WO2011095744A2 - Concrete element having a superhydrophobic surface - Google Patents

Concrete element having a superhydrophobic surface Download PDF

Info

Publication number
WO2011095744A2
WO2011095744A2 PCT/FR2011/050221 FR2011050221W WO2011095744A2 WO 2011095744 A2 WO2011095744 A2 WO 2011095744A2 FR 2011050221 W FR2011050221 W FR 2011050221W WO 2011095744 A2 WO2011095744 A2 WO 2011095744A2
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
μιτι
mold
wall
roughness
Prior art date
Application number
PCT/FR2011/050221
Other languages
French (fr)
Other versions
WO2011095744A3 (en
Inventor
Matthieu Horgnies
Jeffrey Chen
Mélanie DYKMAN
Original Assignee
Lafarge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lafarge filed Critical Lafarge
Publication of WO2011095744A2 publication Critical patent/WO2011095744A2/en
Publication of WO2011095744A3 publication Critical patent/WO2011095744A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/325Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for internal surfaces, e.g. of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0064Moulds characterised by special surfaces for producing a desired surface of a moulded article, e.g. profiled or polished moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/348Moulds, cores, or mandrels of special material, e.g. destructible materials of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • B28B7/364Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0045Irradiation; Radiation, e.g. with UV or IR
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2069Self cleaning materials, e.g. using lotus effect
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Definitions

  • the present invention relates to the field of concrete elements, including concrete elements of which at least one wall is visible.
  • the walls of the concrete elements are likely to get dirty especially due to deposits of dissolved substances in the water flowing over the concrete elements. These deposits form traces that degrade the visual appearance of the walls of the concrete elements, which is undesirable when these walls are visible.
  • the visible walls of the concrete element be the least hydrophilic possible to prevent water adhesion.
  • a wall is hydrophilic when the static contact angle of a drop of water disposed on the wall is less than 90 degrees and that the wall is hydrophobic when the static contact angle of a drop of water. distilled water disposed on the wall is greater than 90 degrees.
  • the wall is said to be superhydrophobic when the static contact angle of a drop of distilled water disposed on the wall is greater than 130 degrees.
  • the walls of the concrete element it would be desirable for the walls of the concrete element to be superhydrophobic.
  • the walls of a concrete element made by formwork or molding generally tend to be hydrophilic with, for example, a static contact angle between 10 and 50 degrees.
  • coatings that can be applied to the walls of a concrete element to make these walls hydrophobic.
  • the use of such coatings has several disadvantages. Indeed, if it is possible to obtain a hydrophobic wall by the application of a coating of a few hundred micrometers of fluoride-based paint type, it is generally not possible to achieve obtaining superhydrophobic walls .
  • the cost of such coatings is high.
  • such coatings are often of a substantial thickness (greater than 50 ⁇ ) and can modify the visual appearance of the walls of the concrete element to which they are applied so that the use of coatings can not be avoided. be compatible with the desired visual appearance of the walls (especially if one wishes to keep a visual appearance "mineral").
  • the object of the present invention is therefore to propose a concrete element having a superhydrophobic wall obtained from the manufacture of the concrete element or obtained after application of a chemical compound which does not allow, if it were used alone, to to obtain a superhydrophobic wall.
  • the present invention proposes a concrete element, in particular for the field of construction, comprising a superhydrophobic wall having a roughness Ra of between 1 ⁇ and 10 ⁇ and having protuberances spaced two by two apart from a mean interval. from 1 m to 150 ⁇ , said concrete element having a critical pore diameter of less than 100 nm surface and comprising portions flush with said wall more hydrophobic than concrete.
  • Obtaining a concrete element having a superhydrophobic wall is due to the combination of four factors: a specific wall roughness in a given range, a mean deviation of the wall protuberances in a given range, a pore diameter surface criticism lower than a determined threshold and the presence of hydrophobic portions flush with at least a portion of the wall.
  • the present invention also provides a method of manufacturing a concrete member, comprising the steps of:
  • the present invention also provides a method of manufacturing a concrete member, comprising the steps of: -provide a mold;
  • hydroaulic binder a powdery material which, mixed with water, forms a paste which sets and hardens as a result of reactions and hydration processes, and which after curing , retains its strength and stability even under water.
  • crete is meant a mixture of hydraulic binder (for example cement), aggregates, water, possibly adjuvants, and possibly mineral additives, such as high performance concrete, concrete very high performance, self-compacting concrete, self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete. According to this definition, prestressed concrete is also meant.
  • cement hydraulic binder
  • cement aggregates
  • water possibly adjuvants
  • mineral additives such as high performance concrete, concrete very high performance, self-compacting concrete, self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete. According to this definition, prestressed concrete is also meant.
  • cement includes mortars. In this specific case, the concrete comprises a mixture of hydraulic binder, sand, water and possibly additives and possibly mineral additions.
  • cement denotes indistinctly fresh concrete or hardened concrete.
  • high performance concrete is meant a concrete with a compressive strength of 28 days greater than 50 MPa.
  • ultra-high performance concrete is meant a concrete whose compressive strength at 28 days is greater than 100 MPa, generally greater than 120 MPa.
  • aggregates refers to gravel, chippings and / or sand.
  • the term "mineral additions” refers to a finely divided mineral material used in concrete to improve certain properties or to confer particular properties. These are, for example, fly ash (as defined in EN 450), silica fumes (as defined in EN 13263: 1998 or NF P 18-502), slags (such as defined in standard NF P 18-506), calcareous additions (as defined in standard NF P 18-508) and siliceous additions (as defined in standard NF P 18-509).
  • setting is meant according to the present invention the transition to the solid state by chemical reaction of hydration of a hydraulic binder.
  • the setting is usually followed by the hardening period.
  • element for the field of construction any constituent element of a construction such as for example a floor, a screed, a foundation, a wall, a partition, a ceiling, a beam , a work plan, a pillar, a bridge stack, a cinder block, a pipe, a post, a cornice, a road element (for example a curb), a tile, a covering, for example a road, a plasterboard, an insulating element (acoustic and / or thermal).
  • a floor for example a floor, a screed, a foundation, a wall, a partition, a ceiling, a beam , a work plan, a pillar, a bridge stack, a cinder block, a pipe, a post, a cornice, a road element (for example a curb), a tile, a covering, for example a road, a plasterboard, an insulating element (acoustic and / or thermal).
  • contact angle or "wetting angle” is meant the angle formed between a liquid / vapor interface and a solid surface.
  • roughness is meant the irregularities of the order of one micrometer of a surface which are defined by comparison with a reference surface, and are classified in two categories: asperities or “peaks” or “protuberances” , and cavities or “hollows”.
  • the roughness of a given surface can be determined by measuring a number of settings.
  • the parameter Ra as defined by standards NF E 05-015 and ISO 4287, corresponding to the arithmetic average of all the ordinates of the profile within a base length ( in our examples, the latter was set at 12.5 mm).
  • wall of the concrete element is meant both a wall of a bare concrete element and the wall of an assembly comprising a concrete body covered, possibly only partially, with a layer of a material other than concrete and having a thickness less than one millimeter.
  • portions flush with said wall more hydrophobic than concrete is meant more hydrophobic than the wall of a concrete element whose composition would be perfectly uniform.
  • mean diameter of entry of open cavities on said wall means the average diameter of the cavities and depressions, including possibly pores, which open on the wall, the diameters being measured at the wall.
  • critical surface pore diameter is meant the inlet diameter of the largest pores opening on the wall.
  • the critical surface pore diameter is preferably measured via the pore size distribution curve obtained by mercury porosimetry.
  • the invention relates to a concrete element comprising a superhydrophobic wall having a roughness Ra of from 1 ⁇ to 10 ⁇ and having protuberances spaced two by two by an average interval of from 1 ⁇ to 150 ⁇ , said concrete element having a diameter of critical surface pores less than 100 nm and comprising portions flush with said wall more hydrophobic than concrete.
  • the roughness Ra is from 1 to 7 ⁇ , preferably from 1 to 5 ⁇ , advantageously from 1 to 3 ⁇ .
  • the protuberances are spaced two by two by an average interval of from 10 m to 30 ⁇ m, preferably from 10 m to 20 ⁇ m.
  • the diameter of critical surface pores is less than 50 nm, preferably less than 20 nm.
  • the diameter of critical surface pores can be measured by mercury porosimetry.
  • the wall comprises open cavities on said wall and the average inlet diameter of the open cavities on said wall is less than 1 ⁇ , preferably less than 0.5 ⁇ , still more preferably less than 0.2 ⁇ .
  • the surface porosity of the concrete element is less than or equal to 10%, preferably less than or equal to 9%.
  • Surface porosity can be measured by mercury porosimetry.
  • the portions flush with said wall and more hydrophobic than concrete depends on the method of manufacturing the concrete element.
  • the portions correspond to a chemical compound deposited on the concrete body of the concrete element.
  • the portions then comprise silicone.
  • the portions belong to the surface layer of the concrete element. They may be compounds having a higher concentration than in the core of the concrete element, for example fine elements such as silica fumes or calcareous filler materials.
  • said element is a high performance concrete, preferably an ultra high performance concrete, for example a fiber ultra high performance concrete.
  • Ultra high performance fibered concretes are concretes with a cement matrix containing fibers. It is referred to the document entitled "Ultra-High Performance Fiber Concretes” from the Road and Motorway Technical Studies Department (Setra) and the French Association of Civil Engineering (AFGC).
  • the fibers are metallic, organic, or a mixture.
  • the binder dosage is high (the E / C ratio is low, generally the E / C ratio is at most about 0.3).
  • the amount of fiber is generally low, for example between 1 and 8% by volume.
  • the cementitious matrix may comprise cement (Portland), a pozzolanic reaction element (in particular silica fumes) and a fine sand.
  • the cement matrix may comprise:
  • the quantities being variable and the dimensions of the various elements being chosen between the micron or submicron range and the millimeter, with a maximum dimension not exceeding in general 5 mm;
  • a superplasticizer being added in general with the mixing water.
  • a cement matrix mention may be made of those described in patent applications EP-A-518777, EP-A-934915, WO-A-9501316, WO-A-9501317, WO-A-9928267, WO -A-9958468, WO-A-9923046, WO-A-0158826, WO2008 / 090481, WO2009 / 081277 to which it is returned for more details.
  • Examples of matrix are BPR, reactive powder concretes, while examples of UHPC are BSI concrete from Eiffage, Ductal® from Lafarge, Cimax® from Italcementi and BCV from Vicat.
  • a thermal treatment can be implemented on these concretes.
  • the heat treatment comprises, after the hydraulic setting, heating at a temperature of 60 ° C or more for several hours, typically 90 ° C for 48 hours.
  • the present invention also provides a method of manufacturing a concrete member, comprising the steps of:
  • the concrete results in a concrete element having a surface pore diameter of less than 100 nm.
  • the filling of the mold is carried out flat.
  • the mold comprises silicone or polyurethane (flexible at room temperature).
  • silicone or polyurethane flexible at room temperature.
  • the inventors have demonstrated that the use of a silicone mold could lead, when a concrete is introduced into the mold, to a modification of the surface composition of the concrete.
  • the inventors have, moreover, demonstrated a transfer of the roughness of the mold, in particular of silicone or polyurethane, to the wall of the concrete element. Therefore, by providing that the roughness of the mold is favorable to obtaining a superhydrophobic wall, the concrete element obtained by molding in a silicone mold is adapted to obtain a superhydrophobic wall.
  • the mold has a roughness Ra of 1 ⁇ to 10 ⁇ .
  • the inventors have, in fact, demonstrated an at least partial transfer of the irregularities of the mold to the wall of the concrete element. Therefore, by providing that the irregularities of the silicone mold are favorable for obtaining a superhydrophobic wall, the concrete element obtained by molding in a silicone mold is adapted to obtain a superhydrophobic wall.
  • the method may furthermore comprise the preliminary step consisting in producing a treatment of the faces of the mold to obtain a roughness Ra of between 1 ⁇ and 10 ⁇ and hollows spaced two by two from an average interval of 1 m to 150 ⁇ .
  • the treatment can be sandblasting.
  • Sandblasting can be achieved by spraying abrasive particles, for example sand, at high speed of the faces of the mold.
  • the abrasive particles may be projected on the faces of the mold at a pressure greater than 2 bars, for example about 3 bars.
  • the method may further include the prior steps of providing an additional mold
  • the treatment of the faces of the additional mold can be achieved by sanding. It can be made by machining. It may further comprise a chemical etching of the faces of the additional mold, for example with nitric acid.
  • the method further comprises the step of disposing a demolding composition in the silicone mold before filling the mold with the fresh concrete.
  • the method comprises the following steps:
  • the mold release composition may comprise one or more compounds selected from a stabilizer, a dispersant, a surfactant, a preservative, a solvent, a thickener and a thixotropic agent, including one or more compounds selected from a water repellant and a pigment.
  • the method further comprises the step of at least partially covering said element with a layer of a more hydrophobic mixture than concrete, hereinafter referred to as a hydrophobic mixture.
  • a hydrophobic mixture may be an aqueous solution of silane, siloxane and synthetic resins, marketed by Wacker under the name SILRES BS29.
  • the hydrophobic mixture may correspond to the demolding composition.
  • the hydrophobic mixture may comprise a hydrophobic agent, for example more than 10% by weight, preferably more than 20% by weight, even more preferably more than 25% by weight of the hydrophobic agent, diluted in an organic solvent to facilitate its application.
  • the application of the layer of the hydrophobic mixture can be carried out directly on the concrete element after demolding or, when the hydrophobic mixture corresponds to the demolding composition, the application of the hydrophobic mixture can be carried out on the mold.
  • the application may be carried out by means known per se, for example by application with a brush, cloth, or roller, by dipping or by spraying, the latter mode of application being preferred.
  • the amount of hydrophobic mixture to be applied is chosen to be sufficient to form a more or less continuous film over the entire outer surface of the concrete member.
  • the thickness of the formed film is generally less than 5 micrometers. As an indication, it is generally sufficient to apply 5 to 15 g / m 2 of a mixture having a viscosity of about 50 mPa.s.
  • the inventors have demonstrated that the film of the hydrophobic mixture causes a decrease in the diameter of critical pores of surface and the mean diameter of the entrance of open cavities (on the wall) of the concrete element insofar as at least some of the pores or cavities are plugged by the hydrophobic film. However, the inventors have demonstrated that the hydrophobic film does not modify or slightly the roughness Ra and the average distance between the protuberances of the wall of the concrete element.
  • the present invention also provides a method of manufacturing a concrete member, comprising the steps of:
  • a layer comprising carbonates said layer having a roughness Ra of between 1 m and 10 ⁇ m and having protuberances spaced two by two by an average interval of from 1 ⁇ to 150; ⁇ , and a critical pore diameter of less than
  • said layer has a thickness of between 2 and 10 ⁇ .
  • the method may include the step of maintaining the concrete element in an enclosure containing carbon dioxide.
  • the inventors have demonstrated that the growth of carbonate crystals on the surface of the concrete results in at least partial closure of the critical surface pores and open cavities on the wall of the concrete element.
  • the growth of the carbonate crystals results in the appearance of a roughness Ra and a mean deviation of the surface protuberances of the concrete element adapted to obtain a superhydrophobic wall.
  • the invention also relates to the use of a wall of a concrete element as superhydrophobic wall, said wall having a roughness Ra of 1 ⁇ to 10 ⁇ and having protuberances spaced two by two from an average interval of 1 ⁇ to 150 ⁇ , said concrete element having a critical pore diameter of less than 100 nm surface and comprising portions flush with said wall more hydrophobic than concrete.
  • Figure 1 illustrates the principle of measuring a contact angle between a drop of water and a surface
  • Figure 2 illustrates features of a surface of a concrete member
  • FIG. 3 represents evolution curves of mercury volumes absorbed by two samples as a function of the pore inlet diameter of the samples.
  • the ultra high performance concrete according to the formulation (1) is produced by means of a RAYNERI type kneader. The whole operation is carried out at 20 ° C.
  • the method of preparation includes the following steps:
  • Lafarge Portland Cement is a cement CEM I 52.5 PMES.
  • the mortar according to the formulation (2) is produced by means of a Perrier type kneader. The whole operation is carried out at 20 ° C.
  • the method of preparation includes the following steps:
  • a first hydrophobic mixture is applied to one side of the sample.
  • the first hydrophobic mixture applied is an aqueous solution of silane, siloxane and synthetic resins, marketed by Wacker under the name SILRES BS29.
  • This solution comprises about 70% water and 30% of a mixture of silane, siloxane and synthetic resins.
  • the solution is applied with a brush so as to completely cover the treated surface with a weight of 15 g / m 2 .
  • the layer thickness obtained is then less than 5 ⁇ .
  • a second hydrophobic mixture is applied to one side of the sample.
  • the second hydrophobic mixture applied comprises from 5 to 15% by weight of polyalkylalkoxysilane diluted in an organic solvent (of the white-spirit type).
  • the second hydrophobic mixture is applied by spraying.
  • the final amount applied is approximately 100 g / m 2 . It is then expected 4 hours at 20 ° C to dry the second hydrophobic mixture.
  • the sample After demolding a concrete sample, the sample is stored for 7 days in an enclosure in which the temperature is 20 ° C and the relative humidity is 50%. Then the concrete sample is stored, for the desired duration, in a carbonation chamber in which is maintained an atmosphere containing 50% carbon dioxide and the relative humidity is 65%.
  • the process is carried out by means of a water condensation chamber, for example the chamber developed by Q-Lab Corporation under the name QCT.
  • the QCT water condensation chamber allows accelerated simulation of damage caused by a hot and humid atmosphere on a concrete sample.
  • the sample to be tested is arranged to form a part of the wall of a chamber of the condensation chamber QCT.
  • the angle of inclination of the sample is 15 °.
  • Distilled water is heated to generate water vapor.
  • the vapor fills the chamber to obtain an atmosphere having a relative humidity of 100% and a temperature of 38 ° C ⁇ 2 ° C.
  • the sample includes a portion in the chamber and a portion exposed to the ambient atmosphere. The difference in temperature causes the condensation of water vapor on the sample. As the condensation occurs continuously, a water runoff is obtained on the face of the sample oriented in the QCT chamber.
  • the method consists of placing the sample to be cleaned in an enclosure and projecting ultraviolet rays of the sample onto the measuring face of the sample. 254 nm wavelength to dissociate the organic compounds present on the sample. Simultaneously, a second range of ultraviolet rays having a wavelength of 185 nm produces a large amount of ozone in the chamber by interaction with the oxygen molecules present in the atmosphere of the chamber.
  • the oxidants thus formed make it possible to ensure perfect oxidation of the surface of the sample: the contaminants are then transformed into volatile species (H 2 O, CO, CO 2 ) which are removed from the speaker via the use of a pump. The duration of the process is 20 minutes.
  • FIG. 1 illustrates the principle of measuring a wetting angle between a solid surface 10 of a concrete sample 12 and a drop 14 of a liquid deposited on the surface 10.
  • the reference 16 is the interface liquid / gas between the drop 14 and the ambient air.
  • FIG. 1 is a section on a plane perpendicular to the surface 10. In the section plane, the wetting angle ⁇ corresponds to the angle, measured from inside the liquid drop 14, between the surface 10 and the tangent T at the interface 16 at the point of intersection between the solid 10 and the interface 16.
  • the sample 12 is placed in a room at a temperature of 20 ° C and a relative humidity of 50%. There is a drop of water 14 having a volume of 2.5 ⁇ on the surface 10 of the sample 12.
  • the angle measurement is performed by an optical method, for example using a shape analysis device (English Drop Shape Analysis), for example the device DSA 100 marketed by Kruss.
  • the measurements are repeated five times and the value of the contact angle measured between the drop of water and the support is equal to the average of these five measurements.
  • the wall of the sample is observed by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • FEG Quanta 400 from FEI Company
  • FEG Quanta 400 from FEI Company
  • the acquired images are analyzed, for example by computer, in order to determine the average input diameter of the open cavities on the surface.
  • the method consists in determining the contours of the open cavities at the surface by an analysis of the contrast of the image and in determining for each contour the circle which corresponds best to the contour of the open cavity according to a criterion of optimization.
  • the inlet diameter of the open cavity corresponds to the diameter of the circle obtained.
  • the average inlet diameter of the cavities open at the surface corresponds to the average of the diameters of the circles obtained.
  • it may not be taken into account the cavities opening on the wall whose input diameter is less than 0.1 ⁇ .
  • the analyzed concrete samples are in the form of small parallelepipedic blocks of a typical size of a few millimeters to 1 cm side and they are dried beforehand at 45 ° C for 8 h.
  • One face of the block corresponds to the face to be tested.
  • the other faces of the block are covered with a waterproof layer, for example an epoxy resin layer.
  • the mercury is brought into contact with a sample and pressure is exerted on the sample to penetrate the mercury in the pores of the sample by the face to be tested.
  • the volume of mercury entering the pores of the sample under the action of the pressure is measured, by a capacitive system, as a function of the pressure applied to the sample.
  • the Washburn equation (1) makes it possible to relate the pressure to the pore diameter.
  • Porosity calculations are based on the equation that expresses the penetration of a non-wetting liquid (mercury) into the pores of a porous material. The calculation is made considering that the wetting angle of the mercury is of the order of 130 ° (on glass as on most solids) and the surface tension is equal to 480 mN / m at 20 ° C.
  • P is the mercury pressure (Pa)
  • is the contact angle between the solid and the liquid
  • r is the inlet diameter of the pore.
  • the critical pore diameter, or critical diameter, of the surface of the sample corresponds to the inlet diameter of the largest pores leading to the test.
  • the surface porosity is determined from the comparison of the volume of the concrete sample and the volume of mercury which has entered the sample by the face to be tested. It is expressed as a percentage by volume of voids in the concrete sample. It represents the porosity accessible via the face to be tested.
  • the measurement is carried out with a probe rugosimeter sold by MITUTOYO under the name SURFTEST SJ-201 M.
  • the average roughness parameter (Ra) is measured five times over a distance of 12.5 mm and the roughness value Ra is equal to the average of these five measurements.
  • a section of the sample is made through the wall considered.
  • the section of the sample is observed by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • FEG Quanta 400 from FEI Company
  • FEG Quanta 400 from FEI Company
  • the images are acquired after covering the sample with a thin chromium-based metal layer.
  • FIG. 2 illustrates the principle of measuring the average gap between the surface protuberances of a superhydrophobic concrete sample 12 and represents a schematic sectional view of the sample 12.
  • the inventors have shown that the surface of the Superhydrophobic sample 12 comprises protuberances 18 distributed substantially evenly. The average deviation between two adjacent protuberances is determined from the analysis, for example by computer, of the section of the sample 12.
  • the method consists in determining the contour of the surface 10 by an image contrast analysis, in determining the vertex of each protuberance 18 on the contour (which may correspond to the point on the further away from the protuberance 18 relative to a reference line), determining the deviations D1, D2, D3 between the vertices of each pair of adjacent protuberances 18 and determining the average deviation.
  • a concrete having the formulation (1) was prepared.
  • a polyvinyl chloride (PVC) mold was used.
  • the concrete was poured into the PVC mold without using a form release compound.
  • the sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length.
  • a face of the concrete element called measuring face has been selected.
  • the inlet diameter of the open cavities on the measuring face is 0.1 to 10 ⁇ .
  • the roughness Ra of the measuring face is 0.4 ⁇ (+/- 0.1 ⁇ ).
  • the surface porosity of the concrete element is about 8%.
  • the critical pore diameter of the measuring face is about 0.015 ⁇ .
  • FIG. 3 represents the curve of evolution of the incremental volume, used during the realization of the porosimetry of the measuring surface, as a function of the pore inlet diameter opening on the measuring face.
  • the critical diameter corresponds to the diameter of the maximum point 12 of the curve 10.
  • the measuring face is very smooth so that it is not possible to highlight a particular texture.
  • the wetting angle of a drop of water on the measuring face, measured according to the method described above, is 12 degrees (+/- 3 degrees).
  • the measurement face is therefore hydrophilic.
  • a concrete having the formulation (1) was prepared.
  • a steel mold was used.
  • the concrete was poured into the mold using a mixture of ECO2 oil and SILRES BS29 product in proportions of 80% / 20% as form release composition. 0.25 g of the form release composition was placed in the mold.
  • the sample obtained by molding corresponds to a parallelepiped having 100 mm width, 10 mm height and 150 mm length. A face of the concrete element called measuring face has been selected.
  • the inlet diameter of the open cavities on the measuring face is 0.1 to 10 ⁇ .
  • the roughness Ra of the measuring face is 0.8 ⁇ (+/- 0.3 ⁇ ).
  • the surface porosity of the concrete element is about 8%.
  • the critical pore diameter of the measuring face is about 0.015 ⁇ .
  • the wetting angle of a drop of water on the measuring face is 1 19 degrees (+/- 2 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
  • a concrete having the formulation (1) was prepared.
  • a polyurethane mold was used.
  • the concrete was poured into the mold using the SILRES BS29 product as a release composition.
  • 0.25 g of the form release composition was placed in the mold.
  • the sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length.
  • a face of the concrete element called measuring face has been selected.
  • the inlet diameters of the open cavities on the measurement face vary from 0.1 to 10 ⁇ .
  • the roughness Ra of the measuring face is 0.9 ⁇ (+/- 0.2 ⁇ ).
  • the surface porosity of the concrete element is about 8%.
  • the critical pore diameter of the measuring face is about 0.015 ⁇ .
  • the wetting angle of a drop of water on the measuring face is 1 18 degrees (+/- 4 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
  • a concrete having the formulation (1) was prepared.
  • the polyurethane mold which was previously sandblasted was used.
  • Sandblasting was carried out by spraying a powder of corundum (diameter 5 ⁇ ) on the surface of the mold under a pressure of 3 bars.
  • the concrete was poured into the mold without using form release composition.
  • the sample obtained by molding corresponds to a parallelepiped having 150 mm in width, 10 mm in height and 150 mm in length. A face of the concrete element called measuring face has been selected.
  • the wetting angle of a drop of water on the measuring face is 5 degrees (+/- 5 degrees).
  • the measurement face is therefore hydrophilic.
  • a concrete having the formulation (1) was prepared.
  • the polyvinyl chloride mold was used.
  • the concrete was poured into the mold without using a form release composition.
  • the sample obtained by molding corresponds to a parallelepiped having 150 mm in width, 10 mm in height and 150 mm in length.
  • One face of the concrete element, called measuring face, was covered with the second hydrophobic mixture as described above.
  • the wetting angle of a drop of water on the measurement face is 130 degrees (+/- 3 degrees).
  • the measuring face is therefore hydrophobic, but not superhydrophobic.
  • a mortar having the formulation (2) was prepared.
  • a silicone mold was used.
  • the concrete was poured into the mold without formwork compound.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
  • a face of the concrete element called measuring face has been selected.
  • the inlet diameters of the cavities open on the measuring face vary from 1 to 10 ⁇ .
  • the roughness Ra of the measuring face is 1, 6 ⁇ (+/- 0.4 ⁇ ).
  • the average distance between the protuberances of the measuring face is 10 to 30 ⁇ .
  • the surface porosity of the concrete element is about 15%.
  • the critical pore diameter of the measuring face is approximately 0.32 ⁇ .
  • FIG. 3 represents the evolution curve 20 of the incremental volume, used during the realization of the porosimetry of the measuring surface, as a function of the pore inlet diameter opening on the measuring face.
  • the critical diameter corresponds to the diameter of the maximum point 22 of the curve 20.
  • the wetting angle of a drop of water on the measuring face is 15 degrees (+/- 3 degrees).
  • the measurement face is therefore hydrophilic.
  • a mortar having the formulation (2) was prepared.
  • a silicone mold was used.
  • the concrete was poured into the mold using the SILRES BS29 product as a release composition.
  • 1.0 g of the form release composition was placed in the mold.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
  • a face of the concrete element called measuring face has been selected.
  • the inlet diameters of the cavities open on the measuring face vary from 1 to 10 ⁇ .
  • the roughness Ra of the measuring face is 1, 7 ⁇ (+/- 0.5 ⁇ ).
  • the average distance between the protuberances of the measuring face is 10 to 30 ⁇ .
  • the surface porosity of the concrete element is about 15%.
  • the critical pore diameter of the measuring face is approximately 0.32 ⁇ .
  • the wetting angle of a drop of water on the measuring face is 87 degrees (+/- 3 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
  • Examples 8 to 15 which follow are examples for which a superhydrophobic surface is obtained.
  • a concrete having the formulation (1) was prepared.
  • a silicone mold without a form release composition in which the concrete was poured was used.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
  • the surface porosity of the concrete element before treatment is about 8%.
  • the critical pore diameter of the measuring face is before treatment of approximately
  • T ièttr SBDMP has pr s
  • measuring face A face of the concrete element called measuring face has been selected.
  • Treatment No. 1 no treatment on the measuring face
  • UV-ozone cleaning process as described above.
  • (+/- 3) equal to 0.015 equal to 8 0.1 (+/- 0.3) No. 2 141 Less than or less than or less than 10 to 30 1, 6
  • (+/- 5) equal to 0.015 equal to 8 0.1 (+/- 0.3)
  • (+/- 2) equal to 0.015 equal to 8 0.1 (+/- 0.3)
  • a concrete having the formulation (1) was prepared.
  • the silicone mold which was previously sandblasted was used.
  • Sandblasting was carried out by spraying a powder of corundum (diameter 5 ⁇ ) on the surface of the mold under a pressure of 3 bars.
  • the concrete was poured into the mold without using a form release composition.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. A face of the concrete element called measuring face has been selected.
  • Treatment No. 4 no treatment on the measuring face
  • Treatment No. 5 Cover the measurement face of the second hydrophobic mixture as described above.
  • the wetting angle of a drop of water on the measurement face is 148 degrees (+/- 3 degrees) and for treatment No. 5 , is 165 degrees (+/- 5 degrees).
  • the measurement face is therefore superhydrophobic.
  • a concrete having the formulation (1) was prepared.
  • the flexible polyurethane mold which has been sandblasted beforehand was used.
  • Sandblasting was carried out by spraying a powder of corundum (diameter 5 ⁇ ) on the surface of the mold under a pressure of 3 bars.
  • the concrete was poured into the mold without using a form release composition.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
  • the wetting angle of a drop of water on the measurement face is 157 degrees (+/- 1 degree).
  • the measurement face is therefore superhydrophobic.
  • a concrete having the formulation (1) was prepared.
  • a silicone mold was used.
  • the concrete was poured into the mold using the SILRES BS29 product as a release composition.
  • 1.0 g of the form release composition was placed in the mold.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
  • Treatment No. 6 no treatment of the measuring face
  • Treatment No. 7 method of aging the concrete sample described above for a week.
  • measuring face A face of the concrete element called measuring face has been selected.
  • Surface area pore diameter measurements, post-treatment porosity, open cavity inlet diameter, average protrusion spacing, roughness and wetting angle of the concrete sample were performed on the measurement face according to the methods described above. The results of the measurements are collated in the following table (4):
  • (+/- 4) equal to 0.015 equal to 8 0, 1 (+/- 0.2) è i ttt ap r s r aemen
  • (+/- 2) equal to 0.015 equal to 8 0, 1 (+/- 0.2)
  • a concrete having the formulation (1) was prepared.
  • a mold made of polyvinyl chloride, wood, polyurethane, polyoxymethylene, steel or silicone was used interchangeably.
  • the concrete was poured into the mold without using a form release composition.
  • the sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length.
  • a face of the concrete element called measuring face has been selected.
  • Treatment No. 8 aging method of the carbon dioxide concrete sample described above for 7 days, followed by a wet aging process for 10 days, followed by the application of the hydrophobic mixture SILRES BS29 on the measuring face.
  • Surface area pore diameter measurements, post-treatment porosity, open cavity inlet diameter, average protrusion spacing, roughness and wetting angle of the concrete sample were performed on the measurement face according to the methods described above. The results of the measurements are summarized in the following table (5):
  • a first concrete having the formulation (1) was prepared.
  • a silicone mold without a release composition was used in which the first concrete was poured.
  • the piece obtained by molding has the shape of a mold.
  • the internal faces of the mold made with the first concrete were covered with the second hydrophobic mixture as described above.
  • a second concrete having the formulation (1) was prepared.
  • the concrete mold in which the second concrete was cast was used without form release composition.
  • the second concrete sample obtained by the second molding corresponds to a parallelepiped having 200 mm width, 10 mm height and 300 mm length. One face of the element made with the second concrete called measurement face was selected.
  • the wetting angle of a drop of water on the measuring face is 148 degrees (+/- 4 degrees).
  • the measurement face is therefore superhydrophobic.
  • a steel mold was prepared by carrying out a microstructuring treatment of the internal walls of the steel mold so that they comprise studs that are a few micrometers high, a few micrometers wide and spaced a few tens of micrometers apart. This microstructuring was carried out by machining and nitric acid etching of the steel mold.
  • a silicone mold was then prepared by directly casting the liquid silicone into the microstructured steel mold.
  • the silicone was allowed to cure and then the silicone part was removed from the mold.
  • the texture of the walls of the steel mold (in particular the regularly spaced micrometer pads) is transferred onto the walls of the silicone mold.
  • a concrete having the formulation (1) was prepared.
  • the microstructured silicone mold was used.
  • the concrete was poured into the mold without using a form release composition.
  • a face of the concrete element called measuring face has been selected.
  • Treatment No. 9 no treatment of the measuring face
  • Treatment No. 10 Cover the measuring face of the second hydrophobic mixture as described above.
  • a mortar having the formulation (2) was prepared.
  • a silicone mold is used.
  • the mortar was poured into the mold without the use of a form release composition.
  • the sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length.
  • the surface porosity of the concrete element prior to treatment is about 15%.
  • One side of the mortar element called measuring face was selected.
  • treatment No. 1 1 aging method of the carbon dioxide concrete sample described above for 7 days, followed by a method of wet aging for 10 days, followed by the application of the SILRES BS29 hydrophobic mixture on the measuring face.
  • a mortar having the formulation (2) was prepared.
  • the silicone mold was used.
  • the mortar was poured into the mold using the SILRES BS29 product as form release composition.
  • 1.0 g of the form release composition was placed in the mold.
  • the sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
  • the surface porosity of the concrete element prior to treatment is about 15%.
  • a face of the concrete element called measuring face has been selected.
  • Treatment No. 12 aging method of the carbon dioxide concrete sample described above for 7 days, followed by wet aging for 10 days, followed by the application of the SILRES BS29 hydrophobic mixture on the measuring face.

Abstract

The invention relates to a concrete element comprising a superhydrophobic wall having a roughness Ra of between 1 μm and 10 μm and protuberances spaced out two by two at an average interval of between 1 μm and 150 μm. Said concrete element has a surface critical pore diameter of less than 100 nm and has parts flush with the wall, that are more hydrophobic than the concrete.

Description

ELEMENT EN BETON A SURFACE SUPERHYDROPHOBE  CONCRETE ELEMENT WITH SUPERHYDROPHOBIC SURFACE
La présente invention concerne le domaine des éléments en béton, notamment les éléments en béton dont au moins une paroi est visible.  The present invention relates to the field of concrete elements, including concrete elements of which at least one wall is visible.
Les parois des éléments en béton sont susceptibles de se salir notamment en raison de dépôts de substances dissoutes dans les eaux qui s'écoulent sur les éléments en béton. Ces dépôts forment des traces qui dégradent l'aspect visuel des parois des éléments en béton, ce qui n'est pas souhaitable lorsque ces parois sont visibles.  The walls of the concrete elements are likely to get dirty especially due to deposits of dissolved substances in the water flowing over the concrete elements. These deposits form traces that degrade the visual appearance of the walls of the concrete elements, which is undesirable when these walls are visible.
Pour réduire la formation de traces, il est généralement souhaitable que les parois visibles de l'élément en béton soient les moins hydrophiles possibles pour éviter l'adhésion d'eau. Les risques de dépôts de substances transportées par l'eau sont ainsi réduits. On considère généralement qu'une paroi est hydrophile lorsque l'angle de contact statique d'une goutte d'eau disposée sur la paroi est inférieur à 90 degrés et que la paroi est hydrophobe lorsque l'angle de contact statique d'une goutte d'eau distillée disposée sur la paroi est supérieur à 90 degrés. La paroi est dite superhydrophobe lorsque l'angle de contact statique d'une goutte d'eau distillée disposée sur la paroi est supérieur à 130 degrés. Pour réduire au maximum la formation de dépôts sur les parois d'un élément en béton, il serait souhaitable que les parois de l'élément en béton soient superhydrophobes. Toutefois, les parois d'un élément en béton réalisé par coffrage ou moulage ont tendance généralement à être hydrophiles avec, par exemple, un angle de contact statique entre 10 et 50 degrés.  To reduce the formation of traces, it is generally desirable that the visible walls of the concrete element be the least hydrophilic possible to prevent water adhesion. The risks of deposits of substances transported by water are thus reduced. It is generally considered that a wall is hydrophilic when the static contact angle of a drop of water disposed on the wall is less than 90 degrees and that the wall is hydrophobic when the static contact angle of a drop of water. distilled water disposed on the wall is greater than 90 degrees. The wall is said to be superhydrophobic when the static contact angle of a drop of distilled water disposed on the wall is greater than 130 degrees. To minimize the formation of deposits on the walls of a concrete element, it would be desirable for the walls of the concrete element to be superhydrophobic. However, the walls of a concrete element made by formwork or molding generally tend to be hydrophilic with, for example, a static contact angle between 10 and 50 degrees.
Il existe des revêtements pouvant être appliqués sur les parois d'un élément en béton permettant de rendre ces parois hydrophobes. Toutefois, l'utilisation de tels revêtements a plusieurs inconvénients. En effet, s'il est possible d'obtenir une paroi hydrophobe par l'application d'un revêtement de quelques centaines de micromètres de type peinture à base fluorée, il n'est généralement pas possible de parvenir à l'obtention de parois superhydrophobes. De plus, le coût de revient de tels revêtements est élevé. En outre, de tels revêtements sont souvent d'une épaisseur conséquente (supérieure à 50 μιτι) et peuvent modifier l'aspect visuel des parois de l'élément en béton sur lesquelles ils sont appliqués de sorte que l'utilisation de revêtements peut ne pas être compatible avec l'aspect visuel souhaité des parois (notamment si on souhaite garder un aspect visuel « minéral »). There are coatings that can be applied to the walls of a concrete element to make these walls hydrophobic. However, the use of such coatings has several disadvantages. Indeed, if it is possible to obtain a hydrophobic wall by the application of a coating of a few hundred micrometers of fluoride-based paint type, it is generally not possible to achieve obtaining superhydrophobic walls . In addition, the cost of such coatings is high. In addition, such coatings are often of a substantial thickness (greater than 50 μιτι) and can modify the visual appearance of the walls of the concrete element to which they are applied so that the use of coatings can not be avoided. be compatible with the desired visual appearance of the walls (especially if one wishes to keep a visual appearance "mineral").
Le but de la présente invention est donc de proposer un élément en béton ayant une paroi superhydrophobe obtenue dès la fabrication de l'élément en béton ou obtenue après application d'un composé chimique qui ne permet pas, s'il était utilisé seul, d'obtenir une paroi superhydrophobe.  The object of the present invention is therefore to propose a concrete element having a superhydrophobic wall obtained from the manufacture of the concrete element or obtained after application of a chemical compound which does not allow, if it were used alone, to to obtain a superhydrophobic wall.
Dans ce but, la présente invention propose un élément en béton, notamment pour le domaine de la construction, comportant une paroi superhydrophobe ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et ayant des protubérances espacées deux à deux d'un intervalle moyen compris de 1 m à 150 μιτι, ledit élément en béton ayant un diamètre de pores critiques de surface inférieur à 100 nm et comprenant des portions affleurant ladite paroi plus hydrophobes que le béton. L'obtention d'un élément en béton ayant une paroi superhydrophobe est due à la combinaison de quatre facteurs : une rugosité spécifique de la paroi dans une plage déterminée, un écart moyen des protubérances de la paroi dans une plage déterminée, un diamètre de pores critiques de surface inférieur à un seuil déterminé et la présence de portions hydrophobes affleurant au moins une partie de la paroi.  For this purpose, the present invention proposes a concrete element, in particular for the field of construction, comprising a superhydrophobic wall having a roughness Ra of between 1 μιτι and 10 μιτι and having protuberances spaced two by two apart from a mean interval. from 1 m to 150 μιτι, said concrete element having a critical pore diameter of less than 100 nm surface and comprising portions flush with said wall more hydrophobic than concrete. Obtaining a concrete element having a superhydrophobic wall is due to the combination of four factors: a specific wall roughness in a given range, a mean deviation of the wall protuberances in a given range, a pore diameter surface criticism lower than a determined threshold and the presence of hydrophobic portions flush with at least a portion of the wall.
La présente invention propose également un procédé de fabrication d'un élément en béton, comprenant les étapes suivantes :  The present invention also provides a method of manufacturing a concrete member, comprising the steps of:
-prévoir un moule en un matériau plus hydrophobe que le béton, ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et des creux espacés deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι ;  -providing a mold in a more hydrophobic material than concrete, having a roughness Ra of 1 μιτι to 10 μιτι and hollows spaced two by two of an average range of 1 μιτι 150 μιτι;
-couler ledit béton à l'état frais dans le moule ; et  pouring said concrete in the fresh state into the mold; and
-retirer ledit élément du moule après la prise du béton.  -Remove said element of the mold after setting the concrete.
La présente invention propose également un procédé de fabrication d'un élément en béton, comprenant les étapes suivantes : -prévoir un moule ; The present invention also provides a method of manufacturing a concrete member, comprising the steps of: -provide a mold;
-couler ledit béton à l'état frais dans le moule ;  pouring said concrete in the fresh state into the mold;
-retirer ledit élément du moule après la prise du béton ;  removing said element from the mold after setting the concrete;
-faire croître, sur au moins une partie dudit élément, une couche comprenant des carbonates ayant une rugosité Ra comprise de on at least a portion of said element, to develop a layer comprising carbonates having a roughness Ra of
1 μιτι à 10 m et ayant des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι ; et1 μιτι to 10 m and having protuberances spaced two by two with an average interval of 1 μιτι to 150 μιτι; and
-recouvrir au moins partiellement ladite couche d'un revêtement plus hydrophobe que le béton. at least partially covering said layer with a coating that is more hydrophobic than concrete.
Par l'expression « liant hydraulique », on entend selon la présente invention un matériau pulvérulent qui, gâché avec de l'eau, forme une pâte qui fait prise et durcit par suite de réactions et de processus d'hydratation, et qui après durcissement, conserve sa résistance et sa stabilité même sous l'eau.  By the term "hydraulic binder" is meant according to the present invention a powdery material which, mixed with water, forms a paste which sets and hardens as a result of reactions and hydration processes, and which after curing , retains its strength and stability even under water.
Par le terme « béton », on entend un mélange de liant hydraulique (par exemple du ciment), de granulats, d'eau, éventuellement d'adjuvants, et éventuellement d'additions minérales, comme par exemple le béton hautes performances, le béton très hautes performances, le béton autoplaçant, le béton autonivelant, le béton autocompactant, le béton fibré, le béton prêt à l'emploi ou le béton coloré. On entend également selon cette définition le béton précontraint. Le terme « béton » comprend les mortiers. Dans ce cas précis, le béton comprend un mélange de liant hydraulique, de sable, d'eau et éventuellement d'additifs et éventuellement d'additions minérales. Le terme « béton » selon l'invention désigne indistinctement le béton frais ou le béton durci.  By the term "concrete" is meant a mixture of hydraulic binder (for example cement), aggregates, water, possibly adjuvants, and possibly mineral additives, such as high performance concrete, concrete very high performance, self-compacting concrete, self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete. According to this definition, prestressed concrete is also meant. The term "concrete" includes mortars. In this specific case, the concrete comprises a mixture of hydraulic binder, sand, water and possibly additives and possibly mineral additions. The term "concrete" according to the invention denotes indistinctly fresh concrete or hardened concrete.
Par le terme « béton à haute performance », on entend un béton dont la résistance à la compression à 28 jours est supérieure à 50 MPa. Par le terme « béton à ultra haute performance », on entend un béton dont la résistance à la compression à 28 jours est supérieure à 100 MPa, généralement supérieure à 120 MPa. Selon l'invention le terme « granulats » désigne des graviers, des gravillons et/ou du sable. By the term "high performance concrete" is meant a concrete with a compressive strength of 28 days greater than 50 MPa. By the term "ultra-high performance concrete" is meant a concrete whose compressive strength at 28 days is greater than 100 MPa, generally greater than 120 MPa. According to the invention the term "aggregates" refers to gravel, chippings and / or sand.
Par l'expression « ciment Portland », on entend selon l'invention un ciment de type CEM I, CEM II, CEM III, CEM IV ou CEM V selon la norme « Ciment » NF EN 197-1 .  By the term "Portland cement" is meant according to the invention a cement of CEM I, CEM II, CEM III, CEM IV or CEM V according to the standard "Cement" NF EN 197-1.
Selon l'invention, l'expression « additions minérales » désigne un matériau minéral finement divisé utilisé dans le béton afin d'améliorer certaines propriétés ou pour lui conférer des propriétés particulières. Il s'agit, par exemple, de cendres volantes (telles que définies dans la norme EN 450), de fumées de silice (telles que définies dans la norme EN 13263 :1998 ou NF P 18-502), les laitiers (tels que définis dans la norme NF P 18-506), les additions calcaires (telles que définies dans la norme NF P 18-508) et les additions siliceuses (telles que définies dans la norme NF P 18-509).  According to the invention, the term "mineral additions" refers to a finely divided mineral material used in concrete to improve certain properties or to confer particular properties. These are, for example, fly ash (as defined in EN 450), silica fumes (as defined in EN 13263: 1998 or NF P 18-502), slags (such as defined in standard NF P 18-506), calcareous additions (as defined in standard NF P 18-508) and siliceous additions (as defined in standard NF P 18-509).
Par le terme « prise », on entend selon la présente invention le passage à l'état solide par réaction chimique d'hydratation d'un liant hydraulique. La prise est généralement suivie par la période de durcissement.  By the term "setting" is meant according to the present invention the transition to the solid state by chemical reaction of hydration of a hydraulic binder. The setting is usually followed by the hardening period.
Par l'expression « élément pour le domaine de la construction », on entend selon la présente invention tout élément constitutif d'une construction comme par exemple un sol, une chape, une fondation, un mur, une cloison, un plafond, une poutre, un plan de travail, un pilier, une pile de pont, un parpaing, une canalisation, un poteau, une corniche, un élément de voirie (par exemple une bordure de trottoir), une tuile, un revêtement, par exemple de route, une plaque de plâtre, un élément isolant (acoustique et/ou thermique).  By the term "element for the field of construction" is meant according to the present invention any constituent element of a construction such as for example a floor, a screed, a foundation, a wall, a partition, a ceiling, a beam , a work plan, a pillar, a bridge stack, a cinder block, a pipe, a post, a cornice, a road element (for example a curb), a tile, a covering, for example a road, a plasterboard, an insulating element (acoustic and / or thermal).
Par l'expression « angle de contact » ou « angle de mouillage », on entend l'angle formé entre une interface liquide/vapeur et une surface solide.  By the term "contact angle" or "wetting angle" is meant the angle formed between a liquid / vapor interface and a solid surface.
Par l'expression « rugosité », on entend les irrégularités de l'ordre du micromètre d'une surface qui sont définies par comparaison avec une surface de référence, et sont classées en deux catégorie : des aspérités ou « pics » ou « protubérances », et des cavités ou « creux ». La rugosité d'une surface donnée peut être déterminée par la mesure d'un certain nombre de paramètres. Dans la suite de la description, on utilise le paramètre Ra, tel que défini par les normes NF E 05-015 et ISO 4287, correspondant à la moyenne arithmétique de toutes les ordonnées du profil à l'intérieur d'une longueur de base (dans nos exemples, cette dernière a été fixée à 12,5 mm). By the term "roughness" is meant the irregularities of the order of one micrometer of a surface which are defined by comparison with a reference surface, and are classified in two categories: asperities or "peaks" or "protuberances" , and cavities or "hollows". The roughness of a given surface can be determined by measuring a number of settings. In the remainder of the description, the parameter Ra, as defined by standards NF E 05-015 and ISO 4287, corresponding to the arithmetic average of all the ordinates of the profile within a base length ( in our examples, the latter was set at 12.5 mm).
Par l'expression « paroi de l'élément en béton », on entend à la fois une paroi d'un élément en béton à nu et la paroi d'un ensemble comprenant un corps en béton recouvert, éventuellement seulement partiellement, d'une couche d'un matériau autre que du béton et ayant une épaisseur inférieure au millimètre.  By the term "wall of the concrete element" is meant both a wall of a bare concrete element and the wall of an assembly comprising a concrete body covered, possibly only partially, with a layer of a material other than concrete and having a thickness less than one millimeter.
Par l'expression « des portions affleurant ladite paroi plus hydrophobes que le béton », on entend plus hydrophobe que la paroi d'un élément en béton dont la composition serait parfaitement uniforme.  By the expression "portions flush with said wall more hydrophobic than concrete" is meant more hydrophobic than the wall of a concrete element whose composition would be perfectly uniform.
Par l'expression « diamètre moyen d'entrée de cavités ouvertes sur ladite paroi », on entend le diamètre moyen des cavités et enfoncements, dont éventuellement des pores, qui débouchent sur la paroi, les diamètres étant mesurés au niveau de la paroi.  The expression "mean diameter of entry of open cavities on said wall" means the average diameter of the cavities and depressions, including possibly pores, which open on the wall, the diameters being measured at the wall.
Par l'expression « diamètre de pores critiques de surface », on entend le diamètre d'entrée des pores les plus nombreux débouchant sur la paroi. Le diamètre de pores critiques de surface est de préférence mesuré via la courbe de distribution de diamètres de pores obtenue par porosimétrie mercure.  By the term "critical surface pore diameter" is meant the inlet diameter of the largest pores opening on the wall. The critical surface pore diameter is preferably measured via the pore size distribution curve obtained by mercury porosimetry.
L'invention vise un élément en béton comportant une paroi superhydrophobe ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et ayant des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι, ledit élément en béton ayant un diamètre de pores critiques de surface inférieur à 100 nm et comprenant des portions affleurant ladite paroi plus hydrophobes que le béton.  The invention relates to a concrete element comprising a superhydrophobic wall having a roughness Ra of from 1 μιτι to 10 μιτι and having protuberances spaced two by two by an average interval of from 1 μιτι to 150 μιτι, said concrete element having a diameter of critical surface pores less than 100 nm and comprising portions flush with said wall more hydrophobic than concrete.
Selon un exemple de réalisation de l'invention, la rugosité Ra est comprise de 1 à 7 μιτι, de préférence de 1 à 5 μιτι, avantageusement de 1 à 3 μηη. Selon un exemple de réalisation de l'invention, les protubérances sont espacées deux à deux d'un intervalle moyen compris de 10 m à 30 μιτι, de préférence de 10 m à 20 μιτι. According to an exemplary embodiment of the invention, the roughness Ra is from 1 to 7 μιτι, preferably from 1 to 5 μιτι, advantageously from 1 to 3 μηη. According to an exemplary embodiment of the invention, the protuberances are spaced two by two by an average interval of from 10 m to 30 μm, preferably from 10 m to 20 μm.
Selon un exemple de réalisation de l'invention, le diamètre de pores critiques de surface (en anglais breakthrough radius) est inférieur à 50 nm, de préférence inférieur à 20 nm. Le diamètre de pores critiques de surface peut être mesuré par porosimétrie au mercure.  According to an exemplary embodiment of the invention, the diameter of critical surface pores (English breakthrough radius) is less than 50 nm, preferably less than 20 nm. The diameter of critical surface pores can be measured by mercury porosimetry.
Selon un exemple de réalisation de l'invention, la paroi comprend des cavités ouvertes sur ladite paroi et le diamètre moyen d'entrée des cavités ouvertes sur ladite paroi est inférieur à 1 μιτι, de préférence inférieure à 0,5 μιτι, encore plus préférentiellement inférieur à 0,2 μιτι.  According to an exemplary embodiment of the invention, the wall comprises open cavities on said wall and the average inlet diameter of the open cavities on said wall is less than 1 μιτι, preferably less than 0.5 μιτι, still more preferably less than 0.2 μιτι.
Selon un exemple de réalisation de l'invention, la porosité de surface de l'élément en béton est inférieure ou égale à 10 %, de préférence inférieure ou égale à 9 %. La porosité de surface peut être mesurée par porosimétrie au mercure.  According to an exemplary embodiment of the invention, the surface porosity of the concrete element is less than or equal to 10%, preferably less than or equal to 9%. Surface porosity can be measured by mercury porosimetry.
La nature des portions affleurant ladite paroi et plus hydrophobes que le béton dépend du procédé de fabrication de l'élément en béton. Selon un exemple de réalisation de l'invention, les portions correspondent à un composé chimique déposé sur le corps en béton de l'élément en béton. De façon avantageuse, les portions comprennent alors de la silicone. Selon un autre exemple de réalisation de l'invention, les portions appartiennent à la couche superficielle de l'élément en béton. Il peut s'agir de composés ayant une concentration plus importante que dans le cœur de l'élément en béton, par exemple des éléments fins tels que des fumées de silice ou des matériaux de remplissage (filler) calcaires.  The nature of the portions flush with said wall and more hydrophobic than concrete depends on the method of manufacturing the concrete element. According to an exemplary embodiment of the invention, the portions correspond to a chemical compound deposited on the concrete body of the concrete element. Advantageously, the portions then comprise silicone. According to another embodiment of the invention, the portions belong to the surface layer of the concrete element. They may be compounds having a higher concentration than in the core of the concrete element, for example fine elements such as silica fumes or calcareous filler materials.
Selon un exemple de réalisation de l'invention, ledit élément est un béton à haute performance, de préférence un béton à ultra haute performance, par exemple un béton à ultra haute performance fibré.  According to an exemplary embodiment of the invention, said element is a high performance concrete, preferably an ultra high performance concrete, for example a fiber ultra high performance concrete.
Les bétons fibrés à ultra haute performance sont des bétons ayant une matrice cimentaire contenant des fibres. Il est renvoyé au document intitulé « Bétons fibrés à ultra-hautes performances » du Service d'études techniques des routes et autoroutes (Setra) et de l'Association Française de Génie Civil (AFGC). Les fibres sont métalliques, organiques, ou un mélange. Le dosage en liant est élevé (le ratio E/C est faible ; en général le ratio E/C est d'au plus environ 0,3). La quantité de fibres est généralement faible, par exemple entre 1 et 8 % en volume. Ultra high performance fibered concretes are concretes with a cement matrix containing fibers. It is referred to the document entitled "Ultra-High Performance Fiber Concretes" from the Road and Motorway Technical Studies Department (Setra) and the French Association of Civil Engineering (AFGC). The fibers are metallic, organic, or a mixture. The binder dosage is high (the E / C ratio is low, generally the E / C ratio is at most about 0.3). The amount of fiber is generally low, for example between 1 and 8% by volume.
La matrice cimentaire peut comprendre du ciment (Portland), un élément à réaction pouzzolanique (notamment des fumées de silice) et un sable fin. Par exemple, la matrice cimentaire peut comprendre :  The cementitious matrix may comprise cement (Portland), a pozzolanic reaction element (in particular silica fumes) and a fine sand. For example, the cement matrix may comprise:
- du ciment Portland ;  - Portland cement;
du sable fin ;  fine sand;
un élément de type fumée de silice ;  a silica-type element;
éventuellement de la farine de quartz ;  possibly quartz flour;
les quantités étant variables et les dimensions des différents éléments étant choisies entre la gamme micronique ou submicronique et le millimètre, avec une dimension maximale n'excédant pas en général 5 mm ; et  the quantities being variable and the dimensions of the various elements being chosen between the micron or submicron range and the millimeter, with a maximum dimension not exceeding in general 5 mm; and
un superplastifiant étant ajouté en général avec l'eau de gâchage. A titre d'exemple de matrice cimentaire, on peut citer celles décrites dans les demandes de brevet EP-A-518777, EP-A-934915, WO-A-9501316, WO-A-9501317, WO-A-9928267, WO-A-9958468, WO-A-9923046, WO-A-0158826, WO2008/090481 , WO2009/081277 auxquelles il est renvoyé pour plus de détails.  a superplasticizer being added in general with the mixing water. By way of example of a cement matrix, mention may be made of those described in patent applications EP-A-518777, EP-A-934915, WO-A-9501316, WO-A-9501317, WO-A-9928267, WO -A-9958468, WO-A-9923046, WO-A-0158826, WO2008 / 090481, WO2009 / 081277 to which it is returned for more details.
Des exemples de matrice sont les BPR, Bétons à Poudre Réactive, tandis que des exemples de BFUP sont les bétons BSI de Eiffage, Ductal® de Lafarge, Cimax® de Italcementi et BCV de Vicat.  Examples of matrix are BPR, reactive powder concretes, while examples of UHPC are BSI concrete from Eiffage, Ductal® from Lafarge, Cimax® from Italcementi and BCV from Vicat.
Une cure thermique peut être mise en œuvre sur ces bétons. Par exemple, la cure thermique comprend, après la prise hydraulique, le chauffage à une température de 60°C ou plus pendant plusieurs heures, typiquement 90°C pendant 48 heures. La présente invention propose également un procédé de fabrication d'un élément en béton, comprenant les étapes suivantes : A thermal treatment can be implemented on these concretes. For example, the heat treatment comprises, after the hydraulic setting, heating at a temperature of 60 ° C or more for several hours, typically 90 ° C for 48 hours. The present invention also provides a method of manufacturing a concrete member, comprising the steps of:
-prévoir un moule en un matériau plus hydrophobe que le béton, ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et des creux espacés deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι ;  -providing a mold in a more hydrophobic material than concrete, having a roughness Ra of 1 μιτι to 10 μιτι and hollows spaced two by two of an average range of 1 μιτι 150 μιτι;
-couler ledit béton à l'état frais dans le moule ; et  pouring said concrete in the fresh state into the mold; and
-retirer ledit élément du moule après la prise du béton.  -Remove said element of the mold after setting the concrete.
De préférence, le béton conduit à l'obtention d'un élément en béton ayant un diamètre de pores critiques de surface inférieur à 100 nm. De façon avantageuse, le remplissage du moule est réalisé à plat.  Preferably, the concrete results in a concrete element having a surface pore diameter of less than 100 nm. Advantageously, the filling of the mold is carried out flat.
Selon un exemple de réalisation de l'invention, le moule comprend de la silicone ou du polyuréthane (souple à température ambiante). De façon avantageuse, lorsque le moule est en silicone, il peut ne pas être nécessaire d'utiliser une composition de démoulage ou de décoffrage pour faciliter le retrait de l'élément en béton du moule.  According to an exemplary embodiment of the invention, the mold comprises silicone or polyurethane (flexible at room temperature). Advantageously, when the mold is made of silicone, it may not be necessary to use a demolding or stripping compound to facilitate removal of the concrete element from the mold.
Les inventeurs ont mis en évidence que l'utilisation d'un moule en silicone pouvait conduire, lorsqu'un béton est introduit dans le moule, à une modification de la composition superficielle du béton  The inventors have demonstrated that the use of a silicone mold could lead, when a concrete is introduced into the mold, to a modification of the surface composition of the concrete.
Les inventeurs ont, en outre, mis en évidence un transfert de la rugosité du moule, notamment en silicone ou en polyuréthane, à la paroi de l'élément en béton. De ce fait, en prévoyant que la rugosité du moule est favorable à l'obtention d'une paroi superhydrophobe, l'élément en béton obtenu par moulage dans un moule en silicone est adapté à l'obtention d'une paroi superhydrophobe. De préférence, le moule a une rugosité Ra comprise de 1 μιτι à 10 μιτι. Les inventeurs ont, en ouvre, mis en évidence un transfert au moins partiel des irrégularités du moule à la paroi de l'élément en béton. De ce fait, en prévoyant que les irrégularités du moule en silicone sont favorables à l'obtention d'une paroi superhydrophobe, l'élément en béton obtenu par moulage dans un moule en silicone est adapté à l'obtention d'une paroi superhydrophobe. Le procédé peut comprendre, en outre, l'étape préalable consistant à réaliser un traitement de faces du moule pour obtenir une rugosité Ra comprise de 1 μιτι à 10 μιτι et des creux espacés deux à deux d'un intervalle moyen compris de 1 m à 150 μιτι. Le traitement peut être un sablage. Le sablage peut être réalisé par projection de particules abrasives, par exemple de sable, à grande vitesse des faces du moule. A titre d'exemple, les particules abrasives peuvent être projetées sur les faces du moule à une pression supérieure à 2 bars, par exemple environ de 3 bars. The inventors have, moreover, demonstrated a transfer of the roughness of the mold, in particular of silicone or polyurethane, to the wall of the concrete element. Therefore, by providing that the roughness of the mold is favorable to obtaining a superhydrophobic wall, the concrete element obtained by molding in a silicone mold is adapted to obtain a superhydrophobic wall. Preferably, the mold has a roughness Ra of 1 μιτι to 10 μιτι. The inventors have, in fact, demonstrated an at least partial transfer of the irregularities of the mold to the wall of the concrete element. Therefore, by providing that the irregularities of the silicone mold are favorable for obtaining a superhydrophobic wall, the concrete element obtained by molding in a silicone mold is adapted to obtain a superhydrophobic wall. The method may furthermore comprise the preliminary step consisting in producing a treatment of the faces of the mold to obtain a roughness Ra of between 1 μιτι and 10 μιτι and hollows spaced two by two from an average interval of 1 m to 150 μιτι. The treatment can be sandblasting. Sandblasting can be achieved by spraying abrasive particles, for example sand, at high speed of the faces of the mold. By way of example, the abrasive particles may be projected on the faces of the mold at a pressure greater than 2 bars, for example about 3 bars.
Le procédé peut comprendre, en outre, les étapes préalables consistant à prévoir un moule supplémentaire ;  The method may further include the prior steps of providing an additional mold;
-réaliser un traitement de faces du moule supplémentaire pour obtenir une rugosité Ra comprise de 1 μιτι à 10 μιτι et des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι ; et  performing a surface treatment of the additional mold to obtain a roughness Ra of from 1 μιτι to 10 μιτι and protuberances spaced two by two by an average interval of from 1 μιτι to 150 μιτι; and
-former ledit moule, ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et des creux espacés deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι, par coulage dudit matériau plus hydrophobe que le béton dans le moule supplémentaire et retrait dudit moule.  -forming said mold, having a roughness Ra of 1 μιτι to 10 μιτι and hollows spaced two by two by an average interval of 1 μιτι to 150 μιτι, by casting said material more hydrophobic than the concrete in the additional mold and removing said mold.
Le traitement des faces du moule supplémentaire peut être réalisé par sablage. Il peut être réalisé par usinage. Il peut, en outre, comprendre une attaque chimique des faces du moule supplémentaire, par exemple à l'acide nitrique.  The treatment of the faces of the additional mold can be achieved by sanding. It can be made by machining. It may further comprise a chemical etching of the faces of the additional mold, for example with nitric acid.
Selon un exemple de réalisation de l'invention, le procédé comprend, en outre, l'étape consistant à disposer une composition de démoulage dans le moule en silicone avant le remplissage du moule avec le béton frais.  According to an exemplary embodiment of the invention, the method further comprises the step of disposing a demolding composition in the silicone mold before filling the mold with the fresh concrete.
Plus précisément, selon un exemple de réalisation, le procédé comprend les étapes suivantes :  More specifically, according to an exemplary embodiment, the method comprises the following steps:
- enduire les parois du moule avec la composition de démoulage ;  - Coat the walls of the mold with the release composition;
- introduire le béton fraîchement préparé dans le moule ; et  - introduce the freshly prepared concrete into the mold; and
- retirer la pièce du moule après durcissement et éventuellement cure du béton. La composition de démoulage peut comprendre un ou plusieurs composés choisis parmi un stabilisant, un dispersant, un tensioactif, un conservateur, un solvant, un épaississant et un agent de thixotropie, notamment un ou plusieurs composés choisis parmi un agent hydrofuge et un pigment. - Remove the piece from the mold after curing and possibly cure the concrete. The mold release composition may comprise one or more compounds selected from a stabilizer, a dispersant, a surfactant, a preservative, a solvent, a thickener and a thixotropic agent, including one or more compounds selected from a water repellant and a pigment.
Selon un exemple de réalisation, le procédé comprend, en outre, l'étape consistant à recouvrir au moins partiellement ledit élément d'une couche d'un mélange plus hydrophobe que le béton, appelé par la suite mélange hydrophobe. Il peut s'agir d'une solution aqueuse de silane, de siloxane et de résines synthétiques, commercialisée par la société Wacker sous l'appellation SILRES BS29. Le mélange hydrophobe peut correspondre à la composition de démoulage. Le mélange hydrophobe peut comprendre un agent hydrophobe, par exemple plus de 10 % en masse, de préférence plus de 20 % en masse, encore plus préférentiellement plus de 25 % en masse de l'agent hydrophobe, dilué dans un solvant organique afin de faciliter son application.  According to an exemplary embodiment, the method further comprises the step of at least partially covering said element with a layer of a more hydrophobic mixture than concrete, hereinafter referred to as a hydrophobic mixture. It may be an aqueous solution of silane, siloxane and synthetic resins, marketed by Wacker under the name SILRES BS29. The hydrophobic mixture may correspond to the demolding composition. The hydrophobic mixture may comprise a hydrophobic agent, for example more than 10% by weight, preferably more than 20% by weight, even more preferably more than 25% by weight of the hydrophobic agent, diluted in an organic solvent to facilitate its application.
L'application de la couche du mélange hydrophobe peut être réalisée directement sur l'élément en béton après le démoulage ou, lorsque le mélange hydrophobe correspond à la composition de démoulage, l'application du mélange hydrophobe peut être réalisée sur le moule. L'application peut être réalisée par des moyens connus en soi, par exemple par application au pinceau, au chiffon, ou rouleau, par trempage ou encore par pulvérisation, ce dernier mode d'application étant préféré.  The application of the layer of the hydrophobic mixture can be carried out directly on the concrete element after demolding or, when the hydrophobic mixture corresponds to the demolding composition, the application of the hydrophobic mixture can be carried out on the mold. The application may be carried out by means known per se, for example by application with a brush, cloth, or roller, by dipping or by spraying, the latter mode of application being preferred.
La quantité de mélange hydrophobe à appliquer est choisie de manière à être suffisante pour former un film plus ou moins continu sur l'ensemble de la surface extérieure de l'élément en béton. L'épaisseur du film formé est généralement inférieure à 5 micromètres. A titre indicatif, il est généralement suffisant d'appliquer 5 à 15 g/m2 d'un mélange ayant une viscosité d'environ 50 mPa.s. Les inventeurs ont mis en évidence que le film du mélange hydrophobe entraîne une diminution du diamètre de pores critiques de surface et du diamètre moyen d'entrée de cavités ouvertes (sur la paroi) de l'élément en béton dans la mesure où au moins certains des pores ou des cavités sont bouchés par le film hydrophobe. Toutefois, les inventeurs ont mis en évidence que le film hydrophobe ne modifiait pas ou peu la rugosité Ra et l'écart moyen entre les protubérances de la paroi de l'élément en béton. The amount of hydrophobic mixture to be applied is chosen to be sufficient to form a more or less continuous film over the entire outer surface of the concrete member. The thickness of the formed film is generally less than 5 micrometers. As an indication, it is generally sufficient to apply 5 to 15 g / m 2 of a mixture having a viscosity of about 50 mPa.s. The inventors have demonstrated that the film of the hydrophobic mixture causes a decrease in the diameter of critical pores of surface and the mean diameter of the entrance of open cavities (on the wall) of the concrete element insofar as at least some of the pores or cavities are plugged by the hydrophobic film. However, the inventors have demonstrated that the hydrophobic film does not modify or slightly the roughness Ra and the average distance between the protuberances of the wall of the concrete element.
La présente invention propose également un procédé de fabrication d'un élément en béton, comprenant les étapes suivantes :  The present invention also provides a method of manufacturing a concrete member, comprising the steps of:
-prévoir un moule ;  -provide a mold;
-couler ledit béton à l'état frais dans le moule ;  pouring said concrete in the fresh state into the mold;
-retirer ledit élément du moule après la prise du béton ; et removing said element from the mold after setting the concrete; and
-faire croître, sur au moins une partie dudit élément, une couche comprenant des carbonates, ladite couche ayant une rugosité Ra comprise de 1 m à 10 pm et ayant des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι, et un diamètre de pore critique de surface inférieur àon at least a portion of said element, to develop a layer comprising carbonates, said layer having a roughness Ra of between 1 m and 10 μm and having protuberances spaced two by two by an average interval of from 1 μιτι to 150; μιτι, and a critical pore diameter of less than
100 nm ; et 100 nm; and
-recouvrir au moins partiellement ladite couche d'un mélange plus hydrophobe que le béton.  at least partially covering said layer with a mixture that is more hydrophobic than concrete.
A titre d'exemple, ladite couche a une épaisseur comprise entre 2 et 10 μηη.  By way of example, said layer has a thickness of between 2 and 10 μηη.
Pour faire croître sur au moins une partie dudit élément une couche de carbonates, le procédé peut comprendre l'étape consistant à maintenir l'élément en béton dans une enceinte contenant du dioxyde de carbone. Les inventeurs ont mis en évidence que la croissance des cristaux de carbonates à la surface du béton entraîne la fermeture, au moins partielle, des pores critiques de surface et des cavités ouvertes sur la paroi de l'élément en béton. En outre, la croissance des cristaux de carbonates se traduit par l'apparition d'une rugosité Ra et d'un écart moyen des protubérances en surface de l'élément en béton adaptées à l'obtention d'une paroi superhydrophobe. L'invention vise également l'utilisation d'une paroi d'un élément en béton comme paroi superhydrophobe, ladite paroi ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et ayant des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι, ledit élément en béton ayant un diamètre de pores critiques de surface inférieur à 100 nm et comprenant des portions affleurant ladite paroi plus hydrophobes que le béton. To grow at least a portion of said element a carbonate layer, the method may include the step of maintaining the concrete element in an enclosure containing carbon dioxide. The inventors have demonstrated that the growth of carbonate crystals on the surface of the concrete results in at least partial closure of the critical surface pores and open cavities on the wall of the concrete element. In addition, the growth of the carbonate crystals results in the appearance of a roughness Ra and a mean deviation of the surface protuberances of the concrete element adapted to obtain a superhydrophobic wall. The invention also relates to the use of a wall of a concrete element as superhydrophobic wall, said wall having a roughness Ra of 1 μιτι to 10 μιτι and having protuberances spaced two by two from an average interval of 1 μιτι to 150 μιτι, said concrete element having a critical pore diameter of less than 100 nm surface and comprising portions flush with said wall more hydrophobic than concrete.
L'invention sera décrite plus en détail au moyen des exemples suivants, donnés à titre non limitatif, en relation avec les figures parmi lesquelles :  The invention will be described in more detail by means of the following examples, given in a non-limiting manner, in relation to the figures among which:
la figure 1 illustre le principe de mesure d'un angle de contact entre une goutte d'eau et une surface ;  Figure 1 illustrates the principle of measuring a contact angle between a drop of water and a surface;
la figure 2 illustre des caractéristiques d'une surface d'un élément en béton ; et  Figure 2 illustrates features of a surface of a concrete member; and
la figure 3 représente des courbes d'évolution de volumes de mercure absorbés par deux échantillons en fonction du diamètre d'entrée de pores des échantillons.  FIG. 3 represents evolution curves of mercury volumes absorbed by two samples as a function of the pore inlet diameter of the samples.
EXEMPLES  EXAMPLES
La présente invention est illustrée par les exemples suivants non limitatifs. Dans les exemples, les produits et matériaux utilisés sont disponibles auprès des fournisseurs suivants :  The present invention is illustrated by the following non-limiting examples. In the examples, the products and materials used are available from the following suppliers:
Produit ou matériau Fournisseur  Product or material Supplier
(1 ) Ciment Portland Lafarge- France Val d'Azergues (1) Lafarge Portland cement - France Val d'Azergues
(2) Ciment Portland blanc Lafarge- France Le Teil (2) White Portland Cement Lafarge- France Le Teil
(3) Sable 0/4 mm Lafarge France  (3) Sand 0/4 mm Lafarge France
(St Bonnet La Petite Craz) (St Bonnet Little Craz)
(4) Sable BE01 (D50 à 307 μηη) Sibelco France (4) Sand BE01 (D50 to 307 μηη) Sibelco France
(Carrière de SIFRACO BEDOIN) (Career of SIFRACO BEDOIN)
(5) Filler calcaire OMYA (5) OMYA limestone filler
BETOCARB HP Orgon Filler calcaire DURCAL 1 OMYA BETOCARB HP Orgon Filler limestone DURCAL 1 OMYA
Fumées de silice MST SEPR (Société Européenne des Produits Réfractaires) Silica fumes MST SEPR (European Society of Refractory Products)
Adjuvant Optima 203 Chryso Optima 203 Chryso admixture
Adjuvant Ductal F2 Chryso  Ductal Adjuvant F2 Chryso
Solution SILRES BS29 Wacker  Solution SILRES BS29 Wacker
Formulation de béton à ultra haute performance  Ultra high performance concrete formulation
La formulation (1 ) de béton à ultra haute performance utilisée pour réaliser les essais est décrite dans le tableau 1 suivant :  The formulation (1) of ultra-high performance concrete used to carry out the tests is described in Table 1 below:
Tableau 1 : Formulation (1) de béton à ultra haute performance  Table 1: Formulation (1) of Ultra High Performance Concrete
Figure imgf000014_0001
Figure imgf000014_0001
performance non fibré. non-fiber performance.
Méthode de préparation du béton à ultra haute performance  Ultra-high performance concrete preparation method
Le béton à ultra haute performance selon la formulation (1 ) est réalisé au moyen d'un malaxeur de type RAYNERI. L'ensemble de l'opération est réalisé à 20°C. La méthode de préparation comprend les étapes suivantes :  The ultra high performance concrete according to the formulation (1) is produced by means of a RAYNERI type kneader. The whole operation is carried out at 20 ° C. The method of preparation includes the following steps:
• A T = 0 seconde : mettre le ciment, les fillers calcaire, les fumées de silice et le sable dans le bol de malaxeur et malaxer durant 7 minutes (15 tours/min) ; • A T = 7 minutes : ajouter l'eau et la moitié de la masse d'adjuvant et malaxer pendant 1 minute (15 tours/min) ; • At T = 0 seconds: put the cement, calcareous fillers, silica fumes and sand in the mixing bowl and knead for 7 minutes (15 rpm); • At T = 7 minutes: add water and half of the adjuvant mass and knead for 1 minute (15 rpm);
• A T = 8 minutes : ajouter le restant d'adjuvant et malaxer pendant 1 minute (15 tours/min) ;  • At T = 8 minutes: Add the remaining adjuvant and knead for 1 minute (15 rpm);
• A T = 9 minutes : malaxer pendant 8 minutes (50 tours/min) ; • At T = 9 minutes: mix for 8 minutes (50 rpm);
• A T = 17 minutes : malaxer pendant 1 minute (15 tours/min) ; et• AT = 17 minutes: mix for 1 minute (15 rpm); and
• A partir de T = 18 minutes : couler le béton à plat dans le ou les moules prévus à cet effet. • From T = 18 minutes: pour the concrete flat in the mold or molds provided for this purpose.
Formulation de mortier  Mortar formulation
La formulation (2) de mortier utilisée pour réaliser les essais est décrite dans le tableau 2 suivant :  The formulation (2) of mortar used to carry out the tests is described in Table 2 below:
Tableau 2 : Formulation (2) de mortier  Table 2: Mortar formulation (2)
Figure imgf000015_0001
Figure imgf000015_0001
Le ciment Portland de Lafarge est un ciment CEM I 52,5 PMES.  Lafarge Portland Cement is a cement CEM I 52.5 PMES.
Méthode de préparation du mortier Mortar preparation method
Le mortier selon la formulation (2) est réalisé au moyen d'un malaxeur de type Perrier. L'ensemble de l'opération est réalisé à 20°C. La méthode de préparation comprend les étapes suivantes :  The mortar according to the formulation (2) is produced by means of a Perrier type kneader. The whole operation is carried out at 20 ° C. The method of preparation includes the following steps:
• Mettre les sables dans un bol de malaxeur ; • A T = 0 seconde : débuter le malaxage (140 tours/min) et ajouter simultanément l'eau de mouillage en 30 secondes, puis continuer à malaxer (140 tours/min) jusqu'à 60 secondes ; • Put the sands in a mixing bowl; • At T = 0 seconds: start mixing (140 rpm) and simultaneously add the dampening water in 30 seconds, then continue mixing (140 rpm) for up to 60 seconds;
• A T = 1 minute : arrêter le malaxage et laisser reposer pendant 4 minutes ;  • AT = 1 minute: stop mixing and let stand for 4 minutes;
• A T = 5 minutes : ajouter le liant hydraulique ;  • At T = 5 minutes: add the hydraulic binder;
• A T = 6 minutes : malaxer pendant 1 minute (140 tours/min) ; • At T = 6 minutes: mix for 1 minute (140 rpm);
• A T = 7 minutes : ajouter l'eau de gâchage en 30 secondes (tout en malaxant (140 tours/min)) ; • At T = 7 minutes: add the mixing water in 30 seconds (while stirring (140 rpm));
· A T = 7 minutes et 30 secondes : malaxer pendant 2 minutes · At T = 7 minutes and 30 seconds: knead for 2 minutes
(140 tours/min) ; et (140 rpm); and
• A partir de T = 9 minutes et 30 secondes : couler le béton à plat dans le ou les moules prévus à cet effet.  • From T = 9 minutes and 30 seconds: pour the concrete flat in the mold or molds provided for this purpose.
Méthode d'application d'un premier mélange hydrophobe sur une face d'un échantillon en béton  Method of applying a first hydrophobic mixture to a face of a concrete sample
Après le décoffrage de l'échantillon en béton, un premier mélange hydrophobe est appliqué sur une face de l'échantillon. Le premier mélange hydrophobe appliqué est une solution aqueuse de silane, de siloxane et de résines synthétiques, commercialisée par la société Wacker sous l'appellation SILRES BS29. Cette solution comprend environ 70 % d'eau et 30 % d'un mélange de silane, de siloxane et de résines synthétiques. La solution est appliquée au pinceau de façon à recouvrir en totalité la face traitée avec un grammage de 15 g/m2. L'épaisseur de couche obtenue est alors inférieure à 5 μιτι. After stripping the concrete sample, a first hydrophobic mixture is applied to one side of the sample. The first hydrophobic mixture applied is an aqueous solution of silane, siloxane and synthetic resins, marketed by Wacker under the name SILRES BS29. This solution comprises about 70% water and 30% of a mixture of silane, siloxane and synthetic resins. The solution is applied with a brush so as to completely cover the treated surface with a weight of 15 g / m 2 . The layer thickness obtained is then less than 5 μιτι.
Méthode d'application d'un second mélange hydrophobe sur une face d'un échantillon en béton Method of applying a second hydrophobic mixture to one face of a concrete sample
Après le décoffrage de l'échantillon en béton, un second mélange hydrophobe est appliqué sur une face de l'échantillon. Le second mélange hydrophobe appliqué comprend de 5 à 15 % en masse de polyalkylalkoxysilane dilué dans un solvant organique (de type white-spirit). Le second mélange hydrophobe est appliqué par pulvérisation. La quantité finale appliquée est environ de 100 g/m2. Il est ensuite attendu 4 heures à 20°C pour faire sécher le second mélange hydrophobe. After stripping the concrete sample, a second hydrophobic mixture is applied to one side of the sample. The second hydrophobic mixture applied comprises from 5 to 15% by weight of polyalkylalkoxysilane diluted in an organic solvent (of the white-spirit type). The second hydrophobic mixture is applied by spraying. The final amount applied is approximately 100 g / m 2 . It is then expected 4 hours at 20 ° C to dry the second hydrophobic mixture.
Procédé de vieillissement d'un échantillon en béton au dioxyde de carboneAging process for a carbon dioxide concrete sample
Après démoulage d'un échantillon en béton, l'échantillon est stocké pendant 7 jours dans une enceinte dans laquelle la température est de 20°C et l'humidité relative est de 50 %. Ensuite l'échantillon en béton est stocké, pendant la durée souhaitée, dans une chambre de carbonatation dans laquelle est maintenue une atmosphère contenant 50 % de dioxyde de carbone et dont l'humidité relative est de 65 %. After demolding a concrete sample, the sample is stored for 7 days in an enclosure in which the temperature is 20 ° C and the relative humidity is 50%. Then the concrete sample is stored, for the desired duration, in a carbonation chamber in which is maintained an atmosphere containing 50% carbon dioxide and the relative humidity is 65%.
Procédé de vieillissement humide d'un échantillon en béton Wet aging method of a concrete sample
Le procédé est réalisé au moyen d'une enceinte de condensation d'eau, par exemple l'enceinte développée par la société Q-Lab Corporation sous l'appellation QCT. L'enceinte de condensation d'eau QCT permet une simulation accélérée des dommages provoqués par une atmosphère chaude et humide sur un échantillon de béton.  The process is carried out by means of a water condensation chamber, for example the chamber developed by Q-Lab Corporation under the name QCT. The QCT water condensation chamber allows accelerated simulation of damage caused by a hot and humid atmosphere on a concrete sample.
De façon générale, l'échantillon à tester est disposé de façon à former une partie de la paroi d'une chambre de l'enceinte de condensation QCT. L'angle d'inclinaison de l'échantillon est de 15°. De l'eau distillée est chauffée pour générer de la vapeur d'eau. La vapeur remplit la chambre pour obtenir une atmosphère ayant une humidité relative de 100 % et une température de 38°C ± 2°C. L'échantillon comprend une portion dans la chambre et une portion exposée à l'atmosphère ambiante. La différence de température entraîne la condensation de vapeur d'eau sur l'échantillon. La condensation se produisant en continu, on obtient un ruissellement d'eau sur la face de l'échantillon orientée dans l'enceinte QCT.  In general, the sample to be tested is arranged to form a part of the wall of a chamber of the condensation chamber QCT. The angle of inclination of the sample is 15 °. Distilled water is heated to generate water vapor. The vapor fills the chamber to obtain an atmosphere having a relative humidity of 100% and a temperature of 38 ° C ± 2 ° C. The sample includes a portion in the chamber and a portion exposed to the ambient atmosphere. The difference in temperature causes the condensation of water vapor on the sample. As the condensation occurs continuously, a water runoff is obtained on the face of the sample oriented in the QCT chamber.
Procédé de nettoyage UV-ozone UV-ozone cleaning process
Le procédé consiste à placer l'échantillon à nettoyer dans une enceinte et à projeter sur la face de mesure de l'échantillon des rayons ultraviolets de 254 nm de longueur d'onde pour dissocier les composés organiques présents sur l'échantillon. Simultanément, une deuxième gamme de rayons ultraviolets ayant une longueur d'onde de 185 nm produit une quantité importante d'ozone dans l'enceinte par interaction avec les molécules de dioxygène présentes dans l'atmosphère de l'enceinte. Les oxydants ainsi formés (ozone, radicaux hydroxyles) permettent de s'assurer d'une parfaite oxydation de la surface de l'échantillon : les contaminants sont alors transformés en espèces volatiles (H2O, CO, CO2) qui sont évacuées de l'enceinte via l'utilisation d'une pompe. La durée du procédé est de 20 minutes. The method consists of placing the sample to be cleaned in an enclosure and projecting ultraviolet rays of the sample onto the measuring face of the sample. 254 nm wavelength to dissociate the organic compounds present on the sample. Simultaneously, a second range of ultraviolet rays having a wavelength of 185 nm produces a large amount of ozone in the chamber by interaction with the oxygen molecules present in the atmosphere of the chamber. The oxidants thus formed (ozone, hydroxyl radicals) make it possible to ensure perfect oxidation of the surface of the sample: the contaminants are then transformed into volatile species (H 2 O, CO, CO 2 ) which are removed from the speaker via the use of a pump. The duration of the process is 20 minutes.
Procédé de mesure d'un angle de mouillage ou de contact Method of measuring a wetting or contact angle
La figure 1 illustre le principe de la mesure d'un angle de mouillage entre une surface solide 10 d'un échantillon 12 en béton et une goutte 14 d'un liquide déposée sur la surface 10. On désigne par la référence 16 l'interface liquide/gaz entre la goutte 14 et l'air ambiant. La figure 1 est une coupe selon un plan perpendiculaire à la surface 10. Dans le plan de coupe, l'angle de mouillage a correspond à l'angle, mesuré depuis l'intérieur de la goutte 14 de liquide, entre la surface 10 et la tangente T à l'interface 16 au point d'intersection entre le solide 10 et l'interface 16.  FIG. 1 illustrates the principle of measuring a wetting angle between a solid surface 10 of a concrete sample 12 and a drop 14 of a liquid deposited on the surface 10. The reference 16 is the interface liquid / gas between the drop 14 and the ambient air. FIG. 1 is a section on a plane perpendicular to the surface 10. In the section plane, the wetting angle α corresponds to the angle, measured from inside the liquid drop 14, between the surface 10 and the tangent T at the interface 16 at the point of intersection between the solid 10 and the interface 16.
Pour effectuer la mesure de l'angle de mouillage, l'échantillon 12 est placé dans une salle à température de 20°C et une humidité relative de 50 %. On dispose une goutte d'eau 14 ayant un volume de 2,5 μί sur la surface 10 de l'échantillon 12. La mesure de l'angle est réalisée par un procédé optique, par exemple en utilisant un dispositif d'analyse de forme (en anglais Drop Shape Analysis), par exemple le dispositif DSA 100 commercialisé par Kruss. Les mesures sont répétées cinq fois et la valeur de l'angle de contact mesuré entre la goutte d'eau et le support est égale à la moyenne de ces cinq mesures.  To measure the wetting angle, the sample 12 is placed in a room at a temperature of 20 ° C and a relative humidity of 50%. There is a drop of water 14 having a volume of 2.5 μί on the surface 10 of the sample 12. The angle measurement is performed by an optical method, for example using a shape analysis device (English Drop Shape Analysis), for example the device DSA 100 marketed by Kruss. The measurements are repeated five times and the value of the contact angle measured between the drop of water and the support is equal to the average of these five measurements.
Procédé d'analyse chimique des éléments en surface d'un échantillon en béton La surface de mesure de l'échantillon en béton est observée par microscopie électronique à balayage (MEB). Pour cela, un microscope à effet de champ à haute résolution (FEG Quanta 400 de FEI Company) est utilisé avec une tension d'accélération de 15 keV avec une intensité de courant de 1 nA. Des images sont acquises après avoir recouvert l'échantillon d'une fine couche métallisée à base de chrome. Une analyse chimique semi-quantitative est effectuée par un analyseur EDS (Energy Dispersive Spectroscopy) couplé au microscope électronique à balayage. On obtient une quantification des éléments chimiques (calcium, silicium, fer... etc.) contenus dans la couche superficielle de l'échantillon sur une épaisseur d'environ 1 μιτι. Method of chemical analysis of the surface elements of a concrete sample The measurement surface of the concrete sample is observed by scanning electron microscopy (SEM). For this, an effect microscope high-resolution field (FEI Quanta 400 from FEI Company) is used with an acceleration voltage of 15 keV with a current intensity of 1 nA. Images are acquired after covering the sample with a thin chromium-based metal layer. A semi-quantitative chemical analysis is performed by an EDS (Energy Dispersive Spectroscopy) analyzer coupled to the scanning electron microscope. Quantification of the chemical elements (calcium, silicon, iron, etc.) contained in the surface layer of the sample over a thickness of approximately 1 μιτι is obtained.
Procédé de mesure du diamètre moyen d'entrée des cavités ouvertes en surface de l'échantillon en béton Method for measuring the average inlet diameter of the open cavities at the surface of the concrete sample
La paroi de l'échantillon est observée par microscopie électronique à balayage (MEB). Pour cela, un microscope à effet de champ à haute résolution (FEG Quanta 400 de FEI Company) est utilisé avec une tension d'accélération de 15 keV avec une intensité de courant de 1 nA. Des images sont acquises après avoir recouvert l'échantillon d'une fine couche métallisée à base de chrome.  The wall of the sample is observed by scanning electron microscopy (SEM). For this, a high-resolution field effect microscope (FEG Quanta 400 from FEI Company) is used with an acceleration voltage of 15 keV with a current intensity of 1 nA. Images are acquired after covering the sample with a thin chromium-based metal layer.
Les images acquises sont analysées, par exemple par ordinateur, afin de déterminer le diamètre moyen d'entrée des cavités ouvertes en surface. A titre d'exemple, le procédé consiste à déterminer les contours des cavités ouvertes en surface par une analyse du contraste de l'image et à déterminer pour chaque contour le cercle qui correspond le mieux au contour de la cavité ouverte selon un critère d'optimisation. Le diamètre d'entrée de la cavité ouverte correspond au diamètre du cercle obtenu. Le diamètre moyen d'entrée des cavités ouvertes en surface correspond à la moyenne des diamètres des cercles obtenus. De préférence, lors de la détermination des contours des cavités ouvertes, il peut ne pas être tenu compte des cavités débouchant sur la paroi dont le diamètre d'entrée est inférieur à 0,1 μιτι.  The acquired images are analyzed, for example by computer, in order to determine the average input diameter of the open cavities on the surface. By way of example, the method consists in determining the contours of the open cavities at the surface by an analysis of the contrast of the image and in determining for each contour the circle which corresponds best to the contour of the open cavity according to a criterion of optimization. The inlet diameter of the open cavity corresponds to the diameter of the circle obtained. The average inlet diameter of the cavities open at the surface corresponds to the average of the diameters of the circles obtained. Preferably, when determining the contours of the open cavities, it may not be taken into account the cavities opening on the wall whose input diameter is less than 0.1 μιτι.
Méthode de mesure de la porosité de surface et du diamètre de pores critiques de surface de l'échantillon en béton (porosimétrie au mercure) Un porosimètre à mercure Autopore III a été utilisé. Les échantillons de béton analysés se présentent sous la forme de petits blocs parallélépipédiques d'une dimension typique de quelques millimètres à 1 cm de côté et ils sont préalablement séchés à 45°C pendant 8 h. Une face du bloc correspond à la face à tester. Les autres faces du bloc sont recouvertes d'une couche étanche, par exemple une couche de résine époxy. Le mercure est mis au contact d'un échantillon et une pression est exercée sur l'échantillon pour faire pénétrer le mercure dans les pores de l'échantillon par la face à tester. Le volume de mercure pénétrant dans les pores de l'échantillon sous l'action de la pression est mesuré, par un système capacitif, en fonction de la pression appliquée à l'échantillon. L'équation de Washburn (1 ) permet de relier la pression au diamètre des pores. Les calculs de la porosité reposent sur l'équation qui exprime la pénétration d'un liquide non mouillant (le mercure) dans les pores d'un matériau poreux. Le calcul est fait en considérant que l'angle de mouillage du mercure est de l'ordre 130° (sur le verre comme sur la plupart des solides) et la tension superficielle est égale 480 mN/m à 20°C. Method for measuring the surface porosity and the diameter of critical surface pores of the concrete sample (mercury porosimetry) An Autopore III mercury porosimeter was used. The analyzed concrete samples are in the form of small parallelepipedic blocks of a typical size of a few millimeters to 1 cm side and they are dried beforehand at 45 ° C for 8 h. One face of the block corresponds to the face to be tested. The other faces of the block are covered with a waterproof layer, for example an epoxy resin layer. The mercury is brought into contact with a sample and pressure is exerted on the sample to penetrate the mercury in the pores of the sample by the face to be tested. The volume of mercury entering the pores of the sample under the action of the pressure is measured, by a capacitive system, as a function of the pressure applied to the sample. The Washburn equation (1) makes it possible to relate the pressure to the pore diameter. Porosity calculations are based on the equation that expresses the penetration of a non-wetting liquid (mercury) into the pores of a porous material. The calculation is made considering that the wetting angle of the mercury is of the order of 130 ° (on glass as on most solids) and the surface tension is equal to 480 mN / m at 20 ° C.
p = Jços6 (1 ) r p = Jcos6 (1) r
P est la pression de mercure (Pa),  P is the mercury pressure (Pa),
y est la tension superficielle du liquide (N/m),  y is the surface tension of the liquid (N / m),
Θ est l'angle de contact entre le solide et liquide,  Θ is the contact angle between the solid and the liquid,
r est le diamètre d'entrée du pore.  r is the inlet diameter of the pore.
A partir de la courbe d'évolution du volume ayant pénétré dans les pores de l'échantillon en fonction de la pression exercée sur le mercure et de l'équation de Washburn, on peut déterminer la distribution de diamètre de pores qui est généralement exprimée en pourcentage ou mL/mm2 en fonction du diamètre d'entrée de pore, exprimé en μιτι ou en nm. Le diamètre de pores critiques, ou diamètre critique, de la surface de l'échantillon correspond au diamètre d'entrée des pores les plus nombreux débouchant sur la face à tester. La porosité de surface est déterminée à partir de la comparaison du volume de l'échantillon en béton et du volume de mercure ayant pénétré dans l'échantillon par la face à tester. Elle est exprimée en pourcentage en volume de vides dans l'échantillon en béton. Elle représente la porosité accessible via la face à tester. From the evolution curve of the volume having penetrated the pores of the sample as a function of the pressure exerted on the mercury and of the Washburn equation, it is possible to determine the pore diameter distribution which is generally expressed in terms of percentage or mL / mm 2 depending on the pore inlet diameter, expressed in μιτι or nm. The critical pore diameter, or critical diameter, of the surface of the sample corresponds to the inlet diameter of the largest pores leading to the test. The surface porosity is determined from the comparison of the volume of the concrete sample and the volume of mercury which has entered the sample by the face to be tested. It is expressed as a percentage by volume of voids in the concrete sample. It represents the porosity accessible via the face to be tested.
Procédé de mesure de la rugosité Ra en surface de l'échantillon en béton Method for measuring the roughness Ra on the surface of the concrete sample
La mesure est réalisée avec un rugosimètre à palpeur commercialisé par la société MITUTOYO sous l'appellation SURFTEST SJ-201 M. Le paramètre de rugosité moyenne (Ra) est mesuré à cinq reprises sur une distance de 12,5 mm et la valeur de rugosité Ra est égale à la moyenne de ces cinq mesures. The measurement is carried out with a probe rugosimeter sold by MITUTOYO under the name SURFTEST SJ-201 M. The average roughness parameter (Ra) is measured five times over a distance of 12.5 mm and the roughness value Ra is equal to the average of these five measurements.
Procédé de mesure de l'écart moyen entre les protubérances sur une paroi de l'échantillon en béton  Method for measuring the average gap between the protuberances on a wall of the concrete sample
Une coupe de l'échantillon est réalisée traversant la paroi considérée. La coupe de l'échantillon est observée par microscopie électronique à balayage (MEB). Pour cela, un microscope à effet de champ à haute résolution (FEG Quanta 400 de FEI Company) est utilisé avec une tension d'accélération de 15 keV avec une intensité de courant de 1 nA. Les images sont acquises après avoir recouvert l'échantillon d'une fine couche métallisée à base de chrome.  A section of the sample is made through the wall considered. The section of the sample is observed by scanning electron microscopy (SEM). For this, a high-resolution field effect microscope (FEG Quanta 400 from FEI Company) is used with an acceleration voltage of 15 keV with a current intensity of 1 nA. The images are acquired after covering the sample with a thin chromium-based metal layer.
La figure 2 illustre le principe de mesure de l'écart moyen entre les protubérances de la surface 10 d'un échantillon superhydrophobe en béton 12 et représente une coupe schématique de l'échantillon 12. Les inventeurs ont mis en évidence que la surface de l'échantillon superhydrophobe 12 comprend des protubérances 18 réparties de façon sensiblement régulière. L'écart moyen entre deux protubérances adjacentes est déterminé à partir de l'analyse, par exemple par ordinateur, de la coupe de l'échantillon 12.  FIG. 2 illustrates the principle of measuring the average gap between the surface protuberances of a superhydrophobic concrete sample 12 and represents a schematic sectional view of the sample 12. The inventors have shown that the surface of the Superhydrophobic sample 12 comprises protuberances 18 distributed substantially evenly. The average deviation between two adjacent protuberances is determined from the analysis, for example by computer, of the section of the sample 12.
A titre d'exemple, le procédé consiste à déterminer le contour de la surface 10 par une analyse du contraste de l'image, à déterminer le sommet de chaque protubérance 18 sur le contour (pouvant correspondre au point le plus éloigné de la protubérance 18 par rapport à une ligne de référence), à déterminer les écarts D1 , D2, D3 entre les sommets de chaque couple de protubérances 18 adjacentes et à déterminer l'écart moyen. By way of example, the method consists in determining the contour of the surface 10 by an image contrast analysis, in determining the vertex of each protuberance 18 on the contour (which may correspond to the point on the further away from the protuberance 18 relative to a reference line), determining the deviations D1, D2, D3 between the vertices of each pair of adjacent protuberances 18 and determining the average deviation.
Les exemples 1 à 5 qui vont suivre sont des exemples de référence pour lesquels il n'est pas obtenu de paroi superhydrophobe.  Examples 1 to 5 which follow are reference examples for which no superhydrophobic wall is obtained.
EXEMPLE 1 EXAMPLE 1
On a préparé un béton ayant la formulation (1 ). On a utilisé un moule en polychlorure de vinyle (PVC). Le béton a été coulé dans le moule en PVC sans utiliser de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 100 mm de largeur, 10 mm de hauteur et 150 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure.  A concrete having the formulation (1) was prepared. A polyvinyl chloride (PVC) mold was used. The concrete was poured into the PVC mold without using a form release compound. The sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length. A face of the concrete element called measuring face has been selected.
Le diamètre d'entrée des cavités ouvertes sur la face de mesure est de 0,1 à 10 μιτι. La rugosité Ra de la face de mesure est de 0,4 μιτι (+/- 0,1 μιτι). La porosité de surface de l'élément en béton est d'environ 8 %. Le diamètre de pores critiques de la face de mesure est d'environ 0,015 μιτι. La figure 3 représente la courbe d'évolution 10 du volume incrémental, utilisé lors de la réalisation de la porosimétrie de la surface de mesure, en fonction du diamètre d'entrée de pores débouchant sur la face de mesure. Le diamètre critique correspond au diamètre du point maximum 12 de la courbe 10. La face de mesure est très lisse de sorte que l'on ne peut pas mettre en évidence une texture particulière. L'angle de mouillage d'une goutte d'eau sur la face de mesure, mesuré selon le procédé décrit précédemment, est de 12 degrés (+/- 3 degrés). La face de mesure est donc hydrophile.  The inlet diameter of the open cavities on the measuring face is 0.1 to 10 μιτι. The roughness Ra of the measuring face is 0.4 μιτι (+/- 0.1 μιτι). The surface porosity of the concrete element is about 8%. The critical pore diameter of the measuring face is about 0.015 μιτι. FIG. 3 represents the curve of evolution of the incremental volume, used during the realization of the porosimetry of the measuring surface, as a function of the pore inlet diameter opening on the measuring face. The critical diameter corresponds to the diameter of the maximum point 12 of the curve 10. The measuring face is very smooth so that it is not possible to highlight a particular texture. The wetting angle of a drop of water on the measuring face, measured according to the method described above, is 12 degrees (+/- 3 degrees). The measurement face is therefore hydrophilic.
EXEMPLE 2 EXAMPLE 2
On a préparé un béton ayant la formulation (1 ). On a utilisé un moule en acier. Le béton a été coulé dans le moule en utilisant comme composition de décoffrage un mélange d'huile ECO2 et du produit SILRES BS29 dans les proportions 80 %/20 %. On a disposé 0,25 g de la composition de décoffrage dans le moule. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 100 mm de largeur, 10 mm de hauteur et 150 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure. A concrete having the formulation (1) was prepared. A steel mold was used. The concrete was poured into the mold using a mixture of ECO2 oil and SILRES BS29 product in proportions of 80% / 20% as form release composition. 0.25 g of the form release composition was placed in the mold. The sample obtained by molding corresponds to a parallelepiped having 100 mm width, 10 mm height and 150 mm length. A face of the concrete element called measuring face has been selected.
Le diamètre d'entrée des cavités ouvertes sur la face de mesure est de 0,1 à 10 μιτι. La rugosité Ra de la face de mesure est de 0,8 μιτι (+/- 0,3 μιτι). La porosité de surface de l'élément en béton est d'environ 8 %. Le diamètre de pores critiques de la face de mesure est d'environ 0,015 μιτι. L'angle de mouillage d'une goutte d'eau sur la face de mesure est de 1 19 degrés (+/- 2 degrés). La face de mesure est donc hydrophobe, mais pas superhydrophobe.  The inlet diameter of the open cavities on the measuring face is 0.1 to 10 μιτι. The roughness Ra of the measuring face is 0.8 μιτι (+/- 0.3 μιτι). The surface porosity of the concrete element is about 8%. The critical pore diameter of the measuring face is about 0.015 μιτι. The wetting angle of a drop of water on the measuring face is 1 19 degrees (+/- 2 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
EXEMPLE 3 EXAMPLE 3
On a préparé un béton ayant la formulation (1 ). On a utilisé un moule en polyuréthane. Le béton a été coulé dans le moule en utilisant comme composition de décoffrage le produit SILRES BS29. On a disposé 0,25 g de la composition de décoffrage dans le moule. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 100 mm de largeur, 10 mm de hauteur et 150 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure.  A concrete having the formulation (1) was prepared. A polyurethane mold was used. The concrete was poured into the mold using the SILRES BS29 product as a release composition. 0.25 g of the form release composition was placed in the mold. The sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length. A face of the concrete element called measuring face has been selected.
Les diamètres d'entrée des cavités ouvertes sur la face de mesure varient de 0,1 à 10 μιτι. La rugosité Ra de la face de mesure est de 0,9 μιτι (+/- 0,2 μιτι). La porosité de surface de l'élément en béton est d'environ 8 %. Le diamètre de pores critiques de la face de mesure est d'environ 0,015 μιτι. L'angle de mouillage d'une goutte d'eau sur la face de mesure est de 1 18 degrés (+/- 4 degrés). La face de mesure est donc hydrophobe, mais pas superhydrophobe.  The inlet diameters of the open cavities on the measurement face vary from 0.1 to 10 μιτι. The roughness Ra of the measuring face is 0.9 μιτι (+/- 0.2 μιτι). The surface porosity of the concrete element is about 8%. The critical pore diameter of the measuring face is about 0.015 μιτι. The wetting angle of a drop of water on the measuring face is 1 18 degrees (+/- 4 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
EXEMPLE 4 EXAMPLE 4
On a préparé un béton ayant la formulation (1 ). On a utilisé le moule en polyuréthane qui a été préalablement sablé. Le sablage a été réalisé en pulvérisant une poudre de corindons (diamètre 5 μιτι) sur la surface du moule sous une pression de 3 bars. Le béton a été coulé dans le moule sans utiliser de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 150 mm de largeur, 10 mm de hauteur et 150 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure. A concrete having the formulation (1) was prepared. The polyurethane mold which was previously sandblasted was used. Sandblasting was carried out by spraying a powder of corundum (diameter 5 μιτι) on the surface of the mold under a pressure of 3 bars. The concrete was poured into the mold without using form release composition. The sample obtained by molding corresponds to a parallelepiped having 150 mm in width, 10 mm in height and 150 mm in length. A face of the concrete element called measuring face has been selected.
L'angle de mouillage d'une goutte d'eau sur la face de mesure, mesuré selon le procédé décrit précédemment, est de 5 degrés (+/- 5 degrés). La face de mesure est donc hydrophile.  The wetting angle of a drop of water on the measuring face, measured according to the method described above, is 5 degrees (+/- 5 degrees). The measurement face is therefore hydrophilic.
EXEMPLE 5 EXAMPLE 5
On a préparé un béton ayant la formulation (1 ). On a utilisé le moule en polychlorure de vinyle. Le béton a été coulé dans le moule sans utiliser de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 150 mm de largeur, 10 mm de hauteur et 150 mm de longueur. Une face de l'élément en béton, appelée face de mesure, a été recouverte du second mélange hydrophobe comme cela est décrit précédemment.  A concrete having the formulation (1) was prepared. The polyvinyl chloride mold was used. The concrete was poured into the mold without using a form release composition. The sample obtained by molding corresponds to a parallelepiped having 150 mm in width, 10 mm in height and 150 mm in length. One face of the concrete element, called measuring face, was covered with the second hydrophobic mixture as described above.
L'angle de mouillage d'une goutte d'eau sur la face de mesure, mesuré selon le procédé décrit précédemment, est de 130 degrés (+/- 3 degrés). La face de mesure est donc hydrophobe, mais pas superhydrophobe.  The wetting angle of a drop of water on the measurement face, measured according to the method described above, is 130 degrees (+/- 3 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
EXEMPLE 6 EXAMPLE 6
On a préparé un mortier ayant la formulation (2). On a utilisé un moule en silicone. Le béton a été coulé dans le moule sans composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure.  A mortar having the formulation (2) was prepared. A silicone mold was used. The concrete was poured into the mold without formwork compound. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. A face of the concrete element called measuring face has been selected.
Les diamètres d'entrée des cavités ouvertes sur la face de mesure varient de 1 à 10 μιτι. La rugosité Ra de la face de mesure est de 1 ,6 μιτι (+/- 0,4 μιτι). L'écart moyen entre les protubérances de la face de mesure est de 10 à 30 μιτι. La porosité de surface de l'élément en béton est d'environ 15 %. Le diamètre de pores critiques de la face de mesure est d'environ 0,32 μιτι. La figure 3 représente la courbe d'évolution 20 du volume incrémental, utilisé lors de la réalisation de la porosimétrie de la surface de mesure, en fonction du diamètre d'entrée de pores débouchant sur la face de mesure. Le diamètre critique correspond au diamètre du point maximum 22 de la courbe 20. L'angle de mouillage d'une goutte d'eau sur la face de mesure est de 15 degrés (+/- 3 degrés). La face de mesure est donc hydrophile. The inlet diameters of the cavities open on the measuring face vary from 1 to 10 μιτι. The roughness Ra of the measuring face is 1, 6 μιτι (+/- 0.4 μιτι). The average distance between the protuberances of the measuring face is 10 to 30 μιτι. The surface porosity of the concrete element is about 15%. The critical pore diameter of the measuring face is approximately 0.32 μιτι. FIG. 3 represents the evolution curve 20 of the incremental volume, used during the realization of the porosimetry of the measuring surface, as a function of the pore inlet diameter opening on the measuring face. The critical diameter corresponds to the diameter of the maximum point 22 of the curve 20. The wetting angle of a drop of water on the measuring face is 15 degrees (+/- 3 degrees). The measurement face is therefore hydrophilic.
EXEMPLE 7 EXAMPLE 7
On a préparé un mortier ayant la formulation (2). On a utilisé un moule en silicone. Le béton a été coulé dans le moule en utilisant comme composition de décoffrage le produit SILRES BS29. On a disposé 1 ,0 g de la composition de décoffrage dans le moule. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure.  A mortar having the formulation (2) was prepared. A silicone mold was used. The concrete was poured into the mold using the SILRES BS29 product as a release composition. 1.0 g of the form release composition was placed in the mold. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. A face of the concrete element called measuring face has been selected.
Les diamètres d'entrée des cavités ouvertes sur la face de mesure varient de 1 à 10 μιτι. La rugosité Ra de la face de mesure est de 1 ,7 μιτι (+/- 0,5 μιτι). L'écart moyen entre les protubérances de la face de mesure est de 10 à 30 μιτι. La porosité de surface de l'élément en béton est d'environ 15 %. Le diamètre de pores critiques de la face de mesure est d'environ 0,32 μιτι. L'angle de mouillage d'une goutte d'eau sur la face de mesure est de 87 degrés (+/- 3 degrés). La face de mesure est donc hydrophobe, mais pas superhydrophobe.  The inlet diameters of the cavities open on the measuring face vary from 1 to 10 μιτι. The roughness Ra of the measuring face is 1, 7 μιτι (+/- 0.5 μιτι). The average distance between the protuberances of the measuring face is 10 to 30 μιτι. The surface porosity of the concrete element is about 15%. The critical pore diameter of the measuring face is approximately 0.32 μιτι. The wetting angle of a drop of water on the measuring face is 87 degrees (+/- 3 degrees). The measuring face is therefore hydrophobic, but not superhydrophobic.
Les exemples 8 à 15 qui vont suivre sont des exemples pour lesquels une surface superhydrophobe est obtenue.  Examples 8 to 15 which follow are examples for which a superhydrophobic surface is obtained.
EXEMPLE 8 EXAMPLE 8
On a préparé un béton ayant la formulation (1 ). On a utilisé un moule en silicone sans composition de décoffrage dans lequel a été coulé le béton. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. La porosité de surface de l'élément en béton avant traitement est d'environ 8 %. Le diamètre de pore critique de la face de mesure est avant traitement d'environ A concrete having the formulation (1) was prepared. A silicone mold without a form release composition in which the concrete was poured was used. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. The surface porosity of the concrete element before treatment is about 8%. The critical pore diameter of the measuring face is before treatment of approximately
Tièttraemen aprs T ièttr SBDMP has pr s
délmouage d el mou g e
0,015 μηη. On a sélectionné une face de l'élément en béton appelée face de mesure. Al dttngee conac 0.015 μηη. A face of the concrete element called measuring face has been selected. At dtt n g ee conac
Les tr ()déegrsaitements suivants ont été appliqués à la face de mesure : The tr () e de gr following saitements were applied to the face of measurement:
-traitement n°1 : pas de traitement sur la face de mesure ;  Treatment No. 1: no treatment on the measuring face;
Diè dtamree pores D iè dt am ee r p o r es
-traitement n°2 : procédé de vieillissement de l'échantillon en béton au iidt crquese -treatment # 2: Sample aging process in concrete i idt c rq uese
dioxyde de carbone décrit précédemment pendant une semaine ; et carbon dioxide previously described for one week; and
f () suraceμηι f () su r ace μηι
-traitement n°3 : procédé de nettoyage UV-ozone tel que décrit précédemment.  treatment No. 3: UV-ozone cleaning process as described above.
Pié dtorose P o r ied dt dare
Des mesures du diamètre de pores critiques de surface, de la porosité fè surace aprs Measurements of the diameter of critical surface pores, the porosity f è su r ace a pr s
après traitement, du diamètre d'entrée des cavités ouvertes, de l'écart moyen  after treatment, the inlet diameter of the open cavities, the mean difference
(%)i tttraemen (% ) i tttr aemen
entre les protubérances, de la rugosité et de l'angle de mouillage de l'échantillon en béton ont été réalisées sur Diè d'éttamreenre la face de mesure selon les procédés décrits précédemment. Les résultats des diétes cavs mesures sont rassemblés dans le tableau (3) suivant : ()t ouveresμηι between the protrusions, roughness and wetting angle of the concrete sample were performed on D iè ETT am r r e een measuring face according to the methods described above. The results of the Diet are cavs measures are summarized in Table (3): () t ove r es μηι
Tableau 3 Ettcar moyen enre Table 3 E tt ca r are mo r e
Formulation (1 ) - Moule en silicone - - Pas composition de démoulage lbétesprourances Formulation (1) - Silicone mold - - No mold release composition lbét pr es or r ances
()μηι() Μηι
E E
ZI ZI
03 ce 03 this
.0.0
'c 3 o ce n°1 143 inférieur ou inférieur ou inférieur à De 10 à 30 1 ,6 'C 3 o this no less than 1143 or less than or less than Between 10 and 30 1, 6
(+/-3) égal à 0,015 égal à 8 0,1 (+/-0.3) n°2 141 Inférieur ou inférieur ou inférieur à De 10 à 30 1 ,6  (+/- 3) equal to 0.015 equal to 8 0.1 (+/- 0.3) No. 2 141 Less than or less than or less than 10 to 30 1, 6
(+/-5) égal à 0,015 égal à 8 0,1 (+/-0.3) n°3 140 inférieur ou inférieur ou inférieur à De 10 à 30 1 ,6  (+/- 5) equal to 0.015 equal to 8 0.1 (+/- 0.3) No. 3 140 less than or less than or less than 10 to 30 1, 6
(+/-2) égal à 0,015 égal à 8 0,1 (+/-0.3)  (+/- 2) equal to 0.015 equal to 8 0.1 (+/- 0.3)
Pour chaque traitement, une analyse chimique des éléments en surface de la face de mesure de l'échantillon a été réalisée selon le procédé décrit précédemment. Les inventeurs ont ainsi mis en évidence que les grains présents en surface de la face de mesure de l'échantillon de béton selon la formulation (1 ) démoulé avec un moule en silicone étaient composés majoritairement de fines particules (fumées de silice, fillers calcaire...). For each treatment, a chemical analysis of the elements on the surface of the measuring face of the sample was carried out according to the method previously described. The inventors have thus demonstrated that the grains present on the surface of the measuring face of the concrete sample according to the formulation (1) demolded with a silicone mold were composed mainly of fine particles (silica fumes, calcareous fillers. ..).
EXEMPLE 9 EXAMPLE 9
On a préparé un béton ayant la formulation (1 ). On a utilisé le moule en silicone qui a été préalablement sablé. Le sablage a été réalisé en pulvérisant une poudre de corindons (diamètre 5 μιτι) sur la surface du moule sous une pression de 3 bars. Le béton a été coulé dans le moule sans utiliser de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure.  A concrete having the formulation (1) was prepared. The silicone mold which was previously sandblasted was used. Sandblasting was carried out by spraying a powder of corundum (diameter 5 μιτι) on the surface of the mold under a pressure of 3 bars. The concrete was poured into the mold without using a form release composition. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. A face of the concrete element called measuring face has been selected.
Les traitements suivants ont été appliqués à la face de mesure :  The following treatments have been applied to the measurement face:
-traitement n°4 : pas de traitement sur la face de mesure ;  Treatment No. 4: no treatment on the measuring face;
-traitement n°5 : recouvrir la face de mesure du second mélange hydrophobe comme cela est décrit précédemment.  Treatment No. 5: Cover the measurement face of the second hydrophobic mixture as described above.
L'angle de mouillage d'une goutte d'eau sur la face de mesure, mesuré selon le procédé décrit précédemment, pour le traitement n°4, est de 148 degrés (+/- 3 degrés) et pour le traitement n°5, est de 165 degrés (+/- 5 degrés). La face de mesure est donc superhydrophobe.  The wetting angle of a drop of water on the measurement face, measured according to the process described above, for treatment No. 4, is 148 degrees (+/- 3 degrees) and for treatment No. 5 , is 165 degrees (+/- 5 degrees). The measurement face is therefore superhydrophobic.
EXEMPLE 10 EXAMPLE 10
On a préparé un béton ayant la formulation (1 ). On a utilisé le moule en polyuréthane souple qui a été préalablement sablé. Le sablage a été réalisé en pulvérisant une poudre de corindons (diamètre 5 μιτι) sur la surface du moule sous une pression de 3 bars. Le béton a été coulé dans le moule sans utiliser de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. Une face de l'élément en béton, appelée face de mesure, a été recouverte du second mélange hydrophobe comme cela est décrit précédemment. A concrete having the formulation (1) was prepared. The flexible polyurethane mold which has been sandblasted beforehand was used. Sandblasting was carried out by spraying a powder of corundum (diameter 5 μιτι) on the surface of the mold under a pressure of 3 bars. The concrete was poured into the mold without using a form release composition. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. One side of the concrete element, called the face of measured, was covered with the second hydrophobic mixture as described previously.
L'angle de mouillage d'une goutte d'eau sur la face de mesure, mesuré selon le procédé décrit précédemment, est de 157 degrés (+/- 1 degré). La face de mesure est donc superhydrophobe.  The wetting angle of a drop of water on the measurement face, measured according to the method described above, is 157 degrees (+/- 1 degree). The measurement face is therefore superhydrophobic.
EXEMPLE 11 EXAMPLE 11
On a préparé un béton ayant la formulation (1 ). On a utilisé un moule en silicone. Le béton a été coulé dans le moule en utilisant comme composition de décoffrage le produit SILRES BS29. On a disposé 1 ,0 g de la composition de décoffrage dans le moule. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur.  A concrete having the formulation (1) was prepared. A silicone mold was used. The concrete was poured into the mold using the SILRES BS29 product as a release composition. 1.0 g of the form release composition was placed in the mold. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length.
Les traitements suivants ont été réalisés sur la face de mesure :  The following treatments were performed on the measurement face:
-traitement n°6 : pas de traitement de la face de mesure ; et  Treatment No. 6: no treatment of the measuring face; and
-traitement n°7 : procédé de vieillissement de l'échantillon en béton décrit précédemment pendant une semaine.  Treatment No. 7: method of aging the concrete sample described above for a week.
On a sélectionné une face de l'élément en béton appelée face de mesure. Des mesures du diamètre de pores critiques de surface, de la porosité après traitement, du diamètre d'entrée des cavités ouvertes, de l'écart moyen entre les protubérances, de la rugosité et de l'angle de mouillage de l'échantillon en béton ont été réalisées sur la face de mesure selon les procédés décrits précédemment. Les résultats des mesures sont rassemblés dans le tableau (4) suivant : A face of the concrete element called measuring face has been selected. Surface area pore diameter measurements, post-treatment porosity, open cavity inlet diameter, average protrusion spacing, roughness and wetting angle of the concrete sample were performed on the measurement face according to the methods described above. The results of the measurements are collated in the following table (4):
Tièttraemen aprs T i è ttr aemen ap rs
lmouage Tableau 4 dice the mouage Table 4
Formulation (1 ) - Moule en silicone - Avec composition de démoulage  Formulation (1) - Silicone mold - With mold release composition
Al dttngee conac At the ngee conac
()déegrs ( ) d eeg rs
E E
ZI ZI
03  03
Diè dtamree pores ce D i è dt am r ee po r es ce
.0 fii d t crquese surace 'c 3 .0 f d t ii c rq uese surace 'c 3
o () μηι D3 o ( ) μ η ι D3
Z3 ce n°6 143 Inférieur ou inférieur ou inférieur à De 10 à 30 2, 1 f Pié dtorose surace Z3 No. 6,143 Less than or Less than or Less than 10 to 30 2, 1 f P i d d o r o c o r ace
(+/-4) égal à 0,015 égal à 8 0, 1 (+/-0.2) èi ttt aprsraemen (+/- 4) equal to 0.015 equal to 8 0, 1 (+/- 0.2) è i ttt ap r s r aemen
n°7 144 Inférieur ou inférieur ou inférieur à De 10 à 30 2, 1 No. 7 144 Less than or Less than or Less than 10 to 30 2, 1
(%) ( % )
(+/-2) égal à 0,015 égal à 8 0, 1 (+/-0.2) (+/- 2) equal to 0.015 equal to 8 0, 1 (+/- 0.2)
Pour chaque traitement, une analys Diè d'étteamreenre chimique des éléments en surface de la face de mesure de l'échantillon a é diéttes cavsé réalisée selon le procédé décrit précédemment. Les inventeurs ont ainsi mis en ()t ouveresμηι évidence que les grains présents en surface de la face de mesure de l'échantillo Ettcar moyen enren de béton selon la formulation (1 ) démoulé avec un moule en silicone ét lbétaesprourancesient composés majoritairement de fines particules (fumées de silice, fillers calcai ()rμηιe...). For each treatment, analyzed D i th of e tt e r eam r een chemical elements on the surface of the sample measuring face é é di t your cavsé performed according to the method described above. The inventors have thus set () t ove r es μηι evidence that the grains present at the surface of the measurement face of the SAMPLES E tt because average r concrete formulation according to (1) removed from the mold with a silicone mold and lB e t r or r PHEA ancesient mainly composed of fine particles (silica fume, fillers calcai () r μηι e ...).
EXEMPLE 12 EXAMPLE 12
On a préparé un béton ayant la formulation (1 ). On a utilisé indifféremment un moule en polychlorure de vinyle, en bois, en polyuréthane, en poly-oxy-méthylène, en acier ou en silicone. Le béton a été coulé dans le moule sans utiliser de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 100 mm de largeur, 10 mm de hauteur et 150 mm de longueur. On a sélectionné une face de l'élément en béton appelée face de mesure.  A concrete having the formulation (1) was prepared. A mold made of polyvinyl chloride, wood, polyurethane, polyoxymethylene, steel or silicone was used interchangeably. The concrete was poured into the mold without using a form release composition. The sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length. A face of the concrete element called measuring face has been selected.
Le traitement suivant a été réalisé sur la face de mesure :  The following treatment was performed on the measurement face:
-traitement n°8 : procédé de vieillissement de l'échantillon en béton au dioxyde de carbone décrit précédemment pendant 7 jours, puis procédé de vieillissement humide pendant 10 jours, suivi de l'application du mélange hydrophobe SILRES BS29 sur la face de mesure. Des mesures du diamètre de pores critiques de surface, de la porosité après traitement, du diamètre d'entrée des cavités ouvertes, de l'écart moyen entre les protubérances, de la rugosité et de l'angle de mouillage de l'échantillon en béton ont été réalisées sur la face de mesure selon les procédés décrits précédemment. Les résultats des mesures sont rassemblés dans le tableau (5) suivant : Treatment No. 8: aging method of the carbon dioxide concrete sample described above for 7 days, followed by a wet aging process for 10 days, followed by the application of the hydrophobic mixture SILRES BS29 on the measuring face. Surface area pore diameter measurements, post-treatment porosity, open cavity inlet diameter, average protrusion spacing, roughness and wetting angle of the concrete sample were performed on the measurement face according to the methods described above. The results of the measurements are summarized in the following table (5):
Tableau 5  Table 5
Figure imgf000030_0001
Figure imgf000030_0001
Une analyse chimique des éléments en surface de la face de mesure de l'échantillon a été réalisée selon le procédé décrit précédemment. Les inventeurs ont mis en évidence que les surfaces de l'échantillon vieillies en enceinte climatique étaient recouvertes d'une couche de carbonates de calcium (dont les protubérances sont espacées de façon régulière), elle- même au moins partiellement recouverte du mélange hydrophobe SILRES BS29.  A chemical analysis of the elements on the surface of the measuring face of the sample was carried out according to the method described above. The inventors have demonstrated that the surfaces of the sample aged in the climatic chamber were covered with a layer of calcium carbonates (whose protuberances are regularly spaced), itself at least partially covered with the hydrophobic mixture SILRES BS29 .
EXEMPLE 13 EXAMPLE 13
On a préparé un premier béton ayant la formulation (1 ). On a utilisé un moule en silicone sans composition de décoffrage dans lequel a été coulé le premier béton. La pièce obtenue par moulage a la forme d'un moule. Les faces internes du moule réalisé avec le premier béton ont été recouvertes du second mélange hydrophobe comme cela est décrit précédemment.  A first concrete having the formulation (1) was prepared. A silicone mold without a release composition was used in which the first concrete was poured. The piece obtained by molding has the shape of a mold. The internal faces of the mold made with the first concrete were covered with the second hydrophobic mixture as described above.
On a préparé un second béton ayant la formulation (1 ). On a utilisé le moule en béton dans lequel a été coulé le second béton sans utiliser de composition de décoffrage. L'échantillon en second béton obtenu par le second moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. On a sélectionné une face de l'élément réalisé avec le second béton appelée face de mesure. A second concrete having the formulation (1) was prepared. The concrete mold in which the second concrete was cast was used without form release composition. The second concrete sample obtained by the second molding corresponds to a parallelepiped having 200 mm width, 10 mm height and 300 mm length. One face of the element made with the second concrete called measurement face was selected.
L'angle de mouillage d'une goutte d'eau sur la face de mesure, mesuré selon le procédé décrit précédemment, est de 148 degrés (+/- 4 degrés). La face de mesure est donc superhydrophobe.  The wetting angle of a drop of water on the measuring face, measured according to the method described above, is 148 degrees (+/- 4 degrees). The measurement face is therefore superhydrophobic.
EXEMPLE 14 EXAMPLE 14
On a préparé un moule en acier en réalisant un traitement de microstructuration des parois internes du moule en acier pour que celles-ci comprennent des plots hauts de quelques micromètres, larges de quelques micromètres et espacés de quelques dizaines de micromètres. Cette microstructuration a été réalisée par usinage et par attaque chimique à l'acide nitrique du moule en acier.  A steel mold was prepared by carrying out a microstructuring treatment of the internal walls of the steel mold so that they comprise studs that are a few micrometers high, a few micrometers wide and spaced a few tens of micrometers apart. This microstructuring was carried out by machining and nitric acid etching of the steel mold.
On a préparé ensuite un moule en silicone en coulant directement le silicone liquide dans le moule en acier microstructuré. Le silicone a été laissé durcir puis la pièce en silicone a été démoulée. La texture des parois du moule en acier (notamment les plots micrométriques régulièrement espacés) est transférée sur les parois du moule en silicone.  A silicone mold was then prepared by directly casting the liquid silicone into the microstructured steel mold. The silicone was allowed to cure and then the silicone part was removed from the mold. The texture of the walls of the steel mold (in particular the regularly spaced micrometer pads) is transferred onto the walls of the silicone mold.
On a préparé un béton ayant la formulation (1 ). On a utilisé le moule en silicone microstructuré. Le béton a été coulé dans le moule sans utiliser de composition de décoffrage. On a sélectionné une face de l'élément en béton appelée face de mesure.  A concrete having the formulation (1) was prepared. The microstructured silicone mold was used. The concrete was poured into the mold without using a form release composition. A face of the concrete element called measuring face has been selected.
Les traitements suivants ont été réalisés sur la face de mesure :  The following treatments were performed on the measurement face:
-traitement n°9 : pas de traitement de la face de mesure ; et  Treatment No. 9: no treatment of the measuring face; and
-traitement n°10 : recouvrir la face de mesure du second mélange hydrophobe comme cela est décrit précédemment.  Treatment No. 10: Cover the measuring face of the second hydrophobic mixture as described above.
Les mesures suivantes ont été réalisées sur le moule en acier avant traitement de microstructuration, sur le moule en acier après traitement de microstructuration, sur le moule en silicone et sur les faces de mesure pour lesquelles les traitements n°9 et n°10 ont été appliquées : écart moyen entre les protubérances pour les éléments en béton et le moule en acier, écart moyen entre les creux pour le moule en silicone, rugosité, angle de mouillage de l'échantillon en béton. Les résultats des mesures sont rassemblés dans le tableau (6) suivant : The following measurements were made on the steel mold before microstructuring treatment, on the steel mold after microstructuring treatment, on the silicone mold and on the measuring faces for which treatments 9 and 10 were applied: average gap between the protuberances for the concrete elements and the steel mold, average deviation between the cavities for the silicone mold, roughness, sample wetting angle in concrete. The results of the measurements are collated in the following table (6):
Tableau 6  Table 6
Figure imgf000032_0001
Figure imgf000032_0001
EXEMPLE 15 EXAMPLE 15
On a préparé un mortier ayant la formulation (2). On utilise un moule en silicone. Le mortier a été coulé dans le moule sans utilisation de composition de décoffrage. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 100 mm de largeur, 10 mm de hauteur et 150 mm de longueur. La porosité de surface de l'élément en béton avant le traitement est d'environ 15 %. On a sélectionné une face de l'élément de mortier appelée face de mesure.  A mortar having the formulation (2) was prepared. A silicone mold is used. The mortar was poured into the mold without the use of a form release composition. The sample obtained by molding corresponds to a parallelepiped having 100 mm in width, 10 mm in height and 150 mm in length. The surface porosity of the concrete element prior to treatment is about 15%. One side of the mortar element called measuring face was selected.
Le traitement suivant a été appliqué à la face de mesure :  The following treatment has been applied to the measurement face:
-traitement n°1 1 : procédé de vieillissement de l'échantillon en béton au dioxyde de carbone décrit précédemment pendant 7 jours, puis procédé de vieillissement humide pendant 10 jours, suivi de l'application du mélange hydrophobe SILRES BS29 sur la face de mesure. treatment No. 1 1: aging method of the carbon dioxide concrete sample described above for 7 days, followed by a method of wet aging for 10 days, followed by the application of the SILRES BS29 hydrophobic mixture on the measuring face.
Des mesures du diamètre de pores critiques de surface, de la porosité après traitement, du diamètre d'entrée des cavités ouvertes, de l'écart moyen entre les protubérances, de la rugosité et de l'angle de mouillage de l'échantillon en béton ont été réalisées sur la face de mesure selon les procédés décrits précédemment. Les résultats des mesures sont rassemblés dans le tableau (7) suivant :  Surface pore diameter measurements, post-treatment porosity, open cavity inlet diameter, average protrusion spacing, roughness and wetting angle of the concrete sample were performed on the measurement face according to the methods described above. The results of the measurements are collated in the following table (7):
Tableau 7  Table 7
Figure imgf000033_0001
Figure imgf000033_0001
EXEMPLE 16 EXAMPLE 16
On a préparé un mortier ayant la formulation (2). On a utilisé le moule en silicone. Le mortier a été coulé dans le moule en utilisant comme composition de décoffrage le produit SILRES BS29. On a disposé 1 ,0 g de la composition de décoffrage dans le moule. L'échantillon obtenu par moulage correspond à un parallélépipède ayant 200 mm de largeur, 10 mm de hauteur et 300 mm de longueur. La porosité de surface de l'élément en béton avant le traitement est d'environ 15 %. On a sélectionné une face de l'élément en béton appelée face de mesure.  A mortar having the formulation (2) was prepared. The silicone mold was used. The mortar was poured into the mold using the SILRES BS29 product as form release composition. 1.0 g of the form release composition was placed in the mold. The sample obtained by molding corresponds to a parallelepiped having 200 mm in width, 10 mm in height and 300 mm in length. The surface porosity of the concrete element prior to treatment is about 15%. A face of the concrete element called measuring face has been selected.
Le traitement suivant a été réalisé sur la face de mesure :  The following treatment was performed on the measurement face:
-traitement n°12 : procédé de vieillissement de l'échantillon en béton au dioxyde de carbone décrit précédemment pendant 7 jours, puis procédé de vieillissement humide pendant 10 jours, suivi de l'application du mélange hydrophobe SILRES BS29 sur la face de mesure. Treatment No. 12: aging method of the carbon dioxide concrete sample described above for 7 days, followed by wet aging for 10 days, followed by the application of the SILRES BS29 hydrophobic mixture on the measuring face.
Des mesures du diamètre de pores critiques de surface, de la porosité après traitement, du diamètre d'entrée des cavités ouvertes, de l'écart moyen entre les protubérances, de la rugosité et de l'angle de mouillage de l'échantillon en béton ont été réalisées sur la face de mesure selon les procédés décrits précédemment. Les résultats des mesures sont rassemblés dans le tableau (8) suivant :  Surface pore diameter measurements, post-treatment porosity, open cavity inlet diameter, average protrusion spacing, roughness and wetting angle of the concrete sample were performed on the measurement face according to the methods described above. The results of the measurements are collated in the following table (8):
Tableau 8  Table 8
Figure imgf000034_0001
Figure imgf000034_0001

Claims

REVENDICATIONS
Elément en béton (12) comportant une paroi (10) superhydrophobe ayant une rugosité Ra comprise de 1 μιτι à 10 m et ayant des protubérances (18) espacées deux à deux d'un intervalle moyen compris de 1 m à 150 μιτι, ledit élément en béton ayant un diamètre de pore critique de surface inférieur à 100 nm et comprenant en outre des portions affleurant ladite paroi plus hydrophobes que le béton. Concrete element (12) having a superhydrophobic wall (10) having a roughness Ra of 1 μιτι to 10 m and having protuberances (18) spaced two by two by an average interval of from 1 m to 150 μιτι, said element concrete having a critical surface pore diameter of less than 100 nm and further comprising portions flush with said wall more hydrophobic than concrete.
Elément en béton selon la revendication 1 , dans lequel la rugosité Ra est comprise de 1 à 7 μιτι. Concrete element according to claim 1, wherein the roughness Ra is from 1 to 7 μιτι.
Elément en béton selon la revendication 1 ou 2, dans lequel les protubérances (18) sont espacées deux à deux d'un intervalle moyen compris de 10 m à 30 μιτι. Concrete element according to claim 1 or 2, wherein the protuberances (18) are spaced two by two by an average interval of 10 m to 30 μιτι.
Elément en béton selon l'une quelconque des revendications 1 à 3, dans lequel ladite paroi (10) comprend des cavités ouvertes sur ladite paroi et dans lequel le diamètre moyen des cavités ouvertes sur ladite paroi (10) est inférieur à 1 μιτι. Concrete element according to any one of claims 1 to 3, wherein said wall (10) comprises cavities open on said wall and wherein the average diameter of the open cavities on said wall (10) is less than 1 μιτι.
Elément en béton selon l'une quelconque des revendications 1 à 4, dans lequel lesdites portions comprennent de la silicone. The concrete element of any one of claims 1 to 4, wherein said portions comprise silicone.
Elément en béton selon l'une quelconque des revendications 1 à 5, ayant une porosité de surface, mesurée par porosimétrie au mercure, inférieure ou égale à 10 %. Concrete element according to any one of claims 1 to 5, having a surface porosity, measured by mercury porosimetry, less than or equal to 10%.
7. Procédé de fabrication d'un élément en béton selon l'une des revendications 1 à 6, comprenant les étapes suivantes : -prévoir un moule en un matériau plus hydrophobe que le béton, ayant une rugosité Ra comprise de 1 μιτι à 10 μιτι et des creux (18) espacés deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι ; 7. A method of manufacturing a concrete element according to one of claims 1 to 6, comprising the following steps: -providing a mold of a more hydrophobic material than concrete, having a roughness Ra of 1 μιτι to 10 μιτι and recesses (18) spaced two by two of an average range of 1 μιτι 150 μιτι;
-couler ledit béton à l'état frais dans le moule ; et  pouring said concrete in the fresh state into the mold; and
-retirer ledit élément du moule après la prise du béton.  -Remove said element of the mold after setting the concrete.
8. Procédé selon la revendication 7, dans lequel le moule comprend de la silicone. The method of claim 7, wherein the mold comprises silicone.
9. Procédé selon la revendication 7 ou 8, comprenant, en outre, l'étape consistant à recouvrir au moins partiellement ledit élément d'un mélange plus hydrophobe que le béton. 10. Procédé selon l'une des revendications 7 à 9, comprenant l'étape préalable consistant à réaliser un traitement de faces du moule pour obtenir une rugosité Ra comprise de 1 μιτι à 10 μηη et des creux espacés deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μηη. The method of claim 7 or 8, further comprising the step of at least partially coating said member with a more hydrophobic blend than the concrete. 10. Method according to one of claims 7 to 9, comprising the prior step of performing a face treatment of the mold to obtain a roughness Ra of 1 μιτι to 10 μηη and hollows spaced two by two of an interval average of 1 μιτι to 150 μηη.
1 1 . Procédé selon la revendication 10, dans lequel le traitement est le sablage. 1 1. The method of claim 10, wherein the treatment is sanding.
12. Procédé selon l'une des revendications 7 à 9, comprenant les étapes préalables suivantes : 12. Method according to one of claims 7 to 9, comprising the following preliminary steps:
-prévoir un moule supplémentaire ;  -provide an additional mold;
-réaliser un traitement de faces du moule supplémentaire pour obtenir une rugosité Ra comprise de 1 μιτι à 10 μηη et des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι ; et -former ledit moule, ayant une rugosité Ra comprise de 1 μιτι à 10 m et des creux espacés deux à deux d'un intervalle moyen compris de 1 μιτι à 150 m, par coulage dudit matériau plus hydrophobe que le béton dans le moule supplémentaire et retrait dudit moule. performing a surface treatment of the additional mold to obtain a roughness Ra of from 1 μιτι to 10 μηη and protuberances spaced two by two by an average interval of from 1 μιτι to 150 μιτι; and -forming said mold, having a roughness Ra of 1 μιτι to 10 m and hollows spaced two by two of an average interval of 1 μιτι to 150 m, by casting said material more hydrophobic than the concrete in the additional mold and removing said mold.
13. Procédé de fabrication d'un élément en béton selon l'une des revendications 1 à 6, comprenant les étapes suivantes : 13. A method of manufacturing a concrete element according to one of claims 1 to 6, comprising the following steps:
-prévoir un moule ;  -provide a mold;
-couler ledit béton à l'état frais dans le moule ;  pouring said concrete in the fresh state into the mold;
-retirer ledit élément du moule après la prise du béton ; -faire croître, sur au moins une partie dudit élément, une couche comprenant des carbonates, ladite couche ayant une rugosité Ra comprise de 1 m à 10 pm et ayant des protubérances espacées deux à deux d'un intervalle moyen compris de 1 μιτι à 150 μιτι, et un diamètre de pore critique de surface inférieur à 100 nm ; et  removing said element from the mold after setting the concrete; on at least a portion of said element, to develop a layer comprising carbonates, said layer having a roughness Ra of between 1 m and 10 μm and having protuberances spaced two by two by an average interval of from 1 μιτι to 150; μιτι, and a surface pore diameter of less than 100 nm; and
-recouvrir au moins partiellement ladite couche d'un mélange plus hydrophobe que le béton.  at least partially covering said layer with a mixture that is more hydrophobic than concrete.
14. Utilisation d'une paroi (10) d'un élément en béton (12) comme paroi superhydrophobe, ladite paroi ayant une rugosité Ra comprise de 1 μιτι à 10 m et ayant des protubérances (18) espacées deux à deux d'un intervalle moyen compris de 1 m à 150 μιτι, ledit élément en béton ayant un diamètre de pore critique de surface inférieur à 100 nm et comprenant des portions affleurant ladite paroi plus hydrophobes que le béton. 14. Use of a wall (10) of a concrete element (12) as superhydrophobic wall, said wall having a roughness Ra of 1 μιτι to 10 m and having protuberances (18) spaced two by two from one an average interval of 1 m to 150 μιτι, said concrete element having a critical surface pore diameter of less than 100 nm and comprising portions flush with said wall more hydrophobic than concrete.
PCT/FR2011/050221 2010-02-04 2011-02-03 Concrete element having a superhydrophobic surface WO2011095744A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000451A FR2955858B1 (en) 2010-02-04 2010-02-04 CONCRETE ELEMENT WITH SUPERHYDROPHOBIC SURFACE
FR10/00451 2010-02-04

Publications (2)

Publication Number Publication Date
WO2011095744A2 true WO2011095744A2 (en) 2011-08-11
WO2011095744A3 WO2011095744A3 (en) 2011-09-29

Family

ID=42635255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050221 WO2011095744A2 (en) 2010-02-04 2011-02-03 Concrete element having a superhydrophobic surface

Country Status (2)

Country Link
FR (1) FR2955858B1 (en)
WO (1) WO2011095744A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179784A1 (en) * 2018-03-21 2019-09-26 Monier Roofing Gmbh Roof tile and method for producing a roof tile
WO2024056645A1 (en) * 2022-09-13 2024-03-21 Aco Ahlmann Se & Co. Kg Drainage article, drainage device, method for producing a drainage article and concrete article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111642A1 (en) * 2011-09-12 2013-03-13 Italcementi Spa LOW-THICK CEMENTITIOUS ITEM AND HIGH SURFACE QUALITY FOR NON-STRUCTURAL APPLICATIONS, AND METHOD FOR ITS PRODUCTION
DE102015102382A1 (en) * 2015-02-19 2016-08-25 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Process for permanent hydrophobing and / or superhydrophobing of concrete surfaces

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518777A1 (en) 1991-06-12 1992-12-16 Bouygues High-performance mortar, concretes obtained from this mortar and the elements produced from this mortar or concrete
WO1995001316A1 (en) 1993-07-01 1995-01-12 Bouygues Metal fiber concrete composition for casting a concrete element, elements obtained and method of thermal curing
WO1995001317A1 (en) 1993-07-01 1995-01-12 Bouygues Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
WO1999023046A1 (en) 1997-11-03 1999-05-14 Bouygues Slag for cementing a well, in particular an oil well
WO1999028267A1 (en) 1997-11-27 1999-06-10 Bouygues Travaux Publics Metal fibre concrete, cementitious matrix and pre-mixes for preparing matrix and concrete
EP0934915A1 (en) 1998-02-06 1999-08-11 Entreprise Quillery & Cie Self-leveling, very high performance concrete, process for its preparation and its utilisation
WO1999058468A1 (en) 1998-05-14 1999-11-18 Bouygues Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes
WO2001058826A1 (en) 2000-02-11 2001-08-16 Rhodia Chimie Fire-resistant high performance concrete composition
WO2008090481A2 (en) 2007-01-24 2008-07-31 Lafarge New concrete compositions
WO2009081277A1 (en) 2007-12-21 2009-07-02 Lafarge Concrete composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2549759C2 (en) * 1975-11-06 1984-09-13 Consortium für elektrochemische Industrie GmbH, 8000 München Process for the manufacture of objects from concrete
US4310486A (en) * 1976-01-16 1982-01-12 Cornwell Charles E Compositions of cementitious mortar, grout and concrete
JPH06107479A (en) * 1992-07-15 1994-04-19 Sumitomo Cement Co Ltd Production of high oil-resistant cement hardened body
FR2746052B1 (en) * 1996-03-15 1998-07-03 PROCESS FOR MOLDING AND WATERPROOFING MOLDED ELEMENTS IN CONCRETE, MORTAR, CEMENT, WITH A SILICONE RESIN
US20080090010A1 (en) * 2004-01-15 2008-04-17 Newsouth Innovations Pty Limited Hydrophobic Coating Composition
US20080107864A1 (en) * 2004-01-15 2008-05-08 Newsouth Innovations Pty Limited Rupert Myers Building Method of Making a Surface Hydrophobic
US20060216476A1 (en) * 2005-03-28 2006-09-28 General Electric Company Articles having a surface with low wettability and method of making
EP1900702A1 (en) * 2006-09-15 2008-03-19 Sika Technology AG Mould Release Composition
WO2008051166A1 (en) * 2006-10-25 2008-05-02 Agency For Science, Technology And Research Modification of surface wetting properties of a substrate
FR2909918B1 (en) * 2006-12-18 2013-10-11 Lafarge Sa DISMANTLING COMPOSITION FOR HYDRAULIC MATERIALS
US20100028604A1 (en) * 2008-08-01 2010-02-04 The Ohio State University Hierarchical structures for superhydrophobic surfaces and methods of making

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518777A1 (en) 1991-06-12 1992-12-16 Bouygues High-performance mortar, concretes obtained from this mortar and the elements produced from this mortar or concrete
WO1995001316A1 (en) 1993-07-01 1995-01-12 Bouygues Metal fiber concrete composition for casting a concrete element, elements obtained and method of thermal curing
WO1995001317A1 (en) 1993-07-01 1995-01-12 Bouygues Method and composition for fabricating concrete elements having remarkable compression resistance and fracturation energy, and elements thus obtained
WO1999023046A1 (en) 1997-11-03 1999-05-14 Bouygues Slag for cementing a well, in particular an oil well
WO1999028267A1 (en) 1997-11-27 1999-06-10 Bouygues Travaux Publics Metal fibre concrete, cementitious matrix and pre-mixes for preparing matrix and concrete
EP0934915A1 (en) 1998-02-06 1999-08-11 Entreprise Quillery & Cie Self-leveling, very high performance concrete, process for its preparation and its utilisation
WO1999058468A1 (en) 1998-05-14 1999-11-18 Bouygues Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes
WO2001058826A1 (en) 2000-02-11 2001-08-16 Rhodia Chimie Fire-resistant high performance concrete composition
WO2008090481A2 (en) 2007-01-24 2008-07-31 Lafarge New concrete compositions
WO2009081277A1 (en) 2007-12-21 2009-07-02 Lafarge Concrete composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179784A1 (en) * 2018-03-21 2019-09-26 Monier Roofing Gmbh Roof tile and method for producing a roof tile
WO2024056645A1 (en) * 2022-09-13 2024-03-21 Aco Ahlmann Se & Co. Kg Drainage article, drainage device, method for producing a drainage article and concrete article

Also Published As

Publication number Publication date
WO2011095744A3 (en) 2011-09-29
FR2955858A1 (en) 2011-08-05
FR2955858B1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
EP2488279B1 (en) Use of an element based on concrete for the removal of no2
Husni et al. Superhydrophobic rice husk ash coating on concrete
KR101960886B1 (en) Manufacturing method of road block for reduction of fine dust and purifying of air pollution
WO2011095744A2 (en) Concrete element having a superhydrophobic surface
US20130273319A1 (en) Method for treating a concrete surface to provide a photocatalytic coating
EP2401239B1 (en) Powder insulating mortar, and layered insulating mortar
EP3237353B1 (en) Method for the continuous production of a low-density mineral foam
FR3022240A1 (en) CONCRETE COATED WITH A THIN PHOTOVOLTAIC THIN LAYER, PROCESS FOR PRODUCING THE SAME, AND CONSTRUCTION ELEMENT COMPRISING SUCH A CONCRETE
Shen et al. Mechanically stable superhydrophobic surface on cement-based materials
EP3089949A1 (en) Gypsum plaster-based material containing an edta metal complex
Liu et al. PDMS-OH and nano-SiO2 Modified KH570-TEOS silica-sol coating and protective effect on concrete
Nagrockienė et al. Predicting frost resistance of concrete with different coarse aggregate concentration by porosity parameters
Sun et al. Designing a superhydrophobic quality and strengthening mechanism for foam concrete
WO2002016281A1 (en) Hydraulic binder concrete for making prefabricated tiles, panels and the like
EP3414213B1 (en) Method of manufacturing a photovoltaic concrete
FR2963789A1 (en) CONCRETE ELEMENT WHOSE SURFACE IS WITH LOW OPEN POROSITY
Alzyoud Effect of reinforcement spacers on concrete microstructure and durability
FR2967688A1 (en) Mold release composition, useful for manufacturing molding piece in hydraulic setting material which is a hydraulic cement based material including a concrete, comprises surfactant
FR2951716A1 (en) COMPOSITION FOR CAPTURING CO2
Chen et al. Self-cleaning ultra-high performance concrete surfaces
JP4481631B2 (en) Water-resistant lightweight cellular concrete and its production method
FR3025794A1 (en) CONCRETE COATED WITH POLYMER LAYER DEPOSITED BY PLASMA TECHNOLOGY AND PROCESS FOR PRODUCING THE SAME
BE1021425B1 (en) PERMEABLE CONCRETE.
EP1065188A1 (en) Method for the production of a concrete body with a smooth surface, concrete body and use thereof as a cladding element or as a stamping tool
Wang et al. Optimization preparation and durability analysis of abrasion resistant-superhydrophobic cementitious material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11707891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11707891

Country of ref document: EP

Kind code of ref document: A2