WO2011096059A1 - ヒートポンプ装置及びヒートポンプ装置の運転方法 - Google Patents

ヒートポンプ装置及びヒートポンプ装置の運転方法 Download PDF

Info

Publication number
WO2011096059A1
WO2011096059A1 PCT/JP2010/051553 JP2010051553W WO2011096059A1 WO 2011096059 A1 WO2011096059 A1 WO 2011096059A1 JP 2010051553 W JP2010051553 W JP 2010051553W WO 2011096059 A1 WO2011096059 A1 WO 2011096059A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
heat medium
heat
temperature
oil
Prior art date
Application number
PCT/JP2010/051553
Other languages
English (en)
French (fr)
Inventor
敏朗 服部
裕介 石月
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to PCT/JP2010/051553 priority Critical patent/WO2011096059A1/ja
Priority to BR112012017998A priority patent/BR112012017998A2/pt
Priority to JP2011552613A priority patent/JP5464615B2/ja
Priority to EP10845195.6A priority patent/EP2532990A4/en
Publication of WO2011096059A1 publication Critical patent/WO2011096059A1/ja
Priority to US13/544,189 priority patent/US20130008194A1/en
Priority to US14/742,671 priority patent/US20150285546A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system

Definitions

  • the present invention relates to a heat pump apparatus and a method of operating a heat pump apparatus, and in particular, a heat pump apparatus capable of improving the thermal efficiency and capable of stable operation even when the discharge temperature of the compressor is a high temperature of 150 ° C. or higher. And a heat pump apparatus operating method.
  • a feed screw compressor and a heat pump using the feed screw compressor are known.
  • the oil type screw compressor supplies oil to oil supply locations such as a bearing lubrication portion and a rotor chamber in the screw compressor, discharges the oil supplied together with the compressed gas from the discharge port of the screw compressor, and discharges the discharged compressed gas
  • the mixture of oil and oil is separated by gas separation using an oil separator, and the recovered oil is cooled by an oil cooler, and then the oil is circulated and used by providing an oil circulation system in which the oil is resupplied to the oil supply point.
  • Patent Document 1 discloses that oil coolers are not provided in an oil system from an oil separator to an oil feed location of the screw compressor. A technique is disclosed in which, when necessary, a portion of oil is mixed into a refrigerant system, cooled by the refrigerant, and entrained in a screw compressor. According to the technology disclosed in Patent Document 1, since the oil cooler is not provided, there is no loss of heat in the oil cooler, and there is an advantage that the heat efficiency in the entire heat pump is high.
  • the present invention improves heat efficiency by not providing an oil cooler, and a heat pump which can be used even at high temperatures of 150 ° C. or higher as the screw compressor discharge temperature of the heat medium It aims to provide a driving method.
  • an oil type compressor for compressing a heat medium
  • an oil separation and recovery device for separating oil from the heat medium discharged from the compressor and returning it to the compressor
  • the compressor Of the heat medium compressed by the heat exchanger, the pressure reducing device for reducing the pressure of the heat medium liquefied by the condensation, and the evaporator for absorbing heat by the heat medium reduced by the pressure reducing device and evaporating the heat medium
  • the heat medium can be compressed at a compression ratio at which the discharge temperature from the compressor is 150 to 200 ° C.
  • suction temperature control means capable of controlling the temperature of the heat medium sucked into the compressor on the heat medium circulation path on the suction side of the compressor.
  • the discharge temperature of the heat medium from the compressor By setting the discharge temperature of the heat medium from the compressor to 150 to 200 ° C., it is possible to perform heat balance including the oil supplied to the oil type compressor. This eliminates the need to provide an oil cooler for cooling the oil separated by the oil separation and recovery device and returned to the compressor. Therefore, the entire apparatus related to the compressor is made compact, and COP (Coefficient Of Performance) is improved because it is not necessary to release heat by the oil cooler.
  • parts exposed to high temperatures of 150 ° C. or more need to be prepared using a material having heat resistance to high temperatures of 150 ° C. or more. Further, since the oil is always exposed to a high temperature of 150 ° C. or more during the operation of the compressor, it is necessary to use an oil which does not decompose and deteriorate at a high temperature of 150 ° C. or more.
  • the suction temperature control means it is possible to properly control the temperature of the mixture of the heat medium and the oil discharged from the compressor and from the compressor. As a result, the temperature in the compressor becomes high temperature more than necessary, and deterioration of the compressor components and oil due to high temperature can be prevented, and safe operation is possible.
  • the heat medium may be a hydrocarbon refrigerant, more preferably a C4 to C7 hydrocarbon, and for example, n-hexane, n-pentane or isopentane may be used.
  • a temperature sensor for detecting the discharge temperature of the compressor and a target temperature of the temperature sensor are set, and a command is issued to the suction temperature control means, and a detection value of the temperature sensor is made the target temperature. It is preferable to provide temperature control means for controlling the suction temperature of the heat medium to the compressor.
  • the discharge temperature of the compressor refers to the temperature of the mixture of the heat medium and the oil discharged from the compressor, but the temperature is the same as the temperature of the oil reservoir formed in the lower portion of the oil separation and recovery device. . Therefore, the temperature sensor can detect the temperature of the oil reservoir portion of the oil separation and recovery device.
  • an oil type compressor for compressing a heat medium
  • an oil separation and recovery device for separating oil from the heat medium discharged from the compressor and returning it to the compressor.
  • a condenser which condenses the heat medium compressed by the compressor and dissipates heat
  • a decompression device which decompresses the heat medium liquefied by the condensation
  • an evaporator which absorbs heat and evaporates the heat medium decompressed by the decompression device.
  • the heat medium is compressed at a compression ratio such that the discharge temperature from the compressor is 150 to 200 ° C.
  • the heat retention operation is performed by controlling the suction temperature of the heat medium to the compressor so that the discharge temperature of the compressor becomes a target temperature.
  • the heat retention operation is performed.
  • a hydrocarbon such as n-hexane, n-pentane or isopentane can be used. Since these have a low boiling point at normal temperature, they are likely to be liquefied at startup. Therefore, by performing the warm-up operation, it is possible to prevent the liquid heat medium from being mixed in the compressor.
  • the heat efficiency can be improved by not providing the oil cooler, and the heat pump which can be used even when the screw compressor discharge temperature of the heat medium is 150 ° C. or higher can be used. Can be provided.
  • FIG. 1 is a cross-sectional view of a screw compressor according to a first embodiment.
  • Drawing 1 is a schematic diagram concerning a heat pump concerning the example, and its peripheral equipment. The configuration of the apparatus will be described based on FIG.
  • reference numeral 1 denotes a heat pump
  • the heat pump 1 is configured by arranging a screw compressor 4, a condenser 6, a tank 8 and an evaporator 10 on a circulation circuit 2.
  • the heat medium circulates through the circulation circuit 2 in the order of screw compressor 4 ⁇ condenser 6 ⁇ tank 8 ⁇ evaporator 10 ⁇ screw compressor 4.
  • As the heat medium a heat medium which can be compressed at a compression ratio of 60 to 100 ° C. and a discharge temperature of 150 to 160 ° C. from the screw compressor 4 is used.
  • reference numeral 12 denotes a distillation column, and in the present embodiment, the distillation column 12 distills an object of distillation which is an azeotropic mixture.
  • the heat medium deprived of heat by an azeotropic mixture vapor described later becomes a gas of 60 to 100 ° C. and is sucked into the screw compressor 4.
  • the heat medium sucked into the screw compressor 4 is compressed until the discharge temperature reaches 150 to 160 ° C., and is sent to the condenser 6.
  • the distillation target in the liquid state which will be described later, is sent from the distillation column 12 to the condenser 6.
  • the heat medium and the distillation target in the liquid state exchange heat.
  • the heat medium is cooled and liquefied by the heat exchange, and is sent to the tank 8.
  • the liquid heat medium sent to the tank 8 is decompressed in the tank 8 and sent to the evaporator 10.
  • the heat transfer medium exchanges heat with an azeotropic mixture vapor from the top of the distillation column 12, which will be described later.
  • the heat medium is heated and vaporized to be a gas of 60 to 100 ° C. and returned to the screw compressor 4.
  • the distillation column 12 a part of the liquid distillation target in the distillation column 12 circulates in the heating circuit 14. Part of the liquid distillation object circulating in the heating circuit 14 is heated by heat exchange with the heat medium in the condenser 6 installed on the heating circuit 14 and performed in the distillation column 12 The heat required for the distillation is supplied. That is, the condenser 6 plays the role of a reboiler.
  • a part of the distillation object which is an azeotropic mixture is azeotropically mixed by supplying heat from the heat medium to the distillation object of the liquid circulating in the heating circuit 14 in the condenser 6 which plays a role of a reboiler It will be steam.
  • the azeotropic mixture vapor is sent to the evaporator 10 from the top of the distillation column 12.
  • the azeotropic mixture vapor sent to the evaporator 10 exchanges heat with the heat medium of the liquid sent from the tank 8 in the evaporator 10.
  • the heat medium is heated and vaporized, and the azeotropic mixture vapor is cooled, liquefied and sent to the separation layer 16.
  • the azeotropic mixture sent to the separation layer 16 is separated into two liquid-liquid phases in the separation layer 16.
  • the phase mainly containing the entrainer is supplied to a distillation column (not shown) or the like separate from the distillation column 12 for removing accumulated impurities, and as necessary
  • the accumulated impurity concentration is reduced and returned to the distillation column 12.
  • the phase whose main component is an impurity whose concentration is to be reduced by azeotropic distillation is partially passed through the line 18 in order to achieve the desired reflux ratio. Then, it is returned to the distillation column 12.
  • the compression ratio is such that the suction temperature to the screw compressor 4 is 60 to 100.degree. C. and the discharge temperature from the screw compressor 4 is 150 to 160.degree.
  • C4 to C7 hydrocarbons in particular n-hexane, n-pentane, isopentane, etc. are used.
  • the C4 to C7 hydrocarbons such as n-hexane, n-pentane and isopentane have low boiling points and are easily liquefied at normal temperature, so it is necessary to heat them before starting the apparatus shown in FIG.
  • FIG. 2 is a configuration diagram according to suction gas temperature control to the screw compressor.
  • oil supply to a screw compressor will be described with reference to FIG.
  • the screw compressor performs compression of gas by three steps of suction, compression and discharge of gas by engagement of a rotor having a female and male tooth form.
  • the injection of oil to the rotor engaging portion enables the drive of the female rotor by the male rotor, and improves the gas sealability of the inter-rotor gap and other gaps, and enables the efficiency improvement by cooling the compressed gas, which is high.
  • volumetric efficiency and adiabatic efficiency large volumes of gas can be processed at high speed rotation, there are few wear parts, high pressure ratio can be obtained in one step, and it is not easily affected by liquid return. Therefore, the screw compressor is lubricated.
  • the oil stored in the oil separator 42 is fed to the screw compressor 4 by the oil pump 46 and is fed to an oil supply point such as a rotor engaging portion in the screw compressor 4.
  • the oil supplied to the screw compressor 4 is mixed with the heat medium gas in the screw compressor 4 and mixed with the gas discharged from the screw compressor 4.
  • the mixture of compressed gas and oil discharged from the screw compressor 4 is sent to the oil separator 42.
  • the mixture of compressed gas and oil is separated into gas and liquid by the oil separator 42, the oil is again sent to the screw compressor 4 by the pump 44, and the heat medium gas is sent to the condenser 6 shown in FIG.
  • the oil used here is always exposed to high temperature 150 degreeC or more during driving
  • the temperature sensor 44 capable of detecting the temperature of the liquid phase portion of the oil separator 42 detects the temperature of the liquid phase portion of the oil separator 42, that is, the oil.
  • the temperature detected by the temperature sensor 44 is taken into the temperature controller 22.
  • the temperature detected by the temperature sensor 44 can be regarded as the same value as the temperature of the gas discharged from the compressor 4.
  • the temperature of the liquid phase portion of the oil separator 44 that is, the target value (for example, 160 ° C.) of the gas temperature discharged from the compressor 4 is set in advance.
  • the temperature controller 22 compares the temperature detected by the temperature sensor 44 with the target value to calculate an appropriate suction temperature, and is provided on the heat medium circulation circuit 2 and on the suction side of the compressor 4
  • the heat exchanger 24 and the bypass valve 26 provided on the bypass circuit of the heat exchanger 24 are adjusted.
  • the heat exchanger 24 is not particularly limited as long as the temperature of the heat medium can be adjusted. For example, an air-cooled heat exchanger with fan control, a water-cooled heat exchanger with cooling water volume control, etc. It can be used.
  • a knockout drum (KO drum) 28 should be installed downstream of the heat exchanger 24 and upstream of the screw compressor 4 so that condensed gas does not enter the screw compressor 4. Is desirable.
  • the configuration shown in FIG. 2 can also be used during warm-up operation at device startup.
  • a heat medium heated by a heater (not shown) or the like provided in the tank 8 is monitored by the temperature controller 22 while adjusting the heat exchanger 24 and the bypass valve while monitoring the temperature of the temperature sensor 44 I will inhale it to 4.
  • FIG. 3 is a cross-sectional view of the screw compressor 4 in the embodiment.
  • reference numeral 101 denotes a casing.
  • a male rotor 2 and a female rotor 3 in which helical gears having different numbers of teeth are formed are engaged with each other and accommodated so as to be capable of rotating in reverse.
  • Reference numerals 107 and 109 denote bearings on the male rotor side, and the shaft of the male rotor 102 is rotatably supported by the bearings 107 and 109 on the casing 101, respectively.
  • Reference numerals 108 and 110 denote bearings on the female rotor side, and the shaft of the female rotor 103 is rotatably supported on the casing 101 by the bearings 108 and 110, respectively.
  • 111 is a thrust bearing on the male rotor side, and the thrust load of the male rotor 102 is supported by the casing 101 via the shaft of the male rotor 102 and the thrust bearing 111.
  • the thrust load 112 of the female rotor 103 is supported by the casing 101 via the shaft of the female rotor 103 and the thrust bearing 112.
  • Reference numeral 113 denotes a mechanical shaft seal that seals the male rotor 102.
  • Reference numeral 114 denotes a balance piston, which is fixed to the end on the opposite side of the drive-side shaft end of the drive-side male rotor 102 where the thrust load increases, and is reciprocably fitted in a cylinder formed in the casing 101 There is.
  • the gaseous heat transfer medium introduced into the screw compressor 4 is compressed and discharged by the gap volume change between the male rotor 102 and the female rotor 103 which are reversely rotated with each other.
  • Ru The thrust load generated due to the change in clearance volume caused by the rotation of the male rotor 102 and the female rotor 103 is supported by the casing 101 via the shaft of the male rotor 102 and the thrust bearing 111 on the male rotor 102 side.
  • the casing 101 supports the shaft of the female rotor 103 and the thrust bearing 112.
  • the heat medium is compressed for the male rotor 102, the female rotor 103, the bearings 107, 108, 109, 110, the thrust bearings 111, 112, the mechanical shaft seal 113 and the balance piston 114, Since the oil is exposed to a high temperature of about 150 to 160 ° C., which is the compressor discharge temperature of the heat medium by the introduction of oil, the components of each screw compressor are made of a material having heat resistance to the high temperature of about 150 to 160 ° C. Needs to be created.
  • the clearance between the casing 101 and the male rotor 102 and the clearance between the casing 101 and the female rotor 103 can be adjusted in order to prevent the male rotor 102 and the female rotor 103 from being exposed to excessively high temperature.
  • the temperature rise of the rotor male rotor 102, female rotor 103
  • the heat efficiency can be improved, and the heat pump can be used as a heat pump that can be used even when the screw compressor discharge temperature of the heat medium is 150 ° C. or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

 油冷却器を設けないことで熱効率の向上を図るとともに、熱媒体のスクリュー圧縮機吐出温度が150℃以上の高温においても使用可能なヒートポンプ及びその運転方法を提供することを課題とし、熱媒体を圧縮する給油式圧縮機、前記圧縮機から吐出される前記熱媒体から油を分離して前記圧縮機に戻す油分離回収器、該圧縮機で圧縮された熱媒体を液化させて放熱する凝縮器、該凝縮で液化された熱媒体を減圧する減圧装置、及び該減圧装置で減圧された熱媒体に吸熱させて蒸発させる蒸発器を熱媒体循環経路上で直列に接続し、これら機器に熱媒体を循環させるヒートポンプ装置において、前記熱媒体は、前記圧縮機からの吐出温度が150~200℃となる圧縮比で圧縮させることができる熱媒体を使用するとともに、前記圧縮機の吸入側の前記熱媒体循環経路上に、前記圧縮機に吸入される熱媒体の温度を制御可能な吸入温度制御手段を設ける。

Description

ヒートポンプ装置及びヒートポンプ装置の運転方法
 本発明は、ヒートポンプ装置及びヒートポンプ装置の運転方法に関するものであり、特に圧縮機の吐出温度が150℃以上の高温であっても熱効率の向上が可能であるとともに、安定運転が可能であるヒートポンプ装置及びヒートポンプ装置の運転方法に関するものである。
 給油式スクリュー圧縮機及び該給油式スクリュー圧縮機を用いたヒートポンプが知られている。給油式スクリュー圧縮機は、スクリュー圧縮機内の軸受潤滑部、ロータ室等の給油箇所に油を給油し、スクリュー圧縮機の吐出口から圧縮ガスとともに給油した油を吐出し、該吐出された圧縮ガスと油の混合物をオイルセパレータにて気液分離し、回収した油を油冷却器で冷却した後、再度前記給油箇所に給油する油循環系統を設けることで、油を循環使用するものである。
 このような、給油式スクリュー圧縮機及び該給油式スクリュー圧縮機を用いたヒートポンプにおいては、性能の向上が求められている。性能の向上を図った給油式スクリュー圧縮機を用いたヒートポンプに関する技術として、特許文献1には、オイルセパレータからスクリュー圧縮機の給油箇所への油系統に油冷却器を設けず、油の冷却の必要時に一部の油を冷媒系に混入させて冷媒で冷却してスクリュー圧縮機に同伴する技術が開示されている。特許文献1に開示された技術によれば、油冷却器を設けないため、油冷却器で熱を捨てることがなくなり、ヒートポンプ全体における熱効率が高いという利点がある。
特開平9-243184号公報
 ところで近年、高温用ヒートポンプにおいて、熱媒体のスクリュー圧縮機吐出温度が120℃を超える排熱利用120℃超えヒートポンプが要求されている。また、蒸留塔塔頂から排出されたガスをスクリュー圧縮機で再圧縮して、該再圧縮による圧縮熱を従来のスチームの代わりとしてリボイラーにて焚き上げる、所謂VRC(ベーパーリコンプレッション)においては、熱媒体のスクリュー圧縮機吐出温度が150℃以上となる150℃超えヒートポンプが要求されている。
 しかしながら、特許文献1に開示された技術においては、スクリュー圧縮機吐出温度が前述のような120℃超え、さらには150℃超えのヒートポンプについては想定されていない。そのため、スクリュー圧縮機吐出温度が120℃超え、さらには150℃超えとなるような系に適用する場合、熱媒体の変性、スクリュー圧縮機の耐熱、スクリュー圧縮機内での油の流通などに課題が残る。
 従って、本発明はかかる従来技術の問題に鑑み、油冷却器を設けないことで熱効率の向上を図るとともに、熱媒体のスクリュー圧縮機吐出温度が150℃以上の高温においても使用可能なヒートポンプ及びその運転方法を提供することを目的とする。
 上記課題を解決するため本発明においては、熱媒体を圧縮する給油式圧縮機、前記圧縮機から吐出される前記熱媒体から油を分離して前記圧縮機に戻す油分離回収器、該圧縮機で圧縮された熱媒体を液化させて放熱する凝縮器、該凝縮で液化された熱媒体を減圧する減圧装置、及び該減圧装置で減圧された熱媒体に吸熱させて蒸発させる蒸発器を熱媒体循環経路上で直列に接続し、これら機器に熱媒体を循環させるヒートポンプ装置において、前記熱媒体は、前記圧縮機からの吐出温度が150~200℃となる圧縮比で圧縮させることができる熱媒体を使用するとともに、前記圧縮機の吸入側の前記熱媒体循環経路上に、前記圧縮機に吸入される熱媒体の温度を制御可能な吸入温度制御手段を設けたことを特徴とする。
 前記熱媒体の圧縮機からの吐出温度を150~200℃とすることで、給油式圧縮機に供給する油も含めた熱バランスが出来る。これにより、前記油分離回収器によって分離されて圧縮機に戻す油を冷却するオイルクーラーを設ける必要がなくなる。従って、圧縮機に係る装置全体がコンパクト化するとともに、オイルクーラーで熱を放出する必要がないためCOP(Coefficient Of Performance)が向上する。
 なお、前記圧縮機内において、150℃以上の高温に晒される部品は、150℃以上の高温に対する耐熱性を有する材料を使用して作成する必要がある。また、前記油も前記圧縮機の運転中は150℃以上の高温下に常に晒されるため、150℃以上の高温下で分解劣化しない油を使用する必要がある。
 また、前記吸入温度制御手段を設けることで、圧縮機内及び圧縮機から吐出される熱媒体と油の混合物の温度を適正に制御することができる。これにより、圧縮機内が必要以上に高温になり、圧縮機各要素部品や油が高温により劣化することを防止することができ、安全運転が可能である。
 また、前記熱媒体は、ハイドロカーボン冷媒であるとよく、さらに好ましくはC4~C7のハイドロカーボンであるとよく、例えばn-ヘキサン、n―ペンタン又はイソペンタンを使用するとよい。
 また、前記圧縮機の吐出温度を検出する温度センサーと、前記温度センサーの目標温度が設定されるとともに、前記吸入温度制御手段に指令を出し、前記温度センサーの検出値が前記目標温度とするように前記圧縮機への熱媒体の吸入温度を制御する温度制御手段を設けるとよい。
 これにより、圧縮機の吐出温度を目標温度となるように、吸入温度を制御することで、圧縮機の吐出温度が必要以上の高温となり、圧縮機各要素部品や油が高温により劣化することをさらに確実に防止することができる。
 なお、圧縮機の吐出温度とは、圧縮機から吐出される前記熱媒体と油の混合物の温度をいうが、該温度は前記油分離回収器の下部にできる油溜まり部の温度と同値である。そのため、前記温度センサーは前記油分離回収器の油溜まり部の温度を検出するものとすることができる。
 また、課題を実現するための方法の発明として、熱媒体を圧縮する給油式圧縮機、前記圧縮機から吐出される前記熱媒体から油を分離して前記圧縮機に戻す油分離回収器、該圧縮機で圧縮された熱媒体を液化させて放熱する凝縮器、該凝縮で液化された熱媒体を減圧する減圧装置、及び該減圧装置で減圧された熱媒体に吸熱させて蒸発させる蒸発器を熱媒体循環経路上で直列に接続し、これら機器に熱媒体を循環させるヒートポンプ装置の運転方法において、前記熱媒体は、前記圧縮機からの吐出温度が150~200℃となる圧縮比で圧縮させることができる熱媒体を使用するとともに、前記圧縮機の吐出温度が目標温度となるように、前記圧縮機への熱媒体の吸入温度を制御して保温運転を行うことを特徴とする。
 また、前記熱媒体を、前記圧縮機の吸入圧力における沸点以上まで加温して暖気運転をした後、前記保温運転を行う。
 前記熱媒体としては例えばn-ヘキサン、n―ペンタン又はイソペンタンなどのハイドロカーボンを使用することができる。これらは、常温における沸点が低いため、起動時においては液化している可能性が高い。そこで、暖気運転を行うことで、液体の熱媒体が圧縮機に混入することを防止することができる。
 以上記載のごとく本発明によれば、油冷却器を設けないことで熱効率の向上を図るとともに、熱媒体のスクリュー圧縮機吐出温度が150℃以上の高温においても使用可能なヒートポンプ及びその運転方法を提供することができる。
実施例1に係るヒートポンプ及びその周辺設備に係る概略図である。 スクリュー圧縮機への吸入ガス温度制御に係る構成図である。 実施例1におけるスクリュー圧縮機の断面図である。
 以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、実施例に係るヒートポンプ及びその周辺設備に係る概略図である。図1に基づいて装置の構成について説明する。図1において、1はヒートポンプであり、ヒートポンプ1は循環回路2上に、スクリュー圧縮機4、凝縮器6、タンク8及び蒸発器10が配置されて構成されている。ヒートポンプ1は、熱媒体が、循環回路2を通りスクリュー圧縮機4→凝縮器6→タンク8→蒸発器10→スクリュー圧縮機4の順に循環するようになっている。前記熱媒体としては、スクリュー圧縮機4への吸入温度を60~100℃とし、スクリュー圧縮機4からの吐出温度を150~160℃となる圧縮比で圧縮させることができる熱媒体を使用し、具体的にはC4~C7のハイドロカーボン、特にn-ヘキサン、n-ペンタン、イソペンタンなどを使用することができる。また、図1において12は蒸留塔であり、本実施例においては蒸留塔12は共沸混合物である蒸留対象物を蒸留するものである。
 次に図1を用いて装置の動作について説明する。
 まず、ヒートポンプ1の動作について説明する。
 後述する共沸混合蒸気により熱を奪われた熱媒体は、60~100℃のガスとなってスクリュー圧縮機4に吸入される。スクリュー圧縮機4に吸入された熱媒体は、吐出温度が150~160℃となるまで圧縮されて、凝縮器6へ送られる。
 凝縮器6へは、蒸留塔12から後述する液体状態の蒸留対象物が送られる。
 凝縮器6では、前記熱媒体と、前記液体状態の蒸留対象物が熱交換する。該熱交換により熱媒体は冷却されて液化し、タンク8へ送られる。
 タンク8へ送られた液体の熱媒体は、タンク8で減圧されて蒸発器10へ送られる。
 蒸発器10では、前記熱媒体は、蒸留塔12の塔頂からの後述する共沸混合蒸気と熱交換する。該熱交換により熱媒体は加温されて気化し、60~100℃のガスとなってスクリュー圧縮機4に戻る。
 一方、蒸留塔12では、蒸留塔12内の液体状態の蒸留対象物の一部は、加熱回路14内を循環している。加熱回路14内を循環する前記液体状態の蒸留対象物の一部は、加熱回路14上に設置された凝縮器6で、前記熱媒体と熱交換することで加熱されて蒸留塔12で行われる蒸留に必要な熱が供給される。即ち、凝縮器6がリボイラーの役割を果たしている。
 加熱回路14内を循環する液体の蒸留対象物に、リボイラーの役割を果たす凝縮器6で前記熱媒体より熱が供給されることで、共沸混合物である蒸留対象物の一部は共沸混合蒸気となる。該共沸混合蒸気は、蒸留塔12の塔頂より蒸発器10へ送られる。蒸発器10へ送られた共沸混合蒸気は、蒸発器10でタンク8から送られた液体の熱媒体と熱交換する。該熱交換により、前述の通り熱媒体は加温されて気化するとともに、共沸混合蒸気は冷却されて液化し、分離層16へ送られる。分離層16へ送られた共沸混合物は、分離層16で液-液の2相に分離される。分離槽16で分離される液相のうち、エントレーナーを主成分とする相は、蓄積不純物除去のために蒸留塔12とは別の蒸留塔(不図示)などへ供給され、必要に応じて蓄積不純物濃度を低減して蒸留塔12へ戻される。また、分離層16で分離される液相のうち、共沸蒸留によって濃度を低減させたい不純物を主成分とする相は、所望する還流比を達成するために、その一部がライン18を通って蒸留塔12へ戻される。
 以上のような構成、動作において、前記熱媒体には前述の通り、スクリュー圧縮機4への吸入温度を60~100℃とし、スクリュー圧縮機4からの吐出温度を150~160℃となる圧縮比で圧縮させることができる熱媒体、具体的にはC4~C7のハイドロカーボン、特にn-ヘキサン、n-ペンタン、イソペンタンなどを使用する。n-ヘキサン、n-ペンタン、イソペンタンなどのC4~C7のハイドロカーボンは何れも沸点が低く、常温で液化しやすいため、図1に示した装置の起動前に加温する必要がある。
 また、運転中においてもスクリュー圧縮機2への吸入ガス温度が低下して液化しないように、スクリュー圧縮機2への吸入ガス温度を制御する必要がある。
 さらに、スクリュー圧縮機各要素部品及び潤滑油を150~160℃となる高温下で使用限界を超えず、安全に運用する必要がある。従って、スクリュー圧縮機4の吐出ガス温度が急激に上昇しないようにする必要があり、そのためにスクリュー圧縮機4の吸入ガス温度を適切に制御する必要がある。
 図2は、スクリュー圧縮機への吸入ガス温度制御に係る構成図である。なお、図2に係る各装置、設備はスクリュー圧縮機4を除き、図1には図示を省略している。
 まず、図2を用いてスクリュー圧縮機への給油について説明する。
 スクリュー圧縮機は、雌、雄二つの歯形を持つロータのかみ合いによりガスの吸込み、圧縮、吐出しの3工程によりガスの圧縮を行っている。前記ロータかみ合い部への油の噴射により、雄ロータによる雌ロータの駆動を可能にするとともに、ロータ間隙間その他の隙間のガスシール性を高め、圧縮ガスの冷却による効率向上とを可能とし、高い体積効率及び断熱効率のもとに高速回転で大容量のガスの処理ができ、磨耗部分も少なく、一段の圧力比が高く取れ、しかも液戻りによる影響も受けにくい。そのため、スクリュー圧縮機へ給油する。
 オイルセパレータ42内に貯留された油は、オイルポンプ46によってスクリュー圧縮機4に送液され、スクリュー圧縮機4内のロータかみ合い部等の給油箇所に給油される。スクリュー圧縮機4に給油された油は、スクリュー圧縮機4の中で熱媒体のガスに混入されスクリュー圧縮機4から吐出されるガスに混入される。次いで、スクリュー圧縮機4から吐出された圧縮ガスと油の混合物は、オイルセパレータ42に送られる。圧縮ガスと油の混合物は、オイルセパレータ42で気液分離され、油は再度ポンプ44によってスクリュー圧縮機4に送液され、熱媒体のガスは図1に示した凝縮器6へ送られる。
 なお、ここで使用する油は、スクリュー圧縮機4の運転中は150℃以上の高温下に常に晒されるため、150℃以上の高温下で分解劣化しない油を使用する必要がある。
 次に、図2を用いてスクリュー圧縮機への吸入ガス温度制御について説明する。
 オイルセパレータ42の液相部の温度を検出可能な温度センサー44により、オイルセパレータ42の液相部、即ち油の温度を検出する。温度センサー44により検出された温度は温度調節計22に取り込まれる。なお、温度センサー44で検出される温度は、圧縮機4から吐出されるガス温度と同値とみなすことができる。
 温度調節計22には、予めオイルセパレータ44の液相部の温度、即ち圧縮機4から吐出されるガス温度の目標値(例えば160℃)が設定されている。温度調節計22は、温度センサー44により検出された温度と、前記目標値を比較して適切な吸入温度を算出し、熱媒体の循環回路2上であり圧縮機4の吸入側に設けられた熱交換器24及び熱交換器24のバイパス回路上に設けられたバイパス弁26の調整を行う。熱交換器24は、熱媒体の温度調整が可能なものであれば特に限定されるものではなく、例えばファンコントロールによる空冷式の熱交換器や、冷却水量コントロールによる水冷式の熱交換器などを使用することができる。
 図2に示したスクリュー圧縮機への吸入ガス温度制御に係る構成では、温度センサー44で検出される温度が、温度調節計に設定された目標値(例えば160℃)よりも高い場合には、熱交換器24の運転調整及びバイパス弁26の開度調整により吸入ガス温度を下げるように調整し、一方、温度センサー44で検出される温度が、温度調節計22に設定された目標値(例えば160℃)よりも低い場合には、熱交換器24の運転調整及びバイパス弁26の開度調整により吸入ガス温度を上げるように調整することで、スクリュー圧縮機各要素部品及び潤滑油を高温下で使用限界を超えず、安全に運用することができる。
 なお、前述の通り、熱媒体としては例えばn-ヘキサン、n-ペンタン、イソペンタンなどC4~C7のハイドロカーボンを使用するが、これらは何れも沸点が低く液化しやすいため、吸入ガス温度が急激に低下してガスが凝縮する可能性がある。その場合であっても、凝縮したガスがスクリュー圧縮機4に入らないように、熱交換器24の下流側且つスクリュー圧縮機4の上流側にノックアウトドラム(KOドラム)28を設置しておくことが望ましい。
 さらに、図2に示した構成は、装置起動時における暖気運転時にも使用することができる。この場合、まず油のみを圧縮機4→オイルセパレータ42→オイルポンプ46の順に循環させる。次に例えばタンク8に設けたヒーター(不図示)などで加温した熱媒体を、温度センサー44の温度を監視しながら温度調節計22により熱交換器24、バイパス弁を調整しながらスクリュー圧縮機4に吸入していく。
 図3は、実施例におけるスクリュー圧縮機4の断面図である。図3において、101はケーシングである。ケーシング1内には、歯数の異なるヘリカルギヤが形成された雄ロータ2及び雌ロータ3が噛み合わされ互いに逆回転可能にして収納されている。
 107及び109は雄ロータ側の軸受で、雄ロータ102の軸は、軸受107及び109により夫々ケーシング101に回転自在に支持されている。108及び110は雌ロータ側の軸受で、雌ロータ103の軸は、軸受108及び110により夫々ケーシング101に回転自在に支持されている。
 111は雄ロータ側のスラスト軸受で、雄ロータ102のスラスト荷重は、雄ロータ102の軸及びスラスト軸受111を介してケーシング101で支承するようになっている。また、112は雌ロータ側のスラスト軸受で、雌ロータ103のスラスト荷重は、雌ロータ103の軸及びスラスト軸受112を介してケーシング101で支承するようになっている。
 また、113は雄ロータ102の軸封を行うメカニカルシャフトシールである。
 114はバランスピストンで、スラスト荷重が大きくなる駆動側の雄ロータ102の軸の反駆動側軸端部に固着され、前記ケーシング101内に形成されたシリンダ内に往復摺動可能に嵌合されている。
 かかるスクリュー圧縮機4の運転時において、スクリュー圧縮機4に導入されたガス状の熱媒体は、互いに逆回転せしめられる雄ロータ102と雌ロータ103との間の隙間容積変化によって圧縮されて吐出される。
 雄ロータ102及び雌ロータ103の回転に伴う隙間容積変化によって発生するスラスト荷重は、雄ロータ102側においては、雄ロータ102の軸及びスラスト軸受111を介してケーシング101で支承し、雌ロータ103側においては、雌ロータ103の軸及びスラスト軸受112を介してケーシング101で支承する。
 図3に示したスクリュー圧縮機4において、雄ロータ102、雌ロータ103、軸受107、108、109、110、スラスト軸受111、112、メカニカルシャフトシール113及びバランスピストン114については、熱媒体の圧縮、オイルの導入により熱媒体の圧縮機吐出温度である150~160℃程度の高温に晒されるため、前記各スクリュー圧縮機の構成部品を150~160℃程度の高温に対する耐熱性を有する材料を使用して作成する必要がある。
 さらに、雄ロータ102及び雌ロータ103が必要以上の高温に晒されないために、ケーシング101と雄ロータ102とのクリアランス、及びケーシング101と雌ロータ103とのクリアランスを調整することができる。
 一例として、ロータとケーシングの間のクリアランスと、ロータ外径で表すロータクリアランス比を0.0020(=20/10000)とするとロータ(雄ロータ102、雌ロータ103)の温度の上昇を小さく抑えることができる。
 油冷却器を設けないことで熱効率の向上を図るとともに、熱媒体のスクリュー圧縮機吐出温度が150℃以上の高温においても使用可能なヒートポンプ及びその運転方法として使用することができる。

Claims (6)

  1.  熱媒体を圧縮する給油式圧縮機、前記圧縮機から吐出される前記熱媒体から油を分離して前記圧縮機に戻す油分離回収器、該圧縮機で圧縮された熱媒体を液化させて放熱する凝縮器、該凝縮で液化された熱媒体を減圧する減圧装置、及び該減圧装置で減圧された熱媒体に吸熱させて蒸発させる蒸発器を熱媒体循環経路上で直列に接続し、これら機器に熱媒体を循環させるヒートポンプ装置において、
     前記熱媒体は、前記圧縮機からの吐出温度が150~200℃となる圧縮比で圧縮させることができる熱媒体を使用するとともに、
     前記圧縮機の吸入側の前記熱媒体循環経路上に、前記圧縮機に吸入される熱媒体の温度を制御可能な吸入温度制御手段を設けたことを特徴とするヒートポンプ装置。
  2.  前記熱媒体は、ハイドロカーボン冷媒であることを特徴とする請求項1記載のヒートポンプ装置。
  3.  前記熱媒体は、C4~C7のハイドロカーボン冷媒であることを特徴とする請求項2記載のヒートポンプ装置。
  4.  前記圧縮機の吐出温度を検出する温度センサーと、
     前記温度センサーの目標温度が設定されるとともに、前記吸入温度制御手段に指令を出し、前記温度センサーの検出値が前記目標温度とするように前記圧縮機への熱媒体の吸入温度を制御する温度制御手段を設けたことを特徴とする請求項1記載のヒートポンプ装置。
  5.  熱媒体を圧縮する給油式圧縮機、前記圧縮機から吐出される前記熱媒体から油を分離して前記圧縮機に戻す油分離回収器、該圧縮機で圧縮された熱媒体を液化させて放熱する凝縮器、該凝縮で液化された熱媒体を減圧する減圧装置、及び該減圧装置で減圧された熱媒体に吸熱させて蒸発させる蒸発器を熱媒体循環経路上で直列に接続し、これら機器に熱媒体を循環させるヒートポンプ装置の運転方法において、
     前記熱媒体は、前記圧縮機からの吐出温度が150~200℃となる圧縮比で圧縮させることができる熱媒体を使用するとともに、
     前記圧縮機の吐出温度が目標温度となるように、前記圧縮機への熱媒体の吸入温度を制御して保温運転を行うことを特徴とするヒートポンプ装置の運転方法。
  6.  前記熱媒体を、前記圧縮機の吸入圧力における沸点以上まで加温して暖気運転をした後、前記保温運転を行うことを特徴とする請求項5記載のヒートポンプ装置の運転方法。
PCT/JP2010/051553 2010-02-04 2010-02-04 ヒートポンプ装置及びヒートポンプ装置の運転方法 WO2011096059A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/051553 WO2011096059A1 (ja) 2010-02-04 2010-02-04 ヒートポンプ装置及びヒートポンプ装置の運転方法
BR112012017998A BR112012017998A2 (pt) 2010-02-04 2010-02-04 aparelho de bomba de aquecimento e método para operação de um aparelho de bomba de aquecimento
JP2011552613A JP5464615B2 (ja) 2010-02-04 2010-02-04 ヒートポンプ装置及びヒートポンプ装置の運転方法
EP10845195.6A EP2532990A4 (en) 2010-02-04 2010-02-04 HEAT PUMP AND METHOD FOR OPERATING A HEAT PUMP
US13/544,189 US20130008194A1 (en) 2010-02-04 2012-07-09 Heat pump apparatus and operation method for heat pump apparatus
US14/742,671 US20150285546A1 (en) 2010-02-04 2015-06-17 Heat pump apparatus and operation method for heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051553 WO2011096059A1 (ja) 2010-02-04 2010-02-04 ヒートポンプ装置及びヒートポンプ装置の運転方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/544,189 Continuation US20130008194A1 (en) 2010-02-04 2012-07-09 Heat pump apparatus and operation method for heat pump apparatus

Publications (1)

Publication Number Publication Date
WO2011096059A1 true WO2011096059A1 (ja) 2011-08-11

Family

ID=44355087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051553 WO2011096059A1 (ja) 2010-02-04 2010-02-04 ヒートポンプ装置及びヒートポンプ装置の運転方法

Country Status (5)

Country Link
US (2) US20130008194A1 (ja)
EP (1) EP2532990A4 (ja)
JP (1) JP5464615B2 (ja)
BR (1) BR112012017998A2 (ja)
WO (1) WO2011096059A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524793A (en) * 2014-04-02 2015-10-07 Selex Es Ltd A system and method for removal of contaminants from refrigerants
FR3020375B1 (fr) * 2014-04-29 2017-10-27 Axens Procede d'isomerisation d'un naphta comprenant deux etapes integrees thermiquement
CN106288558B (zh) * 2016-10-24 2018-06-22 珠海格力电器股份有限公司 大巴空调系统及控制方法
CN109307385B (zh) * 2018-08-31 2023-11-24 珠海格力电器股份有限公司 空调系统、压缩供油装置及其控制方法
CN109489210B (zh) * 2018-10-15 2020-12-29 珠海格力电器股份有限公司 多联机系统回油控制方法、装置、回油控制设备及空调
CN112747391A (zh) * 2019-10-29 2021-05-04 青岛海尔空调电子有限公司 空调机组及其压缩机冷却控制方法
CN114413511B (zh) * 2021-12-31 2023-11-24 青岛海尔空调电子有限公司 热泵机组的冷媒液位控制方法、控制装置、介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264108A (ja) * 1992-03-17 1993-10-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH09243184A (ja) 1996-03-11 1997-09-16 Kobe Steel Ltd ヒートポンプ
JP2002168534A (ja) * 2000-09-20 2002-06-14 Denso Corp ヒートポンプ式空調装置
JP2006170500A (ja) * 2004-12-14 2006-06-29 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2007248020A (ja) * 2006-03-20 2007-09-27 Hitachi Appliances Inc 密閉形圧縮機及び冷凍装置並びに冷蔵庫
JP2008239784A (ja) * 2007-03-27 2008-10-09 Japan Energy Corp 炭化水素冷媒用冷凍機油及びそれを用いた冷凍機システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291547A (en) * 1978-04-10 1981-09-29 Hughes Aircraft Company Screw compressor-expander cryogenic system
US4336046A (en) * 1980-09-12 1982-06-22 Tenneco Oil Company C4 Separation process
US4350571A (en) * 1980-10-10 1982-09-21 Erickson Donald C Absorption heat pump augmented thermal separation process
US4299664A (en) * 1980-11-26 1981-11-10 Branson Ultrasonics Corporation Vapor degreaser
US4395310A (en) * 1981-07-14 1983-07-26 Exxon Research And Engineering Co. Fractionation system
SE8107601L (sv) * 1981-12-18 1983-06-19 Stal Refrigeration Ab Forfarande for aterforing av olja i kylanleggning
US4497185A (en) * 1983-09-26 1985-02-05 Dunham-Bush, Inc. Oil atomizing compressor working fluid cooling system for gas/vapor/helical screw rotary compressors
US5027606A (en) * 1988-05-27 1991-07-02 Cpi Engineering Services, Inc. Rotary displacement compression heat transfer systems incorporating highly fluorinated refrigerant-synthetic oil lubricant compositions
US6082982A (en) * 1997-11-17 2000-07-04 Uop Llc Flooded compressor with improved oil reclamation
JP2000274842A (ja) * 1999-03-26 2000-10-06 Sanyo Electric Co Ltd 冷凍回路及びそれを用いた冷蔵庫
US6343482B1 (en) * 2000-10-31 2002-02-05 Takeshi Endo Heat pump type conditioner and exterior unit
US6415619B1 (en) * 2001-03-09 2002-07-09 Hewlett-Packard Company Multi-load refrigeration system with multiple parallel evaporators
JP3767586B2 (ja) * 2003-08-19 2006-04-19 ダイキン工業株式会社 冷凍装置
US7596959B2 (en) * 2005-10-21 2009-10-06 Emerson Retail Services, Inc. Monitoring compressor performance in a refrigeration system
US20070240870A1 (en) * 2006-04-18 2007-10-18 Daytona Control Co., Ltd. Temperature control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264108A (ja) * 1992-03-17 1993-10-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JPH09243184A (ja) 1996-03-11 1997-09-16 Kobe Steel Ltd ヒートポンプ
JP2002168534A (ja) * 2000-09-20 2002-06-14 Denso Corp ヒートポンプ式空調装置
JP2006170500A (ja) * 2004-12-14 2006-06-29 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2007163106A (ja) * 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2007248020A (ja) * 2006-03-20 2007-09-27 Hitachi Appliances Inc 密閉形圧縮機及び冷凍装置並びに冷蔵庫
JP2008239784A (ja) * 2007-03-27 2008-10-09 Japan Energy Corp 炭化水素冷媒用冷凍機油及びそれを用いた冷凍機システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532990A4

Also Published As

Publication number Publication date
EP2532990A4 (en) 2014-04-09
EP2532990A1 (en) 2012-12-12
US20150285546A1 (en) 2015-10-08
US20130008194A1 (en) 2013-01-10
JP5464615B2 (ja) 2014-04-09
BR112012017998A2 (pt) 2016-05-03
JPWO2011096059A1 (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2011096059A1 (ja) ヒートポンプ装置及びヒートポンプ装置の運転方法
JP5151014B2 (ja) ヒートポンプ装置及びヒートポンプの運転方法
CA2780791C (en) Thermodynamic machine and method for the operation thereof
JP4949768B2 (ja) スクリュー圧縮機
KR101708109B1 (ko) 폐열 회수 장치 및 폐열 회수 방법
JP6445589B2 (ja) 温度制御式ファンによって冷却されるコンプレッサ及びコンプレッサの冷却ファンのファン速度を制御する方法
JP2008122012A (ja) 液体の蒸発式冷却装置
JP2011133209A (ja) 冷凍装置
JP2011133205A (ja) 冷凍装置
JP4767133B2 (ja) 冷凍サイクル装置
JP2010138881A (ja) 油冷式スクリュー圧縮機およびその冷却油冷却方法
US20240077048A1 (en) Turbocharged comrpessor
JP2011133206A (ja) 冷凍装置
KR101707744B1 (ko) 압축 장치
KR20170013345A (ko) 스핀들 콤프레서를 갖는 압축 냉동기
CN103175346A (zh) 油冷式二级压缩机以及热泵
JP6004004B2 (ja) ターボ冷凍機
JP2007183078A (ja) 冷凍機及び冷凍装置
JP2007170765A (ja) 冷凍サイクル装置の運転方法
JP2011133208A (ja) 冷凍装置
FR2967485A1 (fr) Installation de purification d'un flux gazeux comprenant au moins 50% de co2, avec fonctions de compression integrees.
JP2009085540A (ja) 蒸気発生装置および蒸気生成方法
JP2018025166A (ja) 空気圧縮システム
JP7453940B2 (ja) 排熱回収システム
JP6074798B2 (ja) 排熱利用ヒートポンプシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552613

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010845195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010845195

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017998

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012017998

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120719