WO2011096012A1 - Infrared ray sensor - Google Patents

Infrared ray sensor Download PDF

Info

Publication number
WO2011096012A1
WO2011096012A1 PCT/JP2010/000638 JP2010000638W WO2011096012A1 WO 2011096012 A1 WO2011096012 A1 WO 2011096012A1 JP 2010000638 W JP2010000638 W JP 2010000638W WO 2011096012 A1 WO2011096012 A1 WO 2011096012A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
glass material
resistance
glass
resistivity
Prior art date
Application number
PCT/JP2010/000638
Other languages
French (fr)
Japanese (ja)
Inventor
宮田素之
内藤孝
山本浩貴
藤枝正
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011552578A priority Critical patent/JP5444376B2/en
Priority to PCT/JP2010/000638 priority patent/WO2011096012A1/en
Publication of WO2011096012A1 publication Critical patent/WO2011096012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Definitions

  • the present invention relates to a glass material used for an infrared sensor.
  • Vanadium-based glass containing vanadium pentoxide as a main component is known to be a glass semiconductor that conducts electricity, and studies are underway to use it for thermistors and the like.
  • Patent Document 1 discloses a glass-like resistance material for a heat-sensitive resistance element, which contains 50 mol% or more of vanadium pentoxide, and in which cerium oxide, tin oxide, and lead oxide are added to a glass composition composed of phosphorus pentoxide and barium oxide. It is disclosed.
  • Patent Document 2 discloses a thermistor made of glass obtained by adding 13 mol% or less of copper oxide to glass containing vanadium pentoxide 70 mol% or more and phosphorus pentoxide 5 to 15 mol%.
  • Patent Document 3 discloses that an electrical resistance at room temperature is obtained by heating an oxide glass composition containing vanadium, barium, and iron at a temperature not lower than the glass transition temperature and not higher than the crystallization temperature, thereby reducing the distortion of the glass skeleton.
  • a vanadate glass that is a glass semiconductor of 10 1 to 10 4 ⁇ ⁇ cm is disclosed.
  • Patent Document 4 discloses an oxide thin film for bolometer in which a part of V in vanadium oxide (VO X ) is substituted with at least one of Cr, Al, Fe, Mn, Nb, Ta, and Ti, and an infrared ray using the same. A sensor is disclosed.
  • V in vanadium oxide VO X
  • Patent Document 6 discloses a method for forming a vanadium oxide thin film in which a thin film made of vanadium oxide (VOx: 2.25 ⁇ x ⁇ 2.5) is heat-treated at a predetermined temperature in a reducing atmosphere.
  • VOx vanadium oxide
  • Patent Document 7 discloses a vanadium oxide thin film obtained by reducing a vanadium pentoxide thin film prepared by a sputtering method or a sol-gel method and heat-treated in air with an argon-hydrogen mixed gas, and this vanadium oxide is expressed as VOx. Vanadium oxide thin film satisfying the range of 1.875 ⁇ x ⁇ 2.0 is disclosed.
  • Japanese Patent Publication No.42-24785 Japanese Examined Patent Publication No. 39-9140 Japanese Patent No. 3854985 JP 2000-143243 A JP 2001-247958 A JP 2000-321124 A JP-A-9-257565
  • An object of the present invention is to provide a vanadium oxide glass material having a low resistivity and a large absolute value of resistance temperature coefficient, and an infrared sensor using the glass material for a bolometer.
  • the glass material of the present invention includes a crystal phase and an amorphous phase, and the crystal phase includes at least M x V 2 O 5 crystal and V 2 O 5 crystal, where M is Li, Na, K , Cu, Ag, Au, Ga, and In, and the amorphous phase contains vanadium, phosphorus, and oxygen.
  • an infrared sensor having a bolometer with a low resistivity and a large absolute value of resistance temperature coefficient.
  • the present invention relates to a temperature-sensitive resistance material (glass material) whose resistance value varies with temperature and a bolometer-type infrared sensor using the same.
  • the glass material includes a crystal phase and an amorphous phase, and the crystal phase includes at least M x V 2 O 5 crystal and V 2 O 5 crystal, and M is Li, Na, K, Cu, Ag. , Au, Ga, and In, and the amorphous phase contains vanadium, phosphorus, and oxygen.
  • x 0.28 to 0.76.
  • the crystal phase ratio is 60 to 99% by volume.
  • the ratio of M x V 2 O 5 crystals in the crystal phase is 60 to 99% by weight.
  • the crystallite size of the M x V 2 O 5 crystal is 50 nm or more.
  • the crystallite size of the V 2 O 5 crystal is 30 nm or less.
  • the composition in terms of oxide is such that V 2 O 5 is 62 to 92% by weight, P 2 O 5 is 5 to 20% by weight, Li 2 O, Na 2 O, K 2 O, One or more selected from the group consisting of Cu 2 O, Ag 2 O, Ga 2 O and In 2 O is 1 to 15% by weight, WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, One or more selected from the group consisting of Sb 2 O 3 and Bi 2 O 3 is 0 to 20% by weight.
  • the glass material has a resistivity of 10 ⁇ ⁇ cm or less and an absolute value of a resistance temperature coefficient of 3% / ° C. or more.
  • the glass material can be applied to an infrared sensor and an infrared imaging device.
  • FIG. 1 is a schematic diagram showing an infrared sensor of an example.
  • a bolometer thin film 1 (also simply referred to as a bolometer) is installed on a substrate 2 so as to be covered with protective films 5 and 6 and supported by a conductive film 3 which is also covered with protective films 5 and 6. ing.
  • the bolometer thin film 1 and the protective films 5 and 6 constitute a diaphragm 8, and a space 7 is provided between the diaphragm 8 and the substrate 2.
  • the space 7 is for reducing the amount of heat transfer between the diaphragm 8 and the substrate 2.
  • a reflective film 4 is provided on the surface of the substrate 2 facing the space 7.
  • the reflective film 4 is for reflecting the infrared ray 9 that has passed through the diaphragm 8 and allowing the diaphragm 8 to absorb as much energy of the infrared ray 9 as possible.
  • the bolometer thin film 1 is a temperature-sensitive resistance material (glass material) whose resistance changes due to a temperature change accompanying absorption of infrared rays 9. Infrared light is detected by processing the change in resistance as a change in electrical signal by the substrate 2 (signal circuit).
  • an image can be formed by arranging the sensors two-dimensionally.
  • the sensor is usually manufactured using MEMS technology.
  • the glass material of the present embodiment is formed on the substrate 2 such as Si, Si 3 N 4 , or SiC using a sputtering method, a coating pyrolysis method, a screen printing method, an aerosol deposition method, or the like. Can do. In particular, the latter two methods (screen printing method and aerosol deposition method) can be reduced in cost compared to the sputtering method.
  • vanadium oxide (VO 2 ) undergoes a metal-semiconductor transition at about 70 ° C., it cannot be used in a temperature range higher than that.
  • the heat resistance is improved by improving the sputtering film forming conditions (Patent Document 7), but the temperature is about 150 ° C. at most.
  • the glass material of the present example is stable up to the glass transition point (around 300 ° C.) and contributes to the improvement of heat resistance and reliability.
  • the glass material of the present example shows a characteristic that the resistivity decreases as the temperature rises
  • the infrared detection characteristics in a higher temperature region than the glass material used in the conventional infrared sensor should be improved. Can do.
  • the glass material of the present embodiment can reduce the resistivity by generating and dispersing conductive M x V 2 O 5 crystals and V 2 O 5 crystals in the amorphous phase. .
  • the conventional glass material has a smaller absolute value of resistance temperature coefficient as the resistivity decreases.
  • the glass material of the present embodiment is made of at least two types of crystals having different resistivity, such as a relatively low resistance M x V 2 O 5 crystal and a relatively high resistance V 2 O 5 crystal.
  • the ratio of the crystal phase is 60 to 99% by volume, and more preferably the ratio of the crystal phase is 70 to 99% by volume. This is because when the proportion of the crystal phase is less than 60% by volume, the resistance value is larger than the desired range, and when it exceeds 99% by volume, the temperature coefficient of resistance is smaller than the desired range.
  • the proportion of M x V 2 O 5 crystals in the crystal phase is preferably 60 to 99% by weight, and more preferably 70 to 99% by weight. This is because when the ratio of M x V 2 O 5 crystals is less than 60% by weight, the resistance value becomes larger than the desired range, and when it exceeds 99% by weight, the temperature coefficient of resistance becomes smaller than the desired range.
  • FIG. 2 shows a structural model of the crystal of V 2 O 5 .
  • FIG. 3 shows a structural model of the crystal of M x V 2 O 5 .
  • the VO 5 pyramid 101 is covalently bonded in a two-dimensional direction via an oxygen atom to form a layered structure.
  • the crystal of M x V 2 O 5 has a cylindrical structure in which cations (M) are regularly bonded between layers of the vanadium oxide layered structure. Therefore, the crystal of this example is superior in chemical stability compared to V 2 O 5 laminated by electrostatic interaction.
  • M in the M x V 2 O 5 crystallite is at least one element selected from the group consisting of monovalent cations Li, Na, K, Cu, Ag, Au, Ga, and In, More preferably, it is at least one element selected from the group consisting of Li, Na, K, Cu and Ag.
  • the size of the M x V 2 O 5 crystallite is preferably 50 nm or more in the direction of the (111) plane or the (11-1) plane, and more preferably 100 nm or more. This is because the resistance of the glass material decreases as the size of the M x V 2 O 5 crystallite increases, but if the size of the M x V 2 O 5 crystallite is smaller than 50 nm, it does not contribute to the decrease in resistance. Note that the larger the size of the M x V 2 O 5 crystallite, the smaller the temperature coefficient of resistance. Therefore, the size of the M x V 2 O 5 crystallite is preferably 500 nm or less.
  • the size of the V 2 O 5 crystallite is preferably 30 nm or less in the (001) plane direction, and more preferably 20 nm or less. This is because, when dispersed together with M x V 2 O 5 crystals, the resistance of the glass material decreases as the size of the V 2 O 5 crystallites decreases, but if it exceeds 30 nm, it does not contribute to the decrease in resistance. . In addition, since the temperature coefficient of resistance decreases as the size of the V 2 O 5 crystallite decreases, the size of the V 2 O 5 crystallite is preferably 5 nm or more.
  • the amorphous phase of this example includes at least one selected from the group consisting of vanadium oxide, phosphorus oxide, tungsten oxide, molybdenum oxide, iron oxide, manganese oxide, barium oxide, antimony oxide, and bismuth oxide.
  • the glass material of this example has a resistivity at room temperature (25 ° C.) of 10 ⁇ ⁇ cm or less, a resistance temperature coefficient at 20 to 40 ° C. of ⁇ 3% / ° C. or less (the absolute value of the resistance temperature coefficient is 3% / ° C or higher).
  • the resistivity and the temperature coefficient of resistance show a contradictory relationship, but in the glass material of this example, the glass structure should be optimized, such as the composition of the glass material, the proportion of the crystal phase, and the size of the crystallite. Thus, it is possible to keep the resistivity and the temperature coefficient of resistance within the optimum ranges.
  • the composition of the glass composition is 62 to 92% by weight of V 2 O 5 and 5 to 20% by weight of P 2 O 5 in terms of oxide, Li 2 O, Na 2 O, K 2 O, Cu 2 O and Any one of Ag 2 O is 1 to 15% by weight, and any one or more of WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and Bi 2 O 3 is 0 to 20% by weight. It is.
  • a more preferable composition of the glass composition is, in terms of oxide, V 2 O 5 of 70 to 80 wt%, P 2 O 5 of 8 to 14 wt%, Li 2 O, Na 2 O and K 2 O. Is 1 to 5 wt%, and one or more selected from the group consisting of WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and Bi 2 O 3 is 0 to 20 wt% or less is there.
  • Vanadium pentoxide and phosphorus pentoxide are substances that form the skeleton of the glass material (glass composition) of this example.
  • This type of glass material is composed of VO 5 pentahedron units centered on vanadium atoms and having oxygen atoms as vertices, and the units are covalently bonded in a two-dimensional direction via oxygen atoms to form a layered structure. It is vitrified by bonding PO 4 tetrahedrons between these layers.
  • V 2 O 5 When V 2 O 5 is less than 62% by weight, there are few crystals that precipitate, and the resistance value does not decrease. Further, if V 2 O 5 exceeds 92 wt%, the ratio of V 2 O 5 crystal phase is more than 90 wt% is not preferable.
  • Li 2 O, Na 2 O, K 2 O, Cu 2 O, and Ag 2 O are components for producing monoclinic crystals by firing. Even if the amount is less than 1% by weight or more than 15% by weight, it is not preferable because monoclinic crystals are hardly precipitated.
  • the metal element that is stable in the state of a monovalent cation Li, Na, and K, which are alkali metals that have a low electronegativity and are easy to vitrify stably, are preferable.
  • WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and Bi 2 O 3 are glass modifying components. It is a component that adjusts the characteristics of the glass amorphous phase, such as water resistance, thermal expansion, and characteristic temperature, and can be added as appropriate. The water resistance improves as the amount added increases. However, if it exceeds 25% by weight, the proportion of monoclinic crystals in the conductive material decreases, which is not preferable. In addition, since a material with low water resistance easily absorbs moisture, it becomes unstable under the influence of moisture. Therefore, it readily available, and the safety is added WO 3 and 10 wt% combined WO 3 and Fe 2 O 3 at least one of Fe 2 O 3 ⁇ 20% by weight is high material preferable.
  • the glass composition of this example has a transition temperature of 300 ° C. or lower and a crystallization (start) temperature of 400 ° C. or lower, and can be crystallized by heat treatment at a temperature of the crystallization (start) temperature or higher. Since the crystal phase is generated in two stages, that is, the generation of crystal nuclei and the growth of crystals, the crystal states generated under the heat treatment conditions are different. In order to reduce the size of the crystallite (also referred to as crystallite size or crystallite diameter), the crystallite is kept long at the crystal nucleation temperature, and crystal nuclei are sufficiently precipitated and then grown.
  • a method is generally used in which crystal nucleation temperature is passed quickly and crystals are grown while maintaining the number of crystal nuclei at a high temperature.
  • the firing method is not particularly limited as long as it is an apparatus capable of heating amorphous glass at a temperature higher than the crystallization temperature, such as heater heating, laser annealing, induction heating and the like.
  • 300 g of mixed powder in which raw material compounds are blended and mixed so as to have a predetermined composition is placed in a platinum crucible and heated to 1100 ° C. at a temperature rising rate of 5 to 10 ° C./min (° C./min) using an electric furnace. Hold for 2 hours. During holding, stirring was performed to obtain a uniform glass. Next, the platinum crucible was taken out from the electric furnace and poured onto a stainless steel plate heated to 200 to 300 ° C. in advance.
  • Table 1 shows the glass composition and properties produced and studied.
  • the characteristic temperature of the glass was determined from the peak temperature by differential thermal analysis (DTA) using glass powder.
  • the measurement sample was pulverized using a stamp mill to prepare a glass composition powder.
  • the obtained glass composition was processed into a size of 10 ⁇ 10 ⁇ 4 mm to obtain a sample piece, and this sample piece was placed on an alumina substrate and heated at a temperature 50 ° C. or more higher than the crystallization start temperature for 50 hours.
  • the produced conductive material was produced.
  • the glass composition containing the crystal phase after firing is pulverized into a powder form, and using a wide-angle X-ray diffractometer (manufactured by Rigaku Corporation, RINT 2500HL), the crystal identification, the crystal ratio, and the crystallite diameter Measurements were made.
  • the crystal identification and crystal ratio measurement conditions are as follows.
  • the X-ray source was Cu, and its output was set to 50 kV and 250 mA.
  • a divergence slit of 0.5 deg, a receiving slit of 0.15 mm, and a scattering slit of 0.5 deg were selected.
  • the scanning axis of X-ray diffraction was a 2 ⁇ / ⁇ interlocking type, and measurement was performed in a range of 5 ⁇ 2 ⁇ ⁇ 100 deg by continuous scanning under conditions of a scanning speed of 1.0 deg / min and sampling of 0.01 deg.
  • ICDD data which is a collection of X-ray diffraction standard data was used to identify crystals precipitated in the material.
  • the crystal ratio was calculated from the ratio between the diffraction peak due to crystal and the halo due to amorphous in the obtained diffraction pattern.
  • the crystallite diameter is the diffraction peak having the highest peak intensity among the diffraction peaks originating from the identified crystal, and in the case of a Li 0.3 V 2 O 5 crystal, the (11-1) plane, V 2 O Five crystals used the (001) plane, and the crystallite diameter was calculated therefrom.
  • the following is a method for measuring the crystallite diameter.
  • Detailed measurement was performed by narrow scan at an angle near the detected main peak.
  • the narrow scan was measured by using integrated scanning as the scanning method and narrowing the scanning range to the vicinity of the detected main peak.
  • the crystallite diameter was calculated from the half width of the detected main peak obtained by narrow scan by the Scherrer equation.
  • the measurement method used here cannot measure a crystallite diameter of 100 nm or more, the crystallite diameter was confirmed by SEM (scanning electron microscope) observation or TEM (transmission electron microscope) observation for samples exceeding the measurement limit. .
  • the oxide powder was used for vanadium pentoxide, phosphorus pentoxide, iron oxide, antimony trioxide, tungsten trioxide, etc., which are raw materials for each component. Moreover, about sodium, potassium, and lithium, sodium carbonate, potassium carbonate, and lithium carbonate were used, respectively.
  • samples described as “Examples” are “V 2 O 5 is 63 wt% to 88.8 wt%”, “P 2 O 5 ” with respect to the composition of the glass composition before firing shown in Table 1.
  • At least one of 2 and Bi 2 O 3 satisfies the condition “0 wt% to 20 wt%”.
  • a sample that does not satisfy the above composition range was described as “Comparative Example”.
  • sample number 1-01 in Table 1 corresponds to sample number 2-01 in Table 2.
  • the precipitated main crystals (mainly precipitated crystals) were Li 0.3 V 2 O 5 , Na 0.287 V 2 O 5 , Na 0.76 V 2 O 5 , and K 0, respectively. .33 V 2 O 5 , Cu 0.261 (V 2 O 5 ), Ag 0.333 (V 2 O 5 ).
  • This crystal is a compound of a monovalent cation (M) and V 2 O 5 and is a crystal represented by M x V 2 O 5 .
  • x is 0.28 to 0.76.
  • the crystal ratio is 62% by volume or more, and the crystallite diameter is 50 nm or more.
  • the conductive materials obtained from these compositions exhibited good conductivity with a conductivity of 10 ⁇ ⁇ cm or less.
  • the precipitated main crystal is V 2 O 5 or Li 0.97 V 3 O 8
  • a crystal of Li 0.3 V 2 O 5 is precipitated.
  • the crystal ratio is less than 60% by volume.
  • the resistance value after the crystallization treatment was also larger than 10 ⁇ ⁇ cm.
  • the ratio of the crystal phase to be generated and the crystallite size vary depending on the glass composition and heat treatment conditions.
  • FIG. 4 is a graph showing the relationship between the ratio of crystal phase, resistivity, and temperature coefficient of resistance.
  • the horizontal axis represents the crystal phase ratio
  • the left vertical axis represents resistivity
  • the right vertical axis represents resistance temperature coefficient
  • the glass material used as a sample is 1-11 in Table 1.
  • the resistivity decreases as the proportion of the crystal phase increases, and when the proportion of the crystal phase is 60% by volume or more, the resistivity shows a value of 10 ⁇ ⁇ cm or less.
  • the temperature coefficient of resistance shows a negative value, but its absolute value decreases with an increase in the ratio of the crystal phase.
  • the absolute value of the resistance temperature coefficient Indicates a value of 3.2% / ° C. or lower (resistance temperature coefficient is ⁇ 3.2% / ° C. or higher).
  • FIG. 5 is a graph showing the relationship between the amount of M x V 2 O 5 in the crystal phase, the resistivity, and the temperature coefficient of resistance.
  • the horizontal axis represents the amount of M x V 2 O 5
  • the left vertical axis represents the resistivity
  • the right vertical axis represents the temperature coefficient of resistance.
  • the amount of M x V 2 O 5 is the ratio of Li 0.3 V 2 O 5 crystal, which is one of the main precipitated crystals shown in Table 2-11.
  • the resistivity is reduced with an increase in the proportion of M x V 2 O 5 amount i.e. Li 0.3 V 2 O 5 crystal, M x V 2 O 5 amount is more than 60 wt% In this case, the value is 10 ⁇ ⁇ cm or less.
  • the resistance temperature coefficient shows a negative value, its absolute value decreases with an increase in the proportion of the crystal phase (Li 0.3 V 2 O 5 crystal), and the amount of M x V 2 O 5 decreases.
  • the absolute value of the resistance temperature coefficient is 3.2% / ° C. or less (the resistance temperature coefficient is ⁇ 3.2% / ° C. or more).
  • FIG. 6 is a graph showing the relationship between the size of M x V 2 O 5 crystallites and the resistivity.
  • M x V 2 O 5 is Li 0.3 V 2 O 5 which is one of the main precipitated crystals shown in 2-10 of Table 2, and the size of the M x V 2 O 5 crystallite Is the size of the Li 0.3 V 2 O 5 crystallite.
  • the resistivity decreases as the size of the M x V 2 O 5 crystallite increases, and shows a value of 10 ⁇ ⁇ cm or less at 50 nm or more.
  • FIG. 7 is a graph showing the relationship between the size of the V 2 O 5 crystallite and the resistivity.
  • V 2 O 5 is the main precipitated crystals shown in 2-11 of Table 2.
  • the resistivity decreases with a decrease in the size of the V 2 O 5 crystallite, and shows a value of 10 ⁇ ⁇ cm or less at 30 nm or less.
  • the glass material of the present embodiment and the infrared sensor and infrared imaging device using the glass material can improve long-term stability and reliability, and can reduce costs.
  • the glass material of the present invention and the infrared sensor and infrared imaging device using the glass material can be applied to products used in general households, offices, factories, vehicles, ships and the like.

Abstract

Disclosed are: a vanadium-oxide-containing glass material having low resistivity and a large absolute value of a temperature coefficient of resistivity; and an infrared ray sensor in which the glass material is used as a bolometer. The glass material comprises a crystal phase and an amorphous phase, wherein the crystal phase comprises at least MxV2O5 crystals and V2O5 crystals, M in the formula represents at least one element selected from the group consisting of Li, Na, K, Cu, Ag, Au, Ga and In, and the amorphous phase contains vanadium, phosphorus and oxygen.

Description

赤外線センサInfrared sensor
 本発明は、赤外線センサに用いるガラス材に関する。 The present invention relates to a glass material used for an infrared sensor.
 五酸化バナジウムを主成分とするバナジウム系ガラスは、電気を流すガラス半導体であることが知られており、サーミスタ等へ使用する検討が進められている。 Vanadium-based glass containing vanadium pentoxide as a main component is known to be a glass semiconductor that conducts electricity, and studies are underway to use it for thermistors and the like.
 特許文献1には、五酸化バナジウム50モル%以上を含み、五酸化リンと酸化バリウムとからなるガラス組成に、酸化セリウム、酸化錫並びに酸化鉛を添加した熱感応抵抗素子用ガラス状抵抗材料が開示されている。 Patent Document 1 discloses a glass-like resistance material for a heat-sensitive resistance element, which contains 50 mol% or more of vanadium pentoxide, and in which cerium oxide, tin oxide, and lead oxide are added to a glass composition composed of phosphorus pentoxide and barium oxide. It is disclosed.
 特許文献2には、五酸化バナジウム70モル%以上、五酸化リン5~15モル%を含むガラスに13モル%以下の酸化銅を加えて得られるガラスから作られたサーミスタが開示されている。 Patent Document 2 discloses a thermistor made of glass obtained by adding 13 mol% or less of copper oxide to glass containing vanadium pentoxide 70 mol% or more and phosphorus pentoxide 5 to 15 mol%.
 特許文献3には、バナジウム、バリウム、鉄を含む酸化物系ガラス組成物をガラス転移温度以上、結晶化温度以下の温度で加熱し、ガラス骨格の歪を小さくすることで室温での電気抵抗が、10~10Ω・cmのガラス半導体であるバナジン酸塩ガラスが開示されている。 Patent Document 3 discloses that an electrical resistance at room temperature is obtained by heating an oxide glass composition containing vanadium, barium, and iron at a temperature not lower than the glass transition temperature and not higher than the crystallization temperature, thereby reducing the distortion of the glass skeleton. A vanadate glass that is a glass semiconductor of 10 1 to 10 4 Ω · cm is disclosed.
 特許文献4には、酸化バナジウム(VO)におけるVの一部をCr、Al、Fe、Mn、Nb、Ta及びTiのうち少なくとも一種で置換されたボロメータ用酸化物薄膜及びこれを用いた赤外線センサが開示されている。 Patent Document 4 discloses an oxide thin film for bolometer in which a part of V in vanadium oxide (VO X ) is substituted with at least one of Cr, Al, Fe, Mn, Nb, Ta, and Ti, and an infrared ray using the same. A sensor is disclosed.
 特許文献5には、酸化バナジウムVOx薄膜として、x=1.5であるVを組成とする結晶相を出発膜質として用い、酸素を含む酸化雰囲気下で熱処理を行うボロメータ材料の作製方法が開示されている。 Patent Document 5 discloses a method for manufacturing a bolometer material in which a crystal phase having a composition of V 2 O 3 where x = 1.5 is used as a starting film quality as a vanadium oxide VOx thin film and heat treatment is performed in an oxygen-containing oxidizing atmosphere. Is disclosed.
 特許文献6には、酸化バナジウム(VOx:2.25≦x<2.5)からなる薄膜を、還元雰囲気下、所定の温度で熱処理する酸化バナジウム薄膜の形成方法が開示されている。 Patent Document 6 discloses a method for forming a vanadium oxide thin film in which a thin film made of vanadium oxide (VOx: 2.25 ≦ x <2.5) is heat-treated at a predetermined temperature in a reducing atmosphere.
 特許文献7には、スパッタ法又はゾルゲル法で作製し空気中で熱処理した五酸化バナジウム薄膜をアルゴン-水素混合ガスによって還元した酸化バナジウム薄膜であって、この酸化バナジウムをVOxと表したときにxの範囲が1.875<x<2.0を満たす酸化バナジウム薄膜が開示されている。 Patent Document 7 discloses a vanadium oxide thin film obtained by reducing a vanadium pentoxide thin film prepared by a sputtering method or a sol-gel method and heat-treated in air with an argon-hydrogen mixed gas, and this vanadium oxide is expressed as VOx. Vanadium oxide thin film satisfying the range of 1.875 <x <2.0 is disclosed.
特公昭42-24785号公報Japanese Patent Publication No.42-24785 特公昭39-9140号公報Japanese Examined Patent Publication No. 39-9140 特許3854985号公報Japanese Patent No. 3854985 特開2000-143243号公報JP 2000-143243 A 特開2001-247958号公報JP 2001-247958 A 特開2000-321124号公報JP 2000-321124 A 特開平9-257565号公報JP-A-9-257565
 本発明は、抵抗率が低く、かつ、抵抗温度係数の絶対値が大きい酸化バナジウム系のガラス材を提供するとともに、このガラス材をボロメータに用いた赤外線センサを提供することを目的とする。 An object of the present invention is to provide a vanadium oxide glass material having a low resistivity and a large absolute value of resistance temperature coefficient, and an infrared sensor using the glass material for a bolometer.
 本発明のガラス材は、結晶相と非晶質相とを含み、前記結晶相は、少なくともM結晶とV結晶とを含み、前記Mは、Li、Na、K、Cu、Ag、Au、Ga及びInからなる群から選択される少なくとも1種類の元素であり、前記非晶質相は、バナジウム、リン及び酸素を含むことを特徴とする。 The glass material of the present invention includes a crystal phase and an amorphous phase, and the crystal phase includes at least M x V 2 O 5 crystal and V 2 O 5 crystal, where M is Li, Na, K , Cu, Ag, Au, Ga, and In, and the amorphous phase contains vanadium, phosphorus, and oxygen.
 本発明によれば、抵抗率が低く、かつ、抵抗温度係数の絶対値が大きいボロメータを有する赤外線センサを提供することができる。 According to the present invention, it is possible to provide an infrared sensor having a bolometer with a low resistivity and a large absolute value of resistance temperature coefficient.
実施例の赤外線センサを示す概略断面図である。It is a schematic sectional drawing which shows the infrared sensor of an Example. の結晶構造モデルを示す模式図である。It is a schematic diagram showing a crystal structure model of the V 2 O 5. の結晶構造モデルを示す模式図である。It is a schematic diagram showing a crystal structure model of the M x V 2 O 5. 結晶相の割合と抵抗率及び抵抗温度係数との関係を示すグラフである。It is a graph which shows the relationship between the ratio of a crystal phase, a resistivity, and a resistance temperature coefficient. 結晶相におけるM量と抵抗率及び抵抗温度係数との関係を示すグラフである。It is a graph showing the relationship between the M x V 2 O 5 amount and the resistivity and temperature coefficient of resistance in the crystalline phase. 結晶子の大きさと抵抗率との関係を示すグラフである。Is a graph showing the relationship between the M x V 2 O 5 crystallite size and resistivity. 結晶子の大きさと抵抗率との関係を示すグラフである。It is a graph showing the relationship between V 2 O 5 crystallite size and resistivity.
 本発明は、温度によって抵抗値が変化する感温抵抗材(ガラス材)及びこれを用いたボロメータ型赤外線センサに関する。 The present invention relates to a temperature-sensitive resistance material (glass material) whose resistance value varies with temperature and a bolometer-type infrared sensor using the same.
 以下、本発明の一実施形態に係るガラス材について説明する。 Hereinafter, a glass material according to an embodiment of the present invention will be described.
 前記ガラス材は、結晶相と非晶質相とを含み、結晶相は、少なくともM結晶とV結晶とを含み、Mは、Li、Na、K、Cu、Ag、Au、Ga及びInからなる群から選択される少なくとも1種類の元素であり、非晶質相は、バナジウム、リン及び酸素を含む。 The glass material includes a crystal phase and an amorphous phase, and the crystal phase includes at least M x V 2 O 5 crystal and V 2 O 5 crystal, and M is Li, Na, K, Cu, Ag. , Au, Ga, and In, and the amorphous phase contains vanadium, phosphorus, and oxygen.
 前記ガラス材において、xは、0.28~0.76である。 In the glass material, x is 0.28 to 0.76.
 前記ガラス材においては、結晶相の割合が60~99体積%である。 In the glass material, the crystal phase ratio is 60 to 99% by volume.
 前記ガラス材においては、結晶相におけるM結晶の割合が60~99重量%である。 In the glass material, the ratio of M x V 2 O 5 crystals in the crystal phase is 60 to 99% by weight.
 前記ガラス材においては、M結晶の結晶子の大きさが50nm以上である。 In the glass material, the crystallite size of the M x V 2 O 5 crystal is 50 nm or more.
 前記ガラス材においては、V結晶の結晶子の大きさが30nm以下である。 In the glass material, the crystallite size of the V 2 O 5 crystal is 30 nm or less.
 前記ガラス材において、酸化物換算の組成は、Vが62~92重量%であり、Pが5~20重量%であり、LiO、NaO、KO、CuO、AgO、GaO及びInOからなる群から選択される1種類以上が1~15重量%であり、WO、MoO、Fe、MnO、BaO、Sb及びBiからなる群から選択される1種類以上が0~20重量%以下である。 In the glass material, the composition in terms of oxide is such that V 2 O 5 is 62 to 92% by weight, P 2 O 5 is 5 to 20% by weight, Li 2 O, Na 2 O, K 2 O, One or more selected from the group consisting of Cu 2 O, Ag 2 O, Ga 2 O and In 2 O is 1 to 15% by weight, WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, One or more selected from the group consisting of Sb 2 O 3 and Bi 2 O 3 is 0 to 20% by weight.
 前記ガラス材においては、抵抗率が10Ω・cm以下であり、かつ、抵抗温度係数の絶対値が3%/℃以上である。 The glass material has a resistivity of 10 Ω · cm or less and an absolute value of a resistance temperature coefficient of 3% / ° C. or more.
 前記ガラス材は、赤外線センサ及び赤外線撮像装置に適用可能である。 The glass material can be applied to an infrared sensor and an infrared imaging device.
 以下、本実施形態における具体的な実施例について図を用いて説明する。ただし、本発明は、ここで取り上げた実施例に限定されることはなく、適宜組み合わせてもよい。 Hereinafter, specific examples in the present embodiment will be described with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and may be combined as appropriate.
 図1は、実施例の赤外線センサを示す模式図である。 FIG. 1 is a schematic diagram showing an infrared sensor of an example.
 本図において、ボロメータ薄膜1(単にボロメータとも呼ぶ。)は、保護膜5、6で覆われ、同じく保護膜5、6で覆われている導電膜3に支持される形で基板2に設置されている。 In this figure, a bolometer thin film 1 (also simply referred to as a bolometer) is installed on a substrate 2 so as to be covered with protective films 5 and 6 and supported by a conductive film 3 which is also covered with protective films 5 and 6. ing.
 ボロメータ薄膜1及び保護膜5、6は、ダイアフラム8を構成し、このダイアフラム8と基板2との間には、空間部7が設けてある。空間部7は、ダイアフラム8と基板2との間の伝熱量を低減するためのものである。ボロメータ薄膜1を含むダイアフラム8に赤外線9が当たって吸収されることにより、ダイアフラム8の温度が上昇し、ボロメータ薄膜1の抵抗が変化するようになっている。 The bolometer thin film 1 and the protective films 5 and 6 constitute a diaphragm 8, and a space 7 is provided between the diaphragm 8 and the substrate 2. The space 7 is for reducing the amount of heat transfer between the diaphragm 8 and the substrate 2. When the infrared ray 9 hits the diaphragm 8 including the bolometer thin film 1 and is absorbed, the temperature of the diaphragm 8 rises and the resistance of the bolometer thin film 1 changes.
 空間部7に面した基板2の表面には、反射膜4が設置してある。反射膜4は、ダイアフラム8を透過した赤外線9を反射し、ダイアフラム8に赤外線9のエネルギーをできるだけ多く吸収させるためのものである。 A reflective film 4 is provided on the surface of the substrate 2 facing the space 7. The reflective film 4 is for reflecting the infrared ray 9 that has passed through the diaphragm 8 and allowing the diaphragm 8 to absorb as much energy of the infrared ray 9 as possible.
 ボロメータ薄膜1は、赤外線9の吸収に伴う温度変化により抵抗が変化する感温抵抗材(ガラス材)である。この抵抗の変化を電気信号の変化として基板2(信号回路)で処理することにより、赤外線を検出する。 The bolometer thin film 1 is a temperature-sensitive resistance material (glass material) whose resistance changes due to a temperature change accompanying absorption of infrared rays 9. Infrared light is detected by processing the change in resistance as a change in electrical signal by the substrate 2 (signal circuit).
 赤外線カメラ(赤外線イメージセンサ)の場合、このセンサを二次元的に配列することにより画像を形成可能とする。特に、赤外線カメラにおいては、ミクロンオーダの微細な配列加工を要するため、センサは、通常、MEMS技術を用いて作製される。 In the case of an infrared camera (infrared image sensor), an image can be formed by arranging the sensors two-dimensionally. In particular, since an infrared camera requires micron-order fine array processing, the sensor is usually manufactured using MEMS technology.
 本実施例のガラス材は、例えばSi、Si、SiCなどの基板2の上に、スパッタ法、塗布熱分解法、スクリーン印刷法、エアロゾルデポジッション法などを用いて成膜を行うことができる。特に、後者の2つの方法(スクリーン印刷法及びエアロゾルデポジッション法)はスパッタ法に比べて低コスト化することが可能である。 The glass material of the present embodiment is formed on the substrate 2 such as Si, Si 3 N 4 , or SiC using a sputtering method, a coating pyrolysis method, a screen printing method, an aerosol deposition method, or the like. Can do. In particular, the latter two methods (screen printing method and aerosol deposition method) can be reduced in cost compared to the sputtering method.
 また、結晶相と非晶質相とを含むガラス材であるため、結晶性の膜に比べて熱伝導率の低下を図ることも可能であり、赤外線センサの熱コンダクタンスの減少にも寄与する。 Also, since it is a glass material containing a crystalline phase and an amorphous phase, it is possible to reduce the thermal conductivity compared to a crystalline film, which contributes to a reduction in the thermal conductance of the infrared sensor.
 酸化バナジウム(VO)は、約70℃で金属-半導体転移が起こるため、それ以上の温度領域では使用できない。スパッタ成膜条件の改善により耐熱性の向上が図られている(特許文献7)が、せいぜい150℃程度である。 Since vanadium oxide (VO 2 ) undergoes a metal-semiconductor transition at about 70 ° C., it cannot be used in a temperature range higher than that. The heat resistance is improved by improving the sputtering film forming conditions (Patent Document 7), but the temperature is about 150 ° C. at most.
 これに対して、本実施例のガラス材は、ガラス転移点(300℃付近)まで安定であり、耐熱性及び信頼性の向上に寄与する。 On the other hand, the glass material of the present example is stable up to the glass transition point (around 300 ° C.) and contributes to the improvement of heat resistance and reliability.
 さらに、本実施例のガラス材は、温度の上昇に伴って抵抗率が低下する特性を示すため、従来の赤外線センサに用いられているガラス材より高温領域での赤外線検出特性の向上を図ることができる。 Furthermore, since the glass material of the present example shows a characteristic that the resistivity decreases as the temperature rises, the infrared detection characteristics in a higher temperature region than the glass material used in the conventional infrared sensor should be improved. Can do.
 本実施例のガラス材は、非晶質相の中に導電性のM結晶やV結晶を生成、分散させることにより、抵抗率の低下を図ることが可能となる。 The glass material of the present embodiment can reduce the resistivity by generating and dispersing conductive M x V 2 O 5 crystals and V 2 O 5 crystals in the amorphous phase. .
 従来のガラス材は、抵抗率の低下に伴って抵抗温度係数の絶対値も小さくなる。 The conventional glass material has a smaller absolute value of resistance temperature coefficient as the resistivity decreases.
 これに対して、本実施例のガラス材は、比較的低抵抗のM結晶と比較的高抵抗のV結晶のように、抵抗率の異なる少なくとも2種類の結晶を非晶質相の中に分散させ、非晶質相の中に含まれる結晶の量や結晶子サイズを適切な範囲とすることにより、抵抗率及び抵抗温度係数の両方を所望の範囲になるようにしている。 On the other hand, the glass material of the present embodiment is made of at least two types of crystals having different resistivity, such as a relatively low resistance M x V 2 O 5 crystal and a relatively high resistance V 2 O 5 crystal. By dispersing in the amorphous phase and adjusting the amount of crystal contained in the amorphous phase and the crystallite size to an appropriate range, both the resistivity and the temperature coefficient of resistance are in the desired range. I have to.
 本実施例のガラス材においては、結晶相の割合が60~99体積%であり、より好ましくは、結晶相の割合が70~99体積%である。これは、結晶相の割合が60体積%未満の場合、抵抗値が所望の範囲より大きくなり、99体積%を越えた場合、抵抗温度係数が所望の範囲より小さくなるためである。 In the glass material of this example, the ratio of the crystal phase is 60 to 99% by volume, and more preferably the ratio of the crystal phase is 70 to 99% by volume. This is because when the proportion of the crystal phase is less than 60% by volume, the resistance value is larger than the desired range, and when it exceeds 99% by volume, the temperature coefficient of resistance is smaller than the desired range.
 また、結晶相中におけるM結晶の割合は、60~99重量%であることが好ましく、70~99重量%であれば更に好ましい。M結晶の割合が60重量%未満の場合、抵抗値が所望の範囲より大きくなり、99重量%を越えた場合、抵抗温度係数が所望の範囲より小さくなるためである。 Further, the proportion of M x V 2 O 5 crystals in the crystal phase is preferably 60 to 99% by weight, and more preferably 70 to 99% by weight. This is because when the ratio of M x V 2 O 5 crystals is less than 60% by weight, the resistance value becomes larger than the desired range, and when it exceeds 99% by weight, the temperature coefficient of resistance becomes smaller than the desired range.
 図2は、Vの結晶の構造モデルを示したものである。また、図3は、Mの結晶の構造モデルを示したものである。 FIG. 2 shows a structural model of the crystal of V 2 O 5 . FIG. 3 shows a structural model of the crystal of M x V 2 O 5 .
 Vの結晶は、VOピラミッド101が酸素原子を介して二次元方向に共有結合し、層状構造を形成している。 In the V 2 O 5 crystal, the VO 5 pyramid 101 is covalently bonded in a two-dimensional direction via an oxygen atom to form a layered structure.
 一方、Mの結晶は、このバナジウム酸化物の層状構造の層間を陽イオン(M)が規則的に結合した筒状の構造である。そのため、静電的相互作用により積層しているVに比べ、本実施例の結晶は化学的安定性に優れる。 On the other hand, the crystal of M x V 2 O 5 has a cylindrical structure in which cations (M) are regularly bonded between layers of the vanadium oxide layered structure. Therefore, the crystal of this example is superior in chemical stability compared to V 2 O 5 laminated by electrostatic interaction.
 ここで、M結晶子のMは、一価の陽イオンLi、Na、K、Cu、Ag、Au、Ga及びInからなる群から選択される少なくとも1種類の元素であり、より好ましくはLi、Na、K、Cu及びAgからなる群から選択される少なくとも1種類の元素である。 Here, M in the M x V 2 O 5 crystallite is at least one element selected from the group consisting of monovalent cations Li, Na, K, Cu, Ag, Au, Ga, and In, More preferably, it is at least one element selected from the group consisting of Li, Na, K, Cu and Ag.
 M結晶子のx=0.28~0.76であることが好ましく、x=0.28~0.41であれば更に好ましい。これは、x=0.28~0.76の場合に単斜晶の結晶を形成しやすいためである。 The M x V 2 O 5 crystallite preferably has x = 0.28 to 0.76, and more preferably x = 0.28 to 0.41. This is because monoclinic crystals are easily formed when x = 0.28 to 0.76.
 M結晶子のサイズは、(111)面又は(11-1)面の方向で50nm以上であることが好ましく、100nm以上であれば更に好ましい。M結晶子のサイズの増加に伴い、ガラス材の抵抗は低下するが、M結晶子のサイズが50nmより小さいと抵抗の低下に寄与しないためである。なお、M結晶子のサイズが大きいほど抵抗温度係数が小さくなるため、M結晶子のサイズは500nm以下が好ましい。 The size of the M x V 2 O 5 crystallite is preferably 50 nm or more in the direction of the (111) plane or the (11-1) plane, and more preferably 100 nm or more. This is because the resistance of the glass material decreases as the size of the M x V 2 O 5 crystallite increases, but if the size of the M x V 2 O 5 crystallite is smaller than 50 nm, it does not contribute to the decrease in resistance. Note that the larger the size of the M x V 2 O 5 crystallite, the smaller the temperature coefficient of resistance. Therefore, the size of the M x V 2 O 5 crystallite is preferably 500 nm or less.
 V結晶子のサイズは、(001)面の方向で30nm以下であることが好ましく、20nm以下であれば更に好ましい。これは、M結晶とともに分散した場合、V結晶子のサイズの減少に伴い、ガラス材の抵抗は低下するが、30nmより大きいと抵抗の低下に寄与しないためである。なお、V結晶子のサイズの減少に伴い、抵抗温度係数が小さくなるため、V結晶子のサイズは5nm以上が好ましい。 The size of the V 2 O 5 crystallite is preferably 30 nm or less in the (001) plane direction, and more preferably 20 nm or less. This is because, when dispersed together with M x V 2 O 5 crystals, the resistance of the glass material decreases as the size of the V 2 O 5 crystallites decreases, but if it exceeds 30 nm, it does not contribute to the decrease in resistance. . In addition, since the temperature coefficient of resistance decreases as the size of the V 2 O 5 crystallite decreases, the size of the V 2 O 5 crystallite is preferably 5 nm or more.
 本実施例の非晶質相は、酸化バナジウム、酸化リン、酸化タングステン、酸化モリブデン、酸化鉄、酸化マンガン、酸化バリウム、酸化アンチモン及び酸化ビスマスからなる群から選択される少なくとも1種類以上を含む。 The amorphous phase of this example includes at least one selected from the group consisting of vanadium oxide, phosphorus oxide, tungsten oxide, molybdenum oxide, iron oxide, manganese oxide, barium oxide, antimony oxide, and bismuth oxide.
 本実施例のガラス材は、室温(25℃)における抵抗率が10Ω・cm以下であり、20~40℃における抵抗温度係数が-3%/℃以下(抵抗温度係数の絶対値が3%/℃以上)である。 The glass material of this example has a resistivity at room temperature (25 ° C.) of 10 Ω · cm or less, a resistance temperature coefficient at 20 to 40 ° C. of −3% / ° C. or less (the absolute value of the resistance temperature coefficient is 3% / ° C or higher).
 通常、抵抗率と抵抗温度係数とは、相反する関係を示すが、本実施例のガラス材においては、ガラス材の組成、結晶相の割合、結晶子のサイズなど、ガラス構造を最適化することにより、抵抗率と抵抗温度係数とを最適な範囲に収めることが可能である。 Usually, the resistivity and the temperature coefficient of resistance show a contradictory relationship, but in the glass material of this example, the glass structure should be optimized, such as the composition of the glass material, the proportion of the crystal phase, and the size of the crystallite. Thus, it is possible to keep the resistivity and the temperature coefficient of resistance within the optimum ranges.
 (ガラス組成及び非晶質相)
 ガラス組成物の組成は、酸化物換算で、Vが62~92重量%、Pが5~20重量%、LiO、NaO、KO、CuO及びAgOのいずれかが1~15重量%、WO、MoO、Fe、MnO、BaO、Sb及びBiのいずれか1種以上が0~20重量%である。
(Glass composition and amorphous phase)
The composition of the glass composition is 62 to 92% by weight of V 2 O 5 and 5 to 20% by weight of P 2 O 5 in terms of oxide, Li 2 O, Na 2 O, K 2 O, Cu 2 O and Any one of Ag 2 O is 1 to 15% by weight, and any one or more of WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and Bi 2 O 3 is 0 to 20% by weight. It is.
 更に好ましいガラス組成物の組成は、酸化物換算で、Vが70~80重量%、Pが8~14重量%、LiO、NaO及びKOのいずれかが1~5重量%、WO、MoO、Fe、MnO、BaO、Sb及びBiからなる群から選択される1種類以上が0~20重量%以下である。 A more preferable composition of the glass composition is, in terms of oxide, V 2 O 5 of 70 to 80 wt%, P 2 O 5 of 8 to 14 wt%, Li 2 O, Na 2 O and K 2 O. Is 1 to 5 wt%, and one or more selected from the group consisting of WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and Bi 2 O 3 is 0 to 20 wt% or less is there.
 五酸化バナジウム及び五酸化リンは、本実施例のガラス材(ガラス組成物)の骨格を形成する物質である。この系のガラス材は、バナジウム原子を中心に酸素原子を頂点とするVOの五面体ユニットより構成され、ユニット同士が酸素原子を介して二次元方向に共有結合し、層状構造になっており、この層間にPO四面体結合することでガラス化している。 Vanadium pentoxide and phosphorus pentoxide are substances that form the skeleton of the glass material (glass composition) of this example. This type of glass material is composed of VO 5 pentahedron units centered on vanadium atoms and having oxygen atoms as vertices, and the units are covalently bonded in a two-dimensional direction via oxygen atoms to form a layered structure. It is vitrified by bonding PO 4 tetrahedrons between these layers.
 Vが62重量%より少ないと析出する結晶が少なく、抵抗値が小さくならない。また、Vが92重量%を越える場合、結晶相のVの割合が90重量%より多くなり好ましくない。 When V 2 O 5 is less than 62% by weight, there are few crystals that precipitate, and the resistance value does not decrease. Further, if V 2 O 5 exceeds 92 wt%, the ratio of V 2 O 5 crystal phase is more than 90 wt% is not preferable.
 Pが5重量%未満の場合、ガラスを形成できず、Pが20重量%を越えると結晶化温度が高温化するため好ましくない。 When P 2 O 5 is less than 5% by weight, glass cannot be formed, and when P 2 O 5 exceeds 20% by weight, the crystallization temperature increases, which is not preferable.
 LiO、NaO、KO、CuO及びAgOは、焼成により単斜晶の結晶を作るための成分である。これらは、1重量%未満でも、15重量%を越える場合でも、単斜晶の結晶が析出しづらく好ましくない。1価の陽イオンの状態で安定な金属元素としては、電気陰性度が小さく、安定にガラス化しやすいアルカリ金属であるLi、Na及びKが好ましい。 Li 2 O, Na 2 O, K 2 O, Cu 2 O, and Ag 2 O are components for producing monoclinic crystals by firing. Even if the amount is less than 1% by weight or more than 15% by weight, it is not preferable because monoclinic crystals are hardly precipitated. As the metal element that is stable in the state of a monovalent cation, Li, Na, and K, which are alkali metals that have a low electronegativity and are easy to vitrify stably, are preferable.
 WO、MoO、Fe、MnO、BaO、Sb及びBiは、ガラス修飾成分である。ガラス非晶質相の特性、例えば耐水性、熱膨張、特性温度を調整する成分であり、適宜添加できる。添加量が多いほど耐水性は向上するが、25重量%を越えると、導電性材料中における単斜晶の結晶の割合が少なくなるため好ましくない。また、耐水性の低い材料は吸湿しやすいため、水分の影響を受けて不安定になる。このため、容易に入手でき、かつ安全性が高い材料であるWO及びFeの少なくともいずれか一方をWO及びFeを合わせて10重量%~20重量%添加することが好ましい。 WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and Bi 2 O 3 are glass modifying components. It is a component that adjusts the characteristics of the glass amorphous phase, such as water resistance, thermal expansion, and characteristic temperature, and can be added as appropriate. The water resistance improves as the amount added increases. However, if it exceeds 25% by weight, the proportion of monoclinic crystals in the conductive material decreases, which is not preferable. In addition, since a material with low water resistance easily absorbs moisture, it becomes unstable under the influence of moisture. Therefore, it readily available, and the safety is added WO 3 and 10 wt% combined WO 3 and Fe 2 O 3 at least one of Fe 2 O 3 ~ 20% by weight is high material preferable.
 本実施例のガラス組成物は、転移温度が300℃以下、結晶化(開始)温度が400℃以下であり、結晶化(開始)温度以上で熱処理して結晶相を析出させることができる。結晶相は、結晶核の生成及び結晶の成長の2段階で生成するため、熱処理条件で生成する結晶状態が異なる。結晶子の大きさ(結晶子のサイズ又は結晶子径とも呼ぶ。)を小さくするには、結晶核生成温度で長く保持し、十分に結晶核を析出させ、その後、成長させる。 The glass composition of this example has a transition temperature of 300 ° C. or lower and a crystallization (start) temperature of 400 ° C. or lower, and can be crystallized by heat treatment at a temperature of the crystallization (start) temperature or higher. Since the crystal phase is generated in two stages, that is, the generation of crystal nuclei and the growth of crystals, the crystal states generated under the heat treatment conditions are different. In order to reduce the size of the crystallite (also referred to as crystallite size or crystallite diameter), the crystallite is kept long at the crystal nucleation temperature, and crystal nuclei are sufficiently precipitated and then grown.
 また、結晶子の大きさを大きくするためには、結晶核生成温度を速く通過させ、結晶核の数を少ない状態で高温に保持して結晶を成長させる方法が一般的である。焼成する手法としては、ヒーター加熱、レーザーアニール、誘導加熱等、非晶質ガラスを結晶化温度以上で加熱できる装置であれば特に限定はない。 Also, in order to increase the size of the crystallite, a method is generally used in which crystal nucleation temperature is passed quickly and crystals are grown while maintaining the number of crystal nuclei at a high temperature. The firing method is not particularly limited as long as it is an apparatus capable of heating amorphous glass at a temperature higher than the crystallization temperature, such as heater heating, laser annealing, induction heating and the like.
 〔ガラス組成物に関する検討〕
 (ガラス組成物の作製)
 ガラス組成物の作製は、以下の手順で行った。
[Study on glass composition]
(Preparation of glass composition)
The glass composition was produced according to the following procedure.
 原料化合物を所定の組成となるように配合・混合した混合粉末300gを白金ルツボに入れ、電気炉を用いて5~10℃/min(℃/分)の昇温速度で1100℃まで加熱して2時間保持した。保持中は均一なガラスとするために攪拌した。次に、白金ルツボを電気炉から取り出し、予め200~300℃に加熱しておいたステンレス板上に流し込んだ。 300 g of mixed powder in which raw material compounds are blended and mixed so as to have a predetermined composition is placed in a platinum crucible and heated to 1100 ° C. at a temperature rising rate of 5 to 10 ° C./min (° C./min) using an electric furnace. Hold for 2 hours. During holding, stirring was performed to obtain a uniform glass. Next, the platinum crucible was taken out from the electric furnace and poured onto a stainless steel plate heated to 200 to 300 ° C. in advance.
 表1に作製・検討したガラス組成と特性を示す。 Table 1 shows the glass composition and properties produced and studied.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本表におけるNo.1-02及び1-03は、ステンレス板状に流し込んだ時点で光沢がなく結晶化した。 No. in this table 1-02 and 1-03 crystallized without gloss when poured into a stainless steel plate.
 (ガラス組成物の特性測定)
 ガラスの特性温度は、ガラス粉末を用い、示差熱分析(DTA)によってピーク温度より求めた。測定用試料は、スタンプミルを用いて粉砕し、ガラス組成物の粉末を作製した。
(Characteristic measurement of glass composition)
The characteristic temperature of the glass was determined from the peak temperature by differential thermal analysis (DTA) using glass powder. The measurement sample was pulverized using a stamp mill to prepare a glass composition powder.
 (導電性材料の作製)
 得られたガラス組成物を10×10×4mmのサイズに加工して試料片とし、この試料片をアルミナ基板に載せて結晶化開始温度より50℃以上高い温度で50時間加熱し、結晶相を生成させた導電性材料を作製した。
(Production of conductive material)
The obtained glass composition was processed into a size of 10 × 10 × 4 mm to obtain a sample piece, and this sample piece was placed on an alumina substrate and heated at a temperature 50 ° C. or more higher than the crystallization start temperature for 50 hours. The produced conductive material was produced.
 (導電性材料の特性評価)
 次いで、四探針法電気抵抗計Loresta AP(三菱化学(株)製)を用いて、恒温槽中にて20~40℃における試料の抵抗率を測定した。得られた抵抗率より抵抗温度係数を算出した。
(Characteristic evaluation of conductive materials)
Next, the resistivity of the sample at 20 to 40 ° C. was measured in a thermostatic bath using a four-probe method electric resistance meter Loresta AP (manufactured by Mitsubishi Chemical Corporation). The temperature coefficient of resistance was calculated from the obtained resistivity.
 また、焼成後の結晶相を含んだガラス組成物を粉砕して粉末状にし、広角X線回折装置((株)リガク製、RINT2500HL)を使用して結晶の同定、結晶率及び結晶子径の測定を行った。結晶の同定及び結晶率の測定条件は次の通りである。 Further, the glass composition containing the crystal phase after firing is pulverized into a powder form, and using a wide-angle X-ray diffractometer (manufactured by Rigaku Corporation, RINT 2500HL), the crystal identification, the crystal ratio, and the crystallite diameter Measurements were made. The crystal identification and crystal ratio measurement conditions are as follows.
 X線源は、Cuであり、その出力を50kV、250mAと設定した。モノクロメータ付の集中法光学系を使用し、ダイバージェンススリット0.5deg、レシービングスリット0.15mm、及びスキャッタリングスリット0.5degを選択した。 The X-ray source was Cu, and its output was set to 50 kV and 250 mA. Using a concentrated optical system with a monochromator, a divergence slit of 0.5 deg, a receiving slit of 0.15 mm, and a scattering slit of 0.5 deg were selected.
 X線回折の走査軸は、2θ/θ連動式で、連続走査による5≦2θ≦100degの範囲を、走査速度1.0deg/min、サンプリング0.01degの条件で測定を行った。 The scanning axis of X-ray diffraction was a 2θ / θ interlocking type, and measurement was performed in a range of 5 ≦ 2θ ≦ 100 deg by continuous scanning under conditions of a scanning speed of 1.0 deg / min and sampling of 0.01 deg.
 結晶の同定は、X線回折標準データ集であるICDDデータを用い、材料中に析出している結晶を同定した。 For identification of crystals, ICDD data which is a collection of X-ray diffraction standard data was used to identify crystals precipitated in the material.
 結晶率は、得られた回折パターンの結晶起因の回折ピークと非晶質起因のハローとの割合より算出した。 The crystal ratio was calculated from the ratio between the diffraction peak due to crystal and the halo due to amorphous in the obtained diffraction pattern.
 結晶子径は、同定した結晶起因の回折ピークのうち、最も高いピーク強度の回折ピークを検出メインピークとし、Li0.3結晶の場合、(11-1)面、V結晶は(001)面を用い、そこから結晶子径を算出した。 The crystallite diameter is the diffraction peak having the highest peak intensity among the diffraction peaks originating from the identified crystal, and in the case of a Li 0.3 V 2 O 5 crystal, the (11-1) plane, V 2 O Five crystals used the (001) plane, and the crystallite diameter was calculated therefrom.
 以下、結晶子径の測定方法である。 The following is a method for measuring the crystallite diameter.
 検出メインピーク近傍の角度でナロースキャンにより詳細な測定を行った。ナロースキャンの測定は、走査法に積算走査を用い、走査範囲を検出メインピーク近傍に絞って測定した。ナロースキャンで得られた検出メインピークの半値幅から、Scherrerの式により結晶子径を算出した。 詳細 Detailed measurement was performed by narrow scan at an angle near the detected main peak. The narrow scan was measured by using integrated scanning as the scanning method and narrowing the scanning range to the vicinity of the detected main peak. The crystallite diameter was calculated from the half width of the detected main peak obtained by narrow scan by the Scherrer equation.
 ここで用いた測定法では結晶子径100nm以上の測定ができないため、測定限界を越えたサンプルについてはSEM(走査型電子顕微鏡)観察やTEM(透過型電子顕微鏡)観察で結晶子径を確認した。 Since the measurement method used here cannot measure a crystallite diameter of 100 nm or more, the crystallite diameter was confirmed by SEM (scanning electron microscope) observation or TEM (transmission electron microscope) observation for samples exceeding the measurement limit. .
 (耐湿性試験)
 耐湿性試験は、ガラス粉末を用い、85℃、85%の恒温恒湿槽に48hr(48時間)投入し、粉末が溶解したもの及び二次凝集して固まったものを×(不可)とした。粉末状態のまま外観が変わらなかったものは○(可)とした。
(Moisture resistance test)
In the moisture resistance test, glass powder was used and placed in a constant temperature and humidity chamber at 85 ° C. and 85% for 48 hours (48 hours). . The case where the appearance did not change while in the powder state was marked with ◯.
 表1においては、いずれの成分も酸化物換算の重量比で表示した。 In Table 1, all components are expressed in terms of weight ratio in terms of oxide.
 各成分の原料である五酸化バナジウム、五酸化リン、酸化鉄、三酸化アンチモン、三酸化タングステン等については、酸化物粉末を用いた。また、ナトリウム、カリウム及びリチウムについては、それぞれ炭酸ナトリウム、炭酸カリウム及び炭酸リチウムを用いた。 The oxide powder was used for vanadium pentoxide, phosphorus pentoxide, iron oxide, antimony trioxide, tungsten trioxide, etc., which are raw materials for each component. Moreover, about sodium, potassium, and lithium, sodium carbonate, potassium carbonate, and lithium carbonate were used, respectively.
 表2に測定結果を示す。 Table 2 shows the measurement results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本表において、「実施例」と記載した試料は、表1に示す焼成前のガラス組成物の組成に関して、「Vが63重量%~88.8重量%」、「Pが7重量%~17.4重量%」、「一価の陽イオンが1.1重量%~14重量%」、「Fe、WO、Sb、BaO、MoO、MnO及びBiのうち少なくとも1種が0重量%~20重量%」という条件を満たすものである。一方、焼成前のガラス組成物の組成に関して、上記の組成の範囲を満たさない試料は、「比較例」と記載することにした。 In this table, samples described as “Examples” are “V 2 O 5 is 63 wt% to 88.8 wt%”, “P 2 O 5 ” with respect to the composition of the glass composition before firing shown in Table 1. Is 7 wt% to 17.4 wt% ”,“ monovalent cation is 1.1 wt% to 14 wt% ”,“ Fe 2 O 3 , WO 3 , Sb 2 O 3 , BaO, MoO 3 , MnO At least one of 2 and Bi 2 O 3 satisfies the condition “0 wt% to 20 wt%”. On the other hand, regarding the composition of the glass composition before firing, a sample that does not satisfy the above composition range was described as “Comparative Example”.
 ここで、表1と表2とで試料番号の下2桁が等しい試料が、原料のガラス組成物と、その原料を用いて作製した導電性材料とに対応している。すなわち、例えば、表1の試料番号1-01と表2の試料番号2-01とが対応している。 Here, the samples having the same last two digits of the sample numbers in Table 1 and Table 2 correspond to the glass composition of the raw material and the conductive material prepared using the raw material. That is, for example, sample number 1-01 in Table 1 corresponds to sample number 2-01 in Table 2.
 表2に示す実施例において、析出した主結晶(主な析出結晶)はそれぞれ、Li0.3、Na0.287、Na0.76、K0.33、Cu0.261(V)、Ag0.333(V)である。この結晶は、一価の陽イオン(M)とVとの化合物であり、Mで表される結晶である。ここで、xは0.28~0.76である。また、結晶率は62体積%以上、結晶子径は50nm以上である。 In the examples shown in Table 2, the precipitated main crystals (mainly precipitated crystals) were Li 0.3 V 2 O 5 , Na 0.287 V 2 O 5 , Na 0.76 V 2 O 5 , and K 0, respectively. .33 V 2 O 5 , Cu 0.261 (V 2 O 5 ), Ag 0.333 (V 2 O 5 ). This crystal is a compound of a monovalent cation (M) and V 2 O 5 and is a crystal represented by M x V 2 O 5 . Here, x is 0.28 to 0.76. The crystal ratio is 62% by volume or more, and the crystallite diameter is 50 nm or more.
 これらの組成物から得られた導電性材料は、導電率が10Ω・cm以下と良好な導電性を示した。 The conductive materials obtained from these compositions exhibited good conductivity with a conductivity of 10 Ω · cm or less.
 これに対して、表2に示す比較例に該当する試料番号2-01、2-02、2-03、2-07、2-09、2-10、2-14、2-24、2-35、2-37及び2-38の導電性材料は、析出した主結晶がV又はLi0.97であり、Li0.3の結晶が析出しても結晶率が60体積%未満である。これらの比較例は、結晶化処理後の抵抗値も10Ω・cmより大きくなった。 On the other hand, sample numbers 2-01, 2-02, 2-03, 2-07, 2-09, 2-10, 2-14, 2-24, 2-2 corresponding to comparative examples shown in Table 2 In the conductive materials of 35, 2-37 and 2-38, the precipitated main crystal is V 2 O 5 or Li 0.97 V 3 O 8 , and a crystal of Li 0.3 V 2 O 5 is precipitated. The crystal ratio is less than 60% by volume. In these comparative examples, the resistance value after the crystallization treatment was also larger than 10 Ω · cm.
 (結晶相の割合、結晶子サイズの影響)
 生成する結晶相の割合や結晶子サイズは、ガラス組成や熱処理条件により変化する。
(Effect of crystal phase ratio and crystallite size)
The ratio of the crystal phase to be generated and the crystallite size vary depending on the glass composition and heat treatment conditions.
 以下では、熱処理条件を変えて作製したサンプルについて、結晶相の割合や結晶子サイズと抵抗率又は抵抗温度係数との関係について検討を行った。 In the following, the relationship between the crystal phase ratio, crystallite size and resistivity or resistance temperature coefficient was examined for samples prepared by changing the heat treatment conditions.
 図4は、結晶相の割合と抵抗率及び抵抗温度係数との関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the ratio of crystal phase, resistivity, and temperature coefficient of resistance.
 横軸に結晶相の割合をとり、左の縦軸に抵抗率、右の縦軸に抵抗温度係数をとっている。 The horizontal axis represents the crystal phase ratio, the left vertical axis represents resistivity, and the right vertical axis represents resistance temperature coefficient.
 本図において、試料として用いたガラス材は、表1の1-11である。 In this figure, the glass material used as a sample is 1-11 in Table 1.
 抵抗率は、結晶相の割合の増加に伴って低下しており、結晶相の割合が60体積%以上の場合、抵抗率は10Ω・cm以下の値を示している。 The resistivity decreases as the proportion of the crystal phase increases, and when the proportion of the crystal phase is 60% by volume or more, the resistivity shows a value of 10 Ω · cm or less.
 抵抗温度係数は、負の値を示しているが、その絶対値は結晶相の割合の増加に伴って小さくなっており、結晶相の割合が95体積%以上の場合、抵抗温度係数の絶対値は3.2%/℃以下(抵抗温度係数は-3.2%/℃以上)の値を示している。 The temperature coefficient of resistance shows a negative value, but its absolute value decreases with an increase in the ratio of the crystal phase. When the ratio of the crystal phase is 95% by volume or more, the absolute value of the resistance temperature coefficient Indicates a value of 3.2% / ° C. or lower (resistance temperature coefficient is −3.2% / ° C. or higher).
 図5は、上記の結晶相におけるM量と抵抗率及び抵抗温度係数との関係を示すグラフである。 FIG. 5 is a graph showing the relationship between the amount of M x V 2 O 5 in the crystal phase, the resistivity, and the temperature coefficient of resistance.
 横軸にM量をとり、左の縦軸に抵抗率、右の縦軸に抵抗温度係数をとっている。ここで、M量は、表2の2-11示す主な析出結晶の1つであるLi0.3結晶の割合である。 The horizontal axis represents the amount of M x V 2 O 5 , the left vertical axis represents the resistivity, and the right vertical axis represents the temperature coefficient of resistance. Here, the amount of M x V 2 O 5 is the ratio of Li 0.3 V 2 O 5 crystal, which is one of the main precipitated crystals shown in Table 2-11.
 本図において、抵抗率は、M量すなわちLi0.3結晶の割合の増加に伴って低下しており、M量が60重量%以上の場合、10Ω・cm以下の値を示している。 In the figure, the resistivity is reduced with an increase in the proportion of M x V 2 O 5 amount i.e. Li 0.3 V 2 O 5 crystal, M x V 2 O 5 amount is more than 60 wt% In this case, the value is 10 Ω · cm or less.
 抵抗温度係数は負の値を示しているが、その絶対値は結晶相(Li0.3結晶)の割合の増加に伴って小さくなっており、M量が95重量%以上の場合、抵抗温度係数の絶対値は3.2%/℃以下(抵抗温度係数は-3.2%/℃以上)の値を示している。 Although the resistance temperature coefficient shows a negative value, its absolute value decreases with an increase in the proportion of the crystal phase (Li 0.3 V 2 O 5 crystal), and the amount of M x V 2 O 5 decreases. In the case of 95% by weight or more, the absolute value of the resistance temperature coefficient is 3.2% / ° C. or less (the resistance temperature coefficient is −3.2% / ° C. or more).
 図6は、M結晶子の大きさと抵抗率との関係を示すグラフである。 FIG. 6 is a graph showing the relationship between the size of M x V 2 O 5 crystallites and the resistivity.
 横軸にM結晶子の大きさをとり、縦軸に抵抗率をとっている。ここで、Mは、表2の2-10に示す主な析出結晶の1つであるLi0.3であり、M結晶子の大きさはLi0.3結晶子の大きさである。 The horizontal axis represents the size of the M x V 2 O 5 crystallite, and the vertical axis represents the resistivity. Here, M x V 2 O 5 is Li 0.3 V 2 O 5 which is one of the main precipitated crystals shown in 2-10 of Table 2, and the size of the M x V 2 O 5 crystallite Is the size of the Li 0.3 V 2 O 5 crystallite.
 本図において、抵抗率は、M結晶子の大きさの増加に伴って低下しており、50nm以上では10Ω・cm以下の値を示している。 In this figure, the resistivity decreases as the size of the M x V 2 O 5 crystallite increases, and shows a value of 10 Ω · cm or less at 50 nm or more.
 図7は、V結晶子の大きさと抵抗率との関係を示すグラフである。 FIG. 7 is a graph showing the relationship between the size of the V 2 O 5 crystallite and the resistivity.
 横軸にV結晶子の大きさをとり、縦軸に抵抗率をとっている。ここで、Vは、表2の2-11に示す主な析出結晶である。 The horizontal axis represents the size of the V 2 O 5 crystallite, and the vertical axis represents the resistivity. Here, V 2 O 5 is the main precipitated crystals shown in 2-11 of Table 2.
 抵抗率は、V結晶子の大きさの減少に伴って低下しており、30nm以下では10Ω・cm以下の値を示している。 The resistivity decreases with a decrease in the size of the V 2 O 5 crystallite, and shows a value of 10 Ω · cm or less at 30 nm or less.
 本実施例のガラス材並びにこれを用いた赤外線センサ及び赤外線撮像装置は、長期安定性及び信頼性を向上させることができ、コストを低減することができる。 The glass material of the present embodiment and the infrared sensor and infrared imaging device using the glass material can improve long-term stability and reliability, and can reduce costs.
 本発明のガラス材並びにこれを用いた赤外線センサ及び赤外線撮像装置は、一般家庭、事務所、工場、車両、船舶などで用いる製品に適用可能である。 The glass material of the present invention and the infrared sensor and infrared imaging device using the glass material can be applied to products used in general households, offices, factories, vehicles, ships and the like.
 1:ボロメータ薄膜、2:基板、3:導電膜、4:反射膜、5、6:保護膜、7:空間部、8:ダイアフラム、9:赤外線、101:VOピラミッド。 1: bolometer thin film, 2: substrate, 3: conductive film, 4: reflective film, 5, 6: protective film, 7: space, 8: diaphragm, 9: infrared, 101: VO 5 pyramid.

Claims (10)

  1.  結晶相と非晶質相とを含み、前記結晶相は、少なくともM結晶とV結晶とを含み、前記Mは、Li、Na、K、Cu、Ag、Au、Ga及びInからなる群から選択される少なくとも1種類の元素であり、前記非晶質相は、バナジウム、リン及び酸素を含むことを特徴とするガラス材。 A crystal phase and an amorphous phase, and the crystal phase includes at least M x V 2 O 5 crystal and V 2 O 5 crystal, and the M includes Li, Na, K, Cu, Ag, Au, A glass material comprising at least one element selected from the group consisting of Ga and In, wherein the amorphous phase contains vanadium, phosphorus and oxygen.
  2.  前記xは、0.28~0.76であることを特徴とする請求項1記載のガラス材。 2. The glass material according to claim 1, wherein x is 0.28 to 0.76.
  3.  前記結晶相の割合が60~99体積%であることを特徴とする請求項1又は2に記載のガラス材。 3. The glass material according to claim 1, wherein the crystal phase ratio is 60 to 99% by volume.
  4.  前記結晶相における前記M結晶の割合が60~99重量%であることを特徴とする請求項1~3のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 3, wherein a ratio of the M x V 2 O 5 crystals in the crystal phase is 60 to 99 wt%.
  5.  前記M結晶の結晶子の大きさが50nm以上であることを特徴とする請求項1~4のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 4, wherein a crystallite size of the M x V 2 O 5 crystal is 50 nm or more.
  6.  前記V結晶の結晶子の大きさが30nm以下であることを特徴とする請求項1~5のいずれか一項に記載のガラス材。 6. The glass material according to claim 1, wherein a crystallite size of the V 2 O 5 crystal is 30 nm or less.
  7.  酸化物換算の組成は、Vが62~92重量%であり、Pが5~20重量%であり、LiO、NaO、KO、CuO、AgO、GaO及びInOからなる群から選択される1種類以上が1~15重量%であり、WO、MoO、Fe、MnO、BaO、Sb及びBiからなる群から選択される1種類以上が0~20重量%以下であることを特徴とする請求項1~6のいずれか一項に記載のガラス材。 The composition in terms of oxides is that V 2 O 5 is 62 to 92% by weight, P 2 O 5 is 5 to 20% by weight, Li 2 O, Na 2 O, K 2 O, Cu 2 O, Ag 1 to 15% by weight of at least one selected from the group consisting of 2 O, Ga 2 O and In 2 O is WO 3 , MoO 3 , Fe 2 O 3 , MnO 2 , BaO, Sb 2 O 3 and 7. The glass material according to claim 1, wherein one or more selected from the group consisting of Bi 2 O 3 is 0 to 20% by weight or less.
  8.  抵抗率が10Ω・cm以下であり、かつ、抵抗温度係数の絶対値が3%/℃以上であることを特徴とする請求項1~7のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 7, wherein the glass material has a resistivity of 10 Ω · cm or less and an absolute value of a temperature coefficient of resistance of 3% / ° C or more.
  9.  請求項1~8のいずれか一項に記載のガラス材を用いたことを特徴とする赤外線センサ。 An infrared sensor using the glass material according to any one of claims 1 to 8.
  10.  請求項9記載の赤外線センサを用いたことを特徴とする赤外線撮像装置。 An infrared imaging device using the infrared sensor according to claim 9.
PCT/JP2010/000638 2010-02-03 2010-02-03 Infrared ray sensor WO2011096012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011552578A JP5444376B2 (en) 2010-02-03 2010-02-03 Infrared sensor
PCT/JP2010/000638 WO2011096012A1 (en) 2010-02-03 2010-02-03 Infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000638 WO2011096012A1 (en) 2010-02-03 2010-02-03 Infrared ray sensor

Publications (1)

Publication Number Publication Date
WO2011096012A1 true WO2011096012A1 (en) 2011-08-11

Family

ID=44355043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000638 WO2011096012A1 (en) 2010-02-03 2010-02-03 Infrared ray sensor

Country Status (2)

Country Link
JP (1) JP5444376B2 (en)
WO (1) WO2011096012A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468693A3 (en) * 2010-12-24 2012-08-22 Hitachi Ltd. Thermoelectric Conversion Material
CN103359932A (en) * 2012-03-30 2013-10-23 株式会社日立制作所 Glass substrate having fine structure on surface thereof
WO2021018856A1 (en) * 2019-07-30 2021-02-04 Commissariat à l'Energie Atomique et aux Energies Alternatives Process for producing a microbolometer comprising a vanadium-oxide-based sensitive material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136135A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Filling glass for magnetic recording head
JPS61111935A (en) * 1984-11-02 1986-05-30 Hitachi Ltd Glass composition
JP2007320823A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Conductive member and method for producing the same, image display device, and glass spacer
JP2009298687A (en) * 2008-05-16 2009-12-24 Nagaoka Univ Of Technology Crystallized glass and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136135A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Filling glass for magnetic recording head
JPS61111935A (en) * 1984-11-02 1986-05-30 Hitachi Ltd Glass composition
JP2007320823A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Conductive member and method for producing the same, image display device, and glass spacer
JP2009298687A (en) * 2008-05-16 2009-12-24 Nagaoka Univ Of Technology Crystallized glass and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468693A3 (en) * 2010-12-24 2012-08-22 Hitachi Ltd. Thermoelectric Conversion Material
US8802963B2 (en) 2010-12-24 2014-08-12 Hitachi, Ltd. Thermoelectric conversion material
CN103359932A (en) * 2012-03-30 2013-10-23 株式会社日立制作所 Glass substrate having fine structure on surface thereof
WO2021018856A1 (en) * 2019-07-30 2021-02-04 Commissariat à l'Energie Atomique et aux Energies Alternatives Process for producing a microbolometer comprising a vanadium-oxide-based sensitive material
FR3099573A1 (en) * 2019-07-30 2021-02-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives A method of manufacturing a microbolometer comprising a sensitive material based on vanadium oxide

Also Published As

Publication number Publication date
JPWO2011096012A1 (en) 2013-06-06
JP5444376B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Wang et al. Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature
Guin et al. New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+ xSc2SixP3− xO12
JP5537402B2 (en) Thermoelectric conversion material
Ersundu et al. Glass formation area and characterization studies in the CdO–WO3–TeO2 ternary system
Sharma et al. Synthesis and characterization of cadmium containing sodium borate glasses
Çelikbilek et al. Thermochromic behavior of tellurite glasses
Lin et al. An influence of a glass composition on the structure and properties of Bi 2 O 3–B 2 O 3–SiO 2–ZnO glass system with addition of BaO, CaO and Fe 2 O 3
Krishna Mohan et al. Dielectric and spectroscopic properties of PbO–Nb2O5–P2O5: V2O5 glass system
Dahiya et al. Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO 2+ ions
JP5444376B2 (en) Infrared sensor
Reddy et al. Structural and electrical properties of zinc tantalum borate glass ceramic
Marzuki et al. Effect of B2O3 addition on thermal and optical properties of TeO2–ZnO–Bi2O3–TiO2 glasses
Aly et al. Structure and crystallization kinetics of manganese lead tellurite glasses
Gouda et al. Preparation and characterization of thin film thermistors of metal oxides of manganese and vanadium (Mn-VO)
Shaikh et al. Synthesis and enhanced ethanol sensing performance of nanostructured Sr doped SnO 2 thick film sensor
Cole et al. Lead titanate: crystal structure, temperature of formation, and specific gravity data
Zhao et al. Aging characteristic of Cu-doped nickel manganite NTC ceramics
Kim et al. Preparation and characterization of germanium oxy-sulfide GeS2–GeO2 glasses
Senapati et al. Studies on synthesis, structural and thermal properties of sodium niobium phosphate glasses for nuclear waste immobilization applications
Vladislavova et al. The effect of different platinum concentrations as nucleation agent in the BaO/SrO/ZnO/SiO 2 glass system
Mala et al. Green synthesis of ITO nanoparticles using Carica papaya seed extract: impact of annealing temperature on microstructural and electrical properties of ITO thin films for sensor applications
Kubuki et al. Characterization of electrically conductive vanadate glass containing tungsten oxide
Prasad et al. Spectroscopic investigations of the PbO–MoO3–P2O5: V2O5 glass system
JP5791102B2 (en) Vanadate-tungstate glass with excellent water resistance and chemical durability
Flower et al. Influence of chromium ions on the dielectric properties of the PbO-Ga2O3-P2O5 glass system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552578

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845150

Country of ref document: EP

Kind code of ref document: A1