⁇ 1) (a 1 ), the input
  • the upper die 26 is pushed in during the first bending process using the bend factor (A 1 ) acquired based on the processing conditions of the workpiece W input to the means 32 and acquired from the bend factor data table.
  • the set push amount (St 1 ) is calculated.
  • the bend factor (A 1 ) corresponding to the set finishing angle ( ⁇ 1 ) is approximately calculated by calculation, so that the labor for constructing the bend factor data table in advance is omitted.
  • the amount of data set in the storage means 38 is reduced, and the range that can be adopted as the set finishing angle ( ⁇ 1 ) is expanded to improve versatility.
  • the value of the bend factor (A) varies depending on the finishing angle ( ⁇ ) of the workpiece W.
  • the value of the bend factor (A) has a smaller fluctuation range than the change in the set finishing angle ( ⁇ 1 ) of the workpiece W, and the set finishing angle ( ⁇ 1 ) becomes small (that is, the target pushing amount (St T )). It can be seen that the value becomes almost constant as the value approaches.
  • Equation (g) is expressed as an equation that approximates the curve shape of FIG.
  • the value of C t in the equation (g) is an approximate absolute value of the bend factor (A 1 ) value corresponding to the set finishing angle ( ⁇ 1 ) of the workpiece W.
  • ⁇ x is a finishing angle (that is, an upper limit value of the set finishing angle) that is an upper limit at which the workpiece W can be bent using the equation (g)
  • ⁇ y is a value of the bend factor (A 1 ). Is a reference angle (hereinafter referred to as an approximate angle).
  • the finishing angle ( ⁇ x ) that is the upper limit at which the workpiece W can be bent is determined in a range of ⁇ F ⁇ x ⁇ 180 °.
  • the theta x since the upper limit that can be bending the workpiece W it is preferable to adopt a value close to 180 °.
  • the finish angle ( ⁇ ) of the workpiece W approaches the specific finish angle ( ⁇ F ) the change in the bend factor (A) greatly affects the pushing amount of the upper die 26. Therefore, in order to increase the approximation accuracy, it is preferable to set the bend factor (A 1 ) value close to the specific finishing angle ( ⁇ F ) as the approximate angle ⁇ y that serves as a reference.
  • the bend factor (A 1 ) value close to the specific finishing angle ( ⁇ F ) as the approximate angle ⁇ y that serves as a reference.
  • the approximate angle ( ⁇ y ) that approximates the value of the bend factor (A) is preferably determined within the range of ⁇ F ⁇ y ⁇ x , and more preferably 95 ° ⁇ ⁇ y ⁇ x. Range.
  • the accuracy of ⁇ y is improved by adopting a value close to the target finish angle ( ⁇ T ) that is the final finish angle of the workpiece W.
  • Equation (h) is obtained by logarithmically approximating the relationship between (V / t) and (A 100 / V) shown in FIG.
  • d in the formula (h) e is an inherent coefficient determined by the material of the workpiece W, illustrating each coefficient value of the one example of the work W in the case of the A 100 in Table 11.
  • the bend factor data table in which the bend factor (A 1 ) for each machining condition of the workpiece W is previously stored in the database is not stored in the storage unit 38, and the set finish angle ( ⁇ 1 ) is supported.
  • the bend factor (A 1 ) to be calculated can be calculated.
  • the bend factor (A 1 ) is databased as a bend factor data table, the set finishing angle ( ⁇ 1 ) that is not included in the bend factor data table cannot be used.
  • the upper die 26 is relatively pushed into the V groove 20 of the lower die 18 with a pushing amount obtained by correcting the deflection on the press brake 10 side that occurs during the bending process.
  • a bending method and a bending processing system using a press brake capable of performing the bending processing will be described.
  • the deflection that occurs on the side of the press brake 10 during the bending process is expressed as the device deflection amount ( ⁇ ).
  • the longitudinal stiffness coefficient (k) is a value specific to the press brake 10 and can be obtained from design values and experiments of the press brake 10.
  • the finishing angle finishing angle of the workpiece W (theta) is the 135 ° with respect finish angle (theta A), reference finishing angle (theta A) as a reference push-in amount of the push-in amount of the upper die 26 comprising (St A )
  • finish angle of the workpiece W ( ⁇ ) ⁇ reference finish angle ( ⁇ A ) that is, “the push amount of the upper mold 26 (St) ⁇ the reference push amount (St A )”.
  • the processing load (W a ) is a known fact and can be expressed by the following formula (j).
  • the machining load (W a ) when “finished angle ( ⁇ ) ⁇ reference finished angle ( ⁇ A ) of the workpiece W” is referred to as a reference machining load.
  • the processing load (W) changes linearly. Therefore, the processing load (W) for bending in the range of “specific finishing angle ( ⁇ F ) ⁇ ⁇ ⁇ reference finishing angle ( ⁇ A )” is the processing load at the specific finishing angle ( ⁇ F ).
  • the load (W f ) is expressed by the following equation (k). Note that k f in the equation (k) is a specific coefficient determined by the material of the work W, and Table 12 shows coefficient values for an example of the work W.
  • 40 is configured so that the second and subsequent bending processes are executed by driving and controlling the mold driving means 28.
  • the upper mold 26 is actually driven by driving the upper mold 26 so that the corrected set push amount (St 1 ′) obtained by correcting the device deflection amount ( ⁇ 1 ) generated when bending is performed with the set push amount (St 1 ). Since the workpiece W is bent at the set indentation amount (St 1 ), the bending accuracy in the first bending is improved. Thereby, the accuracy of the corrected bend factor (A ′) calculated based on the set push amount (St 1 ) and the actually measured finished angle ( ⁇ M ) is improved, and the correction is performed based on the corrected bend factor (A ′). The processing accuracy of the second and subsequent bending processes can be increased.
  • the workpiece W can be bent at the target finish angle ( ⁇ T ) with high accuracy.
  • the upper die 26 having a tip formed in an arc shape is relatively pushed into the V groove 20 of the lower die 18 to bend the workpiece W.
  • it represents the arc radius of the distal end portion of the upper mold 26 as the tip radius R P (see FIG. 36).
  • the upper mold 26 is pushed in into the V groove 20 of the lower mold 18, the inner surface radius R of the workpiece bent portion is less tip radius R P of the upper mold 26 (i.e., R ⁇ R P ),
  • the bending process proceeds so that the deepest portion CP of the bent portion of the workpiece W is separated from the distal end portion PE of the upper mold 26 as shown in FIG. That is, in the region where the inner surface radius R of the workpiece bent portion is equal to or less than the tip radius R P of the upper mold 26, the gap between the deepest portion CP of the bent portion of the distal end portion PE and the workpiece W of the upper die 26 Will be able to.
  • the pushing amount (St) of the upper mold 26 necessary for bending the workpiece W to a predetermined finishing angle ( ⁇ ) is larger than that in the case of using the upper mold 26 having a tip formed in a square shape. In the case of using the upper mold 26 whose tip is formed in an arcuate shape, it becomes shorter.
  • the pushing amount (St) obtained by the above-described equation (e) is such that the tip of the upper die 26 is located at the deepest portion CP of the bent portion of the workpiece W like the upper die 26 having a square tip.
  • the amount of pressing (St) of the upper die 26 when bending is performed under the condition where the part PE is in contact. Therefore, in the fourth embodiment, when the workpiece W is bent at a predetermined finishing angle ( ⁇ ) using the upper mold 26 whose tip is formed in an arc shape, the pushing amount obtained by the above-described equation (e) is used.
  • (St) can be corrected by the gap between the tip portion PE of the upper mold 26 and the deepest portion CP of the bent portion of the workpiece W, so that the workpiece W can be bent more precisely.
  • a bending method and a bending system using a press brake will be described.
  • a value obtained by correcting the indentation amount (St) obtained by the equation (e) so as to correspond to the bending process in the upper die 26 having a circular arc shape at the tip portion is an R-bend correction indentation amount ( St ′′), and the gap distance between the front end PE of the upper mold 26 and the deepest portion CP of the bent portion of the workpiece W is expressed as an indentation amount error (D).
  • the workpiece W is bent by pushing the upper die 26 into the V groove 20 of the lower die 18 with the R bending push amount (St ′′) obtained by the above-described equation (n).
  • the workpiece W can be bent with high accuracy at a predetermined finishing angle ( ⁇ ).
  • the relationship between the pushing amount (St) obtained by the equation (e) and the finishing angle ( ⁇ ) is indicated by a broken line. That is, when the workpiece W is bent using the upper die 26 whose tip is formed in an arcuate shape, the push amount (St) obtained by the above-described equation (e) is expressed by the equation (q). It can be seen that the accuracy of bending the workpiece W is improved by subtracting and correcting the indentation amount error (D).
  • the mold drive control means 40 controls the mold drive means 28 so that the first bending process is executed.
  • the drive control means 40 drives and controls the mold drive means 28 so that the second and subsequent bending processes are executed.
  • the upper mold 26 so that the workpiece W target pushing amount (St T) corrects the pushing amount error (D T) which occurs during the bending in the R bending correction target pushing amount and (St T '')
  • the workpiece W is actually bent at the target pushing amount (St T ), so that the workpiece W can be bent at the target finish angle ( ⁇ T ) with high accuracy.
  • a set finishing angle ( ⁇ 1) of a workpiece obtained by bending in an air bend state. ) Is set to be larger than the specific finish angle ( ⁇ F ), and the workpiece is folded by pushing the upper die into the V groove with the set push amount (St 1 ) corresponding to the set finish angle ( ⁇ 1 ).
  • the actual finished angle ( ⁇ M ) of the workpiece bent and bent with the set indentation amount (St 1 ) is measured, and the slope (f1) of the straight line passing through the measurement point and the inflection point in the St- ⁇ graph, If a bending method is employed in which the target indentation amount (St T ) is calculated so that the inflection point and the slope (f2) of the straight line passing through the processing point satisfy a predetermined relationship, the bending process is performed.
  • Target finish angle by bending workpiece once It is possible to obtain the target pressing amount corresponding, to reduce the bending number of work required before product manufacturing can be performed it is possible to improve the productivity.
  • the slope (f1) of the straight line passing through the measurement point and the inflection point and the slope (f2) of the straight line passing through the inflection point and the machining point are calculated so as to satisfy the relationship of the formula (f).
  • the range is set to (f1 / f2) ⁇ (V / t) ⁇ 4.5, or 6.5 ⁇ (f1 / f2) ⁇ (V / t), and the slope of the straight line passing through the measurement point and the inflection point (f1) and the slope of the straight line passing through the inflection point and the machining point (f2) are used in the St- ⁇ graph.
  • the workpiece finishing angle ( ⁇ ) and bend are changed for each workpiece machining condition (V groove angle ( ⁇ ), V groove width dimension (V), workpiece material, workpiece thickness (t)).
  • the bend factor data table showing the relationship with the factor (A) is stored in the storage means.
  • the work piece representing the relationship between the work finished angle ( ⁇ ) and the bend factor (A) An approximate expression of a curve for each processing condition may be derived, and the corresponding bend factor (A) value may be calculated from the set finishing angle ( ⁇ 1 ) based on the approximate expression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

A final target press distance of an upper die against a workpiece can be calculated from a single folding. An upper die is forced into a V-shaped groove by a set press distance (St1) corresponding to a set finished angle (θ1) that is set so as to be larger than a specific finished angle (θF) of a workpiece from which a load applied thereto is removed when the workpiece is brought into contact with slopes of the V-shaped groove, and a finished angle (θM) of the workpiece is measured. A target press distance (StT) is calculated such that an inclination (f1) of a first straight line and an inclination (f2) of a second straight line satisfy a predetermined relationship in an St-θ graph indicating the relationship between a press distance (St) and a finished angle (θ), where the first straight line passes through a measuring point that is defined by the measured finished angle (θM) and the set press distance (St1) and an inflection point that is defined by the specific finished angle (θF) and a specific press distance (StF) corresponding to the specific finished angle (θF), and where the second straight line passes through the inflection point and a machining point that is defined by the target press distance (StT) corresponding to a target finished angle (θT).

Description

プレスブレーキを用いた折曲げ加工方法および折曲げ加工システムBending method and system using a press brake
 本発明は、上金型を下金型のV溝内に相対的に押込むことで、ワークを目標とする角度に折曲げるプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムに関するものである。 The present invention relates to a bending method and a bending processing system using a press brake that bends a workpiece to a target angle by relatively pushing an upper die into a V groove of a lower die. is there.
 従来の典型的なプレスブレーキは、特許文献1に示されるように、上金型の下方位置にV溝を有する下金型を対向配置すると共に、上下の金型を相対的に近接離間移動し得るよう構成して、該下金型のV溝内に上金型を相対的に押込むことでワークを所定角度に折曲げるようになっている。例えば、前記上金型を取付けたラムを昇降動作させるタイプのプレスブレーキでは、下金型上に板形状等のワークが支持されて、ラムと一体に下降動作された上金型による加圧力をワークに作用させつつ前記V溝に上金型を押込むことにより、ワークが所定角度に折曲げられる。すなわち、ワークが折曲げられる角度は、ワークに当接してから下降終端位置まで移動する上金型の移動距離(上金型の押込み量(ストローク))により決定される。 As shown in Patent Document 1, the conventional typical press brake has a lower mold having a V-groove opposed to a lower position of the upper mold and moves the upper and lower molds relatively close to and away from each other. The workpiece is bent at a predetermined angle by relatively pushing the upper die into the V groove of the lower die. For example, in a press brake of a type in which the ram with the upper mold attached is moved up and down, a workpiece such as a plate shape is supported on the lower mold, and the pressure applied by the upper mold moved down together with the ram is applied. By pushing the upper die into the V-groove while acting on the workpiece, the workpiece is bent at a predetermined angle. That is, the angle at which the workpiece is bent is determined by the moving distance of the upper die that moves from the contact to the lower end position (the amount of pressing of the upper die (stroke)).
 そして、前記ワークを加圧する上金型を除荷して金型から取り外した状態でのワークの曲げ角度は、スプリングバックによって上金型でワークを加圧している状態での曲げ角度よりも大きくなることが一般に知られている。このため、ワークを目標の角度に折曲げるために、加工対象であるワークの材質、板厚、上下の金型の形状、V溝の角度や幅、機械の剛性等に基づいて上金型の押込み量を算出して、ワークの折曲げ加工が行なわれる。なお、本明細書では、上下の金型でワークが挟まれた状態でのワークの折曲げ角度を「挟み角度」といい、除荷してスプリングバックした状態でのワークの折曲げ角度を「仕上がり角度」という。 The bending angle of the workpiece when the upper die for pressing the workpiece is unloaded and removed from the die is larger than the bending angle when the workpiece is pressurized with the upper die by the spring back. It is generally known that For this reason, in order to bend the workpiece to a target angle, the upper die is determined based on the workpiece material, plate thickness, upper and lower mold shapes, V-groove angle and width, machine rigidity, etc. The amount of indentation is calculated, and the workpiece is bent. In the present specification, the bending angle of the workpiece when the workpiece is sandwiched between the upper and lower molds is referred to as the “clipping angle”, and the bending angle of the workpiece when unloaded and spring-backed is expressed as “ It is called “finish angle”.
特開2002-79319号公報JP 2002-79319 A
 ところで、前述した上金型の押込み量は、ワークの材質、板厚、上下の金型の形状、V溝の角度や幅、機械の剛性等の計算因子の影響を予めデータベース化しておき、これらのデータベース化されている計算因子に基づいて算出されている。しかしながら、データベースは、実際の加工に供されるワークやプレスブレーキ等に基づく値と完全に合致するものではなく僅かな誤差を有するため、1回の折曲げ加工により最終的なワークの仕上がり角度を目標値とすることは困難であった。 By the way, the above-described pressing amount of the upper mold is created by previously creating a database of the influence of calculation factors such as workpiece material, plate thickness, upper and lower mold shapes, V-groove angle and width, and machine rigidity. It is calculated based on the calculation factor that is stored in the database. However, the database does not completely match the values based on the workpieces used for actual machining, press brakes, etc., and has slight errors. Therefore, the final workpiece finishing angle can be determined by a single bending process. It was difficult to set the target value.
 このため、ワークの折曲げ加工を行なう場合には、算出された上金型の押込み量による加工精度を確認すると共に、上金型の押込み量を補正するため、試し折曲げ加工が行なわれている。すなわち、試し曲げ用のワークについて折曲げ加工を行ない、この折曲げ加工を施したワークの仕上がり角度を計測し、当該ワークの仕上がり角度に応じて前記上金型の押込み量を増減する。そして、修正した上金型の押込み量に基づいて次のワークに折曲げ加工を行ない、このワークについても同様に仕上がり角度を計測して上金型の押込み量を再修正する工程を何回か繰り返し、試行錯誤によって最終的に目標とする仕上がり角度にワークを折曲げられる正確な上金型の押込み量を得ている。このように、目標仕上がり角度となる上金型の押込み量が得られるまでには複数回の試し曲げを行なう必要があり、ワークの折曲げ加工が可能となるまでに時間と材料のロスによる生産性の低下が大きな問題となっていた。特に、上金型をV溝内に押込んだ際にV溝の傾斜面にワークが接触するように折曲げ加工する場合には、V溝の傾斜面にワークが接触することでワークの曲げ特性が大きく変化するため、計算により正確な上金型の押込み量を求めることは困難で、複数回の試し曲げが不可欠であり、改善が強く望まれていた。 For this reason, when bending a workpiece, a test bending process is performed in order to check the processing accuracy according to the calculated amount of pressing of the upper die and to correct the amount of pressing of the upper die. Yes. That is, the bending work is performed on the work for trial bending, the finishing angle of the work subjected to the bending work is measured, and the pushing amount of the upper mold is increased or decreased according to the finishing angle of the work. Then, the next workpiece is bent on the basis of the corrected amount of pressing of the upper die, and the process of measuring the finished angle and re-correcting the amount of pressing of the upper die is repeated several times. Through repeated trial and error, an accurate upper die push-in amount that can bend the workpiece to the final target angle is obtained. In this way, it is necessary to perform multiple trial bendings until the indentation amount of the upper die that achieves the target finish angle is obtained, and production due to loss of time and materials before the workpiece can be bent. The decline in sex was a major problem. In particular, when the upper die is pushed into the V-groove and bent so that the workpiece contacts the inclined surface of the V-groove, the workpiece is bent by contacting the workpiece with the inclined surface of the V-groove. Since the characteristics greatly change, it is difficult to obtain an accurate indentation amount of the upper die by calculation, and a plurality of trial bendings are indispensable, and improvement has been strongly desired.
 一方で、前述のようなワークの試し曲げを軽減しつつ、ワークを目標仕上がり角度に折曲げる方法として、前述した特許文献1のように、折曲げ加工のインプロセスにおいてワークの曲げ角度(挟み角度)を測定する方法が知られている。すなわち、ワークに接触するセンサを上金型に配置して、ワークの挟み角度を測定しつつ折曲げ加工を行なう途中で、一度除荷してワークの仕上がり角度を計測し、除荷時点での挟み角度と仕上がり角度との差からスプリングバック量を計測し、その結果に基づいて追加的に必要な押込み量を求めてワークを更に折曲げ加工するというものである。このようなセンサを利用したインプロセスによる加工方法を採用する場合であっても、折曲げ加工時にV溝の傾斜面にワークが接触するようにワークを折曲げる必要がある場合には、ワークの曲げ特性が大きく変化することから、ワークの折曲げ加工を複数回実施する必要があることに変わりがなく、加工効率に優れたものとはなっていない。また、この加工方法では、センサを設置することによって金型の大型化や装置の複雑化を招来し、加工可能なワーク形状が大きく制約されることに繋がって、装置の汎用性が低下する問題が生ずると共に、ワークの材質によってはセンサとの接触によりセンサ計測面に異物が付着し、計測精度が保証できない欠点が指摘される。しかも、高精度の測定を可能とするにはセンサも高価なものを使用する必要があり、装置の製造コストが嵩むことにもなる。このため、前述したセンサを利用したインプロセスによる折曲げ加工方法は、一般的に採用され難いのが実情である。 On the other hand, as a method of bending a workpiece to a target finish angle while reducing the trial bending of the workpiece as described above, the bending angle (sandwich angle) of the workpiece in the in-process of bending as described in Patent Document 1 described above. ) Is known. In other words, a sensor that contacts the workpiece is placed on the upper die, and during the bending process while measuring the clamping angle of the workpiece, the workpiece is unloaded once and the finished angle of the workpiece is measured. The amount of spring back is measured from the difference between the sandwiching angle and the finished angle, and the workpiece is further bent by obtaining an additional required amount of pushing based on the result. Even when adopting an in-process machining method using such a sensor, if it is necessary to bend the workpiece so that the workpiece contacts the inclined surface of the V-groove during bending, Since the bending characteristics change greatly, it is still necessary to perform the work bending process a plurality of times, and the work efficiency is not excellent. Also, in this machining method, the installation of the sensor leads to an increase in the size of the mold and the complexity of the device, leading to a significant restriction on the shape of the work that can be machined, thereby reducing the versatility of the device. In addition, depending on the material of the workpiece, foreign matter adheres to the sensor measurement surface due to contact with the sensor, and it is pointed out that the measurement accuracy cannot be guaranteed. Moreover, it is necessary to use an expensive sensor in order to enable high-precision measurement, which increases the manufacturing cost of the apparatus. For this reason, the in-process bending method using the above-described sensor is generally difficult to adopt.
 そこで本発明は、従来の技術に内在する前記課題に鑑み、これを好適に解決するべく提案されたものであって、1回の折曲げ加工を実施することで最終的なワークの目標仕上がり角度に対応した上金型の押込み量を得ることができるプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムを提供することを目的とする。 Accordingly, the present invention has been proposed to solve this problem in view of the above-mentioned problems inherent in the prior art, and the final target finish angle of the workpiece by performing a single bending process. It is an object of the present invention to provide a bending method and a bending system using a press brake capable of obtaining the pressing amount of the upper die corresponding to the above.
 前記課題を克服し、所期の目的を達成するため、本願の請求項1に係るプレスブレーキを用いた折曲げ加工方法は、
 上金型(26)を該上金型(26)に対向配置された下金型(18)のV溝(20)内に相対的に押込んだ際に、該下金型(18)のV溝(20)の傾斜面にワーク(W)を接触させて、ワーク(W)の仕上がり角度が所定の目標仕上がり角度(θ)となるよう折曲げ加工を行なうプレスブレーキを用いた折曲げ加工方法であって、
 エアーベンドの状態で折曲げて得られるワーク(W)の設定仕上がり角度(θ)を、V溝(20)の傾斜面にワーク(W)が接触した時点で除荷したワーク(W)の特定仕上がり角度(θ)よりも大きくなる条件で設定し、該設定仕上がり角度(θ)に対応した設定押込み量(St)で上金型(26)をV溝(20)内に押込んでワーク(W)を折曲げて、設定押込み量(St)で折曲げられたワーク(W)の実測仕上がり角度(θ)を計測し、
 上金型(26)の押込み量(St)およびワーク(W)の仕上がり角度(θ)の関係を表したSt-θグラフにおいて、前記実測仕上がり角度(θ)および設定押込み量(St)により定められる点を測定点とし、前記特定仕上がり角度(θ)および特定仕上がり角度(θ)に対応した上金型(26)の押込み量となる特定押込み量(St)により定められる点を変曲点とし、前記目標仕上がり角度(θ)に対応した上金型(26)の押込み量となる目標押込み量(St)を加工点として、該測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが所定の関係を満たすように当該目標押込み量(St)を算出して折曲げ加工を行なうことを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, a bending method using a press brake according to claim 1 of the present application,
When the upper mold (26) is relatively pushed into the V-groove (20) of the lower mold (18) disposed opposite to the upper mold (26), the lower mold (18) Bending using a press brake that makes the workpiece (W) contact the inclined surface of the V-groove (20) and performs a bending process so that the finished angle of the workpiece (W) becomes a predetermined target finished angle (θ T ). A processing method,
Set the finished angle (θ 1 ) of the workpiece (W) obtained by bending in the air bend state when the workpiece (W) is unloaded when the workpiece (W) contacts the inclined surface of the V-groove (20). Set under conditions that are larger than the specific finish angle (θ F ), and push the upper die (26) into the V groove (20) with the set push amount (St 1 ) corresponding to the set finish angle (θ 1 ). Then, the workpiece (W) is bent, and the measured finished angle (θ M ) of the workpiece (W) bent at the set push-in amount (St 1 ) is measured.
In the St-θ graph showing the relationship between the pushing amount (St) of the upper die (26) and the finishing angle (θ) of the workpiece (W), the measured finishing angle (θ M ) and the set pushing amount (St 1 ) A point determined by a specific indentation amount (St F ) that is the indentation amount of the upper die (26) corresponding to the specific finishing angle (θ F ) and the specific finishing angle (θ F ) And passing through the measurement point and the inflection point, with the target indentation amount (St T ) as the indentation amount of the upper die (26) corresponding to the target finish angle (θ T ) as the machining point. Bending is performed by calculating the target pushing amount (St T ) so that the inclination (f1) of the straight line and the inclination (f2) of the straight line passing through the inflection point and the processing point satisfy a predetermined relationship. Is the gist.
 請求項2に係るプレスブレーキを用いた折曲げ加工方法は、
 前記目標押込み量(St)は、前記下金型(18)のV溝(20)の幅(V)およびワーク(W)の板厚(t)とした場合に、前記測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが、下記の式(f)の関係を満たすよう算出されることを要旨とする。
Figure JPOXMLDOC01-appb-M000012
The bending method using the press brake according to claim 2 is:
When the target push-in amount (St T ) is the width (V) of the V groove (20) of the lower mold (18) and the plate thickness (t) of the workpiece (W), the measurement point and the inflection The gist is that the slope (f1) of the straight line passing through the point and the slope (f2) of the straight line passing through the inflection point and the machining point are calculated so as to satisfy the relationship of the following formula (f).
Figure JPOXMLDOC01-appb-M000012
 請求項3に係るプレスブレーキを用いた折曲げ加工方法は、
 ワーク(W)の加工条件およびワーク(W)の仕上がり角度(θ)に基づいて定められたベンドファクタ(A)を設定仕上がり角度(θ)に基づいて求めると共に、下記の式(e)においてA=A、θ=θの条件で前記設定押込み量(St)を算出して、該設定押込み量(St)でワーク(W)を折曲げた後に、設定押込み量(St)および実測仕上がり角度(θ)から下記の式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、
 修正ベンドファクタ(A')および特定仕上がり角度(θ)から下記の式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するようにしたことを要旨とする。
Figure JPOXMLDOC01-appb-M000013
The bending method using the press brake according to claim 3 is:
The bend factor (A 1 ) determined based on the machining conditions of the workpiece (W) and the finished angle (θ) of the workpiece (W) is obtained based on the set finished angle (θ 1 ), and the following equation (e) After calculating the set push amount (St 1 ) under the conditions of A = A 1 and θ = θ 1 and bending the workpiece (W) with the set push amount (St 1 ), the set push amount (St 1 ) Calculate the corrected bend factor (A ′) from the measured finish angle (θ M ) under the condition that θ = θ M in the following equation (e),
Based on the specific indentation amount (St F ) calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) under the conditions of A = A ′ and θ = θ F in the following equation (e): The gist is that the slope (f1) of the straight line passing through the measurement point and the inflection point is calculated.
Figure JPOXMLDOC01-appb-M000013
 請求項4に係るプレスブレーキを用いた折曲げ加工方法は、
 前記ベンドファクタ(A)は、θ=θとした条件で下記の式(i)に基づいて算出されることを要旨とする。
Figure JPOXMLDOC01-appb-M000014
The bending method using the press brake according to claim 4 is:
The bend factor (A 1 ) is calculated based on the following formula (i) under the condition of θ = θ 1 .
Figure JPOXMLDOC01-appb-M000014
 請求項5に係るプレスブレーキを用いた折曲げ加工方法は、
 下記の式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記設定押込み量(St)に加算した補正設定押込み量(St’)で折曲げた後のワーク(W)の折曲げ角度を前記実測仕上がり角度(θ)として計測し、
 下記の式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記目標押込み量(St)に加算した補正目標押込み量(St’)でワーク(W)の折曲げ加工を行なうようにしたことを要旨とする。
Figure JPOXMLDOC01-appb-M000015
The bending method using the press brake according to claim 5 is:
In the following equation (m), the device set deflection amount (λ 1 ) obtained under the conditions of θ = θ 1 and St = St 1 is added to the set push amount (St 1 ), and the corrected set push amount (St 1 ′). Measure the bending angle of the workpiece (W) after bending with the measured finished angle (θ M ),
Formula (m) in the θ = θ T, St = St T and the apparatus deflection amount obtained under the following conditions (lambda T) corrected target pressing amount obtained by adding to the target pressing amount (St T) a (St T ') The gist is that the workpiece (W) is bent at.
Figure JPOXMLDOC01-appb-M000015
 請求項6に係るプレスブレーキを用いた折曲げ加工方法は、
 先端部が円弧状に形成された上金型を用いてワークの折曲げ加工を行なう際に、
下記の式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記設定押込み量(St)から減算したR曲げ補正設定押込み量(St’’)で折曲げた後のワークの折曲げ角度を前記実測仕上がり角度(θ)として計測し、
 下記の式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記目標押込み量(St)から減算したR曲げ補正目標押込み量(St’’)でワークの折曲げ加工を行なうようにしたことを要旨とする。
Figure JPOXMLDOC01-appb-M000016
The bending method using the press brake according to claim 6 is:
When bending a workpiece using an upper die whose tip is formed in an arc shape,
In the following equation (q), the indentation amount error (D 1 ) obtained under the condition that θ = θ 1 is subtracted from the set indentation amount (St 1 ), and the bending amount is set by the R bend correction setting indentation amount (St 1 ″). The bending angle of the workpiece after bending is measured as the measured finished angle (θ M ),
In the following equation (q), the workpiece is obtained by the R bending correction target push amount (St T ″) obtained by subtracting the push amount error (D T ) obtained under the condition of θ = θ T from the target push amount (St T ). The main point is that the bending process is performed.
Figure JPOXMLDOC01-appb-M000016
 請求項7に係るプレスブレーキを用いた折曲げ加工方法は、
 前記設定仕上がり角度(θ)は、0.1°≦θ-θ≦7°の範囲に設定されることを要旨とする。
The bending method using the press brake according to claim 7 is:
The set finishing angle (θ 1 ) is set to a range of 0.1 ° ≦ θ 1 −θ F ≦ 7 °.
 前記課題を克服し、所期の目的を達成するため、本願の請求項8に係るプレスブレーキによる折曲げ加工システムは、
 上金型(26)と、前記上金型(26)に対向配置されたV溝(20)が形成された下金型(18)と、前記V溝(20)内に上金型(26)を押込むよう前記上金型(26)または下金型(18)を駆動する金型駆動手段(28)とを備え、前記金型駆動手段(28)の駆動により前記上金型(26)をV溝(20)内に押込んだ際にV溝(20)の傾斜面にワーク(W)を接触させて、ワーク(W)の仕上がり角度が所定の目標仕上がり角度(θ)となるよう折曲げ加工を行なうプレスブレーキによる折曲げ加工システムであって、
 ワーク(W)の加工条件およびワーク(W)の目標仕上がり角度(θ)が入力されると共に、実測したワーク(W)の実測仕上がり角度(θ)が入力される入力手段(32)と、
 前記入力手段(32)に入力されたワーク(W)の加工条件および目標仕上がり角度(θ)に基づいて、V溝(20)の傾斜面にワーク(W)が接触した時点で除荷したワーク(W)の特定仕上がり角度(θ)よりも大きい値となる条件でワーク(W)の設定仕上がり角度(θ)を設定する設定手段(34)と、
 前記設定手段(34)により設定された設定仕上がり角度(θ)に対応した上金型(26)の押込み量となる設定押込み量(St)を算出すると共に、該設定押込み量(St)および前記入力手段(32)に入力された実測仕上がり角度(θ)に基づいて前記目標仕上がり角度(θ)に対応した上金型(26)の押込み量となる目標押込み量(St)を算出する算出手段(36)と、
 前記算出手段(36)により算出された設定押込み量(St)または目標押込み量(St)に従って前記上金型(26)がV溝(20)内に押込まれるよう前記金型駆動手段を駆動制御する駆動制御手段(40)とを備え、
 前記算出手段(36)は、上金型(26)の押込み量(St)およびワーク(W)の仕上がり角度(θ)の関係を表したSt-θグラフにおいて、前記実測仕上がり角度(θ)および設定押込み量(St)により定められる点を測定点とし、前記特定仕上がり角度(θ)および特定仕上がり角度(θ)に対応した上金型(26)の押込み量となる特定押込み量(St)により定められる点を変曲点とし、前記目標仕上がり角度(θ)に対応した上金型(26)の押込み量となる目標押込み量(St)を加工点とした場合に、該測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが所定の関係を満たすように当該目標押込み量(St)を算出するよう設定されて、
 前記算出手段(36)で算出された設定押込み量(St)に従って前記駆動制御手段(40)が前記金型駆動手段(28)を駆動制御することで1回目の折曲げ加工が実行され、当該1回目の折曲げ加工後に前記入力手段(32)に入力されたワーク(W)の実測仕上がり角度(θ)および設定押込み量(St)に基づいて算出手段(36)で算出された前記目標押込み量(St)に従って駆動制御手段(40)が金型駆動手段(28)を駆動制御することで2回目以降の折曲げ加工が実行されることを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, a folding system using a press brake according to claim 8 of the present application is provided.
An upper mold (26), a lower mold (18) in which a V-groove (20) disposed opposite to the upper mold (26) is formed, and an upper mold (26 in the V-groove (20)) ) And a mold driving means (28) for driving the upper mold (26) or the lower mold (18) so as to push the upper mold (26), and the upper mold (26) by driving the mold driving means (28). ) Is pushed into the V-groove (20), the work (W) is brought into contact with the inclined surface of the V-groove (20), and the finished angle of the work (W) is equal to the predetermined target finish angle (θ T ). A bending system using a press brake that performs bending so that
An input means (32) for inputting a machining condition of the workpiece (W) and a target finish angle (θ T ) of the workpiece (W) and an actual measured finish angle (θ M ) of the measured workpiece (W); ,
Unloading was performed when the workpiece (W) contacted the inclined surface of the V-groove (20) based on the machining conditions and target finish angle (θ T ) input to the input means (32). Setting means (34) for setting the set finishing angle (θ 1 ) of the workpiece (W) under a condition that is larger than the specific finishing angle (θ F ) of the workpiece (W);
A set push amount (St 1 ) that is the push amount of the upper die (26) corresponding to the set finishing angle (θ 1 ) set by the setting means (34) is calculated, and the set push amount (St 1 ) And an actual finishing angle (θ M ) input to the input means (32), and a target pushing amount (St T ) that is a pushing amount of the upper mold (26) corresponding to the target finishing angle (θ T ). ) Calculating means (36),
The mold driving means so that the upper mold (26) is pushed into the V groove (20) according to the set pushing amount (St 1 ) or the target pushing amount (St T ) calculated by the calculating means (36). Drive control means (40) for controlling the drive,
The calculating means (36) is configured to measure the measured finish angle (θ M ) in a St-θ graph representing the relationship between the pushing amount (St) of the upper die (26) and the finish angle (θ) of the workpiece (W). And a point determined by the set push amount (St 1 ) as a measurement point, a specific push amount that is a push amount of the upper die (26) corresponding to the specific finish angle (θ F ) and the specific finish angle (θ F ) (St F) and an inflection point a point defined by the target pushing amount of the push-in amount of the target finish angle upper die corresponding to (θ T) (26) to (St T) in the case of the processing point The target indentation amount (St T T ) so that the slope (f1) of the straight line passing through the measurement point and the inflection point and the slope (f2) of the straight line passing through the inflection point and the machining point satisfy a predetermined relationship. ) Is calculated,
Said drive control means (40) is folded for the first time by controlling the driving of the said mold driving means (28) bending is performed according to the settings pushing amount calculated by said calculating means (36) (St 1), Calculated by the calculating means (36) based on the actually measured finishing angle (θ M ) and the set push-in amount (St 1 ) of the workpiece (W) input to the input means (32) after the first bending process. The gist is that the second and subsequent bending processes are executed by the drive control means (40) drivingly controlling the mold drive means (28) in accordance with the target pushing amount (St T ).
 本願の請求項9に係るプレスブレーキによる折曲げ加工システムは、
 前記算出手段(36)は、前記下金型(18)のV溝(20)の幅(V)およびワーク(W)の板厚(t)とした場合に、前記St-θグラフにおいて前記測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)との関係が、下記式(f)の関係を満たすよう前記目標押込み量(St)を算出するよう設定されることを要旨とする。
Figure JPOXMLDOC01-appb-M000017
The bending processing system by the press brake according to claim 9 of the present application is:
When the calculation means (36) uses the width (V) of the V groove (20) of the lower mold (18) and the plate thickness (t) of the work (W), the measurement in the St-θ graph is performed. The target pushing amount so that the relationship between the slope (f1) of the straight line passing through the point and the inflection point and the slope (f2) of the straight line passing through the inflection point and the machining point satisfies the relationship of the following formula (f): The gist is that it is set to calculate (St T ).
Figure JPOXMLDOC01-appb-M000017
 本願の請求項10に係るプレスブレーキによる折曲げ加工システムは、
 ワーク(W)の仕上がり角度(θ)と、ワーク(W)の加工条件および仕上がり角度(θ)により算出されるベンドファクタ(A)との対応関係を表すベンドファクタデータテーブルが記憶された記憶手段(38)を備え、
 前記算出手段(36)は、
 前記設定手段(34)により設定された設定仕上がり角度(θ)に対応するベンドファクタ(A)を、前記入力手段(32)に入力されたワーク(W)の加工条件に基づいて前記記憶手段(38)が記憶するベンドファクタデータテーブルから取得して、下記の式(e)においてA=A、θ=θとした条件で前記設定押込み量(St)を算出するよう設定されると共に、
 前記入力手段(32)に入力されたワーク(W)の実測仕上がり角度(θ)および設定押込み量(St)から下記の式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、修正ベンドファクタ(A')および特定仕上がり角度(θ)から下記の式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するよう設定されることを要旨とする。
Figure JPOXMLDOC01-appb-M000018
The bending processing system by the press brake according to claim 10 of the present application is:
Storage means for storing a bend factor data table indicating a correspondence relationship between the finish angle (θ) of the work (W) and the bend factor (A) calculated from the machining conditions and the finish angle (θ) of the work (W) (38)
The calculating means (36)
The bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) set by the setting means (34) is stored based on the machining conditions of the workpiece (W) input to the input means (32). It is acquired from the bend factor data table stored in the means (38), and is set to calculate the set push amount (St 1 ) under the condition that A = A 1 and θ = θ 1 in the following equation (e). And
Found finishing angle (theta M) and the set pressing amount (St 1) fixed in the conditions as theta = theta M in the formula (e) below from the bend factor of the input work (W) to said input means (32) ( A ′) is calculated backward, and a specific indentation amount (A = A ′, θ = θ F in the following equation (e) is calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) ( Based on (St F ), the gist is that the slope (f1) of the straight line passing through the measurement point and the inflection point is set to be calculated.
Figure JPOXMLDOC01-appb-M000018
 本願の請求項11に係るプレスブレーキによる折曲げ加工システムは、
 前記算出手段(36)は、
 前記設定手段(34)により設定された設定仕上がり角度(θ)に対応するベンドファクタ(A)を、下記の式(i)においてθ=θとした条件で算出して、下記の式(e)においてA=A、θ=θとした条件で前記設定押込み量(St)を算出するよう設定されると共に、
 前記入力手段(32)に入力されたワーク(W)の実測仕上がり角度(θ)および設定押込み量(St)から下記の式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、修正ベンドファクタ(A')および特定仕上がり角度(θ)から下記の式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するよう設定されることを要旨とする。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
The bending system by the press brake according to claim 11 of the present application is:
The calculating means (36)
The bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) set by the setting means (34) is calculated under the condition that θ = θ 1 in the following formula (i), and the following formula In (e), the setting push amount (St 1 ) is set to be calculated under the conditions of A = A 1 and θ = θ 1 .
Found finishing angle (theta M) and the set pressing amount (St 1) fixed in the conditions as theta = theta M in the formula (e) below from the bend factor of the input work (W) to said input means (32) ( A ′) is calculated backward, and a specific indentation amount (A = A ′, θ = θ F in the following equation (e) is calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) ( Based on (St F ), the gist is that the slope (f1) of the straight line passing through the measurement point and the inflection point is set to be calculated.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 本願の請求項12に係るプレスブレーキによる折曲げ加工システムは、
 前記算出手段(36)は、
 下記の式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ(λ)を前記設定押込み量(St)に加算した補正設定押込み量(St’)を算出するよう設定されると共に、該式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記目標押込み量(St)に加算した補正目標押込み量(St’)を算出するよう設定され、
 前記算出手段(36)で算出された前記補正設定押込み量(St’)に従って前記駆動制御手段(40)が金型駆動手段(28)を駆動制御することで1回目の折曲げ加工が実行され、該算出手段(36)で算出された前記補正目標押込み量(St’)に従って前記駆動制御手段(40)が金型駆動手段(28)を駆動制御することで2回目以降の折曲げ加工が実行されるよう構成されたことを要旨とする。
Figure JPOXMLDOC01-appb-M000021
The bending system by the press brake according to claim 12 of the present application is:
The calculating means (36)
Correction setting push amount obtained by adding the setting push-in amount that equation in (m) θ = θ 1, St = St 1 and the conditions in the sought device Deflection (lambda 1) below (St 1) a (St 1 ') A correction target obtained by adding a device deflection amount (λ T ) obtained under the conditions of θ = θ T and St = St T in the equation (m) to the target pushing amount (St T ). It is set to calculate the indentation amount (St T ')
According to the correction setting push amount (St 1 ′) calculated by the calculation means (36), the drive control means (40) drives and controls the mold drive means (28) to execute the first bending process. Then, the drive control means (40) drives and controls the mold drive means (28) in accordance with the corrected target push amount (St T ') calculated by the calculation means (36), so that the second and subsequent bendings are performed. The gist is that the processing is performed.
Figure JPOXMLDOC01-appb-M000021
 本願の請求項13に係るプレスブレーキによる折曲げ加工システムは、
 前記上金型の先端部が円弧状に形成されると共に、
 前記算出手段は、
 下記の式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記設定押込み量(St)から減算したR曲げ補正設定押込み量(St’’)を算出するよう設定されると共に、該式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記目標押込み量(St)から減算したR曲げ補正目標押込み量(St’’)を算出するよう設定され、
 前記算出手段で算出された前記R曲げ補正設定押込み量(St’’)に従って前記駆動制御手段が金型駆動手段を駆動制御することで1回目の折曲げ加工が実行され、該算出手段で算出された前記R曲げ補正目標押込み量(St’’)に従って前記駆動制御手段が金型駆動手段を駆動制御することで2回目以降の折曲げ加工が実行されるよう構成されたことを要旨とする。
Figure JPOXMLDOC01-appb-M000022
The bending system by the press brake according to claim 13 of the present application is
The tip of the upper mold is formed in an arc shape,
The calculating means includes
The setting push amount equation given by theta = theta 1 and the conditions in (q) pushing amount error (D 1) of the following R bending correction setting pushing amount is subtracted from (St 1) calculated (St 1 '') R bending correction target push amount (St) obtained by subtracting the push amount error (D T ) obtained under the condition that θ = θ T in the equation (q) from the target push amount (St T ) Is set to calculate T '')
According to the R bending correction setting push amount (St 1 ″) calculated by the calculating unit, the drive control unit drives and controls the mold driving unit, and the first bending process is executed. The gist is that the drive control means controls the mold drive means according to the calculated R bending correction target push-in amount (St T ″) so that the second and subsequent bending processes are executed. And
Figure JPOXMLDOC01-appb-M000022
 本願の請求項14に係るプレスブレーキによる折曲げ加工システムは、
 前記設定手段(34)は、0.1°≦θ-θ≦7°の範囲に前記設定仕上がり角度(θ)を設定することを要旨とする。
The bending system by the press brake according to claim 14 of the present application is:
The setting means (34) sets the set finishing angle (θ 1 ) in a range of 0.1 ° ≦ θ 1 −θ F ≦ 7 °.
 本発明に係るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムによれば、折曲げ加工時に下金型のV溝の傾斜面にワークを接触させる必要がある目標仕上がり角度までワークを折曲げる場合であっても、1回のワーク折曲げ加工により目標仕上がり角度に対応した目標押込み量を算出することができ、製品製造が可能となるまでに必要なワークの折曲げ回数を低減して生産性向上することが可能となる。しかも、折曲げ加工の過程でワークの折曲げ角度を測定する必要がないから、上下の金型にセンサを必要とせず、一般に使用される汎用の金型を採用できるから、加工可能なワーク形状の制約を受けることなく簡単に目標仕上がり角度にワークを折曲げることが可能となる。しかも、測定点および変曲点を通過する直線の傾きと、変曲点および加工点を通過する直線の傾きとを、式(f)の関係を満たすようにする場合には、ワークを精度良く目標仕上がり角度に折曲げることができる。
 また、ベンドファクタを式(i)に基づいて算出することで、ワークの加工条件毎にベンドファクタの値を事前にデータベース化する必要がなくなると共に、設定仕上がり角度の適用範囲が広がり汎用性が高まる。更に、ワークの折曲げ加工時の装置たわみ量を補正することで、より高精度なワークの折曲げ加工を行なうことができる。更にまた、先端部が円弧形状に形成された上金型を用いて折曲げ加工する際に、上金型の先端部とワークの折曲げ部の最深部との間が離間する誤差を補正することで、より高精度なワークの折曲げ加工を行なうことができる。
According to the bending method and the bending processing system using the press brake according to the present invention, the workpiece is folded to a target finish angle that requires the workpiece to contact the inclined surface of the V groove of the lower mold during the bending process. Even when bending, the target push-in amount corresponding to the target finish angle can be calculated by bending the workpiece once, reducing the number of times the workpiece is bent before the product can be manufactured. Productivity can be improved. In addition, since it is not necessary to measure the bending angle of the workpiece during the bending process, it is not necessary to use sensors for the upper and lower molds, and general-purpose molds that are generally used can be used. It is possible to easily bend the workpiece to the target finish angle without being restricted by this. In addition, when the inclination of the straight line passing through the measurement point and the inflection point and the inclination of the straight line passing through the inflection point and the machining point are satisfied, the workpiece can be accurately obtained. Can be bent to the target finish angle.
In addition, by calculating the bend factor based on the formula (i), it is not necessary to create a database of bend factor values for each machining condition in advance, and the applicable range of the set finishing angle is widened to increase versatility. . Furthermore, by correcting the deflection amount of the apparatus at the time of bending the workpiece, the workpiece can be bent with higher accuracy. Furthermore, when bending is performed using an upper die having a tip formed in an arc shape, an error in which the tip of the upper die is separated from the deepest portion of the bent portion of the workpiece is corrected. As a result, the workpiece can be bent with higher accuracy.
本発明の実施例に係るプレスブレーキを示す正面図である。It is a front view which shows the press brake which concerns on the Example of this invention. 実施例に係るプレスブレーキによりワークを折曲げる状態を示す説明図であって、(a)は上金型がワークに接触させた折曲げ加工前の状態を示し、(b)は上金型をV溝内に押込んでワークを下金型のV溝の傾斜面に接触させた状態を示す。It is explanatory drawing which shows the state which bends a workpiece | work with the press brake which concerns on an Example, (a) shows the state before the bending process which the upper metal mold contacted the workpiece, (b) shows an upper metal mold. A state in which the workpiece is pushed into the V groove and brought into contact with the inclined surface of the V groove of the lower mold is shown. 実施例に係るプレスブレーキの入力手段と、制御装置と、金型駆動手段とのの関係を示すブロック図である。It is a block diagram which shows the relationship between the input means of the press brake which concerns on an Example, a control apparatus, and a metal mold | die drive means. ワークの折曲げ加工におけるV溝の幅/板厚と、特定仕上がり角度との関係を示したグラフ図である。It is the graph which showed the relationship between the width / plate thickness of the V groove in the bending process of a workpiece | work, and a specific finishing angle. 上金型の押込み量とワークの仕上がり角度との関係を示すSt-θグラフであって、ワーク折曲げ加工における測定点、変曲点、加工点の関係を示す概略図である。FIG. 9 is a St-θ graph showing the relationship between the amount of pressing of the upper die and the workpiece finishing angle, and is a schematic diagram showing the relationship between measurement points, inflection points, and machining points in workpiece bending. プレスブレーキによるワーク折曲げ加工時における上下の金型とワークの関係を示す関係式を導出する説明図である。It is explanatory drawing which derives | leads-out the relational expression which shows the relationship between the upper and lower metal mold | dies at the time of the workpiece bending process by a press brake, and a workpiece | work. プレスブレーキによるワーク折曲げ加工時における上下の金型とワークの関係を示す関係式を導出する説明図であって、(a)はワークと下金型との関係を示し、(b)は(a)のX部分を拡大した図である。It is explanatory drawing which derives the relational expression which shows the relation between the upper and lower molds and the work at the time of work bending by press brake, (a) shows the relation between the work and the lower mold, (b) It is the figure which expanded the X part of a). 記憶手段が記憶するベンドファクタデータテーブルの内、冷延鋼板(SPCC)について設定仕上がり角度とベンドファクタの関係を表したグラフ図である。It is a graph showing the relationship between a set finishing angle and a bend factor for a cold-rolled steel sheet (SPCC) in a bend factor data table stored in a storage means. 第1実験例においてV溝の幅V=8mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width V = 8mm of V groove in the 1st experiment example. 第1実験例においてV溝の幅V=10mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width V = 10mm of V groove in the 1st experiment example. 第1実験例においてV溝の幅V=12mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 12mm of V groove in the 1st experiment example. 第1実験例においてV溝の幅V=16mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 16mm of V groove in the 1st experiment example. 第2実験例においてV溝の幅V=12mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of carrying out the bending process of the width | variety V = 12mm of V groove in the 2nd experiment example, and plate | board thickness t = 1.5mm of a workpiece | work. 第2実験例においてV溝の幅V=12mm、ワークの板厚t=2.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of carrying out the bending process of the width | variety V = 12mm of V groove in the 2nd experiment example, and plate | board thickness t = 2.0mm of a workpiece | work. 第2実験例においてV溝の幅V=16mm、ワークの板厚t=3.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work by setting the width V = 16mm of V groove in the 2nd experiment example, and plate | board thickness t = 3.0mm of a workpiece | work. 第3実験例においてV溝の幅V=12mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width V of a V-groove V = 12mm and the board thickness t = 1.5mm of a workpiece | work in a 3rd experiment example. 第3実験例においてV溝の幅V=16mm、ワークの板厚t=3.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width V = 16mm of V groove in the 3rd experiment example, and plate | board thickness t = 3.0mm of a workpiece | work. 第4実験例においてV溝の幅V=12mm、ワークの板厚t=1.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of carrying out the bending process of the width | variety V = 12mm of V groove in the 4th experiment example, and plate | board thickness t = 1.0mm of a workpiece | work. 第4実験例においてV溝の幅V=16mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of carrying out the bending process of the width | variety V = 16mm of V groove in the 4th experiment example, and plate | board thickness t = 1.5mm of a workpiece | work. 第5実験例においてV溝の幅V=12mm、ワークの板厚t=1.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width V = 12mm of V-groove, and the board thickness t = 1.0mm of a workpiece | work in a 5th experiment example. 第5実験例においてV溝の幅V=16mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width V = 16mm of V groove in the 5th experiment example, and plate | board thickness t = 1.5mm of a workpiece | work. 第6実験例においてV溝の幅V=12mm、ワークの板厚t=1.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 12mm of V-groove and the board thickness t = 1.0mm of a workpiece | work in a 6th experiment example. 第6実験例においてV溝の幅V=10mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of carrying out the bending process of the width | variety V = 10mm of V groove in the 6th experiment example, and plate | board thickness t = 1.5mm of a workpiece | work. 第6実験例においてV溝の幅V=12mm、ワークの板厚t=2.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 12mm of V-groove and the board thickness t = 2.0mm of a workpiece | work in a 6th experiment example. 第7実験例においてV溝の幅V=6mm、ワークの板厚t=1.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 6mm of V-groove and the board thickness t = 1.0mm of a workpiece | work in a 7th experiment example. 第7実験例においてV溝の幅V=10mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 10mm of V groove in the 7th experiment example, and plate | board thickness t = 1.5mm of a workpiece | work. 第7実験例においてV溝の幅V=12mm、ワークの板厚t=2.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of carrying out the bending process of the width | variety V = 12mm of V groove in the 7th experiment example, and plate | board thickness t = 2.0mm of a workpiece | work. 第8実験例においてV溝の幅V=12mm、ワークの板厚t=1.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 12mm of V-groove and the board thickness t = 1.0mm of a workpiece | work in the 8th experiment example. 第8実験例においてV溝の幅V=16mm、ワークの板厚t=1.5mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 16mm of V groove in the 8th experiment example, and plate | board thickness t = 1.5mm of a workpiece | work. 第8実験例においてV溝の幅V=18mm、ワークの板厚t=2.0mmとしてワークを折曲げ加工した場合の実験結果を示すグラフ図である。It is a graph which shows the experimental result at the time of bending a workpiece | work with the width | variety V = 18mm of V-groove and the board thickness t = 2.0mm of a workpiece | work in the 8th experiment example. 横軸を仕上がり角度(θ)とし、縦軸を各仕上がり角度(θ)におけるベンドファクタ(A)の値と、仕上がり角度100°におけるベンドファクタ(A100)の値との比としたグラフ図である。なお、破線は、各仕上がり角度におけるA/A100の値の中間値を示している。The horizontal axis is the finished angle (θ), and the vertical axis is the ratio of the value of the bend factor (A) at each finished angle (θ) to the value of the bend factor (A 100 ) at the finished angle of 100 °. is there. The broken line indicates an intermediate value of A / A 100 values at each finishing angle. 冷延鋼板(SPCC)について、V溝の幅(V)/板厚(t)と、仕上がり角度100°におけるベンドファクタの値(A100)/V溝の幅(V)との関係を示したグラフ図である。Regarding cold rolled steel sheet (SPCC), the relationship between V groove width (V) / plate thickness (t) and bend factor value (A 100 ) / V groove width (V) at a finishing angle of 100 ° is shown. FIG. 押込み量(St)と、加工荷重(W)との関係を示したグラフ図である。It is the graph which showed the relationship between pushing amount (St) and processing load (W). V溝の幅(V)/板厚(t)と、係数(k)との関係を示したグラフ図である。A V-groove width (V) / plate thickness (t), is a graph showing the relationship between the coefficient (k 1). 上金型の押込み量(St)≧特定押込み量(St)の範囲での折曲げ加工において、押込み量(St)の増加量と加工荷重(W)の変化量との比をkとした場合に、横軸をワークWの板厚(t)とし、縦軸をk/Wとしたグラフ図である。In the bending process in the range of pressing amount of the upper die (St) ≧ specific pressing amount (St F ), the ratio of the increase amount of the pressing amount (St) and the change amount of the processing load (W) is expressed as k w In this case, the horizontal axis is the plate thickness (t) of the workpiece W, and the vertical axis is k w / W a . 先端部を円弧形状に形成された上金型を用いてワークを折曲げた状態を示す概略図である。It is the schematic which shows the state which bent the workpiece | work using the upper metal mold | die in which the front-end | tip part was formed in circular arc shape. 上金型の先端半径R=1.0mm、V溝の幅V=6mm、板厚t=1.0mmとしたアルミニウム(A5052P)のワークを折曲げ加工する場合に、式(n)により求められるR曲げ補正押込み量(St’’)と仕上がり角度(θ)との関係を示すと共に、有限要素解析法により解析したR曲げ補正押込み量(St’’)の解析値を示したグラフ図である。なお、式(e)により求められる押込み量(St)と仕上がり角度(θ)との関係を破線で示す。When bending a workpiece of aluminum (A5052P) having a tip radius R P = 1.0 mm, V groove width V = 6 mm, and plate thickness t = 1.0 mm, the upper die is obtained by equation (n). Is a graph showing the relationship between the R-bend corrected push-in amount (St ″) and the finished angle (θ) and the analysis value of the R-bend corrected push-in amount (St ″) analyzed by the finite element analysis method. is there. Note that the relationship between the push-in amount (St) obtained by the equation (e) and the finished angle (θ) is indicated by a broken line.
 次に、本発明に係るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムにつき、好適な実施例を挙げて、添付図面を参照しながら以下詳細に説明する。 Next, the bending method and the bending processing system using the press brake according to the present invention will be described in detail below with reference to the accompanying drawings by giving preferred examples.
 図1は、本実施例1に係るプレスブレーキ10を示す概略図である。プレスブレーキ10は、C形に形成された左右一対のサイドフレーム12,12の前面下部に位置するベッド14上に下部テーブル16が備えられて、該下部テーブル16上に下金型18が着脱可能に取付けられると共に、サイドフレーム12,12の前面上部に、ラム22が昇降移動可能に設けられている。前記ラム22の下端部には、前記下部テーブル16上に取付けられた下金型18に対向する位置にホルダ24が設けられており、該ホルダ24に上金型26が着脱可能に取付けられる。また、前記左右のサイドフレーム12,12の上部位置には、金型駆動手段28の一例として配設された油圧シリンダのシリンダロッドが前記ラム22の左右上端部に夫々連結されており、油圧シリンダの駆動によりラム22を昇降移動して上金型26を上下移動するよう構成されている。なお、前記金型駆動手段28としては、油圧シリンダに限られるものではなく、サーボモータにより駆動されるボールネジ等、その他の従来公知の手段を採用することが可能である。 FIG. 1 is a schematic view showing a press brake 10 according to the first embodiment. The press brake 10 is provided with a lower table 16 on a bed 14 positioned at the lower part of the front surface of a pair of left and right side frames 12, 12 formed in a C shape, and a lower mold 18 is detachable on the lower table 16. A ram 22 is provided on the upper front surface of the side frames 12 and 12 so as to be movable up and down. A holder 24 is provided at a lower end portion of the ram 22 at a position facing a lower mold 18 mounted on the lower table 16, and an upper mold 26 is detachably attached to the holder 24. Also, cylinder rods of hydraulic cylinders arranged as an example of the mold drive means 28 are connected to the upper left and right ends of the ram 22 at the upper positions of the left and right side frames 12 and 12, respectively. By driving this, the ram 22 is moved up and down to move the upper mold 26 up and down. The mold driving means 28 is not limited to a hydraulic cylinder, and other conventionally known means such as a ball screw driven by a servo motor can be employed.
 また、図2に示すように、前記下金型18の上面には、上方開口するV字状の溝20(以下、V溝という)がプレスブレーキ10の幅方向に延在するよう形成されており、前記ラム22の下降移動に伴ってV溝20内に上金型26が進入するようになっている。従って、V溝20に跨るようワークWを下金型18に支持した状態で前記ラム22を下降移動することで、上金型26による加圧力がワークWに作用し、これによりワークWが所定角度に折曲げられるようになる。なお、実施例1のプレスブレーキ10では、下降移動させた上金型26を下金型18のV溝20内に押込んでワークWの折曲げ加工を行なうタイプのものであるが、金型駆動手段28の駆動により下金型18を昇降移動させて上金型26を下金型18のV溝20内に押込むよう構成しても、同様にワークWの折曲げ加工を行なうことができる。すなわち、上金型26を、該上金型26に対向配置された下金型18のV溝20内に相対的に押込むようにすれば、上下の上金型26の何れが昇降移動する構成であってもよい。 As shown in FIG. 2, a V-shaped groove 20 (hereinafter referred to as a V-groove) that opens upward is formed on the upper surface of the lower mold 18 so as to extend in the width direction of the press brake 10. As the ram 22 moves downward, the upper mold 26 enters the V groove 20. Accordingly, when the ram 22 is moved downward while the work W is supported by the lower mold 18 so as to straddle the V-groove 20, the pressure applied by the upper mold 26 acts on the work W, whereby the work W is predetermined. It can be bent at an angle. The press brake 10 according to the first embodiment is of a type in which the upper die 26 moved downward is pushed into the V groove 20 of the lower die 18 to bend the workpiece W. Even if the lower die 18 is moved up and down by driving the means 28 and the upper die 26 is pushed into the V groove 20 of the lower die 18, the workpiece W can be bent similarly. . That is, when the upper mold 26 is relatively pushed into the V groove 20 of the lower mold 18 disposed opposite to the upper mold 26, any of the upper and lower upper molds 26 moves up and down. There may be.
 また、プレスブレーキ10には、該プレスブレーキ10を制御する制御装置30が備えられており、該制御装置30に接続された入力手段32(入力端末)に入力されたワークの加工条件に基づいて上金型26の押込み量(ワークWに当接してからの上金型26の下降移動量)を算出し、算出された押込み量だけ上金型26がV溝20内に押込まれるように制御装置30に備えた金型駆動制御手段40が金型駆動手段28を駆動してラム22が昇降動作するよう構成される。ここで、前記入力手段32には、下金型18のV溝20の角度(例えば80°、88°、90°等)、下金型18のV溝20の幅寸法(V)、上金型26の先端角度(例えば80°、88°、90°等)等の金型情報が入力されると共に、ワークWの材質、ワークWの板厚(t)等の加工対象のワーク情報が入力される。また、前記入力手段32には、プレスブレーキ10により折曲げ加工した最終製品において目標とするワークWの仕上がり角度(以下、目標仕上がり角度(θ)という)が入力されると共に、第1回目の折曲げ加工後に実測されたワークWの仕上がり角度(以下、実測仕上がり角度(θ)という)が入力されるようになっており、これらの入力値に基づいて、第1回目の折曲げ加工時における上金型26の押込み量(以下、設定押込み量(St)という)および2回目以降の折曲げ加工時における上金型26の押込み量(以下、目標押込み量(St)という)を制御装置30が算出するよう構成される。なお、実施例1のプレスブレーキ10では、前記上下の金型18,26に関する金型情報は、前記制御装置30が備える記憶手段38に金型18,26の種別毎に予め設定されており、前記入力手段32上において折曲げ加工に使用する金型18,26を選択することで自動的に対応の金型情報が取得されるようになっている。 Further, the press brake 10 is provided with a control device 30 for controlling the press brake 10, and based on the workpiece machining conditions input to the input means 32 (input terminal) connected to the control device 30. The pushing amount of the upper die 26 (the amount of downward movement of the upper die 26 after coming into contact with the workpiece W) is calculated, and the upper die 26 is pushed into the V groove 20 by the calculated pushing amount. The mold drive control means 40 provided in the control device 30 drives the mold drive means 28 so that the ram 22 moves up and down. Here, the input means 32 includes an angle (for example, 80 °, 88 °, 90 °, etc.) of the V groove 20 of the lower mold 18, a width dimension (V) of the V groove 20 of the lower mold 18, and an upper mold. Mold information such as the tip angle of the mold 26 (for example, 80 °, 88 °, 90 °, etc.) is input, and workpiece information such as the material of the workpiece W and the thickness (t) of the workpiece W is input. Is done. Further, the input means 32 receives a target finish angle of the workpiece W (hereinafter referred to as a target finish angle (θ T )) in the final product bent by the press brake 10, and the first time. The finished angle of the workpiece W measured after the bending process (hereinafter referred to as the measured finished angle (θ M )) is input. Based on these input values, the first bending process is performed. The pushing amount of the upper die 26 (hereinafter referred to as a set pushing amount (St 1 )) and the pushing amount of the upper die 26 (hereinafter referred to as a target pushing amount (St T )) during the second and subsequent bending processes. The control device 30 is configured to calculate. In the press brake 10 according to the first embodiment, the mold information related to the upper and lower molds 18 and 26 is preset for each type of the molds 18 and 26 in the storage unit 38 included in the control device 30. Corresponding mold information is automatically acquired by selecting the molds 18 and 26 used for the bending process on the input means 32.
 次に、前記制御装置30における前記設定押込み量(St)および目標押込み量(St)の算出方法につき説明する。前記制御装置30は、前記入力手段32に入力された入力値(ワークWの加工条件および目標仕上がり角度(θ))に基づいて第1回目の折曲げ加工で折曲げられるワークWの仕上がり角度(以下、設定仕上がり角度(θ)という)を設定する設定手段34を備えると共に、該設定手段34により設定された設定仕上がり角度(θ)に基づいて上金型26の押込み量となる設定押込み量(St)を算出し、該設定押込み量(St)および前記入力手段32に入力された実測仕上がり角度(θ)に基づいて前記目標仕上がり角度(θ)に対応した上金型26の押込み量(すなわち目標押込み量(St))を算出する算出手段36を備えている(図3参照)。すなわち、実施例1のプレスブレーキ10では、第1回目のワーク折曲げ加工を実施することで、最終的に目標とするワークWの目標仕上がり角度(θ)に対応する上金型26の目標押込み量(St)を算出して、2回目以降のワークWの折曲げ加工により目標仕上がり角度(θ)で折曲げられたワークWが製造されるように構成される。 Next, a method for calculating the set push amount (St 1 ) and the target push amount (St T ) in the control device 30 will be described. The control device 30 determines the finishing angle of the workpiece W that is bent in the first bending process based on the input values (the processing condition and the target finishing angle (θ T ) of the workpiece W) input to the input means 32. A setting unit 34 for setting a set finishing angle (θ 1 ) is provided, and a setting that is a pressing amount of the upper die 26 based on the setting finishing angle (θ 1 ) set by the setting unit 34. calculated push amount (St 1), corresponding to the set pressing amount (St 1) and the target finish angle on the basis of the input to the input unit 32 the measured finish angle (θ M) T) upper A calculating means 36 for calculating the pressing amount of the mold 26 (that is, the target pressing amount (St T )) is provided (see FIG. 3). That is, in the press brake 10 according to the first embodiment, the target of the upper die 26 corresponding to the final target angle (θ T ) of the target workpiece W is obtained by performing the first workpiece bending process. The push-in amount (St T ) is calculated, and the workpiece W bent at the target finish angle (θ T ) is manufactured by bending the workpiece W for the second and subsequent times.
 ここで、前記設定手段34は、前記下金型18のV溝20の傾斜面にワークWが接触した時点で除荷した際のワークWの仕上がり角度(以下、特定仕上がり角度(θ)という)よりも大きくなる条件で設定仕上がり角度(θ)を設定するよう構成される。前記特定仕上がり角度(θ)は、ワークWの材質毎に、ワークWの板厚(t)およびV溝20の幅寸法(V)に依存して決定されることが実験的に確認され、V/tの値と特定仕上がり角度(θ)とは、ワークWの材質毎に図4に示す関係を有している。そこで、図4に示される各曲線を二次関数で近似した下記式(a)で表される変曲点式が前記設定手段34に設定されており、前記入力手段32に入力されたワークWの加工条件(具体的にはV溝20の幅寸法(V)、ワークWの板厚(t)、ワークWの材質)に基づいて、特定仕上がり角度(θ)を算出すると共に、該特定仕上がり角度(θ)よりも大きくなる条件で設定仕上がり角度(θ)を設定するようになっている。なお、a,b,cは、ワークWの材質に固有の係数であり、表1に下金型18のV溝20の角度を88°とした場合におけるワークWの一例についての各係数値を示す。 Here, the setting means 34 is referred to as a finished angle of the workpiece W (hereinafter referred to as a specific finished angle (θ F )) when the workpiece W is unloaded when the workpiece W comes into contact with the inclined surface of the V groove 20 of the lower mold 18. ) Is set so as to set the set finishing angle (θ 1 ) under the condition of greater than. It has been experimentally confirmed that the specific finishing angle (θ F ) is determined depending on the thickness (t) of the workpiece W and the width dimension (V) of the V groove 20 for each material of the workpiece W, The value of V / t and the specific finishing angle (θ F ) have the relationship shown in FIG. Therefore, an inflection point expression represented by the following expression (a) obtained by approximating each curve shown in FIG. 4 with a quadratic function is set in the setting means 34, and the workpiece W input to the input means 32 is set. The specific finishing angle (θ F ) is calculated based on the machining conditions (specifically, the width dimension (V) of the V-groove 20, the plate thickness (t) of the workpiece W, the material of the workpiece W), and the identification The set finishing angle (θ 1 ) is set under conditions that are larger than the finishing angle (θ F ). Here, a, b, and c are coefficients specific to the material of the workpiece W. Table 1 shows the coefficient values for an example of the workpiece W when the angle of the V groove 20 of the lower mold 18 is 88 °. Show.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 ここで、実施例1に係るプレスブレーキ10の設定手段34では、0.1°≦θ-θ≦7°の範囲に前記設定仕上がり角度(θ)を設定している。ワークWを折曲げ加工する際の上金型26の押込み量(St)およびワークWの仕上がり角度(θ)の関係を表すSt-θグラフ(図5参照)において、後述のように変曲点(特定押込み量(St)および特定仕上がり角度(θ)により特定される点)の前後の直線の傾きf1,f2の変化を利用して目標仕上がり角度(θ)を算出手段36が算出するものであるところ、折曲げ加工の特性上、上金型26の押込み量(St)とワークWの仕上がり角度(θ)との関係は完全な1次関数により表されるものではないから、設定仕上がり角度(θ)を0.1°≦θ-θ≦7°の範囲に設定して測定点(設定押込み量(St)および実測仕上がり角度(θ)により特定される点)を変曲点にできる限り近づけることで、目標押込み量(St)を高精度に算出することが可能になる。一方、θ-θ<0.1°の範囲に設定仕上がり角度(θ)を設定した場合には、ワークWの板厚(t)の寸法誤差等により折曲げ加工時にワークWがV溝20の傾斜面に接触した状態になってワークの曲げ特性が大きく変化する可能性があり、0.1°≦θ-θとすることが好ましい。なお、高精度な折曲げ加工が要求されない場合には、θ-θの値を上記の範囲外となるよう設定仕上がり角度(θ)を設定してもよい。 Here, the setting means 34 of the press brake 10 according to the first embodiment sets the set finishing angle (θ 1 ) in a range of 0.1 ° ≦ θ 1 −θ F ≦ 7 °. In the St-θ graph (see FIG. 5) showing the relationship between the pushing amount (St) of the upper die 26 and the finishing angle (θ) of the workpiece W when the workpiece W is bent, an inflection point is described later. The calculation means 36 calculates the target finish angle (θ T ) using changes in the slopes f1 and f2 of the straight lines before and after (a point specified by the specific pushing amount (St F ) and the specific finish angle (θ F )). However, because of the characteristics of the bending process, the relationship between the pushing amount (St) of the upper die 26 and the finished angle (θ) of the workpiece W is not expressed by a complete linear function. The set finishing angle (θ 1 ) is set within the range of 0.1 ° ≦ θ 1 −θ F ≦ 7 °, and the measurement point (the set push amount (St 1 ) and the point specified by the actually measured finishing angle (θ M )) ) by the close as possible to the inflection point, calculate child target pushing amount (St 1) with high precision It becomes possible. On the other hand, when the set finishing angle (θ 1 ) is set in the range of θ 1 −θ F <0.1 °, the workpiece W becomes V during bending due to the dimensional error of the plate thickness (t) of the workpiece W. There is a possibility that the bending characteristics of the workpiece will change greatly in contact with the inclined surface of the groove 20, and 0.1 ° ≦ θ 1 −θ F is preferable. If high-precision bending is not required, the set finishing angle (θ 1 ) may be set so that the value of θ 1F falls outside the above range.
 そして、前記設定手段34により設定仕上がり角度(θ)が設定されると、設定仕上がり角度(θ)に基づいて設定押込み量(St)が前記算出手段36で算出される。ここで、前記設定押込み量(St)は、ワークWの折曲げ加工の幾何形状から、エアーベンドの状態で折曲げて除荷したワークWの仕上がり角度と、上金型26の押込み量との関係を示す関係式から演算されるものである。 When the setting finish angle (θ 1 ) is set by the setting means 34, the set pushing amount (St 1 ) is calculated by the calculation means 36 based on the setting finish angle (θ 1 ). Here, the set push-in amount (St 1 ) is determined based on the finish angle of the work W bent and unloaded in the air bend state, the push-in amount of the upper die 26, from the geometric shape of the work W bending. It is calculated from the relational expression showing the relationship of
 そこで、エアーベンドの状態で折曲げて除荷したワークWの仕上がり角度と上金型26の押込み量との関係を示す関係式の導出について説明する。先ず、図6に示すようにエアーベンドでのワークWの折曲げ状態から、以下の式(b)が幾何的に求められる。 Therefore, the derivation of the relational expression showing the relationship between the finished angle of the work W bent and unloaded in the air bend state and the pushing amount of the upper die 26 will be described. First, as shown in FIG. 6, the following equation (b) is geometrically determined from the bent state of the work W with an air bend.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 また、図7において斜線で示した三角形部分に着目すると、以下の式(c),(d)が得られる。なお、式(b)~式(d)における曲げ角度(θ)は、挟み角度である。 Further, when attention is paid to the triangular portion shown by oblique lines in FIG. 7, the following equations (c) and (d) are obtained. Note that the bending angle (θ) in the equations (b) to (d) is the sandwiching angle.
 そして、図7からα=(180-θ)/2の関係を有することから、ワーク折曲部の内面半径R、ワーク折曲部の内面円弧長Aとすると、A=2παR/180の関係を有することを利用して、式(b)~(d)を纏めると下記の式(e)が得られる。なお、図7では、ワークWを加圧する上金型26が省略して示してある。なお、ワークWに上金型26の加圧力を作用して押込んだ後に除荷すると、スプリングバックが生ずることから、ワークWが中心部まで塑性変形するときの撓み量をワークWの弾性回復補正量δとして材料力学の撓み計算により算出して、上金型26の押込み量から減算している。このように、弾性回復補正量δの補正を行なうことで、式(e)における曲げ角度(θ)は、仕上がり角度としてみなすことができる。 Since the relationship α = (180−θ) / 2 is obtained from FIG. 7, assuming that the inner radius R of the work bent portion and the inner arc length A of the work bent portion, the relationship A = 2παR / 180 is obtained. The following formula (e) can be obtained by combining the formulas (b) to (d) by using the above. In FIG. 7, the upper mold 26 for pressurizing the workpiece W is omitted. Note that, when the workpiece W is unloaded after the upper die 26 is pressed by applying the pressing force, a springback occurs. Therefore, the amount of bending when the workpiece W is plastically deformed to the center is determined by the elastic recovery of the workpiece W. The correction amount δ is calculated by calculation of the bending of material mechanics, and is subtracted from the pushing amount of the upper die 26. In this way, by correcting the elastic recovery correction amount δ, the bending angle (θ) in the equation (e) can be regarded as a finished angle.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 円弧長Aは、数式上においてワーク折曲部の円弧部分の長さを意味するが、実際に折曲げ加工されたワークWの折曲げ部は、完全な円弧とはならないため、以下の説明では、Aを「ベンドファクタ(A)」と指称するものとする。 The arc length A means the length of the arc portion of the workpiece bending portion in the mathematical formula, but the bent portion of the workpiece W that is actually bent is not a complete arc. , A is referred to as “bend factor (A)”.
 前記ベンドファクタ(A)は、ワークWの加工条件(具体的にはV溝20の角度(φ)、V溝20の幅寸法(V)、ワークWの材質、ワークWの板厚(t))および折曲げ加工時のワークWの仕上がり角度との関係に基づいて定められる値である。そこで、実施例1では、有限要素解析法により求められたワークWの仕上がり角度(θ)とベンドファクタ(A)との関係を示すベンドファクタデータテーブルがワークWの加工条件毎に記憶手段38に記憶されている。表2は、記憶手段38に記憶されたベンドファクタデータテーブルの一例を示し、図8は、記憶手段38が記憶するベンドファクタデータテーブルの内、冷延鋼板(SPCC)の例をグラフとして表示したものである。すなわち、前記算出手段36では、前記設定手段34により設定された設定仕上がり角度(θ)に対応するベンドファクタ(A)を、前記入力手段32に入力されたワークWの加工条件に基づいて前記記憶手段38が記憶するベンドファクタデータテーブルから取得する。そして、上記の式(e)において、A=A、θ=θとした条件で前記設定押込み量(St)が算出される。 The bend factor (A) is the processing conditions of the workpiece W (specifically, the angle (φ) of the V groove 20, the width dimension (V) of the V groove 20, the material of the workpiece W, the plate thickness (t) of the workpiece W) ) And the value determined based on the relationship with the finished angle of the workpiece W during bending. Therefore, in the first embodiment, a bend factor data table indicating the relationship between the finished angle (θ) of the workpiece W and the bend factor (A) obtained by the finite element analysis method is stored in the storage unit 38 for each machining condition of the workpiece W. It is remembered. Table 2 shows an example of the bend factor data table stored in the storage means 38, and FIG. 8 shows an example of the cold rolled steel sheet (SPCC) as a graph in the bend factor data table stored in the storage means 38. Is. That is, the calculation means 36 calculates the bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) set by the setting means 34 based on the machining conditions of the workpiece W input to the input means 32. Obtained from the bend factor data table stored in the storage means 38. In the above formula (e), the set push amount (St 1 ) is calculated under the conditions of A = A 1 and θ = θ 1 .
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 更に、前記算出手段36は、第1回目のワーク折曲げ加工後にワークWから実測された実測仕上がり角度(θ)が前記入力手段32に入力されると、設定押込み量(St)および実測仕上がり角度(θ)に基づいて前記目標仕上がり角度(θ)に対応した上金型26の押込み量となる目標押込み量(St)を算出するよう設定される。具体的には、前記算出手段36は、上金型26の押込み量(St)およびワークWの仕上がり角度(θ)の関係を表したSt-θグラフにおいて、前記実測仕上がり角度(θ)および設定押込み量(St)により定められる点を測定点とし、前記特定仕上がり角度(θ)および特定仕上がり角度(θ)に対応した上金型26の押込み量となる特定押込み量(St)により定められる点を変曲点とし、前記目標仕上がり角度(θ)に対応した上金型26の押込み量となる目標押込み量(St)を加工点とした場合に、該測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが所定の関係を満たすように当該目標押込み量(St)を算出するよう設定されている。 Further, when the measured finishing angle (θ M ) measured from the workpiece W after the first bending of the workpiece is input to the input unit 32, the calculating unit 36 sets the set push-in amount (St 1 ) and measured. Based on the finishing angle (θ M ), the target pressing amount (St T ) that is the pressing amount of the upper mold 26 corresponding to the target finishing angle (θ T ) is set. Specifically, the calculation means 36 is a St-θ graph representing the relationship between the pushing amount (St) of the upper die 26 and the finish angle (θ) of the workpiece W, and the measured finish angle (θ M ) and Using the point determined by the set push amount (St 1 ) as a measurement point, the specific push amount (St F ) that becomes the push amount of the upper mold 26 corresponding to the specific finish angle (θ F ) and the specific finish angle (θ F ) ) and inflection points the point defined by, when said target finishing angle (theta T) target pushing amount of the push-in amount of the upper die 26 corresponding to the (St T) was processed point, surveying a fixed point and The target indentation amount (St T ) is calculated so that the inclination (f1) of the straight line passing through the inflection point and the inclination (f2) of the straight line passing through the inflection point and the machining point satisfy a predetermined relationship. Is set.
 具体的には、前記算出手段36では、前記入力手段32に入力されたワークWの実測仕上がり角度(θ)および設定押込み量(St)から上記の式(e)においてθ=θ、St=Stとした条件で修正ベンドファクタ(A')を逆算し、修正ベンドファクタ (A')および前記特定仕上がり角度(θ)から上記の式(e)においてA=A'、θ=θとした条件で算出された特定押込み量(St)に基づいて、前記St-θグラフにおける測定点および変曲点を特定し、該測定点および変曲点を通過する直線の傾き(f1)を算出するようになっている。 Specifically, in the calculation means 36, θ = θ M in the above equation (e) from the actually measured finishing angle (θ M ) and the set push amount (St 1 ) of the workpiece W input to the input means 32. The corrected bend factor (A ′) is calculated backward under the condition of St = St 1 and A = A ′, θ = in the above formula (e) from the corrected bend factor (A ′) and the specific finished angle (θ F ). Based on the specific indentation amount (St F ) calculated under the condition of θ F , the measurement point and the inflection point in the St-θ graph are specified, and the slope of the straight line passing through the measurement point and the inflection point ( f1) is calculated.
 そして、前記算出手段36は、前記下金型18のV溝20の幅寸法(V)およびワークWの板厚(t)とした場合に、前記St-θグラフにおいて測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)との関係が、下記の式(f)の関係を満たすよう変曲点および加工点を通過する直線の傾き(f2)を決定し、この変曲点および加工点を通過する傾き(f2)の直線上において、前記入力手段32に入力されたワークWの目標仕上がり角度(θ)に対応する押込み量を、目標押込み量(St)として算出する。そして、前記算出手段36において目標押込み量(St)が算出されると、算出された目標押込み量(St)だけ上金型26がV溝20内に押込まれるよう制御装置30の金型駆動制御手段40が金型駆動手段28を駆動制御して2回目以降の折曲げ加工が実行される。 The calculating means 36 calculates the measurement point and the inflection point in the St-θ graph when the width dimension (V) of the V groove 20 of the lower mold 18 and the plate thickness (t) of the workpiece W are set. The relationship between the inclination (f1) of the straight line passing through and the inclination (f2) of the straight line passing through the inflection point and the machining point passes through the inflection point and the machining point so as to satisfy the relationship of the following formula (f). The inclination (f2) of the straight line is determined, and corresponds to the target finish angle (θ T ) of the workpiece W input to the input means 32 on the straight line of the inclination (f2) passing through the inflection point and the machining point. The pushing amount is calculated as a target pushing amount (St T ). Then, when the target pushing amount (St T ) is calculated by the calculating means 36, the mold of the control device 30 is pushed so that the upper mold 26 is pushed into the V groove 20 by the calculated target pushing amount (St T ). The mold drive control means 40 controls the mold drive means 28 to execute the second and subsequent bending processes.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 前記算出手段36において目標押込み量(St)が算出されると、算出された目標押込み量(St)だけ上金型26がV溝20内に押込まれるよう前記制御装置30が金型駆動手段28を駆動制御して2回目以降の折曲げ加工が実行される。これにより、2回目以降の折曲げ加工により折曲げられた後の最終的な仕上がり角度(θ)が、-0.25°≦θ-θ≦0.25°の範囲にあるワークWを得ることができる。すなわち、上金型26が下金型18のV溝20内に相対的に押込まれた際に、該下金型18のV溝20の傾斜面にワークWを接触させる必要がある目標仕上がり角度(θ)までワークWを折曲げ加工する場合であっても、1回のワークWの折曲げ加工を行なうことで目標仕上がり角度(θ)に対応した目標押込み量(St)を算出することができ、製品製造が可能となるまでに必要なワークWの折曲げ回数を大幅に低減することが可能となり、生産性向上が図られる。しかも、折曲げ加工の過程でワークWの折曲げ角度を測定する必要がないから、上下の金型18,26にセンサ等を備えた特殊な金型を必要とせず、一般に使用される汎用の金型を採用できるから、加工可能なワーク形状の制約を受けることなく簡単に目標仕上がり角度(θ)にワークWを折曲げることが可能となる。 When the target pushing amount (St T ) is calculated by the calculating means 36, the control device 30 moves the die 30 so that the upper die 26 is pushed into the V groove 20 by the calculated target pushing amount (St T ). The drive means 28 is driven and controlled, and the second and subsequent bending processes are executed. As a result, the work W whose final finishing angle (θ L ) after being bent by the second and subsequent bending processes is in the range of −0.25 ° ≦ θ L −θ T ≦ 0.25 °. Can be obtained. That is, when the upper mold 26 is relatively pushed into the V groove 20 of the lower mold 18, the target finish angle at which the work W needs to be brought into contact with the inclined surface of the V groove 20 of the lower mold 18. even in the case of bending the workpiece W to (θ T), is calculated once the target pressing amount corresponding to the target finish angle (theta T) by performing a bending of the workpiece W to (St T) Thus, the number of times the workpiece W is bent before the product can be manufactured can be greatly reduced, and productivity can be improved. In addition, since it is not necessary to measure the bending angle of the workpiece W during the bending process, a special mold having a sensor or the like is not required for the upper and lower molds 18 and 26, and the general-purpose general-purpose used. Since a mold can be adopted, the workpiece W can be easily bent at the target finish angle (θ T ) without being restricted by the shape of the workable workpiece.
〔実験例〕
 次に、前述した実施例1に係るプレスブレーキ10を用いた折曲げ加工方法および折曲げ加工システムを用いてワークWを折曲げ加工した実験例を示す。この実験例では、前記入力手段32には、下金型18のV溝20の角度(φ)を88°、上金型26の先端角度を88°、ワークWの目標仕上がり角度(θ)を90°として入力したもとでワークWを折曲げ加工した。なお、図9~図30における縦軸において、90±0.25°の位置で一点鎖線を表示し、当該一点鎖線の間にデータがある場合に、-0.25°≦θ-θ≦0.25°となる高精度なワークWの折曲げ加工が行なわれていることを表している。
[Experimental example]
Next, an experimental example in which the workpiece W is bent using the bending method and the bending system using the press brake 10 according to Example 1 described above will be described. In this experimental example, the input means 32 has an angle (φ) of the V groove 20 of the lower mold 18 of 88 °, a tip angle of the upper mold 26 of 88 °, and a target finish angle (θ T ) of the workpiece W. The workpiece W was bent under the input of 90 °. 9 to 30, in the case where a one-dot chain line is displayed at a position of 90 ± 0.25 ° on the vertical axis and there is data between the one-dot chain line, −0.25 ° ≦ θ L −θ T It represents that the bending work of the work W with high accuracy satisfying ≦ 0.25 ° is performed.
(第1実験例)
 第1実験例は、アルミニウム(A5052P)を板厚(t)=1.5mmに形成したワークWを、V溝20の幅寸法(V)=8mm、V=10mm、V=12mm、V=16mmとした下金型18を用いて折曲げ加工を行なった。この第1実験例では、上記式(f)において(f1/f2)×(V/t)=5.0とし、θ-θ=1.5°とした。その実験結果を図9~図12および表3に示す。
(First experiment example)
In the first experimental example, a workpiece W in which aluminum (A5052P) is formed with a plate thickness (t) = 1.5 mm is used. The lower mold 18 was bent. In this first experimental example, (f1 / f2) × (V / t) = 5.0 and θ 1 −θ F = 1.5 ° in the above formula (f). The experimental results are shown in FIGS. 9 to 12 and Table 3.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 下金型18のV溝20の幅寸法(V)=8mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=90.48°から、表3に示すように設定仕上がり角度(θ)=91.98°、設定押込み量(St)=3.152mmが得られた。そして、設定押込み量(St)=3.152mmに基づく第1回目のワーク折曲げ加工から、実測仕上がり角度(θ)=91.43°、特定押込み量(St)=3.190mm、目標押込み量(St)=3.212mmが得られた。そして、目標押込み量(St)=3.212mmに基づいて第2回目のワーク折曲げ加工を行なったところ、θ-θ=0となった。更に、同様に行なった第2試験では、θ-θ=-0.02°となり、第3試験では、θ-θ=-0.03°となった。なお、表3中の押込み量は、折曲げ加工において実際に上金型26をV溝20内に押込んだ寸法であり、以下の表4~表10においても同様である。 In the first test when the width dimension (V) of the V groove 20 of the lower mold 18 is 8 mm, the specific finish angle (θ F ) calculated from the above formula (a) = 90.48 ° is shown in Table 3. As shown in the figure, a set finishing angle (θ 1 ) = 91.98 ° and a set indentation amount (St 1 ) = 3.152 mm were obtained. Then, from the first work bending process based on the set push amount (St 1 ) = 3.152 mm, the actually measured finished angle (θ M ) = 91.43 °, the specific push amount (St F ) = 3.190 mm, Target pushing amount (St T ) = 3.212 mm was obtained. Then, when the second workpiece bending process was performed based on the target push amount (St T ) = 3.212 mm, θ L −θ T = 0 was obtained. Further, in the same second test, θ LT = −0.02 °, and in the third test, θ L −θ T = −0.03 °. In addition, the pushing amount in Table 3 is a dimension in which the upper die 26 is actually pushed into the V groove 20 in the bending process, and the same applies to Tables 4 to 10 below.
 また、下金型18のV溝20の幅寸法(V)=10mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=91.10°から、表3に示すように設定仕上がり角度(θ)=92.60°、設定押込み量(St)=4.093mmが得られた。設定押込み量(St)=4.093mmに基づく第1回目のワーク折曲げ加工から、実測仕上がり角度(θ)=92.58°、特定押込み量(St)=4.172mm、目標押込み量(St)=4.231mmが得られた。そして、この目標押込み量(St)=4.231mmに基づいて第2回目のワーク折曲げ加工を行なったところ、θ-θ=0°となった。また、同様に行なった第2試験では、θ-θ=-0.02°であり、第3試験では、θ-θ=-0.03°であった。 Further, in the first test when the width dimension (V) of the V groove 20 of the lower mold 18 is 10 mm, from the specific finish angle (θ F ) = 91.10 ° calculated from the above formula (a), As shown in Table 3, the set finishing angle (θ 1 ) = 92.60 ° and the set indentation amount (St 1 ) = 4.093 mm were obtained. From the first workpiece bending process based on the set push amount (St 1 ) = 4.093 mm, the actually measured finished angle (θ M ) = 92.58 °, the specific push amount (St F ) = 4.172 mm, the target push The quantity (St T ) = 4.231 mm was obtained. Then, when the second workpiece bending process was performed based on this target indentation amount (St T ) = 4.231 mm, θ L −θ T = 0 ° was obtained. Further, in the same second test, θ L −θ T = −0.02 °, and in the third test, θ L −θ T = −0.03 °.
 更に、下金型18のV溝20の幅寸法(V)=12mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=91.58°から、表3に示すように設定仕上がり角度(θ)=93.08°、設定押込み量(St)=5.039mmが得られた。設定押込み量(St)=5.039mmに基づく第1回目のワーク折曲げ加工から、実測仕上がり角度(θ)=92.72°、特定押込み量(St)=5.116mm、目標押込み量(St)=5.202mmが得られた。そして、この目標押込み量(St)=5.202mmに基づいて第2回目のワーク折曲げ加工を行なったところ、θ-θ=+0.17°となった。また、同様に行なった第2試験では、θ-θ=+0.08°となり、第3試験では、θ-θ=+0.05°となった。 Further, in the first test when the width dimension (V) of the V groove 20 of the lower mold 18 is set to 12 mm, from the specific finish angle (θ F ) = 91.58 ° calculated from the above formula (a), As shown in Table 3, the set finishing angle (θ 1 ) = 93.08 ° and the set indentation amount (St 1 ) = 5.039 mm were obtained. From the first workpiece bending process based on the set indentation amount (St 1 ) = 5.039 mm, the actually measured finished angle (θ M ) = 92.72 °, the specific indentation amount (St F ) = 5.116 mm, the target indentation The quantity (St T ) = 5.202 mm was obtained. Then, when the second workpiece bending process was performed based on this target indentation amount (St T ) = 5.202 mm, θ L −θ T = + 0.17 °. Further, in the same second test, θ L −θ T = + 0.08 °, and in the third test, θ L −θ T = + 0.05 °.
 また、下金型18のV溝20の幅寸法(V)=16mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=92.10°から、表3に示すように設定仕上がり角度(θ)=93.60°、設定押込み量(St)=6.938mmが得られた。この設定押込み量(St)=6.938mmに基づく第1回目のワーク折曲げ加工から、実測仕上がり角度(θ)=94.00°、特定押込み量(St)=7.130mm、目標押込み量(St)=7.252mmが得られた。そして、この目標押込み量(St)=7.252mmに基づいて第2回目のワーク折曲げ加工を行なったところ、θ-θ=-0.03°となった。また、同様に行なった第2試験では、θ-θ=-0.17°となり、第3試験では、θ-θ=-0.02°となった。 In the first test when the width dimension (V) of the V groove 20 of the lower mold 18 is set to 16 mm, from the specific finish angle (θ F ) = 92.10 ° calculated from the above formula (a), As shown in Table 3, the set finishing angle (θ 1 ) = 93.60 ° and the set indentation amount (St 1 ) = 6.938 mm were obtained. From the first workpiece bending process based on the set push amount (St 1 ) = 6.938 mm, the actually measured finished angle (θ M ) = 94.00 °, the specific push amount (St F ) = 7.130 mm, the target Indentation amount (St T ) = 7.252 mm was obtained. Then, when the second work bending process was performed based on this target indentation amount (St T ) = 7.252 mm, θ L −θ T = −0.03 °. Further, in the same second test, θ L −θ T = −0.17 °, and in the third test, θ L −θ T = −0.02 °.
 すなわち、図9~図12に示すように、第1回目のワークWの折曲げ加工を行なうことで目標仕上がり角度(θ)に対応した目標押込み量(St)を算出することができ、第2回目以降のワーク折曲げ加工では、目標押込み量(St)に基づいて上金型26をV溝20内に押込むことで、高精度な折曲げ加工が行なわれる。 That is, as shown in FIGS. 9 to 12, the target push amount (St T ) corresponding to the target finish angle (θ T ) can be calculated by performing the first bending of the workpiece W, In the second and subsequent work bending processes, high-precision bending is performed by pressing the upper mold 26 into the V-groove 20 based on the target pressing amount (St T ).
(第2実験例)
 第2実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.5mm、2.0mm、3.0mmに形成したワークWにつき、V溝20の幅寸法(V)=12mm、V=16mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=4.5とし、θ-θ=1.5°とした。その実験結果を図13~図15および表4に示す。
(Example 2)
In the second experimental example, the width dimension (V) of the V-groove 20 (V) = 12 mm and V / V for a workpiece W in which aluminum (A5052P) is formed to a predetermined plate thickness (t) = 1.5 mm, 2.0 mm, and 3.0 mm. Bending was performed using a lower mold 18 having a thickness of 16 mm. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 4.5 and θ 1 −θ F = 1.5 °. The experimental results are shown in FIGS. 13 to 15 and Table 4.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=12mmとした場合では、上記式(a)から算出された特定仕上がり角度(θ)=91.58°から、表4に示すように設定仕上がり角度(θ)=93.08°、設定押込み量(St)=5.039mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=92.72°、特定押込み量(St)=5.115mm、目標押込み量(St)=5.177mmが得られた。そして、この目標押込み量(St)=5.177mmに基づいて第2回目のワーク折曲げ加工を行なったところ、θ-θ=+0.23°であった。また、ワークの板厚(t)=2.0mm、下金型18のV溝20の幅寸法(V)=12mmとした場合の第1試験では、表4に示すように特定仕上がり角度(θ)=90.81°から、設定仕上がり角度(θ)=92.31°、設定押込み量(St)=4.833mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=92.10°、特定押込み量(St)=4.911mm、目標押込み量(St)=4.948mmが得られた。そして、この目標押込み量(St)=4.948mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+0.08°となり、同様に行なった第2試験では、θ-θ=+0.05°となった。更に、ワークの板厚(t)=3.0mm、下金型18のV溝20の幅寸法(V)=16mmとした場合の第1試験では、表4に示すように特定仕上がり角度(θ)=90.48°から、設定仕上がり角度(θ)=91.98°、設定押込み量(St)=6.295mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=92.18°、特定押込み量(St)=6.433mm、目標押込み量(St)=6.466mmが得られた。そして、この目標押込み量(St)=6.466mmとした条件で第2回目のワーク折曲げ加工を行なったところ、θ-θ=+0.08°となり、同様に行なった第2試験では、θ-θ=+0.12°となった。 In the case where the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 12 mm, the specific finishing angle (θ F ) calculated from the above formula (a) = From 91.58 °, as shown in Table 4, the set finishing angle (θ 1 ) = 93.08 ° and the set indentation amount (St 1 ) = 5.039 mm were obtained, and the result of the first workpiece bending process The actually measured finished angle (θ M ) = 92.72 °, the specific pushing amount (St F ) = 5.115 mm, and the target pushing amount (St T ) = 5.177 mm were obtained. Then, when the second workpiece bending process was performed based on this target indentation amount (St T ) = 5.177 mm, θ L −θ T = + 0.23 °. Further, in the first test in the case where the workpiece thickness (t) = 2.0 mm and the width dimension (V) of the V groove 20 of the lower die 18 = 12 mm, as shown in Table 4, a specific finish angle (θ F ) = 90.81 °, setting finishing angle (θ 1 ) = 92.31 ° and setting indentation amount (St 1 ) = 4.833 mm are obtained. As a result of the first work bending, the actually measured finish is obtained. An angle (θ M ) = 92.10 °, a specific pushing amount (St F ) = 4.911 mm, and a target pushing amount (St T ) = 4.948 mm were obtained. Then, when the second bending process was performed under the condition of this target indentation amount (St T ) = 4.948 mm, θ L −θ T = + 0.08 °, and in the same second test, , Θ L −θ T = + 0.05 °. Further, in the first test in the case where the workpiece thickness (t) = 3.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 16 mm, as shown in Table 4, a specific finish angle (θ F ) = 90.48 °, setting finish angle (θ 1 ) = 91.98 °, setting indentation amount (St 1 ) = 6.295 mm are obtained, and as a result of the first work bending process, the measured finish is obtained. An angle (θ M ) = 92.18 °, a specific pushing amount (St F ) = 6.433 mm, and a target pushing amount (St T ) = 6.466 mm were obtained. Then, when the second workpiece bending was performed under the condition of this target indentation amount (St T ) = 6.466 mm, θ L −θ T = + 0.08 °, and the same second test was conducted. Then, θ L −θ T = + 0.12 °.
 すなわち、図13~図15に示すように、(f1/f2)×(V/t)=4.5とすることで、第1回目のワークWの折曲げ加工を行なうことで目標仕上がり角度(θ)に対応した目標押込み量(St)を算出することができ、第2回目以降のワーク折曲げ加工では、目標押込み量(St)に基づいて上金型26をV溝20内に押込むことで、高精度な折曲げ加工が行なわれる。 That is, as shown in FIGS. 13 to 15, by setting (f1 / f2) × (V / t) = 4.5, by performing the first bending of the workpiece W, the target finish angle ( The target push amount (St T ) corresponding to θ T ) can be calculated. In the second and subsequent workpiece bending processes, the upper die 26 is placed in the V groove 20 based on the target push amount (St T ) A highly accurate bending process is performed by pushing in.
(第3実験例)
 第3実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.5mm、3.0mmに形成したワークWにつき、V溝20の幅寸法(V)=12mm、V=16mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=6.5とし、θ-θ=1.5°とした。その実験結果を図16~図17および表5に示す。
(Third experimental example)
In the third experimental example, the width dimension (V) of the V groove 20 (V) = 12 mm and V = 16 mm for a workpiece W formed of aluminum (A5052P) with a predetermined thickness (t) = 1.5 mm and 3.0 mm. Bending was performed using the lower die 18. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 6.5, and θ 1 −θ F = 1.5 °. The experimental results are shown in FIGS. 16 to 17 and Table 5.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=12mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=91.58°から、表5に示すように設定仕上がり角度(θ)=93.08°、設定押込み量(St)=5.039mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=92.58°、特定押込み量(St)=5.106mm、目標押込み量(St)=5.196mmが得られた。そして、この目標押込み量(St)=5.196mmとした条件で第2回目のワーク折曲げ加工を行なったところ、θ-θ=-0.22°となり、同様に行なった第2試験では、θ-θ=-0.18°となった。また、ワークの板厚(t)=3.0mm、下金型18のV溝20の幅寸法(V)=16mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=90.48°から、設定仕上がり角度(θ)=91.98°、設定押込み量(St)=6.295mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=92.18°、特定押込み量(St)=6.433mm、目標押込み量(St)=6.481mmが得られた。そして、この目標押込み量(St)=6.481mmとした条件で第2回目のワーク折曲げ加工を行なったところ、θ-θ=-0.17°となり、同様に行なった第2試験では、θ-θ=-0.02°となった。 In the first test when the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 12 mm, the specific finishing angle calculated from the above formula (a) ( from θ F) = 91.58 °, set finishing angle as shown in Table 5 (θ 1) = 93.08 ° , set pressing amount (St 1) = 5.039mm are obtained, the first workpiece folding As a result of bending, the actually measured finished angle (θ M ) = 92.58 °, the specific indentation amount (St F ) = 5.106 mm, and the target indentation amount (St T ) = 5.196 mm were obtained. Then, when the second workpiece bending process was performed under the condition of this target indentation amount (St T ) = 5.196 mm, θ L −θ T = −0.22 °, and the second performed in the same manner. In the test, θ L −θ T = −0.18 °. In the first test in which the workpiece thickness (t) = 3.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 16 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 90.48 °, the set finished angle (θ 1 ) = 91.98 ° and the set indentation amount (St 1 ) = 6.295 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 92.18 °, the specific pushing amount (St F ) = 6.433 mm, and the target pushing amount (St T ) = 6.481 mm were obtained. Then, when the second workpiece bending process was performed under the condition of this target indentation amount (St T ) = 6.481 mm, θ L −θ T = −0.17 °, which was the same as the second performed. In the test, θ L −θ T = −0.02 °.
 このように、図16~図17に示すように、(f1/f2)×(V/t)=6.5とすることで、第1回目のワークWの折曲げ加工を行なうことで目標仕上がり角度(θ)に対応した目標押込み量(St)を算出することができ、第2回目以降のワーク折曲げ加工では、目標押込み量(St)に基づいて上金型26をV溝20内に押込むことで、高精度な折曲げ加工が行なわれる。すなわち、第1実験例~第3実験例より、(f1/f2)×(V/t)の値が、式(f)の関係を満たすことにより、2回目以降のワーク折曲げ加工時に、-0.25°≦θ-θ≦0.25°の範囲にある高精度に折曲げられたワークWを得ることが可能となる。 In this way, as shown in FIGS. 16 to 17, by setting (f1 / f2) × (V / t) = 6.5, the target finish is achieved by performing the first bending work W. The target push amount (St T ) corresponding to the angle (θ T ) can be calculated. In the second and subsequent workpiece bending processes, the upper die 26 is moved to the V-groove based on the target push amount (St T ). By being pushed into 20, a highly accurate bending process is performed. That is, from the first experimental example to the third experimental example, when the value of (f1 / f2) × (V / t) satisfies the relationship of formula (f), It is possible to obtain a workpiece W bent with high accuracy in the range of 0.25 ° ≦ θ L −θ T ≦ 0.25 °.
(第4実験例)
 第4実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.0mm、1.5mmに形成したワークWにつき、V溝20の幅寸法(V)=12mm、V=16mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=3.0とし、θ-θ=1.5°とした。その実験結果を図18~図19および表6に示す。
(Example 4)
In the fourth experimental example, the width dimension (V) of the V groove 20 (V) = 12 mm and V = 16 mm for a workpiece W in which aluminum (A5052P) is formed to a predetermined plate thickness (t) = 1.0 mm and 1.5 mm. Bending was performed using the lower mold 18. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 3.0 and θ 1 −θ F = 1.5 °. The experimental results are shown in FIGS.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 ワークの板厚(t)=1.0mm、下金型18のV溝20の幅寸法(V)=12mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=92.15°から、設定仕上がり角度(θ)=93.65°、設定押込み量(St)=5.297mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=93.70°、特定押込み量(St)=5.413mm、目標押込み量(St)=5.456mmが得られた。そして、この目標押込み量(St)=5.456mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+0.98°となり、同様に行なった第2試験では、θ-θ=+1.08°となった。また、ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=16mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=92.10°から、設定仕上がり角度(θ)=93.60°、設定押込み量(St)=6.937mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=93.75°、特定押込み量(St)=7.103mm、目標押込み量(St)=7.169mmが得られた。そして、この目標押込み量(St)=7.169mmとした条件で第2回目のワーク折曲げ加工を行なったところ、θ-θ=+1.52°となり、同様に行なった第2試験では、θ-θ=+1.12°となった。 In the first test where the workpiece thickness (t) = 1.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 12 mm, the specific finishing angle calculated from the above formula (a) ( From θ F ) = 92.15 °, a set finishing angle (θ 1 ) = 93.65 ° and a set indentation amount (St 1 ) = 5.297 mm are obtained. As a result of the first bending, the actually measured finish is obtained. An angle (θ M ) = 93.70 °, a specific pushing amount (St F ) = 5.413 mm, and a target pushing amount (St T ) = 5.456 mm were obtained. Then, when the second bending process was performed under the condition of this target indentation amount (St T ) = 5.456 mm, θ L −θ T = + 0.98 °, and in the second test conducted in the same manner, , Θ L −θ T = + 1.08 °. In the first test in which the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 16 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 92.10 °, the set finished angle (θ 1 ) = 93.60 ° and the set push-in amount (St 1 ) = 6.937 mm are obtained, and the result of the first workpiece bending process The actually measured finished angle (θ M ) = 93.75 °, the specific pushing amount (St F ) = 7.103 mm, and the target pushing amount (St T ) = 7.169 mm were obtained. Then, when the second workpiece bending process was performed under the condition of this target indentation amount (St T ) = 7.169 mm, θ L −θ T = + 1.52 °, and the same second test was conducted. Then, θ L −θ T = + 1.12 °.
 すなわち、(f1/f2)×(V/t)=3.0とした場合には、折曲げ加工されたワークWの仕上がり角度の精度が第1~第3実験例に較べて低下し、4.5≦(f1/f2)×(V/t)とすることが高精度な折曲げ加工を行なう上で好ましいことが実験的に明らかになった。 That is, when (f1 / f2) × (V / t) = 3.0, the accuracy of the finished angle of the bent workpiece W is lower than in the first to third experimental examples, and 4 It has been experimentally revealed that it is preferable to perform .5 ≦ (f1 / f2) × (V / t) for highly accurate bending.
(第5実験例)
 第5実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.0mm、1.5mmに形成したワークWにつき、V溝20の幅寸法(V)=12mm、V=16mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=8.0とし、θ-θ=1.5°とした。その実験結果を図20~図21および表7に示す。
(Fifth experimental example)
In the fifth experimental example, the width dimension (V) of the V groove 20 (V) = 12 mm and V = 16 mm for a workpiece W in which aluminum (A5052P) is formed to a predetermined plate thickness (t) = 1.0 mm and 1.5 mm. Bending was performed using the lower mold 18. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 8.0 and θ 1 −θ F = 1.5 °. The experimental results are shown in FIGS. 20 to 21 and Table 7.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 ワークの板厚(t)=1.0mm、下金型18のV溝20の幅寸法(V)=12mmの場合では、上記式(a)から算出された特定仕上がり角度(θ)=92.15°から、設定仕上がり角度(θ)=93.65°、設定押込み量(St)=5.297mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=93.70°、特定押込み量(St)=5.413mm、目標押込み量(St)=5.526mmが得られた。そして、この目標押込み量(St)=5.526mmとした条件で第2回目のワーク折曲げ加工を行なったところ、θ-θ=-1.05°となり、同様に行なった第2試験ではθ-θ=-0.98°となった。また、ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=16mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=92.10°から、設定仕上がり角度(θ)=93.60°、設定押込み量(St)=6.937mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=93.72°、特定押込み量(St)=7.100mm、目標押込み量(St)=7.271mmが得られた。そして、この目標押込み量(St)=7.271mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=-0.43°となり、同様に行なった第2試験ではθ-θ=-0.75°となった。 In the case where the plate thickness (t) of the workpiece is 1.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 12 mm, the specific finishing angle (θ F ) calculated from the above formula (a) = 92 From 15 °, a set finish angle (θ 1 ) = 93.65 ° and a set indentation amount (St 1 ) = 5.297 mm are obtained. As a result of the first work bending, the actually measured finish angle (θ M ) = 93.70 °, specific pushing amount (St F ) = 5.413 mm, target pushing amount (St T ) = 5.526 mm. Then, when the second workpiece bending process was performed under the condition of this target indentation amount (St T ) = 5.526 mm, θ L −θ T = −1.05 °, which was the same as the second performed. In the test, θ L −θ T = −0.98 °. In the first test in which the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 16 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 92.10 °, the set finished angle (θ 1 ) = 93.60 ° and the set push-in amount (St 1 ) = 6.937 mm are obtained, and the result of the first workpiece bending process The actually measured finished angle (θ M ) = 93.72 °, the specific pushing amount (St F ) = 7.100 mm, and the target pushing amount (St T ) = 7.271 mm were obtained. Then, when the second bending process was performed under the condition of this target indentation amount (St T ) = 7.271 mm, θ L −θ T = −0.43 °, and the same second test was performed. Then, θ L −θ T = −0.75 °.
 すなわち、(f1/f2)×(V/t)=8.0とした場合には、折曲げ加工されたワークWの仕上がり角度の精度が第1~第3実験例に較べて低下し、(f1/f2)×(V/t)≦6.5とすることが高精度な折曲げ加工を行なう上で好ましいことが実験的に明らかになった。 That is, when (f1 / f2) × (V / t) = 8.0, the accuracy of the finished angle of the bent workpiece W is lower than in the first to third experimental examples, It has been experimentally found that f1 / f2) × (V / t) ≦ 6.5 is preferable for high-precision folding.
(第6実験例)
 第6実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.0mm、1.5mm、2.0mmに形成したワークWにつき、V溝20の幅寸法(V)=10mm、V=12mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=5.0とし、θ-θ=0.1°とした。その実験結果を図22~図24および表8に示す。
(Sixth experimental example)
In the sixth experimental example, the width dimension (V) of the V groove 20 (V) = 10 mm, V for a workpiece W in which aluminum (A5052P) is formed to have a predetermined plate thickness (t) = 1.0 mm, 1.5 mm, and 2.0 mm. Bending was performed using a lower mold 18 having a thickness of 12 mm. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 5.0 and θ 1 −θ F = 0.1 °. The experimental results are shown in FIGS.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 ワークの板厚(t)=1.0mm、下金型18のV溝20の幅寸法(V)=12mmの場合では、上記式(a)から算出された特定仕上がり角度(θ)=92.15°から、設定仕上がり角度(θ)=92.25°、設定押込み量(St)=5.402mmが得られ、第1回目のワーク折曲げ加工の結果、実測仕上がり角度(θ)=92.45°、特定押込み量(St)=5.425mm、目標押込み量(St)=5.503mmが得られた。この目標押込み量(St)=5.503mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=0°となり、同様に行なった第2試験ではθ-θ=-0.02°となった。また、ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=10mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=91.10°から、設定仕上がり角度(θ)=91.20°、設定押込み量(St)=4.167mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=90.93°、特定押込み量(St)=4.158mm、目標押込み量(St)=4.218mmが得られた。この目標押込み量(St)=4.218mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+0.18°となり、同様に行なった第2試験では、θ-θ=-0.08°となった。更に、ワークの板厚(t)=2.0mm、下金型18のV溝20の幅寸法(V)=12mmとした場合の第1試験では、上記式(a)から算出された定仕上がり角度(θ)=90.81°から、設定仕上がり角度(θ)=90.91°、設定押込み量(St)=4.918mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=90.45°、特定押込み量(St)=4.896mm、目標押込み量(St)=4.950mmが得られた。この目標押込み量(St)=4.950mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=-0.02°となり、同様に行なった第2試験では、θ-θ=-0.08°となった。 In the case where the plate thickness (t) of the workpiece is 1.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 12 mm, the specific finishing angle (θ F ) calculated from the above formula (a) = 92 From 15 °, a set finishing angle (θ 1 ) = 92.25 ° and a set indentation amount (St 1 ) = 5.402 mm are obtained. As a result of the first work bending, the actually measured finishing angle (θ M ) = 92.45 °, specific pushing amount (St F ) = 5.425 mm, and target pushing amount (St T ) = 5.503 mm. When the second bending process was performed under the condition of this target indentation amount (St T ) = 5.503 mm, θ L −θ T = 0 °, and θ L −θ was obtained in the same second test. T = −0.02 °. Further, in the first test when the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 10 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 91.10 °, the set finishing angle (θ 1 ) = 91.20 ° and the set indentation amount (St 1 ) = 4.167 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 90.93 °, the specific pushing amount (St F ) = 4.158 mm, and the target pushing amount (St T ) = 4.218 mm were obtained. When the second bending process was performed under the condition of the target indentation amount (St T ) = 4.218 mm, θ L −θ T = + 0.18 °, and in the second test conducted in the same manner, L −θ T = −0.08 °. Furthermore, in the first test when the workpiece thickness (t) = 2.0 mm and the width dimension (V) of the V-groove 20 of the lower die 18 is 12 mm, the constant finish calculated from the above formula (a). From the angle (θ F ) = 90.81 °, the set finished angle (θ 1 ) = 90.91 ° and the set indentation amount (St 1 ) = 4.918 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 90.45 °, the specific pushing amount (St F ) = 4.896 mm, and the target pushing amount (St T ) = 4.950 mm were obtained. When the second bending process was performed under the condition of this target indentation amount (St T ) = 4.950 mm, θ L −θ T = −0.02 °. In the second test conducted in the same manner, θ L −θ T = −0.08 °.
 すなわち、図22~図24に示すように、θ-θ=0.1°として第1回目のワークWの折曲げ加工を行なうことで目標仕上がり角度(θ)に対応した目標押込み量(St)を算出することができ、第2回目以降のワーク折曲げ加工では、目標押込み量(St)に基づいて上金型26をV溝20内に押込むことで、高精度な折曲げ加工が行なわれる。 That is, as shown in FIGS. 22 to 24, by performing the first bending of the workpiece W with θ 1 −θ F = 0.1 °, the target push amount corresponding to the target finish angle (θ T ). (St T ) can be calculated, and in the second and subsequent workpiece bending processes, the upper die 26 is pushed into the V-groove 20 based on the target pushing amount (St T ). Bending is performed.
(第7実験例)
 第7実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.0mm、1.5mm、2.0mmに形成したワークWにつき、V溝20の幅寸法(V)=6mm、V=10mm、V=12mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=5.0とし、θ-θ=7.0°とした。その実験結果を図25~図27および表9に示す。
(Example 7)
In the seventh experimental example, the width dimension (V) of the V groove 20 (V) = 6 mm, V for a work W in which aluminum (A5052P) is formed to have a predetermined thickness (t) = 1.0 mm, 1.5 mm, and 2.0 mm. Folding was performed using the lower mold 18 with = 10 mm and V = 12 mm. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 5.0 and θ 1 −θ F = 7.0 °. The experimental results are shown in FIGS. 25 to 27 and Table 9.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 ワークの板厚(t)=1.0mm、下金型18のV溝20の幅寸法(V)=6mmの場合では、上記式(a)から算出された特定仕上がり角度(θ)=90.81°から、設定仕上がり角度(θ)=97.81°、設定押込み量(St)=2.264mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=97.40°、特定押込み量(St)=2.453mm、目標押込み量(St)=2.479mmが得られた。この目標押込み量(St)=2.479mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=-0.08°となり、同様に行なった第2試験でも、θ-θ=-0.08°となった。また、ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=10mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=91.10°から、設定仕上がり角度(θ)=98.10°、設定押込み量(St)=3.808mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=98.07°、特定押込み量(St)=4.171mm、目標押込み量(St)=4.231mmが得られた。そして、この目標押込み量(St)=4.231mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+0.08°となり、同様に行なった第2試験では、θ-θ=+0.10°となった。更に、ワークの板厚(t)=2.0mm、下金型18のV溝20の幅寸法(V)=12mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=90.81°から、設定仕上がり角度(θ)=97.81°、設定押込み量(St)=4.507mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=97.45°、特定押込み量(St)=4.901mm、目標押込み量(St)=4.954mmが得られた。この目標押込み量(St)=4.954mmとした条件で第2回目のワーク折曲げ加工を行なったところ、θ-θ=0°となり、同様に行なった第2試験では、θ-θ=+0.18°となった。 In the case where the plate thickness (t) of the workpiece is 1.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 6 mm, the specific finishing angle (θ F ) calculated from the above formula (a) = 90 .81 °, a set finishing angle (θ 1 ) = 97.81 ° and a set indentation amount (St 1 ) = 2.264 mm are obtained. As a result of the first bending, the actually measured finishing angle (θ M ) is obtained. = 97.40 °, specific indentation amount (St F ) = 2.453 mm, and target indentation amount (St T ) = 2.479 mm. When the second bending process was performed under the condition of this target indentation amount (St T ) = 2.479 mm, θ L −θ T = −0.08 °, and in the same second test, θ L −θ T = −0.08 °. Further, in the first test when the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 = 10 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 91.10 °, the set finished angle (θ 1 ) = 98.10 ° and the set indentation amount (St 1 ) = 3.808 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 98.07 °, the specific pushing amount (St F ) = 4.171 mm, and the target pushing amount (St T ) = 4.231 mm were obtained. Then, when the second bending process was performed under the condition of this target indentation amount (St T ) = 4.231 mm, θ L −θ T = + 0.08 °, and in the same second test, , Θ L −θ T = + 0.10 °. Furthermore, in the first test when the workpiece thickness (t) = 2.0 mm and the width dimension (V) of the V-groove 20 of the lower mold 18 = 12 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 90.81 °, the set finishing angle (θ 1 ) = 97.81 ° and the set indentation amount (St 1 ) = 4.507 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 97.45 °, the specific pushing amount (St F ) = 4.901 mm, and the target pushing amount (St T ) = 4.954 mm were obtained. When the second workpiece bending process was performed under the condition of this target indentation amount (St T ) = 4.954 mm, θ L −θ T = 0 °, and in the second test conducted in the same manner, θ L −θ T = + 0.18 °.
 すなわち、図25~図27に示すように、θ-θ=7.0°として第1回目のワークWの折曲げ加工を行なった場合でも目標仕上がり角度(θ)に対応した目標押込み量(St)を算出することができ、第2回目以降のワーク折曲げ加工では、目標押込み量(St)に基づいて上金型26をV溝20内に押込むことで、-0.25°≦θ-θ≦0.25°の範囲となる高精度な折曲げ加工が行なわれる。 That is, as shown in FIGS. 25 to 27, even when the first work W is bent at θ 1 −θ F = 7.0 °, the target push-in corresponding to the target finish angle (θ T ) is performed. The amount (St T ) can be calculated. In the second and subsequent workpiece bending processes, the upper die 26 is pushed into the V-groove 20 based on the target pushing amount (St T ). A highly accurate bending process is performed in a range of .25 ° ≦ θ L −θ T ≦ 0.25 °.
(第8実験例)
 第8実験例では、アルミニウム(A5052P)を所定の板厚(t)=1.0mm、1.5mm、2.0mmに形成したワークWにつき、V溝20の幅寸法(V)=12mm、V=16mm、V=18mmとした下金型18を用いて折曲げ加工を行なった。この実験例では、上記式(f)において(f1/f2)×(V/t)=5.0とし、θ-θ=10.0°とした。その実験結果を図28~図30および表10に示す。
(Example 8)
In the eighth experimental example, the width dimension (V) of the V-groove 20 (V) = 12 mm, V for a workpiece W in which aluminum (A5052P) is formed to a predetermined plate thickness (t) = 1.0 mm, 1.5 mm, 2.0 mm. Bending was performed using a lower mold 18 having a thickness of 16 mm and V = 18 mm. In this experimental example, in the above formula (f), (f1 / f2) × (V / t) = 5.0 and θ 1 −θ F = 10.0 °. The experimental results are shown in FIGS. 28 to 30 and Table 10.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 ワークの板厚(t)=1.0mm、下金型18のV溝20の幅寸法(V)=12mmの場合では、上記式(a)から算出された特定仕上がり角度(θ)=92.15°から、設定仕上がり角度(θ)=102.15°、設定押込み量(St)=4.695mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=101.95°、特定押込み量(St)=5.393mm、目標押込み量(St)=5.471mmが得られた。この目標押込み量(St)=5.471mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+1.10°となり、同様に行なった第2試験では、θ-θ=+1.00°となった。また、ワークの板厚(t)=1.5mm、下金型18のV溝20の幅寸法(V)=16mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=92.10°から、設定仕上がり角度(θ)=102.10°、設定押込み量(St)=6.128mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=102.22°、特定押込み量(St)=7.101mm、目標押込み量(St)=7.222mmが得られた。この目標押込み量(St)=7.222mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+0.38°となり、同様に行なった第2試験では、θ-θ=+0.62°となった。更に、ワークの板厚(t)=2.0mm、下金型18のV溝20の幅寸法(V)=18mmとした場合の第1試験では、上記式(a)から算出された特定仕上がり角度(θ)=91.84°から、設定仕上がり角度(θ)=101.84°、設定押込み量(St)=6.751mmが得られ、第1回目の折曲げ加工の結果、実測仕上がり角度(θ)=101.82°、特定押込み量(St)=7.801mm、目標押込み量(St)=7.941mmが得られた。そして、この目標押込み量(St)=7.941mmとした条件で第2回目の折曲げ加工を行なったところ、θ-θ=+0.58°となり、同様に行なった第2試験では、θ-θ=+0.63°となった。 In the case where the plate thickness (t) of the workpiece is 1.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 12 mm, the specific finishing angle (θ F ) calculated from the above formula (a) = 92 From 15 °, a set finishing angle (θ 1 ) = 102.15 ° and a set indentation amount (St 1 ) = 4.695 mm are obtained. As a result of the first bending, the actually measured finishing angle (θ M ) is obtained. = 101.95 °, specific indentation amount (St F ) = 5.393 mm, and target indentation amount (St T ) = 5.471 mm. When the second bending process was performed under the condition of this target indentation amount (St T ) = 5.471 mm, θ L −θ T = + 1.10 °. In the second test conducted in the same manner, L −θ T = + 1.00 °. In the first test when the workpiece thickness (t) = 1.5 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 16 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 92.10 °, the set finished angle (θ 1 ) = 102.10 ° and the set indentation amount (St 1 ) = 6.128 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 102.22 °, the specific pushing amount (St F ) = 7.101 mm, and the target pushing amount (St T ) = 7.222 mm were obtained. When the second bending process was performed under the condition of this target indentation amount (St T ) = 7.222 mm, θ L −θ T = + 0.38 °, and in the second test conducted in the same manner, L −θ T = + 0.62 °. Further, in the first test in which the workpiece thickness (t) = 2.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 18 mm, the specific finish calculated from the above formula (a) is used. From the angle (θ F ) = 91.84 °, the set finished angle (θ 1 ) = 101.84 ° and the set indentation amount (St 1 ) = 6.751 mm are obtained. As a result of the first bending process, The actually measured finished angle (θ M ) = 101.82 °, the specific pushing amount (St F ) = 7.801 mm, and the target pushing amount (St T ) = 7.941 mm were obtained. Then, when the second bending process was performed under the condition of this target indentation amount (St T ) = 7.941 mm, θ L −θ T = + 0.58 °, and in the same second test, , Θ L −θ T = + 0.63 °.
 すなわち、θ-θ=10.0°とした場合には、折曲げ加工されたワークWの仕上がり角度の精度が第1~第3実験例に較べて低下し、0.1°≦θ-θ≦7.0°とすることが高精度な折曲げ加工を行なう上で好ましいことが実験的に明らかになった。 That is, when θ 1 −θ F = 10.0 °, the accuracy of the finished angle of the bent workpiece W is lower than in the first to third experimental examples, and 0.1 ° ≦ θ It has been experimentally clarified that 1 −θ F ≦ 7.0 ° is preferable for performing high-precision bending.
 次に、実施例2に係るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムにつき説明する。実施例2に係るプレスブレーキの構成は、実施例1で示したプレスブレーキ10と同一であるので、同一の符号を付して詳細な説明は省略する。 Next, a bending method and a bending system using the press brake according to the second embodiment will be described. Since the configuration of the press brake according to the second embodiment is the same as that of the press brake 10 shown in the first embodiment, the same reference numerals are given and detailed description thereof is omitted.
 前述した実施例1では、ワークWの加工条件(具体的にはV溝20の角度(φ)、V溝20の幅寸法(V)、ワークWの材質、ワークWの板厚(t))毎にベンドファクタ(A)の値を予めデータベース化したベンドファクタデータテーブルを設定して、設定手段34により設定された設定仕上がり角度(θ)に対応するベンドファクタ(A)を、入力手段32に入力されたワークWの加工条件に基づいて取得して、このベンドファクタデータテーブルから取得したベンドファクタ(A)を用いて第1回目の折曲げ加工時に上金型26を押込む設定押込み量(St)を算出している。これに対して、実施例2では、設定仕上がり角度(θ)に対応するベンドファクタ(A)を演算により近似的に算出することで、事前にベンドファクタデータテーブルを構築する手間を省略して記憶手段38に設定するデータ量を減少すると共に、設定仕上がり角度(θ)として採用可能な範囲を拡げて汎用性の向上を図っている。 In the first embodiment described above, the processing conditions of the workpiece W (specifically, the angle (φ) of the V groove 20, the width dimension (V) of the V groove 20, the material of the workpiece W, the plate thickness (t) of the workpiece W). set the bend factor data table in advance a database of values of the bend factor (a 1) each, the bend factor corresponding to the set set finishing angle by setting means 34 (θ 1) (a 1 ), the input The upper die 26 is pushed in during the first bending process using the bend factor (A 1 ) acquired based on the processing conditions of the workpiece W input to the means 32 and acquired from the bend factor data table. The set push amount (St 1 ) is calculated. On the other hand, in the second embodiment, the bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) is approximately calculated by calculation, so that the labor for constructing the bend factor data table in advance is omitted. Thus, the amount of data set in the storage means 38 is reduced, and the range that can be adopted as the set finishing angle (θ 1 ) is expanded to improve versatility.
 図8に示した設定仕上がり角度(θ)とベンドファクタ(A)の関係から明らかなように、ワークWの仕上がり角度(θ)によってベンドファクタ(A)の値が異なることから、1回目の折曲げ加工により逆算する目標押込み量(St)の精度を上げるためには、設定仕上がり角度(θ)として目標仕上がり角度(θ)に近い値を用いるのが望ましい。また、ベンドファクタ(A)の値は、ワークWの設定仕上がり角度(θ)の変化に較べて変動幅が小さく、設定仕上がり角度(θ)が小さくなる(すなわち目標押込み量(St)に近い値になる)につれて概ね一定の値をとることが判る。そこで、図8の曲線形状を近似する式として、下記の式(g)と表す。式(g)におけるCの値は、ワークWの設定仕上がり角度(θ)に応じたベンドファクタ(A)の値の大凡の絶対値である。また、θは、式(g)を用いてワークWを折曲げ加工できる上限となる仕上がり角度(すなわち、設定仕上がり角度の上限値)であり、θは、ベンドファクタ(A)の値を近似する基準となる仕上がり角度(以下、近似角度という)である。 As apparent from the relationship between the set finishing angle (θ 1 ) and the bend factor (A) shown in FIG. 8, the value of the bend factor (A) varies depending on the finishing angle (θ) of the workpiece W. In order to increase the accuracy of the target push amount (St T ) calculated backward by bending, it is desirable to use a value close to the target finish angle (θ T ) as the set finish angle (θ 1 ). Further, the value of the bend factor (A) has a smaller fluctuation range than the change in the set finishing angle (θ 1 ) of the workpiece W, and the set finishing angle (θ 1 ) becomes small (that is, the target pushing amount (St T )). It can be seen that the value becomes almost constant as the value approaches. Therefore, the following equation (g) is expressed as an equation that approximates the curve shape of FIG. The value of C t in the equation (g) is an approximate absolute value of the bend factor (A 1 ) value corresponding to the set finishing angle (θ 1 ) of the workpiece W. Further, θ x is a finishing angle (that is, an upper limit value of the set finishing angle) that is an upper limit at which the workpiece W can be bent using the equation (g), and θ y is a value of the bend factor (A 1 ). Is a reference angle (hereinafter referred to as an approximate angle).
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
 すなわち、ワークWを折曲げ加工できる上限となる仕上がり角度(θ)は、θ<θ≦180°の範囲で定められる。ここで、θはワークWを折曲げ加工できる上限となることから、180°に近い値を採用することが好適である。また、ワークWの仕上がり角度(θ)が特定仕上がり角度(θ)に近くなるにつれて、ベンドファクタ(A)の値の変化が上金型26の押込み量に大きく影響する。従って、近似精度を高めるには、ベンドファクタ(A)の値を近似する基準となる近似角度θとして特定仕上がり角度(θ)に近い値とすることが好ましい。しかしながら、図31から判明するように、折曲げ加工の特性上、ワークWがV溝20の傾斜面に接触し始める辺りからワークWの曲げ挙動が急変するため、特定仕上がり角度(θ)に近い値をベンドファクタ(A)の値を近似する基準とするには相応しくない。すなわち、ベンドファクタ(A)の値を近似する近似角度(θ)は、θ<θ<θの範囲で定めるのが好適であり、より好ましくは、95°≦θ<θの範囲とすることができる。ここで、θは最終的なワークWの仕上がり角度である目標仕上がり角度(θ)に近い値を採用することで精度が向上する。実施例2では、θ=170°θ=100°とする場合で説明し、このときのベンドファクタ(A)の近似値をA100と表す(すなわち、C=A100となる)。 That is, the finishing angle (θ x ) that is the upper limit at which the workpiece W can be bent is determined in a range of θ Fx ≦ 180 °. Here, the theta x since the upper limit that can be bending the workpiece W, it is preferable to adopt a value close to 180 °. Further, as the finish angle (θ) of the workpiece W approaches the specific finish angle (θ F ), the change in the bend factor (A) greatly affects the pushing amount of the upper die 26. Therefore, in order to increase the approximation accuracy, it is preferable to set the bend factor (A 1 ) value close to the specific finishing angle (θ F ) as the approximate angle θ y that serves as a reference. However, as can be seen from FIG. 31, due to the characteristics of the bending process, the bending behavior of the workpiece W changes suddenly from the vicinity where the workpiece W starts to contact the inclined surface of the V groove 20, so that the specific finishing angle (θ F ) is obtained. It is not appropriate to use a close value as a reference for approximating the value of the bend factor (A). That is, the approximate angle (θ y ) that approximates the value of the bend factor (A) is preferably determined within the range of θ Fyx , and more preferably 95 ° ≦ θ yx. Range. Here, the accuracy of θ y is improved by adopting a value close to the target finish angle (θ T ) that is the final finish angle of the workpiece W. In the second embodiment, a case where θ x = 170 ° θ y = 100 ° is described, and an approximate value of the bend factor (A 1 ) at this time is expressed as A 100 (that is, C t = A 100 ). .
 ここで、図32に示される(V/t)および(A100/V)の関係を対数近似することで、下記の式(h)が得られる。なお、式(h)におけるd,eは、ワークWの材質によって定まる固有の係数であり、表11にA100とした場合におけるワークWの一例についての各係数値を示す。 Here, the following equation (h) is obtained by logarithmically approximating the relationship between (V / t) and (A 100 / V) shown in FIG. Incidentally, d in the formula (h), e is an inherent coefficient determined by the material of the workpiece W, illustrating each coefficient value of the one example of the work W in the case of the A 100 in Table 11.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 前記式(g)および式(h)を纏めると下記の式(i)を得ることができる。すなわち、下記の式(i)においてθ=θとすることで近似値としてのベンドファクタ(A)が算出され、算出されたベンドファクタ(A)および設定仕上がり角度(θ)から、前記式(e)に基づいて設定押込み量(St)が算出される。 Summarizing the formula (g) and the formula (h), the following formula (i) can be obtained. That is, the bend factor (A 1 ) as an approximate value is calculated by setting θ = θ 1 in the following equation (i), and from the calculated bend factor (A 1 ) and the set finishing angle (θ 1 ), A set push amount (St 1 ) is calculated based on the equation (e).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 具体的には、実施例2に係るプレスブレーキ10に設けられた制御装置30の算出手段36は、前記設定手段34により設定された設定仕上がり角度(θ)に対応するベンドファクタ(A)を、前記式(i)においてθ=θとした条件で算出して、式(e)においてA=A、θ=θとした条件で前記設定押込み量(St)を算出するよう設定されると共に、前記入力手段32に入力されたワークの実測仕上がり角度(θ)および設定押込み量(St)から式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、修正ベンドファクタ(A')および特定仕上がり角度(θ)から式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するよう設定されている。 Specifically, the calculation means 36 of the control device 30 provided in the press brake 10 according to the second embodiment uses the bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) set by the setting means 34. Is calculated under the condition of θ = θ 1 in the equation (i), and the set push amount (St 1 ) is calculated under the conditions of A = A 1 and θ = θ 1 in the equation (e). The corrected bend factor (A ′) is set under the condition that θ = θ M in the equation (e) from the actually measured finished angle (θ M ) and the set pushing amount (St 1 ) of the workpiece input to the input means 32. ) To the specific indentation amount (St F ) calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) under the condition that A = A ′ and θ = θ F in the equation (e). Based on this, the slope (f1) of the straight line passing through the measurement point and the inflection point is calculated. Cormorant is set.
 このように、実施例2では、ワークWの加工条件毎のベンドファクタ(A)を予めデータベース化したベンドファクタデータテーブルを記憶手段38に記憶させることなく、設定仕上がり角度(θ)に対応するベンドファクタ(A)を算出することができる。また、ベンドファクタ(A)をベンドファクタデータテーブルとしてデータベース化した場合には、該ベンドファクタデータテーブルに含まれない設定仕上がり角度(θ)を用いることはできないのに対し、実施例2のようにベンドファクタ(A)を近似的に算出することで、「設定仕上がり角度(θ)>特定仕上がり角度(θ)」の条件を満たす限り、適用可能な設定仕上がり角度(θ)の制限がなくなり汎用性が向上する。 As described above, in the second embodiment, the bend factor data table in which the bend factor (A 1 ) for each machining condition of the workpiece W is previously stored in the database is not stored in the storage unit 38, and the set finish angle (θ 1 ) is supported. The bend factor (A 1 ) to be calculated can be calculated. In addition, when the bend factor (A 1 ) is databased as a bend factor data table, the set finishing angle (θ 1 ) that is not included in the bend factor data table cannot be used. By calculating the bend factor (A 1 ) approximately as described above, as long as the condition “set finish angle (θ 1 )> specific finish angle (θ F )” is satisfied, the applicable set finish angle (θ 1 ) The versatility is improved.
 次に、実施例3に係るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムにつき説明する。実施例3に係るプレスブレーキの構成は、実施例1で示したプレスブレーキ10と同一であるので、同一の符号を付して詳細な説明は省略する。 Next, a bending method and a bending system using the press brake according to the third embodiment will be described. Since the configuration of the press brake according to the third embodiment is the same as that of the press brake 10 shown in the first embodiment, the same reference numerals are given and detailed description thereof is omitted.
 上金型26を下金型18のV溝20内に相対的に押込んでワークWの曲げ加工を行なう際には、上金型26をV溝20内に押込む際の加工荷重(W)に応じてプレスブレーキ10のベッド14や上下の金型18,26、その他の装置構成部材に「たわみ」が発生する。このため、前記設定押込み量(St)や目標押込み量(St)で上金型26がV溝20内に押込まれるよう金型駆動装置30を駆動した場合に、設定押込み量(St)や目標押込み量(St)と、現実に上金型26がV溝20内に押込まれた押込み量との間に「たわみ」に起因した誤差が生ずる。そこで、実施例3では、折曲げ加工時に生ずるプレスブレーキ10側のたわみを補正した押込み量で上金型26を下金型18のV溝20内に相対的に押込んで、より精密なワークWの折曲げ加工を行い得るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムについて説明する。なお、以下の説明では、折曲げ加工時にプレスブレーキ10側に生ずるたわみを、装置たわみ量(λ)と表す。 When the workpiece W is bent by relatively pushing the upper die 26 into the V groove 20 of the lower die 18, the processing load (W) when the upper die 26 is pushed into the V groove 20. In response to this, “deflection” occurs in the bed 14 of the press brake 10, the upper and lower molds 18 and 26, and other apparatus constituent members. Therefore, when the mold driving device 30 is driven so that the upper mold 26 is pushed into the V groove 20 with the set push amount (St 1 ) or the target push amount (St T ), the set push amount (St 1 ) or the target push amount (St T ) and the push amount in which the upper die 26 is actually pushed into the V groove 20 causes an error due to “deflection”. Therefore, in the third embodiment, the upper die 26 is relatively pushed into the V groove 20 of the lower die 18 with a pushing amount obtained by correcting the deflection on the press brake 10 side that occurs during the bending process. A bending method and a bending processing system using a press brake capable of performing the bending processing will be described. In the following description, the deflection that occurs on the side of the press brake 10 during the bending process is expressed as the device deflection amount (λ).
 装置たわみ量(λ)は、プレスブレーキ10の縦剛性係数(k)[kN/mm]、上金型26を下金型18のV溝20内に相対的に押込む際の加工荷重(W)[kN]とした場合に、フックの法則によりλ=W/kと表すことができる。すなわち、装置たわみ量(λ)は、加工荷重(W)により定まる。なお、縦剛性係数(k)は、プレスブレーキ10に固有の値であって、プレスブレーキ10の設計値や実験から求めることができ、実施例3で使用したプレスブレーキ10の縦剛性係数(k)は、k=178.57である。 The amount of device deflection (λ) is the longitudinal stiffness coefficient (k) [kN / mm] of the press brake 10, and the processing load (W when the upper die 26 is relatively pushed into the V groove 20 of the lower die 18. ) [KN], it can be expressed as λ = W / k by Hooke's law. That is, the device deflection (λ) is determined by the machining load (W). The longitudinal stiffness coefficient (k) is a value specific to the press brake 10 and can be obtained from design values and experiments of the press brake 10. The longitudinal stiffness coefficient (k) of the press brake 10 used in the third embodiment is used. ) Is k = 178.57.
 ところで、図33に示すように、エアーベンドとなる状態でワークWを折曲げ加工する場合(すなわち、上金型26の押込み量(St)が特定押込み量(St)に達しない場合)には、ワークWの材質により押込み量(St)の増加に伴って僅かに加工荷重(W)が漸増または漸減する程度で、加工荷重(W)が略一定値になる一方で、ワークWがV溝20の傾斜面に接触した状態でワークWを折曲げ加工する場合(すなわち、上金型26を特定押込み量(St)以上の押込み量で押込む場合)には、押込み量(St)の増加に伴って加工荷重(W)が急激に増大することが知られている。 By the way, as shown in FIG. 33, when the workpiece W is bent in a state where it is in an air bend (that is, when the pushing amount (St) of the upper mold 26 does not reach the specific pushing amount (St F )). Indicates that the processing load (W) slightly increases or decreases slightly as the push-in amount (St) increases depending on the material of the workpiece W, while the processing load (W) becomes a substantially constant value, while the workpiece W is V When the workpiece W is bent while being in contact with the inclined surface of the groove 20 (that is, when the upper die 26 is pushed with a pushing amount equal to or greater than the specific pushing amount (St F )), the pushing amount (St) It is known that the machining load (W) increases rapidly with an increase in.
 ここで、エアーベンドでワークWを折曲げ加工する場合に、ワークWの仕上がり角度(θ)が135°となる段階までは、押込み量(St)が増加しても加工荷重(W)が殆ど変化しないことが有限要素解析によって判明した。そこで、ワークWの仕上がり角度(θ)が135°となる仕上がり角度を基準仕上がり角度(θ)とし、基準仕上がり角度(θ)となる上金型26の押込み量を基準押込み量(St)とすると、「ワークWの仕上がり角度(θ)≧基準仕上がり角度(θ)」の場合(すなわち、「上金型26の押込み量(St)≦基準押込み量(St)」の場合)の加工荷重(W)は、公知の事実であり、下記の式(j)で表すことができる。以下の説明では、「ワークWの仕上がり角度(θ)≧基準仕上がり角度(θ)」の場合の加工荷重(W)を、基準加工荷重というものとする。 Here, when bending the workpiece W with air bend, until the finish angle (θ) of the workpiece W reaches 135 °, the machining load (W) is almost constant even if the pushing amount (St) increases. No change was found by finite element analysis. Therefore, the finishing angle finishing angle of the workpiece W (theta) is the 135 ° with respect finish angle (theta A), reference finishing angle (theta A) as a reference push-in amount of the push-in amount of the upper die 26 comprising (St A ) In the case of “finish angle of the workpiece W (θ) ≧ reference finish angle (θ A )” (that is, “the push amount of the upper mold 26 (St) ≦ the reference push amount (St A )”). The processing load (W a ) is a known fact and can be expressed by the following formula (j). In the following description, the machining load (W a ) when “finished angle (θ) ≧ reference finished angle (θ A ) of the workpiece W” is referred to as a reference machining load.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 ここで、下金型18のV溝20の幅(V)およびワークWの板厚(t)の比(V/t)と、係数(k)との関係を、有限要素解析法により解析した結果を図34に示す。この図34より、5≦V/t≦10の範囲において直線近似できることから、前記式(j)に示したように、k=-0.055×V/t+1.753とした。 Here, the relationship between the ratio (V / t) of the width (V) of the V groove 20 of the lower mold 18 and the thickness (t) of the workpiece W and the coefficient (k 1 ) is analyzed by the finite element analysis method. The results obtained are shown in FIG. From FIG. 34, since linear approximation can be performed in the range of 5 ≦ V / t ≦ 10, k 1 = −0.055 × V / t + 1.753 as shown in the equation (j).
 また、「特定仕上がり角度(θ)≦ワークWの仕上がり角度(θ)≦基準仕上がり角度(θ)」の範囲で折曲げ加工する場合(すなわち、「基準押込み量(St)≦上金型26の押込み量(St)≦特定押込み量(St)」の場合)には、前述のように、上金型26の押込み量(St)の増加につれて基準加工荷重(W)から漸増または漸減する。ここで、「特定仕上がり角度(θ)≦θ≦基準仕上がり角度(θ)」の間では、エアーベンドの状態で折曲げ加工されるため加工荷重(W)の変化量は僅かであり、加工荷重(W)が直線的に変化するものとみなすことができる。従って、「特定仕上がり角度(θ)≦θ≦基準仕上がり角度(θ)」の範囲で折曲げ加工する際の加工荷重(W)は、特定仕上がり角度(θ)における加工荷重を特定加工荷重(W)とした場合に、下記の式(k)で表される。なお、式(k)におけるkは、ワークWの材質によって定まる固有の係数であり、表12にワークWの一例についての各係数値を示す。 When bending is performed within the range of “specific finish angle (θ F ) ≦ finish angle of workpiece W (θ) ≦ reference finish angle (θ A )” (that is, “reference push amount (St A ) ≦ upper metal In the case of the indentation amount (St) ≦ specific indentation amount (St F ) ”of the die 26), as described above, gradually increases from the reference processing load (W a ) as the indentation amount (St) of the upper die 26 increases. Or gradually decrease. Here, between “specific finish angle (θ F ) ≦ θ ≦ reference finish angle (θ A )”, the amount of change in the processing load (W) is slight because the bending is performed in the air bend state. It can be considered that the processing load (W) changes linearly. Therefore, the processing load (W) for bending in the range of “specific finishing angle (θ F ) ≦ θ ≦ reference finishing angle (θ A )” is the processing load at the specific finishing angle (θ F ). When the load (W f ) is used, it is expressed by the following equation (k). Note that k f in the equation (k) is a specific coefficient determined by the material of the work W, and Table 12 shows coefficient values for an example of the work W.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 また、「ワークWの仕上がり角度(θ)≦特定仕上がり角度(θ)」の範囲で折曲げ加工する場合(すなわち、「特定押込み量(St)≦上金型26の押込み量(St)」の場合)には、V溝20の傾斜面にワークWが接触した状態で折曲げ加工されるため、図33に示すように上金型26の押込み量(St)の増加につれて加工荷重(W)が特定加工荷重(W)から急激に増加する。ここで、「特定押込み量(St)≦上金型26の押込み量(St)」の範囲での折曲げ加工における押込み量(St)の増加と加工荷重(W)の変化量をkとした場合に、ワークWの板厚(t)とk/Wとの関係をシミュレーションにより測定した結果を、図35に示す。この図35を対数近似してkの近似式を求め、「ワークWの仕上がり角度(θ)≦特定仕上がり角度(θ)」での加工荷重(W)を下記の式(l)で表す。なお、式(l)におけるk,kは、ワークWの材質によって定まる固有の係数であり、表13にワークWの一例についての各係数値を示す。 Further, when bending is performed in the range of “finish angle (θ) ≦ specific finish angle (θ F ) of work W” (that is, “specific push amount (St F ) ≦ push amount (St) of upper die 26”. ”), Since the workpiece W is bent while the workpiece W is in contact with the inclined surface of the V groove 20, the processing load (St) increases as the pressing amount (St) of the upper mold 26 increases as shown in FIG. W) increases rapidly from the specific processing load (W f ). Here, the increase of the push amount (St) and the change amount of the work load (W) in the bending process within the range of “specific push amount (St F ) ≦ push amount (St) of the upper die 26” are expressed as k w FIG. 35 shows the result of measuring the relationship between the plate thickness (t) of the workpiece W and k w / W a by simulation. We obtain an approximate expression of k w to FIG. 35 and logarithmic approximation, represents the processing load (W) in the "finishing angle (theta) ≦ particular finishing angle of the workpiece W (θ F)" by the following equation (l) . Note that k a and k b in equation (l) are specific coefficients determined by the material of the workpiece W, and Table 13 shows coefficient values for an example of the workpiece W.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 以上を纏めると、下記で表される式(m)によりワークWの仕上がり角度(θ)に応じて加工荷重(W)を算出することで、ワークWの仕上がり角度(θ)での装置たわみ量(λ)を求めることができる。 Summarizing the above, by calculating the processing load (W) according to the finished angle (θ) of the workpiece W by the following formula (m), the amount of deflection of the device at the finished angle (θ) of the workpiece W is calculated. (λ) can be obtained.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 そして、実施例3に係るプレスブレーキ10では、前記式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記設定押込み量(St)に加算して補正設定押込み量(St’)を算出(St’=St+λ)するよう前記算出手段36が設定されており、該算出手段36で算出された補正設定押込み量(St’)に従って金型駆動制御手段40が金型駆動手段28を駆動制御することで1回目の折曲げ加工が実行されるよう構成されている。すなわち、前記設定押込み量(St)で折曲げ加工する際の装置たわみ量(λ)を補正した補正設定押込み量(St’)で折曲げた後のワークWの仕上がり角度が前記実測仕上がり角度(θ)として計測される。また同様に、前記算出手段36は、前記式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記目標押込み量(St)に加算した補正目標押込み量(St’)を算出(St’=St+λ)するよう設定されて、該算出手段36で算出された補正目標押込み量(St’)に従って金型駆動制御手段40が金型駆動手段28を駆動制御することで、2回目以降の折曲げ加工が実行されるよう構成されている。 In the press brake 10 according to the third embodiment, the device deflection amount (λ 1 ) obtained under the condition that θ = θ 1 and St = St 1 in the formula (m) is set as the set push amount (St 1 ). The calculation means 36 is set so that the correction setting push amount (St 1 ′) is calculated by addition (St 1 ′ = St 1 + λ 1 ), and the correction set push amount (St 1 ) calculated by the calculation means 36 (St 1 ′). 1 ), the mold drive control means 40 controls the mold drive means 28 so that the first bending process is executed. That is, the set pressing amount (St 1) In the apparatus deflection amount when bending (lambda 1) correction setting pushing amount obtained by correcting the (St 1 ') finishing angle of the workpiece W after bending at said actual It is measured as the finished angle (θ M ). Similarly, the calculation means 36 adds the device deflection amount (λ T ) obtained under the condition of θ = θ T and St = St T in the equation (m) to the target push amount (St T ). The correction target push amount (St T ′) is set to be calculated (St T ′ = St T + λ T ), and the mold drive control means is set according to the corrected target push amount (St T ′) calculated by the calculation means 36. 40 is configured so that the second and subsequent bending processes are executed by driving and controlling the mold driving means 28.
 すなわち、設定押込み量(St)で折曲げ加工する際に生ずる装置たわみ量(λ)を補正した補正設定押込み量(St’)となるよう上金型26を駆動することで、実際には設定押込み量(St)でワークWが折曲げ加工されるから、1回目の折曲げ加工における折曲げ加工精度が向上する。これにより、設定押込み量(St)および実測仕上がり角度(θ)に基づいて算出される修正ベンドファクタ(A')の精度が向上し、該修正ベンドファクタ(A')に基づいて行なわれる2回目以降の折曲げ加工の加工精度を高めることができる。また、ワークWを目標押込み量(St)で折曲げ加工する際に生ずる装置たわみ量(λ)を補正した補正目標押込み量(St’)となるよう上金型26を駆動することで、実際には目標押込み量(St)でワークWが折曲げ加工されるから、ワークWを精度よく目標仕上がり角度(θ)で折曲げることが可能となる。 That is, the upper mold 26 is actually driven by driving the upper mold 26 so that the corrected set push amount (St 1 ′) obtained by correcting the device deflection amount (λ 1 ) generated when bending is performed with the set push amount (St 1 ). Since the workpiece W is bent at the set indentation amount (St 1 ), the bending accuracy in the first bending is improved. Thereby, the accuracy of the corrected bend factor (A ′) calculated based on the set push amount (St 1 ) and the actually measured finished angle (θ M ) is improved, and the correction is performed based on the corrected bend factor (A ′). The processing accuracy of the second and subsequent bending processes can be increased. Also, driving the upper mold 26 to be the target push-in amount the workpiece W (St T) occurring during the bending process in the apparatus deflection amount (lambda T) corrected target pressing amount obtained by correcting the (St T ') Since the workpiece W is actually bent at the target push amount (St T ), the workpiece W can be bent at the target finish angle (θ T ) with high accuracy.
 次に、実施例4に係るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムにつき説明する。実施例3に係るプレスブレーキの構成は、実施例1で示したプレスブレーキ10と同一であるので、同一の符号を付して詳細な説明は省略する。 Next, a bending method and a bending system using the press brake according to the fourth embodiment will be described. Since the configuration of the press brake according to the third embodiment is the same as that of the press brake 10 shown in the first embodiment, the same reference numerals are given and detailed description thereof is omitted.
 実施例4では、先端部が円弧状に形成された上金型26を前記下金型18のV溝20内に相対的に押込んでワークWの折曲げ加工を行なう場合について説明する。なお、以下の説明では、前記上金型26における先端部の円弧半径を先端半径Rとして表す(図36参照)。先ず、先端部が角形状に形成された上金型26を前記下金型18のV溝20内に相対的に押込んでワークWの折曲げ加工を行なう場合には、ワークWの折曲げ加工が進行しても、上金型26の角端部がワークWの折曲げ部の最深部CP(図36参照)に接触した状態が維持されることから、上金型26の押込み量(St)分だけ折曲げ加工が行なわれることになる。これに対して、先端部が円弧状に形成された前記上金型26が前記下金型18のV溝20内に相対的に押込まれた場合では、ワーク折曲部の内面半径Rが上金型26の先端半径Rと一致するまでは、先端部が角形状の上金型26の場合と同様に、ワークWの折曲げ部の最深部CPに上金型26の先端部PEに接触しつつ折曲げ加工が進行する。一方で、前記上金型26が前記下金型18のV溝20内に押込まれて、ワーク折曲部の内面半径Rが上金型26の先端半径R以下(すなわち、R≦R)となると、図36に示すように、ワークWの折曲げ部の最深部CPが上金型26の先端部PEから離れるよう折曲げ加工が進行する。すなわち、ワーク折曲部の内面半径Rが上金型26の先端半径R以下となる領域では、上金型26の先端部PEとワークWの折曲げ部の最深部CPとの間に隙間ができることになる。従って、ワークWを所定の仕上がり角度(θ)に折曲げるのに必要な上金型26の押込み量(St)は、先端部が角形状に形成された上金型26を用いる場合に較べて、先端部が円弧形状に形成された上金型26を用いた場合の方が短くなる。 In the fourth embodiment, a case will be described in which the upper die 26 having a tip formed in an arc shape is relatively pushed into the V groove 20 of the lower die 18 to bend the workpiece W. In the following description, it represents the arc radius of the distal end portion of the upper mold 26 as the tip radius R P (see FIG. 36). First, when the workpiece W is bent by relatively pushing the upper die 26 having a square tip end into the V groove 20 of the lower die 18, the workpiece W is bent. Since the state in which the corner end portion of the upper die 26 is in contact with the deepest portion CP (see FIG. 36) of the bent portion of the workpiece W is maintained even if the upper die 26 advances, the pushing amount (St ) Will be bent. On the other hand, when the upper mold 26 whose tip is formed in an arc shape is relatively pushed into the V groove 20 of the lower mold 18, the inner radius R of the workpiece bending portion is increased. until it coincides with the point radius R P of the mold 26, as if tip of the corner shape of the upper mold 26, the deepest portion CP of the bent portion of the workpiece W to the distal end portion PE of the upper die 26 The bending process proceeds while contacting. On the other hand, the upper mold 26 is pushed in into the V groove 20 of the lower mold 18, the inner surface radius R of the workpiece bent portion is less tip radius R P of the upper mold 26 (i.e., R ≦ R P ), The bending process proceeds so that the deepest portion CP of the bent portion of the workpiece W is separated from the distal end portion PE of the upper mold 26 as shown in FIG. That is, in the region where the inner surface radius R of the workpiece bent portion is equal to or less than the tip radius R P of the upper mold 26, the gap between the deepest portion CP of the bent portion of the distal end portion PE and the workpiece W of the upper die 26 Will be able to. Therefore, the pushing amount (St) of the upper mold 26 necessary for bending the workpiece W to a predetermined finishing angle (θ) is larger than that in the case of using the upper mold 26 having a tip formed in a square shape. In the case of using the upper mold 26 whose tip is formed in an arcuate shape, it becomes shorter.
 ここで、前述した式(e)により求められる押込み量(St)は、先端部が角形状の上金型26のように、ワークWの折曲げ部の最深部CPに上金型26の先端部PEが接触する条件で折曲げ加工する場合での上金型26の押込み量(St)となっている。そこで、実施例4では、先端部が円弧形状に形成された上金型26を用いてワークWを所定の仕上がり角度(θ)に折曲げる場合に、前述した式(e)により求められる押込み量(St)について、該上金型26の先端部PEとワークWの折曲げ部の最深部CPとの間に生ずる隙間の間隔で補正して、より精密なワークWの折曲げ加工を行い得るプレスブレーキを用いた折曲げ加工方法および折曲げ加工システムについて説明する。なお、以下の説明では、式(e)で求められる押込み量(St)を、先端部が円弧形状の上金型26での折曲げ加工に対応するよう補正した値をR曲げ補正押込み量(St’’)と表し、上金型26の先端部PEとワークWの折曲げ部の最深部CPとの間の隙間の間隔を、押込み量誤差(D)と表す。 Here, the pushing amount (St) obtained by the above-described equation (e) is such that the tip of the upper die 26 is located at the deepest portion CP of the bent portion of the workpiece W like the upper die 26 having a square tip. The amount of pressing (St) of the upper die 26 when bending is performed under the condition where the part PE is in contact. Therefore, in the fourth embodiment, when the workpiece W is bent at a predetermined finishing angle (θ) using the upper mold 26 whose tip is formed in an arc shape, the pushing amount obtained by the above-described equation (e) is used. (St) can be corrected by the gap between the tip portion PE of the upper mold 26 and the deepest portion CP of the bent portion of the workpiece W, so that the workpiece W can be bent more precisely. A bending method and a bending system using a press brake will be described. In the following description, a value obtained by correcting the indentation amount (St) obtained by the equation (e) so as to correspond to the bending process in the upper die 26 having a circular arc shape at the tip portion is an R-bend correction indentation amount ( St ″), and the gap distance between the front end PE of the upper mold 26 and the deepest portion CP of the bent portion of the workpiece W is expressed as an indentation amount error (D).
 ここで、式(e)で求められる押込み量(St)と、前記R曲げ補正押込み量(St’’)と、前記押込み量誤差(D)との関係は、図36から幾何学的に下記の式(n)で表すことができる。 Here, the relationship between the indentation amount (St) obtained by the equation (e), the R-bend correction indentation amount (St ″), and the indentation amount error (D) is geometrically shown in FIG. (N).
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 また、図36に示すように、上金型26の先端円弧の中心点をOとし、ワークWの平板面に対する中心点Oを通る垂線と該ワークWの平板面との交点をPとし、該交点Pを通るワークWの平板面に沿った延長線が上金型26の先端円弧の中心点Oを通る鉛直線と交差する交点をQとした場合に、三角形OPQの関係から、下記の式(o)が得られる。 As shown in FIG. 36, the center point of the tip arc of the upper mold 26 is O, and the intersection of the perpendicular passing through the center point O with respect to the flat surface of the work W and the flat surface of the work W is P, From the relationship of the triangle OPQ, when the intersection point where the extension line along the flat surface of the workpiece W passing through the intersection point P intersects with the vertical line passing through the center point O of the tip arc of the upper die 26 is represented by the following equation: (o) is obtained.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
 更に、図36に示すように、折曲げ加工されたワークWにおけるワーク折曲部の円弧部分の中心点をO’とし、該中心点O’からワークWの平板面へ引いた垂線とワークWの平板面との交点をP’とした場合に、三角形O’P’Qの関係から、下記の式(p)が得られる。なお、段落[0037]と同様に、ワーク折曲部の内面半径はRとする。 Furthermore, as shown in FIG. 36, the center point of the arc portion of the workpiece bending portion in the bent workpiece W is defined as O ′, and a perpendicular drawn from the center point O ′ to the flat plate surface of the workpiece W and the workpiece W The following formula (p) is obtained from the relationship of the triangle O′P′Q where the intersection point with the flat plate surface is P ′. As in the paragraph [0037], the inner radius of the bent part of the work is R.
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 以上を纏めると、下記で表される式(q)が得られる。すなわち、段落[0037]に示すように、α=(180-θ)/2の関係を有し、また式(e)に示すように、R=180A/{(180-θ)×π}を有することから、実施例1または実施例2のように仕上がり角度(θ)に応じたベンドファクタ(A)を得ることで、上金型26の先端半径(R)およびワークWの仕上がり角度(θ)に応じた押込み量誤差(D)を求めることができ、前述した式(n)に代入することで、先端部が円弧形状の上金型26を実際に下金型18のV溝20内に相対的に押込むべき押込み量が求められる。 Summarizing the above, the following expression (q) is obtained. That is, as shown in Paragraph [0037], α = (180−θ) / 2 has a relationship, and as shown in Equation (e), R = 180A / {(180−θ) × π} Therefore, by obtaining a bend factor (A) corresponding to the finishing angle (θ) as in Example 1 or Example 2, the tip radius (R P ) of the upper mold 26 and the finishing angle of the workpiece W ( The push-in amount error (D) according to θ) can be obtained, and by substituting it into the above-described equation (n), the upper die 26 having the arcuate tip is actually used as the V groove 20 of the lower die 18. The amount of pushing to be relatively pushed into the inside is obtained.
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
 ここで、上金型26の先端半径(R)=1.0mmおよび下金型18のV溝20の幅寸法(V)=6mmとした条件で、板厚(t)=1.0mmに形成したアルミニウム(A5052P)のワークWを折曲げ加工する場合に、前述した式(n)により求められる上金型26の押込み量(すなわちR曲げ補正押込み量(St’’))と仕上がり角度(θ)との関係を図37に実線で示すと共に、有限要素解析法により解析したR曲げ補正押込み量(St’’)の解析値を図37のグラフ図にプロットして示す。この図37から、前述した式(n)により求められるR曲げ押込み量(St’’)で上金型26を下金型18のV溝20内に押込んでワークWの折曲げ加工を行なうことで、ワークWが所定の仕上がり角度(θ)に高精度で折曲げられることが判明する。なお、図37には、式(e)により求められる押込み量(St)と仕上がり角度(θ)との関係を破線で示してある。すなわち、先端部が円弧状に形成された上金型26を用いてワークWの折曲げ加工する際には、前述した式(e)により求められる押込み量(St)から式(q)で表される押込み量誤差(D)を減算補正することで、ワークWの折曲げ加工の加工精度が向上することが判る。 Here, the plate thickness (t) is set to 1.0 mm under the condition that the tip radius (R P ) of the upper mold 26 is 1.0 mm and the width dimension (V) of the V groove 20 of the lower mold 18 is 6 mm. When bending the workpiece W of the formed aluminum (A5052P), the pressing amount of the upper die 26 (that is, the R bending correction pressing amount (St ″)) obtained by the above-described formula (n) and the finishing angle ( The relationship with θ) is indicated by a solid line in FIG. 37, and the analysis value of the R bending correction push amount (St ″) analyzed by the finite element analysis method is plotted in the graph of FIG. From FIG. 37, the workpiece W is bent by pushing the upper die 26 into the V groove 20 of the lower die 18 with the R bending push amount (St ″) obtained by the above-described equation (n). Thus, it is found that the workpiece W can be bent with high accuracy at a predetermined finishing angle (θ). In FIG. 37, the relationship between the pushing amount (St) obtained by the equation (e) and the finishing angle (θ) is indicated by a broken line. That is, when the workpiece W is bent using the upper die 26 whose tip is formed in an arcuate shape, the push amount (St) obtained by the above-described equation (e) is expressed by the equation (q). It can be seen that the accuracy of bending the workpiece W is improved by subtracting and correcting the indentation amount error (D).
 そして、実施例4に係るプレスブレーキ10では、前記式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記設定押込み量(St)から減算してR曲げ補正設定押込み量(St’’)を算出(St’’=St-D)するよう前記算出手段36が設定されており、該算出手段36で算出されたR曲げ補正設定押込み量(St’’)に従って金型駆動制御手段40が金型駆動手段28を駆動制御することで1回目の折曲げ加工が実行されるよう構成されている。すなわち、前記設定押込み量(St)で折曲げ加工する際の押込み量誤差(D)を補正したR曲げ補正設定押込み量(St’’)で折曲げた後のワークWの仕上がり角度が前記実測仕上がり角度(θ)として計測される。また同様に、前記算出手段36は、前記式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記目標押込み量(St)から減算したR曲げ補正目標押込み量(St’’)を算出(St’’=St-D)するよう設定されて、該算出手段36で算出されたR曲げ補正目標押込み量(St’’)に従って金型駆動制御手段40が金型駆動手段28を駆動制御することで、2回目以降の折曲げ加工が実行されるよう構成されている。 In the press brake 10 according to the fourth embodiment, the bending amount error (D 1 ) obtained under the condition that θ = θ 1 in the equation (q) is subtracted from the set pushing amount (St 1 ) to make an R bend. The calculation means 36 is set so as to calculate the correction setting push amount (St 1 ″) (St 1 ″ = St 1 −D 1 ), and the R bend correction set push amount calculated by the calculation means 36. According to (St 1 ″), the mold drive control means 40 controls the mold drive means 28 so that the first bending process is executed. That is, the finished angle of the workpiece W after bending by bending at the processing for the time of pushing amount error (D 1) R bending correction setting push-in amount was corrected (St 1 '') the set pressing amount (St 1) Is measured as the actually measured finished angle (θ M ). Similarly, the calculation means 36 calculates an R-bend corrected target indentation obtained by subtracting an indentation amount error (D T ) obtained under the condition that θ = θ T in the equation (q) from the target indentation amount (St T ). The amount (St T ″) is set to be calculated (St T ″ = St T −D T ), and the die is set in accordance with the R bending correction target push-in amount (St T ″) calculated by the calculation means 36. The drive control means 40 drives and controls the mold drive means 28 so that the second and subsequent bending processes are executed.
 このように、設定押込み量(St)で折曲げ加工する際に生ずる押込み量誤差(D)を補正したR曲げ補正設定押込み量(St’’)となるよう上金型26を駆動することで、実際には設定押込み量(St)でワークWが折曲げ加工されるから、1回目の折曲げ加工における折曲げ加工精度が向上する。これにより、設定押込み量(St)および実測仕上がり角度(θ)に基づいて算出される修正ベンドファクタ(A')の精度が向上し、該修正ベンドファクタ(A’)に基づいて行なわれる2回目以降の折曲げ加工の加工精度を高めることができる。また、ワークWを目標押込み量(St)で折曲げ加工する際に生ずる押込み量誤差(D)を補正したR曲げ補正目標押込み量(St’’)となるよう上金型26を駆動することで、実際には目標押込み量(St)でワークWが折曲げ加工されるから、ワークWを精度よく目標仕上がり角度(θ)で折曲げることが可能となる。 In this way, the upper mold 26 is driven so that the R bending correction set push amount (St 1 ″) is obtained by correcting the push amount error (D 1 ) generated when bending is performed with the set push amount (St 1 ). By doing so, since the workpiece W is actually bent at the set push amount (St 1 ), the bending accuracy in the first bending is improved. Thereby, the accuracy of the corrected bend factor (A ′) calculated based on the set push amount (St 1 ) and the actually measured finished angle (θ M ) is improved, and the correction is performed based on the corrected bend factor (A ′). The processing accuracy of the second and subsequent bending processes can be increased. Further, the upper mold 26 so that the workpiece W target pushing amount (St T) corrects the pushing amount error (D T) which occurs during the bending in the R bending correction target pushing amount and (St T '') By driving, the workpiece W is actually bent at the target pushing amount (St T ), so that the workpiece W can be bent at the target finish angle (θ T ) with high accuracy.
(変更例)
 実施例では、プレスブレーキに入力手段や設定手段、算出手段等を備えるよう構成した例を示したが、これに限られず、エアーベンドの状態で折曲げて得られるワークの設定仕上がり角度(θ)を特定仕上がり角度(θ)よりも大きくなる条件で設定し、該設定仕上がり角度(θ)に対応した設定押込み量(St)で上金型をV溝内に押込んでワークを折曲げて、設定押込み量(St)で折曲げられたワークの実測仕上がり角度(θ)を計測し、St-θグラフにおいて測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが所定の関係を満たすように当該目標押込み量(St)を算出して折曲げ加工を行なう折曲げ加工方法を採用すれば、1回のワーク折曲げ加工により目標仕上がり角度に対応した目標押込み量を得ることができ、製品製造が可能となるまでに必要なワークの折曲げ回数を低減して生産性向上を図ることが可能となる。
(Change example)
In the embodiment, an example in which the press brake is configured to include an input unit, a setting unit, a calculation unit, and the like has been described. However, the present invention is not limited thereto, and a set finishing angle (θ 1) of a workpiece obtained by bending in an air bend state. ) Is set to be larger than the specific finish angle (θ F ), and the workpiece is folded by pushing the upper die into the V groove with the set push amount (St 1 ) corresponding to the set finish angle (θ 1 ). The actual finished angle (θ M ) of the workpiece bent and bent with the set indentation amount (St 1 ) is measured, and the slope (f1) of the straight line passing through the measurement point and the inflection point in the St-θ graph, If a bending method is employed in which the target indentation amount (St T ) is calculated so that the inflection point and the slope (f2) of the straight line passing through the processing point satisfy a predetermined relationship, the bending process is performed. Target finish angle by bending workpiece once It is possible to obtain the target pressing amount corresponding, to reduce the bending number of work required before product manufacturing can be performed it is possible to improve the productivity.
 実施例では、前記測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが、式(f)の関係を満たすよう算出したが、これに限られるものではない。すなわち、要求されるワークの折曲げ精度に応じて、(f1/f2)×(V/t)<4.5の範囲に設定したり、あるいは6.5<(f1/f2)×(V/t)の範囲に設定することもでき、St-θグラフにおいて測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)を利用することで、1回のワーク折曲げ加工により目標仕上がり角度に対応した目標押込み量を得ることが可能となる。同様に、設定仕上がり角度(θ)に関しても、要求されるワークの折曲げ精度に応じて0.1°≦θ-θ≦7°の範囲外に設定することもできる。 In the embodiment, the slope (f1) of the straight line passing through the measurement point and the inflection point and the slope (f2) of the straight line passing through the inflection point and the machining point are calculated so as to satisfy the relationship of the formula (f). However, it is not limited to this. That is, depending on the required bending accuracy of the workpiece, the range is set to (f1 / f2) × (V / t) <4.5, or 6.5 <(f1 / f2) × (V / t), and the slope of the straight line passing through the measurement point and the inflection point (f1) and the slope of the straight line passing through the inflection point and the machining point (f2) are used in the St-θ graph. By doing so, it is possible to obtain a target push-in amount corresponding to the target finish angle by one work bending. Similarly, the set finishing angle (θ 1 ) can be set outside the range of 0.1 ° ≦ θ 1 −θ F ≦ 7 ° according to the required bending accuracy of the workpiece.
 実施例では、ワークの加工条件(V溝の角度(φ)、V溝の幅寸法(V)、ワークの材質、ワークの板厚(t))毎に、ワークの仕上がり角度(θ)とベンドファクタ(A)との関係を示すベンドファクタデータテーブルを記憶手段に記憶するようにしたが、図8に示すようにワークの仕上がり角度(θ)とベンドファクタ(A)の関係を表したワークの加工条件毎の曲線の近似式を導出し、当該近似式に基づいて設定仕上がり角度(θ)から対応するベンドファクタ(A)の値を算出するようにしてもよい。 In the embodiment, the workpiece finishing angle (θ) and bend are changed for each workpiece machining condition (V groove angle (φ), V groove width dimension (V), workpiece material, workpiece thickness (t)). The bend factor data table showing the relationship with the factor (A) is stored in the storage means. However, as shown in FIG. 8, the work piece representing the relationship between the work finished angle (θ) and the bend factor (A) An approximate expression of a curve for each processing condition may be derived, and the corresponding bend factor (A) value may be calculated from the set finishing angle (θ 1 ) based on the approximate expression.
 18 下金型
 20 V溝
 26 上金型
 32 入力手段
 34 設定手段
 36 算出手段
 38 記憶手段
 40 金型駆動制御手段
 θ 設定仕上がり角度
 θ 特定仕上がり角度
 θ 実測仕上がり角度
 θ 目標仕上がり角度
 St 設定押込み量
 St 特定押込み量
 St 目標押込み量
 λ θ=θ、St=Stとした条件で求められる装置たわみ量
 λ θ=θ、St=Stとした条件で求められる装置たわみ量
 St’ 設定押込み量(St)+装置たわみ量(λ)
 St’ 設定押込み量(St)+装置たわみ量(λ)
 D θ=θとした条件での押込み量の誤差
 D θ=θとした条件での押込み量の誤差
 St’’ 設定押込み量(St)-押込み量誤差(D)
 St’’ 設定押込み量(St)-押込み量誤差(D)
 f1 測定点および変曲点を通る直線の傾き
 f1 変曲点および加工点を通る直線の傾き
 W ワーク
18 Lower mold 20 V groove 26 Upper mold 32 Input means 34 Setting means 36 Calculation means 38 Storage means 40 Mold drive control means θ 1 Set finish angle θ F Specific finish angle θ M Actual finish angle θ T Target finish angle St 1 set push amount St F specific push amount St T target push amount λ 1 θ = θ 1 , device deflection amount obtained under the conditions of St = St 1 λ T θ = θ T , obtained under the conditions of St = St T Device deflection amount St 1 ′ set pushing amount (St 1 ) + device deflection amount (λ 1 )
St T 'Set push amount (St T ) + device deflection (λ T )
Indentation amount error under the condition of D 1 θ = θ 1 Indentation amount error under the condition of D T θ = θ T St 1 ″ Set indentation amount (St 1 ) −Indentation amount error (D 1 )
St T ″ Set push amount (St T ) −Push amount error (D T )
f1 Inclination of straight line passing through measurement point and inflection point f1 Inclination of straight line passing through inflection point and machining point W Workpiece

Claims (14)

  1.  上金型を該上金型に対向配置された下金型のV溝内に相対的に押し込んだ際に、該下金型のV溝の傾斜面にワークを接触させて、ワークの仕上がり角度が所定の目標仕上がり角度(θ)となるよう折曲げ加工を行なうプレスブレーキを用いた折曲げ加工方法であって、
     エアーベンドの状態で折曲げて得られるワークの設定仕上がり角度(θ)を、V溝の傾斜面にワークが接触した時点で除荷したワークの特定仕上がり角度(θ)よりも大きくなる条件で設定し、該設定仕上がり角度(θ)に対応した設定押込み量(St)で上金型をV溝内に押し込んでワークを折曲げて、設定押込み量(St)で折曲げられたワークの実測仕上がり角度(θ)を計測し、
     上金型の押込み量(St)およびワークの仕上がり角度(θ)の関係を表したSt-θグラフにおいて、前記実測仕上がり角度(θ)および設定押込み量(St)により定められる点を測定点とし、前記特定仕上がり角度(θ)および特定仕上がり角度(θ)に対応した上金型の押込み量となる特定押込み量(St)により定められる点を変曲点とし、前記目標仕上がり角度(θ)に対応した上金型の押込み量となる目標押込み量(St)を加工点として、該測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが所定の関係を満たすように当該目標押込み量(St)を算出して折曲げ加工を行なう
    ことを特徴とするプレスブレーキを用いた折曲げ加工方法。
    When the upper mold is relatively pushed into the V groove of the lower mold disposed opposite to the upper mold, the workpiece is brought into contact with the inclined surface of the V groove of the lower mold, and the finished angle of the workpiece Is a bending method using a press brake that performs a bending process so as to have a predetermined target finish angle (θ T ),
    Conditions that the set finishing angle (θ 1 ) of the workpiece obtained by bending in the air bend state is larger than the specific finishing angle (θ F ) of the workpiece unloaded when the workpiece contacts the inclined surface of the V groove The upper die is pushed into the V groove with the set push amount (St 1 ) corresponding to the set finishing angle (θ 1 ), the work is bent, and the workpiece is bent with the set push amount (St 1 ). Measure the measured finished angle (θ M ) of the workpiece,
    In the St-θ graph showing the relationship between the indentation amount (St) of the upper mold and the finish angle (θ) of the workpiece, the point determined by the actually measured finish angle (θ M ) and the set indentation amount (St 1 ) is measured. A point determined by the specific indentation amount (St F ) that is the indentation amount of the upper die corresponding to the specific finishing angle (θ F ) and the specific finishing angle (θ F ) is defined as an inflection point, and the target finishing Using the target push amount (St T ), which is the push amount of the upper die corresponding to the angle (θ T ), as the machining point, the inclination (f1) of the straight line passing through the measurement point and the inflection point, the inflection point, Bending using a press brake, wherein the target pushing amount (St T ) is calculated and bending is performed so that the slope (f2) of the straight line passing through the processing point satisfies a predetermined relationship. Method.
  2.  前記目標押込み量(St)は、前記下金型のV溝の幅(V)およびワークの板厚(t)とした場合に、前記測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが、下記の式(f)の関係を満たすよう算出される請求項1記載のプレスブレーキを用いた折曲げ加工方法。
    Figure JPOXMLDOC01-appb-M000001
    The target indentation amount (St T ) is the slope (f1) of the straight line passing through the measurement point and the inflection point when the width (V) of the V groove of the lower mold and the plate thickness (t) of the workpiece are used. 2) and the slope (f2) of the straight line passing through the inflection point and the machining point are calculated so as to satisfy the relationship of the following formula (f).
    Figure JPOXMLDOC01-appb-M000001
  3.  ワークの加工条件およびワークの仕上がり角度(θ)に基づいて定められたベンドファクタ(A)を設定仕上がり角度(θ)に基づいて求めると共に、下記の式(e)においてA=A、θ=θの条件で前記設定押込み量(St)を算出して、該設定押込み量(St)でワークを折曲げた後に、設定押込み量(St)および実測仕上がり角度(θ)から下記の式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、
     修正ベンドファクタ(A')および特定仕上がり角度(θ)から下記の式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するようにした請求項1または2記載のプレスブレーキを用いた折曲げ加工方法。
    Figure JPOXMLDOC01-appb-M000002
    A bend factor (A 1 ) determined based on a workpiece machining condition and a workpiece finishing angle (θ) is obtained based on a set finishing angle (θ 1 ), and A = A 1 in the following equation (e): theta = theta calculate the set pressing amount in the first condition (St 1), after the workpiece is bent at the set pressing amount (St 1), set pressing amount (St 1) and actual finishing angle (theta M ) To calculate the corrected bend factor (A ′) in the following formula (e) under the condition of θ = θ M ,
    Based on the specific indentation amount (St F ) calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) under the conditions of A = A ′ and θ = θ F in the following equation (e): The bending method using a press brake according to claim 1 or 2, wherein an inclination (f1) of a straight line passing through the measurement point and the inflection point is calculated.
    Figure JPOXMLDOC01-appb-M000002
  4.  前記ベンドファクタ(A)は、θ=θとした条件で下記の式(i)に基づいて算出される請求項3記載のプレスブレーキを用いた折曲げ加工方法。
    Figure JPOXMLDOC01-appb-M000003
    The bending method using a press brake according to claim 3, wherein the bend factor (A 1 ) is calculated based on the following equation (i) under the condition of θ = θ 1 .
    Figure JPOXMLDOC01-appb-M000003
  5.  下記の式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記設定押込み量(St)に加算した補正設定押込み量(St’)で折曲げた後のワークの折曲げ角度を前記実測仕上がり角度(θ)として計測し、
     下記の式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記目標押込み量(St)に加算した補正目標押込み量(St’)でワークの折曲げ加工を行なうようにした請求項3または4記載のプレスブレーキを用いた折曲げ加工方法。
    Figure JPOXMLDOC01-appb-M000004
    In the following equation (m), the device set deflection amount (λ 1 ) obtained under the conditions of θ = θ 1 and St = St 1 is added to the set push amount (St 1 ), and the corrected set push amount (St 1 ′). Measure the bending angle of the workpiece after bending with the measured finished angle (θ M ),
    Formula (m) in the θ = θ T, St = St T and the apparatus deflection amount obtained under the following conditions (lambda T) corrected target pressing amount obtained by adding to the target pressing amount (St T) a (St T ') 5. A bending method using a press brake according to claim 3 or 4, wherein the workpiece is bent at a step.
    Figure JPOXMLDOC01-appb-M000004
  6.  先端部が円弧状に形成された上金型を用いてワークの折曲げ加工を行なう際に、
    下記の式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記設定押込み量(St)から減算したR曲げ補正設定押込み量(St’’)で折曲げた後のワークの折曲げ角度を前記実測仕上がり角度(θ)として計測し、
     下記の式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記目標押込み量(St)から減算したR曲げ補正目標押込み量(St’’)でワークの折曲げ加工を行なうようにした請求項3~5の何れか一項に記載のプレスブレーキを用いた折曲げ加工方法。
    Figure JPOXMLDOC01-appb-M000005
    When bending a workpiece using an upper die whose tip is formed in an arc shape,
    In the following equation (q), the indentation amount error (D 1 ) obtained under the condition that θ = θ 1 is subtracted from the set indentation amount (St 1 ), and the bending amount is set by the R bend correction setting indentation amount (St 1 ″). The bending angle of the workpiece after bending is measured as the measured finished angle (θ M ),
    In the following equation (q), the workpiece is calculated with an R bending correction target push amount (St T ″) obtained by subtracting the push amount error (D T ) obtained under the condition of θ = θ T from the target push amount (St T ). The bending method using the press brake according to any one of claims 3 to 5, wherein the bending process is performed.
    Figure JPOXMLDOC01-appb-M000005
  7.  前記設定仕上がり角度(θ)は、0.1°≦θ-θ≦7°の範囲に設定される請求項1~6の何れか一項に記載のプレスブレーキを用いた折曲げ加工方法。 The bending work using the press brake according to any one of claims 1 to 6, wherein the set finishing angle (θ 1 ) is set in a range of 0.1 ° ≤θ 1F ≤7 °. Method.
  8.  上金型と、前記上金型に対向配置されたV溝が形成された下金型と、前記V溝内に上金型を押込むよう前記上金型または下金型を駆動する金型駆動手段とを備え、前記金型駆動手段の駆動により前記上金型をV溝内に押込んだ際にV溝の傾斜面にワークを接触させて、ワークの仕上がり角度が所定の目標仕上がり角度(θ)となるよう折曲げ加工を行なうプレスブレーキによる折曲げ加工システムであって、
     ワークの加工条件およびワークの目標仕上り角度(θ)が入力されると共に、実測したワークの実測仕上り角度(θ)が入力される入力手段と、
     前記入力手段に入力されたワークの加工条件および目標仕上り角度(θ)に基づいて、V溝の傾斜面にワークが接触した時点で除荷したワークの特定仕上がり角度(θ)よりも大きい値となる条件でワークの設定仕上がり角度(θ)を設定する設定手段と、
     前記設定手段により設定された設定仕上がり角度(θ)に対応した上金型の押込み量となる設定押込み量(St)を算出すると共に、該設定押込み量(St)および前記入力手段に入力された実測仕上り角度(θ)に基づいて前記目標仕上がり角度(θ)に対応した上金型の押込み量となる目標押込み量(St)を算出する算出手段と、
     前記算出手段により算出された設定押込み量(St)または目標押込み量(St)に従って前記上金型がV溝内に押し込まれるよう前記金型駆動手段を駆動制御する駆動制御手段とを備え、
     前記算出手段は、上金型の押込み量(St)およびワークの仕上がり角度(θ)の関係を表したSt-θグラフにおいて、前記実測仕上がり角度(θ)および設定押込み量(St)により定められる点を測定点とし、前記特定仕上がり角度(θ)および特定仕上がり角度(θ)に対応した上金型の押込み量となる特定押込み量(St)により定められる点を変曲点とし、前記目標仕上がり角度(θ)に対応した上金型の押込み量となる目標押込み量(St)を加工点とした場合に、該測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)とが所定の関係を満たすように当該目標押込み量(St)を算出するよう設定されて、
     前記算出手段で算出された設定押込み量(St)に従って前記駆動制御手段が前記金型駆動手段を駆動制御することで1回目の折曲げ加工が実行され、当該1回目の折曲げ加工後に前記入力手段に入力されたワークの実測仕上り角度(θ)および設定押込み量(St)に基づいて算出手段で算出された前記目標押込み量(St)に従って駆動制御手段が金型駆動手段を駆動制御することで2回目以降の折曲げ加工が実行される
    ことを特徴とするプレスブレーキによる折曲げ加工システム。
    An upper mold, a lower mold having a V-groove disposed opposite to the upper mold, and a mold for driving the upper mold or the lower mold to push the upper mold into the V-groove Drive means, and when the upper mold is pushed into the V-groove by driving the mold drive means, the workpiece is brought into contact with the inclined surface of the V-groove so that the work finish angle is a predetermined target finish angle. A bending system using a press brake that performs bending so as to be (θ T ),
    An input means for inputting a machining condition of the workpiece and a target finish angle (θ T ) of the workpiece, and an actual measured finish angle (θ M ) of the measured workpiece;
    Based on the workpiece machining conditions and the target finish angle (θ T ) input to the input means, it is larger than the specific finish angle (θ F ) of the workpiece unloaded when the workpiece contacts the inclined surface of the V groove. A setting means for setting the set finishing angle (θ 1 ) of the workpiece under the condition of the value;
    The set push amount (St 1 ) that is the push amount of the upper die corresponding to the set finishing angle (θ 1 ) set by the setting means is calculated, and the set push amount (St 1 ) and the input means Calculation means for calculating a target push amount (St T ) that is a push amount of the upper mold corresponding to the target finish angle (θ T ) based on the input actual finish angle (θ M );
    Drive control means for drivingly controlling the mold drive means so that the upper mold is pushed into the V-groove according to the set push amount (St 1 ) or the target push amount (St T ) calculated by the calculation means. ,
    In the St-θ graph showing the relationship between the pressing amount (St) of the upper die and the finishing angle (θ) of the workpiece, the calculating means is based on the measured finishing angle (θ M ) and the set pressing amount (St 1 ). Using the determined point as a measurement point, the point determined by the specific indentation amount (St F ) that becomes the indentation amount of the upper mold corresponding to the specific finishing angle (θ F ) and the specific finishing angle (θ F ) When the target push amount (St T ), which is the push amount of the upper die corresponding to the target finish angle (θ T ), is set as the machining point, the slope of the straight line passing through the measurement point and the inflection point ( f1) and the inclination (f2) of the straight line passing through the inflection point and the machining point are set so as to calculate the target pushing amount (St T ) so as to satisfy a predetermined relationship,
    The drive control means drives and controls the mold drive means according to the set push amount (St 1 ) calculated by the calculation means, and the first folding process is executed. After the first bending process, In accordance with the target pushing amount (St T ) calculated by the calculating means based on the actually measured finishing angle (θ M ) and the set pushing amount (St 1 ) of the workpiece input to the input means, the drive control means moves the mold driving means. A folding system using a press brake, wherein the second and subsequent folding processes are executed by driving control.
  9.  前記算出手段は、前記下金型のV溝の幅(V)およびワークの板厚(t)とした場合に、前記St-θグラフにおいて前記測定点および変曲点を通過する直線の傾き(f1)と、変曲点および加工点を通過する直線の傾き(f2)との関係が、下記式(f)の関係を満たすよう前記目標押込み量(St)を算出するよう設定される請求項8記載のプレスブレーキによる折曲げ加工システム。
    Figure JPOXMLDOC01-appb-M000006
    The calculation means calculates the slope of a straight line passing through the measurement point and the inflection point in the St-θ graph when the V groove width (V) and workpiece thickness (t) of the lower mold are used. f1) and the inclination (f2) of the straight line passing through the inflection point and the machining point are set so as to calculate the target pushing amount (St T ) so as to satisfy the relationship of the following formula (f). Item 9. A bending system using a press brake according to item 8.
    Figure JPOXMLDOC01-appb-M000006
  10.  ワークの仕上り角度(θ)と、ワークの加工条件および仕上り角度(θ)に基づいて定められたベンドファクタ(A)との対応関係を表すベンドファクタデータテーブルが記憶された記憶手段を備え、
     前記算出手段は、
     前記設定手段により設定された設定仕上り角度(θ)に対応するベンドファクタ(A)を、前記入力手段に入力されたワークの加工条件に基づいて前記記憶手段が記憶するベンドファクタデータテーブルから取得して、下記の式(e)においてA=A、θ=θとした条件で前記設定押込み量(St)を算出するよう設定されると共に、
     前記入力手段に入力されたワークの実測仕上り角度(θ)および設定押込み量(St)から下記の式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、修正ベンドファクタ(A')および特定仕上がり角度(θ)から下記の式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するよう設定される請求項8または9記載のプレスブレーキによる折曲げ加工システム。
    Figure JPOXMLDOC01-appb-M000007
    A storage means for storing a bend factor data table representing a correspondence relationship between a work finishing angle (θ) and a bend factor (A) determined based on a machining condition and a finishing angle (θ) of the work;
    The calculating means includes
    The bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) set by the setting means is determined from the bend factor data table stored in the storage means based on the workpiece machining conditions input to the input means. Acquired and set to calculate the set push amount (St 1 ) under the conditions of A = A 1 and θ = θ 1 in the following equation (e),
    The corrected bend factor (A ') is calculated backward from the measured workpiece finishing angle (θ M ) and the set pushing amount (St 1 ) input to the input means under the condition that θ = θ M in the following equation (e). Based on the specific indentation amount (St F ) calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) under the conditions of A = A ′ and θ = θ F in the following equation (e): 10. A bending system using a press brake according to claim 8 or 9, which is set so as to calculate an inclination (f1) of a straight line passing through the measurement point and the inflection point.
    Figure JPOXMLDOC01-appb-M000007
  11.  前記算出手段は、
     前記設定手段により設定された設定仕上り角度(θ)に対応するベンドファクタ(A)を、下記の式(i)においてθ=θとした条件で算出して、下記の式(e)においてA=A、θ=θとした条件で前記設定押込み量(St)を算出するよう設定されると共に、
     前記入力手段に入力されたワークの実測仕上り角度(θ)および設定押込み量(St)から下記の式(e)においてθ=θとした条件で修正ベンドファクタ(A')を逆算し、修正ベンドファクタ(A')および特定仕上がり角度(θ)から下記の式(e)においてA=A'、θ=θとした条件で算出される特定押込み量(St)に基づいて、前記測定点および変曲点を通過する直線の傾き(f1)を算出するよう設定される請求項8または9記載のプレスブレーキによる折曲げ加工システム。
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
    The calculating means includes
    The bend factor (A 1 ) corresponding to the set finishing angle (θ 1 ) set by the setting means is calculated under the condition that θ = θ 1 in the following equation (i), and the following equation (e) Is set to calculate the set push amount (St 1 ) under the conditions of A = A 1 and θ = θ 1 ,
    The corrected bend factor (A ') is calculated backward from the measured workpiece finishing angle (θ M ) and the set pushing amount (St 1 ) input to the input means under the condition that θ = θ M in the following equation (e). Based on the specific indentation amount (St F ) calculated from the corrected bend factor (A ′) and the specific finishing angle (θ F ) under the conditions of A = A ′ and θ = θ F in the following equation (e): 10. A bending system using a press brake according to claim 8 or 9, which is set so as to calculate an inclination (f1) of a straight line passing through the measurement point and the inflection point.
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
  12.  前記算出手段は、
     下記の式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記設定押込み量(St)に加算した補正設定押込み量(St’)を算出するよう設定されると共に、該式(m)においてθ=θ、St=Stとした条件で求められる装置たわみ量(λ)を前記目標押込み量(St)に加算した補正目標押込み量(St’)を算出するよう設定され、
     前記算出手段で算出された前記補正設定押込み量(St’)に従って前記駆動制御手段が金型駆動手段を駆動制御することで1回目の折曲げ加工が実行され、該算出手段で算出された前記補正目標押込み量(St’)に従って前記駆動制御手段が金型駆動手段を駆動制御することで2回目以降の折曲げ加工が実行されるよう構成された請求項10または11記載のプレスブレーキによる折曲げ加工システム。
    Figure JPOXMLDOC01-appb-M000010
    The calculating means includes
    Formula (m) in the θ = θ 1, St = St 1 and the apparatus deflection amount obtained under the following conditions (lambda 1) the set pressing amount correction setting pushing amount obtained by adding to (St 1) (St 1 ' ) And a correction in which the device deflection amount (λ T ) obtained under the condition that θ = θ T and St = St T in the equation (m) is added to the target pushing amount (St T ) It is set to calculate the target push amount (St T '),
    According to the correction setting push amount (St 1 ′) calculated by the calculation means, the drive control means drives and controls the mold drive means, and the first bending process is executed. The press brake according to claim 10 or 11, wherein the second and subsequent bending processes are executed by the drive control means drivingly controlling the mold drive means in accordance with the corrected target push amount (St T '). By bending system.
    Figure JPOXMLDOC01-appb-M000010
  13.  前記上金型の先端部が円弧状に形成されると共に、
     前記算出手段は、
     下記の式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記設定押込み量(St)から減算したR曲げ補正設定押込み量(St’’)を算出するよう設定されると共に、該式(q)においてθ=θとした条件で求められる押込み量誤差(D)を前記目標押込み量(St)から減算したR曲げ補正目標押込み量(St’’)を算出するよう設定され、
     前記算出手段で算出された前記R曲げ補正設定押込み量(St’’)に従って前記駆動制御手段が金型駆動手段を駆動制御することで1回目の折曲げ加工が実行され、該算出手段で算出された前記R曲げ補正目標押込み量(St’’)に従って前記駆動制御手段が金型駆動手段を駆動制御することで2回目以降の折曲げ加工が実行されるよう構成された請求項10~12の何れか一項に記載のプレスブレーキによる折曲げ加工システム。
    Figure JPOXMLDOC01-appb-M000011
    The tip of the upper mold is formed in an arc shape,
    The calculating means includes
    The setting push amount equation given by theta = theta 1 and the conditions in (q) pushing amount error (D 1) of the following R bending correction setting pushing amount is subtracted from (St 1) calculated (St 1 '') R bending correction target push amount (St) obtained by subtracting the push amount error (D T ) obtained under the condition that θ = θ T in the equation (q) from the target push amount (St T ) Is set to calculate T '')
    According to the R bending correction setting push amount (St 1 ″) calculated by the calculating means, the drive control means drives and controls the mold driving means, and the first bending process is executed. 11. The second and subsequent bending processes are executed by the drive control means drivingly controlling the mold drive means in accordance with the calculated R bending correction target push-in amount (St T ″). A bending system using a press brake according to any one of claims 12 to 12.
    Figure JPOXMLDOC01-appb-M000011
  14.  前記設定手段は、0.1°≦θ-θ≦7°の範囲に前記設定仕上がり角度(θ)を設定する請求項8~13の何れか一項に記載のプレスブレーキによる折曲げ加工システム。 The bending by the press brake according to any one of claims 8 to 13, wherein the setting means sets the set finishing angle (θ 1 ) in a range of 0.1 ° ≤ θ 1- θ F ≤ 7 °. Processing system.
PCT/JP2011/052168 2010-02-04 2011-02-02 Folding method and folding system using press brake WO2011096442A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100452T DE112011100452T5 (en) 2010-02-04 2011-02-02 Method and system for bending by means of bending press
JP2011552802A JP5737657B2 (en) 2010-02-04 2011-02-02 Bending method and system using a press brake

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010023622 2010-02-04
JP2010-023622 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096442A1 true WO2011096442A1 (en) 2011-08-11

Family

ID=44355437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052168 WO2011096442A1 (en) 2010-02-04 2011-02-02 Folding method and folding system using press brake

Country Status (3)

Country Link
JP (1) JP5737657B2 (en)
DE (1) DE112011100452T5 (en)
WO (1) WO2011096442A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974688A (en) * 2011-09-05 2013-03-20 北汽福田汽车股份有限公司 Longitudinal member female die and longitudinal member manufacturing method
WO2019230192A1 (en) * 2018-05-28 2019-12-05 株式会社アマダホールディングス Press brake control device, press brake control method, die, and data structure of die information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0120927B2 (en) * 1980-12-09 1989-04-19 Amada Co Ltd
JPH0390217A (en) * 1989-08-31 1991-04-16 Komatsu Ltd Controller for press brake
JPH0824955A (en) * 1994-07-08 1996-01-30 Amada Co Ltd Bending device
JPH10128452A (en) * 1996-10-29 1998-05-19 Komatsu Ltd Press brake
JP2004202545A (en) * 2002-12-25 2004-07-22 Amada Co Ltd Method and apparatus for folding workpiece

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079319A (en) 2000-09-06 2002-03-19 Amada Eng Center Co Ltd Die apparatus in bending machine, bending machine, method for detecting bending angle and bending method
DE102007056827B3 (en) * 2007-11-26 2009-06-10 Data M Software Gmbh Controller and fully automatic bending system for bending machines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0120927B2 (en) * 1980-12-09 1989-04-19 Amada Co Ltd
JPH0390217A (en) * 1989-08-31 1991-04-16 Komatsu Ltd Controller for press brake
JPH0824955A (en) * 1994-07-08 1996-01-30 Amada Co Ltd Bending device
JPH10128452A (en) * 1996-10-29 1998-05-19 Komatsu Ltd Press brake
JP2004202545A (en) * 2002-12-25 2004-07-22 Amada Co Ltd Method and apparatus for folding workpiece

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974688A (en) * 2011-09-05 2013-03-20 北汽福田汽车股份有限公司 Longitudinal member female die and longitudinal member manufacturing method
CN102974688B (en) * 2011-09-05 2014-12-03 北汽福田汽车股份有限公司 Longitudinal member female die and longitudinal member manufacturing method
WO2019230192A1 (en) * 2018-05-28 2019-12-05 株式会社アマダホールディングス Press brake control device, press brake control method, die, and data structure of die information
CN112262004A (en) * 2018-05-28 2021-01-22 株式会社天田集团 Press brake control device and method, metal mold and data structure of metal mold information
EP3812059A4 (en) * 2018-05-28 2021-11-17 Amada Co., Ltd. Press brake control device, press brake control method, die, and data structure of die information
US11801545B2 (en) 2018-05-28 2023-10-31 Amada Co., Ltd. Press brake control device, press brake control method, tool, and data structure of tool information

Also Published As

Publication number Publication date
JP5737657B2 (en) 2015-06-17
JPWO2011096442A1 (en) 2013-06-10
DE112011100452T5 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US8776570B2 (en) Workpiece bending method and apparatus
EP3015185B1 (en) Press forming method and press forming device
Carden et al. Measurement of springback
WO2020158062A1 (en) Method for identifying variation factor portion of springback amount
WO2006054596A1 (en) Bending method, and die and bending machine used for the bending method
JPH1058045A (en) Method for bending and device therefor
JPWO2012108436A1 (en) Bending machine
US7130714B1 (en) Method of predicting springback in hydroforming
JP5737657B2 (en) Bending method and system using a press brake
US5829288A (en) Adaptive folding
US6796155B2 (en) Sheet thickness detecting method and device therefor in bending machine, reference inter-blade distance detecting method and device therefor, and bending method and bending device
JP3939582B2 (en) Molding simulation method and apparent friction coefficient determination method applied to the method
Firat et al. A FE technique to improve the accuracy of drawbead models and verification with channel drawing experiments of a high-strength steel
Hirt et al. Manufacturing of sheet metal parts from tailor rolled blanks
JP2006224144A (en) Method and machine for bending metal plate
Šarić et al. Analysis of springback in air bending process
Frohn et al. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)
JP5681528B2 (en) Bending machine
Paunoiu et al. Experimental and numerical investigations of sheet metal circular bending
Masoumi et al. Effect of mandrel, its clearance and pressure die on tube bending process via rotary draw bending method
JP3085272U (en) High performance machine with reduced setup time for programmed sheet bending
Phanitwong et al. Finite element analysis of spring-back characteristics on asymmetrical Z-shape parts in wiping Z-bending process
JP4878806B2 (en) Die mold, bending method and apparatus
JP2004202545A (en) Method and apparatus for folding workpiece
Sresomroeng et al. Sidewall-curl prediction in U-bending process of advanced high strength steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552802

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111004524

Country of ref document: DE

Ref document number: 112011100452

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739790

Country of ref document: EP

Kind code of ref document: A1