JP5222311B2 - Method and apparatus for estimating sulfuric acid concentration - Google Patents
Method and apparatus for estimating sulfuric acid concentration Download PDFInfo
- Publication number
- JP5222311B2 JP5222311B2 JP2010021558A JP2010021558A JP5222311B2 JP 5222311 B2 JP5222311 B2 JP 5222311B2 JP 2010021558 A JP2010021558 A JP 2010021558A JP 2010021558 A JP2010021558 A JP 2010021558A JP 5222311 B2 JP5222311 B2 JP 5222311B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfuric acid
- concentration
- concrete
- mortar
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 title claims description 246
- 238000000034 method Methods 0.000 title claims description 16
- 239000004567 concrete Substances 0.000 claims description 54
- 239000004570 mortar (masonry) Substances 0.000 claims description 48
- 230000003628 erosive effect Effects 0.000 claims description 45
- 238000007654 immersion Methods 0.000 claims description 21
- 238000013461 design Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 108700029181 Bacteria lipase activator Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Description
本発明は、硫酸濃度の推定方法および装置に関し、例えば、下水道施設などで発生する硫酸濃度の推定方法および装置に関する。 The present invention relates to a method and apparatus for estimating a sulfuric acid concentration, for example, a method and apparatus for estimating a sulfuric acid concentration generated in a sewer facility or the like.
従来、下水道施設などにおいて、硫化水素に細菌が作用して硫酸が発生することが知られている。こうした環境下に設置されるコンクリートまたはモルタルは、硫酸によって腐食劣化するが、このコンクリートまたはモルタルを最適に設計するためには、硫酸による侵食速度を予測する必要がある。 Conventionally, it is known that bacteria act on hydrogen sulfide to generate sulfuric acid in sewerage facilities. Concrete or mortar installed in such an environment is corroded by sulfuric acid, but in order to optimally design the concrete or mortar, it is necessary to predict the erosion rate by sulfuric acid.
そのためには、コンクリートまたはモルタルが設置される環境の硫酸の濃度をできるだけ正確に設定する必要がある。しかしながら、こうした下水道施設など硫酸雰囲気での硫酸の濃度を直接測定することは困難であることから、通常、硫酸の濃度を測定する代わりに硫化水素の濃度を測定し、この測定値に基づいて設計する手法を採用している(例えば、特許文献1参照)。 For this purpose, it is necessary to set the sulfuric acid concentration in the environment where concrete or mortar is installed as accurately as possible. However, since it is difficult to directly measure the concentration of sulfuric acid in a sulfuric acid atmosphere such as in such sewer facilities, the concentration of hydrogen sulfide is usually measured instead of measuring the concentration of sulfuric acid, and the design is based on this measured value. (For example, refer patent document 1).
一方、硫酸による腐食劣化に対して耐久性を有する耐硫酸性コンクリートまたはモルタルの開発が進められている。例えば、本発明者らは、既に特願2009−120407に示す耐硫酸性に優れたコンクリートおよびモルタルを提案している。このコンクリートおよびモルタルは、下水道施設などの硫酸性雰囲気に晒される環境で使用するのに好適な材料である。 On the other hand, development of sulfuric acid resistant concrete or mortar having durability against corrosion degradation by sulfuric acid is underway. For example, the present inventors have already proposed concrete and mortar excellent in sulfuric acid resistance as shown in Japanese Patent Application No. 2009-120407. This concrete and mortar are suitable materials for use in an environment exposed to a sulfuric atmosphere such as a sewerage facility.
上述したように、コンクリートまたはモルタルの設置環境における硫酸の濃度を正確に測定することは困難であることから、設置環境の硫酸濃度をより正確に推定することができる技術の開発が求められていた。 As described above, since it is difficult to accurately measure the concentration of sulfuric acid in the installation environment of concrete or mortar, the development of a technology that can more accurately estimate the sulfuric acid concentration in the installation environment has been required. .
本発明は、上記に鑑みてなされたものであり、コンクリートまたはモルタルの設置環境における硫酸の濃度を把握するのに好適な硫酸濃度の推定方法および装置を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a sulfuric acid concentration estimation method and apparatus suitable for grasping the sulfuric acid concentration in an installation environment of concrete or mortar.
上記した課題を解決し、目的を達成するために、本発明の請求項1に係る硫酸濃度の推定方法は、硫酸の濃度を推定する方法であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定することを特徴とする。 In order to solve the above-described problems and achieve the object, the sulfuric acid concentration estimation method according to claim 1 of the present invention is a method for estimating the concentration of sulfuric acid, in which concrete or mortar is immersed in sulfuric acid having a predetermined concentration. The correlation between the product of the concentration of sulfuric acid and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid is previously grasped, and the concrete or mortar for which the correlation is grasped is set as the estimation target environment. It installs only for a period, measures the erosion depth by the sulfuric acid of this environment, and estimates the density | concentration of the sulfuric acid of the said estimation object environment based on this erosion depth, the said predetermined period, and the said correlation.
また、本発明の請求項2に係る硫酸濃度の推定方法は、上述した請求項1において、前記相関関係は線形の相関関係であることを特徴とする。 The sulfuric acid concentration estimation method according to claim 2 of the present invention is characterized in that, in claim 1 described above, the correlation is a linear correlation.
また、本発明の請求項3に係る硫酸濃度の推定装置は、硫酸の濃度を推定する装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、前記相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定することによって得られる前記侵食深さおよび前記所定期間の情報とを有し、前記相関関係の情報と前記侵食深さおよび前記所定期間の情報とに基づいて前記推定対象環境の硫酸の濃度を推定する推定手段を備えることを特徴とする。 Moreover, the sulfuric acid concentration estimation apparatus according to claim 3 of the present invention is an apparatus for estimating the sulfuric acid concentration, and the sulfuric acid concentration and immersion period obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid. Information on the correlation between the product and the erosion depth of the concrete or mortar by sulfuric acid, and the concrete or mortar for which the correlation has been grasped is installed in the estimation target environment for a predetermined period, and the erosion depth of this environment by sulfuric acid Information on the erosion depth and the predetermined period obtained by measuring the depth, and based on the information on the correlation and the information on the erosion depth and the predetermined period, the sulfuric acid of the estimation target environment An estimation means for estimating the concentration is provided.
また、本発明の請求項4に係る硫酸濃度の推定装置は、上述した請求項3において、前記相関関係は線形の相関関係であることを特徴とする。 The sulfuric acid concentration estimation apparatus according to claim 4 of the present invention is characterized in that, in claim 3 described above, the correlation is a linear correlation.
本発明によれば、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定する。 According to the present invention, concrete or mortar is immersed in sulfuric acid of a predetermined concentration, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the depth of erosion of the concrete or mortar by the sulfuric acid is previously grasped, The concrete or mortar in which this correlation is grasped is installed in the estimation target environment for a predetermined period, and the erosion depth of sulfuric acid in this environment is measured. The estimation is performed based on the erosion depth, the predetermined period, and the correlation. Estimate the concentration of sulfuric acid in the target environment.
つまり、硫酸の濃度は、浸漬期間を推定対象環境に設置した所定期間として、測定した侵食深さに対応する硫酸の濃度を相関関係により求めることで推定することができる。したがって、推定対象環境の硫酸の濃度をより正確に推定することができるという効果を奏する。 That is, the concentration of sulfuric acid can be estimated by obtaining the concentration of sulfuric acid corresponding to the measured erosion depth by the correlation, with the immersion period being a predetermined period set in the estimation target environment. Therefore, there is an effect that the concentration of sulfuric acid in the estimation target environment can be estimated more accurately.
以下に、本発明に係る硫酸濃度の推定方法および装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Embodiments of a method and apparatus for estimating sulfuric acid concentration according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
図1に示すように、本発明に係る硫酸濃度の推定方法は、まず、室内実験等により予めコンクリートまたはモルタルを所定濃度の硫酸に浸漬し、硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておく(ステップS1)。 As shown in FIG. 1, the sulfuric acid concentration estimation method according to the present invention first involves immersing concrete or mortar in a predetermined concentration of sulfuric acid in advance by a laboratory experiment or the like. The correlation with the erosion depth of concrete or mortar is grasped in advance (step S1).
次に、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置する(ステップS2)。続いて所定期間経過後にこの環境の硫酸による侵食深さを測定する(ステップS3)。最後に、この侵食深さと所定期間と相関関係とに基づいて推定対象環境の硫酸の濃度を推定する(ステップS4)という手順による。 Next, the concrete or mortar for which the correlation has been grasped is placed in the estimation target environment for a predetermined period (step S2). Subsequently, the erosion depth by sulfuric acid in this environment is measured after a predetermined period of time (step S3). Finally, the sulfuric acid concentration in the estimation target environment is estimated based on the erosion depth, the predetermined period, and the correlation (step S4).
ここで、本発明者らは、図2に示すように、ケイ酸カルシウム系材料を用いた普通コンクリートの硫酸による侵食深さと、硫酸の平均濃度に浸漬時間を乗じた値(積)との間には線形の相関関係が成り立つことを確認している(詳細については後述する)。この図2は、水セメント比(W/C)が25%であるコンクリートと60%であるコンクリートについて、上記の積に応じた侵食深さ測定値のプロットと、各プロットから求めた回帰直線の一例を示したものである。なお、このような線形関係はモルタルの場合にも成り立つ。 Here, as shown in FIG. 2, the inventors of the present invention are between the depth of erosion of sulfuric acid of ordinary concrete using a calcium silicate-based material and the value (product) obtained by multiplying the average concentration of sulfuric acid by the immersion time. Is confirmed to have a linear correlation (details will be described later). FIG. 2 shows a plot of measured erosion depth according to the above product and a regression line obtained from each plot for concrete with a water-cement ratio (W / C) of 25% and concrete with 60%. An example is shown. Such a linear relationship holds also in the case of mortar.
したがって、硫酸の濃度は、浸漬期間を推定対象環境に設置した所定期間として、測定した侵食深さに対応する硫酸の濃度を相関関係により求めることで推定することができる。このため、この相関関係が既知のコンクリートまたはモルタルの供試体を、硫酸濃度を調べたい現場に設置することで、その侵食深さと、設置期間の長さとに基づいて、その現場環境の硫酸濃度を推定することが可能となる。これにより、これまで性能照査型設計に基づく設計が困難であった下水道施設などの硫酸環境下におけるコンクリートまたはモルタルの設計を、簡便に行うことができる。 Therefore, the concentration of sulfuric acid can be estimated by obtaining the concentration of sulfuric acid corresponding to the measured erosion depth by the correlation, with the immersion period being a predetermined period set in the estimation target environment. For this reason, by installing concrete or mortar specimens with a known correlation at the site where the sulfuric acid concentration is to be investigated, the sulfuric acid concentration in the field environment can be determined based on the depth of erosion and the length of the installation period. It is possible to estimate. As a result, it is possible to easily design concrete or mortar in a sulfuric acid environment such as a sewerage facility that has been difficult to design based on performance-checking design.
また、本発明に係る硫酸濃度の推定装置は、硫酸の濃度を推定する装置であって、コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる硫酸の濃度と浸漬期間との積と、硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定することによって得られる侵食深さおよび所定期間の情報とを有し、相関関係の情報と侵食深さおよび所定期間の情報とに基づいて推定対象環境の硫酸の濃度を推定する推定手段を備えるものである。この推定手段による演算処理はコンピュータを用いて行う。具体的な処理手順および内容については上記の本発明の推定方法の手順および内容と同様である。 Moreover, the sulfuric acid concentration estimation device according to the present invention is a device for estimating the concentration of sulfuric acid, and the product of the concentration of sulfuric acid obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, Information on the correlation between the depth of erosion of concrete and mortar by sulfuric acid and obtained by measuring the depth of erosion by sulfuric acid in this environment after installing the concrete or mortar for which the correlation is known for a specified period. And an estimation means for estimating the concentration of sulfuric acid in the estimation target environment based on the correlation information, the erosion depth, and the information for a predetermined period. The calculation process by this estimation means is performed using a computer. The specific processing procedure and contents are the same as those of the estimation method of the present invention.
次に、本発明による硫酸濃度の具体的な推定例について、図2を参照しながら説明する。
図2に示すように、W/C=25%の普通コンクリート供試体を現場に設置して、1年後に測定した侵食深さが10mmであったとすると、この侵食深さに対応する硫酸濃度×硫酸浸漬期間の値は回帰直線から1.0(%・年)と読み取れる。したがって、この現場の平均の硫酸濃度は1.0%と推定することができる。なお、2年後に測定した侵食深さが10mmであったとすると、この現場の平均の硫酸濃度は0.5%と推定することができる。
Next, a specific example of estimating the sulfuric acid concentration according to the present invention will be described with reference to FIG.
As shown in FIG. 2, if a normal concrete specimen with W / C = 25% is installed on the site and the erosion depth measured after one year is 10 mm, the sulfuric acid concentration corresponding to this erosion depth × The value of the sulfuric acid immersion period can be read as 1.0 (% · year) from the regression line. Therefore, it can be estimated that the average sulfuric acid concentration at this site is 1.0%. If the erosion depth measured after 2 years was 10 mm, the average sulfuric acid concentration at this site can be estimated to be 0.5%.
また、W/C=60%の普通コンクリート供試体を現場に設置して、1年後に測定した侵食深さが10mmであったとすると、この侵食深さに対応する硫酸濃度×硫酸浸漬期間の値は回帰直線から約2.2(%・年)と読み取れる。したがって、この現場の平均の硫酸濃度は2.2%と推定することができる。なお、2年後に測定した侵食深さが10mmであったとすると、この現場の平均の硫酸濃度は1.1%と推定することができる。 Also, assuming that a normal concrete specimen with W / C = 60% is installed on the site and the erosion depth measured after one year is 10 mm, the sulfuric acid concentration corresponding to this erosion depth × the value of the sulfuric acid immersion period Can be read as about 2.2 (% · year) from the regression line. Therefore, it can be estimated that the average sulfuric acid concentration at this site is 2.2%. If the erosion depth measured after 2 years was 10 mm, the average sulfuric acid concentration at this site can be estimated to be 1.1%.
次に、硫酸による侵食深さと、硫酸濃度と浸漬期間との積との間の相関関係を把握するために行った実験について説明する。 Next, an experiment conducted to grasp the correlation between the erosion depth by sulfuric acid and the product of sulfuric acid concentration and immersion period will be described.
本実験に用いたセメントペースト、モルタルおよびコンクリートの配合を表1に示す。表1に示すように、結合材(B)には、普通ポルトランドセメント(C)(密度:3.15g/cm3、ブレーン値:3400cm2/g)および高炉スラグ微粉末(密度:2.89g/cm3、ブレーン値:4150cm2/g)を用いた。細骨材には、川砂(表乾密度:2.60g/cm3、吸水率:2.00%)および高炉スラグ細骨材(表乾密度:2.73g/cm3、吸水率:0.40%)を用いた。粗骨材には、砕石(表乾密度:2.75g/cm3、吸水率:0.38%)を用いた。混和剤には、ポリカルボン酸系高性能減水剤を用いた。コンクリート二次製品を想定し、空気量は2.0%で設定した。 Table 1 shows the composition of cement paste, mortar and concrete used in this experiment. As shown in Table 1, the binder (B) includes ordinary Portland cement (C) (density: 3.15 g / cm 3 , brain value: 3400 cm 2 / g) and blast furnace slag fine powder (density: 2.89 g). / Cm 3 , brain value: 4150 cm 2 / g). Fine aggregates include river sand (surface dry density: 2.60 g / cm 3 , water absorption: 2.00%) and blast furnace slag fine aggregate (surface dry density: 2.73 g / cm 3 , water absorption: 0.7. 40%) was used. Crushed stone (surface dry density: 2.75 g / cm 3 , water absorption: 0.38%) was used as the coarse aggregate. As the admixture, a polycarboxylic acid-based high-performance water reducing agent was used. Assuming a secondary concrete product, the air volume was set at 2.0%.
モルタルの硫酸浸漬試験には、φ50×100mmの円柱供試体を、コンクリートの硫酸浸漬試験には。φ100×200mmの円柱供試体をそれぞれ用いた。供試体は、打設から7日間水中養生を行った後、質量パーセント濃度で5%、10%の硫酸に浸漬させた。7日毎に水で洗浄し、劣化した箇所を除去した後、質量を測定した。また、供試体を乾式コンクリートカッターで切断し、切断面にフェノールフタレイン溶液を噴霧した後、呈色域の直径を測定し、硫酸による侵食深さを求めた。 For mortar sulfuric acid immersion test, φ50 × 100 mm cylindrical specimen, and for concrete sulfuric acid immersion test. A cylindrical specimen of φ100 × 200 mm was used. The specimens were water-cured for 7 days after placement, and then immersed in 5% or 10% sulfuric acid at a mass percentage concentration. After washing with water every 7 days and removing the deteriorated portion, the mass was measured. The specimen was cut with a dry concrete cutter and the cut surface was sprayed with a phenolphthalein solution, and then the diameter of the colored area was measured to determine the depth of erosion by sulfuric acid.
図3および図4は、それぞれ、コンクリートおよびモルタルの硫酸浸漬期間と硫酸濃度の積と硫酸侵食深さとの関係を示したものである。 3 and 4 show the relationship between the sulfuric acid immersion period of concrete and mortar, the product of sulfuric acid concentration, and the sulfuric acid erosion depth, respectively.
図3および図4中の●は、結合材に普通ポルトランドセメントおよび高炉スラグ微粉末を質量比で40:60の割合で混合したものを用い、細骨材に高炉スラグ細骨材を用いたコンクリート(以下、耐硫酸性水和固化体コンクリートと呼ぶ)およびモルタル(以下、耐硫酸性水和固化体モルタルと呼ぶ)の結果を示している。 In FIGS. 3 and 4, a concrete in which ordinary Portland cement and blast furnace slag fine powder mixed at a mass ratio of 40:60 is used as the binder, and blast furnace slag fine aggregate is used as the fine aggregate. (Hereinafter referred to as sulfuric acid resistant hydrated solidified concrete) and mortar (hereinafter referred to as sulfuric acid resistant hydrated solidified mortar).
図3および図4中の黒□は、結合材に普通ポルトランドセメントのみを用い、細骨材に川砂を用いたコンクリート(以下、普通コンクリートと呼ぶ)およびモルタル(以下、普通モルタルと呼ぶ)の結果を示している。 The black squares in FIGS. 3 and 4 are the results of concrete (hereinafter referred to as ordinary concrete) and mortar (hereinafter referred to as ordinary mortar) using only ordinary Portland cement as the binder and river sand as the fine aggregate. Is shown.
図3および図4から、硫酸浸漬期間と硫酸濃度の積と硫酸侵食深さとの間には、直線関係が成り立つことが分かる。すなわち、コンクリートおよびモルタルの硫酸による侵食は、硫酸浸漬期間に比例するとともに、硫酸濃度にも比例することが分かる。また、図3中に示される直線の傾きは、2.9mm/日および0.5mm/日で、耐硫酸性水和固化体コンクリートは、普通コンクリートの6倍の耐硫酸性があるといえる。また、図4中に示される直線の傾きは、3.5mm/日および0.5mm/日で、耐硫酸性水和固化体モルタルは、普通モルタルの7倍の耐硫酸性があるといえる。 3 and 4, it can be seen that a linear relationship is established between the sulfuric acid immersion period, the product of the sulfuric acid concentration, and the sulfuric acid erosion depth. That is, it can be seen that the corrosion of concrete and mortar by sulfuric acid is proportional to the sulfuric acid immersion period and also to the sulfuric acid concentration. In addition, the slopes of the straight lines shown in FIG. 3 are 2.9 mm / day and 0.5 mm / day, and it can be said that the sulfuric acid-resistant hydrated solid concrete has six times the sulfuric acid resistance of ordinary concrete. In addition, the slopes of the straight lines shown in FIG. 4 are 3.5 mm / day and 0.5 mm / day, and it can be said that the sulfate-resistant hydrated solidified mortar has seven times the sulfuric acid resistance of ordinary mortar.
表2に、図4の耐硫酸性水和固化体モルタルおよび普通モルタルの配合を、表3に、図3の耐硫酸性水和固化体コンクリートおよび普通コンクリートの配合を示す。また、参考として表4に、図3のプロット・データを示す。 Table 2 shows the composition of the sulfuric acid-resistant hydrated solidified mortar and ordinary mortar shown in FIG. 4, and Table 3 shows the composition of the sulfuric acid-resistant hydrated solidified concrete and ordinary concrete shown in FIG. For reference, Table 4 shows the plot data of FIG.
以上説明したように、本発明によれば、コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定する。したがって、推定対象環境の硫酸の濃度をより正確に推定することができる。 As described above, according to the present invention, concrete or mortar is immersed in a predetermined concentration of sulfuric acid, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of the concrete or mortar by the sulfuric acid is obtained. The concrete or mortar for which the correlation is grasped in advance is installed in the estimation target environment for a predetermined period, and the erosion depth by sulfuric acid in the environment is measured. The erosion depth and the correlation with the predetermined period are measured. Based on the above, the concentration of sulfuric acid in the estimation target environment is estimated. Therefore, the concentration of sulfuric acid in the estimation target environment can be estimated more accurately.
Claims (4)
コンクリートまたはモルタルを所定濃度の硫酸に浸漬し、前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係を予め把握しておき、この相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定し、この侵食深さと前記所定期間と前記相関関係とに基づいて前記推定対象環境の硫酸の濃度を推定することを特徴とする硫酸濃度の推定方法。 A method for estimating the concentration of sulfuric acid,
Concrete or mortar is immersed in sulfuric acid of a predetermined concentration, and the correlation between the product of the concentration of sulfuric acid and the immersion period and the erosion depth of concrete or mortar by sulfuric acid is grasped in advance, and this correlation is grasped. Concrete or mortar is placed in the estimation target environment for a predetermined period, and the depth of sulfuric acid erosion in this environment is measured. The concentration of sulfuric acid in the estimation target environment based on the erosion depth and the predetermined period and the correlation A method for estimating a sulfuric acid concentration, characterized in that
コンクリートまたはモルタルを所定濃度の硫酸に浸漬することによって得られる前記硫酸の濃度と浸漬期間との積と、前記硫酸によるコンクリートまたはモルタルの侵食深さとの相関関係の情報と、
前記相関関係が把握されたコンクリートまたはモルタルを推定対象環境に所定期間だけ設置してこの環境の硫酸による侵食深さを測定することによって得られる前記侵食深さおよび前記所定期間の情報とを有し、
前記相関関係の情報と前記侵食深さおよび前記所定期間の情報とに基づいて前記推定対象環境の硫酸の濃度を推定する推定手段を備えることを特徴とする硫酸濃度の推定装置。 An apparatus for estimating the concentration of sulfuric acid,
Information on the correlation between the product of the sulfuric acid concentration obtained by immersing concrete or mortar in a predetermined concentration of sulfuric acid and the immersion period, and the erosion depth of the concrete or mortar by the sulfuric acid;
The concrete or the mortar for which the correlation is grasped is installed in the estimation target environment for a predetermined period, and the erosion depth obtained by measuring the erosion depth by sulfuric acid in the environment and the information on the predetermined period are included. ,
An apparatus for estimating sulfuric acid concentration, comprising: estimation means for estimating the concentration of sulfuric acid in the estimation target environment based on the correlation information, the erosion depth, and the information of the predetermined period.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010021558A JP5222311B2 (en) | 2010-02-02 | 2010-02-02 | Method and apparatus for estimating sulfuric acid concentration |
PCT/JP2010/068958 WO2011096117A1 (en) | 2010-02-02 | 2010-10-26 | Method and device for estimating sulfuric acid concentration, method and device for designing concrete or mortar, and maintenance method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010021558A JP5222311B2 (en) | 2010-02-02 | 2010-02-02 | Method and apparatus for estimating sulfuric acid concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011158400A JP2011158400A (en) | 2011-08-18 |
JP5222311B2 true JP5222311B2 (en) | 2013-06-26 |
Family
ID=44590465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010021558A Active JP5222311B2 (en) | 2010-02-02 | 2010-02-02 | Method and apparatus for estimating sulfuric acid concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5222311B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104406904B (en) * | 2014-11-24 | 2016-09-21 | 深圳大学 | A kind of method predicting the Concrete Sulfate Attack degree of depth |
CN106927432A (en) * | 2017-03-23 | 2017-07-07 | 贵州诺威施生物工程有限公司 | Heating system and its application in gas washing in SA production |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3888881B2 (en) * | 2001-11-16 | 2007-03-07 | アーキヤマデ株式会社 | Tarpaulin deterioration monitoring method and tarpaulin deterioration monitoring tool used for the method |
JP4174416B2 (en) * | 2003-11-28 | 2008-10-29 | 株式会社奥村組 | Calculation method for deterioration prediction of concrete structures |
-
2010
- 2010-02-02 JP JP2010021558A patent/JP5222311B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011158400A (en) | 2011-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Güneyisi et al. | Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin | |
Dong et al. | Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials | |
Liu et al. | Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions | |
Ngala et al. | Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 1: calcium nitrite | |
Polder et al. | Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity | |
Song et al. | Corrosion of reinforcing steel in concrete sewers | |
Elsener et al. | Corrosion inhibitors for reinforced concrete | |
Ryan et al. | Probabilistic analysis of the time to chloride induced corrosion for different self-compacting concretes | |
Das et al. | Study on influence of nitrite and phosphate based inhibiting admixtures on chloride interaction, rebar corrosion, and microstructure of concrete subjected to different chloride exposures | |
Tommaselli et al. | Effectiveness of corrosion inhibitors in saturated calcium hydroxide solutions acidified by acid rain components | |
Miyamoto et al. | Deterioration rate of hardened cement caused by high concentrated mixed acid attack | |
Saraswathy et al. | Evaluation of a composite corrosion-inhibiting admixture and its performance in concrete under macrocell corrosion conditions | |
Safehian et al. | Prediction of RC structure service life from field long term chloride diffusion | |
Zheng et al. | Corrosion behavior of carbon steel in chloride-contaminated ultra-high-performance cement pastes | |
Michel et al. | Experimental investigation on the short-term impact of temperature and moisture on reinforcement corrosion | |
Mi et al. | The effect of carbonation on chloride redistribution and corrosion of steel reinforcement | |
Duffó et al. | Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar | |
Qiu et al. | Carbonation Study of Cement-Based Material by Electrochemical Impedance Method. | |
Al-Sodani et al. | Chloride diffusion models for plain and blended cement concretes exposed to laboratory and atmospheric marine conditions | |
Oueslati et al. | The effect of SCMs on the corrosion of rebar embedded in mortars subjected to an acetic acid attack | |
Tang et al. | Electrochemical behavior of steel bars in magnesium phosphate cement | |
JP5222311B2 (en) | Method and apparatus for estimating sulfuric acid concentration | |
Mundra et al. | Application of electrochemical methods for studying steel corrosion in alkali‐activated materials | |
Kondraivendhan | Corrosion performance of steel reinforcement in concrete admixed with magnesium chloride and sulphate | |
Zafar et al. | Effectiveness of extended curing for fly ash concrete against corrosion propagation under severe chloride exposure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20111031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130305 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130308 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5222311 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |