WO2011096117A1 - Method and device for estimating sulfuric acid concentration, method and device for designing concrete or mortar, and maintenance method and device - Google Patents

Method and device for estimating sulfuric acid concentration, method and device for designing concrete or mortar, and maintenance method and device Download PDF

Info

Publication number
WO2011096117A1
WO2011096117A1 PCT/JP2010/068958 JP2010068958W WO2011096117A1 WO 2011096117 A1 WO2011096117 A1 WO 2011096117A1 JP 2010068958 W JP2010068958 W JP 2010068958W WO 2011096117 A1 WO2011096117 A1 WO 2011096117A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
concrete
mortar
concentration
correlation
Prior art date
Application number
PCT/JP2010/068958
Other languages
French (fr)
Japanese (ja)
Inventor
克紀 綾野
多慶 細谷
隆史 藤井
Original Assignee
ランデス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010021524A external-priority patent/JP5222310B2/en
Priority claimed from JP2010021462A external-priority patent/JP4994467B2/en
Priority claimed from JP2010021558A external-priority patent/JP5222311B2/en
Application filed by ランデス株式会社 filed Critical ランデス株式会社
Publication of WO2011096117A1 publication Critical patent/WO2011096117A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks
    • G01N33/383Concrete, cement

Definitions

  • the present invention relates to a method and apparatus for estimating sulfuric acid concentration, a method and apparatus for designing concrete or mortar, and a maintenance method and apparatus, for example, a method and apparatus for estimating the concentration of sulfuric acid generated in a sewerage facility, etc.
  • the present invention relates to a design method and apparatus for sulfuric acid resistant concrete or mortar used in an atmosphere, and a maintenance management method and apparatus.
  • the present invention has been made in view of the above, and a sulfuric acid concentration estimation method and apparatus suitable for grasping the sulfuric acid concentration in a concrete or mortar installation environment, a concrete or mortar design method and apparatus, and maintenance It is an object to provide a management method and apparatus.
  • the sulfuric acid concentration estimation method is a method for estimating the concentration of sulfuric acid, in which concrete or mortar is immersed in sulfuric acid having a predetermined concentration.
  • the correlation between the product of the concentration of sulfuric acid and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid is previously grasped, and the concrete or mortar for which the correlation is grasped is set as the estimation target environment. It installs only for a period, measures the erosion depth by the sulfuric acid of this environment, and estimates the density
  • the sulfuric acid concentration estimation method according to claim 2 of the present invention is characterized in that, in claim 1 described above, the correlation is a linear correlation.
  • the sulfuric acid concentration estimation apparatus is an apparatus for estimating the sulfuric acid concentration, and the sulfuric acid concentration and immersion period obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid.
  • Information on the correlation between the product and the erosion depth of the concrete or mortar by sulfuric acid, and the concrete or mortar for which the correlation has been grasped is installed in the estimation target environment for a predetermined period, and the erosion depth of this environment by sulfuric acid Information on the erosion depth and the predetermined period obtained by measuring the depth, and based on the information on the correlation and the information on the erosion depth and the predetermined period, the sulfuric acid of the estimation target environment
  • An estimation means for estimating the concentration is provided.
  • the sulfuric acid concentration estimation apparatus is characterized in that, in claim 3 described above, the correlation is a linear correlation.
  • the concrete or mortar design method according to claim 5 of the present invention is a concrete or mortar design method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in a predetermined concentration of sulfuric acid, and the concentration and the immersion of the sulfuric acid. Based on the correlation between the product of period and the erosion depth of concrete or mortar with sulfuric acid in advance, the concentration of sulfuric acid and the service life of the assumed installation environment of concrete or mortar, and the correlation, Designed with concrete or mortar rebar cover thickness.
  • the concrete or mortar design method according to claim 6 of the present invention is characterized in that, in claim 5 described above, the correlation is a linear correlation.
  • a concrete or mortar design apparatus is a concrete or mortar design apparatus used in a sulfuric acid atmosphere, and the sulfuric acid obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid. Based on the information on the correlation between the product of the concentration and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid, the sulfuric acid concentration and the service life of the assumed installation environment of the concrete or mortar, and the information on the correlation And a design means for designing a reinforcing bar cover thickness of concrete or mortar.
  • the concrete or mortar designing apparatus according to claim 8 of the present invention is characterized in that, in claim 7 described above, the correlation is a linear correlation.
  • the maintenance method for concrete or mortar according to claim 9 of the present invention is a maintenance method for concrete or mortar used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in sulfuric acid having a predetermined concentration, and the concentration of the sulfuric acid.
  • the correlation between the product of the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid is grasped in advance, and the sulfuric acid concentration measurement concrete or mortar for which the correlation is grasped is installed in the field environment.
  • the concrete or mortar maintenance management method according to claim 10 of the present invention is characterized in that, in claim 9 described above, the correlation is a linear correlation.
  • the concrete or mortar maintenance management method according to claim 11 of the present invention is the above-described method according to claim 9 or 10, wherein the concrete or mortar installed in the field environment can maintain a predetermined performance for the design lifetime. It is characterized by carrying out prediction evaluation before reaching the said useful life.
  • the method for maintaining and managing concrete or mortar according to claim 12 of the present invention evaluates whether or not the design sulfuric acid concentration in the field environment is appropriate in any one of claims 9 to 11 described above. It is characterized by.
  • a concrete or mortar maintenance management method according to any one of claims 9 to 13, wherein the planner and manufacturer of the concrete or mortar installed in the field environment are provided. It is characterized by evaluating the degree of responsibility.
  • a concrete or mortar maintenance management device is a concrete or mortar maintenance management device used in a sulfuric acid atmosphere, and is obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid. Information on the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid, and concrete or mortar for measuring the concentration of sulfuric acid from which the correlation was grasped were installed in the field environment.
  • Estimating means for estimating the concentration of sulfuric acid in the on-site environment based on the erosion depth of sulfuric acid in the on-site environment obtained by measurement after the lapse of the predetermined period, the predetermined period, and the correlation information;
  • the concentration of sulfuric acid in the field environment estimated by the estimation means, and the one installed in the field environment A concrete or mortar for maintenance which is a seed and the correlation is grasped is installed in the field environment, and the depth of erosion by sulfuric acid in the field environment obtained by measuring after the predetermined period has elapsed,
  • a prediction evaluation means for predicting and evaluating a future erosion state of concrete or mortar installed in the field environment based on the period and the information of the correlation.
  • the concrete or mortar maintenance management apparatus according to claim 16 of the present invention is characterized in that, in the above-mentioned claim 15, the correlation is a linear correlation.
  • concrete or mortar is immersed in a predetermined concentration of sulfuric acid, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid.
  • the concrete or mortar for which the correlation is known is installed in the estimation target environment for a predetermined period, and the erosion depth of sulfuric acid in the environment is measured. The erosion depth and the correlation with the predetermined period are measured. Based on the relationship, the concentration of sulfuric acid in the estimation target environment is estimated.
  • the concentration of sulfuric acid can be estimated by obtaining the concentration of sulfuric acid corresponding to the measured erosion depth by the correlation, with the immersion period being a predetermined period installed in the estimation target environment. Therefore, there is an effect that the concentration of sulfuric acid in the estimation target environment can be estimated more accurately.
  • the concrete or mortar design method according to the present invention is a concrete or mortar design method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in a predetermined concentration of sulfuric acid, the concentration of sulfuric acid and the immersion period, In advance, and the correlation of the erosion depth of concrete or mortar with sulfuric acid in advance, and based on the estimated concentration of sulfuric acid and service life of the concrete or mortar installation environment and the correlation, Design the rebar cover thickness of the mortar.
  • the immersion period is the service life and the product of this and the concentration of sulfuric acid in the installation environment is obtained, and the erosion depth corresponding to this product value is obtained by correlation, the rebar cover thickness is calculated based on this erosion depth.
  • the concrete or mortar used in the sulfuric acid atmosphere can be economically and rationally designed.
  • the concrete or mortar maintenance management method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in a predetermined concentration of sulfuric acid, the concentration of sulfuric acid and the immersion
  • the correlation between the product of the period and the erosion depth of the concrete or mortar due to the sulfuric acid is grasped in advance, and the sulfuric acid concentration measurement concrete or mortar for which the correlation is grasped is installed in the field environment.
  • a concrete or mortar for maintenance that is the same type as that of the above and whose correlation has been grasped is installed in the same on-site environment, and after the elapse of a predetermined period, the depth of erosion by sulfuric acid in the on-site environment is measured, respectively.
  • the measured value of the erosion depth of concrete or mortar for concentration measurement, the predetermined period, and the correlation The concentration of sulfuric acid in the field environment, the estimated concentration of sulfuric acid in the field environment, the measured value of the erosion depth of the maintenance concrete or mortar, and the predetermined period, Based on the correlation, a future erosion situation of concrete or mortar installed in the field environment is predicted and evaluated.
  • the concentration of sulfuric acid corresponding to the erosion depth and the predetermined period is obtained from the correlation to estimate the sulfuric acid concentration in the field environment.
  • the erosion depth of the maintenance concrete or mortar using the erosion depth of the maintenance concrete or mortar, the relationship between the erosion depth and the estimated sulfuric acid concentration and the product of the predetermined period was obtained, and from this and the correlation, it was installed in the field environment.
  • the predicted time point may be an initial stage of use (when a predetermined period has elapsed) that is shorter than the service life. Therefore, the concrete or mortar installed in the field environment has the effect of being able to predict the future erosion situation due to sulfuric acid at the initial stage of use.
  • FIG. 1 is a flowchart showing an embodiment of the sulfuric acid concentration estimation method and apparatus according to the present invention.
  • FIG. 2 is a graph showing an example of the correlation between the product of the sulfuric acid immersion period and the sulfuric acid concentration, and the depth of erosion by sulfuric acid.
  • FIG. 3 is a diagram showing the relationship between the product of the sulfuric acid immersion period of concrete and the sulfuric acid concentration, and the depth of erosion by sulfuric acid.
  • FIG. 4 is a view showing the relationship between the product of the sulfuric acid immersion period of mortar and the sulfuric acid concentration, and the erosion depth by sulfuric acid.
  • FIG. 5 is a flowchart showing an embodiment of a concrete or mortar design method and apparatus according to the present invention.
  • FIG. 5 is a flowchart showing an embodiment of a concrete or mortar design method and apparatus according to the present invention.
  • FIG. 6 is a cross-sectional view illustrating the reinforcing bar cover thickness.
  • FIG. 7 is a diagram for explaining a design example using the concrete or mortar design method and apparatus according to the present invention.
  • FIG. 8 is a flowchart showing an embodiment of a concrete or mortar maintenance method and apparatus according to the present invention.
  • FIG. 9 is a diagram for predicting the future erosion situation.
  • FIG. 10 is a diagram showing a specific example of the maintenance method according to the present invention.
  • the sulfuric acid concentration estimation method and apparatus First, the sulfuric acid concentration estimation method and apparatus according to the present invention will be described. As shown in FIG. 1, the sulfuric acid concentration estimation method according to the present invention first involves immersing concrete or mortar in a predetermined concentration of sulfuric acid in advance by a laboratory experiment or the like, and using the product of the concentration of sulfuric acid and the immersion period, and sulfuric acid. The correlation with the erosion depth of concrete or mortar is grasped in advance (step S1).
  • step S2 the concrete or mortar for which this correlation has been grasped is placed in the estimation target environment only for a predetermined period (step S2). Subsequently, the erosion depth by sulfuric acid in this environment is measured after a predetermined period of time (step S3). Finally, the sulfuric acid concentration in the estimation target environment is estimated based on the erosion depth, the predetermined period, and the correlation (step S4).
  • FIG. 2 shows a plot of measured erosion depth according to the above product and a regression line obtained from each plot for concrete with a water-cement ratio (W / C) of 25% and concrete with 60%. An example is shown. Such a linear relationship holds also in the case of mortar.
  • the concentration of sulfuric acid can be estimated by obtaining the concentration of sulfuric acid corresponding to the measured erosion depth by the correlation, with the immersion period being a predetermined period installed in the estimation target environment. For this reason, by installing concrete or mortar specimens with a known correlation at the site where the sulfuric acid concentration is to be investigated, the sulfuric acid concentration in the field environment can be determined based on the depth of erosion and the length of the installation period. It is possible to estimate. As a result, it is possible to easily design concrete or mortar in a sulfuric acid environment such as a sewerage facility that has been difficult to design based on performance-checking design.
  • the sulfuric acid concentration estimation device is a device for estimating the concentration of sulfuric acid, and the product of the concentration of sulfuric acid obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, Information on the correlation between the depth of erosion of concrete and mortar by sulfuric acid and obtained by measuring the depth of erosion by sulfuric acid in this environment after installing the concrete or mortar for which the correlation is known for a specified period. And an estimation means for estimating the concentration of sulfuric acid in the estimation target environment based on the correlation information, the erosion depth, and the information for a predetermined period. The calculation process by this estimation means is performed using a computer. The specific processing procedure and contents are the same as those of the estimation method of the present invention.
  • the sulfuric acid concentration corresponding to this erosion depth ⁇ the value of the sulfuric acid immersion period can be read as about 2.2 (% ⁇ year) from the regression line. Therefore, it can be estimated that the average sulfuric acid concentration at this site is 2.2%. If the erosion depth measured after 2 years was 10 mm, the average sulfuric acid concentration at this site can be estimated to be 1.1%.
  • Table 1 shows the composition of cement paste, mortar, and concrete used in this experiment.
  • the binder (B) includes ordinary Portland cement (C) (density: 3.15 g / cm 3, brain value: 3400 cm 2 / g) and blast furnace slag fine powder (density: 2.89 g / cm 3). Brain value: 4150 cm ⁇ 2> / g) was used.
  • Fine aggregates include river sand (surface dry density: 2.60 g / cm3, water absorption: 2.00%) and blast furnace slag fine aggregate (surface dry density: 2.73 g / cm3, water absorption: 0.40%). ) was used.
  • Crude stone (surface dry density: 2.75 g / cm 3, water absorption: 0.38%) was used as the coarse aggregate.
  • a polycarboxylic acid-based high-performance water reducing agent was used as the coarse aggregate.
  • the air volume was set at 2.0%.
  • a cylindrical specimen of ⁇ 50 ⁇ 100 mm was used for the sulfuric acid immersion test of mortar, and a cylindrical specimen of ⁇ 100 ⁇ 200 mm was used for the sulfuric acid immersion test of concrete.
  • the specimens were water-cured for 7 days after placement, and then immersed in 5% or 10% sulfuric acid at a mass percentage concentration. After washing with water every 7 days and removing the deteriorated portion, the mass was measured.
  • the specimen was cut with a dry concrete cutter and the cut surface was sprayed with a phenolphthalein solution, and then the diameter of the colored area was measured to determine the depth of erosion by sulfuric acid.
  • 3 and 4 show the relationship between the sulfuric acid immersion period of concrete and mortar, the product of sulfuric acid concentration, and sulfuric acid erosion depth, respectively.
  • FIGS. 3 and 4 a concrete in which ordinary Portland cement and blast furnace slag fine powder mixed at a mass ratio of 40:60 is used as the binder, and blast furnace slag fine aggregate is used as the fine aggregate.
  • sulfuric acid resistant hydrated solidified concrete and mortar (hereinafter referred to as sulfuric acid resistant hydrated solidified mortar).
  • the black squares in FIGS. 3 and 4 are the results of concrete (hereinafter referred to as ordinary concrete) and mortar (hereinafter referred to as ordinary mortar) using only ordinary Portland cement as the binder and river sand as the fine aggregate. Is shown.
  • the slopes of the straight lines shown in FIG. 3 are 2.9 mm / day and 0.5 mm / day, and it can be said that the sulfuric acid-resistant hydrated solid concrete has six times the sulfuric acid resistance of ordinary concrete.
  • the slopes of the straight lines shown in FIG. 4 are 3.5 mm / day and 0.5 mm / day, and it can be said that the sulfate-resistant hydrated solidified mortar has seven times the sulfuric acid resistance of ordinary mortar.
  • Table 2 shows the composition of the sulfate-resistant hydrated solidified mortar and ordinary mortar shown in FIG. 4, and Table 3 shows the composition of the sulfate-resistant hydrated solidified concrete and ordinary concrete shown in FIG.
  • Table 4 shows the plot data of FIG.
  • the sulfuric acid concentration estimation method As described above, according to the sulfuric acid concentration estimation method according to the present invention, concrete or mortar is immersed in a predetermined concentration of sulfuric acid, the product of the concentration of sulfuric acid and the immersion period, and the concrete or mortar with sulfuric acid.
  • the correlation with the erosion depth is grasped in advance, concrete or mortar for which this correlation is grasped is installed in the estimation target environment for a predetermined period, and the erosion depth by sulfuric acid in this environment is measured.
  • the concentration of sulfuric acid in the estimation target environment is estimated based on the predetermined period and the correlation. Therefore, the concentration of sulfuric acid in the estimation target environment can be estimated more accurately.
  • the concrete or mortar design method according to the present invention is a concrete or mortar design method using a calcium silicate-based material used in a sulfuric acid atmosphere.
  • concrete or mortar is preliminarily immersed in a predetermined concentration of sulfuric acid, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by sulfuric acid is grasped (step) S11).
  • step S12 concentration of sulfuric acid and the service life of the concrete or mortar installation environment are assumed (step S12), and the reinforcing bar cover thickness of the concrete or mortar is designed based on these and the correlation (step S13). .
  • FIG. 6 is based on this erosion depth.
  • the rebar cover thickness as shown can be set to the optimum dimension.
  • the reinforcing bar cover thickness can be set to a value slightly larger than the corresponding erosion depth.
  • the concrete or mortar used in the sulfuric acid atmosphere is economically and rationally designed by predicting the erosion rate of the concrete or mortar to be installed by a linear relationship. be able to.
  • a sulfuric acid environment such as a sewerage facility that has been difficult to design based on performance-checking design.
  • the concrete or mortar design apparatus is a concrete or mortar design apparatus used in a sulfuric acid atmosphere, and the concentration of sulfuric acid and the immersion period obtained by immersing the concrete or mortar in a predetermined concentration of sulfuric acid.
  • a design means for designing the cover thickness is performed using a computer. The specific processing procedure and contents are the same as the procedure and contents of the design method of the present invention.
  • the design value of the cover thickness d (mm) can be calculated as follows according to the sulfuric acid concentration of the installation environment.
  • the concrete or mortar design method according to the present invention is a concrete or mortar design method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in sulfuric acid having a predetermined concentration, and the concentration of the sulfuric acid.
  • the correlation between the product of the soaking period and the erosion depth of concrete or mortar by sulfuric acid is grasped in advance, and based on the assumed concentration of sulfuric acid and the service life of the concrete or mortar installation environment and the correlation Design concrete or mortar rebar cover thickness. Therefore, concrete or mortar used in a sulfuric acid atmosphere can be economically and rationally designed.
  • the concrete or mortar maintenance method according to the present invention is a concrete or mortar maintenance method using a calcium silicate-based material used in a sulfuric acid atmosphere.
  • the concrete or mortar is previously immersed in sulfuric acid of a predetermined concentration, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by sulfuric acid is grasped in advance ( Step S101).
  • step S102 concrete or mortar for measuring the concentration of sulfuric acid whose correlation has been grasped is installed in the field environment.
  • maintenance management concrete or mortar which is the same type as that installed in the site environment and whose correlation is grasped is installed in the same site environment (step S103). Then, after the lapse of a predetermined period, the depth of erosion by sulfuric acid in this field environment is measured (steps S104 and S105).
  • the sulfuric acid concentration in the field environment is estimated based on the measured value of the erosion depth of the concrete or mortar for measuring the sulfuric acid concentration, the predetermined period, and the correlation (step S106).
  • the concentration of sulfuric acid in the field environment can be estimated by obtaining the correlation between the erosion depth and the sulfuric acid concentration corresponding to the predetermined period (immersion period). it can.
  • the relationship between the erosion depth and the estimated sulfuric acid concentration and the product for a predetermined period is obtained, and from this and the correlation Predict the future erosion of concrete or mortar installed in the field environment.
  • the predicted time point may be an initial stage of use (when a predetermined period has elapsed) that is shorter than the service life. Therefore, according to the maintenance management method of the present invention, it is possible to predict the future erosion situation due to sulfuric acid in the initial stage of use for concrete or mortar installed in the field environment.
  • the erosion depth is measured at the elapse of 3 years, 6 years, and 10 years from the start of use, and plots are made. To do.
  • a small circle indicates a measured value after 3 years and 6 years, and a large circle indicates a measured value after 10 years.
  • a regression line may be obtained from these measured values to predict the future erosion degradation of the concrete in the field environment, and evaluation may be performed as to whether the function can be maintained structurally for the remaining 40 years.
  • the degree of responsibility of the planner and manufacturer of concrete or mortar installed in the field environment can be evaluated.
  • the relationship between the erosion depth of the maintenance concrete or mortar and the product of the estimated sulfuric acid concentration and the predetermined period is obtained and evaluated from the positional relationship with the correlation.
  • a line indicating an initially assumed sulfuric acid concentration and a predetermined period
  • a line indicating the erosion depth assumed at the time of 10 years
  • the point ((circle) in a figure) which shows the erosion depth actually measured corresponding to the product of an estimated sulfuric acid concentration and a predetermined period is plotted. The location of the responsibility can be clarified by the positions of the plotted points.
  • the plotted point is above the erosion depth line, it means that the erosion has exceeded the assumed erosion depth.
  • the actual sulfuric acid concentration is lower than the designed sulfuric acid concentration, and the actual quality of the concrete or mortar installed in the field environment is not better than the designed quality. It shows that there was no. Thus, if it is eroded more than expected at a concentration lower than the designed sulfuric acid concentration, it can be considered as the responsibility of the manufacturer.
  • the design sulfuric acid concentration even though the actual quality of the concrete or mortar installed in the field environment was better than the design quality Since the actual sulfuric acid concentration is higher than the actual concentration, it can be considered that the planner's responsibility is to estimate the sulfuric acid concentration in the field environment lower than the actual concentration.
  • the plotted point is on the right side of the sulfuric acid concentration line and above the performance line, the actual sulfuric acid concentration is higher than the designed sulfuric acid concentration, and the actual quality of the concrete or mortar installed in the field environment is the design quality. This indicates that the degree of responsibility of the planner and the manufacturer can be grasped by the positions of the plotted points.
  • the product performance is satisfactory.
  • the product quality is not good, but it can be seen that the actual sulfuric acid concentration was lower than the designed sulfuric acid concentration.
  • the quality of the product is good.
  • it is on the right side of the sulfuric acid concentration line it can be seen that the actual sulfuric acid concentration was higher than the designed sulfuric acid concentration.
  • the concrete or mortar maintenance management device is a concrete or mortar maintenance management device used in a sulfuric acid atmosphere, and the concentration and immersion of sulfuric acid obtained by immersing the concrete or mortar in a predetermined concentration of sulfuric acid.
  • Information on the correlation between the product of the period and the erosion depth of concrete or mortar by sulfuric acid, and concrete or mortar for measuring the concentration of sulfuric acid whose correlation was grasped was installed in the field environment and measured after a predetermined period of time.
  • the estimation means for estimating the concentration of sulfuric acid in the on-site environment based on the depth of sulfuric acid erosion in the on-site environment, the predetermined period, and correlation information, and the sulfuric acid in the on-site environment estimated by the estimation means
  • Concentrations of the maintenance management components that are of the same type as those installed in the field environment and have a correlation Installed in the field environment based on the depth of sulfuric acid erosion depth of the field environment obtained by installing the riet or mortar in the field environment and measuring it after a certain period of time, and the correlation information
  • a predictive evaluation means for predicting and evaluating the future erosion of concrete or mortar.
  • the arithmetic processing by the estimation means and the prediction evaluation means is performed using a computer.
  • the specific processing procedure and contents are the same as the procedure and contents of the maintenance management method of the present invention.
  • the measured erosion depth of the concrete for maintenance and management is plotted against the estimated sulfuric acid concentration ⁇ the value of immersion period of 1.05. Similarly, the measured depth of erosion is plotted when 6 years have passed and 10 years have passed.
  • the maintenance method of concrete or mortar used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in sulfuric acid of a predetermined concentration, and the sulfuric acid
  • the correlation between the product of the concentration of the solution and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid is grasped in advance, and the concrete or mortar for measuring the concentration of sulfuric acid whose correlation is grasped and the field environment
  • Installed concrete or mortar for maintenance that is of the same kind as that installed in the same field environment in the same field environment, and measured the erosion depth of sulfuric acid in this field environment after a predetermined period of time respectively
  • the concentration of sulfuric acid in the field environment is estimated, the estimated concentration of sulfuric acid in the field environment, the measured value of the erosion depth of the maintenance concrete or mortar, and Based on the predetermined period and the correlation,

Abstract

A method for estimating a sulfuric acid concentration, comprising soaking a concrete or mortar (hereinafter referred to as a concrete or the like) in sulfuric acid having a definite concentration, preliminarily understanding the correlation between the product of sulfuric acid concentration with soaking time and sulfuric acid-erosion depth of the concrete or the like, placing the concrete or the like, for which the aforesaid correlation has been understood, in an environment to be estimated for a preset period of time, measuring the sulfuric acid-erosion depth in the aforesaid environment, and thus estimating the sulfuric acid concentration of the environment to be estimated based on the erosion depth, preset time and correlation. Based on the aforesaid correlation, moreover, a concrete or the like can be designed or the erosion conditions of a concrete or the like in future in a field environment can be estimated and evaluated.

Description

硫酸濃度の推定方法および装置、コンクリートまたはモルタルの設計方法および装置、ならびに維持管理方法および装置Method and apparatus for estimating sulfuric acid concentration, method and apparatus for designing concrete or mortar, and maintenance method and apparatus
 本発明は、硫酸濃度の推定方法および装置、コンクリートまたはモルタルの設計方法および装置、ならびに維持管理方法および装置に関し、例えば、下水道施設などで発生する硫酸濃度の推定方法および装置、下水道施設などの硫酸雰囲気で用いられる耐硫酸性のコンクリートまたはモルタルの設計方法および装置、ならびに維持管理方法および装置に関する。 The present invention relates to a method and apparatus for estimating sulfuric acid concentration, a method and apparatus for designing concrete or mortar, and a maintenance method and apparatus, for example, a method and apparatus for estimating the concentration of sulfuric acid generated in a sewerage facility, etc. The present invention relates to a design method and apparatus for sulfuric acid resistant concrete or mortar used in an atmosphere, and a maintenance management method and apparatus.
 従来、下水道施設などにおいて、硫化水素に細菌が作用して硫酸が発生することが知られている。こうした硫酸雰囲気の環境下に設置されるコンクリートまたはモルタルは、硫酸によって腐食劣化するが、このコンクリートまたはモルタルを最適に設計し、維持管理するためには、硫酸による侵食速度を予測する必要がある。 Conventionally, it is known that bacteria are acting on hydrogen sulfide to generate sulfuric acid in sewerage facilities. Concrete or mortar installed in an environment of such a sulfuric acid atmosphere is corroded and deteriorated by sulfuric acid. In order to optimally design and maintain this concrete or mortar, it is necessary to predict the erosion rate by sulfuric acid.
 そのためには、コンクリートまたはモルタルが設置される環境の硫酸の濃度をできるだけ正確に設定する必要がある。しかしながら、こうした下水道施設など硫酸雰囲気での硫酸の濃度を直接測定することは困難であることから、通常、硫酸の濃度を測定する代わりに硫化水素の濃度を測定し、この測定値に基づいて設計する手法などを採用している(例えば、特許文献1、非特許文献1参照)。また、硫酸による侵食劣化を予測する方法としては、例えば、特許文献2に示す方法が知られている。 For this purpose, it is necessary to set the sulfuric acid concentration in the environment where concrete or mortar is installed as accurately as possible. However, since it is difficult to directly measure the concentration of sulfuric acid in a sulfuric acid atmosphere such as in such sewer facilities, the concentration of hydrogen sulfide is usually measured instead of measuring the concentration of sulfuric acid, and the design is based on this measured value. The technique to do is employ | adopted (for example, refer patent document 1, nonpatent literature 1). Further, as a method for predicting erosion degradation due to sulfuric acid, for example, a method disclosed in Patent Document 2 is known.
 一方、硫酸による腐食劣化に対して耐久性を有する耐硫酸性コンクリートまたはモルタルの開発が進められている。例えば、本発明者らは、既に特願2009-120407に示す耐硫酸性に優れたコンクリートおよびモルタルを提案している。このコンクリートおよびモルタルは、下水道施設などの硫酸性雰囲気に晒される環境で使用するのに好適な材料である。 On the other hand, the development of sulfuric acid resistant concrete or mortar that is durable against corrosion degradation by sulfuric acid is underway. For example, the present inventors have already proposed concrete and mortar excellent in sulfuric acid resistance as shown in Japanese Patent Application No. 2009-120407. This concrete and mortar are suitable materials for use in an environment exposed to a sulfuric atmosphere such as a sewerage facility.
特開2006-183274号公報JP 2006-183274 A 特開2005-164256号公報JP 2005-164256 A
 上述したように、コンクリートまたはモルタルの設置環境における硫酸の濃度を正確に測定することは困難であることから、設置環境の硫酸濃度をより正確に推定することができる技術の開発が求められていた。 As described above, since it is difficult to accurately measure the concentration of sulfuric acid in the installation environment of concrete or mortar, the development of a technology that can more accurately estimate the sulfuric acid concentration in the installation environment has been required. .
 また、下水道施設などの硫酸雰囲気で用いるコンクリートまたはモルタルは、硫酸によって侵食劣化してゆくが、この侵食がやがて内部の鉄筋に及んで構造的な性能を消失すると耐用年数を迎えるようになる。このようなコンクリートまたはモルタルの設計では、硫酸による侵食速度をできるだけ正確に予測し、設定した耐用年数に見合うように鉄筋のかぶり厚を設計するほうが経済的で好ましい。このため、硫酸による侵食速度をより正確に予測し、設定した耐用年数に見合う経済的で合理的なコンクリートまたはモルタルの設計方法の開発が望まれていた。 In addition, concrete or mortar used in a sulfuric acid atmosphere such as a sewerage facility is eroded and deteriorated by sulfuric acid, but when this erosion eventually reaches the internal rebar and loses its structural performance, it reaches its useful life. In such concrete or mortar design, it is more economical and preferable to predict the erosion rate by sulfuric acid as accurately as possible and to design the cover thickness of the reinforcing bar to meet the set service life. Therefore, it has been desired to develop an economical and rational concrete or mortar design method that accurately predicts the erosion rate due to sulfuric acid and meets the set service life.
 また、硫酸雰囲気の環境下に設置されたコンクリートやモルタルが、少なくとも耐用年数の期間について設計どおりの機能を維持可能であることを確認するためには、実際に耐用年数経過後にその機能が維持されているかの確認をすればよい。しかしながら、通常のコンクリートやモルタルの耐用年数は50年といった長期間であり、この期間の経過を待って確認するのは現実的ではない。このため、硫酸による将来の侵食状況を、コンクリートやモルタルの使用の初期段階でより正確に予測することができる維持管理技術の開発が望まれていた。 In addition, in order to confirm that concrete and mortar installed in an environment of sulfuric acid atmosphere can maintain the function as designed for at least the service life, the function is actually maintained after the service life has passed. You can check if it is. However, the service life of normal concrete and mortar is as long as 50 years, and it is not realistic to check after the elapse of this period. Therefore, it has been desired to develop a maintenance technique that can more accurately predict the future erosion status of sulfuric acid at the initial stage of using concrete or mortar.
 本発明は、上記に鑑みてなされたものであり、コンクリートまたはモルタルの設置環境における硫酸の濃度を把握するのに好適な硫酸濃度の推定方法および装置、コンクリートまたはモルタルの設計方法および装置、ならびに維持管理方法および装置を提供することを目的とする。 The present invention has been made in view of the above, and a sulfuric acid concentration estimation method and apparatus suitable for grasping the sulfuric acid concentration in a concrete or mortar installation environment, a concrete or mortar design method and apparatus, and maintenance It is an object to provide a management method and apparatus.
 上記した課題を解決し、目的を達成するために、本発明の請求項1に係る硫酸濃度の推定方法は、硫酸の濃度を推定する方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定することを特徴とする。 In order to solve the above-described problems and achieve the object, the sulfuric acid concentration estimation method according to claim 1 of the present invention is a method for estimating the concentration of sulfuric acid, in which concrete or mortar is immersed in sulfuric acid having a predetermined concentration. The correlation between the product of the concentration of sulfuric acid and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid is previously grasped, and the concrete or mortar for which the correlation is grasped is set as the estimation target environment. It installs only for a period, measures the erosion depth by the sulfuric acid of this environment, and estimates the density | concentration of the sulfuric acid of the said estimation object environment based on this erosion depth, the said predetermined period, and the said correlation.
 また、本発明の請求項2に係る硫酸濃度の推定方法は、上述した請求項1において、前記相関関係は線形の相関関係であることを特徴とする。 The sulfuric acid concentration estimation method according to claim 2 of the present invention is characterized in that, in claim 1 described above, the correlation is a linear correlation.
 また、本発明の請求項3に係る硫酸濃度の推定装置は、硫酸の濃度を推定する装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、前記相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定することによって得られる前記侵食深さおよび前記所定期間の情報とを有し、前記相関関係の情報と前記侵食深さおよび前記所定期間の情報とに基づいて前記推定対象環境の硫酸の濃度を推定する推定手段を備えることを特徴とする。 Moreover, the sulfuric acid concentration estimation apparatus according to claim 3 of the present invention is an apparatus for estimating the sulfuric acid concentration, and the sulfuric acid concentration and immersion period obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid. Information on the correlation between the product and the erosion depth of the concrete or mortar by sulfuric acid, and the concrete or mortar for which the correlation has been grasped is installed in the estimation target environment for a predetermined period, and the erosion depth of this environment by sulfuric acid Information on the erosion depth and the predetermined period obtained by measuring the depth, and based on the information on the correlation and the information on the erosion depth and the predetermined period, the sulfuric acid of the estimation target environment An estimation means for estimating the concentration is provided.
 また、本発明の請求項4に係る硫酸濃度の推定装置は、上述した請求項3において、前記相関関係は線形の相関関係であることを特徴とする。 Also, the sulfuric acid concentration estimation apparatus according to claim 4 of the present invention is characterized in that, in claim 3 described above, the correlation is a linear correlation.
 また、本発明の請求項5に係るコンクリートまたはモルタルの設計方法は、硫酸雰囲気で用いるコンクリートまたはモルタルの設計方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と前記相関関係とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計することを特徴とする。 Moreover, the concrete or mortar design method according to claim 5 of the present invention is a concrete or mortar design method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in a predetermined concentration of sulfuric acid, and the concentration and the immersion of the sulfuric acid. Based on the correlation between the product of period and the erosion depth of concrete or mortar with sulfuric acid in advance, the concentration of sulfuric acid and the service life of the assumed installation environment of concrete or mortar, and the correlation, Designed with concrete or mortar rebar cover thickness.
 また、本発明の請求項6に係るコンクリートまたはモルタルの設計方法は、上述した請求項5において、前記相関関係は線形の相関関係であることを特徴とする。 Further, the concrete or mortar design method according to claim 6 of the present invention is characterized in that, in claim 5 described above, the correlation is a linear correlation.
 また、本発明の請求項7に係るコンクリートまたはモルタルの設計装置は、硫酸雰囲気で用いるコンクリートまたはモルタルの設計装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と前記相関関係の情報とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計する設計手段とを備えることを特徴とする。 A concrete or mortar design apparatus according to claim 7 of the present invention is a concrete or mortar design apparatus used in a sulfuric acid atmosphere, and the sulfuric acid obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid. Based on the information on the correlation between the product of the concentration and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid, the sulfuric acid concentration and the service life of the assumed installation environment of the concrete or mortar, and the information on the correlation And a design means for designing a reinforcing bar cover thickness of concrete or mortar.
 また、本発明の請求項8に係るコンクリートまたはモルタルの設計装置は、上述した請求項7において、前記相関関係は線形の相関関係であることを特徴とする。 Further, the concrete or mortar designing apparatus according to claim 8 of the present invention is characterized in that, in claim 7 described above, the correlation is a linear correlation.
 また、本発明の請求項9に係るコンクリートまたはモルタルの維持管理方法は、硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、前記相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルと、現場環境に設置されるものと同種であって前記相関関係が把握された維持管理用のコンクリートまたはモルタルとを同じ現場環境に設置して、所定期間経過後にこの現場環境の硫酸による侵食深さをそれぞれ測定し、前記硫酸の濃度測定用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境の硫酸の濃度を推定し、推定した前記現場環境の硫酸の濃度と、前記維持管理用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価することを特徴とする。 The maintenance method for concrete or mortar according to claim 9 of the present invention is a maintenance method for concrete or mortar used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in sulfuric acid having a predetermined concentration, and the concentration of the sulfuric acid The correlation between the product of the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid is grasped in advance, and the sulfuric acid concentration measurement concrete or mortar for which the correlation is grasped is installed in the field environment. Installed in the same field environment with the same kind of maintenance management concrete or mortar for which the correlation has been grasped, and measured the depth of erosion by sulfuric acid in this field environment after a predetermined period of time, The measured value of the erosion depth of concrete or mortar for measuring the concentration of sulfuric acid, the predetermined period, The concentration of sulfuric acid in the field environment, the estimated concentration of sulfuric acid in the field environment, the measured value of the erosion depth of the maintenance concrete or mortar, and the predetermined period, The future erosion situation of concrete or mortar installed in the field environment is predicted and evaluated based on the correlation.
 また、本発明の請求項10に係るコンクリートまたはモルタルの維持管理方法は、上述した請求項9において、前記相関関係は線形の相関関係であることを特徴とする。 Further, the concrete or mortar maintenance management method according to claim 10 of the present invention is characterized in that, in claim 9 described above, the correlation is a linear correlation.
 また、本発明の請求項11に係るコンクリートまたはモルタルの維持管理方法は、上述した請求項9または10において、前記現場環境に設置されたコンクリートまたはモルタルが、設計耐用期間について所定の性能を維持可能であるか否かを前記耐用期間に達する前に予測評価することを特徴とする。 Further, the concrete or mortar maintenance management method according to claim 11 of the present invention is the above-described method according to claim 9 or 10, wherein the concrete or mortar installed in the field environment can maintain a predetermined performance for the design lifetime. It is characterized by carrying out prediction evaluation before reaching the said useful life.
 また、本発明の請求項12に係るコンクリートまたはモルタルの維持管理方法は、上述した請求項9~11のいずれか一つにおいて、前記現場環境の設計硫酸濃度が適正であったか否かを評価することを特徴とする。 In addition, the method for maintaining and managing concrete or mortar according to claim 12 of the present invention evaluates whether or not the design sulfuric acid concentration in the field environment is appropriate in any one of claims 9 to 11 described above. It is characterized by.
 また、本発明の請求項13に係るコンクリートまたはモルタルの維持管理方法は、上述した請求項9~12のいずれか一つにおいて、前記現場環境に設置されたコンクリートまたはモルタルの実際の品質が適正であったか否かを評価することを特徴とする。 According to claim 13 of the present invention, there is provided a method for maintaining concrete or mortar according to any one of claims 9 to 12, wherein the actual quality of the concrete or mortar installed in the field environment is appropriate. It is characterized by evaluating whether or not there was.
 また、本発明の請求項14に係るコンクリートまたはモルタルの維持管理方法は、上述した請求項9~13のいずれか一つにおいて、前記現場環境に設置されたコンクリートまたはモルタルの計画者および製造者の責任の度合いを評価することを特徴とする。 According to claim 14 of the present invention, there is provided a concrete or mortar maintenance management method according to any one of claims 9 to 13, wherein the planner and manufacturer of the concrete or mortar installed in the field environment are provided. It is characterized by evaluating the degree of responsibility.
 また、本発明の請求項15に係るコンクリートまたはモルタルの維持管理装置は、硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、前記相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルを現場環境に設置して、所定期間経過後に測定することによって得られるこの現場環境の硫酸による侵食深さと、前記所定期間と、前記相関関係の情報とに基づいて、前記現場環境の硫酸の濃度を推定する推定手段と、前記推定手段で推定した前記現場環境の硫酸の濃度と、前記現場環境に設置されるものと同種であって前記相関関係が把握された維持管理用のコンクリートまたはモルタルを前記現場環境に設置して、前記所定期間経過後に測定することによって得られるこの現場環境の硫酸による侵食深さと、前記所定期間と、前記相関関係の情報とに基づいて、前記現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価する予測評価手段とを備えることを特徴とする。 Further, a concrete or mortar maintenance management device according to claim 15 of the present invention is a concrete or mortar maintenance management device used in a sulfuric acid atmosphere, and is obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid. Information on the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid, and concrete or mortar for measuring the concentration of sulfuric acid from which the correlation was grasped were installed in the field environment. Estimating means for estimating the concentration of sulfuric acid in the on-site environment based on the erosion depth of sulfuric acid in the on-site environment obtained by measurement after the lapse of the predetermined period, the predetermined period, and the correlation information; The concentration of sulfuric acid in the field environment estimated by the estimation means, and the one installed in the field environment A concrete or mortar for maintenance which is a seed and the correlation is grasped is installed in the field environment, and the depth of erosion by sulfuric acid in the field environment obtained by measuring after the predetermined period has elapsed, And a prediction evaluation means for predicting and evaluating a future erosion state of concrete or mortar installed in the field environment based on the period and the information of the correlation.
 また、本発明の請求項16に係るコンクリートまたはモルタルの維持管理装置は、上述した請求項15において、前記相関関係は線形の相関関係であることを特徴とする。 Further, the concrete or mortar maintenance management apparatus according to claim 16 of the present invention is characterized in that, in the above-mentioned claim 15, the correlation is a linear correlation.
 本発明に係る硫酸濃度の推定方法によれば、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定する。 According to the method for estimating sulfuric acid concentration according to the present invention, concrete or mortar is immersed in a predetermined concentration of sulfuric acid, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid. The concrete or mortar for which the correlation is known is installed in the estimation target environment for a predetermined period, and the erosion depth of sulfuric acid in the environment is measured. The erosion depth and the correlation with the predetermined period are measured. Based on the relationship, the concentration of sulfuric acid in the estimation target environment is estimated.
 つまり、硫酸の濃度は、浸漬期間を推定対象環境に設置した所定期間として、測定した侵食深さに対応する硫酸の濃度を相関関係により求めることで推定することができる。したがって、推定対象環境の硫酸の濃度をより正確に推定することができるという効果を奏する。 That is, the concentration of sulfuric acid can be estimated by obtaining the concentration of sulfuric acid corresponding to the measured erosion depth by the correlation, with the immersion period being a predetermined period installed in the estimation target environment. Therefore, there is an effect that the concentration of sulfuric acid in the estimation target environment can be estimated more accurately.
 また、本発明に係るコンクリートまたはモルタルの設計方法によれば、硫酸雰囲気で用いるコンクリートまたはモルタルの設計方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と前記相関関係とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計する。 The concrete or mortar design method according to the present invention is a concrete or mortar design method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in a predetermined concentration of sulfuric acid, the concentration of sulfuric acid and the immersion period, In advance, and the correlation of the erosion depth of concrete or mortar with sulfuric acid in advance, and based on the estimated concentration of sulfuric acid and service life of the concrete or mortar installation environment and the correlation, Design the rebar cover thickness of the mortar.
 つまり、浸漬期間を耐用年数としてこれと設置環境の硫酸の濃度との積を求め、この積の値に対応する侵食深さを相関関係により求めれば、この侵食深さに基づいて鉄筋かぶり厚を設定することができる。したがって、硫酸雰囲気で用いるコンクリートまたはモルタルを、経済的で合理的に設計することができるという効果を奏する。 In other words, if the immersion period is the service life and the product of this and the concentration of sulfuric acid in the installation environment is obtained, and the erosion depth corresponding to this product value is obtained by correlation, the rebar cover thickness is calculated based on this erosion depth. Can be set. Accordingly, the concrete or mortar used in the sulfuric acid atmosphere can be economically and rationally designed.
 また、本発明に係るコンクリートまたはモルタルの維持管理方法によれば、硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、前記相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルと、現場環境に設置されるものと同種であって前記相関関係が把握された維持管理用のコンクリートまたはモルタルとを同じ現場環境に設置して、所定期間経過後にこの現場環境の硫酸による侵食深さをそれぞれ測定し、前記硫酸の濃度測定用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境の硫酸の濃度を推定し、推定した前記現場環境の硫酸の濃度と、前記維持管理用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価する。 Further, according to the concrete or mortar maintenance management method according to the present invention, the concrete or mortar maintenance management method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in a predetermined concentration of sulfuric acid, the concentration of sulfuric acid and the immersion The correlation between the product of the period and the erosion depth of the concrete or mortar due to the sulfuric acid is grasped in advance, and the sulfuric acid concentration measurement concrete or mortar for which the correlation is grasped is installed in the field environment. A concrete or mortar for maintenance that is the same type as that of the above and whose correlation has been grasped is installed in the same on-site environment, and after the elapse of a predetermined period, the depth of erosion by sulfuric acid in the on-site environment is measured, respectively. The measured value of the erosion depth of concrete or mortar for concentration measurement, the predetermined period, and the correlation The concentration of sulfuric acid in the field environment, the estimated concentration of sulfuric acid in the field environment, the measured value of the erosion depth of the maintenance concrete or mortar, and the predetermined period, Based on the correlation, a future erosion situation of concrete or mortar installed in the field environment is predicted and evaluated.
 つまり、硫酸の濃度測定用のコンクリートまたはモルタルを用いて、この侵食深さと所定期間(浸漬期間)に対応する硫酸の濃度を相関関係から求めることで、現場環境の硫酸の濃度を推定する。そして、維持管理用のコンクリートまたはモルタルの侵食深さを用いて、この侵食深さと推定した硫酸の濃度と所定期間の積との関係を求め、これと相関関係とから、現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測する。予測時点としては、耐用期間よりも短い使用初期の段階(所定期間経過時)とすることができる。したがって、現場環境に設置されたコンクリートまたはモルタルについて、硫酸による将来の侵食状況を使用初期段階で予測することができるという効果を奏する。 That is, by using the concrete or mortar for measuring the concentration of sulfuric acid, the concentration of sulfuric acid corresponding to the erosion depth and the predetermined period (immersion period) is obtained from the correlation to estimate the sulfuric acid concentration in the field environment. Then, using the erosion depth of the maintenance concrete or mortar, the relationship between the erosion depth and the estimated sulfuric acid concentration and the product of the predetermined period was obtained, and from this and the correlation, it was installed in the field environment. Predict the future erosion of concrete or mortar. The predicted time point may be an initial stage of use (when a predetermined period has elapsed) that is shorter than the service life. Therefore, the concrete or mortar installed in the field environment has the effect of being able to predict the future erosion situation due to sulfuric acid at the initial stage of use.
図1は、本発明に係る硫酸濃度の推定方法および装置の実施例を示すフローチャート図である。FIG. 1 is a flowchart showing an embodiment of the sulfuric acid concentration estimation method and apparatus according to the present invention. 図2は、硫酸浸漬期間と硫酸濃度の積と、硫酸による侵食深さとの相関関係の一例を示すグラフ図である。FIG. 2 is a graph showing an example of the correlation between the product of the sulfuric acid immersion period and the sulfuric acid concentration, and the depth of erosion by sulfuric acid. 図3は、コンクリートの硫酸浸漬期間と硫酸濃度の積と、硫酸による侵食深さとの関係を示した図である。FIG. 3 is a diagram showing the relationship between the product of the sulfuric acid immersion period of concrete and the sulfuric acid concentration, and the depth of erosion by sulfuric acid. 図4は、モルタルの硫酸浸漬期間と硫酸濃度の積と、硫酸による侵食深さとの関係を示した図である。FIG. 4 is a view showing the relationship between the product of the sulfuric acid immersion period of mortar and the sulfuric acid concentration, and the erosion depth by sulfuric acid. 図5は、本発明に係るコンクリートまたはモルタルの設計方法および装置の実施例を示すフローチャート図である。FIG. 5 is a flowchart showing an embodiment of a concrete or mortar design method and apparatus according to the present invention. 図6は、鉄筋かぶり厚を説明する断面図である。FIG. 6 is a cross-sectional view illustrating the reinforcing bar cover thickness. 図7は、本発明に係るコンクリートまたはモルタルの設計方法および装置による設計例を説明する図である。FIG. 7 is a diagram for explaining a design example using the concrete or mortar design method and apparatus according to the present invention. 図8は、本発明に係るコンクリートまたはモルタルの維持管理方法および装置の実施例を示すフローチャート図である。FIG. 8 is a flowchart showing an embodiment of a concrete or mortar maintenance method and apparatus according to the present invention. 図9は、将来の侵食状況を予測するための図である。FIG. 9 is a diagram for predicting the future erosion situation. 図10は、本発明による維持管理方法の具体例を示す図である。FIG. 10 is a diagram showing a specific example of the maintenance method according to the present invention.
 以下に、本発明に係る硫酸濃度の推定方法および装置、コンクリートまたはモルタルの設計方法および装置、ならびに維持管理方法および装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of a method and apparatus for estimating sulfuric acid concentration, a method and apparatus for designing concrete or mortar, and a maintenance method and apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[硫酸濃度の推定方法および装置]
 まず、本発明に係る硫酸濃度の推定方法および装置について説明する。
 図1に示すように、本発明に係る硫酸濃度の推定方法は、まず、室内実験等により予めコンクリートまたはモルタルを所定濃度の硫酸に浸漬し、硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておく(ステップS1)。
[Method and apparatus for estimating sulfuric acid concentration]
First, the sulfuric acid concentration estimation method and apparatus according to the present invention will be described.
As shown in FIG. 1, the sulfuric acid concentration estimation method according to the present invention first involves immersing concrete or mortar in a predetermined concentration of sulfuric acid in advance by a laboratory experiment or the like, and using the product of the concentration of sulfuric acid and the immersion period, and sulfuric acid. The correlation with the erosion depth of concrete or mortar is grasped in advance (step S1).
 次に、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置する(ステップS2)。続いて所定期間経過後にこの環境の硫酸による侵食深さを測定する(ステップS3)。最後に、この侵食深さと所定期間と相関関係とに基づいて推定対象環境の硫酸の濃度を推定する(ステップS4)という手順による。 Next, the concrete or mortar for which this correlation has been grasped is placed in the estimation target environment only for a predetermined period (step S2). Subsequently, the erosion depth by sulfuric acid in this environment is measured after a predetermined period of time (step S3). Finally, the sulfuric acid concentration in the estimation target environment is estimated based on the erosion depth, the predetermined period, and the correlation (step S4).
 ここで、本発明者らは、図2に示すように、ケイ酸カルシウム系材料を用いた普通コンクリートの硫酸による侵食深さと、硫酸の平均濃度に浸漬時間を乗じた値(積)との間には線形の相関関係が成り立つことを確認している(詳細については後述する)。この図2は、水セメント比(W/C)が25%であるコンクリートと60%であるコンクリートについて、上記の積に応じた侵食深さ測定値のプロットと、各プロットから求めた回帰直線の一例を示したものである。なお、このような線形関係はモルタルの場合にも成り立つ。 Here, as shown in FIG. 2, the inventors of the present invention are between the depth of erosion of sulfuric acid of ordinary concrete using a calcium silicate-based material and the value (product) obtained by multiplying the average concentration of sulfuric acid by the immersion time. Is confirmed to have a linear correlation (details will be described later). FIG. 2 shows a plot of measured erosion depth according to the above product and a regression line obtained from each plot for concrete with a water-cement ratio (W / C) of 25% and concrete with 60%. An example is shown. Such a linear relationship holds also in the case of mortar.
 したがって、硫酸の濃度は、浸漬期間を推定対象環境に設置した所定期間として、測定した侵食深さに対応する硫酸の濃度を相関関係により求めることで推定することができる。このため、この相関関係が既知のコンクリートまたはモルタルの供試体を、硫酸濃度を調べたい現場に設置することで、その侵食深さと、設置期間の長さとに基づいて、その現場環境の硫酸濃度を推定することが可能となる。これにより、これまで性能照査型設計に基づく設計が困難であった下水道施設などの硫酸環境下におけるコンクリートまたはモルタルの設計を、簡便に行うことができる。 Therefore, the concentration of sulfuric acid can be estimated by obtaining the concentration of sulfuric acid corresponding to the measured erosion depth by the correlation, with the immersion period being a predetermined period installed in the estimation target environment. For this reason, by installing concrete or mortar specimens with a known correlation at the site where the sulfuric acid concentration is to be investigated, the sulfuric acid concentration in the field environment can be determined based on the depth of erosion and the length of the installation period. It is possible to estimate. As a result, it is possible to easily design concrete or mortar in a sulfuric acid environment such as a sewerage facility that has been difficult to design based on performance-checking design.
 また、本発明に係る硫酸濃度の推定装置は、硫酸の濃度を推定する装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定することによって得られる侵食深さおよび所定期間の情報とを有し、相関関係の情報と侵食深さおよび所定期間の情報とに基づいて推定対象環境の硫酸の濃度を推定する推定手段を備えるものである。この推定手段による演算処理はコンピュータを用いて行う。具体的な処理手順および内容については上記の本発明の推定方法の手順および内容と同様である。 Moreover, the sulfuric acid concentration estimation device according to the present invention is a device for estimating the concentration of sulfuric acid, and the product of the concentration of sulfuric acid obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, Information on the correlation between the depth of erosion of concrete and mortar by sulfuric acid and obtained by measuring the depth of erosion by sulfuric acid in this environment after installing the concrete or mortar for which the correlation is known for a specified period. And an estimation means for estimating the concentration of sulfuric acid in the estimation target environment based on the correlation information, the erosion depth, and the information for a predetermined period. The calculation process by this estimation means is performed using a computer. The specific processing procedure and contents are the same as those of the estimation method of the present invention.
 次に、本発明による硫酸濃度の具体的な推定例について、図2を参照しながら説明する。
 図2に示すように、W/C=25%の普通コンクリート供試体を現場に設置して、1年後に測定した侵食深さが10mmであったとすると、この侵食深さに対応する硫酸濃度×硫酸浸漬期間の値は回帰直線から1.0(%・年)と読み取れる。したがって、この現場の平均の硫酸濃度は1.0%と推定することができる。なお、2年後に測定した侵食深さが10mmであったとすると、この現場の平均の硫酸濃度は0.5%と推定することができる。
Next, a specific example of estimating the sulfuric acid concentration according to the present invention will be described with reference to FIG.
As shown in FIG. 2, if a normal concrete specimen with W / C = 25% is installed on the site and the erosion depth measured after one year is 10 mm, the sulfuric acid concentration corresponding to this erosion depth × The value of the sulfuric acid immersion period can be read as 1.0 (% · year) from the regression line. Therefore, it can be estimated that the average sulfuric acid concentration at this site is 1.0%. If the erosion depth measured after 2 years was 10 mm, the average sulfuric acid concentration at this site can be estimated to be 0.5%.
 また、W/C=60%の普通コンクリート供試体を現場に設置して、1年後に測定した侵食深さが10mmであったとすると、この侵食深さに対応する硫酸濃度×硫酸浸漬期間の値は回帰直線から約2.2(%・年)と読み取れる。したがって、この現場の平均の硫酸濃度は2.2%と推定することができる。なお、2年後に測定した侵食深さが10mmであったとすると、この現場の平均の硫酸濃度は1.1%と推定することができる。 Also, assuming that a normal concrete specimen with W / C = 60% is installed on the site and the erosion depth measured after one year is 10 mm, the sulfuric acid concentration corresponding to this erosion depth × the value of the sulfuric acid immersion period Can be read as about 2.2 (% · year) from the regression line. Therefore, it can be estimated that the average sulfuric acid concentration at this site is 2.2%. If the erosion depth measured after 2 years was 10 mm, the average sulfuric acid concentration at this site can be estimated to be 1.1%.
 次に、硫酸による侵食深さと、硫酸濃度と浸漬期間との積との間の相関関係を把握するために行った実験について説明する。 Next, an experiment conducted to grasp the correlation between the erosion depth by sulfuric acid and the product of sulfuric acid concentration and immersion period will be described.
 本実験に用いたセメントペースト、モルタルおよびコンクリートの配合を表1に示す。表1に示すように、結合材(B)には、普通ポルトランドセメント(C)(密度:3.15g/cm3、ブレーン値:3400cm2/g)および高炉スラグ微粉末(密度:2.89g/cm3、ブレーン値:4150cm2/g)を用いた。細骨材には、川砂(表乾密度:2.60g/cm3、吸水率:2.00%)および高炉スラグ細骨材(表乾密度:2.73g/cm3、吸水率:0.40%)を用いた。粗骨材には、砕石(表乾密度:2.75g/cm3、吸水率:0.38%)を用いた。混和剤には、ポリカルボン酸系高性能減水剤を用いた。コンクリート二次製品を想定し、空気量は2.0%で設定した。 Table 1 shows the composition of cement paste, mortar, and concrete used in this experiment. As shown in Table 1, the binder (B) includes ordinary Portland cement (C) (density: 3.15 g / cm 3, brain value: 3400 cm 2 / g) and blast furnace slag fine powder (density: 2.89 g / cm 3). Brain value: 4150 cm <2> / g) was used. Fine aggregates include river sand (surface dry density: 2.60 g / cm3, water absorption: 2.00%) and blast furnace slag fine aggregate (surface dry density: 2.73 g / cm3, water absorption: 0.40%). ) Was used. Crude stone (surface dry density: 2.75 g / cm 3, water absorption: 0.38%) was used as the coarse aggregate. As the admixture, a polycarboxylic acid-based high-performance water reducing agent was used. Assuming a secondary concrete product, the air volume was set at 2.0%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 モルタルの硫酸浸漬試験には、φ50×100mmの円柱供試体を、コンクリートの硫酸浸漬試験には、φ100×200mmの円柱供試体をそれぞれ用いた。供試体は、打設から7日間水中養生を行った後、質量パーセント濃度で5%、10%の硫酸に浸漬させた。7日毎に水で洗浄し、劣化した箇所を除去した後、質量を測定した。また、供試体を乾式コンクリートカッターで切断し、切断面にフェノールフタレイン溶液を噴霧した後、呈色域の直径を測定し、硫酸による侵食深さを求めた。 A cylindrical specimen of φ50 × 100 mm was used for the sulfuric acid immersion test of mortar, and a cylindrical specimen of φ100 × 200 mm was used for the sulfuric acid immersion test of concrete. The specimens were water-cured for 7 days after placement, and then immersed in 5% or 10% sulfuric acid at a mass percentage concentration. After washing with water every 7 days and removing the deteriorated portion, the mass was measured. The specimen was cut with a dry concrete cutter and the cut surface was sprayed with a phenolphthalein solution, and then the diameter of the colored area was measured to determine the depth of erosion by sulfuric acid.
 図3および図4は、それぞれ、コンクリートおよびモルタルの硫酸浸漬期間と硫酸濃度の積と硫酸侵食深さとの関係を示したものである。 3 and 4 show the relationship between the sulfuric acid immersion period of concrete and mortar, the product of sulfuric acid concentration, and sulfuric acid erosion depth, respectively.
 図3および図4中の●は、結合材に普通ポルトランドセメントおよび高炉スラグ微粉末を質量比で40:60の割合で混合したものを用い、細骨材に高炉スラグ細骨材を用いたコンクリート(以下、耐硫酸性水和固化体コンクリートと呼ぶ)およびモルタル(以下、耐硫酸性水和固化体モルタルと呼ぶ)の結果を示している。 In FIGS. 3 and 4, a concrete in which ordinary Portland cement and blast furnace slag fine powder mixed at a mass ratio of 40:60 is used as the binder, and blast furnace slag fine aggregate is used as the fine aggregate. (Hereinafter referred to as sulfuric acid resistant hydrated solidified concrete) and mortar (hereinafter referred to as sulfuric acid resistant hydrated solidified mortar).
 図3および図4中の黒□は、結合材に普通ポルトランドセメントのみを用い、細骨材に川砂を用いたコンクリート(以下、普通コンクリートと呼ぶ)およびモルタル(以下、普通モルタルと呼ぶ)の結果を示している。 The black squares in FIGS. 3 and 4 are the results of concrete (hereinafter referred to as ordinary concrete) and mortar (hereinafter referred to as ordinary mortar) using only ordinary Portland cement as the binder and river sand as the fine aggregate. Is shown.
 図3および図4から、硫酸浸漬期間と硫酸濃度の積と硫酸侵食深さとの間には、直線関係が成り立つことが分かる。すなわち、コンクリートおよびモルタルの硫酸による侵食は、硫酸浸漬期間に比例するとともに、硫酸濃度にも比例することが分かる。また、図3中に示される直線の傾きは、2.9mm/日および0.5mm/日で、耐硫酸性水和固化体コンクリートは、普通コンクリートの6倍の耐硫酸性があるといえる。また、図4中に示される直線の傾きは、3.5mm/日および0.5mm/日で、耐硫酸性水和固化体モルタルは、普通モルタルの7倍の耐硫酸性があるといえる。 3 and 4 show that a linear relationship is established between the sulfuric acid immersion period, the product of sulfuric acid concentration, and the sulfuric acid erosion depth. That is, it can be seen that the corrosion of concrete and mortar by sulfuric acid is proportional to the sulfuric acid immersion period and also to the sulfuric acid concentration. In addition, the slopes of the straight lines shown in FIG. 3 are 2.9 mm / day and 0.5 mm / day, and it can be said that the sulfuric acid-resistant hydrated solid concrete has six times the sulfuric acid resistance of ordinary concrete. In addition, the slopes of the straight lines shown in FIG. 4 are 3.5 mm / day and 0.5 mm / day, and it can be said that the sulfate-resistant hydrated solidified mortar has seven times the sulfuric acid resistance of ordinary mortar.
 表2に、図4の耐硫酸性水和固化体モルタルおよび普通モルタルの配合を、表3に、図3の耐硫酸性水和固化体コンクリートおよび普通コンクリートの配合を示す。また、参考として表4に、図3のプロット・データを示す。 Table 2 shows the composition of the sulfate-resistant hydrated solidified mortar and ordinary mortar shown in FIG. 4, and Table 3 shows the composition of the sulfate-resistant hydrated solidified concrete and ordinary concrete shown in FIG. For reference, Table 4 shows the plot data of FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上説明したように、本発明に係る硫酸濃度の推定方法によれば、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定する。したがって、推定対象環境の硫酸の濃度をより正確に推定することができる。 As described above, according to the sulfuric acid concentration estimation method according to the present invention, concrete or mortar is immersed in a predetermined concentration of sulfuric acid, the product of the concentration of sulfuric acid and the immersion period, and the concrete or mortar with sulfuric acid. The correlation with the erosion depth is grasped in advance, concrete or mortar for which this correlation is grasped is installed in the estimation target environment for a predetermined period, and the erosion depth by sulfuric acid in this environment is measured. The concentration of sulfuric acid in the estimation target environment is estimated based on the predetermined period and the correlation. Therefore, the concentration of sulfuric acid in the estimation target environment can be estimated more accurately.
[コンクリートまたはモルタルの設計方法および装置]
 次に、本発明に係るコンクリートまたはモルタルの設計方法および装置について説明する。
 図5に示すように、本発明に係るコンクリートまたはモルタルの設計方法は、硫酸雰囲気で用いるケイ酸カルシウム系材料を用いたコンクリートまたはモルタルの設計方法である。具体的な手順としては、予めコンクリートまたはモルタルを所定濃度の硫酸に浸漬し、硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を把握しておく(ステップS11)。
[Concrete or mortar design method and equipment]
Next, the concrete or mortar design method and apparatus according to the present invention will be described.
As shown in FIG. 5, the concrete or mortar design method according to the present invention is a concrete or mortar design method using a calcium silicate-based material used in a sulfuric acid atmosphere. As a specific procedure, concrete or mortar is preliminarily immersed in a predetermined concentration of sulfuric acid, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by sulfuric acid is grasped (step) S11).
 次に、コンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数とを想定し(ステップS12)、これらと相関関係とに基づいてコンクリートまたはモルタルの鉄筋かぶり厚を設計する(ステップS13)という手順による。 Next, the concentration of sulfuric acid and the service life of the concrete or mortar installation environment are assumed (step S12), and the reinforcing bar cover thickness of the concrete or mortar is designed based on these and the correlation (step S13). .
 上述したように、本発明者らは、ケイ酸カルシウム系材料を用いた普通コンクリートの硫酸による侵食深さと、硫酸の平均濃度に浸漬時間を乗じた値(積)との間には線形の相関関係が成り立つことを確認している(図2参照)。このような線形関係はモルタルの場合にも成り立つ。 As described above, the present inventors have found that there is a linear correlation between the depth of erosion by sulfuric acid of ordinary concrete using calcium silicate-based material and the value (product) obtained by multiplying the average concentration of sulfuric acid by the immersion time. It has been confirmed that the relationship holds (see FIG. 2). Such a linear relationship holds even in the case of mortar.
 したがって、浸漬期間を耐用年数としてこれと設置環境の硫酸の濃度との積を求め、この積の値に対応する侵食深さをこの線形関係により求めれば、この侵食深さに基づいて図6に示すような鉄筋かぶり厚を最適な寸法に設定することができる。例えば、鉄筋かぶり厚を、対応する侵食深さよりも若干大きい値に設定することができる。 Therefore, if the product of this and the concentration of sulfuric acid in the installation environment is obtained with the immersion period as the service life, and the erosion depth corresponding to the value of this product is obtained by this linear relationship, FIG. 6 is based on this erosion depth. The rebar cover thickness as shown can be set to the optimum dimension. For example, the reinforcing bar cover thickness can be set to a value slightly larger than the corresponding erosion depth.
 このように、本発明の設計方法によれば、設置予定のコンクリートまたはモルタルの侵食速度を線形関係により予測しておくことで、硫酸雰囲気で用いるコンクリートまたはモルタルを、経済的で合理的に設計することができる。これにより、これまで性能照査型設計に基づく設計が困難であった下水道施設などの硫酸環境下におけるコンクリートまたはモルタルの設計を、簡便に行うことができる。 Thus, according to the design method of the present invention, the concrete or mortar used in the sulfuric acid atmosphere is economically and rationally designed by predicting the erosion rate of the concrete or mortar to be installed by a linear relationship. be able to. As a result, it is possible to easily design concrete or mortar in a sulfuric acid environment such as a sewerage facility that has been difficult to design based on performance-checking design.
 また、本発明に係るコンクリートまたはモルタルの設計装置は、硫酸雰囲気で用いるコンクリートまたはモルタルの設計装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と相関関係の情報とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計する設計手段とを備えるものである。この設計手段による演算処理はコンピュータを用いて行う。具体的な処理手順および内容については上記の本発明の設計方法の手順および内容と同様である。 Further, the concrete or mortar design apparatus according to the present invention is a concrete or mortar design apparatus used in a sulfuric acid atmosphere, and the concentration of sulfuric acid and the immersion period obtained by immersing the concrete or mortar in a predetermined concentration of sulfuric acid. Of concrete and mortar, based on information on the correlation between the product of the product and the erosion depth of concrete or mortar with sulfuric acid, and information on the concentration of sulfuric acid in the installation environment of the assumed concrete or mortar And a design means for designing the cover thickness. Arithmetic processing by this design means is performed using a computer. The specific processing procedure and contents are the same as the procedure and contents of the design method of the present invention.
 次に、本発明による具体的な設計例について、図7を参照しながら説明する。
 図7に示すように、コンクリートまたはモルタルの硫酸による侵食速度係数(線形関係の比例係数)を3mm/(%・年)とし、耐用年数を50年と設定した場合には、かぶり厚の設計値d(mm)は、設置環境の硫酸濃度に応じて次のように算定することができる。
Next, a specific design example according to the present invention will be described with reference to FIG.
As shown in Fig. 7, when the erosion rate coefficient of concrete or mortar with sulfuric acid (proportional coefficient of linear relationship) is 3 mm / (% · year) and the service life is set to 50 years, the design value of the cover thickness d (mm) can be calculated as follows according to the sulfuric acid concentration of the installation environment.
 (設置環境の硫酸濃度を0.4%と想定した場合)
 d=3mm/(%・年)×0.4%×50年=60mm
(When the sulfuric acid concentration in the installation environment is assumed to be 0.4%)
d = 3 mm / (% · year) × 0.4% × 50 years = 60 mm
 (設置環境の硫酸濃度を0.7%と想定した場合)
 d=3mm/(%・年)×0.7%×50年=105mm
(When the sulfuric acid concentration in the installation environment is assumed to be 0.7%)
d = 3 mm / (% · year) × 0.7% × 50 years = 105 mm
 このように、設置環境の硫酸濃度が高いほど侵食速度は大きくなり、必要なかぶり厚dが増大することが分かる。 Thus, it can be seen that the higher the sulfuric acid concentration in the installation environment, the higher the erosion rate and the required cover thickness d increases.
 以上説明したように、本発明に係るコンクリートまたはモルタルの設計方法によれば、硫酸雰囲気で用いるコンクリートまたはモルタルの設計方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と前記相関関係とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計する。したがって、硫酸雰囲気で用いるコンクリートまたはモルタルを、経済的で合理的に設計することができる。 As described above, the concrete or mortar design method according to the present invention is a concrete or mortar design method used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in sulfuric acid having a predetermined concentration, and the concentration of the sulfuric acid. The correlation between the product of the soaking period and the erosion depth of concrete or mortar by sulfuric acid is grasped in advance, and based on the assumed concentration of sulfuric acid and the service life of the concrete or mortar installation environment and the correlation Design concrete or mortar rebar cover thickness. Therefore, concrete or mortar used in a sulfuric acid atmosphere can be economically and rationally designed.
[コンクリートまたはモルタルの維持管理方法および装置]
 次に、本発明に係るコンクリートまたはモルタルの維持管理方法および装置について説明する。
 図8に示すように、本発明に係るコンクリートまたはモルタルの維持管理方法は、硫酸雰囲気で用いるケイ酸カルシウム系材料を用いたコンクリートまたはモルタルの維持管理方法である。具体的な手順としては、予めコンクリートまたはモルタルを所定濃度の硫酸に浸漬し、硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておく(ステップS101)。
[Concrete or mortar maintenance method and equipment]
Next, the maintenance management method and apparatus for concrete or mortar according to the present invention will be described.
As shown in FIG. 8, the concrete or mortar maintenance method according to the present invention is a concrete or mortar maintenance method using a calcium silicate-based material used in a sulfuric acid atmosphere. As a specific procedure, concrete or mortar is previously immersed in sulfuric acid of a predetermined concentration, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by sulfuric acid is grasped in advance ( Step S101).
 次に、相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルを現場環境に設置する(ステップS102)。また、現場環境に設置されるものと同種であって相関関係が把握された維持管理用のコンクリートまたはモルタルとを同じ現場環境に設置する(ステップS103)。そして、所定期間経過後にこの現場環境の硫酸による侵食深さをそれぞれ測定する(ステップS104、S105)。 Next, concrete or mortar for measuring the concentration of sulfuric acid whose correlation has been grasped is installed in the field environment (step S102). In addition, maintenance management concrete or mortar which is the same type as that installed in the site environment and whose correlation is grasped is installed in the same site environment (step S103). Then, after the lapse of a predetermined period, the depth of erosion by sulfuric acid in this field environment is measured (steps S104 and S105).
 次に、硫酸の濃度測定用のコンクリートまたはモルタルの侵食深さの測定値と、所定期間と、相関関係とに基づいて、現場環境の硫酸の濃度を推定する(ステップS106)。 Next, the sulfuric acid concentration in the field environment is estimated based on the measured value of the erosion depth of the concrete or mortar for measuring the sulfuric acid concentration, the predetermined period, and the correlation (step S106).
 そして最後に、推定した現場環境の硫酸の濃度と、維持管理用のコンクリートまたはモルタルの侵食深さの測定値と、所定期間と、相関関係とに基づいて、現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価する(ステップS107)という手順による。 And finally, based on the estimated concentration of sulfuric acid in the field environment, the measured depth of erosion depth of the concrete or mortar for maintenance, the predetermined period, and the correlation, the concrete or mortar installed in the field environment The future erosion situation is predicted and evaluated (step S107).
 上述したように、本発明者らは、ケイ酸カルシウム系材料を用いた普通コンクリートの硫酸による侵食深さと、硫酸の平均濃度に浸漬時間を乗じた値(積)との間には線形の相関関係が成り立つことを確認している(図2参照)。このような線形関係はモルタルの場合にも成り立つ。 As described above, the present inventors have found that there is a linear correlation between the depth of erosion by sulfuric acid of ordinary concrete using calcium silicate-based material and the value (product) obtained by multiplying the average concentration of sulfuric acid by the immersion time. It has been confirmed that the relationship holds (see FIG. 2). Such a linear relationship holds even in the case of mortar.
 したがって、硫酸の濃度測定用のコンクリートまたはモルタルを用いて、この侵食深さと所定期間(浸漬期間)に対応する硫酸の濃度を相関関係から求めることで、現場環境の硫酸の濃度を推定することができる。 Therefore, by using concrete or mortar for measuring the concentration of sulfuric acid, the concentration of sulfuric acid in the field environment can be estimated by obtaining the correlation between the erosion depth and the sulfuric acid concentration corresponding to the predetermined period (immersion period). it can.
 そして、図9に示すように、維持管理用のコンクリートまたはモルタルの侵食深さを用いて、この侵食深さと推定した硫酸の濃度と所定期間の積との関係を求め、これと相関関係とから、現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測する。予測時点としては、耐用期間よりも短い使用初期の段階(所定期間経過時)とすることができる。したがって、本発明の維持管理方法によれば、現場環境に設置されたコンクリートまたはモルタルについて、硫酸による将来の侵食状況を使用初期段階で予測することができる。 Then, as shown in FIG. 9, by using the erosion depth of the concrete or mortar for maintenance, the relationship between the erosion depth and the estimated sulfuric acid concentration and the product for a predetermined period is obtained, and from this and the correlation Predict the future erosion of concrete or mortar installed in the field environment. The predicted time point may be an initial stage of use (when a predetermined period has elapsed) that is shorter than the service life. Therefore, according to the maintenance management method of the present invention, it is possible to predict the future erosion situation due to sulfuric acid in the initial stage of use for concrete or mortar installed in the field environment.
 この場合、現場環境に設置されたコンクリートまたはモルタルが少なくとも設計耐用期間(設計耐用年数)について所定の性能を維持可能であるか否かを、この耐用期間に達する前に予測評価することができる。 In this case, it is possible to predict and evaluate whether or not the concrete or mortar installed in the field environment can maintain the predetermined performance for at least the design life (design life).
 例えば、下水道施設のコンクリートの設計耐用年数が50年の場合には、図9に示すように、使用開始から3年、6年、10年の各経過時に侵食深さを測定して、プロットをする。図中、小さい○は3年、6年経過時の測定値を示し、大きい○は10年経過時の測定値を示している。これらの測定値から回帰直線を求めて、現場環境のコンクリートの将来の侵食劣化具合を予測し、残り40年について構造的に機能を維持できるか否かの評価を行ってもよい。 For example, when the design life of concrete in a sewerage facility is 50 years, as shown in FIG. 9, the erosion depth is measured at the elapse of 3 years, 6 years, and 10 years from the start of use, and plots are made. To do. In the figure, a small circle indicates a measured value after 3 years and 6 years, and a large circle indicates a measured value after 10 years. A regression line may be obtained from these measured values to predict the future erosion degradation of the concrete in the field environment, and evaluation may be performed as to whether the function can be maintained structurally for the remaining 40 years.
 また、設計硫酸濃度が適正であったか否かを使用初期段階で評価することもできる。この場合、硫酸の濃度測定用のコンクリートまたはモルタルを用いて、所定期間経過時の現場環境の平均の硫酸の濃度を推定し、推定された硫酸の濃度と現場環境の設計した硫酸の濃度とを比較することで、この設計硫酸濃度が適正であったか否かを評価する。 It is also possible to evaluate whether or not the designed sulfuric acid concentration is appropriate at the initial stage of use. In this case, using concrete or mortar for measuring the concentration of sulfuric acid, estimate the average sulfuric acid concentration in the on-site environment after the lapse of a predetermined period, and calculate the estimated sulfuric acid concentration and the designed sulfuric acid concentration in the on-site environment. By comparing, it is evaluated whether or not the designed sulfuric acid concentration is appropriate.
 また、現場環境に設置されたコンクリートまたはモルタルの計画者および製造者の責任の度合いを評価することもできる。この場合、図9に示すように、維持管理用のコンクリートまたはモルタルの侵食深さと、推定した硫酸の濃度と所定期間の積との関係を求め、これと相関関係との位置関係から評価する。 Also, the degree of responsibility of the planner and manufacturer of concrete or mortar installed in the field environment can be evaluated. In this case, as shown in FIG. 9, the relationship between the erosion depth of the maintenance concrete or mortar and the product of the estimated sulfuric acid concentration and the predetermined period is obtained and evaluated from the positional relationship with the correlation.
 例えば、図9に示すように、予め把握してある線形の相関関係を示す回帰直線(性能線)に対して、当初想定した硫酸濃度を示す線(硫酸濃度線)と、所定期間経過時(例えば10年経過時)に想定される侵食深さを示す線(侵食深さ線)を引く。そして、推定硫酸濃度と所定期間との積に対応して実際に測定された侵食深さを示す点(図中の○)をプロットする。このプロットした点の位置によって責任の所在を明確にすることができる。 For example, as shown in FIG. 9, with respect to a regression line (performance line) indicating a linear correlation that has been grasped in advance, a line (sulfuric acid concentration line) indicating an initially assumed sulfuric acid concentration and a predetermined period ( For example, a line (erosion depth line) indicating the erosion depth assumed at the time of 10 years) is drawn. And the point ((circle) in a figure) which shows the erosion depth actually measured corresponding to the product of an estimated sulfuric acid concentration and a predetermined period is plotted. The location of the responsibility can be clarified by the positions of the plotted points.
 プロットした点が侵食深さ線よりも上側にある場合には、想定された侵食深さを超えて侵食されていることになる。この場合、プロットした点が硫酸濃度線よりも左側にあるときには、設計硫酸濃度よりも実際の硫酸濃度が低く、かつ、現場環境に設置されたコンクリートまたはモルタルの実際の品質が設計品質より良好ではなかったことを示すものである。このように、設計硫酸濃度よりも低い濃度で予想以上に侵食された場合には、製造者側の責任と考えることができる。 If the plotted point is above the erosion depth line, it means that the erosion has exceeded the assumed erosion depth. In this case, when the plotted point is on the left side of the sulfuric acid concentration line, the actual sulfuric acid concentration is lower than the designed sulfuric acid concentration, and the actual quality of the concrete or mortar installed in the field environment is not better than the designed quality. It shows that there was no. Thus, if it is eroded more than expected at a concentration lower than the designed sulfuric acid concentration, it can be considered as the responsibility of the manufacturer.
 プロットした点が硫酸濃度線よりも右側かつ性能線よりも下側にあるときには、現場環境に設置されたコンクリートまたはモルタルの実際の品質が設計品質より良好であったにもかかわらず、設計硫酸濃度よりも実際の硫酸濃度が高いことから、現場環境の硫酸濃度を実際よりも低く見積もった計画者側の責任と考えることができる。一方、プロットした点が硫酸濃度線よりも右側かつ性能線よりも上側にあるときには、設計硫酸濃度よりも実際の硫酸濃度が高く、現場環境に設置されたコンクリートまたはモルタルの実際の品質が設計品質より良好ではなかったことを示すものであり、プロットした点の位置によって計画者と製造者の各責任の度合いを把握することができる。 When the plotted point is on the right side of the sulfuric acid concentration line and below the performance line, the design sulfuric acid concentration even though the actual quality of the concrete or mortar installed in the field environment was better than the design quality Since the actual sulfuric acid concentration is higher than the actual concentration, it can be considered that the planner's responsibility is to estimate the sulfuric acid concentration in the field environment lower than the actual concentration. On the other hand, when the plotted point is on the right side of the sulfuric acid concentration line and above the performance line, the actual sulfuric acid concentration is higher than the designed sulfuric acid concentration, and the actual quality of the concrete or mortar installed in the field environment is the design quality. This indicates that the degree of responsibility of the planner and the manufacturer can be grasped by the positions of the plotted points.
 なお、プロットした点が侵食深さ線よりも下側にある場合には、製品としての性能は満足していると言える。この場合、性能線の上側にあるときには、製品の品質は良好ではないが、実際の硫酸濃度は設計硫酸濃度よりも低かったことが分かる。性能線の下側にあるときには、製品の品質は良好であることが分かる。硫酸濃度線よりも右側にあるときには、実際の硫酸濃度は設計硫酸濃度よりも高かったことが分かる。 If the plotted point is below the erosion depth line, it can be said that the product performance is satisfactory. In this case, when it is above the performance line, the product quality is not good, but it can be seen that the actual sulfuric acid concentration was lower than the designed sulfuric acid concentration. When it is below the performance line, it can be seen that the quality of the product is good. When it is on the right side of the sulfuric acid concentration line, it can be seen that the actual sulfuric acid concentration was higher than the designed sulfuric acid concentration.
 また、本発明に係るコンクリートまたはモルタルの維持管理装置は、硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルを現場環境に設置して、所定期間経過後に測定することによって得られるこの現場環境の硫酸による侵食深さと、所定期間と、相関関係の情報とに基づいて、現場環境の硫酸の濃度を推定する推定手段と、推定手段で推定した現場環境の硫酸の濃度と、現場環境に設置されるものと同種であって相関関係が把握された維持管理用のコンクリートまたはモルタルを現場環境に設置して、所定期間経過後に測定することによって得られるこの現場環境の硫酸による侵食深さと、所定期間と、相関関係の情報とに基づいて、現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価する予測評価手段とを備えるものである。ここで、推定手段および予測評価手段による演算処理はコンピュータを用いて行う。具体的な処理手順および内容については上記の本発明の維持管理方法の手順および内容と同様である。 The concrete or mortar maintenance management device according to the present invention is a concrete or mortar maintenance management device used in a sulfuric acid atmosphere, and the concentration and immersion of sulfuric acid obtained by immersing the concrete or mortar in a predetermined concentration of sulfuric acid. Information on the correlation between the product of the period and the erosion depth of concrete or mortar by sulfuric acid, and concrete or mortar for measuring the concentration of sulfuric acid whose correlation was grasped was installed in the field environment and measured after a predetermined period of time. The estimation means for estimating the concentration of sulfuric acid in the on-site environment based on the depth of sulfuric acid erosion in the on-site environment, the predetermined period, and correlation information, and the sulfuric acid in the on-site environment estimated by the estimation means Concentrations of the maintenance management components that are of the same type as those installed in the field environment and have a correlation Installed in the field environment based on the depth of sulfuric acid erosion depth of the field environment obtained by installing the riet or mortar in the field environment and measuring it after a certain period of time, and the correlation information And a predictive evaluation means for predicting and evaluating the future erosion of concrete or mortar. Here, the arithmetic processing by the estimation means and the prediction evaluation means is performed using a computer. The specific processing procedure and contents are the same as the procedure and contents of the maintenance management method of the present invention.
 次に、本発明による具体的な維持管理例について、図10を参照しながら説明する。
 図10に示すように、まず、実験室にて相関関係把握用のモルタル(W/C=25%)を濃度5%および10%の硫酸に浸漬させ、硫酸侵食深さを測定する。これは、硫酸の温度5℃、20℃、35℃について行う。測定値に基づいて各温度毎の線形の相関関係を把握しておく。
Next, a specific example of maintenance management according to the present invention will be described with reference to FIG.
As shown in FIG. 10, first, a mortar (W / C = 25%) for grasping the correlation is immersed in sulfuric acid having a concentration of 5% and 10% in the laboratory, and the sulfuric acid erosion depth is measured. This is done for sulfuric acid temperatures of 5 ° C, 20 ° C and 35 ° C. Based on the measured value, the linear correlation for each temperature is grasped.
 続いて、現場環境にて、硫酸濃度推定用のモルタル(W/C=25%)と、維持管理用のコンクリート(現場環境のコンクリートと同じ品質であり、設計耐用年数50年とする。)とを現場環境に設置し、3年、6年、10年経過時にそれぞれの侵食深さと現場環境の平均温度とを測定する。この測定の結果、例えば3年経過時の硫酸濃度推定用のモルタルの侵食深さが10mmで、平均温度が25℃であったとする。 Subsequently, in the field environment, mortar for estimating sulfuric acid concentration (W / C = 25%) and maintenance concrete (the quality is the same as the concrete in the field environment and the design life is 50 years). Is measured in the field environment, and the erosion depth and the average temperature of the field environment are measured after 3 years, 6 years and 10 years. As a result of this measurement, for example, it is assumed that the erosion depth of the mortar for estimating the sulfuric acid concentration after 10 years is 10 mm and the average temperature is 25 ° C.
 上記で把握しておいた相関関係から温度25℃の侵食深さ10mmに対する硫酸濃度×浸漬期間の値を読み取る。この値は1.05であることから、現場環境の平均の硫酸濃度は1.05/3年=0.35%と推定される。 Read the value of sulfuric acid concentration x immersion period for an erosion depth of 10 mm at a temperature of 25 ° C. from the correlation obtained above. Since this value is 1.05, the average sulfuric acid concentration in the field environment is estimated to be 1.05 / 3 years = 0.35%.
 一方、維持管理用のコンクリートの線形の相関関係を示す性能線を描くとともに、測定した維持管理用のコンクリートの侵食深さを、推定硫酸濃度×浸漬期間の値1.05に対してプロットする。6年経過時、10年経過時についても同様に、測定した侵食深さをプロットする。 On the other hand, while drawing a performance line showing the linear correlation of the concrete for maintenance and management, the measured erosion depth of the concrete for maintenance and management is plotted against the estimated sulfuric acid concentration × the value of immersion period of 1.05. Similarly, the measured depth of erosion is plotted when 6 years have passed and 10 years have passed.
 10年後の計測値のプロットが右下側の位置Aになった場合には、実際の硫酸濃度が設計硫酸濃度とほぼ等しいこと、現場環境のコンクリートはあまり侵食しなかったことが分かる。一方、プロットが右上側の位置Bになった場合には、設計硫酸濃度よりも実際の濃度がはるかに高かったことになる。この場合には、この後40年について機能の維持が難しいことが分かる。したがって、被覆施工などの対策を施す必要があることが分かる。このように、10年経過時点で、その後の40年、つまり耐用年数50年の製品性能を確認することができる。 When the plot of measured values after 10 years is at the position A on the lower right side, it can be seen that the actual sulfuric acid concentration is almost equal to the designed sulfuric acid concentration, and that the concrete in the field environment did not erode very much. On the other hand, when the plot is at the upper right position B, the actual concentration is much higher than the designed sulfuric acid concentration. In this case, it can be seen that it is difficult to maintain the function for the next 40 years. Therefore, it turns out that measures, such as covering construction, need to be taken. In this way, at the time when 10 years have passed, it is possible to confirm the product performance of the subsequent 40 years, that is, the service life of 50 years.
 以上説明したように、本発明に係るコンクリートまたはモルタルの維持管理方法によれば、硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、前記相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルと、現場環境に設置されるものと同種であって前記相関関係が把握された維持管理用のコンクリートまたはモルタルとを同じ現場環境に設置して、所定期間経過後にこの現場環境の硫酸による侵食深さをそれぞれ測定し、前記硫酸の濃度測定用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境の硫酸の濃度を推定し、推定した前記現場環境の硫酸の濃度と、前記維持管理用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価する。したがって、現場環境に設置されたコンクリートまたはモルタルについて、硫酸による将来の侵食状況を使用初期段階で予測することができる。 As described above, according to the maintenance method of concrete or mortar according to the present invention, the maintenance method of concrete or mortar used in a sulfuric acid atmosphere, wherein the concrete or mortar is immersed in sulfuric acid of a predetermined concentration, and the sulfuric acid The correlation between the product of the concentration of the solution and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid is grasped in advance, and the concrete or mortar for measuring the concentration of sulfuric acid whose correlation is grasped and the field environment Installed concrete or mortar for maintenance that is of the same kind as that installed in the same field environment in the same field environment, and measured the erosion depth of sulfuric acid in this field environment after a predetermined period of time respectively The measured value of the erosion depth of the concrete or mortar for measuring the concentration of sulfuric acid, and the predetermined period And based on the correlation, the concentration of sulfuric acid in the field environment is estimated, the estimated concentration of sulfuric acid in the field environment, the measured value of the erosion depth of the maintenance concrete or mortar, and Based on the predetermined period and the correlation, a future erosion situation of concrete or mortar installed in the field environment is predicted and evaluated. Therefore, the future erosion situation by sulfuric acid can be predicted at the initial use stage of concrete or mortar installed in the field environment.

Claims (16)

  1.  硫酸の濃度を推定する方法であって、
     コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定することを特徴とする硫酸濃度の推定方法。
    A method for estimating the concentration of sulfuric acid,
    Concrete or mortar is immersed in sulfuric acid of a predetermined concentration, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by sulfuric acid is grasped in advance, and this correlation is grasped. Concrete or mortar is placed in the estimation target environment for a predetermined period, and the depth of sulfuric acid erosion in this environment is measured. The concentration of sulfuric acid in the estimation target environment based on the erosion depth and the predetermined period and the correlation A method for estimating a sulfuric acid concentration, characterized in that
  2.  前記相関関係は線形の相関関係であることを特徴とする請求項1に記載の硫酸濃度の推定方法。 2. The sulfuric acid concentration estimation method according to claim 1, wherein the correlation is a linear correlation.
  3.  硫酸の濃度を推定する装置であって、
     コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、
     前記相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定することによって得られる前記侵食深さおよび前記所定期間の情報とを有し、
     前記相関関係の情報と前記侵食深さおよび前記所定期間の情報とに基づいて前記推定対象環境の硫酸の濃度を推定する推定手段を備えることを特徴とする硫酸濃度の推定装置。
    An apparatus for estimating the concentration of sulfuric acid,
    Information on the correlation between the product of the sulfuric acid concentration obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, and the erosion depth of the concrete or mortar by the sulfuric acid;
    The concrete or the mortar for which the correlation is grasped is installed in the estimation target environment for a predetermined period, and the erosion depth obtained by measuring the erosion depth by sulfuric acid in the environment and the information on the predetermined period are included. ,
    An apparatus for estimating sulfuric acid concentration, comprising: estimation means for estimating the concentration of sulfuric acid in the estimation target environment based on the correlation information, the erosion depth, and the information of the predetermined period.
  4.  前記相関関係は線形の相関関係であることを特徴とする請求項3に記載の硫酸濃度の推定装置。 4. The sulfuric acid concentration estimation apparatus according to claim 3, wherein the correlation is a linear correlation.
  5.  硫酸雰囲気で用いるコンクリートまたはモルタルの設計方法であって、
     コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と前記相関関係とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計することを特徴とするコンクリートまたはモルタルの設計方法。
    A design method for concrete or mortar used in a sulfuric acid atmosphere,
    Concrete or mortar is immersed in sulfuric acid of a predetermined concentration, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of the concrete or mortar by sulfuric acid is grasped in advance, and the assumed concrete or mortar A concrete or mortar design method, comprising designing a reinforcing bar cover thickness of concrete or mortar based on the concentration of sulfuric acid in the installation environment, the service life, and the correlation.
  6.  前記相関関係は線形の相関関係であることを特徴とする請求項5に記載のコンクリートまたはモルタルの設計方法。 The method for designing concrete or mortar according to claim 5, wherein the correlation is a linear correlation.
  7.  硫酸雰囲気で用いるコンクリートまたはモルタルの設計装置であって、
     コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、
     想定したコンクリートまたはモルタルの設置環境の硫酸の濃度と耐用年数と前記相関関係の情報とに基づいて、コンクリートまたはモルタルの鉄筋かぶり厚を設計する設計手段とを備えることを特徴とするコンクリートまたはモルタルの設計装置。
    A design device for concrete or mortar used in a sulfuric acid atmosphere,
    Information on the correlation between the product of the sulfuric acid concentration obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, and the erosion depth of the concrete or mortar by the sulfuric acid;
    A design means for designing a reinforcing bar cover thickness of the concrete or mortar based on the assumed concentration of sulfuric acid in the installation environment of the concrete or mortar, the service life, and the information on the correlation is provided. Design equipment.
  8.  前記相関関係は線形の相関関係であることを特徴とする請求項7に記載のコンクリートまたはモルタルの設計装置。 The concrete or mortar design apparatus according to claim 7, wherein the correlation is a linear correlation.
  9.  硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理方法であって、
     コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、
     前記相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルと、現場環境に設置されるものと同種であって前記相関関係が把握された維持管理用のコンクリートまたはモルタルとを同じ現場環境に設置して、所定期間経過後にこの現場環境の硫酸による侵食深さをそれぞれ測定し、
     前記硫酸の濃度測定用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境の硫酸の濃度を推定し、
     推定した前記現場環境の硫酸の濃度と、前記維持管理用のコンクリートまたはモルタルの侵食深さの測定値と、前記所定期間と、前記相関関係とに基づいて、前記現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価することを特徴とするコンクリートまたはモルタルの維持管理方法。
    A maintenance method for concrete or mortar used in a sulfuric acid atmosphere,
    Concrete or mortar is immersed in a predetermined concentration of sulfuric acid, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by the sulfuric acid is grasped in advance,
    The concrete or mortar for measuring the concentration of sulfuric acid whose correlation is known and the concrete or mortar for maintenance which is the same kind as that installed in the field and whose correlation is known are placed in the same field environment. Install and measure the depth of erosion by sulfuric acid in this field environment after a predetermined period of time.
    Based on the measured value of the erosion depth of concrete or mortar for measuring the concentration of sulfuric acid, the predetermined period, and the correlation, the concentration of sulfuric acid in the field environment is estimated,
    Based on the estimated concentration of sulfuric acid in the field environment, the measured value of the erosion depth of the maintenance concrete or mortar, the predetermined period, and the correlation, the concrete installed in the field environment or A maintenance method for concrete or mortar characterized by predicting and evaluating the future erosion of mortar.
  10.  前記相関関係は線形の相関関係であることを特徴とする請求項9に記載のコンクリートまたはモルタルの維持管理方法。 The method for maintaining and managing concrete or mortar according to claim 9, wherein the correlation is a linear correlation.
  11.  前記現場環境に設置されたコンクリートまたはモルタルが、設計耐用期間について所定の性能を維持可能であるか否かを前記耐用期間に達する前に予測評価することを特徴とする請求項9または10に記載のコンクリートまたはモルタルの維持管理方法。 The concrete or mortar installed in the field environment predicts and evaluates whether or not a predetermined performance can be maintained for a design life before reaching the life. Maintenance method of concrete or mortar.
  12.  前記現場環境の設計硫酸濃度が適正であったか否かを評価することを特徴とする請求項9~11のいずれか一つに記載のコンクリートまたはモルタルの維持管理方法。 The method for maintaining and managing concrete or mortar according to any one of claims 9 to 11, wherein whether or not the design sulfuric acid concentration in the field environment is appropriate is evaluated.
  13.  前記現場環境に設置されたコンクリートまたはモルタルの実際の品質が適正であったか否かを評価することを特徴とする請求項9~12のいずれか一つに記載のコンクリートまたはモルタルの維持管理方法。 The method for maintaining and managing concrete or mortar according to any one of claims 9 to 12, wherein it is evaluated whether or not the actual quality of the concrete or mortar installed in the field environment is appropriate.
  14.  前記現場環境に設置されたコンクリートまたはモルタルの計画者および製造者の責任の度合いを評価することを特徴とする請求項9~13のいずれか一つに記載のコンクリートまたはモルタルの維持管理方法。 The method for maintaining and managing concrete or mortar according to any one of claims 9 to 13, wherein a degree of responsibility of a planner and a manufacturer of the concrete or mortar installed in the field environment is evaluated.
  15.  硫酸雰囲気で用いるコンクリートまたはモルタルの維持管理装置であって、
     コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、
     前記相関関係が把握された硫酸の濃度測定用のコンクリートまたはモルタルを現場環境に設置して、所定期間経過後に測定することによって得られるこの現場環境の硫酸による侵食深さと、前記所定期間と、前記相関関係の情報とに基づいて、前記現場環境の硫酸の濃度を推定する推定手段と、
     前記推定手段で推定した前記現場環境の硫酸の濃度と、前記現場環境に設置されるものと同種であって前記相関関係が把握された維持管理用のコンクリートまたはモルタルを前記現場環境に設置して、前記所定期間経過後に測定することによって得られるこの現場環境の硫酸による侵食深さと、前記所定期間と、前記相関関係の情報とに基づいて、前記現場環境に設置されたコンクリートまたはモルタルの将来の侵食状況を予測評価する予測評価手段とを備えることを特徴とするコンクリートまたはモルタルの維持管理装置。
    A maintenance device for concrete or mortar used in a sulfuric acid atmosphere,
    Information on the correlation between the product of the sulfuric acid concentration obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, and the erosion depth of the concrete or mortar by the sulfuric acid;
    The concrete or mortar for measuring the concentration of sulfuric acid whose correlation has been grasped is installed in an on-site environment, and the on-site sulfuric acid erosion depth obtained by measuring after a predetermined period of time, the predetermined period, Estimation means for estimating the concentration of sulfuric acid in the field environment based on correlation information;
    The concentration of sulfuric acid in the on-site environment estimated by the estimating means is the same type as that installed in the on-site environment and the maintenance management concrete or mortar in which the correlation is grasped is installed in the on-site environment. The future of concrete or mortar installed in the field environment based on the depth of sulfuric acid erosion of the field environment obtained by measurement after the predetermined period, the predetermined period, and the correlation information. A maintenance management device for concrete or mortar, comprising prediction evaluation means for predicting and evaluating erosion status.
  16.  前記相関関係は線形の相関関係であることを特徴とする請求項15に記載のコンクリートまたはモルタルの維持管理装置。 The concrete or mortar maintenance management device according to claim 15, wherein the correlation is a linear correlation.
PCT/JP2010/068958 2010-02-02 2010-10-26 Method and device for estimating sulfuric acid concentration, method and device for designing concrete or mortar, and maintenance method and device WO2011096117A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-021524 2010-02-02
JP2010021524A JP5222310B2 (en) 2010-02-02 2010-02-02 Method and apparatus for maintenance of concrete or mortar
JP2010-021462 2010-02-02
JP2010-021558 2010-02-02
JP2010021462A JP4994467B2 (en) 2010-02-02 2010-02-02 Method and apparatus for designing concrete or mortar
JP2010021558A JP5222311B2 (en) 2010-02-02 2010-02-02 Method and apparatus for estimating sulfuric acid concentration

Publications (1)

Publication Number Publication Date
WO2011096117A1 true WO2011096117A1 (en) 2011-08-11

Family

ID=44355139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068958 WO2011096117A1 (en) 2010-02-02 2010-10-26 Method and device for estimating sulfuric acid concentration, method and device for designing concrete or mortar, and maintenance method and device

Country Status (1)

Country Link
WO (1) WO2011096117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630533A (en) * 2013-11-13 2014-03-12 南京工业大学 Method for detecting erosion depth of surface free SO4<2-> ions of concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149227A (en) * 2001-11-16 2003-05-21 Aaki Yamade Kk Waterproof-sheet deterioration monitoring implement and monitoring method thereof using the same
JP2005164256A (en) * 2003-11-28 2005-06-23 Okumura Corp Method for estimating and calculating deterioration of concrete structure
JP2007114024A (en) * 2005-10-19 2007-05-10 Ube Ind Ltd Acid resistance evaluation method for cement cured body
JP2010271062A (en) * 2009-05-19 2010-12-02 Ihi Infrastructure Systems Co Ltd Concrete diagnosis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149227A (en) * 2001-11-16 2003-05-21 Aaki Yamade Kk Waterproof-sheet deterioration monitoring implement and monitoring method thereof using the same
JP2005164256A (en) * 2003-11-28 2005-06-23 Okumura Corp Method for estimating and calculating deterioration of concrete structure
JP2007114024A (en) * 2005-10-19 2007-05-10 Ube Ind Ltd Acid resistance evaluation method for cement cured body
JP2010271062A (en) * 2009-05-19 2010-12-02 Ihi Infrastructure Systems Co Ltd Concrete diagnosis system

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ATSUSHI HATTORI: "Ryusan Shinshoku o Ukeru Tekkin Concrete no Seino Hyoka ni Mukete", CEMENT & CONCRETE, 2005, pages 42 - 48 *
BADER M A: "Performance of concrete in a coastal environment", CEM CONCR COMPOS, vol. 25, no. 4/5, 2003, pages 539 - 548 *
ISAO KURASHIGE ET AL.: "Deterioration of Concrete due to Sulfuric Acid Attack (1)", MONTHLY JOURNAL OF INSTITUTE OF INDUSTRIAL SCIENCE, vol. 52, no. 10, 2000, UNIVERSITY OF TOKYO, pages 501 - 504 *
ISAO KURASHIGE ET AL.: "Ryusan no Sayo o Ukeru Cement Kokatai no Rekka Yosoku Shuho ni Kansuru Kento", PROCEEDINGS OF THE JAPAN CONCRETE INSTITUTE, vol. 24, no. 1, 2002, pages 615 - 620 *
MAKOTO HISADA ET AL.: "Progression of Deterioration of Hardened Cement Under Sulfuric Acid Environment", PROCEEDINGS OF THE JAPAN SOCIETY OF CIVIL ENGINEERS E(WEB), vol. 64, no. 3, 2008, pages 449 - 459 *
TAKASHI FUJII ET AL.: "Koro Slag o Mochiita Concrete no Taikyusei ni Kansuru Kenkyu", CONCRETE KOZOBUTSU NO HOSHU, vol. 9, 2009, pages 57 - 62 *
TOSHIKI AYANO ET AL.: "Chiiki ni Nezashita Concrete Gijutsu / 3. Zairyo no Chiikisei to Concrete Tekko Slag Kotsuzai o Mochiita Concrete no Genjo Mondaiten to Kongo no Hokosei (Chugoku Chiho)", CONCRETE JOURNAL, vol. 48, no. 1, 1 January 2010 (2010-01-01), pages 57 - 61 *
YUSUKE YOSHIDA ET AL.: "A Study on Concrete Deterioration Promoted by the Influence of Sulfuric Acid", CEMENT SCIENCE AND CONCRETE TECHNOLOGY, 2003, pages 308 - 314 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630533A (en) * 2013-11-13 2014-03-12 南京工业大学 Method for detecting erosion depth of surface free SO4<2-> ions of concrete

Similar Documents

Publication Publication Date Title
Güneyisi et al. Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin
Yu et al. Practical model for predicting corrosion rate of steel reinforcement in concrete structures
Figueira et al. Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: The influence of surface finishing and pH
Nokken et al. Time dependent diffusion in concrete—three laboratory studies
Ryan et al. Probabilistic analysis of the time to chloride induced corrosion for different self-compacting concretes
Gowripalan et al. Chloride-ion induced corrosion of galvanized and ordinary steel reinforcement in high-performance concrete
Dousti et al. Binding of externally supplied chlorides in micro silica concrete under field exposure conditions
Kamde et al. Effect of surface preparation on corrosion of steel rebars coated with cement-polymer-composites (CPC) and embedded in concrete
Güneyisi et al. Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements
Lollini et al. The challenge of the performance-based approach for the design of reinforced concrete structures in chloride bearing environment
Safehian et al. Prediction of RC structure service life from field long term chloride diffusion
Liu et al. Stochastic modeling of service life of concrete structures in chloride-laden environments
Jee et al. Long term effect of chloride and sulfates concentration, and cation allied with sulfates on corrosion performance of steel-reinforced in concrete
Berke Corrosion rates of steel in concrete
Zafar et al. Laboratory investigation to study the corrosion initiation of rebars in fly ash concrete
Zheng et al. Corrosion behavior of carbon steel in chloride-contaminated ultra-high-performance cement pastes
Oueslati et al. The effect of SCMs on the corrosion of rebar embedded in mortars subjected to an acetic acid attack
Al-Sodani et al. Chloride diffusion models for plain and blended cement concretes exposed to laboratory and atmospheric marine conditions
Tang et al. Long-term performance of reinforced concrete under a de-icing road environment
Lee et al. Sensitivity analysis for binders in concrete mix to the corrosion risk of steel embedment in chloride-bearing environments
JP5222310B2 (en) Method and apparatus for maintenance of concrete or mortar
WO2011096117A1 (en) Method and device for estimating sulfuric acid concentration, method and device for designing concrete or mortar, and maintenance method and device
Sumukh et al. Predicting the service life of reinforced concrete by incorporating the experimentally determined properties of steel–concrete interface and corrosion
Kondraivendhan Corrosion performance of steel reinforcement in concrete admixed with magnesium chloride and sulphate
JP5222311B2 (en) Method and apparatus for estimating sulfuric acid concentration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845248

Country of ref document: EP

Kind code of ref document: A1