WO2011096074A1 - Light emission device - Google Patents

Light emission device Download PDF

Info

Publication number
WO2011096074A1
WO2011096074A1 PCT/JP2010/051748 JP2010051748W WO2011096074A1 WO 2011096074 A1 WO2011096074 A1 WO 2011096074A1 JP 2010051748 W JP2010051748 W JP 2010051748W WO 2011096074 A1 WO2011096074 A1 WO 2011096074A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
layer
ceramic layer
led
Prior art date
Application number
PCT/JP2010/051748
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 鷲巣
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011552625A priority Critical patent/JP5304905B2/en
Priority to PCT/JP2010/051748 priority patent/WO2011096074A1/en
Publication of WO2011096074A1 publication Critical patent/WO2011096074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to a light emitting device.
  • a light emitting device that obtains white light by emitting light from a phosphor using light from an LED element as excitation light in applications such as lighting has been developed.
  • a light emitting device for example, a phosphor that emits yellow light by blue light emitted from an LED element is used, and a light emitting device that produces white light by mixing each light, or emitted from an LED element.
  • a light emitting device that produces white light by mixing three colors of light emitted from a phosphor using a phosphor that emits blue, green, and red light by ultraviolet light.
  • a light-emitting device As a configuration of such a light-emitting device, a light-emitting device has been developed by directly sealing an LED chip with a curable resin in which a phosphor is dispersed.
  • the white LED has been increased in output and the LED chip is generating heat, which is dispersed in the sealing material as described above.
  • the phosphor When the LED element is directly provided on the LED element, the phosphor may be thermally deteriorated due to heat generated by the LED element.
  • phosphor degradation due to moisture is also a problem.
  • a technique has been proposed in which a phosphor is dispersed not in a resin but in a ceramic and the LED is sealed to prevent deterioration of the sealant (for example, see Patent Document 1). .
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a light emitting device capable of obtaining a sufficient moisture permeation preventing effect and preventing generation of cracks and deterioration of light emission intensity. It is said.
  • an LED element that emits light of a specific wavelength;
  • the light emitted from the LED element is incident, and a wavelength conversion part that converts the incident light into light of a specific wavelength, and
  • the wavelength conversion site is formed from a ceramic layer prepared using polysilazane containing a phosphor as a raw material,
  • a surface layer portion includes a layer that does not include a phosphor, and the thickness of the layer that does not include the phosphor is 0.05 ⁇ m or more and 20 ⁇ m or less.
  • a sufficient moisture permeation preventing effect can be obtained, and generation of cracks and deterioration of light emission intensity can be prevented.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a light emitting device.
  • the light emitting device 100 of the present invention includes an LED chip (light emitting element) 1 that emits light of a specific wavelength, an LED storage portion 2 that stores the LED chip 1, and a condensing lens (optical) provided above the LED chip 1.
  • a layer (wavelength conversion site) 4 4.
  • the LED chip 1 emits light having a first predetermined wavelength.
  • the LED chip 1 emits blue light.
  • the wavelength of the LED chip 1 of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip 1 and the synthesized light with the wavelength of the emitted light from the phosphor being in a complementary color relationship.
  • the wavelengths of the emitted light from the LED chip 1 and the emitted light from the phosphor are preferably visible light.
  • a known blue LED chip can be used.
  • the blue LED chip any existing one including In x Ga 1-x N can be used.
  • the emission peak wavelength of the blue LED chip is preferably 440 to 480 nm.
  • the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. It can be applied to any form of LED chip, such as the so-called flip chip connection type, which is flipped over and connected to the electrode on the substrate, but it is suitable for the manufacturing method of high brightness type or lens type A type is more preferable.
  • the LED storage portion 2 has a substantially box shape, and the LED chip 1 is fixed to the center of the bottom surface.
  • the inner wall surface 2a of the LED storage unit 2 is preferably provided with a mirror member such as Al or Ag.
  • the LED housing portion 2 is not particularly limited, but it is preferable to use a material that is excellent in light reflectivity and hardly deteriorates with respect to light from the LED chip 1.
  • a condensing lens 3 having a ceramic layer 4 formed thereon is provided above the LED chip 1 on the upper end surface of the LED housing portion 2.
  • the condensing lens 3 is for condensing the first predetermined wavelength light (blue light) emitted from the LED chip 1 and the second predetermined wavelength light (yellow light) emitted from the phosphor. is there.
  • the condenser lens 3 has a substantially flat plate shape and is provided so as to cover the upper end opening of the LED storage portion 2.
  • the condenser lens 3 is made of low melting point glass, metal glass, resin, or the like.
  • a ceramic layer 4 made of polysilazane containing a phosphor as a raw material is provided on the lower surface of such a condenser lens 3.
  • a layer 41 not containing a phosphor exists in the surface layer portion (the upper layer portion in FIG. 4A) in the ceramic layer 4, and the thickness of the layer 41 not containing the phosphor is 0.05 ⁇ m or more. 20 ⁇ m or less.
  • the reason why the thickness of the layer 41 not containing the phosphor is set to 0.05 ⁇ m or more and 20 ⁇ m or less is that if it is thinner than 0.05 ⁇ m, a sufficient moisture penetration preventing effect cannot be obtained, and if it is thicker than 20 ⁇ m, cracks This is because of this.
  • FIG. 4B shows a case where the thickness of the layer 41 not containing the phosphor is thicker than 20 ⁇ m
  • FIG. 4C shows a case where the layer not containing the phosphor is thinner than 0.05 ⁇ m.
  • the polysilazane used in the present invention is represented by the following general formula (1).
  • R 1 R 2 SiNR 3 n
  • each of R1, R2, and R3 independently represents a hydrogen atom, an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group, and at least one of R1, R2, and R3 is a hydrogen atom, preferably All are hydrogen atoms, and n represents an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • the polysilazane represented by the above formula (1) and a reaction accelerator according to need are dissolved in an appropriate solvent and cured by heating, excimer light treatment, UV light treatment, and excellent heat resistance and light resistance.
  • a ceramic film can be made.
  • the effect of preventing penetration of moisture can be further improved by heat curing after irradiation with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm.
  • UVU radiation eg, excimer light
  • an acid, a base, or the like is preferably used, but it may not be used.
  • reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates including iridium, platinum, titanium, and aluminum, but are not limited thereto. Particularly preferred when a reaction accelerator is used is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
  • the solvent aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters can be used.
  • methyl ethyl ketone Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
  • the polysilazane concentration is preferably higher, but since the increase in concentration leads to a shortening of the polysilazane storage period, the polysilazane is preferably dissolved in the solvent at 5 wt% or more and 50 wt% or less.
  • the phosphor has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip 1 into a second predetermined wavelength.
  • blue light emitted from the LED chip 1 is converted into yellow light.
  • Such phosphors use oxides or compounds that easily become oxides at high temperatures as raw materials for Y, Gd, Ce, Sm, Al, La and Ga, and mix them well in a stoichiometric ratio.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide.
  • An appropriate amount of fluoride such as ammonium fluoride is mixed with this as a flux and pressed to obtain a molded body.
  • the compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the phosphor obtained in this manner was used as a binder with polysilazane dissolved in a solvent, and a mixed material of the binder and the phosphor was applied to one surface of the condenser lens 3 and allowed to stand to fluoresce.
  • the surface layer portion 41 not containing the phosphor is extracted with a micropipette, and then baked and cured. Thereby, it can be set as the ceramic layer 4 which has the layer 41 which does not contain fluorescent substance in a surface layer part.
  • Such a ceramic layer 4 preferably contains a phosphor having a center particle size of 5 ⁇ m or more and 50 ⁇ m or less in a concentration of 40 wt% or more and 95 wt% or less.
  • the maximum thickness of the ceramic layer is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the lower limit value of the maximum thickness of the ceramic layer is not limited, but the thickness of the ceramic layer is larger than that of the phosphor particles, so that the moisture permeation preventing effect can be obtained and the phosphor particles are deteriorated. Can be suppressed.
  • the thickness of the ceramic layer is preferably 500 ⁇ m or less from the viewpoint of preventing the occurrence of cracks.
  • the condensing lens 3 and the LED housing 2 are sealed in a state where the ceramic layer 4 on the lower surface of the condensing lens 3 and the upper end surface of the LED housing 2 are in close contact with each other, as shown in FIG. It is joined by materials. Then, a space 5 is formed between the ceramic layer 4 and the bottom surface of the LED storage unit 3, and the LED chip 1 is sealed inside the space 5, and deterioration due to oxygen and humidity of the outside air can be suppressed.
  • the space 5 is preferably a low refractive index layer lower than the refractive index of the condenser lens 3.
  • the low refractive index layer for example, a gas layer filled with gas, an air layer, or a resin layer is preferable.
  • the gas layer for example, a gas such as nitrogen is preferably purged.
  • the gas layer As the gas layer, for example, a gas such as nitrogen is preferably purged.
  • the operation of the light emitting device 100 will be described.
  • the LED chip 1 emits blue light toward the outside, the blue light enters the phosphor of the ceramic layer 4. Then, yellow light is emitted from the phosphor excited by the blue light. As a result, the blue light and the yellow light generated by the phosphor are superimposed and emitted as white light to the outside of the LED storage unit 2.
  • the above light-emitting device 100 can be used suitably as a headlight etc. for motor vehicles.
  • the configuration of the light-emitting device 100 of the present invention is not limited to the configuration shown in FIG. 1, and may be, for example, the light-emitting devices 100A and 100B having the configurations shown in FIGS.
  • the ceramic layer 4A is provided on the curved surface that is the inner surface of the dome-shaped condenser lens 3A.
  • the condensing lens 3A is provided above the LED chip 1 fixed at the center of the upper surface of the substantially flat substrate 2A.
  • a ceramic layer 4A containing a phosphor and made of polysilazane is formed on the lower surface of the condenser lens 3A.
  • the ceramic layer 4A has the layer 41A that does not contain a phosphor in the surface layer portion (the lower layer portion in FIG. 2).
  • the condensing lens 3A and the substrate 2A are joined by a sealing material or the like in a state where the lower surfaces of the condensing lens 3A and the ceramic layer 4A and the upper surface of the substrate 2A are in close contact with each other.
  • the space 5A between the ceramic layer 4A and the upper surface of the substrate 2A is preferably a layer having a lower refractive index than the refractive index of the condenser lens 3A, as in FIG.
  • the shape of the exit surface and the entrance surface of the condensing lenses 3 and 3A is not limited to the flat plate shape and the dome shape, but a light collecting property such as an aspherical shape or a cylindrical shape, light distribution properties, etc. are taken into consideration. Any desired shape can be used.
  • the exit surface has a Fresnel structure with light condensing property
  • the condensing lens can be thinned, and the light emitting device can be further miniaturized.
  • the ceramic layer 4B is provided in the LED housing part 2 shown in FIG. 1, a polysilazane solution containing a phosphor is applied to the LED chip 1 side and allowed to stand. After the phosphor is precipitated, in FIG. 3, the upper layer portion 41B not containing the phosphor is extracted with a micropipette and then cured and sealed.
  • a layer that does not contain a phosphor is provided on the surface layer portion in the ceramic layer, thereby creating a layer that prevents moisture from penetrating outside the portion containing the phosphor.
  • the thickness of the layer not including the phosphor is 0.05 ⁇ m or more and 20 ⁇ m or less, it is possible to obtain a sufficient moisture penetration preventing effect and to prevent generation of cracks.
  • the phosphor can be cured at a low temperature of about 500 ° C. without being deteriorated.
  • heat curing is performed after excimer irradiation in the curing step, the effect of preventing moisture penetration can be further improved.
  • the blue LED used for all samples was mounted in a flip chip type using a size of 1000 ⁇ m ⁇ 1000 ⁇ m ⁇ 100 ⁇ m.
  • Yellow fluorescent particles prepared by the following method were used. A mixture in which the following phosphor raw materials are sufficiently mixed is filled in an aluminum crucible, mixed with an appropriate amount of fluoride such as ammonium fluoride as a flux, and 1350 ° C to 1450 ° C in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated.
  • a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ) was obtained by firing for 2 to 5 hours in the temperature range of ° C.
  • the fired product obtained was pulverized, washed, separated, and dried to obtain a desired phosphor.
  • the obtained phosphor was pulverized into phosphor particles having a particle size of about 10 ⁇ m.
  • the composition of the obtained phosphor was examined, it was confirmed that it was a desired phosphor.
  • the emission wavelength of excitation light having a wavelength of 465 nm was examined, it had a peak wavelength of approximately 570 nm.
  • Example 1 Aquamica NL120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8 g of the phosphor prepared in 1 g was mixed, dropped into the LED storage part of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 250 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 10 ⁇ m.
  • Example 2 Aquamica NL120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8 g of the phosphor prepared in 1 g was mixed, dropped into the LED storage part of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 250 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 20 ⁇ m.
  • Example 3 Aquamica NN120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of the phosphor prepared in 1g was mixed, dropped into the LED storage part of Fig. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 450 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 20 ⁇ m.
  • Example 4 Aquamica NP120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of phosphor prepared in 1g was mixed, dropped into the LED storage part of Fig. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette, dried at 100 ° C. for 10 minutes, and cured by irradiation with Xe 2 excimer radiation 30 mWcm ⁇ 2 for 1 minute. Then, it baked at 250 degreeC for 10 minutes. The thickness of the layer not containing the phosphor was 20 ⁇ m.
  • Example 5 Aquamica NN120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of the phosphor prepared in 1g was mixed, dropped into the LED storage part of Fig. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette, dried at 100 ° C. for 10 minutes, and cured by irradiation with Xe 2 excimer radiation 30 mWcm ⁇ 2 for 1 minute. Then, it baked at 450 degreeC for 10 minutes. The thickness of the layer not containing the phosphor was 20 ⁇ m.
  • Example 6 Aquamica NN120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of the phosphor prepared in 1g is mixed, dip-coated on the 1mm-thick glass substrate in Fig. 1, and allowed to stand for 1 minute for the phosphor. After precipitation, the layer containing no phosphor was extracted with a micropipette and then baked at 450 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 1 ⁇ m.
  • the thickness of the phosphor layer was measured by shaving the measurement part of the phosphor layer and the layer not containing the phosphor, and measuring the difference in height before and after shaving using a measurement microscope MF-A505H manufactured by Mitutoyo.
  • Example 3 since it was cured by excimer irradiation, the barrier property was better than that in Example 2. Moreover, it turned out that an effect is acquired also when a ceramic layer is formed on a glass substrate like Example 4.
  • FIG. 4 As described above, by providing a layer containing no phosphor in the ceramic layer in which the phosphor is dispersed in polysilazane so as to be within the definition of the present invention, there is no crack or inactivation, and the wavelength conversion site has high fluorescence intensity. (Ceramic layer) can be created.
  • LED chip (LED element) 2 LED housing part 3 Condensing lens 4, 4A Ceramic layer (wavelength conversion part) 41, 41A Layer 100, 100A not including phosphor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Disclosed is a light emission device (100) comprising: an LED chip (1) which can emit light having a specific wavelength; and a wavelength conversion unit into which the light emitted from the LED chip (1) enters and which can convert the entered light into light having a specific wavelength. The wavelength conversion unit is formed by a ceramic layer (4) that is produced using a phosphor-containing polysilazane as a raw material, the surface layer part of the ceramic layer (4) has a phosphor-free layer (41) which has a thickness of 0.05 to 20 μm inclusive.

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 従来より、照明等の用途においてLED素子からの光を励起光として用いて蛍光体を発光させることで、白色光を得る発光装置が開発されている。
 このような発光装置としては、例えば、LED素子から出射された青色光により黄色光を出射する蛍光体を用い、それぞれの光を混色させることで白色光とする発光装置や、LED素子から出射された紫外光により、青色、緑色、赤色の光を出射する蛍光体を用いて、蛍光体から出射された3色の光を混色させることで白色光とする発光装置などが知られている。
 このような発光装置の構成として、蛍光体が分散された硬化性樹脂により直接LEDチップを封止することで、発光装置としたものが開発されているが、これらの用途が、自動車のヘッドライト等の高輝度が求められる領域に拡大していることもあり、現在、白色LEDの高出力化が進行し、LEDチップの発熱を招いているため、上述のように、封止材に分散された形で直接LED素子上に設けられる場合には、LED素子の発熱により蛍光体が熱劣化する場合がある。
 また、樹脂では水分の浸透を防ぐことができないため、水分による蛍光体の劣化も課題である。
 このような問題を解決するために蛍光体を樹脂ではなく、セラミック中に分散し、LEDを封止することで封止剤の劣化を防ぐ技術が提案されている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, a light emitting device that obtains white light by emitting light from a phosphor using light from an LED element as excitation light in applications such as lighting has been developed.
As such a light emitting device, for example, a phosphor that emits yellow light by blue light emitted from an LED element is used, and a light emitting device that produces white light by mixing each light, or emitted from an LED element. There is known a light emitting device that produces white light by mixing three colors of light emitted from a phosphor using a phosphor that emits blue, green, and red light by ultraviolet light.
As a configuration of such a light-emitting device, a light-emitting device has been developed by directly sealing an LED chip with a curable resin in which a phosphor is dispersed. The white LED has been increased in output and the LED chip is generating heat, which is dispersed in the sealing material as described above. When the LED element is directly provided on the LED element, the phosphor may be thermally deteriorated due to heat generated by the LED element.
In addition, since the penetration of moisture cannot be prevented with a resin, phosphor degradation due to moisture is also a problem.
In order to solve such a problem, a technique has been proposed in which a phosphor is dispersed not in a resin but in a ceramic and the LED is sealed to prevent deterioration of the sealant (for example, see Patent Document 1). .
特開2000-349347号公報JP 2000-349347 A
 しかしながら、一般的なゾル-ゲル媒体を用いた場合のセラミック層の作成は、700℃以上の高温での焼成過程が必要となるため、蛍光体やLED素子の劣化を引き起こしてしまう。
 また、ゾル-ゲル媒体やポリシラザンに蛍光体を分散して硬化すると蛍光体とポリシラザンとの界面に空隙が生じてしまい、この空隙が水分浸透に悪影響を及ぼしていた。
 本発明は、上記事情に鑑みてなされたもので、十分な水分の浸透防止効果を得ることができるとともに、クラックの発生及び発光強度の劣化を防止することのできる発光装置を提供することを目的としている。
However, the production of a ceramic layer using a general sol-gel medium requires a firing process at a high temperature of 700 ° C. or higher, which causes deterioration of phosphors and LED elements.
Further, when the phosphor is dispersed and cured in a sol-gel medium or polysilazane, voids are generated at the interface between the phosphor and polysilazane, and this void has an adverse effect on moisture penetration.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a light emitting device capable of obtaining a sufficient moisture permeation preventing effect and preventing generation of cracks and deterioration of light emission intensity. It is said.
 本発明の一態様によれば、特定波長の光を出射するLED素子と、
 前記LED素子からの出射光が入射され、入射された光を特定波長の光に変換する波長変換部位と、を備え、
 前記波長変換部位は、蛍光体を含有するポリシラザンを原料として作成したセラミック層から形成され、
 前記セラミック層中の表層部分には、蛍光体を含まない層が存在し、蛍光体を含まない層の厚みは0.05μm以上20μm以下であることを特徴とする発光装置が提供される。
According to one aspect of the present invention, an LED element that emits light of a specific wavelength;
The light emitted from the LED element is incident, and a wavelength conversion part that converts the incident light into light of a specific wavelength, and
The wavelength conversion site is formed from a ceramic layer prepared using polysilazane containing a phosphor as a raw material,
In the ceramic layer, a surface layer portion includes a layer that does not include a phosphor, and the thickness of the layer that does not include the phosphor is 0.05 μm or more and 20 μm or less.
 本発明によれば、十分な水分の浸透防止効果を得ることができるとともに、クラックの発生及び発光強度の劣化を防止することができる。 According to the present invention, a sufficient moisture permeation preventing effect can be obtained, and generation of cracks and deterioration of light emission intensity can be prevented.
本発明の発光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the light-emitting device of this invention. 変形例の発光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the light-emitting device of a modification. 変形例の発光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the light-emitting device of a modification. 本発明の集光レンズ及びセラミック層を示した断面図である。It is sectional drawing which showed the condensing lens and ceramic layer of this invention. 比較例の集光レンズ及びセラミック層を示した断面図である。It is sectional drawing which showed the condensing lens and ceramic layer of a comparative example. 比較例の集光レンズ及びセラミック層を示した断面図である。It is sectional drawing which showed the condensing lens and ceramic layer of a comparative example.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
 図1は、発光装置の概略構成を示す断面図である。
 本発明の発光装置100は、特定波長の光を出射するLEDチップ(発光素子)1と、LEDチップ1を収納するLED収納部2と、LEDチップ1の上方に設けられた集光レンズ(光学素子)3と、集光レンズ3に設けられてLEDチップ1からの出射光が入射されて、入射された光を特定波長の光に変換する蛍光体を含有するポリシラザンを原料として作成されたセラミック層(波長変換部位)4と、を備えている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a light emitting device.
The light emitting device 100 of the present invention includes an LED chip (light emitting element) 1 that emits light of a specific wavelength, an LED storage portion 2 that stores the LED chip 1, and a condensing lens (optical) provided above the LED chip 1. Element) 3 and a ceramic made of polysilazane containing a phosphor containing a phosphor that converts the incident light into light having a specific wavelength when light emitted from the LED chip 1 is incident on the condenser lens 3. And a layer (wavelength conversion site) 4.
 LEDチップ1は、第1の所定波長の光を出射するものであり、本実施の形態においては青色光を出射するようになっている。但し、本発明のLEDチップ1の波長及び蛍光体の出射光の波長は限定されず、LEDチップ1による出射光の波長と、蛍光体による出射光の波長とが補色関係にあり合成された光が白色光となる組合せであれば使用可能であるが、本発明の効果を得るためには、LEDチップ1の出射光及び蛍光体の出射光の波長はそれぞれ可視光であることが好ましい。
 なお、このようなLEDチップ1としては、公知の青色LEDチップを用いることができる。青色LEDチップとしては、InxGa1-xN系をはじめ既存のあらゆるものを使用することができる。青色LEDチップの発光ピーク波長は440~480nmのものが好ましい。また、LEDチップの形態としては、基板上にLEDチップを実装し、そのまま上方または側方に放射させるタイプ、又は、サファイア基板などの透明基板上に青色LEDチップを実装し、その表面にバンプを形成した後、裏返して基板上の電極と接続する、いわゆるフリップチップ接続タイプなど、どのような形態のLEDチップでも適用することが可能だが、高輝度タイプやレンズ使用タイプの製造方法により適するフリップチップタイプがより好ましい。
The LED chip 1 emits light having a first predetermined wavelength. In the present embodiment, the LED chip 1 emits blue light. However, the wavelength of the LED chip 1 of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip 1 and the synthesized light with the wavelength of the emitted light from the phosphor being in a complementary color relationship. However, in order to obtain the effect of the present invention, the wavelengths of the emitted light from the LED chip 1 and the emitted light from the phosphor are preferably visible light.
As such an LED chip 1, a known blue LED chip can be used. As the blue LED chip, any existing one including In x Ga 1-x N can be used. The emission peak wavelength of the blue LED chip is preferably 440 to 480 nm. In addition, as a form of the LED chip, the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. It can be applied to any form of LED chip, such as the so-called flip chip connection type, which is flipped over and connected to the electrode on the substrate, but it is suitable for the manufacturing method of high brightness type or lens type A type is more preferable.
 LED収納部2は、略箱状をなしており、底面中央にLEDチップ1が固定されている。LED収納部2の内壁面2aには、例えばAl、Ag等のミラー部材が設けられていることが好ましい。また、LED収納部2としては、特に限定はされないが、光反射性に優れ、LEDチップ1からの光に対して劣化しにくい材料を用いるのが好ましい。 The LED storage portion 2 has a substantially box shape, and the LED chip 1 is fixed to the center of the bottom surface. The inner wall surface 2a of the LED storage unit 2 is preferably provided with a mirror member such as Al or Ag. Further, the LED housing portion 2 is not particularly limited, but it is preferable to use a material that is excellent in light reflectivity and hardly deteriorates with respect to light from the LED chip 1.
 LED収納部2の上端面で、LEDチップ1の上方にはセラミック層4が形成された集光レンズ3が設けられている。
 集光レンズ3は、LEDチップ1から出射された第1の所定波長の光(青色光)及び蛍光体から出射された第2の所定波長の光(黄色光)を集光させるためのものである。集光レンズ3は、略平板状をなしてLED収納部2の上端開口を覆うようにして設けられている。集光レンズ3は、低融点ガラスや金属ガラス、樹脂等からなる。
A condensing lens 3 having a ceramic layer 4 formed thereon is provided above the LED chip 1 on the upper end surface of the LED housing portion 2.
The condensing lens 3 is for condensing the first predetermined wavelength light (blue light) emitted from the LED chip 1 and the second predetermined wavelength light (yellow light) emitted from the phosphor. is there. The condenser lens 3 has a substantially flat plate shape and is provided so as to cover the upper end opening of the LED storage portion 2. The condenser lens 3 is made of low melting point glass, metal glass, resin, or the like.
 そして、このような集光レンズ3の下面に、蛍光体を含有するポリシラザンを原料として作成されたセラミック層4が設けられている。
 図4Aに示すように、セラミック層4中の表層部分(図4A中では上層部分)には、蛍光体を含まない層41が存在し、蛍光体を含まない層41の厚みは0.05μm以上20μm以下である。蛍光体を含まない層41の厚みを0.05μm以上20μm以下としたのは、0.05μmよりも薄いと十分な水分の浸透防止効果を得ることができず、また、20μmよりも厚いとクラックが発生してしまうためである。図4Bは、蛍光体を含まない層41の厚みが20μmよりも厚い場合、図4Cは、蛍光体を含まない層が0.05μmよりも薄い場合を示している。
(ポリシラザン)
 本発明で用いられるポリシラザンとは下記一般式(1)で表される。
(RSiNR)n・・・(1)
 式中、R1、R2、およびR3はそれぞれ独立して水素原子またはアルキル基、アリール基、ビニル基、シクロアルキル基を表し、R1、R2、R3のうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子であり、nは1~60の整数を表す。
 ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。
 上記式(1)に示すポリシラザンと必要に応じた反応促進剤を、適切な溶媒に溶かして塗布し、加熱やエキシマ光処理、UV光処理を行うことで硬化し、耐熱性、耐光性の優れたセラミック膜を作成することができる。特に、170~230nmの範囲の波長成分を含むUVU放射線(例えばエキシマ光)を照射して硬化させた後に、加熱硬化を行うとさらに水分の浸透防止効果を向上させることができる。
 反応促進剤としては酸、塩基などを用いることが好ましいが用いなくても良い。反応促進剤としては例えばトリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸やニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属カルボン酸塩などが挙げられるがこれに限られない。
 反応促進剤を用いる場合に特に好ましいのは金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%が好ましい添加量である。
 溶媒としては脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、エーテル類、エステル類を使用することができる。好ましくはメチルエチルケトン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルフルオライド、クロロホルム、四塩化炭素、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテルである。
 また、ポリシラザン濃度は高い方が好ましいが、濃度の上昇はポリシラザンの保存期間の短縮につながるため、ポリシラザンは、溶媒中に5wt%以上50wt%以下で溶解していることが好ましい。
A ceramic layer 4 made of polysilazane containing a phosphor as a raw material is provided on the lower surface of such a condenser lens 3.
As shown in FIG. 4A, a layer 41 not containing a phosphor exists in the surface layer portion (the upper layer portion in FIG. 4A) in the ceramic layer 4, and the thickness of the layer 41 not containing the phosphor is 0.05 μm or more. 20 μm or less. The reason why the thickness of the layer 41 not containing the phosphor is set to 0.05 μm or more and 20 μm or less is that if it is thinner than 0.05 μm, a sufficient moisture penetration preventing effect cannot be obtained, and if it is thicker than 20 μm, cracks This is because of this. FIG. 4B shows a case where the thickness of the layer 41 not containing the phosphor is thicker than 20 μm, and FIG. 4C shows a case where the layer not containing the phosphor is thinner than 0.05 μm.
(Polysilazane)
The polysilazane used in the present invention is represented by the following general formula (1).
(R 1 R 2 SiNR 3 ) n (1)
In the formula, each of R1, R2, and R3 independently represents a hydrogen atom, an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group, and at least one of R1, R2, and R3 is a hydrogen atom, preferably All are hydrogen atoms, and n represents an integer of 1 to 60.
The molecular shape of polysilazane may be any shape, for example, linear or cyclic.
The polysilazane represented by the above formula (1) and a reaction accelerator according to need are dissolved in an appropriate solvent and cured by heating, excimer light treatment, UV light treatment, and excellent heat resistance and light resistance. A ceramic film can be made. In particular, the effect of preventing penetration of moisture can be further improved by heat curing after irradiation with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm.
As the reaction accelerator, an acid, a base, or the like is preferably used, but it may not be used. Examples of reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates including iridium, platinum, titanium, and aluminum, but are not limited thereto.
Particularly preferred when a reaction accelerator is used is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
As the solvent, aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters can be used. Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
The polysilazane concentration is preferably higher, but since the increase in concentration leads to a shortening of the polysilazane storage period, the polysilazane is preferably dissolved in the solvent at 5 wt% or more and 50 wt% or less.
(蛍光体)
 蛍光体は、LEDチップ1から出射される第1の所定波長の光を第2の所定波長に変換する蛍光体を有している。本実施形態では、LEDチップ1から出射される青色光を黄色光に変換するようになっている。
(Phosphor)
The phosphor has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip 1 into a second predetermined wavelength. In this embodiment, blue light emitted from the LED chip 1 is converted into yellow light.
 このような蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し成形体を得る。成形体を坩堝に詰め、空気中1350~1450°Cの温度範囲で2~5時間焼成して、蛍光体の発光特性を持った焼結体を得ることができる。 Such phosphors use oxides or compounds that easily become oxides at high temperatures as raw materials for Y, Gd, Ce, Sm, Al, La and Ga, and mix them well in a stoichiometric ratio. To obtain raw materials. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material. An appropriate amount of fluoride such as ammonium fluoride is mixed with this as a flux and pressed to obtain a molded body. The compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
 また、このようにして得られた蛍光体を、溶媒に溶かしたポリシラザンをバインダーとして用い、当該バインダーと蛍光体との混合材料を集光レンズ3の一方の面に塗布し、静置して蛍光体を沈殿させてから、表層部分の蛍光体を含まない層41をマイクロピペットで抜き取った後、焼成して硬化する。これによって表層部分に蛍光体を含まない層41を有するセラミック層4とすることができる。
 このようなセラミック層4中には、中心粒径5μm以上50μm以下の蛍光体が重量%濃度で40wt%以上95wt%以下含有されていることが好ましい。このような構成により、蛍光体をセラミック層4中により均一に分散することが可能となる。
 セラミック層の最大厚みは、5μm以上500μm以下であることが好ましい。特に、セラミック層の最大厚みの下限値については、限定されるものではないが、蛍光体粒子よりセラミック層の厚みが厚いことで、水分の浸透防止効果を得ることができ蛍光体粒子の劣化を抑制することができる。また、セラミック層の厚さはクラック発生防止の観点で500μm以下とされることが好ましい。
In addition, the phosphor obtained in this manner was used as a binder with polysilazane dissolved in a solvent, and a mixed material of the binder and the phosphor was applied to one surface of the condenser lens 3 and allowed to stand to fluoresce. After the body is precipitated, the surface layer portion 41 not containing the phosphor is extracted with a micropipette, and then baked and cured. Thereby, it can be set as the ceramic layer 4 which has the layer 41 which does not contain fluorescent substance in a surface layer part.
Such a ceramic layer 4 preferably contains a phosphor having a center particle size of 5 μm or more and 50 μm or less in a concentration of 40 wt% or more and 95 wt% or less. With such a configuration, the phosphor can be more uniformly dispersed in the ceramic layer 4.
The maximum thickness of the ceramic layer is preferably 5 μm or more and 500 μm or less. In particular, the lower limit value of the maximum thickness of the ceramic layer is not limited, but the thickness of the ceramic layer is larger than that of the phosphor particles, so that the moisture permeation preventing effect can be obtained and the phosphor particles are deteriorated. Can be suppressed. The thickness of the ceramic layer is preferably 500 μm or less from the viewpoint of preventing the occurrence of cracks.
 そして、上記の集光レンズ3と、LED収納部2とは、図1に示すように、集光レンズ3の下面のセラミック層4とLED収納部2の上端面とが密着した状態で封止材等により接合されている。
 そして、セラミック層4とLED収納部3の底面との間に空間5が形成され、LEDチップ1は空間5内部に密閉されることとなり、外気の酸素や湿度による劣化を抑制することができる。
 また、上記空間5は、集光レンズ3の屈折率よりも低い低屈折率層とすることが好ましい。低屈折率層としては、例えば、気体が充填された気体層や空気層、樹脂層とすることが好ましい。気体層としては、例えば窒素等の気体がパージされることが好ましい。低屈折率層を気体層とすることによって、蛍光体から集光レンズ3側へ放射した光がLED収納部2の内壁面2aにより全反射されやすく、蛍光体からの出射光の利用効率が高い配置となる。
The condensing lens 3 and the LED housing 2 are sealed in a state where the ceramic layer 4 on the lower surface of the condensing lens 3 and the upper end surface of the LED housing 2 are in close contact with each other, as shown in FIG. It is joined by materials.
Then, a space 5 is formed between the ceramic layer 4 and the bottom surface of the LED storage unit 3, and the LED chip 1 is sealed inside the space 5, and deterioration due to oxygen and humidity of the outside air can be suppressed.
The space 5 is preferably a low refractive index layer lower than the refractive index of the condenser lens 3. As the low refractive index layer, for example, a gas layer filled with gas, an air layer, or a resin layer is preferable. As the gas layer, for example, a gas such as nitrogen is preferably purged. By using the gas layer as the low refractive index layer, the light emitted from the phosphor toward the condenser lens 3 side is easily totally reflected by the inner wall surface 2a of the LED housing portion 2, and the use efficiency of the emitted light from the phosphor is high. Arrangement.
 続いて、発光装置100の動作について説明する。
 まず、LEDチップ1が外側に向かって青色光を出射すると、この青色光はセラミック層4の蛍光体に入射する。すると、この青色光によって励起された蛍光体から黄色光が出射する。
 これにより、青色光と、蛍光体で生じた黄色光とが重ね合わされて、白色光としてLED収納部2の外側へ出射される。
 なお、以上の発光装置100は、自動車用のヘッドライトなどとして好適に使用することができる。
Next, the operation of the light emitting device 100 will be described.
First, when the LED chip 1 emits blue light toward the outside, the blue light enters the phosphor of the ceramic layer 4. Then, yellow light is emitted from the phosphor excited by the blue light.
As a result, the blue light and the yellow light generated by the phosphor are superimposed and emitted as white light to the outside of the LED storage unit 2.
In addition, the above light-emitting device 100 can be used suitably as a headlight etc. for motor vehicles.
 なお、本発明の発光装置100の構成としては、図1に示す構成に限らず、例えば図2や図3に示す構成の発光装置100A,100Bとしても良い。
 図2に示す発光装置100Aでは、セラミック層4Aが、ドーム状の集光レンズ3Aの内面である曲面に設けられている場合である。集光レンズ3Aは、略平板状の基板2Aの上面中央に固定されたLEDチップ1の上方に設けられている。
Note that the configuration of the light-emitting device 100 of the present invention is not limited to the configuration shown in FIG. 1, and may be, for example, the light-emitting devices 100A and 100B having the configurations shown in FIGS.
In the light emitting device 100A shown in FIG. 2, the ceramic layer 4A is provided on the curved surface that is the inner surface of the dome-shaped condenser lens 3A. The condensing lens 3A is provided above the LED chip 1 fixed at the center of the upper surface of the substantially flat substrate 2A.
 そして、集光レンズ3Aの下面に、蛍光体を含有しポリシラザンを材料としたセラミック層4Aが形成されている。このセラミック層4Aは、上述したように表層部分(図2では下層部分)に蛍光体を含まない層41Aを有する。集光レンズ3Aと、基板2Aとは、集光レンズ3A及びセラミック層4Aの下面と、基板2Aの上面とが密着した状態で封止材等により接合されている。
 なお、セラミック層4Aと基板2Aの上面との間の空間5Aは、図1と同様に集光レンズ3Aの屈折率よりも低屈折率層とすることが好ましい。
A ceramic layer 4A containing a phosphor and made of polysilazane is formed on the lower surface of the condenser lens 3A. As described above, the ceramic layer 4A has the layer 41A that does not contain a phosphor in the surface layer portion (the lower layer portion in FIG. 2). The condensing lens 3A and the substrate 2A are joined by a sealing material or the like in a state where the lower surfaces of the condensing lens 3A and the ceramic layer 4A and the upper surface of the substrate 2A are in close contact with each other.
The space 5A between the ceramic layer 4A and the upper surface of the substrate 2A is preferably a layer having a lower refractive index than the refractive index of the condenser lens 3A, as in FIG.
 また、集光レンズ3,3Aの出射面の形状と入射面の形状は、上記平板状、ドーム状に限らず、非球面状、シリンドリカル形状など、集光特性や配光特性等を考慮して所望に設計された形状を任意に用いることができる。また、出射面を、集光性を持たせたフレネル構造とすることで集光レンズを薄型化することができ、発光装置をさらに小型化することが可能となる。 In addition, the shape of the exit surface and the entrance surface of the condensing lenses 3 and 3A is not limited to the flat plate shape and the dome shape, but a light collecting property such as an aspherical shape or a cylindrical shape, light distribution properties, etc. are taken into consideration. Any desired shape can be used. In addition, when the exit surface has a Fresnel structure with light condensing property, the condensing lens can be thinned, and the light emitting device can be further miniaturized.
 図3に示す発光装置100Bでは、図1に示すLED収納部2内にセラミック層4Bが設けられている場合で、蛍光体を含有するポリシラザン溶液をLEDチップ1側に塗布し、静置して蛍光体を沈殿させた後、図3中では上層部分の蛍光体を含まない層41Bをマイクロピペットで抜き取った後、硬化して封止している。 In the light emitting device 100B shown in FIG. 3, when the ceramic layer 4B is provided in the LED housing part 2 shown in FIG. 1, a polysilazane solution containing a phosphor is applied to the LED chip 1 side and allowed to stand. After the phosphor is precipitated, in FIG. 3, the upper layer portion 41B not containing the phosphor is extracted with a micropipette and then cured and sealed.
 本発明では、セラミック層中の表層部分に蛍光体を含まない層を設けることで、蛍光体を含有する部分の外側に水分の浸透を防ぐ層を作成した。この蛍光体を含まない層の厚みは0.05μm以上20μm以下とすることによって、十分な水分の浸透防止効果を得ることができるとともに、クラックの発生を防ぐことができる。
 また、蛍光体を分散する媒体にポリシラザンを用いることによって、500℃程度の低温で蛍光体を劣化することなく、硬化することができる。さらに、硬化工程でエキシマ照射を行った後で加熱硬化を行うとさらに水分の浸透防止効果を向上させることができる。
In the present invention, a layer that does not contain a phosphor is provided on the surface layer portion in the ceramic layer, thereby creating a layer that prevents moisture from penetrating outside the portion containing the phosphor. By setting the thickness of the layer not including the phosphor to 0.05 μm or more and 20 μm or less, it is possible to obtain a sufficient moisture penetration preventing effect and to prevent generation of cracks.
Further, by using polysilazane as a medium in which the phosphor is dispersed, the phosphor can be cured at a low temperature of about 500 ° C. without being deteriorated. Furthermore, if heat curing is performed after excimer irradiation in the curing step, the effect of preventing moisture penetration can be further improved.
 以下、本発明について実施例及び比較例を用いて具体的に説明する。
 すべてのサンプルに使用する青色LEDは1000μm×1000μm×100μmの大きさの物を用いてフリップチップタイプで実装した。
(蛍光体の作成)
 黄色蛍光粒子は下記の方法で作成したものを用いた。下記蛍光体原料を十分に混合した混合物をアルミ坩堝に充填し、これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合し、水素含有窒素ガスを流通させた還元雰囲気中において、1350℃~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.243Al5O12:Ce0.04)を得た。
Y2O3・・・7.41g
Gd23・・・4.01g
CeO2・・・0.63g
Al2O3・・・7.77g
 その後、得られた焼成品を粉砕、洗浄、分離、乾燥することで所望の蛍光体を得た。得られた蛍光体を粉砕することで10μm程度の粒径の蛍光体粒子としたものを用いた。得られた蛍光体について、組成を調べたところ、所望の蛍光体であることを確認でき、波長465nmの励起光における発光波長を調べたところ、おおよそ波長570nmにピーク波長を有していた。
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
The blue LED used for all samples was mounted in a flip chip type using a size of 1000 μm × 1000 μm × 100 μm.
(Creation of phosphor)
Yellow fluorescent particles prepared by the following method were used. A mixture in which the following phosphor raw materials are sufficiently mixed is filled in an aluminum crucible, mixed with an appropriate amount of fluoride such as ammonium fluoride as a flux, and 1350 ° C to 1450 ° C in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated. A fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ) was obtained by firing for 2 to 5 hours in the temperature range of ° C.
Y 2 O 3・ ・ ・ 7.41g
Gd 23・ ・ ・ 4.01g
CeO 2・ ・ ・ 0.63g
Al 2 O 3・ ・ ・ 7.77g
Thereafter, the fired product obtained was pulverized, washed, separated, and dried to obtain a desired phosphor. The obtained phosphor was pulverized into phosphor particles having a particle size of about 10 μm. When the composition of the obtained phosphor was examined, it was confirmed that it was a desired phosphor. When the emission wavelength of excitation light having a wavelength of 465 nm was examined, it had a peak wavelength of approximately 570 nm.
(検討1)
 作成したサンプルの蛍光強度について測定し、下記の評価を行った。
(比較例1)
 アルコキシシロキサンをイソプロピルアルコール中に20wt%で混合した。この溶液1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層部位をマイクロピペットで抜き取った後、150℃で1時間焼成した。その後、さらに700℃で3時間焼成を行い、比較例1のサンプルを作成した。蛍光体を含まない層の厚みは10μmであった。
(Examination 1)
The fluorescence intensity of the prepared sample was measured, and the following evaluation was performed.
(Comparative Example 1)
Alkoxysiloxane was mixed in isopropyl alcohol at 20 wt%. 3 g of the phosphor prepared in 1 g of this solution was mixed, dropped into the LED housing of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, and then the layer portion not containing the phosphor was extracted with a micropipette. And then baked at 150 ° C. for 1 hour. Thereafter, baking was further performed at 700 ° C. for 3 hours to prepare a sample of Comparative Example 1. The thickness of the layer not containing the phosphor was 10 μm.
(比較例2)
 アクアミカNL120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層部位のすべてをマイクロピペットで抜き取った後、250℃で1時間焼成した。
(Comparative Example 2)
Aquamica NL120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8 g of the phosphor prepared in 1 g was mixed, dropped into the LED storage part of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, All the layer portions not containing the phosphor were extracted with a micropipette and then baked at 250 ° C. for 1 hour.
(比較例3)
 アクアミカNL120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、250℃で1時間焼成した。蛍光体を含まない層の厚みは50μmであった。
(Comparative Example 3)
Aquamica NL120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8 g of the phosphor prepared in 1 g was mixed, dropped into the LED storage part of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 250 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 50 μm.
(実施例1)
 アクアミカNL120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、250℃で1時間焼成した。蛍光体を含まない層の厚みは10μmであった。
Example 1
Aquamica NL120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8 g of the phosphor prepared in 1 g was mixed, dropped into the LED storage part of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 250 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 10 μm.
(実施例2)
 アクアミカNL120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、250℃で1時間焼成した。蛍光体を含まない層の厚みは20μmであった。
(Example 2)
Aquamica NL120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8 g of the phosphor prepared in 1 g was mixed, dropped into the LED storage part of FIG. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 250 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 20 μm.
(実施例3)
 アクアミカNN120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、450℃で1時間焼成した。蛍光体を含まない層の厚みは20μmであった。
(Example 3)
Aquamica NN120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of the phosphor prepared in 1g was mixed, dropped into the LED storage part of Fig. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette and then baked at 450 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 20 μm.
(実施例4)
 アクアミカNP120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、100℃で10分間乾燥し、Xe2エキシマ放射線30mWcm-2を1分間照射して硬化した。その後、250℃で10分間焼成した。蛍光体を含まない層の厚みは20μmであった。
Example 4
Aquamica NP120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of phosphor prepared in 1g was mixed, dropped into the LED storage part of Fig. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette, dried at 100 ° C. for 10 minutes, and cured by irradiation with Xe 2 excimer radiation 30 mWcm −2 for 1 minute. Then, it baked at 250 degreeC for 10 minutes. The thickness of the layer not containing the phosphor was 20 μm.
(実施例5)
 アクアミカNN120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図3のLED収納部に滴下、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、100℃で10分間乾燥し、Xe2エキシマ放射線30mWcm-2を1分間照射して硬化した。その後、450℃で10分間焼成した。蛍光体を含まない層の厚みは20μmであった。
(Example 5)
Aquamica NN120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of the phosphor prepared in 1g was mixed, dropped into the LED storage part of Fig. 3 and allowed to stand for 1 minute to precipitate the phosphor, The layer containing no phosphor was extracted with a micropipette, dried at 100 ° C. for 10 minutes, and cured by irradiation with Xe 2 excimer radiation 30 mWcm −2 for 1 minute. Then, it baked at 450 degreeC for 10 minutes. The thickness of the layer not containing the phosphor was 20 μm.
(実施例6)
 アクアミカNN120-20wt%(AZエレクトロニックマテリアルズ株式会社製) 1g中に作成した蛍光体0.8gを混合し、図1の1mm厚のガラス基板上にディップコートし、1分間静置して蛍光体を沈殿させてから、蛍光体を含まない層をマイクロピペットで抜き取った後、450℃で1時間焼成した。蛍光体を含まない層の厚みは1μmであった。
(Example 6)
Aquamica NN120-20wt% (manufactured by AZ Electronic Materials Co., Ltd.) 0.8g of the phosphor prepared in 1g is mixed, dip-coated on the 1mm-thick glass substrate in Fig. 1, and allowed to stand for 1 minute for the phosphor. After precipitation, the layer containing no phosphor was extracted with a micropipette and then baked at 450 ° C. for 1 hour. The thickness of the layer not containing the phosphor was 1 μm.
[評価方法]
 下記の評価をそれぞれ行い、その結果を下記表1に示した。
(濃度)
 蛍光体層の測定箇所からサンプルを削り取り、EDX(エネルギー分散型蛍光X線分析装置)を用いて、作成した蛍光体含有セラミック中の構成成分の濃度比を測定した。
[Evaluation methods]
The following evaluations were performed, and the results are shown in Table 1 below.
(concentration)
The sample was scraped from the measurement part of the phosphor layer, and the concentration ratio of the constituent components in the prepared phosphor-containing ceramic was measured using EDX (energy dispersive X-ray fluorescence analyzer).
(厚み)
 蛍光体層と蛍光体を含まない層の測定箇所を削り、削る前後での高さの差をミツトヨ製 測定顕微鏡 MF-A505Hを用いて測定することで蛍光体層の厚みを測定した。
(Thickness)
The thickness of the phosphor layer was measured by shaving the measurement part of the phosphor layer and the layer not containing the phosphor, and measuring the difference in height before and after shaving using a measurement microscope MF-A505H manufactured by Mitutoyo.
(蛍光強度測定)
 セラミック層中の蛍光体含有量を同一にして各サンプルを作成する。作成したサンプルから蛍光体含有セラミックを削り取り、紛体状態としてそれぞれの蛍光強度を測定した。
 実施例1の強度に対して
90%以上ならば・・・◎
80%以上90%未満ならば・・・○
70%以上80%未満ならば・・・△
70%未満ならば・・・×
(Fluorescence intensity measurement)
Samples are prepared with the same phosphor content in the ceramic layer. The phosphor-containing ceramic was scraped from the prepared sample, and each fluorescent intensity was measured as a powder state.
For the strength of Example 1
If over 90% ... ◎
If it is 80% or more and less than 90% ... ○
If it is 70% or more and less than 80% ... △
If less than 70% ... ×
(高温高湿試験後の蛍光強度測定)
 先の試験で作成したサンプルを85℃/85%の環境下で168時間保存した後、サンプルから蛍光体含有セラミックを削り取り、紛体状態としてそれぞれの蛍光強度を測定した。
 焼成後の蛍光強度に対して
90%以上ならば・・・◎
80%以上90%未満ならば・・・○
70%以上80%未満ならば・・・△
70%未満ならば・・・×
(Fluorescence intensity measurement after high temperature and high humidity test)
The sample prepared in the previous test was stored in an environment of 85 ° C./85% for 168 hours, and then the phosphor-containing ceramic was scraped from the sample, and the fluorescence intensity was measured as a powder state.
For fluorescence intensity after firing
If over 90% ... ◎
If it is 80% or more and less than 90% ... ○
If it is 70% or more and less than 80% ... △
If less than 70% ... ×
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(検討1の結果)
 比較例1に示すように、ゾル-ゲル法でLEDを封止すると、焼成後や高温高湿試験後に発光強度が劣化した。また、比較例2のように蛍光体を含有しない層を設けない場合は、セラミック層の厚みが薄いため、水分が浸透し、高温高湿試験後に発光強度が劣化した。さらに、比較例3のように蛍光体を含有しない層を50μmと厚くすると、蛍光体を含有しない層と蛍光体の密度が高い層とが分離し、クラックが発生した。
 一方、実施例1~3では、焼成後や高温高湿試験後においても発光強度が良好であった。特に実施例3では、エキシマ照射で硬化しているため、実施例2よりもバリア性が良好であった。また、実施例4のようにガラス基板上にセラミック層を形成した場合も効果が得られることがわかった。
 以上より、ポリシラザン中に蛍光体を分散したセラミック層中に、蛍光体を含有しない層を本発明の規定内となるように設けることで、クラックや失活がなく蛍光強度の高い、波長変換部位(セラミック層)を作成することができる。
(Result of Study 1)
As shown in Comparative Example 1, when the LED was sealed by the sol-gel method, the light emission intensity deteriorated after firing or after a high temperature and high humidity test. Moreover, when the layer which does not contain a phosphor as in Comparative Example 2 was not provided, the ceramic layer was thin, so that moisture penetrated and the emission intensity deteriorated after the high temperature and high humidity test. Furthermore, when the layer containing no phosphor as in Comparative Example 3 was thickened to 50 μm, the layer containing no phosphor and the layer having a high phosphor density were separated, and cracks were generated.
On the other hand, in Examples 1 to 3, the light emission intensity was good after firing and after the high temperature and high humidity test. Especially in Example 3, since it was cured by excimer irradiation, the barrier property was better than that in Example 2. Moreover, it turned out that an effect is acquired also when a ceramic layer is formed on a glass substrate like Example 4. FIG.
As described above, by providing a layer containing no phosphor in the ceramic layer in which the phosphor is dispersed in polysilazane so as to be within the definition of the present invention, there is no crack or inactivation, and the wavelength conversion site has high fluorescence intensity. (Ceramic layer) can be created.
1 LEDチップ(LED素子)
2 LED収納部
3 集光レンズ
4、4A セラミック層(波長変換部位)
41、41A 蛍光体を含まない層
100、100A 発光装置
1 LED chip (LED element)
2 LED housing part 3 Condensing lens 4, 4A Ceramic layer (wavelength conversion part)
41, 41A Layer 100, 100A not including phosphor

Claims (5)

  1.  特定波長の光を出射するLED素子と、
     前記LED素子からの出射光が入射され、入射された光を特定波長の光に変換する波長変換部位と、を備え、
     前記波長変換部位は、蛍光体を含有するポリシラザンを原料として作成したセラミック層から形成され、
     前記セラミック層中の表層部分には、蛍光体を含まない層が存在し、蛍光体を含まない層の厚みは0.05μm以上20μm以下であることを特徴とする発光装置。
    LED elements that emit light of a specific wavelength;
    The light emitted from the LED element is incident, and a wavelength conversion part that converts the incident light into light of a specific wavelength, and
    The wavelength conversion site is formed from a ceramic layer prepared using polysilazane containing a phosphor as a raw material,
    The surface layer portion in the ceramic layer includes a layer that does not include a phosphor, and the thickness of the layer that does not include the phosphor is 0.05 μm or more and 20 μm or less.
  2.  前記セラミック層には、中心粒径5μm以上50μm以下の蛍光体が重量%濃度で40wt%以上95wt%以下含有されていることを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the ceramic layer contains a phosphor having a center particle diameter of 5 μm or more and 50 μm or less in a concentration by weight of 40 wt% or more and 95 wt% or less.
  3.  前記セラミック層の最大厚みは、5μm以上500μm以下であることを特徴とする請求項1又は2に記載の発光装置。 3. The light emitting device according to claim 1, wherein the maximum thickness of the ceramic layer is 5 μm or more and 500 μm or less.
  4.  前記ポリシラザンは溶媒中に5wt%以上50wt%以下で溶解していることを特徴とする請求項1~3のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the polysilazane is dissolved in a solvent at 5 wt% or more and 50 wt% or less.
  5.  前記セラミック層の硬化反応の過程で170~230nmの範囲で波長成分を含むVUV放射線が使用されることを特徴とする請求項1~4のいずれか一項に記載の発光装置。 5. The light emitting device according to claim 1, wherein VUV radiation containing a wavelength component in a range of 170 to 230 nm is used in the course of the curing reaction of the ceramic layer.
PCT/JP2010/051748 2010-02-08 2010-02-08 Light emission device WO2011096074A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011552625A JP5304905B2 (en) 2010-02-08 2010-02-08 Light emitting device
PCT/JP2010/051748 WO2011096074A1 (en) 2010-02-08 2010-02-08 Light emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051748 WO2011096074A1 (en) 2010-02-08 2010-02-08 Light emission device

Publications (1)

Publication Number Publication Date
WO2011096074A1 true WO2011096074A1 (en) 2011-08-11

Family

ID=44355101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051748 WO2011096074A1 (en) 2010-02-08 2010-02-08 Light emission device

Country Status (2)

Country Link
JP (1) JP5304905B2 (en)
WO (1) WO2011096074A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165223A (en) * 2012-02-13 2013-08-22 Konica Minolta Inc Wavelength conversion element and manufacturing method thereof, light-emitting device and manufacturing method thereof, and phosphor dispersion liquid
WO2014048997A1 (en) * 2012-09-28 2014-04-03 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component
EP2752897A4 (en) * 2011-10-07 2015-04-29 Konica Minolta Inc Led device manufacturing method and fluorescent material-dispersed solution used in same
KR20160068267A (en) * 2014-12-05 2016-06-15 엘지이노텍 주식회사 Light emitting module
WO2017126440A1 (en) * 2016-01-22 2017-07-27 日本特殊陶業株式会社 Wavelength conversion member and light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349346A (en) * 1999-06-07 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting device
JP2005057239A (en) * 2003-03-27 2005-03-03 Nichia Chem Ind Ltd Semiconductor light emitting device and its manufacturing method
JP2006319238A (en) * 2005-05-16 2006-11-24 Koito Mfg Co Ltd Light emitting device and vehicle-mounted lighting fixture
JP2007250629A (en) * 2006-03-14 2007-09-27 Toshiba Corp Light emitting apparatus and manufacturing method thereof, and fluorescent pattern formation
JP2008244357A (en) * 2007-03-28 2008-10-09 Toshiba Corp Semiconductor light-emitting device
JP2009147312A (en) * 2007-11-20 2009-07-02 Nanoteco Corp White led device and method of manufacturing the same
JP2009540558A (en) * 2006-06-08 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI433346B (en) * 2006-06-22 2014-04-01 Ube Industries A light conversion device, a light-emitting device and a color control method using the same
JP4979299B2 (en) * 2006-08-03 2012-07-18 豊田合成株式会社 Optical device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349346A (en) * 1999-06-07 2000-12-15 Sanken Electric Co Ltd Semiconductor light emitting device
JP2005057239A (en) * 2003-03-27 2005-03-03 Nichia Chem Ind Ltd Semiconductor light emitting device and its manufacturing method
JP2006319238A (en) * 2005-05-16 2006-11-24 Koito Mfg Co Ltd Light emitting device and vehicle-mounted lighting fixture
JP2007250629A (en) * 2006-03-14 2007-09-27 Toshiba Corp Light emitting apparatus and manufacturing method thereof, and fluorescent pattern formation
JP2009540558A (en) * 2006-06-08 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
JP2008244357A (en) * 2007-03-28 2008-10-09 Toshiba Corp Semiconductor light-emitting device
JP2009147312A (en) * 2007-11-20 2009-07-02 Nanoteco Corp White led device and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752897A4 (en) * 2011-10-07 2015-04-29 Konica Minolta Inc Led device manufacturing method and fluorescent material-dispersed solution used in same
US9318646B2 (en) 2011-10-07 2016-04-19 Konica Minolta, Inc. LED device manufacturing method and fluorescent material-dispersed solution used in same
JP2013165223A (en) * 2012-02-13 2013-08-22 Konica Minolta Inc Wavelength conversion element and manufacturing method thereof, light-emitting device and manufacturing method thereof, and phosphor dispersion liquid
WO2014048997A1 (en) * 2012-09-28 2014-04-03 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component
KR20160068267A (en) * 2014-12-05 2016-06-15 엘지이노텍 주식회사 Light emitting module
KR102294163B1 (en) 2014-12-05 2021-08-27 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting module
WO2017126440A1 (en) * 2016-01-22 2017-07-27 日本特殊陶業株式会社 Wavelength conversion member and light-emitting device
JPWO2017126440A1 (en) * 2016-01-22 2018-02-01 日本特殊陶業株式会社 Wavelength conversion member and light emitting device
KR20180083380A (en) * 2016-01-22 2018-07-20 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member and light emitting device
CN108474543A (en) * 2016-01-22 2018-08-31 日本特殊陶业株式会社 Wavelength converting member and light-emitting device
KR102078532B1 (en) * 2016-01-22 2020-02-19 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member and light emitting device
US10707385B2 (en) 2016-01-22 2020-07-07 Ngk Spark Plug Co., Ltd. Wavelength conversion member and light-emitting device

Also Published As

Publication number Publication date
JPWO2011096074A1 (en) 2013-06-10
JP5304905B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
WO2011077548A1 (en) Light-emitting device
KR101021210B1 (en) Light emitting device
US6409938B1 (en) Aluminum fluoride flux synthesis method for producing cerium doped YAG
US7321191B2 (en) Phosphor blends for green traffic signals
JP4980492B2 (en) Manufacturing method of LED device
US7638934B2 (en) Fluorescent substance and light-emitting device
JP5304905B2 (en) Light emitting device
US20150211712A1 (en) Wavelength conversion member, light-emitting device, and method for producing wavelength conversion member
JP2006319238A (en) Light emitting device and vehicle-mounted lighting fixture
JP5662330B2 (en) Co-doped 1-1-2 nitride
JP2008150518A (en) Wavelength converting member and light-emitting device
JP2011238811A (en) Wavelength conversion element and light-emitting device
US20110278616A1 (en) Manufacturing method of wavelength conversion element, wavelength conversion element, and light emitting device
KR20080091032A (en) Fluorescent object
CN110799863B (en) Wavelength conversion member and light source
JP2010505243A (en) Light emitting device
WO2011077547A1 (en) Light-emitting device
JP5803940B2 (en) Light emitting device and manufacturing method thereof
JP2005150484A (en) Coating film for semiconductor light emitting element and manufacturing method thereof, and semiconductor light emitting device
JP5662821B2 (en) Phosphor and light emitting device
JP2010283045A (en) Phosphor dispersed member and method of manufacturing the same
JP2009052003A (en) Phosphor particle, wavelength transformer and light emitting apparatus
JP2009052004A (en) Phosphor, wavelength transformer and light emitting apparatus
WO2011092798A1 (en) Phosphor and light-emitting device
JP5178654B2 (en) Phosphor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552625

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845210

Country of ref document: EP

Kind code of ref document: A1