WO2011096367A1 - Mobile floor reaction force measuring device - Google Patents

Mobile floor reaction force measuring device Download PDF

Info

Publication number
WO2011096367A1
WO2011096367A1 PCT/JP2011/051944 JP2011051944W WO2011096367A1 WO 2011096367 A1 WO2011096367 A1 WO 2011096367A1 JP 2011051944 W JP2011051944 W JP 2011051944W WO 2011096367 A1 WO2011096367 A1 WO 2011096367A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
reaction force
foot
moment
floor surface
Prior art date
Application number
PCT/JP2011/051944
Other languages
French (fr)
Japanese (ja)
Inventor
喜雄 井上
京子 芝田
涛 劉
伸好 辻内
和美 纐纈
陽太郎 土屋
Original Assignee
公立大学法人 高知工科大学
学校法人同志社
株式会社テック技販
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人 高知工科大学, 学校法人同志社, 株式会社テック技販 filed Critical 公立大学法人 高知工科大学
Publication of WO2011096367A1 publication Critical patent/WO2011096367A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array

Definitions

  • the present invention relates to a mobile floor reaction force measuring device that measures the force in the XYZ-axis direction applied to the sole of the foot and the moment around the XYZ-axis, and can also detect the moving direction of the foot. More specifically, the present invention relates to a mobile floor reaction force measuring apparatus that can estimate a joint moment and muscle force applied to a human lower limb based on a reaction force from the floor.
  • Patent Document 1 In recent years, in fields such as rehabilitation, welfare, and sports, footwear that can estimate the walking state of human beings, moments applied to lower limb joints, muscle strength applied to lower limbs, and reaction force measurement devices attached to the footwear have been proposed. (Patent Document 1).
  • Japanese Patent Application Laid-Open No. 2007-108079 discloses a reaction force measuring device attached to the floor surface side of the footwear 5 as shown in FIG.
  • This reaction force measuring device is configured by attaching a plurality of reaction force sensors 70 between two upper and lower upper plates 6u and 6d on which an external force acts.
  • XYZ direction force is output based on the above, and moments about the X axis, the Y axis, and the Z axis can be measured based on the distance and force difference from each reaction force sensor 70.
  • a sensor unit 71 and a sensor unit 72 are separately provided at two locations of a heel portion and a tip portion of the foot, and the sensor unit 71, The position of the marker 80 provided at 72 is imaged with a camera so that the reaction force and moment from the floor can be measured.
  • the method for measuring the reaction force from the floor using the reaction force measuring device as described above has the following problems.
  • the absolute coordinate system it may be preferable to measure forces and moments in an absolute coordinate system rather than determining coordinates based on the sensor unit. For example, when walking in the inner crotch state where the toe side is rotated inward after grounding the heel during walking (the state of FIG. 8), or when switching between the accelerator and brake of a car, the absolute coordinate system It is preferable to be able to detect what force is applied in which direction.
  • Patent Document 1 the sensor units 71 and 72 are attached with markers and photographed with a camera.
  • the measurable location is the field of view of the camera.
  • the inspection using the camera cannot be performed in a narrow place where the camera cannot be set up or in a wide place where walking for a very long distance is required.
  • the present invention makes it possible to accurately measure the reaction force and moment from the floor without using a camera, and to move the foot in the horizontal plane.
  • An object of the present invention is to provide a mold reaction force detection device.
  • the present invention is a movable floor reaction that is attached to a subject's foot and measures a force in three orthogonal directions and a moment around each axis based on a reaction force from the floor surface.
  • a plurality of sensor units that are provided separately on the heel side of the foot and the tip side of the foot and measure the reaction force in the three orthogonal directions and the moment about each axis, and each of the sensors
  • a posture detection sensor for detecting the posture of the unit and an azimuth sensor for detecting the direction of the subject's foot with respect to the horizontal direction are provided.
  • the angle between the foot heel side sensor unit and the tip side sensor unit can be detected by the posture detection sensor, so even if the ground contact state of the foot changes during walking, the floor can be accurately detected.
  • the reaction force and moment received from the surface can be measured.
  • the direction sensor can detect which direction the sensor unit is facing, so it is not limited to the viewing angle of the camera. It becomes possible to measure the force and moment based on it.
  • the reaction force sensor when the reaction force sensor is provided in the sensor unit, the reaction force sensor is provided so as to form a triangular shape having the arch side of the foot as a vertex.
  • a mobile floor reaction force measuring device that is attached to a subject's foot and measures a force in three axial directions orthogonal to each other based on a reaction force from the floor and a moment around each axis
  • a plurality of sensor units that are provided separately on the heel side and the tip end side of the foot, and measure the reaction force in the three orthogonal directions and the moments around the respective axes, and the postures for detecting the postures of the respective sensor units
  • a detection sensor and an azimuth sensor for detecting the direction of the subject's foot in the horizontal direction are provided, and even when the ground contact state of the foot changes during walking, Moment can be measured.
  • the direction sensor can detect which direction the sensor unit is facing, so it is not limited to the viewing angle of the camera. It becomes possible to measure the force and moment based on it.
  • FIG. 1 Schematic of a mobile floor reaction force measuring device according to an embodiment of the present invention
  • FIG. 1 Schematic cross section of mobile floor reaction force measuring device
  • FIG. 1 Schematic cross section of mobile floor reaction force measuring device
  • FIG. 1 Schematic cross section of mobile floor reaction force measuring device
  • FIG. 1 Schematic cross section of mobile floor reaction force measuring device
  • FIG. 1 Schematic cross section of mobile floor reaction force measuring device
  • FIG. 1 The figure which shows the strain gauge attached to the leg part of the reaction force sensor of the same form (a), and the figure which shows the strain gauge in the back surface side (b)
  • the mobile floor reaction force measuring device 100 in this embodiment is used by being attached to the back surface of footwear 5 such as shoes or sandals, and as shown in FIG. 1, on the heel side of the foot and the tip side of the foot.
  • Two independent sets of sensor units 101 and 102 are provided so that each sensor unit 101 and 102 can output a reaction force from the floor and a moment about its three axes in the absolute coordinate system XYZ. Then, using the output value and the output value of the posture sensor (not shown) provided on the lower leg and thigh other than this, it is possible to measure the load on the muscles and joints of the human lower limb that performs rehabilitation etc. It is a thing.
  • X′Y′Z ′ is described as a coordinate system based on the sensor units 101 and 102
  • XYZ is described as an absolute coordinate system.
  • the sensor units 101 and 102 constituting the movable floor reaction force measuring device 100 are provided with a reaction force sensor 10 between an upper plate 1 u and a lower plate 1 d, and each reaction force. Based on the output value from the sensor 10, the force in the XYZ directions and the moment about each axis in the absolute coordinate system can be measured.
  • the upper plate 1u and the lower plate 1d are made of a relatively hard material such as a metal plate, hard plastic, or ceramic.
  • the upper plate 1u is indicated by a broken line. At this time, if the upper plate 1u and the lower plate 1d are made of a relatively soft material, a large load is applied only to the specific reaction force sensor 10, and the load cannot be endured.
  • the reaction force sensor 10 is enlarged so as to be able to withstand this load, the size of the reaction force sensor 10 increases the state of the foot as when the boots are worn, making natural walking difficult. Therefore, the upper plate 1u and the lower plate 1d are made of a hard material, so that the load applied to each reaction force sensor 10 can be dispersed and the reaction force sensor 10 itself can be made smaller. Moment can be measured by distance and load.
  • the sensor unit 101 on the heel side is provided with two reaction force sensors 10 on the heel side of the foot, and on the arch side.
  • One reaction force sensor 10 is provided.
  • reaction force sensors 10 are provided on the tip side of the foot, and one reaction force sensor 10 is provided on the arch side so as to form an equilateral triangle.
  • the load resistance can be reduced, and the thickness of the shoe sole can be reduced by reducing the upper and lower thickness widths. You can make it smaller.
  • the upper plate 1u and the lower plate 1d are attached to the footwear 5 in a state of being separated into the heel side and the distal end side of the foot so as to give freedom to the movement of the foot during human walking.
  • the upper plate 1u is detachably attached to the back surface of the footwear 5 (see FIG. 7) via a hook-and-loop fastener or the like, or is attached to the shoe sole integrally.
  • a rubber plate or the like is attached to the lower surface side of the lower plate 1d in order to improve cushioning with the floor surface.
  • the upper plate 1u may be attached to the back surface of the footwear 5 by other methods.
  • a non-woven fabric such as felt is attached to provide cushioning properties. Also good.
  • the reaction force sensor 10 attached between the upper plate 1u and the lower plate 1d is a sensor that can measure forces in three orthogonal directions.
  • the three orthogonal axes indicate the respective axes X′Y′Z ′ of the orthogonal coordinate system with reference to each reaction force sensor 10, and the values in the respective axis directions and the posture detection sensor 107 described later. Then, it is converted into an absolute coordinate system using the geomagnetic sensor 108 and the reaction force in the XYZ directions is measured.
  • FIG. 3 shows an external perspective view of the reaction force sensor 10 in this embodiment.
  • the reaction force sensor 10 shown in FIG. 3 has a size of about 20 mm ⁇ about 20 mm in length and width and a thickness of about 5 mm to 6 mm.
  • From the square frame 11 and the center of the frame 11 Legs 12 to 15 extending radially outward and eight first strains provided on both side surfaces of the legs 12 to 15 so as to detect displacement in the longitudinal direction of the legs 12 to 15 so as to detect displacement in the longitudinal direction of the legs 12 to 15
  • the gauges 21 to 28 and the second strain gauges 31 to 38 attached at an angle of about 45 degrees with respect to the longitudinal direction of the legs 12 to 15 are included.
  • FIG. 1 shows an external perspective view of the reaction force sensor 10 in this embodiment.
  • the reaction force sensor 10 shown in FIG. 3 has a size of about 20 mm ⁇ about 20 mm in length and width and a thickness of about 5 mm to 6 mm.
  • From the square frame 11 and the center of the frame 11
  • the first strain gauges 22, 23, 25, 28 and the second strain gauges 32, 33, 35, 38 are not shown because they are provided on the back side of the leg portions 12-15. In such a configuration, a force is applied to the pin 16 penetrating into the center tap hole so that the forces in the three orthogonal directions can be detected.
  • leg portions 12 to 15 are configured in a vertically long plane shape having a slight gap from the bottom surface portion of the frame portion 11, thereby being able to withstand a large load in the thickness direction (Z ′ direction in FIG. 3). ing.
  • the first strain gauges 21 to 28 attached to the eight portions on both sides of the leg portions 12 to 15 are attached in the longitudinal direction, and the first strain gauges 21 to 28 are used in FIG.
  • the bridge circuit 41 shown in FIG. 4 is configured so that the load applied in the X ′ direction and the Y ′ direction can be detected.
  • the second strain gauges 31 to 38 are attached at eight positions so as to form an angle of 45 degrees on each side surface of the leg portions 12 to 15, and detect a load applied in the Z ′ direction or the oblique direction.
  • the second strain gauges 31 to 38 are attached to the both side surfaces, they are attached so that the direction on the front surface side and the direction on the back surface side are reversed. And a load in the Z ′ direction is detected by a change in the resistance value of the bridge circuit.
  • the reaction force sensor 10 will be described in detail.
  • the bridge circuit 41 shown in FIG. 6A is formed by the first strain gauges 21, 22, 25, 26 provided on the pair of opposing legs 12, 14.
  • a bridge circuit 41 shown in FIG. 6B is formed by the first strain gauges 23, 24, 27, 28 provided on a pair of leg portions 13, 15 that are adjacent to each other and are opposed to each other.
  • the bridge circuit 42 using the second strain gauges 31 to 38 as shown in FIG. 6C, the second strain gauges 31 to 38 provided on the front and back of the same leg portions 12 to 15 are connected in series.
  • the bridge circuit 42 is formed so that the second strain gauges 31 to 38 of the leg portions 12 to 15 facing each other face each other.
  • the bridge circuit 42 formed by the second strain gauges 31 to 38 can detect a change in the Z′-axis direction.
  • no change in the Z ′ direction is detected in the bridge circuit 41 formed by the first strain gauges 21 to 28. That is, when the increase in resistance value of the first strain gauges 21 to 28 is equal, the output voltage does not change, and the output voltage does not change for the first strain gauges 21 to 28 as well.
  • the leg portion 12 when a force is applied in the Y′-axis direction, the leg portion 12 is compressed, the leg portion 14 changes so as to extend, and the leg portion 13 and the leg portion 15 change in a bending direction.
  • the first strain gauges 21, 22 and the second strain gauges 31, 32 change in the direction in which the length contracts, and the resistance value decreases.
  • the resistance value increases.
  • the first strain gauges 24 and 27 and the second strain gauges 34 and 37 change in the direction in which the length increases, the resistance value increases.
  • the first strain gauges 23 and 28 and the second strain gauges 33 and 38 change in the direction in which the length is reduced, and the resistance value decreases.
  • the reaction force sensor 10 can detect the force in the Y′-axis direction, and the force in the X ′ direction can be detected in the same manner in the X ′ direction.
  • reaction force acting in the X′Y′Z ′ direction is detected by the reaction force sensor 10 constituted by the first strain gauges 21 to 28 and the second strain gauges 31 to 38.
  • the reaction force sensor 10 is arranged at least in a regular triangular shape so as not to be positioned on a straight line with respect to the upper plate 1u and the lower plate 1d, and as shown in FIG. 2, the frame portion 11 is placed on the lower plate 1d.
  • the pin 16 inserted in the center is fixed to the upper plate 1u. Then, a slight space is provided between the upper plate 1u and the lower plate 1d, and the reaction force acting in the X'Y'Z 'direction by a load based on the relative displacement between the upper plate 1u and the lower plate 1d. Is detected.
  • reaction forces acting in the X′Y′Z ′ direction of the three reaction force sensors 10 of the sensor units 101 and 102 are detected, and reaction forces and moments at the center of gravity positions of the sensor units 101 and 102 are measured.
  • a substrate having a calculation unit 103 for measuring force a posture detection sensor 107 such as a gyro sensor, an acceleration sensor, and the like, A geomagnetic sensor 108 and the like are provided.
  • the computing unit 103 measures the reaction force and moment at the center of gravity of each sensor unit 101, 102 based on the output value from each sensor unit 101, 102.
  • each sensor unit 101 , 102 the reaction force in the X′Y′Z ′ direction is F 1X ′ , F 2X ′ , F 3X ′
  • the reaction force in the Y ′ direction is F 1Y ′ , F 2Y ′ , F 3Y ′
  • the Z ′ direction Where F 1Z ′ , F 2Z ′ , and F 3Z ′ are measured, the reaction forces at the gravity center positions G 1 and G 2 of the sensor units 101 and 102 are measured according to the following equations.
  • F 1X ' F 11X' + F 12X ' + F 13X'
  • F 1Y ' F 11Y' + F 12Y ' + F 13Y'
  • F 1Z ' F 11Z' + F 12Z ' + F 13Z'
  • F 2X ' F 21X' + F 22X ' + F 23X'
  • the correction unit 104 measures the output reaction forces and moments in the X ′, Y ′, and Z ′ directions of the output sensor units 101 and 102 as reaction forces and moments in the absolute coordinate system.
  • one common posture detection sensor 107 is provided for each of the sensor units 101 and 102, and the coordinates and postures of the sensor units 101 and 102 with respect to the absolute coordinates based on the output value from the posture detection sensor 107. Is output.
  • the attitude detection sensor 107 may be any sensor as long as it can output the relative positional relationship and attitude of the sensor units 101 and 102, for example, a gyro sensor or an acceleration. A sensor or the like is used.
  • the posture detection sensor 107 is fixedly attached to the upper plate 1u and the lower plate 1d, and an output value thereof is output to the correction unit 104.
  • the angular velocity of the sensor units 101 and 102 to which the gyro sensor is attached can be detected, and the sensor unit 101 to which the gyro sensor is attached by integrating the angular velocity with the sampling time.
  • the posture of 102 can be detected. That is, it is possible to detect a change in angle with respect to the floor surface.
  • this integration process may cause an error due to the passage of time, and the error may be accumulated to greatly deviate from the normal posture.
  • an acceleration sensor can be used together.
  • This acceleration sensor measures the sum of the component of gravity acceleration and the component of acceleration generated by movement, and uses a sensor that measures only the gravitational acceleration in a stationary state. At this time, if the acceleration sensor is tilted, the gravitational component changes. Therefore, if the acceleration sensor is known to be stationary, the tilt posture can be measured. Since the acceleration sensor is stationary when the two sets of sensor units 101 and 102 are in contact with the floor surface, the inclination obtained by integrating the angular velocity by the gyro sensor can be corrected. Whether or not the two sets of sensor units 101 and 102 are in contact with the floor surface can be determined by the output of the reaction force sensor 10 in the Z ′ direction. In this way, errors that occur when integrating the gyro sensor can be suppressed.
  • the ground contact state of the two sets of sensor units 101 and 102 can be grasped from the output of the reaction force sensor 10 in the Z ′ direction and the output of the posture detection sensor 107.
  • a floor reaction force and moment with the floor surface as a reference position can be obtained.
  • the reaction force or moment from the floor is obtained in this way, as shown in FIG. 8, if the direction in which the foot faces changes along the floor and the horizontal plane, the force and moment in the Z direction change. Although not, the direction of the force in the X direction and the Y direction of the reaction force sensor 10 changes. For this reason, in order to convert the forces and moments in these directions into the forces and moments in the XYZ directions in the absolute coordinate system, it is detected using the geomagnetic sensor 108 which direction the sensor units 101 and 102 are facing. .
  • the geomagnetic sensor 108 is provided on both the heel side sensor unit 101 and the tip side sensor unit 102, but it may be provided only on one side. Then, such a geomagnetic sensor 108 is used to detect the direction in which the sensor units 101 and 102 face in the absolute coordinate system, and the reaction force and moment from the floor surface are corrected using the values.
  • reaction force and moment of the XYZ axes corrected in this way are output to the arithmetic unit 106 via the output unit 105, where these output values and other postures such as the lower leg and thigh are separately detected.
  • the load on the lower limb of the subject and the moment on the joint are measured.
  • reaction forces and moments from the sensor units 101 and 102 may be output, or reaction forces applied to the position of the center of gravity of the entire foot may be calculated and output.
  • the subject wears the footwear 5, and the sensor units 101 and 102 provided on the back surface of the footwear 5 are in a horizontal state (FIG. 7B), and the acceleration sensor detects only gravitational acceleration. It measures and corrects the inclination by the gyro sensor and detects the directions of the sensor units 101 and 102 using the geomagnetic sensor.
  • a human load is applied to each of the sensor units 101 and 102, and reaction forces and moments in the XYZ directions in the absolute coordinate system are output from the reaction force sensors 10 of the sensor units 101 and 102.
  • the heel side of the foot is lifted as shown in FIG.
  • the sensor unit 101 on the heel side is inclined by ⁇ 1X , ⁇ 1Y , ⁇ 1Z with respect to the floor surface, and when the heel is slightly in contact with the floor surface, the reaction force or moment from the floor surface is Receive.
  • the reaction force and moment output from the reaction force sensor 10 on the sensor unit 101 side are inclined with respect to the floor surface, the reaction force and moment are referenced to the floor surface via the correction unit 104.
  • the reaction force and moment are corrected.
  • the sensor unit 102 on the front end side is in a horizontal state with the floor surface, the output value of the reaction force in the vertical direction does not change even if correction is performed via the correction unit 104.
  • the sensor unit 101 on the heel side is substantially horizontal with the floor surface, while the sensor unit 102 on the distal end side is inclined with respect to the floor surface.
  • the reaction force and moment output from the reaction force sensor 10 on the sensor unit 102 side are inclined with respect to the floor surface. Therefore, coordinate conversion is performed via the correction unit 104 to obtain the reaction force and moment. to correct.
  • the sensor unit 101 on the heel side is in a horizontal state with the floor surface in this state, even if correction is performed via the correction unit 104, the output values of the reaction force and the moment do not change.
  • reaction force and moment corrected through the correction unit 104 in this way are output to the arithmetic unit 106 through the output unit 105, and the output value and the posture of the lower leg, thigh, etc. are detected separately.
  • the output value and the posture of the lower leg, thigh, etc. are detected separately.
  • the sensor unit 101 is provided separately on the heel side of the foot and the tip side of the foot, and measures the reaction force in the three orthogonal directions and the moment around each axis. , 102, a posture detection sensor 107 such as a gyro sensor or an acceleration sensor for detecting the posture of each sensor unit 101, 102, and a geomagnetic sensor 108 for detecting the orientation of the subject's foot in the horizontal direction.
  • a posture detection sensor 107 such as a gyro sensor or an acceleration sensor for detecting the posture of each sensor unit 101, 102
  • a geomagnetic sensor 108 for detecting the orientation of the subject's foot in the horizontal direction.
  • the three reaction force sensors 10 are provided between the upper plate 1u and the lower plate 1d, but the number of reaction force sensors 10 is limited to three. Instead, four or more may be provided. At this time, each reaction force sensor 10 may be arranged in a place where a load is easily applied.
  • the sensor units 101 and 102 are provided on the heel side and the tip side, but may be further divided and provided on the back surface of the footwear 5.
  • the sensor units 101 and 102 are attached between the back surface and the floor surface of the footwear 5, but the sensor units 101 and 102 may be provided below the insole of the footwear 5. Good.
  • a gyro sensor, an acceleration sensor, a geomagnetic sensor 108, or the like is used as the posture detection sensor 107, but the angle, position, and direction between each sensor unit 101, 102 and the floor surface are measured. Anything that can be used may be used.

Abstract

In order to enable the accurate measurement of reaction force from the floor surface and moment without using a camera and enable the measurement of the orientation of a foot within a horizontal plane, reaction force sensors (10) are attached in three positions to each of a sensor unit (101) provided on the heel side of a foot of a subject and a sensor unit (102) provided on the toe side of the foot to find forces in the directions of three axes orthogonal to each other and moments around the axes. The sensor units (101, 102) are each provided with a posture detection sensor (107) for detecting the angle thereof from the horizontal plane and a geomagnetic sensor (108) for detecting the orientation in the horizontal direction of the foot of the subject, the angle formed with the floor surface is corrected using the posture detection sensor (107), and the change of the orientation within the floor surface is corrected using the geomagnetic sensor (108).

Description

移動型床反力計測装置Mobile floor reaction force measuring device
 本発明は、足の裏に加わるXYZ軸方向の力とそのXYZ軸まわりのモーメントを計測するとともに、その足の移動方向も検出できるようにした移動型床反力計測装置に関するものであり、より詳しくは、床からの反力に基づいて人間の下肢にかかる関節モーメントや筋力などを推定できるようにした移動型床反力計測装置に関するものである。 The present invention relates to a mobile floor reaction force measuring device that measures the force in the XYZ-axis direction applied to the sole of the foot and the moment around the XYZ-axis, and can also detect the moving direction of the foot. More specifically, the present invention relates to a mobile floor reaction force measuring apparatus that can estimate a joint moment and muscle force applied to a human lower limb based on a reaction force from the floor.
 近年、リハビリテーションや福祉、スポーツなどの分野においては、人間の歩行状態や、下肢関節にかかるモーメント、下肢にかかる筋力などを推定できるようにした履物やその履物に取り付けられる反力計測装置などが提案されている(特許文献1)。 In recent years, in fields such as rehabilitation, welfare, and sports, footwear that can estimate the walking state of human beings, moments applied to lower limb joints, muscle strength applied to lower limbs, and reaction force measurement devices attached to the footwear have been proposed. (Patent Document 1).
 このような反力計測装置うち、特開2007-108079号公報には、図9に示すように履物5の床面側に取り付けられる反力計測装置が開示されている。 Among such reaction force measuring devices, Japanese Patent Application Laid-Open No. 2007-108079 discloses a reaction force measuring device attached to the floor surface side of the footwear 5 as shown in FIG.
 この反力計測装置は、外力が作用する上下2枚の上板6uと下板6dとの間に複数の反力センサ70を取り付けて構成されるもので、各反力センサ70からの出力値に基づいてXYZ方向の力を出力するとともに、各反力センサ70との距離や力の差分に基づいてX軸回り、Y軸回り、Z軸回りのモーメントを計測できるようにしたものである。 This reaction force measuring device is configured by attaching a plurality of reaction force sensors 70 between two upper and lower upper plates 6u and 6d on which an external force acts. XYZ direction force is output based on the above, and moments about the X axis, the Y axis, and the Z axis can be measured based on the distance and force difference from each reaction force sensor 70.
 また、この特許文献1には、歩行時における安定性を向上させるために、足のかかと部分と先端部分の2カ所にセンサユニット71とセンサユニット72とを分離して設け、このセンサユニット71、72に設けられたマーカー80の位置をカメラで撮像することによって、床からの反力やモーメントを計測できるようにしている。 Further, in Patent Document 1, in order to improve the stability during walking, a sensor unit 71 and a sensor unit 72 are separately provided at two locations of a heel portion and a tip portion of the foot, and the sensor unit 71, The position of the marker 80 provided at 72 is imaged with a camera so that the reaction force and moment from the floor can be measured.
特開2007-108079号公報(図17、図22など)Japanese Unexamined Patent Publication No. 2007-108079 (FIGS. 17, 22, etc.)
 しかしながら、上述のような反力計測装置を用いて床からの反力を計測する方法では、次のような問題がある。 However, the method for measuring the reaction force from the floor using the reaction force measuring device as described above has the following problems.
 すなわち、上述のように足のかかと部分と先端部分に分離したセンサユニットを取り付けるようにした場合、歩行時にそれぞれのセンサユニットの相対的な角度が変わってしまうため、正確に反力やモーメントを計測することができなくなるといった問題がある。これを詳述すると、人間が歩行する場合、図7(a)~(c)に示すように、まずは、かかと部分から先に床面に接地するようになるが(図7(a))、この場合、かかと部分のセンサユニット101は床面とほぼ平行な状態となる一方、先端側のセンサユニット102は床面に対して傾斜した状態となる。このような状態でそれぞれのセンサユニット101、102で床面からの反力を求めると、かかと側のセンサユニット101と先端側のセンサユニット102との角度が違うため異なる方向での力やモーメントを計測してしまうことになる。また、次の一歩を踏み出す場合についても同様に、図7(c)に示すように、先端側のセンサユニット102が床面とほぼ平行な状態となる一方、かかと部分のセンサユニット101は床面に対して傾斜した状態となるため、それぞれ違った角度での力やモーメントを計測してしまうことになる。 In other words, when the sensor unit is attached to the heel part and the tip part of the foot as described above, the relative angle of each sensor unit changes during walking, so the reaction force and moment are accurately measured. There is a problem that it becomes impossible to do. In detail, when a human walks, as shown in FIGS. 7 (a) to (c), first, the heel portion comes first to contact with the floor (FIG. 7 (a)). In this case, the sensor unit 101 at the heel portion is substantially parallel to the floor surface, while the sensor unit 102 at the distal end side is inclined with respect to the floor surface. When the reaction force from the floor surface is obtained in each of the sensor units 101 and 102 in such a state, since the angle between the heel side sensor unit 101 and the tip side sensor unit 102 is different, forces and moments in different directions are obtained. Will be measured. Similarly, in the case of taking the next step, as shown in FIG. 7C, the sensor unit 102 on the front end side is substantially parallel to the floor surface, while the sensor unit 101 in the heel portion is on the floor surface. Therefore, the force and moment at different angles will be measured.
 また、このように力やモーメントを計測する場合、センサユニットを基準に座標を決めるのではなく、絶対座標系で力やモーメントを計測するのが好ましい場合がある。例えば、歩行時にかかとを接地させた後につま先側を内側に回転させるように内股状態で歩くような場合や(図8の状態)、自動車のアクセルとブレーキを踏み換えるような場合、絶対座標系でどのような方向にどのような力がかかるかを検出できるようにしておくのが好ましい。 Also, when measuring forces and moments in this way, it may be preferable to measure forces and moments in an absolute coordinate system rather than determining coordinates based on the sensor unit. For example, when walking in the inner crotch state where the toe side is rotated inward after grounding the heel during walking (the state of FIG. 8), or when switching between the accelerator and brake of a car, the absolute coordinate system It is preferable to be able to detect what force is applied in which direction.
 これに対して、上記特許文献1では、センサユニット71、72にマーカーを付けてカメラで撮影するようにしているが、このようなカメラを用いた方法であると、計測できる場所がカメラの視野角の範囲内に限定されてしまうといった問題点がある。このため、カメラを設置させることができないような狭い場所や、非常に長い距離の歩行を要するような広い場所ではカメラを用いた検査ができなくなる。 On the other hand, in Patent Document 1, the sensor units 71 and 72 are attached with markers and photographed with a camera. With this method using a camera, the measurable location is the field of view of the camera. There is a problem that it is limited within the range of corners. For this reason, the inspection using the camera cannot be performed in a narrow place where the camera cannot be set up or in a wide place where walking for a very long distance is required.
 そこで、本発明は、上記課題を解決するために、カメラを使うことなく床面からの反力やモーメントを正確に計測できるようにし、また、水平面内において足の向きも計測できるようにした移動型反力検出装置を提供することを目的とする。 Therefore, in order to solve the above problems, the present invention makes it possible to accurately measure the reaction force and moment from the floor without using a camera, and to move the foot in the horizontal plane. An object of the present invention is to provide a mold reaction force detection device.
 すなわち、本発明は上記課題を解決するために、被験者の足に取り付けられ、床面からの反力に基づいて直交する3軸方向の力と当該各軸まわりのモーメントを計測する移動型床反力計測装置において、足のかかと側と足の先端側にそれぞれ分離して設けられ、前記直交する3軸方向の反力と当該各軸まわりのモーメントを計測する複数のセンサユニットと、当該各センサユニットの姿勢を検出する姿勢検出センサと、前記被験者の足の水平方向に対する向きを検出する方位センサとを備えるようにしたものである。 That is, in order to solve the above-mentioned problems, the present invention is a movable floor reaction that is attached to a subject's foot and measures a force in three orthogonal directions and a moment around each axis based on a reaction force from the floor surface. In the force measuring device, a plurality of sensor units that are provided separately on the heel side of the foot and the tip side of the foot and measure the reaction force in the three orthogonal directions and the moment about each axis, and each of the sensors A posture detection sensor for detecting the posture of the unit and an azimuth sensor for detecting the direction of the subject's foot with respect to the horizontal direction are provided.
 このようにすれば、姿勢検出センサによって足のかかと側のセンサユニットと先端側のセンサユニットの角度を検出することができるため、歩行時に足の接地状態が変化した場合であっても正確に床面から受ける反力やモーメントを計測することができる。しかも、方位センサによってそれらのセンサユニット自体がどのような方向を向いているかを検出することができるため、カメラの視野角に限定されることなく、どのような環境下でも足の方向や角度に基づく力やモーメントを計測することができるようになる。 In this way, the angle between the foot heel side sensor unit and the tip side sensor unit can be detected by the posture detection sensor, so even if the ground contact state of the foot changes during walking, the floor can be accurately detected. The reaction force and moment received from the surface can be measured. In addition, the direction sensor can detect which direction the sensor unit is facing, so it is not limited to the viewing angle of the camera. It becomes possible to measure the force and moment based on it.
 また、このような発明において、センサユニットに反力センサを設ける場合、足の土踏まず側を頂点とする三角形状をなすように反力センサを設ける。 In such an invention, when the reaction force sensor is provided in the sensor unit, the reaction force sensor is provided so as to form a triangular shape having the arch side of the foot as a vertex.
 このようにすれば、最も体重のかかるかかと部分や足の先端部分に多くの反力センサを設けているため、各反力センサにかかる力を分散させて反力センサの耐荷重を小さくすることができる。これにより、反力センサを靴裏などに取り付けた場合であっても厚みを薄くして違和感をなくすことができるようになる。 In this way, since many reaction force sensors are provided on the heel portion where the body weight is most applied and the tip portion of the foot, the force applied to each reaction force sensor is dispersed to reduce the load resistance of the reaction force sensor. Can do. Thereby, even when the reaction force sensor is attached to a shoe sole or the like, it is possible to reduce the thickness and eliminate the uncomfortable feeling.
 本発明によれば、被験者の足に取り付けられ、床面からの反力に基づいて直交する3軸方向の力と当該各軸まわりのモーメントを計測する移動型床反力計測装置において、足のかかと側と足の先端側にそれぞれ分離して設けられ、前記直交する3軸方向の反力と当該各軸まわりのモーメントを計測する複数のセンサユニットと、当該各センサユニットの姿勢を検出する姿勢検出センサと、前記被験者の足の水平方向に対する向きを検出する方位センサとを備えるようにしたもので、歩行時に足の接地状態が変化した場合であっても正確に床面から受ける反力やモーメントを計測することができる。しかも、方位センサによってそれらのセンサユニット自体がどのような方向を向いているかを検出することができるため、カメラの視野角に限定されることなく、どのような環境下でも足の方向や角度に基づく力やモーメントを計測することができるようになる。 According to the present invention, in a mobile floor reaction force measuring device that is attached to a subject's foot and measures a force in three axial directions orthogonal to each other based on a reaction force from the floor and a moment around each axis, A plurality of sensor units that are provided separately on the heel side and the tip end side of the foot, and measure the reaction force in the three orthogonal directions and the moments around the respective axes, and the postures for detecting the postures of the respective sensor units A detection sensor and an azimuth sensor for detecting the direction of the subject's foot in the horizontal direction are provided, and even when the ground contact state of the foot changes during walking, Moment can be measured. In addition, the direction sensor can detect which direction the sensor unit is facing, so it is not limited to the viewing angle of the camera. It becomes possible to measure the force and moment based on it.
本発明の一実施の形態である移動型床反力計測装置の概略図Schematic of a mobile floor reaction force measuring device according to an embodiment of the present invention 同形態における移動型床反力計測装置の断面概略図Schematic cross section of mobile floor reaction force measuring device 同形態のセンサユニットに用いられる反力センサの外観斜視図External perspective view of reaction force sensor used in sensor unit of same form 同形態における移動型床反力計測装置の機能ブロック図Functional block diagram of mobile floor reaction force measuring device in the same form 同形態の反力センサの脚部に取り付けられるひずみゲージを示す図(a)とその裏面側におけるひずみゲージを示す図(b)The figure which shows the strain gauge attached to the leg part of the reaction force sensor of the same form (a), and the figure which shows the strain gauge in the back surface side (b) 同形態のブリッジ回路を示す図The figure which shows the bridge circuit of the same form 人間の歩行状態を示す図Diagram showing human walking state 水平面である床面に対して足を上げて角度を変えた状態と座標系を示す図The figure which shows the state and coordinate system which changed the angle by raising a foot to the floor which is a horizontal plane 従来例における反力計測装置Reaction force measuring device in the conventional example
 以下、本発明の一実施の形態について図面を参照して説明する。この実施の形態における移動型床反力計測装置100は、靴やサンダルなどの履物5の裏面に取り付けて使用されるもので、図1に示すように、足のかかと側と足の先端側に独立した2組のセンサユニット101、102を設け、それぞれのセンサユニット101、102から絶対座標系XYZにおける床からの反力とその3軸まわりのモーメントを出力できるようにしたものである。そして、その出力値や、これ以外の下腿や大腿に設けられた姿勢センサ(図示せず)の出力値などを用いてリハビリテーションなどを行う人間の下肢の筋肉や関節にかかる荷重などを計測できるようにしたものである。以下、本実施の形態における移動型床反力計測装置100の構成について詳細に説明する。なお、本実施の形態においては、X'Y'Z'を各センサユニット101、102を基準とした座標系とし、XYZを絶対座標系として説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The mobile floor reaction force measuring device 100 in this embodiment is used by being attached to the back surface of footwear 5 such as shoes or sandals, and as shown in FIG. 1, on the heel side of the foot and the tip side of the foot. Two independent sets of sensor units 101 and 102 are provided so that each sensor unit 101 and 102 can output a reaction force from the floor and a moment about its three axes in the absolute coordinate system XYZ. Then, using the output value and the output value of the posture sensor (not shown) provided on the lower leg and thigh other than this, it is possible to measure the load on the muscles and joints of the human lower limb that performs rehabilitation etc. It is a thing. Hereinafter, the configuration of the movable floor reaction force measuring apparatus 100 according to the present embodiment will be described in detail. In the present embodiment, X′Y′Z ′ is described as a coordinate system based on the sensor units 101 and 102, and XYZ is described as an absolute coordinate system.
 この移動型床反力計測装置100を構成するセンサユニット101、102は、図1や図2に示すように、上板1uと下板1dとの間に反力センサ10を取り付け、各反力センサ10からの出力値に基づいて絶対座標系におけるXYZ方向の力やその各軸まわりのモーメントを計測できるようにしたものである。ここで、この上板1uや下板1dは、金属板や硬質プラスチック、セラミックなどのように比較的硬い素材で構成される。なお、図1では、上板1uを破線で示している。このとき、上板1uや下板1dを比較的柔らかい素材で構成すると、特定の反力センサ10にのみ大きな荷重がかかってしまい、その荷重に耐えられなくなってしまう。一方、この荷重に耐えられるように反力センサ10を大きくすると、その反力センサ10の大きさによってブーツを履いた時のように高足な状態となり、自然な歩行が困難となる。そこで、この上板1uや下板1dを固い素材で構成することで各反力センサ10にかかる荷重を分散し、反力センサ10自体を小さくできるようにするとともに、各反力センサ10間の距離と荷重によってモーメントを計測できるようにしている。この反力センサ10にかかる荷重を分散させる方法としては、まず、図1に示すように、かかと側のセンサユニット101については、足のかかと側に2つの反力センサ10を設けるとともに、土踏まず側に1つの反力センサ10を設ける。また、足の先端側のセンサユニット102については、足の先端側に2つの反力センサ10を設け、土踏まず側に1つの反力センサ10を正三角形状をなすように設ける。このようにすると、最も荷重のかかりやすい場所に複数の反力センサ10を配置することになるので、それぞれの耐荷重を小さくすることができ、上下の厚み幅を小さくして靴底の厚みを小さくすることができるようになる。 As shown in FIGS. 1 and 2, the sensor units 101 and 102 constituting the movable floor reaction force measuring device 100 are provided with a reaction force sensor 10 between an upper plate 1 u and a lower plate 1 d, and each reaction force. Based on the output value from the sensor 10, the force in the XYZ directions and the moment about each axis in the absolute coordinate system can be measured. Here, the upper plate 1u and the lower plate 1d are made of a relatively hard material such as a metal plate, hard plastic, or ceramic. In FIG. 1, the upper plate 1u is indicated by a broken line. At this time, if the upper plate 1u and the lower plate 1d are made of a relatively soft material, a large load is applied only to the specific reaction force sensor 10, and the load cannot be endured. On the other hand, if the reaction force sensor 10 is enlarged so as to be able to withstand this load, the size of the reaction force sensor 10 increases the state of the foot as when the boots are worn, making natural walking difficult. Therefore, the upper plate 1u and the lower plate 1d are made of a hard material, so that the load applied to each reaction force sensor 10 can be dispersed and the reaction force sensor 10 itself can be made smaller. Moment can be measured by distance and load. As a method of dispersing the load applied to the reaction force sensor 10, first, as shown in FIG. 1, the sensor unit 101 on the heel side is provided with two reaction force sensors 10 on the heel side of the foot, and on the arch side. One reaction force sensor 10 is provided. As for the sensor unit 102 on the tip side of the foot, two reaction force sensors 10 are provided on the tip side of the foot, and one reaction force sensor 10 is provided on the arch side so as to form an equilateral triangle. In this way, since the plurality of reaction force sensors 10 are arranged at the place where the load is most likely to be applied, the load resistance can be reduced, and the thickness of the shoe sole can be reduced by reducing the upper and lower thickness widths. You can make it smaller.
 この上板1uや下板1dは、人間の歩行時における足の動きに自由度を持たせるように、足のかかと側と先端側に分離した状態で履物5に取り付けられる。この上板1uや下板1dのうち、上板1uは、履物5(図7参照)の裏面に対して面ファスナーなどを介して着脱可能に取り付けられるか、もしくは、靴底と一体的に取り付けられ、また、下板1dの下面側には、床面とのクッション性をよくするために、下面側にゴム板などを取り付けている。なお、この上板1uは履物5の裏面に他の方法で取り付けるようにしてもよく、また、下板1dの下面側については、フェルトなどの不織布などを取り付けてクッション性を持たせるようにしてもよい。 The upper plate 1u and the lower plate 1d are attached to the footwear 5 in a state of being separated into the heel side and the distal end side of the foot so as to give freedom to the movement of the foot during human walking. Of the upper plate 1u and the lower plate 1d, the upper plate 1u is detachably attached to the back surface of the footwear 5 (see FIG. 7) via a hook-and-loop fastener or the like, or is attached to the shoe sole integrally. In addition, a rubber plate or the like is attached to the lower surface side of the lower plate 1d in order to improve cushioning with the floor surface. The upper plate 1u may be attached to the back surface of the footwear 5 by other methods. On the lower surface side of the lower plate 1d, a non-woven fabric such as felt is attached to provide cushioning properties. Also good.
 この上板1uや下板1dとの間に取り付けられる反力センサ10は、直交する3軸方向の力を計測できるようにしたものを用いる。ここで、直交する3軸とは、各反力センサ10を基準とした直交座標系の各軸X'Y'Z'を示したもので、この各軸方向の値と後述する姿態検出センサ107および地磁気センサ108を用いて絶対座標系に変換しXYZ方向の反力を計測する。 The reaction force sensor 10 attached between the upper plate 1u and the lower plate 1d is a sensor that can measure forces in three orthogonal directions. Here, the three orthogonal axes indicate the respective axes X′Y′Z ′ of the orthogonal coordinate system with reference to each reaction force sensor 10, and the values in the respective axis directions and the posture detection sensor 107 described later. Then, it is converted into an absolute coordinate system using the geomagnetic sensor 108 and the reaction force in the XYZ directions is measured.
 図3にこの実施の形態における反力センサ10の外観斜視図を示す。図3に示す反力センサ10は、縦横寸法が約20mm×約20mm、厚み寸法が5mm~6mm程度の大きさを有するもので、正方形状の枠部11と、その枠部11の中心部から外方に向かって放射状に延びる脚部12~15と、その脚部12~15の長手方向の変位を検出するように脚部12~15の両側面に設けられた8個の第一のひずみゲージ21~28と、その脚部12~15の長手方向に対して約45度の角度をなして取り付けられた第二のひずみゲージ31~38などを有してなる。なお、図3において第一のひずみゲージ22、23、25、28および第二のひずみゲージ32、33、35、38は脚部12~15の裏面側に設けられているため図示されていない。そして、このような構成において、中心部のタップ孔に貫入されたピン16に荷重を作用させることによって直交する3軸方向の力を検出できるようにしている。 FIG. 3 shows an external perspective view of the reaction force sensor 10 in this embodiment. The reaction force sensor 10 shown in FIG. 3 has a size of about 20 mm × about 20 mm in length and width and a thickness of about 5 mm to 6 mm. From the square frame 11 and the center of the frame 11 Legs 12 to 15 extending radially outward and eight first strains provided on both side surfaces of the legs 12 to 15 so as to detect displacement in the longitudinal direction of the legs 12 to 15 The gauges 21 to 28 and the second strain gauges 31 to 38 attached at an angle of about 45 degrees with respect to the longitudinal direction of the legs 12 to 15 are included. In FIG. 3, the first strain gauges 22, 23, 25, 28 and the second strain gauges 32, 33, 35, 38 are not shown because they are provided on the back side of the leg portions 12-15. In such a configuration, a force is applied to the pin 16 penetrating into the center tap hole so that the forces in the three orthogonal directions can be detected.
 これらの脚部12~15は、枠部11の底面部分から若干隙間を有するような縦長平面状に構成され、これによって厚み方向(図3におけるZ'方向)にかかる大きな荷重に耐えられるようにしている。この脚部12~15の各両側面8カ所に取り付けられる第一のひずみゲージ21~28は、縦長方向に取り付けられ、また、この第一のひずみゲージ21~28によって図6(a)(b)に示すブリッジ回路41を構成することによってX'方向やY'方向にかかる荷重を検出できるようにする。また、第二のひずみゲージ31~38は、脚部12~15の各両側面に斜め45度をなすように8カ所に取り付けられ、Z'方向もしくは斜め方向にかかる荷重を検出する。この第二のひずみゲージ31~38を各両側面に取り付ける場合、表面側の向きと裏面側の向きとが逆になるように取り付け、この第二のひずみゲージ31~38によって図6(c)に示すようなブリッジ回路42を形成して、そのブリッジ回路42の抵抗値の変化によってZ'方向の荷重を検出する。 These leg portions 12 to 15 are configured in a vertically long plane shape having a slight gap from the bottom surface portion of the frame portion 11, thereby being able to withstand a large load in the thickness direction (Z ′ direction in FIG. 3). ing. The first strain gauges 21 to 28 attached to the eight portions on both sides of the leg portions 12 to 15 are attached in the longitudinal direction, and the first strain gauges 21 to 28 are used in FIG. The bridge circuit 41 shown in FIG. 4 is configured so that the load applied in the X ′ direction and the Y ′ direction can be detected. Further, the second strain gauges 31 to 38 are attached at eight positions so as to form an angle of 45 degrees on each side surface of the leg portions 12 to 15, and detect a load applied in the Z ′ direction or the oblique direction. When the second strain gauges 31 to 38 are attached to the both side surfaces, they are attached so that the direction on the front surface side and the direction on the back surface side are reversed. And a load in the Z ′ direction is detected by a change in the resistance value of the bridge circuit.
 この反力センサ10について詳述すると、対向する1対の脚部12、14に設けられた第一のひずみゲージ21、22、25、26によって図6(a)に示すブリッジ回路41を形成するとともに、これに隣接して対向する1対の脚部13、15に設けられた第一のひずみゲージ23、24、27、28によって図6(b)に示すブリッジ回路41を形成する。一方、第二のひずみゲージ31~38によるブリッジ回路42については、図6(c)に示すように、同一の脚部12~15の表裏に設けられた第二のひずみゲージ31~38を直列に配置し、これと対向する脚部12~15の第二のひずみゲージ31~38を向かい合させるようにしてブリッジ回路42を形成する。 The reaction force sensor 10 will be described in detail. The bridge circuit 41 shown in FIG. 6A is formed by the first strain gauges 21, 22, 25, 26 provided on the pair of opposing legs 12, 14. At the same time, a bridge circuit 41 shown in FIG. 6B is formed by the first strain gauges 23, 24, 27, 28 provided on a pair of leg portions 13, 15 that are adjacent to each other and are opposed to each other. On the other hand, for the bridge circuit 42 using the second strain gauges 31 to 38, as shown in FIG. 6C, the second strain gauges 31 to 38 provided on the front and back of the same leg portions 12 to 15 are connected in series. The bridge circuit 42 is formed so that the second strain gauges 31 to 38 of the leg portions 12 to 15 facing each other face each other.
 ここで、中心部のピン16に力が加わった場合について説明する。Z'軸方向に力FZが加えられた場合、中心部がZ'軸方向に移動し、脚部12~15が撓むことになる。この結果、第一のひずみゲージ21、22、25、26と第二のひずみゲージ31、32、35、36が伸びるように変化して抵抗値が増加する。一方、第一のひずみゲージ23、24、27、28は長さが伸びる方向、すなわち、抵抗値が増加する方向に変化し、第二のひずみゲージ33、34、37、38は、長さが縮む方向に変化し、抵抗値が減少する方向に変化する。このように、各ひずみゲージの長さが変化すると、第二のひずみゲージ31~38で形成されるブリッジ回路42によって、Z'軸方向の変化を検出することができる。一方、第一のひずみゲージ21~28によって形成されるブリッジ回路41ではZ'方向の変化は検出されない。すなわち、第一のひずみゲージ21~28の抵抗値の増加が等しい場合には、出力電圧は変化せず、また、第一のひずみゲージ21~28についても同様に出力電圧は変化しない。 Here, a case where force is applied to the pin 16 in the center will be described. When a force F Z is applied in the Z′-axis direction, the center portion moves in the Z′-axis direction, and the leg portions 12 to 15 are bent. As a result, the first strain gauges 21, 22, 25, 26 and the second strain gauges 31, 32, 35, 36 change so as to extend, and the resistance value increases. On the other hand, the first strain gauges 23, 24, 27, and 28 change in the direction in which the length increases, that is, the direction in which the resistance value increases, and the second strain gauges 33, 34, 37, and 38 have a length in the direction. It changes in the direction of shrinking, and changes in the direction of decreasing the resistance value. Thus, when the length of each strain gauge changes, the bridge circuit 42 formed by the second strain gauges 31 to 38 can detect a change in the Z′-axis direction. On the other hand, no change in the Z ′ direction is detected in the bridge circuit 41 formed by the first strain gauges 21 to 28. That is, when the increase in resistance value of the first strain gauges 21 to 28 is equal, the output voltage does not change, and the output voltage does not change for the first strain gauges 21 to 28 as well.
 一方、Y'軸方向に力を加えた場合は、脚部12が圧縮され、脚部14は延びるように変化するとともに、脚部13や脚部15は撓む方向に変化する。この結果、第一のひずみゲージ21、22と第二のひずみゲージ31、32は、長さが縮む方向に変化して抵抗値が減少する。一方、第一のひずみゲージ25、26や第二のひずみゲージ25、36は、長さが伸びる方向に変化するため、抵抗値が増加する。また、第一のひずみゲージ24、27および第二のひずみゲージ34、37については長さが伸びる方向に変化するため抵抗値が増加する。一方、第一のひずみゲージ23、28および第二のひずみゲージ33、38については、長さが縮む方向に変化し抵抗値が減少する。 On the other hand, when a force is applied in the Y′-axis direction, the leg portion 12 is compressed, the leg portion 14 changes so as to extend, and the leg portion 13 and the leg portion 15 change in a bending direction. As a result, the first strain gauges 21, 22 and the second strain gauges 31, 32 change in the direction in which the length contracts, and the resistance value decreases. On the other hand, since the first strain gauges 25 and 26 and the second strain gauges 25 and 36 change in the direction in which the length increases, the resistance value increases. Further, since the first strain gauges 24 and 27 and the second strain gauges 34 and 37 change in the direction in which the length increases, the resistance value increases. On the other hand, the first strain gauges 23 and 28 and the second strain gauges 33 and 38 change in the direction in which the length is reduced, and the resistance value decreases.
 このように脚部12~15の長さの変化がすると、第一のひずみゲージ21、22、25、26で形成されたブリッジ回路41(図6(a))によってY'軸方向の変化が検出され、第一のひずみゲージ25、26の抵抗増加、および、第一のひずみゲージ21、22の抵抗減少によって出力電圧に変化をもたらす。 When the lengths of the leg portions 12 to 15 are changed in this way, a change in the Y′-axis direction is caused by the bridge circuit 41 (FIG. 6A) formed by the first strain gauges 21, 22, 25, and 26. As a result, the output voltage is changed by increasing the resistance of the first strain gauges 25 and 26 and decreasing the resistance of the first strain gauges 21 and 22.
 一方、第一のひずみゲージ23、24、27、28で形成されたブリッジ回路41(図6(b))では、Y'軸方向の変化は検出されない。なぜなら、第一のひずみゲージ23、28の抵抗減少の大きさと、第一のひずみゲージ24、27の抵抗増加の大きさとが等しい場合、出力電圧に変化をもたらせないからである。このように反力センサ10によってY'軸方向の力を検出することができ、X'方向についても同様にしてX'方向の力を検出できる。 On the other hand, in the bridge circuit 41 (FIG. 6B) formed by the first strain gauges 23, 24, 27, and 28, a change in the Y′-axis direction is not detected. This is because if the magnitude of the resistance decrease of the first strain gauges 23 and 28 is equal to the magnitude of the resistance increase of the first strain gauges 24 and 27, the output voltage cannot be changed. As described above, the reaction force sensor 10 can detect the force in the Y′-axis direction, and the force in the X ′ direction can be detected in the same manner in the X ′ direction.
 このようにして、第一のひずみゲージ21~28、第二のひずみゲージ31~38で構成された反力センサ10によってX'Y'Z'方向に働く反力を検出する。 Thus, the reaction force acting in the X′Y′Z ′ direction is detected by the reaction force sensor 10 constituted by the first strain gauges 21 to 28 and the second strain gauges 31 to 38.
 この反力センサ10は、上板1uや下板1dに対して一直線上に位置しないように少なくとも正三角形状をなす位置に配置され、図2に示すように、枠部11を下板1dに固定するとともに、中心部に挿入されるピン16を上板1uに固定するようにしている。そして、上板1uと下板1dの間に少しだけ空間を設けた状態にしておき、上板1uと下板1dの相対的な変位に基づく荷重によってX'Y'Z'方向に働く反力を検出する。そして、各センサユニット101、102の3つの反力センサ10のX'Y'Z'方向に働く反力を検出し、各センサユニット101、102の重心位置における反力やモーメントを計測する。なお、この正三角形状をなすように設けられた反力センサ10の間には、力を計測するための演算部103を有する基板や、ジャイロセンサ、加速度センサなどの姿態検出センサ107、および、地磁気センサ108などが設けられる。 The reaction force sensor 10 is arranged at least in a regular triangular shape so as not to be positioned on a straight line with respect to the upper plate 1u and the lower plate 1d, and as shown in FIG. 2, the frame portion 11 is placed on the lower plate 1d. In addition to fixing, the pin 16 inserted in the center is fixed to the upper plate 1u. Then, a slight space is provided between the upper plate 1u and the lower plate 1d, and the reaction force acting in the X'Y'Z 'direction by a load based on the relative displacement between the upper plate 1u and the lower plate 1d. Is detected. Then, reaction forces acting in the X′Y′Z ′ direction of the three reaction force sensors 10 of the sensor units 101 and 102 are detected, and reaction forces and moments at the center of gravity positions of the sensor units 101 and 102 are measured. Between the reaction force sensors 10 provided so as to form an equilateral triangle, a substrate having a calculation unit 103 for measuring force, a posture detection sensor 107 such as a gyro sensor, an acceleration sensor, and the like, A geomagnetic sensor 108 and the like are provided.
 演算部103(図4参照)は、各センサユニット101、102からの出力値に基づいて各センサユニット101、102の重心位置における反力やモーメントを計測するもので、ここでは、各センサユニット101、102におけるX'Y'Z'方向の反力をF1X'、F2X'、F3X'とし、Y'方向の反力をF1Y'、F2Y'、F3Y'とし、Z'方向の反力をF1Z'、F2Z'、F3Z'とした場合、次式によって各センサユニット101、102の重心位置G1、G2における反力を計測する。ここで、F11M、F12M、F13M(M=X',Y',Z')は、センサユニット101における各反力センサ10のM軸方向(M=X',Y',Z')の反力であり、また、F21M、F22M、F23M(M=X',Y',Z')は、センサユニット102における各反力センサ10のM軸方向(M=X',Y',Z')の反力である。
F1X'=F11X'+F12X'+F13X'
F1Y'=F11Y'+F12Y'+F13Y'
F1Z'=F11Z'+F12Z'+F13Z'
F2X'=F21X'+F22X'+F23X'
F2Y'=F21Y'+F22Y'+F23Y'
F2Z'=F21Z'+F22Z'+F23Z'
The computing unit 103 (see FIG. 4) measures the reaction force and moment at the center of gravity of each sensor unit 101, 102 based on the output value from each sensor unit 101, 102. Here, each sensor unit 101 , 102, the reaction force in the X′Y′Z ′ direction is F 1X ′ , F 2X ′ , F 3X ′ , the reaction force in the Y ′ direction is F 1Y ′ , F 2Y ′ , F 3Y ′ , and the Z ′ direction Where F 1Z ′ , F 2Z ′ , and F 3Z ′ are measured, the reaction forces at the gravity center positions G 1 and G 2 of the sensor units 101 and 102 are measured according to the following equations. Here, F 11M , F 12M , and F 13M (M = X ′, Y ′, Z ′) are the M-axis directions (M = X ′, Y ′, Z ′) of the reaction force sensors 10 in the sensor unit 101. F 21M , F 22M , F 23M (M = X ′, Y ′, Z ′) are the M-axis directions (M = X ′, Y) of each reaction force sensor 10 in the sensor unit 102. ', Z').
F 1X ' = F 11X' + F 12X ' + F 13X'
F 1Y ' = F 11Y' + F 12Y ' + F 13Y'
F 1Z ' = F 11Z' + F 12Z ' + F 13Z'
F 2X ' = F 21X' + F 22X ' + F 23X'
F 2Y ' = F 21Y' + F 22Y ' + F 23Y'
F 2Z ' = F 21Z' + F 22Z ' + F 23Z '
 また、各センサユニット101、102の重心位置G1、G2を基準としたX'Y'Z'軸回りにおけるモーメントは、次式で表される。ここで、L11M、L12M、L13M(M=X',Y',Z')は、センサユニット101における各反力センサ10からM軸(M=X',Y',Z')までの距離であり、また、L21M、L22M、L23M(M=X',Y',Z')は、センサユニット102における各反力センサ10からM軸(M=X',Y',Z')までの距離である。
M1X'=F11Z'×L11X'+F12Z'×L12X'+F13Z'×L13X'
M1Y'=F11Z'×L11Y'+F12Z'×L12Y'+F13Z'×L13Y'
M1Z'=F11X'×L11Z'+F12X'×L12Z'+F13X'×L13Z'+F11Y'×L11Z'+F12Y'×L12Z'+F13Y'×L13Z'
M2X'=F21Z'×L21X'+F22Z'×L22X'+F23Z'×L23X'
M2Y'=F21Z'×L21Y'+F22Z'×L22Y'+F23Z'×L23Y'
M2X'=F21X'×L21Z'+F22X'×L22Z'+F23X'×L23Z'+F21Y'×L21Z'+F22Y'×L22Z'+F23Y'×L23Z'
Further, moments about the X′Y′Z ′ axis with respect to the gravity center positions G1 and G2 of the sensor units 101 and 102 are expressed by the following equations. Here, L 11M , L 12M , L 13M (M = X ′, Y ′, Z ′) are from each reaction force sensor 10 in the sensor unit 101 to the M axis (M = X ′, Y ′, Z ′). L 21M , L 22M , L 23M (M = X ′, Y ′, Z ′) are distances from each reaction force sensor 10 in the sensor unit 102 to the M axis (M = X ′, Y ′, Z ').
M 1X ' = F 11Z' × L 11X ' + F 12Z' × L 12X ' + F 13Z' × L 13X '
M 1Y ' = F 11Z' × L 11Y ' + F 12Z' × L 12Y ' + F 13Z' × L 13Y '
M 1Z ' = F 11X' × L 11Z ' + F 12X' × L 12Z ' + F 13X' × L 13Z ' + F 11Y' × L 11Z ' + F 12Y' × L 12Z ' + F 13Y' × L 13Z '
M 2X ' = F 21Z' × L 21X ' + F 22Z' × L 22X ' + F 23Z' × L 23X '
M 2Y ' = F 21Z' × L 21Y ' + F 22Z' × L 22Y ' + F 23Z' × L 23Y '
M 2X ' = F 21X' × L 21Z ' + F 22X' × L 22Z ' + F 23X' × L 23Z ' + F 21Y' × L 21Z ' + F 22Y' × L 22Z ' + F 23Y' × L 23Z '
 そして、これらの値は、演算部103におけるCPUによってサンプリング時間毎に計測されて補正部104に出力される。 These values are measured every sampling time by the CPU in the calculation unit 103 and output to the correction unit 104.
 補正部104は、この出力された各センサユニット101、102におけるX',Y',Z'方向の反力やモーメントを、絶対座標系における反力やモーメントとして計測する。この補正処理を行う場合、各センサユニット101、102の1つの共通する姿勢検出センサ107を設け、この姿勢検出センサ107からの出力値に基づいて各センサユニット101、102の絶対座標に対する座標と姿勢を出力する。ここで、姿勢検出センサ107としては、各センサユニット101、102の相対的な位置関係や姿勢などを出力できるようなものであればどのようなものであってもよく、例えば、ジャイロセンサや加速度センサなどを用いる。この姿勢検出センサ107は、上板1uや下板1dに固定して取り付けられ、その出力値が補正部104に出力される。 The correction unit 104 measures the output reaction forces and moments in the X ′, Y ′, and Z ′ directions of the output sensor units 101 and 102 as reaction forces and moments in the absolute coordinate system. When performing this correction processing, one common posture detection sensor 107 is provided for each of the sensor units 101 and 102, and the coordinates and postures of the sensor units 101 and 102 with respect to the absolute coordinates based on the output value from the posture detection sensor 107. Is output. Here, the attitude detection sensor 107 may be any sensor as long as it can output the relative positional relationship and attitude of the sensor units 101 and 102, for example, a gyro sensor or an acceleration. A sensor or the like is used. The posture detection sensor 107 is fixedly attached to the upper plate 1u and the lower plate 1d, and an output value thereof is output to the correction unit 104.
 ここで、ジャイロセンサを用いた場合、そのジャイロセンサを取り付けたセンサユニット101、102の角速度を検出することができ、その角速度をサンプリング時間で積分することによってそのジャイロセンサを取り付けたセンサユニット101、102の姿勢を検出することができる。すなわち、床面を基準とした角度の変化を検出することができる。しかしながら、この積分処理は、時間の経過によって誤差を生じ、その誤差が累計されることによって正規の姿勢から大きくずれていく可能性がある。 Here, when the gyro sensor is used, the angular velocity of the sensor units 101 and 102 to which the gyro sensor is attached can be detected, and the sensor unit 101 to which the gyro sensor is attached by integrating the angular velocity with the sampling time. The posture of 102 can be detected. That is, it is possible to detect a change in angle with respect to the floor surface. However, this integration process may cause an error due to the passage of time, and the error may be accumulated to greatly deviate from the normal posture.
 そこで、加速度センサも併用することができる。この加速度センサは、重力加速度の成分と運動によって生ずる加速度の成分の和を計測するもので、静止状態であれば重力加速度のみを計測するものを用いる。このとき、加速度センサが傾けば、重力成分が変化するので、静止していることが分かっている状態であれば、傾き姿勢を計測することができる。2組のセンサユニット101、102が床面に水平に接している状態には、加速度センサは静止しているので、そのときには、ジャイロセンサによる角速度を積分して求める傾きを補正することができる。2組のセンサユニット101、102が床面に接しているか否かは、反力センサ10のZ'方向の出力によって判定することができる。このようにすれば,ジャイロセンサを積分する際に生ずる誤差を抑制することができる。 Therefore, an acceleration sensor can be used together. This acceleration sensor measures the sum of the component of gravity acceleration and the component of acceleration generated by movement, and uses a sensor that measures only the gravitational acceleration in a stationary state. At this time, if the acceleration sensor is tilted, the gravitational component changes. Therefore, if the acceleration sensor is known to be stationary, the tilt posture can be measured. Since the acceleration sensor is stationary when the two sets of sensor units 101 and 102 are in contact with the floor surface, the inclination obtained by integrating the angular velocity by the gyro sensor can be corrected. Whether or not the two sets of sensor units 101 and 102 are in contact with the floor surface can be determined by the output of the reaction force sensor 10 in the Z ′ direction. In this way, errors that occur when integrating the gyro sensor can be suppressed.
 2組のセンサユニット101、102の床面との接地状態は、反力センサ10のZ'方向の出力と姿勢検出センサ107の出力から把握することができる。このように接地状態と姿勢がわかれば、床面を基準位置とした床反力やモーメントを得ることができる。 The ground contact state of the two sets of sensor units 101 and 102 can be grasped from the output of the reaction force sensor 10 in the Z ′ direction and the output of the posture detection sensor 107. Thus, if the ground contact state and posture are known, a floor reaction force and moment with the floor surface as a reference position can be obtained.
 なお、このように床からの反力やモーメントを得た場合において、図8に示すように、足の向く方向が床面と水平面に沿って変化した場合、Z方向の力やモーメントについては変化しないものの、反力センサ10のX方向やY方向の力の向きが変化してしまう。このため、これらの方向の力やモーメントを絶対座標系におけるXYZ方向の力やモーメントに変換するために、地磁気センサ108を用いてセンサユニット101、102がどちらの方向を向いているのかを検出する。この実施の形態では、地磁気センサ108をかかと側のセンサユニット101と先端側のセンサユニット102の両方に設けるようにしているが、いずれか一方側のみでもよい。そして、このような地磁気センサ108を用いて絶対座標系でのセンサユニット101、102の向く方向を検出し、その値を用いて床面からの反力やモーメントを補正する。 When the reaction force or moment from the floor is obtained in this way, as shown in FIG. 8, if the direction in which the foot faces changes along the floor and the horizontal plane, the force and moment in the Z direction change. Although not, the direction of the force in the X direction and the Y direction of the reaction force sensor 10 changes. For this reason, in order to convert the forces and moments in these directions into the forces and moments in the XYZ directions in the absolute coordinate system, it is detected using the geomagnetic sensor 108 which direction the sensor units 101 and 102 are facing. . In this embodiment, the geomagnetic sensor 108 is provided on both the heel side sensor unit 101 and the tip side sensor unit 102, but it may be provided only on one side. Then, such a geomagnetic sensor 108 is used to detect the direction in which the sensor units 101 and 102 face in the absolute coordinate system, and the reaction force and moment from the floor surface are corrected using the values.
 そして、このように補正されたXYZ軸の反力やモーメントを出力部105を介して演算装置106に出力し、そこで、これらの出力値や、これ以外に別途下腿や大腿の姿勢などを検出することによって被験者の下肢にかかる負荷や関節にかかるモーメントなどを計測する。このとき、各センサユニット101、102からの反力やモーメントを出力するようにしてもよく、あるいは、足全体の重心位置にかかる反力はモーメントを演算して出力するようにしてもよい。また、この出力部105を介して演算装置106に出力する場合、通信ケーブルを介して出力するようにしてもよく、あるいは、無線によって演算装置106に出力するようにしてもよい。 Then, the reaction force and moment of the XYZ axes corrected in this way are output to the arithmetic unit 106 via the output unit 105, where these output values and other postures such as the lower leg and thigh are separately detected. Thus, the load on the lower limb of the subject and the moment on the joint are measured. At this time, reaction forces and moments from the sensor units 101 and 102 may be output, or reaction forces applied to the position of the center of gravity of the entire foot may be calculated and output. Moreover, when outputting to the arithmetic device 106 via this output part 105, you may make it output via a communication cable, or you may make it output to the arithmetic device 106 by radio | wireless.
 次に、このように構成された移動型床反力計測装置100の使用例について説明する。 Next, a usage example of the movable floor reaction force measuring apparatus 100 configured as described above will be described.
 まず、使用に先立って被験者に履物5を履いてもらい、履物5の裏面に設けられた各センサユニット101、102を水平な状態にして(図7(b))、加速度センサが重力加速度のみを計測し、ジャイロセンサによる傾きを補正するとともに地磁気センサを用いてセンサユニット101、102の方向を検出しておく。このとき、人間の荷重が各センサユニット101、102にかかり、各センサユニット101、102の反力センサ10から絶対座標系におけるXYZ方向の反力やモーメントが出力される。 First, prior to use, the subject wears the footwear 5, and the sensor units 101 and 102 provided on the back surface of the footwear 5 are in a horizontal state (FIG. 7B), and the acceleration sensor detects only gravitational acceleration. It measures and corrects the inclination by the gyro sensor and detects the directions of the sensor units 101 and 102 using the geomagnetic sensor. At this time, a human load is applied to each of the sensor units 101 and 102, and reaction forces and moments in the XYZ directions in the absolute coordinate system are output from the reaction force sensors 10 of the sensor units 101 and 102.
 次に、被験者が歩行しはじめた場合、図7(c)に示すように、足のかかと側を持ち上げる。このとき、かかと側のセンサユニット101は床面に対してθ1X、θ1Y、θ1Zだけ傾斜するとともに、かかとが若干床面に接触している場合は、その床面からの反力やモーメントを受ける。このとき、センサユニット101側の反力センサ10から出力された反力やモーメントは、床面に対して傾いた状態となるため、その反力やモーメントを補正部104を介して床面を基準とした反力やモーメントに補正する。一方、先端側のセンサユニット102については床面と水平な状態となっているため、補正部104を介して補正を行っても鉛直方向の反力の出力値は変化しない。 Next, when the subject starts walking, the heel side of the foot is lifted as shown in FIG. At this time, the sensor unit 101 on the heel side is inclined by θ 1X , θ 1Y , θ 1Z with respect to the floor surface, and when the heel is slightly in contact with the floor surface, the reaction force or moment from the floor surface is Receive. At this time, since the reaction force and moment output from the reaction force sensor 10 on the sensor unit 101 side are inclined with respect to the floor surface, the reaction force and moment are referenced to the floor surface via the correction unit 104. The reaction force and moment are corrected. On the other hand, since the sensor unit 102 on the front end side is in a horizontal state with the floor surface, the output value of the reaction force in the vertical direction does not change even if correction is performed via the correction unit 104.
 次に、被験者がかかと側から着地する場合、かかと側のセンサユニット101はほぼ床面と水平な状態となる一方、先端側のセンサユニット102は床面に対して傾斜した状態となる。このとき、センサユニット102側の反力センサ10から出力された反力やモーメントは、床面に対して傾いた状態となるため、補正部104を介して座標変換を行って反力やモーメントに補正する。一方、かかと側のセンサユニット101は、この状態では床面と水平な状態となっているため、補正部104を介して補正を行っても反力やモーメントの出力値は変化しない。 Next, when the subject lands from the heel side, the sensor unit 101 on the heel side is substantially horizontal with the floor surface, while the sensor unit 102 on the distal end side is inclined with respect to the floor surface. At this time, the reaction force and moment output from the reaction force sensor 10 on the sensor unit 102 side are inclined with respect to the floor surface. Therefore, coordinate conversion is performed via the correction unit 104 to obtain the reaction force and moment. to correct. On the other hand, since the sensor unit 101 on the heel side is in a horizontal state with the floor surface in this state, even if correction is performed via the correction unit 104, the output values of the reaction force and the moment do not change.
 また、このような歩行において、図8に示すように、被験者が床面に沿って足の向きを変えた場合、地磁気センサ108を用いてそのセンサユニット101、102の方向を検出し、すでに算出された反力やモーメントをXYZ方向の反力やモーメントとして補正する。 Further, in such walking, as shown in FIG. 8, when the subject changes the direction of the foot along the floor surface, the direction of the sensor units 101 and 102 is detected using the geomagnetic sensor 108 and already calculated. Corrected reaction force and moment as reaction force and moment in XYZ direction.
 そして、このように補正部104を介して補正された反力やモーメントを出力部105を介して演算装置106に出力し、その出力値や、これ以外に別途、下腿や大腿の姿勢などを検出することによって被験者の下肢にかかる負荷や関節にかかるモーメントなどを計測する。 Then, the reaction force and moment corrected through the correction unit 104 in this way are output to the arithmetic unit 106 through the output unit 105, and the output value and the posture of the lower leg, thigh, etc. are detected separately. To measure the load on the lower limb of the subject and the moment on the joint.
 このように上記実施の形態によれば、足のかかと側と足の先端側にそれぞれ分離して設けられ、前記直交する3軸方向の反力と当該各軸まわりのモーメントを計測するセンサユニット101、102と、各センサユニット101、102の姿勢を検出するジャイロセンサや加速度センサなどの姿勢検出センサ107、および、被験者の足の水平方向における向きを検出する地磁気センサ108とを備えるようにしたもので、歩行時に足の接地状態や足の方向が変化した場合であっても正確に床面から受ける反力やモーメントを計測することができる。しかも、地磁気センサ108によってそれらのセンサユニット101、102自体がどのような方向を向いているかを検出するため、カメラの視野角に限定されることなく、どのような環境下でも足の方向や角度に基づく力やモーメントを計測することができるようになる。 As described above, according to the embodiment, the sensor unit 101 is provided separately on the heel side of the foot and the tip side of the foot, and measures the reaction force in the three orthogonal directions and the moment around each axis. , 102, a posture detection sensor 107 such as a gyro sensor or an acceleration sensor for detecting the posture of each sensor unit 101, 102, and a geomagnetic sensor 108 for detecting the orientation of the subject's foot in the horizontal direction. Thus, even when the ground contact state or the direction of the foot changes during walking, the reaction force and moment received from the floor surface can be accurately measured. Moreover, since the geomagnetic sensor 108 detects the direction in which the sensor units 101 and 102 are facing, the direction and angle of the foot is not limited to the viewing angle of the camera, and under any environment. It becomes possible to measure forces and moments based on.
 なお、本発明は上記実施の形態に限定されることなく種々の態様で実施することができる。 Note that the present invention is not limited to the above-described embodiment, and can be implemented in various modes.
 例えば、上記実施の形態によれば、上板1uと下板1dとの間に3つの反力センサ10を設けるようにしているが、反力センサ10の数については3つに限定されるものではなく、4つ以上設けるようにしてもよい。このとき、各反力センサ10については、荷重のかかりやすい場所に配置するようにしてもよい。 For example, according to the embodiment described above, the three reaction force sensors 10 are provided between the upper plate 1u and the lower plate 1d, but the number of reaction force sensors 10 is limited to three. Instead, four or more may be provided. At this time, each reaction force sensor 10 may be arranged in a place where a load is easily applied.
 また、上記実施の形態では、センサユニット101、102をかかと側と先端側に設けるようにしたが、さらに細かく分割して履物5の裏面に設けるようにしてもよい。 In the above embodiment, the sensor units 101 and 102 are provided on the heel side and the tip side, but may be further divided and provided on the back surface of the footwear 5.
 さらに、上記実施の形態では、履物5の裏面と床面との間にセンサユニット101、102を取り付けるようにしているが、履物5の中敷きの下方にセンサユニット101、102を設けるようにしてもよい。 Further, in the above embodiment, the sensor units 101 and 102 are attached between the back surface and the floor surface of the footwear 5, but the sensor units 101 and 102 may be provided below the insole of the footwear 5. Good.
 加えて、上記実施の形態では、姿勢検出センサ107としてジャイロセンサや加速度センサ、地磁気センサ108などを用いるようにしているが、各センサユニット101、102と床面との角度や位置、方向を計測できるようなものであればどのようなものを用いてもよい。 In addition, in the above embodiment, a gyro sensor, an acceleration sensor, a geomagnetic sensor 108, or the like is used as the posture detection sensor 107, but the angle, position, and direction between each sensor unit 101, 102 and the floor surface are measured. Anything that can be used may be used.
100・・・移動型床反力計測装置
101、102・・・センサユニット
1u・・・上板
1d・・・下板
10・・・反力センサ
11・・・枠部
12~15・・・脚部
16・・・ピン
21~28・・・第一のひずみゲージ
31~38・・・第二のひずみゲージ
41、42・・・ブリッジ回路
103・・・演算部
104・・・補正部
105・・・出力部
106・・・演算装置
107・・・姿勢検出センサ(107a:ジャイロセンサ、107b:加速度センサ)
108・・・地磁気センサ
5・・・履物
DESCRIPTION OF SYMBOLS 100 ... Mobile floor reaction force measuring device 101,102 ... Sensor unit 1u ... Upper plate 1d ... Lower plate 10 ... Reaction force sensor 11 ... Frame parts 12-15 ... Leg 16 ... Pins 21 to 28 ... First strain gauges 31 to 38 ... Second strain gauges 41 and 42 ... Bridge circuit 103 ... Calculation unit 104 ... Correction unit 105 ... Output unit 106 ... Calculating device 107 ... Attitude detection sensor (107a: Gyro sensor, 107b: Acceleration sensor)
108: Geomagnetic sensor 5: Footwear

Claims (2)

  1. 被験者の足に取り付けられ、床面からの反力に基づいて直交する3軸方向の力と当該各軸まわりのモーメントを計測する移動型床反力計測装置において、
    足のかかと側と足の先端側にそれぞれ分離して設けられ、前記直交する3軸方向の反力と当該各軸まわりのモーメントを計測する複数のセンサユニットと、
    当該各センサユニットの姿勢を検出する姿勢検出センサと、
    前記被験者の足の水平方向に対する向きを検出する方位センサと、
    を備えるようにしたことを特徴とする移動型床反力計測装置。
    In a mobile floor reaction force measuring device that is attached to the subject's foot and measures the forces in the three axial directions orthogonal to each other based on the reaction force from the floor surface and the moment about each axis,
    A plurality of sensor units that are separately provided on the heel side of the foot and the tip end side of the foot, and that measure the reaction force in the three orthogonal directions and the moment about each axis;
    An attitude detection sensor for detecting the attitude of each sensor unit;
    An orientation sensor for detecting the orientation of the subject's foot in the horizontal direction;
    A movable floor reaction force measuring device characterized by comprising:
  2. 前記センサユニットが、土踏まず側を頂点とする三角形をなす位置に反力センサを備えて構成されるものである請求項1に記載の移動型床反力計測装置。 The mobile floor reaction force measuring device according to claim 1, wherein the sensor unit includes a reaction force sensor at a position that forms a triangle with the arch as a vertex.
PCT/JP2011/051944 2010-02-02 2011-01-31 Mobile floor reaction force measuring device WO2011096367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010021672A JP4912477B2 (en) 2010-02-02 2010-02-02 Mobile floor reaction force measuring device
JP2010-021672 2010-02-02

Publications (1)

Publication Number Publication Date
WO2011096367A1 true WO2011096367A1 (en) 2011-08-11

Family

ID=44355365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051944 WO2011096367A1 (en) 2010-02-02 2011-01-31 Mobile floor reaction force measuring device

Country Status (2)

Country Link
JP (1) JP4912477B2 (en)
WO (1) WO2011096367A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120890A1 (en) * 2012-10-11 2014-04-12 Fond Istituto Italiano Di Tecnologia ELECTRONIC MEASUREMENT UNIT FOR A POLYMORPHIC DEVICE FOR THE FORCE MEASUREMENT AND POLYMORPHIC DEVICE INCLUDING THE SAME
JP2014534451A (en) * 2011-11-29 2014-12-18 イ、ジン−ウクLEE, Jin−Wook Shoe insole sensor for gait diagnosis and shoe insole substrate in contact therewith
WO2017046586A1 (en) * 2015-09-14 2017-03-23 Pavegen Systems Limited Flooring system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866891B2 (en) * 2011-09-06 2016-02-24 セイコーエプソン株式会社 Force sensor, force detection device, robot hand, and robot
JP5866907B2 (en) * 2011-09-16 2016-02-24 セイコーエプソン株式会社 Force sensor, force detection device, robot hand, robot, and method of manufacturing force sensor
WO2015170585A1 (en) * 2014-05-09 2015-11-12 アルプス電気株式会社 Electronic device
JP7053410B2 (en) 2018-08-30 2022-04-12 トヨタ自動車株式会社 Sensor units, sensor systems, robot hands, robot arms, server devices, arithmetic methods, and programs
JP7099908B2 (en) 2018-08-30 2022-07-12 トヨタ自動車株式会社 Sensor systems, robot hands, sensor system calibration methods, and programs
JP7127513B2 (en) 2018-11-30 2022-08-30 トヨタ自動車株式会社 Sensor system and robot hand
WO2023026337A1 (en) * 2021-08-23 2023-03-02 株式会社 エー・アンド・デイ Weighing device and weighing method using three-axis acceleration sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238336A (en) * 1989-03-10 1990-09-20 Ricoh Co Ltd Attitude sensor
US5396265A (en) * 1990-09-17 1995-03-07 Massachusetts Institute Of Technology Three-dimensional tactile computer input device
JP2003071776A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Floor reaction detector of leg type walking robot
JP2006516053A (en) * 2002-04-10 2006-06-15 フラウエンホーファー−ゲゼルシャフト ツア フェルデルンク デア アンゲワンテン フォルシュンク エー.ファウ. INPUT DEVICE, SYSTEM, AND METHOD FOR CONTROLLING OBJECTS EXPRESSABLE ON A DISPLAY DEVICE
JP2007108079A (en) * 2005-10-14 2007-04-26 Tokai Univ 6-axial-force sensor
JP2007187596A (en) * 2006-01-16 2007-07-26 Keitekku System:Kk Three-axis force sensor
JP2008298486A (en) * 2007-05-29 2008-12-11 Kochi Univ Of Technology System and method for estimating floor reaction force

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400377B2 (en) * 1999-03-10 2003-04-28 富士通株式会社 Foot sensor and humanoid robot having the same
FR2929827A1 (en) * 2008-04-14 2009-10-16 Commissariat Energie Atomique SOLE WITH FORCE SENSORS.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238336A (en) * 1989-03-10 1990-09-20 Ricoh Co Ltd Attitude sensor
US5396265A (en) * 1990-09-17 1995-03-07 Massachusetts Institute Of Technology Three-dimensional tactile computer input device
JP2003071776A (en) * 2001-08-28 2003-03-12 Honda Motor Co Ltd Floor reaction detector of leg type walking robot
JP2006516053A (en) * 2002-04-10 2006-06-15 フラウエンホーファー−ゲゼルシャフト ツア フェルデルンク デア アンゲワンテン フォルシュンク エー.ファウ. INPUT DEVICE, SYSTEM, AND METHOD FOR CONTROLLING OBJECTS EXPRESSABLE ON A DISPLAY DEVICE
JP2007108079A (en) * 2005-10-14 2007-04-26 Tokai Univ 6-axial-force sensor
JP2007187596A (en) * 2006-01-16 2007-07-26 Keitekku System:Kk Three-axis force sensor
JP2008298486A (en) * 2007-05-29 2008-12-11 Kochi Univ Of Technology System and method for estimating floor reaction force

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. LIU ET AL.: "A Wearable Force Plate System to Successively Measure Multi- axial Ground Reaction Force for Gait Analysis", PROCEEDINGS OF THE 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, 2009, pages 836 - 841, XP031641859 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534451A (en) * 2011-11-29 2014-12-18 イ、ジン−ウクLEE, Jin−Wook Shoe insole sensor for gait diagnosis and shoe insole substrate in contact therewith
ITTO20120890A1 (en) * 2012-10-11 2014-04-12 Fond Istituto Italiano Di Tecnologia ELECTRONIC MEASUREMENT UNIT FOR A POLYMORPHIC DEVICE FOR THE FORCE MEASUREMENT AND POLYMORPHIC DEVICE INCLUDING THE SAME
WO2014057479A2 (en) 2012-10-11 2014-04-17 Fondazione Istituto Italiano Di Tecnologia Electronic measurement unit for a polymorphous device for force measurement and polymorphous device including the same
WO2014057479A3 (en) * 2012-10-11 2014-06-12 Fondazione Istituto Italiano Di Tecnologia Electronic measurement unit for a polymorphous device for force measurement and polymorphous device including the same
CN104919291A (en) * 2012-10-11 2015-09-16 意大利学院科技基金会 Electronic measurement unit for a polymorphous device for force measurement and polymorphous device including the same
US9719868B2 (en) 2012-10-11 2017-08-01 Fondazione Instituto Italiano Di Tecnologia Electronic measurement unit for a polymorphous device for force measurement and polymorphous device including the same
WO2017046586A1 (en) * 2015-09-14 2017-03-23 Pavegen Systems Limited Flooring system
US10557460B2 (en) 2015-09-14 2020-02-11 Pavegen Systems Limited Flooring system

Also Published As

Publication number Publication date
JP2011158404A (en) 2011-08-18
JP4912477B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4912477B2 (en) Mobile floor reaction force measuring device
JP7180378B2 (en) Walking state measuring device, walking state measuring system, walking state measuring method, and walking state measuring program
JP5644312B2 (en) Walking state display system
US8315823B2 (en) Force and/or motion measurement system having inertial compensation and method thereof
TWI549655B (en) Joint range of motion measuring apparatus and measuring method thereof
Liedtke et al. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces
Liu et al. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications
JP5496497B2 (en) Mobile floor reaction force measuring device
JP2013072729A (en) Load sensor and walking support device
CN1265763C (en) Multiple axial force platform array and human walking gait information gaining method
JP5959283B2 (en) Module for measuring repulsive force of walking robot and measuring method thereof
Horenstein et al. Validation of magneto-inertial measuring units for measuring hip joint angles
US20170268953A1 (en) System and method for estimating center of gravity of walking rehabilitation robot
CN106108907B (en) Plantar pressure distribution detection device
JP2004329280A (en) Floor reaction force estimation device using sole pressure, and estimation system of leg joint moment and leg muscle tension using the device
CN106840480B (en) Gait measuring platform and measuring method for treadmill
Borghetti et al. Multisensor system for analyzing the thigh movement during walking
KR101878254B1 (en) Smart Shoes System And Method for Realizing The Same
Hu et al. A study on estimation of planar gait kinematics using minimal inertial measurement units and inverse kinematics
Eguchi et al. Accessible ground reaction force estimation using insole force sensors without force plates
JP5427679B2 (en) Floor reaction force measurement system and method
JP2005192744A (en) Sensor for foot sole pressure
Camargo-Junior et al. Influence of center of pressure estimation errors on 3D inverse dynamics solutions during gait at different velocities
JP5590730B2 (en) Weight scale
WO2021084613A1 (en) Gait measurement system, gait measurement method, and program recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739715

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739715

Country of ref document: EP

Kind code of ref document: A1