WO2015170585A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2015170585A1
WO2015170585A1 PCT/JP2015/062118 JP2015062118W WO2015170585A1 WO 2015170585 A1 WO2015170585 A1 WO 2015170585A1 JP 2015062118 W JP2015062118 W JP 2015062118W WO 2015170585 A1 WO2015170585 A1 WO 2015170585A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
angular velocity
electronic device
sensor
velocity sensor
Prior art date
Application number
PCT/JP2015/062118
Other languages
French (fr)
Japanese (ja)
Inventor
山田 幸光
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2016517860A priority Critical patent/JP6268281B2/en
Publication of WO2015170585A1 publication Critical patent/WO2015170585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers

Definitions

  • the present invention relates to an electronic device including an acceleration sensor and an angular velocity sensor.
  • Motion sensors that detect the posture and movement of an object have been used in various industrial fields in the past. It has come to be used a lot. For example, in smartphones, tablet PCs, game console controllers, etc., products that are equipped with IC acceleration sensors and angular velocity sensors that realize various convenient functions according to posture and movement have been developed. It attracts attention.
  • Patent Document 1 describes an electronic device including an acceleration sensor and a gyro sensor (angular velocity sensor) as a motion sensor.
  • an angular velocity sensor that has been made into an IC is often a MEMS (micro-electro-mechanical-systems) device in which a minute vibrating body is formed on a semiconductor chip, and the vibration of the vibrating body always occurs when detecting the angular velocity. Yes. Since it is necessary to supply relatively large electric energy to drive the vibrating body, the angular velocity sensor has a problem that the power consumption is several times to ten times that of the acceleration sensor.
  • MEMS micro-electro-mechanical-systems
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an electronic device that can detect an attitude or the like using an acceleration sensor and an angular velocity sensor while suppressing power consumption.
  • An electronic device is an electronic device equipped with an acceleration sensor and an angular velocity sensor, and whether or not an external force different from gravity is applied to the electronic device based on acceleration detected by the acceleration sensor.
  • the determination unit determines that the external force is not applied and the determination unit determines that the angular velocity is not detected, the determination unit determines that the external force is applied.
  • An angular velocity sensor control unit that controls the angular velocity sensor so as to be in an activated state in which the angular velocity can be detected. According to the electronic device having the above-described configuration, when the determination unit determines that the external force different from gravity is not acting on the electronic device, the angular velocity is set so that the acceleration cannot be detected.
  • the angular velocity sensor Since the sensor is controlled, power consumption in the angular velocity sensor is significantly reduced.
  • the determination unit determines that the external force different from gravity is applied to the electronic device, the angular velocity sensor is in an activated state, and therefore the detection result of the electronic device is used using the detection result of the angular velocity sensor. It becomes possible to accurately detect the posture and the like.
  • the determination unit includes an acceleration in one axial direction detected by the acceleration sensor, or a combined acceleration obtained by combining accelerations in a plurality of axial directions detected by the acceleration sensor and a predetermined threshold value. And determining whether or not the external force is acting on the electronic device based on the comparison result.
  • the determination unit may determine that the external force is acting on the electronic device when the acceleration or the combined acceleration detected by the acceleration sensor exceeds a first acceleration greater than a gravitational acceleration. .
  • the determination unit may be configured to apply the external force to the electronic device when the acceleration or the combined acceleration detected by the acceleration sensor is smaller than a second acceleration smaller than the first acceleration and larger than the gravitational acceleration. If the acceleration or the combined acceleration detected by the acceleration sensor is included in the range from the first acceleration to the second acceleration, the previous determination result may be maintained. According to the above configuration, even when the acceleration or the combined acceleration detected by the acceleration sensor fluctuates slightly with a value close to the first acceleration or the second acceleration, the determination result in the determination unit is frequently obtained. No change. Therefore, a state in which the standby state and the activation state of the acceleration sensor are frequently repeated is less likely to occur.
  • the angular velocity sensor may include a moving body used for detecting the angular velocity.
  • the angular velocity sensor control unit may control the angular velocity sensor so that the moving body moves in the activated state and the moving body stops in the standby state.
  • the electronic device when the determination unit determines that the external force is not acting, the electronic device detects a posture based on an acceleration detection result of the acceleration sensor, and when the external force is acting, When it is determined by the determination unit, it may have a posture detection unit that detects a posture based on the detection result of the angular velocity in the angular velocity sensor.
  • the angular velocity sensor control unit determines in the determination unit that the external force is not acting when the posture detection based on the detection result of the angular velocity in the angular velocity sensor is performed in the posture detection unit.
  • the starting state of the angular velocity sensor may be maintained.
  • the angular velocity sensor is maintained in the activated state regardless of the determination result of the determination unit during the detection of the posture based on the detection result of the angular velocity in the posture detection unit.
  • the detection processing of the posture detection unit is not interrupted by the standby state of the angle sensor.
  • the power consumption can be suppressed by setting the angular velocity sensor to the standby state when the angular velocity detection is unnecessary.
  • FIG. 1 It is a figure which shows the external appearance of the spectacles type electronic device which concerns on this embodiment. It is a figure which shows an example of a structure of the spectacles type electronic device shown in FIG. It is a flowchart for demonstrating the process which controls an angular velocity sensor according to the detection result of an acceleration sensor. It is a flowchart for demonstrating one modification of the process which controls an angular velocity sensor according to the detection result of an acceleration sensor. It is a flowchart for demonstrating another modification of the process which controls an angular velocity sensor according to the detection result of an acceleration sensor.
  • FIG. 1 is a diagram illustrating the appearance of a spectacle-type electronic apparatus according to an embodiment of the invention.
  • the eyeglass-type electronic device shown in FIG. 1 includes a front portion 1 located on the front surface (face) of the head, two temple portions 2 located on the side surface (the temple) of the head, and the front portion 1 and the temple portion. And two connecting portions 3 that connect the two in a foldable manner.
  • the front portion 1 has two rims 4 that hold spectacle lenses and a bridge 5 that connects the two rims 4.
  • the bridge 5 is formed of resin or the like, for example, and a circuit board 6 on which electronic components such as an acceleration sensor 10 and an angular velocity sensor 20 described later are mounted is accommodated in the bridge 5.
  • FIG. 2 is a diagram illustrating an example of an electrical configuration of the eyeglass-type electronic device illustrated in FIG.
  • the eyeglass-type electronic device according to the present embodiment includes an acceleration sensor 10, an angular velocity sensor 20, and a processing unit 30, for example, as shown in FIG.
  • the acceleration sensor 10 is a sensor that detects acceleration acting on the spectacle-type electronic device, and converts, for example, a distance by which a minute mechanism member formed on a semiconductor chip by MEMS technology is displaced against a spring force into an electric signal. By doing so, a signal corresponding to the acceleration is output.
  • the acceleration sensor 10 detects acceleration in a plurality of axial directions (biaxial direction and triaxial direction) orthogonal to each other.
  • the angular velocity sensor 20 is a sensor that detects an angular velocity when the spectacles-type electronic device moves. For example, a minute mechanism member (moving body) formed on a semiconductor chip by MEMS technology is moved, and the mechanism member is rotated by rotation. The detection signal of the angular velocity according to the Coriolis force generated in is output.
  • the acceleration sensor 10 detects angular velocities in a plurality of axial directions (biaxial direction and triaxial direction) orthogonal to each other.
  • the processing unit 30 processes sensor signals respectively output as sensing results from the acceleration sensor 10 and the angular velocity sensor 20, and detects the posture, movement, vibration, and the like of the eyeglass-type electronic device.
  • the processing unit 30 includes, for example, a microcomputer and a dedicated logic circuit.
  • the processing unit 30 includes a sensor signal processing unit 31, a determination unit 32, and an angular velocity sensor control unit 33 as functional processing blocks.
  • the sensor signal processing unit 31 detects the posture, movement, vibration, and the like of the eyeglass-type electronic device based on the acceleration data acquired by the acceleration sensor 10 and the angular velocity data acquired by the angular velocity sensor 20. For example, when the sensor signal processing unit 31 determines in the determination unit 32 described later that no external force is acting on the spectacles-type electronic device, the sensor signal processing unit 31 determines the posture of the spectacles-type electronic device based on the acceleration data acquired by the acceleration sensor 10. When the determination unit 32 determines that an external force is acting on the glasses-type electronic device, the posture of the glasses-type electronic device is detected based on the angular velocity data acquired by the angular velocity sensor 20.
  • the sensor signal processing unit 31 is an example of a posture detection unit in the present invention.
  • the determination unit 32 determines whether or not an external force different from gravity is acting on the spectacle-type electronic device based on the acceleration data acquired by the acceleration sensor 10. For example, the determination unit 32 compares the combined acceleration obtained by combining the accelerations in the plurality of axial directions detected by the acceleration sensor 10 with a predetermined threshold value, and based on the comparison result, the spectacle-type electronic device has a function other than gravity. It is determined whether or not an external force is acting.
  • the angular velocity sensor control unit 33 When the determination unit 32 determines that the external force is not applied to the spectacles type electronic device, the angular velocity sensor control unit 33 is in a standby state where the angular velocity cannot be detected, and the external force is applied to the spectacles type electronic device.
  • the angular velocity sensor 20 When it is determined by the determination unit 32, the angular velocity sensor 20 is controlled so as to be in an activated state in which the angular velocity can be detected. That is, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the moving body used for angular velocity detection is stationary when the angular velocity sensor 20 is in the standby state, and when moving the angular velocity sensor 20 into the activated state, Controls the angular velocity sensor 20 so as to perform a predetermined motion. When the moving body is stationary, the power consumption of the angular velocity sensor 20 is significantly reduced.
  • the sensor signal processing unit 31 of the processing unit 30 can detect the posture of the eyeglass-type electronic device based on the acceleration data acquired by the acceleration sensor 10, and this posture is the direction of the gravitational acceleration indicated by the acceleration data. If a component other than gravitational acceleration is included in the acceleration data, it is difficult to detect a correct posture based only on the acceleration data. That is, when the acceleration data includes a component other than gravitational acceleration, it is necessary to calculate the rotation angle based on the angular velocity data acquired by the angular velocity sensor 20 and detect the posture from this rotation angle. . In other words, if the external force different from gravity is not acting on the spectacle-type electronic device (quasi-static state), the spectacle-type electronic device can be positioned without using the angular velocity sensor 20. It means that it can be detected. Therefore, in the eyeglass-type electronic device according to the present embodiment, when the determination unit 32 determines that no external force is acting on the eyeglass-type electronic device, the angular velocity sensor 20 is set to the standby state.
  • FIG. 3 is a flowchart for explaining processing for controlling the angular velocity sensor 20 in accordance with the detection result of the acceleration sensor 10.
  • the processing shown in FIG. 3 is repeatedly executed at regular intervals, for example.
  • the determination unit 32 acquires acceleration data A in the acceleration sensor 10 (ST10).
  • the determination unit 32 calculates the acceleration data A as the magnitude of the combined vector when combining the plurality of axial acceleration data acquired by the acceleration sensor 10 as a vector.
  • the determination unit 32 compares the acceleration data A with a predetermined threshold value TH (ST20).
  • This threshold value TH is set to a value slightly larger than the gravitational acceleration, for example.
  • the angular velocity sensor control unit 33 activates the angular velocity sensor 20 (ST30). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that an internal moving body is driven to perform a predetermined movement.
  • the angular velocity sensor control unit 33 sets the angular velocity sensor 20 in a standby state (ST40). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the internal moving body stops. When the moving body is stationary, the power consumption of the angular velocity sensor 20 is significantly reduced.
  • the eyeglass-type electronic device As described above, according to the eyeglass-type electronic device according to the present embodiment, whether or not an external force different from gravity is applied to the eyeglass-type electronic device is determined based on the acceleration detected by the acceleration sensor 10.
  • the angular velocity sensor 20 enters a standby state, and when it is determined that an external force is acting, the angular velocity sensor 20 is activated.
  • the angular velocity sensor 20 is in the standby state. Compared with a conventional electronic device in which the sensor 20 is always activated, power consumption can be significantly reduced.
  • the angular velocity sensor 20 can be activated and the rotation angle or the like can be calculated from the detection signal of the angular velocity sensor 20. Therefore, it is possible to accurately detect the posture of the eyeglass-type electronic device.
  • FIG. 4 is a flowchart for explaining a modification of the process for controlling the angular velocity sensor 20 according to the detection result of the acceleration sensor 10.
  • the acceleration data A varies with a value close to the threshold value TH.
  • the determination result of the determination unit 32 changes frequently. Therefore, in the process shown in FIG. 4, it is determined whether or not an external force is acting on the eyeglass-type electronic device based on the two threshold values TH1 and TH2.
  • the threshold values TH1 and TH2 are both larger than the gravitational acceleration, and the threshold value TH1 is larger than the threshold value TH2 (TH1> TH2).
  • the determination unit 32 acquires acceleration data A in the acceleration sensor 10 (ST10).
  • the acceleration data A is calculated as the magnitude of the combined vector.
  • the determination unit 32 compares the acceleration data A with the threshold value TH1 (ST15). If determination unit 32 determines that acceleration data A is greater than threshold value TH1, angular velocity sensor control unit 33 activates angular velocity sensor 20 (ST30). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the moving body performs a predetermined movement.
  • the determination unit 32 determines that the acceleration data A is smaller than the threshold value TH1
  • the determination unit 32 compares the acceleration data A with the threshold value TH2 (ST25). If the acceleration data A is smaller than the threshold value TH2, the angular velocity sensor control unit 33 puts the angular velocity sensor 20 in a standby state (ST40). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the internal moving body stops. When the moving body is stationary, the power consumption of the angular velocity sensor 20 is significantly reduced.
  • the angular velocity sensor control unit 33 maintains the state of the angular velocity sensor 20. That is, the angular velocity sensor control unit 33 keeps the angular velocity sensor 20 in the standby state if the angular velocity sensor 20 is in the standby state, and keeps the angular velocity sensor 20 in the activated state if the angular velocity sensor 20 is in the activated state.
  • the acceleration data A fluctuates near the thresholds TH1 and TH2 by determining whether or not an external force is acting on the glasses-type electronic device based on the two thresholds TH1 and TH2.
  • FIG. 5 is a flowchart for explaining another modification of the process of controlling the angular velocity sensor according to the detection result of the acceleration sensor. 3 and 4 described above, when the determination unit 32 determines that the acceleration data A is smaller than the threshold value TH (threshold value TH2), the angular velocity sensor control unit 33 causes the angular velocity sensor 20 to be in the standby state. However, if the angular velocity sensor 20 is in a standby state while the sensor signal processing unit 31 is detecting the posture or the like based on the angular velocity data, the detection processing of the sensor signal processing unit 31 is before the processing result is obtained. There is a possibility of being canceled. Therefore, in the process shown in FIG.
  • step ST35 for determining the use state of the angular velocity data is inserted between step ST25 and step ST40 in the process shown in FIG.
  • the angular velocity sensor control unit 33 determines that the angular velocity data A is smaller than the threshold value TH2 in the determination unit 32 (external force acts on the spectacle-type electronic device). If it is determined that the angular velocity sensor 20 is not in operation, the angular velocity sensor 20 is maintained in the activated state. Thereby, since the angular velocity sensor 20 is maintained in the activated state until the sensor signal processing unit 31 completes the processing using the angular velocity data, it is possible to prevent the processing of the sensor signal processing unit 31 from being stopped unnecessarily.
  • the present invention is not limited to this.
  • only one axial acceleration may be detected by the acceleration sensor.
  • the determination unit may determine whether or not an external force is acting on the electronic device based on a result of comparing the acceleration in one axial direction with a predetermined threshold value.
  • an eyeglass-type electronic device is taken as an example, but the present invention is not limited to this. That is, the present invention can be widely applied to various electronic devices (a mobile phone, a smartphone, a tablet, a notebook computer, a portable game machine, a controller for a game machine, a wearable device) provided with an acceleration sensor and an angular velocity sensor.

Abstract

[Problem] To provide an electronic device that can detect attitude and the like using an acceleration sensor and an angular rate sensor while keeping power consumption in check. [Solution] A determination is made as to whether an external force other than gravity is acting on a spectacles-type electronic device on the basis of the degree of acceleration detected by an acceleration sensor (10). If it is determined that no external force is acting, an angular rate sensor (20) enters a standby state, and if it is determined that an external force is acting, the angular rate sensor (20) enters an active state. Due to this configuration, if the spectacles-type electronic device has entered a quasi-suspended state and detection of the attitude and the like of the spectacles-type electronic device on the basis of acceleration is possible, the angular rate sensor (20) enters a standby state, so the amount of power consumed can be greatly reduced compared to an electronic device in which the angular rate sensor (20) is always in an active state.

Description

電子機器Electronics
 本発明は、加速度センサと角速度センサを備えた電子機器に関するものである。 The present invention relates to an electronic device including an acceleration sensor and an angular velocity sensor.
 物体の姿勢や動きを検出するモーションセンサは、従来より様々な産業分野で利用されているが、センサを構成する電子部品の低価格化や高性能化が進んだことによって、近年では家電機器などにも多く利用されるようになってきている。例えばスマートフォンやタブレットPC、ゲーム機用コントローラなどの中には、IC化された加速度センサや角速度センサを搭載し、姿勢や動きに応じて種々の便利な機能を実現する製品が開発されており、注目を集めている。 Motion sensors that detect the posture and movement of an object have been used in various industrial fields in the past. It has come to be used a lot. For example, in smartphones, tablet PCs, game console controllers, etc., products that are equipped with IC acceleration sensors and angular velocity sensors that realize various convenient functions according to posture and movement have been developed. It attracts attention.
 下記の特許文献1には、モーションセンサとして加速度センサとジャイロセンサ(角速度センサ)を備えた電子機器が記載されている。 The following Patent Document 1 describes an electronic device including an acceleration sensor and a gyro sensor (angular velocity sensor) as a motion sensor.
特開2013-122669号公報JP 2013-122669 A
 ところで、IC化された角速度センサは、微小な振動体を半導体チップ上に形成したMEMS(micro electro mechanical systems)デバイスであることが多く、角速度を検出する際には常に振動体の振動が生じている。振動体の駆動には比較的大きな電気エネルギーを供給する必要があるため、角速度センサは加速度センサに比べて数倍~10倍程度も消費電力が大きいという問題がある。 By the way, an angular velocity sensor that has been made into an IC is often a MEMS (micro-electro-mechanical-systems) device in which a minute vibrating body is formed on a semiconductor chip, and the vibration of the vibrating body always occurs when detecting the angular velocity. Yes. Since it is necessary to supply relatively large electric energy to drive the vibrating body, the angular velocity sensor has a problem that the power consumption is several times to ten times that of the acceleration sensor.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、消費電力を抑制しつつ加速度センサと角速度センサを用いて姿勢等を検出できる電子機器を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electronic device that can detect an attitude or the like using an acceleration sensor and an angular velocity sensor while suppressing power consumption.
 本発明に係る電子機器は、加速度センサと角速度センサを搭載した電子機器であって、前記加速度センサにおいて検出される加速度に基づいて、前記電子機器に重力と異なる外力が作用しているか否かを判定する判定部と、前記外力が作用していないと前記判定部において判定される場合、角速度の検出が不能なスタンバイ状態となり、前記外力が作用していると前記判定部において判定される場合、前記角速度の検出が可能な起動状態となるように前記角速度センサを制御する角速度センサ制御部とを有する。
 上記の構成を有する電子機器によれば、前記判定部において前記電子機器に重力と異なる前記外力が作用していないと判定される場合、前記加速度の検出が不能なスタンバイ状態となるように前記角速度センサが制御されるため、前記角速度センサにおける消費電力が大幅に少なくなる。また、前記判定部において前記電子機器に重力と異なる前記外力が作用していると判定される場合は、前記角速度センサが起動状態となるため、前記角速度センサの検出結果を用いて前記電子機器の姿勢等を正確に検出することが可能となる。
An electronic device according to the present invention is an electronic device equipped with an acceleration sensor and an angular velocity sensor, and whether or not an external force different from gravity is applied to the electronic device based on acceleration detected by the acceleration sensor. When the determination unit determines that the external force is not applied and the determination unit determines that the angular velocity is not detected, the determination unit determines that the external force is applied. An angular velocity sensor control unit that controls the angular velocity sensor so as to be in an activated state in which the angular velocity can be detected.
According to the electronic device having the above-described configuration, when the determination unit determines that the external force different from gravity is not acting on the electronic device, the angular velocity is set so that the acceleration cannot be detected. Since the sensor is controlled, power consumption in the angular velocity sensor is significantly reduced. In addition, when the determination unit determines that the external force different from gravity is applied to the electronic device, the angular velocity sensor is in an activated state, and therefore the detection result of the electronic device is used using the detection result of the angular velocity sensor. It becomes possible to accurately detect the posture and the like.
 好適に、前記判定部は、前記加速度センサにおいて検出される1つの軸方向での加速度、若しくは、前記加速度センサにおいて検出される複数の軸方向での加速度を合成した合成加速度と所定のしきい値とを比較し、当該比較結果に基づいて前記電子機器に前記外力が作用しているか否かを判定してよい。 Preferably, the determination unit includes an acceleration in one axial direction detected by the acceleration sensor, or a combined acceleration obtained by combining accelerations in a plurality of axial directions detected by the acceleration sensor and a predetermined threshold value. And determining whether or not the external force is acting on the electronic device based on the comparison result.
 好適に、前記判定部は、前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が、重力加速度より大きい第1加速度を超える場合、前記電子機器に前記外力が作用していると判定してよい。
 また、前記判定部は、前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が、前記第1加速度より小さく前記重力加速度より大きい第2加速度に比べて小さい場合、前記電子機器に前記外力が作用していないと判定し、前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が、前記第1加速度から前記第2加速度までの範囲に含まれる場合、直前の判定結果を維持してよい。
 上記の構成によれば、前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が前記第1加速度若しくは前記第2加速度に近い値で微小に変動する場合でも、前記判定部における判定結果が頻繁に変化しなくなる。そのため、前記加速度センサの前記スタンバイ状態と前記起動状態とが頻繁に繰り返される状態が生じ難くなる。
Preferably, the determination unit may determine that the external force is acting on the electronic device when the acceleration or the combined acceleration detected by the acceleration sensor exceeds a first acceleration greater than a gravitational acceleration. .
The determination unit may be configured to apply the external force to the electronic device when the acceleration or the combined acceleration detected by the acceleration sensor is smaller than a second acceleration smaller than the first acceleration and larger than the gravitational acceleration. If the acceleration or the combined acceleration detected by the acceleration sensor is included in the range from the first acceleration to the second acceleration, the previous determination result may be maintained.
According to the above configuration, even when the acceleration or the combined acceleration detected by the acceleration sensor fluctuates slightly with a value close to the first acceleration or the second acceleration, the determination result in the determination unit is frequently obtained. No change. Therefore, a state in which the standby state and the activation state of the acceleration sensor are frequently repeated is less likely to occur.
 好適に、前記角速度センサは、角速度の検出に用いられる運動体を含んでよい。前記角速度センサ制御部は、前記起動状態において前記運動体が運動し、前記スタンバイ状態において前記運動体が静止するように前記角速度センサを制御してよい。 Preferably, the angular velocity sensor may include a moving body used for detecting the angular velocity. The angular velocity sensor control unit may control the angular velocity sensor so that the moving body moves in the activated state and the moving body stops in the standby state.
 好適に、上記電子機器は、前記外力が作用していないと前記判定部において判定される場合、前記加速度センサにおける加速度の検出結果に基づいて姿勢を検出し、前記外力が作用していると前記判定部において判定される場合、前記角速度センサにおける角速度の検出結果に基づいて姿勢を検出する姿勢検出部を有してよい。 Preferably, in the electronic device, when the determination unit determines that the external force is not acting, the electronic device detects a posture based on an acceleration detection result of the acceleration sensor, and when the external force is acting, When it is determined by the determination unit, it may have a posture detection unit that detects a posture based on the detection result of the angular velocity in the angular velocity sensor.
 好適に、前記角速度センサ制御部は、前記角速度センサにおける角速度の検出結果に基づいた姿勢の検出が前記姿勢検出部において行われているときに、前記外力が作用していないと前記判定部において判定された場合は、前記角速度センサの前記起動状態を維持してよい。
 上記の構成によれば、前記姿勢検出部において角速度の検出結果に基づいた姿勢の検出が行われている途中では、前記判定部の判定結果に関わらず前記角速度センサが起動状態に維持されるため、前記姿勢検出部の検出処理が前記角度センサのスタンバイ状態によって中断されなくなる。
Preferably, the angular velocity sensor control unit determines in the determination unit that the external force is not acting when the posture detection based on the detection result of the angular velocity in the angular velocity sensor is performed in the posture detection unit. When it is done, the starting state of the angular velocity sensor may be maintained.
According to the above configuration, the angular velocity sensor is maintained in the activated state regardless of the determination result of the determination unit during the detection of the posture based on the detection result of the angular velocity in the posture detection unit. The detection processing of the posture detection unit is not interrupted by the standby state of the angle sensor.
 本発明によれば、加速度センサの検出結果に応じて、角速度の検出が不要な場合に角速度センサをスタンバイ状態とすることにより、消費電力を抑制することができる。 According to the present invention, according to the detection result of the acceleration sensor, the power consumption can be suppressed by setting the angular velocity sensor to the standby state when the angular velocity detection is unnecessary.
本実施形態に係る眼鏡型の電子機器の外観を例示す図である。It is a figure which shows the external appearance of the spectacles type electronic device which concerns on this embodiment. 図1に示す眼鏡型電子機器の構成の一例を示す図である。It is a figure which shows an example of a structure of the spectacles type electronic device shown in FIG. 加速度センサの検出結果に応じて角速度センサを制御する処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process which controls an angular velocity sensor according to the detection result of an acceleration sensor. 加速度センサの検出結果に応じて角速度センサを制御する処理の一変形例を説明するためのフローチャートである。It is a flowchart for demonstrating one modification of the process which controls an angular velocity sensor according to the detection result of an acceleration sensor. 加速度センサの検出結果に応じて角速度センサを制御する処理の他の一変形例を説明するためのフローチャートである。It is a flowchart for demonstrating another modification of the process which controls an angular velocity sensor according to the detection result of an acceleration sensor.
 以下、図面を参照しながら本発明の実施形態に係る電子機器について説明する。
 図1は、本発明の実施形態に係る眼鏡型の電子機器の外観を例示する図である。図1に示す眼鏡型電子機器は、頭部の前面(顔)に位置するフロント部1と、頭部の側面(こめかみ)に位置する2本のテンプル部2と、このフロント部1及びテンプル部2を折り畳み自在に連結する2つの連結部3とを有する。
Hereinafter, electronic devices according to embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating the appearance of a spectacle-type electronic apparatus according to an embodiment of the invention. The eyeglass-type electronic device shown in FIG. 1 includes a front portion 1 located on the front surface (face) of the head, two temple portions 2 located on the side surface (the temple) of the head, and the front portion 1 and the temple portion. And two connecting portions 3 that connect the two in a foldable manner.
 フロント部1は、眼鏡レンズを保持する2つのリム4と、当該2つのリム4を繋げるブリッジ5を有する。ブリッジ5は、例えば樹脂等で形成されており、ブリッジ5の内部には、後述する加速度センサ10や角速度センサ20等の電子部品が実装された回路基板6が収容される。 The front portion 1 has two rims 4 that hold spectacle lenses and a bridge 5 that connects the two rims 4. The bridge 5 is formed of resin or the like, for example, and a circuit board 6 on which electronic components such as an acceleration sensor 10 and an angular velocity sensor 20 described later are mounted is accommodated in the bridge 5.
 図2は、図1に示す眼鏡型電子機器の電気的な構成の一例を示す図である。
 本実施形態に係る眼鏡型電子機器は、例えば図2において示すように、加速度センサ10と、角速度センサ20と、処理部30を有する。
FIG. 2 is a diagram illustrating an example of an electrical configuration of the eyeglass-type electronic device illustrated in FIG.
The eyeglass-type electronic device according to the present embodiment includes an acceleration sensor 10, an angular velocity sensor 20, and a processing unit 30, for example, as shown in FIG.
 加速度センサ10は、眼鏡型電子機器に作用する加速度を検出するセンサであり、例えばMEMS技術によって半導体チップ上に形成された微小な機構部材がバネ力に抗して変位する距離を電気信号へ変換することにより、加速度に応じた信号を出力する。加速度センサ10は、例えば、互いに直交する複数の軸方向(2軸方向,3軸方向)における加速度をそれぞれ検出する。 The acceleration sensor 10 is a sensor that detects acceleration acting on the spectacle-type electronic device, and converts, for example, a distance by which a minute mechanism member formed on a semiconductor chip by MEMS technology is displaced against a spring force into an electric signal. By doing so, a signal corresponding to the acceleration is output. For example, the acceleration sensor 10 detects acceleration in a plurality of axial directions (biaxial direction and triaxial direction) orthogonal to each other.
 角速度センサ20は、眼鏡型電子機器が運動する際の角速度を検出するセンサであり、例えばMEMS技術によって半導体チップ上に形成された微小な機構部材(運動体)を運動させ、回転運動によって機構部材に生じるコリオリ力に応じた角速度の検出信号を出力する。加速度センサ10は、例えば、互いに直交する複数の軸方向(2軸方向,3軸方向)における角速度をそれぞれ検出する。 The angular velocity sensor 20 is a sensor that detects an angular velocity when the spectacles-type electronic device moves. For example, a minute mechanism member (moving body) formed on a semiconductor chip by MEMS technology is moved, and the mechanism member is rotated by rotation. The detection signal of the angular velocity according to the Coriolis force generated in is output. For example, the acceleration sensor 10 detects angular velocities in a plurality of axial directions (biaxial direction and triaxial direction) orthogonal to each other.
 処理部30は、加速度センサ10及び角速度センサ20からセンシング結果としてそれぞれ出力されるセンサ信号を処理し、眼鏡型電子機器の姿勢や動き、振動などを検出する。処理部30は、例えばマイクロコンピュータや専用のロジック回路などを含んで構成される。 The processing unit 30 processes sensor signals respectively output as sensing results from the acceleration sensor 10 and the angular velocity sensor 20, and detects the posture, movement, vibration, and the like of the eyeglass-type electronic device. The processing unit 30 includes, for example, a microcomputer and a dedicated logic circuit.
 処理部30は、機能的な処理ブロックとして、センサ信号処理部31と、判定部32と、角速度センサ制御部33を有する。 The processing unit 30 includes a sensor signal processing unit 31, a determination unit 32, and an angular velocity sensor control unit 33 as functional processing blocks.
 センサ信号処理部31は、加速度センサ10において取得される加速度データ、及び、角速度センサ20において取得される角速度データに基づいて、眼鏡型電子機器の姿勢や動き、振動などを検出する。例えば、センサ信号処理部31は、後述する判定部32において眼鏡型電子機器に外力が作用していないと判定される場合、加速度センサ10において取得される加速度データに基づいて眼鏡型電子機器の姿勢を検出し、判定部32において眼鏡型電子機器に外力が作用していると判定される場合は、角速度センサ20において取得される角速度データに基づいて眼鏡型電子機器の姿勢を検出する。
 なおセンサ信号処理部31は、本発明における姿勢検出部の一例である。
The sensor signal processing unit 31 detects the posture, movement, vibration, and the like of the eyeglass-type electronic device based on the acceleration data acquired by the acceleration sensor 10 and the angular velocity data acquired by the angular velocity sensor 20. For example, when the sensor signal processing unit 31 determines in the determination unit 32 described later that no external force is acting on the spectacles-type electronic device, the sensor signal processing unit 31 determines the posture of the spectacles-type electronic device based on the acceleration data acquired by the acceleration sensor 10. When the determination unit 32 determines that an external force is acting on the glasses-type electronic device, the posture of the glasses-type electronic device is detected based on the angular velocity data acquired by the angular velocity sensor 20.
The sensor signal processing unit 31 is an example of a posture detection unit in the present invention.
 判定部32は、加速度センサ10において取得される加速度データに基づいて、眼鏡型電子機器に重力と異なる外力が作用しているか否かを判定する。例えば判定部32は、加速度センサ10において検出される複数の軸方向での加速度を合成した合成加速度と所定のしきい値とを比較し、この比較結果に基づいて眼鏡型電子機器に重力以外の外力が作用しているか否かを判定する。 The determination unit 32 determines whether or not an external force different from gravity is acting on the spectacle-type electronic device based on the acceleration data acquired by the acceleration sensor 10. For example, the determination unit 32 compares the combined acceleration obtained by combining the accelerations in the plurality of axial directions detected by the acceleration sensor 10 with a predetermined threshold value, and based on the comparison result, the spectacle-type electronic device has a function other than gravity. It is determined whether or not an external force is acting.
 角速度センサ制御部33は、眼鏡型電子機器に外力が作用していないと判定部32において判定される場合、角速度の検出が不能なスタンバイ状態となり、眼鏡型電子機器に外力が作用していると判定部32において判定される場合、角速度の検出が可能な起動状態となるように角速度センサ20を制御する。すなわち、角速度センサ制御部33は、角速度センサ20をスタンバイ状態とする場合、角速度検出に用いられる運動体が静止するように角速度センサ20を制御し、角速度センサ20を起動状態とする場合、運動体が所定の運動をするように角速度センサ20を制御する。運動体が静止すると、角速度センサ20の消費電力は大幅に低下する。 When the determination unit 32 determines that the external force is not applied to the spectacles type electronic device, the angular velocity sensor control unit 33 is in a standby state where the angular velocity cannot be detected, and the external force is applied to the spectacles type electronic device. When it is determined by the determination unit 32, the angular velocity sensor 20 is controlled so as to be in an activated state in which the angular velocity can be detected. That is, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the moving body used for angular velocity detection is stationary when the angular velocity sensor 20 is in the standby state, and when moving the angular velocity sensor 20 into the activated state, Controls the angular velocity sensor 20 so as to perform a predetermined motion. When the moving body is stationary, the power consumption of the angular velocity sensor 20 is significantly reduced.
 ここで、上述した構成を有する本実施形態に係る眼鏡型電子機器の動作を説明する。 Here, the operation of the eyeglass-type electronic apparatus according to the present embodiment having the above-described configuration will be described.
 処理部30のセンサ信号処理部31は、加速度センサ10において取得される加速度データに基づいて眼鏡型電子機器の姿勢を検出することができるが、この姿勢は、加速度データによって示される重力加速度の方向に基づいて検出されるものであり、加速度データに重力加速度以外の成分が含まれている場合は、加速度データのみに基づいて正しい姿勢を検出することが困難になる。すなわち、加速度データに重力加速度以外の成分が含まれている場合には、角速度センサ20において取得される角速度データに基づいて回転角度を算出し、この回転角度から姿勢を検出することが必要となる。このことは、逆に言えば、眼鏡型電子機に重力と異なる外力が作用してない状態(準静止状態)であれば、角速度センサ20を使用しなくても、眼鏡型電子機器の姿勢を検出できることを意味する。従って、本実施形態に係る眼鏡型電子機器では、判定部32において眼鏡型電子機器に外力が作用していないと判定した場合、角速度センサ20をスタンバイ状態とする。 The sensor signal processing unit 31 of the processing unit 30 can detect the posture of the eyeglass-type electronic device based on the acceleration data acquired by the acceleration sensor 10, and this posture is the direction of the gravitational acceleration indicated by the acceleration data. If a component other than gravitational acceleration is included in the acceleration data, it is difficult to detect a correct posture based only on the acceleration data. That is, when the acceleration data includes a component other than gravitational acceleration, it is necessary to calculate the rotation angle based on the angular velocity data acquired by the angular velocity sensor 20 and detect the posture from this rotation angle. . In other words, if the external force different from gravity is not acting on the spectacle-type electronic device (quasi-static state), the spectacle-type electronic device can be positioned without using the angular velocity sensor 20. It means that it can be detected. Therefore, in the eyeglass-type electronic device according to the present embodiment, when the determination unit 32 determines that no external force is acting on the eyeglass-type electronic device, the angular velocity sensor 20 is set to the standby state.
 図3は、加速度センサ10の検出結果に応じて角速度センサ20を制御する処理を説明するためのフローチャートである。この図3に示す処理は、例えば一定時間ごとに反復して実行される。
 まず判定部32は、加速度センサ10において加速度データAを取得する(ST10)。例えば判定部32は、加速度センサ10において取得される複数の軸方向の加速度データをベクトルとして合成した場合の合成ベクトルの大きさとして、加速度データAを算出する。
FIG. 3 is a flowchart for explaining processing for controlling the angular velocity sensor 20 in accordance with the detection result of the acceleration sensor 10. The processing shown in FIG. 3 is repeatedly executed at regular intervals, for example.
First, the determination unit 32 acquires acceleration data A in the acceleration sensor 10 (ST10). For example, the determination unit 32 calculates the acceleration data A as the magnitude of the combined vector when combining the plurality of axial acceleration data acquired by the acceleration sensor 10 as a vector.
 次に判定部32は、この加速度データAを所定のしきい値THと比較する(ST20)。このしきい値THは、例えば重力加速度より若干大きい値に設定される。 Next, the determination unit 32 compares the acceleration data A with a predetermined threshold value TH (ST20). This threshold value TH is set to a value slightly larger than the gravitational acceleration, for example.
 加速度データAがしきい値THより大きいと判定部32が判定した場合、角速度センサ制御部33は、角速度センサ20を起動状態にする(ST30)。例えば角速度センサ制御部33は、内部の運動体が駆動されて所定の運動をするように角速度センサ20を制御する。 When the determination unit 32 determines that the acceleration data A is greater than the threshold value TH, the angular velocity sensor control unit 33 activates the angular velocity sensor 20 (ST30). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that an internal moving body is driven to perform a predetermined movement.
 他方、加速度データAがしきい値THより小さいと判定部32が判定した場合、角速度センサ制御部33は、角速度センサ20をスタンバイ状態にする(ST40)。例えば角速度センサ制御部33は、内部の運動体が静止するように角速度センサ20を制御する。運動体が静止することにより、角速度センサ20の消費電力は大幅に小さくなる。 On the other hand, when the determination unit 32 determines that the acceleration data A is smaller than the threshold value TH, the angular velocity sensor control unit 33 sets the angular velocity sensor 20 in a standby state (ST40). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the internal moving body stops. When the moving body is stationary, the power consumption of the angular velocity sensor 20 is significantly reduced.
 以上説明したように、本実施形態に係る眼鏡型電子機器によれば、加速度センサ10において検出される加速度に基づいて、眼鏡型電子機器に重力と異なる外力が作用しているか否かが判定される。そして、外力が作用していないと判定された場合に角速度センサ20がスタンバイ状態となり、外力が作用していると判定された場合に角速度センサ20が起動状態となる。
 これにより、眼鏡型電子機器が準静止状態となっている場合であって、加速度に基づいた眼鏡型電子機器の姿勢等の検出が可能な場合は、角速度センサ20がスタンバイ状態となるため、角速度センサ20が常に起動状態となっている従来の電子機器に比べて、消費電力を大幅に少なくすることができる。また、眼鏡型電子機器に外力が作用している場合、すなわち眼鏡型電子機器が動いている場合には、角速度センサ20を起動状態にして、角速度センサ20の検出信号から回転角度等を算出できるため、眼鏡型電子機器の姿勢等を正確に検出することできる。
As described above, according to the eyeglass-type electronic device according to the present embodiment, whether or not an external force different from gravity is applied to the eyeglass-type electronic device is determined based on the acceleration detected by the acceleration sensor 10. The When it is determined that no external force is acting, the angular velocity sensor 20 enters a standby state, and when it is determined that an external force is acting, the angular velocity sensor 20 is activated.
As a result, when the spectacles-type electronic device is in a quasi-static state and the posture of the spectacles-type electronic device can be detected based on the acceleration, the angular velocity sensor 20 is in the standby state. Compared with a conventional electronic device in which the sensor 20 is always activated, power consumption can be significantly reduced. Further, when an external force is applied to the spectacle-type electronic device, that is, when the spectacle-type electronic device is moving, the angular velocity sensor 20 can be activated and the rotation angle or the like can be calculated from the detection signal of the angular velocity sensor 20. Therefore, it is possible to accurately detect the posture of the eyeglass-type electronic device.
 次に、上述した実施形態の変形例について、図4及び図5を参照して説明する。 Next, a modification of the above-described embodiment will be described with reference to FIGS.
 図4は、加速度センサ10の検出結果に応じて角速度センサ20を制御する処理の一変形例を説明するためのフローチャートである。
 図3に示す処理では、1つのしきい値THのみに基づいて眼鏡型電子機器に外力が作用しているか否かが判定されるため、加速度データAがしきい値THに近い値で変動する場合、判定部32の判定結果が頻繁に変化する。そこで、図4に示す処理では、2つのしきい値TH1,TH2に基づいて眼鏡型電子機器に外力が作用しているか否かが判定される。しきい値TH1,TH2は、何れも重力加速度より大きい値であり、しきい値TH1がしきい値TH2に比べて大きい(TH1>TH2)。
FIG. 4 is a flowchart for explaining a modification of the process for controlling the angular velocity sensor 20 according to the detection result of the acceleration sensor 10.
In the process shown in FIG. 3, since it is determined whether or not an external force is acting on the spectacles-type electronic device based on only one threshold value TH, the acceleration data A varies with a value close to the threshold value TH. In this case, the determination result of the determination unit 32 changes frequently. Therefore, in the process shown in FIG. 4, it is determined whether or not an external force is acting on the eyeglass-type electronic device based on the two threshold values TH1 and TH2. The threshold values TH1 and TH2 are both larger than the gravitational acceleration, and the threshold value TH1 is larger than the threshold value TH2 (TH1> TH2).
 まず判定部32は、加速度センサ10において加速度データAを取得する(ST10)。加速度センサ10において複数の軸方向の加速度データが取得される場合には、その合成ベクトルの大きさとして、加速度データAを算出する。 First, the determination unit 32 acquires acceleration data A in the acceleration sensor 10 (ST10). When the acceleration sensor 10 acquires acceleration data in a plurality of axial directions, the acceleration data A is calculated as the magnitude of the combined vector.
 次に判定部32は、この加速度データAをしきい値TH1と比較する(ST15)。加速度データAがしきい値TH1より大きいと判定部32が判定した場合、角速度センサ制御部33は、角速度センサ20を起動状態にする(ST30)。例えば角速度センサ制御部33は、運動体が所定の運動をするように角速度センサ20を制御する。 Next, the determination unit 32 compares the acceleration data A with the threshold value TH1 (ST15). If determination unit 32 determines that acceleration data A is greater than threshold value TH1, angular velocity sensor control unit 33 activates angular velocity sensor 20 (ST30). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the moving body performs a predetermined movement.
 他方、加速度データAがしきい値TH1より小さいと判定部32が判定した場合、判定部32は、加速度データAをしきい値TH2と比較する(ST25)。加速度データAがしきい値TH2より小さい場合、角速度センサ制御部33は、角速度センサ20をスタンバイ状態にする(ST40)。例えば角速度センサ制御部33は、内部の運動体が静止するように角速度センサ20を制御する。運動体が静止することにより、角速度センサ20の消費電力は大幅に小さくなる。 On the other hand, when the determination unit 32 determines that the acceleration data A is smaller than the threshold value TH1, the determination unit 32 compares the acceleration data A with the threshold value TH2 (ST25). If the acceleration data A is smaller than the threshold value TH2, the angular velocity sensor control unit 33 puts the angular velocity sensor 20 in a standby state (ST40). For example, the angular velocity sensor control unit 33 controls the angular velocity sensor 20 so that the internal moving body stops. When the moving body is stationary, the power consumption of the angular velocity sensor 20 is significantly reduced.
 加速度データAがしきい値TH1より小さくしきい値TH2より大きいと判定部32が判定した場合(TH1>A>TH2)、角速度センサ制御部33は、角速度センサ20の状態を維持する。すなわち、角速度センサ制御部33は、角速度センサ20がスタンバイ状態であれば角速度センサ20を引き続きスタンバイ状態とし、角速度センサ20が起動状態であれば角速度センサ20を引き続き起動状態とする。 When the determination unit 32 determines that the acceleration data A is smaller than the threshold value TH1 and larger than the threshold value TH2 (TH1> A> TH2), the angular velocity sensor control unit 33 maintains the state of the angular velocity sensor 20. That is, the angular velocity sensor control unit 33 keeps the angular velocity sensor 20 in the standby state if the angular velocity sensor 20 is in the standby state, and keeps the angular velocity sensor 20 in the activated state if the angular velocity sensor 20 is in the activated state.
 このように、2つのしきい値TH1,TH2に基づいて眼鏡型電子機器に外力が作用しているか否かを判定することによって、加速度データAがしきい値TH1やTH2の近くで変動する場合でも、判定部32における判定結果が頻繁に変化して角速度センサ20が起動状態とスタンバイ状態を繰り返すことを防止できる。 As described above, when the acceleration data A fluctuates near the thresholds TH1 and TH2 by determining whether or not an external force is acting on the glasses-type electronic device based on the two thresholds TH1 and TH2. However, it is possible to prevent the determination result in the determination unit 32 from changing frequently and the angular velocity sensor 20 from repeating the startup state and the standby state.
 図5は、加速度センサの検出結果に応じて角速度センサを制御する処理の他の一変形例を説明するためのフローチャートである。
 上述した図3,図4に示す処理では、加速度データAがしきい値TH(しきい値TH2)より小さいと判定部32において判定された場合、角速度センサ制御部33によって角速度センサ20がスタンバイ状態とされるが、センサ信号処理部31において角速度データに基づいて姿勢等の検出が行われている途中で角速度センサ20がスタンバイ状態になると、センサ信号処理部31の検出処理が処理結果を得る前に中止されてしまう可能性がある。そこで、図5に示す処理では、図4に示す処理におけるステップST25とステップST40の間に、角速度データの使用状態を判定するステップST35が挿入される。センサ信号処理部31で角速度データが使用されている場合、角速度センサ制御部33は、判定部32において角速度データAがしきい値TH2より小さいと判定されても(眼鏡型電子機器に外力が作用していないと判定されても)、角速度センサ20を起動状態に維持する。これにより、センサ信号処理部31が角速度データを用いた処理を完了するまで角速度センサ20が起動状態に維持されるため、センサ信号処理部31の処理が無駄に中止されることを防止できる。
FIG. 5 is a flowchart for explaining another modification of the process of controlling the angular velocity sensor according to the detection result of the acceleration sensor.
3 and 4 described above, when the determination unit 32 determines that the acceleration data A is smaller than the threshold value TH (threshold value TH2), the angular velocity sensor control unit 33 causes the angular velocity sensor 20 to be in the standby state. However, if the angular velocity sensor 20 is in a standby state while the sensor signal processing unit 31 is detecting the posture or the like based on the angular velocity data, the detection processing of the sensor signal processing unit 31 is before the processing result is obtained. There is a possibility of being canceled. Therefore, in the process shown in FIG. 5, step ST35 for determining the use state of the angular velocity data is inserted between step ST25 and step ST40 in the process shown in FIG. When the angular velocity data is used in the sensor signal processing unit 31, the angular velocity sensor control unit 33 determines that the angular velocity data A is smaller than the threshold value TH2 in the determination unit 32 (external force acts on the spectacle-type electronic device). If it is determined that the angular velocity sensor 20 is not in operation, the angular velocity sensor 20 is maintained in the activated state. Thereby, since the angular velocity sensor 20 is maintained in the activated state until the sensor signal processing unit 31 completes the processing using the angular velocity data, it is possible to prevent the processing of the sensor signal processing unit 31 from being stopped unnecessarily.
 なお、ステップST35と同様な処理は、図3に示すフローチャートにおけるステップST20とステップST40の間に挿入してもよい。 In addition, you may insert the process similar to step ST35 between step ST20 and step ST40 in the flowchart shown in FIG.
 以上、本発明の幾つかの実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、種々のバリエーションを含んでいる。 Although some embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes various variations.
 例えば、上述した実施形態では、加速度センサ10において複数の軸方向の加速度が検出される例を挙げたが、本発明はこれに限定されない。本発明の他の実施形態では、加速度センサにおいて1つの軸方向の加速度のみが検出されてもよい。この場合、判定部では、1つの軸方向の加速度を所定のしきい値と比較した結果に基づいて、電子機器に外力が作用しているか否かを判定してもよい。 For example, in the above-described embodiment, an example in which acceleration in a plurality of axial directions is detected by the acceleration sensor 10 has been described, but the present invention is not limited to this. In another embodiment of the present invention, only one axial acceleration may be detected by the acceleration sensor. In this case, the determination unit may determine whether or not an external force is acting on the electronic device based on a result of comparing the acceleration in one axial direction with a predetermined threshold value.
 上述した実施形態では眼鏡型の電子機器を例に挙げているが、本発明はこれに限定されない。すなわち、本発明は、加速度センサと角速度センサを備えた種々の電子機器(携帯電話機、スマートフォン、タブレット、ノートパソコン、携帯ゲーム機、ゲーム機用コントローラ、ウェアラブル・デバイス)に広く適用可能である。 In the above-described embodiment, an eyeglass-type electronic device is taken as an example, but the present invention is not limited to this. That is, the present invention can be widely applied to various electronic devices (a mobile phone, a smartphone, a tablet, a notebook computer, a portable game machine, a controller for a game machine, a wearable device) provided with an acceleration sensor and an angular velocity sensor.
 1…フロント部、2…テンプル部、3…連結部、4…リム、5…ブリッジ、6…回路基板、10…加速度センサ、20…角速度センサ、30…処理部、31…センサ信号処理部、32…判定部、33…角速度センサ制御部。
 
DESCRIPTION OF SYMBOLS 1 ... Front part, 2 ... Temple part, 3 ... Connection part, 4 ... Rim, 5 ... Bridge, 6 ... Circuit board, 10 ... Acceleration sensor, 20 ... Angular velocity sensor, 30 ... Processing part, 31 ... Sensor signal processing part, 32: determination unit, 33: angular velocity sensor control unit.

Claims (7)

  1.  加速度センサと角速度センサを搭載した電子機器であって、
     前記加速度センサにおいて検出される加速度に基づいて、前記電子機器に重力と異なる外力が作用しているか否かを判定する判定部と、
     前記外力が作用していないと前記判定部において判定される場合、角速度の検出が不能なスタンバイ状態となり、前記外力が作用していると前記判定部において判定される場合、前記角速度の検出が可能な起動状態となるように前記角速度センサを制御する角速度センサ制御部と
     を有することを特徴とする電子機器。
    An electronic device equipped with an acceleration sensor and an angular velocity sensor,
    A determination unit that determines whether an external force different from gravity is applied to the electronic device based on acceleration detected by the acceleration sensor;
    When the determination unit determines that the external force is not acting, the angular velocity cannot be detected. When the determination unit determines that the external force is acting, the angular velocity can be detected. An electronic device comprising: an angular velocity sensor control unit that controls the angular velocity sensor so as to be in an active state.
  2.  前記判定部は、前記加速度センサにおいて検出される1つの軸方向での加速度、若しくは、前記加速度センサにおいて検出される複数の軸方向での加速度を合成した合成加速度と所定のしきい値とを比較し、当該比較結果に基づいて前記電子機器に前記外力が作用しているか否かを判定する
     ことを特徴とする請求項1に記載の電子機器。
    The determination unit compares an acceleration in one axial direction detected by the acceleration sensor or a combined acceleration obtained by combining accelerations in a plurality of axial directions detected by the acceleration sensor with a predetermined threshold value. And it is determined whether the said external force is acting on the said electronic device based on the said comparison result. The electronic device of Claim 1 characterized by the above-mentioned.
  3.  前記判定部は、前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が、重力加速度より大きい第1加速度を超える場合、前記電子機器に前記外力が作用していると判定する
     ことを特徴とする請求項2に記載の電子機器。
    The determination unit determines that the external force is acting on the electronic device when the acceleration or the combined acceleration detected by the acceleration sensor exceeds a first acceleration larger than a gravitational acceleration. The electronic device according to claim 2.
  4.  前記判定部は、
      前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が、前記第1加速度より小さく前記重力加速度より大きい第2加速度に比べて小さい場合、前記電子機器に前記外力が作用していないと判定し、
      前記加速度センサにおいて検出される前記加速度若しくは前記合成加速度が、前記第1加速度から前記第2加速度までの範囲に含まれる場合、直前の判定結果を維持する
     ことを特徴とする請求項3に記載の電子機器。
    The determination unit
    When the acceleration or the combined acceleration detected by the acceleration sensor is smaller than the second acceleration smaller than the first acceleration and larger than the gravitational acceleration, it is determined that the external force is not acting on the electronic device,
    4. The previous determination result is maintained when the acceleration or the combined acceleration detected by the acceleration sensor is included in a range from the first acceleration to the second acceleration. 5. Electronics.
  5.  前記角速度センサは、角速度の検出に用いられる運動体を含んでおり、
     前記角速度センサ制御部は、前記起動状態において前記運動体が運動し、前記スタンバイ状態において前記運動体が静止するように前記角速度センサを制御する
     ことを特徴とする請求項1乃至4の何れか一項に記載の電子機器。
    The angular velocity sensor includes a moving body used for detection of angular velocity,
    5. The angular velocity sensor control unit controls the angular velocity sensor so that the moving body moves in the activated state and the moving body stops in the standby state. 6. The electronic device as described in the paragraph.
  6.  前記外力が作用していないと前記判定部において判定される場合、前記加速度センサにおける加速度の検出結果に基づいて姿勢を検出し、前記外力が作用していると前記判定部において判定される場合、前記角速度センサにおける角速度の検出結果に基づいて姿勢を検出する姿勢検出部を有する
     ことを特徴とする請求項1乃至5の何れか一項に記載の電子機器。
    When the determination unit determines that the external force is not acting, detects a posture based on the detection result of acceleration in the acceleration sensor, and when the determination unit determines that the external force is acting, The electronic apparatus according to claim 1, further comprising an attitude detection unit that detects an attitude based on an angular velocity detection result of the angular velocity sensor.
  7.  前記角速度センサ制御部は、前記角速度センサにおける角速度の検出結果に基づいた姿勢の検出が前記姿勢検出部において行われているときに、前記外力が作用していないと前記判定部において判定された場合は、前記角速度センサの前記起動状態を維持する
     ことを特徴とする請求項6に記載の電子機器。
    The angular velocity sensor control unit, when the posture detection based on the angular velocity detection result of the angular velocity sensor is performed in the posture detection unit, the determination unit determines that the external force is not acting The electronic device according to claim 6, wherein the activation state of the angular velocity sensor is maintained.
PCT/JP2015/062118 2014-05-09 2015-04-21 Electronic device WO2015170585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517860A JP6268281B2 (en) 2014-05-09 2015-04-21 Electronics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014098184 2014-05-09
JP2014-098184 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170585A1 true WO2015170585A1 (en) 2015-11-12

Family

ID=54392438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062118 WO2015170585A1 (en) 2014-05-09 2015-04-21 Electronic device

Country Status (2)

Country Link
JP (1) JP6268281B2 (en)
WO (1) WO2015170585A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288901B1 (en) * 2017-07-31 2018-03-07 株式会社石野サーキット Drop detection means, drop warning means and drop notification means
CN111930230A (en) * 2020-07-27 2020-11-13 歌尔光学科技有限公司 Gesture detection method, wearable device and computer-readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534500B (en) * 2020-04-14 2023-01-13 所乐思(深圳)科技有限公司 Intelligent glasses, method for monitoring human body posture, medium, terminal and system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008411A1 (en) * 2007-07-09 2009-01-15 Sony Corporation Electronic apparatus and method for controlling the same
WO2009020204A1 (en) * 2007-08-08 2009-02-12 Sony Corporation Input device, control device, control system, control method and handheld device
JP2012220886A (en) * 2011-04-13 2012-11-12 Nikon Corp Shake correcting device and optical apparatus
JP5273323B1 (en) * 2013-03-13 2013-08-28 パナソニック株式会社 Head mounted display device
WO2013125212A1 (en) * 2012-02-21 2013-08-29 パナソニック株式会社 Inertial force sensor and electronic device using same
WO2013125200A1 (en) * 2012-02-21 2013-08-29 パナソニック株式会社 Inertial force sensor
JP2013185934A (en) * 2012-03-07 2013-09-19 Seiko Instruments Inc Electronic component package

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318973A (en) * 2004-05-07 2005-11-17 Sony Corp Biological sensor apparatus, content reproducing method and content reproducing apparatus
JP5204381B2 (en) * 2006-05-01 2013-06-05 任天堂株式会社 GAME PROGRAM, GAME DEVICE, GAME SYSTEM, AND GAME PROCESSING METHOD
WO2011024425A1 (en) * 2009-08-28 2011-03-03 パナソニック株式会社 Organism information detection device and motion sensor
JP4912477B2 (en) * 2010-02-02 2012-04-11 公立大学法人高知工科大学 Mobile floor reaction force measuring device
JP5762785B2 (en) * 2011-03-25 2015-08-12 京セラ株式会社 Electronic device, its control method, and computer-executable program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008411A1 (en) * 2007-07-09 2009-01-15 Sony Corporation Electronic apparatus and method for controlling the same
WO2009020204A1 (en) * 2007-08-08 2009-02-12 Sony Corporation Input device, control device, control system, control method and handheld device
JP2012220886A (en) * 2011-04-13 2012-11-12 Nikon Corp Shake correcting device and optical apparatus
WO2013125212A1 (en) * 2012-02-21 2013-08-29 パナソニック株式会社 Inertial force sensor and electronic device using same
WO2013125200A1 (en) * 2012-02-21 2013-08-29 パナソニック株式会社 Inertial force sensor
JP2013185934A (en) * 2012-03-07 2013-09-19 Seiko Instruments Inc Electronic component package
JP5273323B1 (en) * 2013-03-13 2013-08-28 パナソニック株式会社 Head mounted display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288901B1 (en) * 2017-07-31 2018-03-07 株式会社石野サーキット Drop detection means, drop warning means and drop notification means
WO2019026099A1 (en) * 2017-07-31 2019-02-07 株式会社石野サーキット Fall detection means, fall alarm means, and fall report means
CN111930230A (en) * 2020-07-27 2020-11-13 歌尔光学科技有限公司 Gesture detection method, wearable device and computer-readable storage medium

Also Published As

Publication number Publication date
JP6268281B2 (en) 2018-01-24
JPWO2015170585A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US10691194B2 (en) Electronic apparatus and method of controlling power supply
US9678102B2 (en) Calibrating intertial sensors using an image sensor
US20180046257A1 (en) Method and apparatus for selecting between multiple gesture recognition systems
US10482745B2 (en) Head lowering and turning reminding device, control method thereof and helmet
CA3035929C (en) Systems and methods for detecting mobile device movement within a vehicle using accelerometer data
JP6268281B2 (en) Electronics
KR100501721B1 (en) Pen-shaped input device using magnetic sensor and method thereof
CN101100059A (en) Flexible double-wheel self-balancing robot attitude detecting method
US10732196B2 (en) Asymmetric out-of-plane accelerometer
CN111930230A (en) Gesture detection method, wearable device and computer-readable storage medium
JP5937137B2 (en) Geomagnetic detector
JP6753942B2 (en) Information processing equipment, electronic devices, control methods and control programs for information processing equipment
KR101714628B1 (en) Apparatus and method for user authentication using a movement information
KR20210047613A (en) Apparatus and method for detecting wearing using inertial sensor
WO2017163637A1 (en) Information processing device, electronic device, and control method and control program for information processing device
CN104951038A (en) Power saving method of operating portable computing device
JP6366094B2 (en) Portable information device, program, and method for detecting careless walking state using only acceleration sensor
CN106931992B (en) Method and device for detecting object tumbling
WO2014122903A1 (en) Electronic device
US20170314923A1 (en) Mems inertial sensor device with determination of the bias value of a gyroscope therof and corresponding method
JPWO2017056891A1 (en) Information processing apparatus, electronic device, control method for information processing apparatus, and control program
US8789418B2 (en) Inertial sensor and angular velocity detection method using the same
CN110553647B (en) Timing method
US9038462B2 (en) Inertial sensor control module and method for controlling inertial sensor control module
JP2021089692A (en) Motion sensing data generating method and motion sensing data generating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789116

Country of ref document: EP

Kind code of ref document: A1