WO2011095737A1 - Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz - Google Patents

Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz Download PDF

Info

Publication number
WO2011095737A1
WO2011095737A1 PCT/FR2011/050205 FR2011050205W WO2011095737A1 WO 2011095737 A1 WO2011095737 A1 WO 2011095737A1 FR 2011050205 W FR2011050205 W FR 2011050205W WO 2011095737 A1 WO2011095737 A1 WO 2011095737A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
ingestion
standard
ing
impulse response
Prior art date
Application number
PCT/FR2011/050205
Other languages
English (en)
Inventor
Sébastien Bourget
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to BR112012019559A priority Critical patent/BR112012019559A2/pt
Priority to JP2012551665A priority patent/JP5698766B2/ja
Priority to RU2012138447/06A priority patent/RU2551252C2/ru
Priority to US13/577,455 priority patent/US9366154B2/en
Priority to EP11707886.5A priority patent/EP2534341B1/fr
Priority to CA2788901A priority patent/CA2788901C/fr
Priority to CN201180008788.5A priority patent/CN103026006B/zh
Publication of WO2011095737A1 publication Critical patent/WO2011095737A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring

Definitions

  • the present invention relates to a device and method for detecting an impact on a blade of a gas turbine engine, in particular on a fan blade.
  • a gas turbine engine when mounted on an aircraft is susceptible to damage by objects being sucked up by the engine during use. These objects can come in various forms, for example, birds, stones or ice.
  • Patent application FR2840358 A1 of SNECMA discloses a system for detecting rotor damage of an aircraft engine comprising means for measuring vibration and rotor speed during a given flight.
  • a system for detecting rotor damage of an aircraft engine comprising means for measuring vibration and rotor speed during a given flight.
  • such a system does not have the precision required to detect the ingestion of a foreign body.
  • ROLLS-ROYCE patent application EP 1312766 A2 discloses an impact detection method on a rotor blade in which the speed drop of the rotor is measured to emit an alarm. Such detection has the disadvantage of being poorly discriminating. Indeed, in case of pumping the motor, the rotor speed drops and an alarm is issued when no body has been ingested. To eliminate this drawback, patent application EP 1312766 A2 teaches adding sensors to measure the torsion angle of the motor and thus improve the accuracy of the method. Such a method, with many sensors, is not satisfactory and does not allow to accurately and reliably detect ingestion of a foreign body.
  • the invention relates to a method for automatically detecting the ingestion of at least one foreign body by a gas turbine engine comprising a rotor, a method according to which:
  • the rotor speed signal is filtered so as to separate its static component from its dynamic component
  • the filtered dynamic component is compared with a standard resonant wave of the rotor in order to obtain an ingestion indicator; standard resonance corresponding to the vibratory impulse response of a rotor;
  • the ingestion indicator obtained is compared with a detection threshold
  • a signal for detecting ingestion of a foreign body is emitted when the ingestion indicator is greater than the detection threshold.
  • the vibratory response of a rotor constitutes its signature following an impact, that is to say, following a pulse.
  • standard resonant wave is meant the vibratory impulse response measured on a rotor following the ingestion of a body by said rotor.
  • the transient dynamic component of the rotor speed is compared to its signature to detect ingestion.
  • the method according to the invention is more discriminating than the method according to the prior art based solely on amplitude thresholding of the dynamic component of the rotor speed (t), a dynamic component of high amplitude may have several causes.
  • the invention it is possible to ignore vibrations of large amplitude (eg pumping) when the shape of the dynamic component of the rotor speed R (t) does not correspond to that of a standard resonant wave.
  • this method is implemented without adding a sensor and without any structural modification.
  • the standard resonant wave of the rotor corresponds to the impulse response of the first mode of torsion of the rotor.
  • the search in the filtered dynamic component of the impulse response of the first mode of torsion of the rotor, whose characteristics are known elsewhere, makes it possible to obtain an ingestion rate which makes it possible to qualify a vibration.
  • the impulse response of the first mode of torsion is present only after a transient excitation in torsion of the rotor, which is typical of an ingestion of foreign body. In this way, ingestion is detected reliably and accurately.
  • a convolution product is made between the filtered dynamic component and the standard resonant wave to obtain the ingestion indicator.
  • the standard resonant wave is measured directly on the rotor of the engine on which the detection method is implemented.
  • the standard resonance wave is theoretically defined as a function of the characteristics of the impulse response of the first mode of torsion of the rotor (frequency, damping, etc.).
  • the rotor is a low pressure rotor of a gas turbine engine
  • the filtered dynamic component is compared to a standard resonant wave of the low pressure rotor to obtain an ingestion indicator, the resonance wave standard corresponding to the vibratory impulse response of a low pressure rotor.
  • FIG. 2 represents the dynamic component of the low-pressure rotor speed of FIG. 1;
  • FIG. 3 represents a standard resonance wave of the low-pressure rotor
  • FIG. 4 represents the ingestion indicator corresponding to a measurement of resemblance between the dynamic component of the rotor speed and a standard resonant wave of said rotor.
  • the invention relates to a method for accurately detecting ingestion of a foreign body by a dual-body gas turbine engine comprising a low-pressure rotor shaft and a high-pressure rotor shaft, a fan being secured to the low rotor. pressure.
  • the rotational speed (t) of the low-pressure rotor is measured over time by means of a voice wheel, known as such to those skilled in the art, arranged to measure the angular velocity of the low pressure rotor shaft. It goes without saying that the low-pressure rotor speed could also be measured by other means, in particular by accelerometers arranged in the engine.
  • the low-pressure rotor R (t) regime measured by the phonic wheel has a static component Rs and a dynamic component Rd (t) and decomposes in the following form:
  • the low pressure rotor R (t) regime is filtered to retain only the dynamic component Rd (t) of the signal, for example, by means of bandpass filtering centered on the frequency of the standard resonance wave.
  • the Applicant has noticed that when a body strikes the blower after ingestion, the low pressure rotor, connected to the blower, responds by vibrating in its first mode of torsion, in the manner of a bell, by emitting a resonance wave whose frequency and shape is specific to the rotor.
  • This vibratory response following a brief shock is the impulse response of the first mode of torsion of the low pressure rotor. Thanks to this characteristic response, it is possible to discriminate the vibratory disturbances resulting from the body ingestions of disturbances resulting from noise or external phenomena, and this, well, that their influences on the low-pressure rotor regime (t) are almost identical from a total point of view.
  • the dynamic component Rd (t) of the low pressure rotor speed signal R (t) is thus generally in the following form:
  • C (t) .cos (w x (t) * t + ⁇ I>) is the perturbation due to the vibratory response of the low-pressure rotor following ingestion. This perturbation depends on an amplitude parameter C (t), a phase parameter ⁇ and a pulse parameter w T corresponding to the first torsion mode of the low pressure rotor.
  • the low pressure rotor has several low frequency twist modes. When ingesting foreign bodies, only the first mode of torsion will respond significantly. The impulse response of the latter will therefore be a signature characteristic of ingestion. Following ingestion, C (t) will vary strongly in one form:
  • C (t) C.exp (-t / x T ) This is the amplitude of the disturbance and is a function of the "severity" of the ingestion, the amplitude of the disturbance being very small compared to the value of the static regime Rs.
  • the damping parameter ⁇ ⁇ is a function of the damping of the first mode of torsion of the low pressure rotor and the natural frequency of this mode.
  • the dynamic component Rd (t) of the low-pressure rotor strongly resembles the impulse response of the first torsion mode e (t) of the low-pressure rotor, shown in FIG. Figure 3.
  • the impulse response of the first rotor twist mode e (t) is compared with the dynamic response Rd (t) of the low-pressure rotor R (t) to determine whether a body has been ingested by the engine.
  • the filtered dynamic component is compared with a standard resonance wave e (t) of the low-pressure rotor in order to obtain an ingestion indicator T ING corresponding to a measurement of resemblance between the standard resonant wave e (t) and the dynamic component Rd (t) of the measured speed signal.
  • T ING an ingestion indicator
  • this wave corresponds to the impulse response of the first mode of torsion of the rotor.
  • the first mode of torsion of the rotor is a "specific" mode, the characteristics (frequency, damping) of the first mode of torsion being measured directly on the low pressure rotor on which will be implemented the detection of ingestion, the detection being then carried out "Custom-made” with the standard resonance wave the vibratory impulse response first mode of torsion of the rotor.
  • the setting of the detection method with a specific mode makes it possible to implement an accurate detection adapted to said low pressure rotor. Indeed, each rotor has an impulse response of its first mode of torsion of its own. In other words, different rotor models have different impulse responses.
  • the impulse response of the first mode of torsion of the rotor is determined analytically by calculation.
  • the standard resonance wave e (t) corresponds to the sum of a plurality of torsion modes of the same low-pressure rotor, preferably the first 2 or 3 modes of torsion of a low rotor. pressure.
  • a standard resonant wave e (t) comprising several torsion modes makes it possible to increase the reliability of the detection and its accuracy.
  • a convolution product is produced between the dynamic response of the low pressure rotor d (t) and the standard wave e (t) to obtain a ingestion indicator T ING .
  • the comparison algorithms are set to take into account distortions of the standard resonance wave (delay, noise, etc.).
  • the ingestion indicator T ING shown in FIG. 4, makes it possible to qualify the suspicious oscillation 2 detected in the measurement of the low-pressure rotor R (t) regime. The more the dynamic response of the low pressure rotor Rd (t) resembles the theoretical impulse response characteristic of a shock response (here, ingestion of a foreign body), plus the value of the ingestion indicator T ING will be high.
  • the value of the detection S is determined so as not to generate an alarm for T ING indicator values corresponding to the normal operation of the engine and which can be described as noise.
  • This detection threshold is thus obtained by applying a margin to the average level of the "noise” Sb.
  • This margin is a function of the characteristics of the signal "noise” as well as the desired level of detection reliability. With reference to FIG. 4, a margin of 70% separates the detection threshold from the average noise level.
  • This method is very selective because the ingestion indicator T ING for a noise signal (excluding ingestion) is low since, in the absence of ingestion, the impulse response of the first mode of torsion is not present. in the signal.
  • the noise signal does not resemble the impulse response of the first mode of torsion.
  • the alarm generated can be directed directly to the pilot of the aircraft, on which the engine is mounted, to be consulted in real time, or stored in a memory to be consulted. subsequently, for example, for an inspection of the engine, be transmitted in real time to the maintenance services of the airline to allow it to anticipate and organize, at the next stopover, a detailed inspection impacted engine and all necessary maintenance actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Engines (AREA)

Abstract

Une méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz comprenant un rotor, méthode selon laquelle: on mesure le régime instantané du rotor (R(t)); on filtre le signal de régime du rotor (R(t)) de manière à dissocier sa composante statique (Rs(t)) de sa composante dynamique (Rd(t)); on compare la composante dynamique filtrée (Rd(t)) à une onde de résonance étalon (e(t)) du rotor afin d'obtenir un indicateur d'ingestion (TINGX l'onde de résonance étalon (e(t)) correspondant à la réponse impulsionelle vibratoire d'un rotor; on compare l'indicateur d'ingestion obtenu (TING) à un seuil de détection (S); on émet un signal de détection d'une ingestion d'un corps étranger lorsque l'indicateur d'ingestion (TING) est supérieur au seuil de détection (S).

Description

Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz
La présente invention concerne un dispositif et une méthode pour détecter un impact sur une pale d'un moteur à turbine à gaz, en particulier, sur une pale de soufflante.
Un moteur à turbine à gaz lorsqu'il est monté sur un aéronef est susceptible d'être endommagé par des objets qui sont aspirés par le moteur au cours de son utilisation. Ces objets peuvent se présenter sous diverses formes, par exemple, des oiseaux, des pierres ou de la glace.
Après aspiration des objets, ces derniers circulent d'amont en aval dans le moteur en heurtant différents éléments du moteur. Ce phénomène est connu de l'homme du métier sous la désignation « ingestion de corps étrangers ».
En fonction de la nature, de la densité et de la vitesse relative des corps ingérés par le moteur, certaines parties du moteur peuvent être plus ou moins endommagées.
Afin de conserver un haut degré de sécurité et de fiabilité du moteur au cours de son utilisation, il est nécessaire de détecter les dommages générés par ces ingestions afin de réparer ou remplacer les éléments du moteur endommagés. Pour les vols commerciaux embarquant des passagers, les moteurs à turbine à gaz sont inspectés visuellement avant chaque vol. Cette inspection présente cependant plusieurs inconvénients. Premièrement, cette inspection visuelle ne permet pas une détection totalement fiable, les opérateurs ne peuvent pas relever des petits endommagements, ces derniers étant, par ailleurs, difficilement repérables. Deuxièmement, lorsqu'un endommagement est détecté, il faut procéder immédiatement à des opérations de maintenance ce qui nécessite d'immobiliser l'aéronef et, par voie de conséquence, retarde son départ. Cette détection tardive des effets d'une ingestion d'un corps étranger entraîne ainsi des désagréments pour les passagers devant embarquer dans ledit aéronef.
On connaît par la demande de brevet FR2840358 Al de SNECMA un système de détection d'endommagement de rotor d'un moteur d'aéronef comprenant des moyens de mesure de vibration et de vitesse du rotor pendant un vol déterminé. Cependant, un tel système ne possède pas la précision requise pour détecter l'ingestion d'un corps étranger.
On connaît par la demande de brevet EP 1312766 A2 de ROLLS-ROYCE une méthode de détection d'impact sur une aube de rotor dans laquelle on mesure la chute de vitesse du rotor pour émettre une alarme. Une telle détection présente l'inconvénient d'être peu discriminante. En effet, en cas de pompage du moteur, la vitesse du rotor baisse et une alarme est émise alors qu'aucun corps n'a été ingéré. Pour éliminer cet inconvénient, la demande de brevet EP 1312766 A2 enseigne d'ajouter des capteurs pour mesurer l'angle de torsion du moteur et ainsi améliorer la précision de la méthode. Une telle méthode, avec des capteurs nombreux, n'est pas satisfaisante et ne permet pas de détecter de manière précise et fiable une ingestion d'un corps étranger.
Afin de pallier ces inconvénients, l'invention concerne une méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz comprenant un rotor, méthode selon laquelle :
- on mesure le régime instantané du rotor;
- on filtre le signal de régime du rotor de manière à dissocier sa composante statique de sa composante dynamique ;
- on compare la composante dynamique filtrée à une onde de résonance étalon du rotor afin d'obtenir un indicateur d'ingestion, l'onde de résonance étalon correspondant à la réponse impulsionelle vibratoire d'un rotor;
- on compare l'indicateur d'ingestion obtenu à un seuil de détection ;
- on émet un signal de détection d'une ingestion d'un corps étranger lorsque l'indicateur d'ingestion est supérieur au seuil de détection.
La réponse vibratoire d'un rotor constitue sa signature suite à un impact, c'est-à- dire, suite à une impulsion. On entend par onde de résonance étalon la réponse impulsionelle vibratoire mesurée sur un rotor suite à l'ingestion d'un corps par ledit rotor.
Grâce à l'invention, on compare la composante dynamique transitoire du régime du rotor à sa signature pour déceler une ingestion. La méthode selon l'invention est plus discriminante que la méthode selon l'art antérieur basée uniquement sur un seuillage en amplitude de la composante dynamique du régime de rotor (t), une composante dynamique de forte amplitude pouvant avoir plusieurs causes.
Grâce à l'invention, on peut ignorer des vibrations d'amplitude importante (ex : pompage) lorsque la forme de la composante dynamique du régime de rotor R(t) ne correspond pas à celle d'une onde de résonance étalon. Par ailleurs, on peut détecter des ingestions de corps dits à « faible énergie » (masse faible, vitesse faible), entraînant des vibrations d'amplitude faible, une telle détection n'étant pas possible avec une méthode selon l'art antérieur. De manière avantageuse, cette méthode est mise en œuvre sans ajout de capteur et sans aucune modification structurale.
De préférence, l'onde de résonance étalon du rotor correspond à la réponse impulsionelle du premier mode de torsion du rotor. De manière avantageuse, la recherche dans la composante dynamique filtrée de la réponse impulsionelle du premier mode de torsion du rotor, dont les caractéristiques sont connues par ailleurs, permet d'obtenir un taux d'ingestion qui permet de qualifier une vibration.
En effet, la réponse impulsionelle du premier mode de torsion n'est présente qu'à la suite d'une excitation transitoire en torsion du rotor, qui est typique d'une ingestion de corps étranger. On détecte ainsi une ingestion de manière fiable et précise.
De préférence encore, on réalise un produit de convolution entre la composante dynamique filtrée et l'onde de résonance étalon pour obtenir l'indicateur d'ingestion. Selon une première variante, on mesure l'onde de résonance étalon directement sur le rotor du moteur sur lequel est mise en œuvre la méthode de détection.
Ainsi, les caractéristiques de la réponse impulsionelle du premier mode de torsion du rotor (fréquence, amortissement) sont déterminées de manière expérimentale.
Selon une deuxième variante, l'onde de résonance étalon est définie de manière théorique en fonction des caractéristiques de la réponse impulsionelle du premier mode de torsion du rotor (fréquence, amortissement, etc.).
De préférence, le rotor est un rotor basse pression d'un moteur à turbine à gaz, on compare la composante dynamique filtrée à une onde de résonance étalon du rotor basse pression afin d'obtenir un indicateur d'ingestion, l'onde de résonance étalon correspondant à la réponse impulsionelle vibratoire d'un rotor basse pression. L'invention sera mieux comprise à l'aide du dessin annexé sur lequel :
- la figure 1 représente une mesure du régime du rotor basse pression au cours du temps ;
- la figure 2 représente la composante dynamique du régime du rotor basse pression de la figure 1 ;
- la figure 3 représente une onde de résonance étalon du rotor basse pression et
- la figure 4 représente l'indicateur d'ingestion correspondant à une mesure de ressemblance entre la composante dynamique du régime du rotor et une onde de résonance étalon dudit rotor.
L'invention concerne une méthode de détection précise d'une ingestion d'un corps étranger par un moteur à turbine à gaz à double corps comprenant un arbre de rotor basse pression et un arbre de rotor haute pression, une soufflante étant solidaire du rotor basse pression.
En référence à la figure 1, on mesure le régime de rotation (t) du rotor basse pression au cours du temps au moyen d'une roue phonique, connue en tant que tel de l'homme du métier, agencée pour mesurer la vitesse angulaire de l'arbre de rotor basse pression. Il va de soi que le régime du rotor basse pression pourrait également être mesuré par d'autres moyens, en particulier, par des accéléromètres disposés dans le moteur.
Suite à cette mesure, on obtient une courbe 1 sensiblement constante au cours du temps autour du régime statique du rotor basse pression Rs. Sur la figure 1, le régime de rotation R(t) est normalisé par rapport à la valeur maximale du régime de rotor basse pression. Sur la figure 1, le régime statique Rs du rotor basse pression est de l'ordre de 85% du régime maximal. Au cours de la période de mesure, un corps de faible masse (environ 50g) est ingéré par le moteur. La courbe 1, représentant le régime de la soufflante (t), présente une oscillation 2 au moment de l'ingestion du corps par le moteur, cette oscillation étant très faible, de l'ordre de 0.5% de la valeur du régime statique Rs. Cette oscillation ne peut être détectée directement suite à la mesure du régime du rotor basse pression R(t). En effet, de telles oscillations peuvent être liées à des bruits de mesure ou à des phénomènes autres que l'ingestion, en particulier, les phénomènes de pompage du moteur. De manière connue, le régime du rotor basse pression R(t) mesuré par la roue phonique possède une composante statique Rs et une composante dynamique Rd(t) et se décompose sous la forme suivante :
(1) R(t) = Rs + Rd(t)
Pour mettre en exergue l'oscillation 2, on filtre le régime de rotor basse pression R(t) pour ne conserver que la composante dynamique Rd(t) du signal, par exemple, au moyen d'un filtrage passe-bande centré sur la fréquence de l'onde de résonance étalon.
La demanderesse s'est aperçue que lorsqu'un corps heurte la soufflante suite à une ingestion, le rotor basse pression, lié à la soufflante, répond en vibrant selon son premier mode de torsion, à la manière d'une cloche, en émettant une onde de résonance dont la fréquence et la forme est propre au rotor. Cette réponse vibratoire suite à un choc bref est la réponse impulsionelle du premier mode de torsion du rotor basse pression. Grâce à cette réponse caractéristique, on peut discriminer les perturbations vibratoires consécutives aux ingestions de corps des perturbations consécutives aux bruits ou à des phénomènes externes, et ce, bien que leurs influences sur le régime du rotor basse pression (t) soient quasiment identiques d'un point de vue global.
En effet, une ingestion ou un pompage entraînent l'apparition d'oscillations dont les allures globales sont similaires lorsque l'on analyse le régime moteur. Néanmoins, seules les oscillations dont la forme et l'amplitude sont similaires à celles de la réponse impulsionelle du rotor basse pression correspondent à une ingestion d'un corps étranger.
Suite à une ingestion d'un corps étranger, la composante dynamique Rd(t) du signal de régime du rotor basse pression R(t) se présente ainsi globalement sous la forme suivante :
(2) Rd(t) = C(t).cos(wx(t)*t+(D)
Dans cette formule, C(t).cos(wx(t)*t+<I>) est la perturbation due à la réponse vibratoire du rotor basse pression suite à l'ingestion. Cette perturbation dépend d'un paramètre d'amplitude C(t), d'un paramètre de phase Φ et d'un paramètre de pulsation wT correspondant au premier mode de torsion du rotor basse pression.
Le rotor basse pression possède plusieurs modes de torsion à basse fréquence. Lors d'une ingestion de corps étranger, seul le premier mode de torsion répondra de manière significative. La réponse impulsionelle de ce dernier constituera donc une signature caractéristique d'une ingestion. Suite à une ingestion, C(t) va varier fortement suivant une forme :
(3) C(t) = C.exp(-t/xT) C est l'amplitude de la perturbation et est fonction de la « sévérité » de l'ingestion, l'amplitude de la perturbation étant très faible par rapport à la valeur du régime statique Rs. Le paramètre d'amortissement ττ est fonction de l'amortissement du premier mode de torsion du rotor basse pression et de la fréquence propre de ce mode.
Ainsi, lors d'une ingestion d'un corps étranger par le moteur, la composante dynamique Rd(t) du rotor basse pression ressemble fortement à la réponse impulsionelle du premier mode de torsion e(t) du rotor basse pression, représentée sur la figure 3. La réponse impulsionelle du premier mode de torsion du rotor e(t) est comparée avec la réponse dynamique Rd(t) du régime du rotor basse pression R(t) afin de déterminer si un corps a été ingéré par le moteur. En d'autres termes, on compare la composante dynamique filtrée à une onde de résonance étalon e(t) du rotor basse pression afin d'obtenir un indicateur d'ingestion TING correspondant à une mesure de ressemblance entre l'onde de résonance étalon e(t) et la composante dynamique Rd(t) du signal de régime mesuré. Afin de réaliser la comparaison, il est nécessaire de déterminer préalablement l'onde de résonance étalon e(t).
Selon une première mise en œuvre de l'invention, cette onde correspond à la réponse impulsionelle du premier mode de torsion du rotor.
Selon une première variante, le premier mode de torsion du rotor est un mode « spécifique », les caractéristiques (fréquence, amortissement) du premier mode de torsion étant mesurées directement sur le rotor basse pression sur lequel va être mise en œuvre la détection d'une ingestion, la détection étant alors réalisée « sur mesure » avec comme onde de résonance étalon la réponse impulsionelle vibratoire premier mode de torsion du rotor. Le paramétrage de la méthode de détection avec un mode spécifique permet de mettre en œuvre une détection précise, adaptée audit rotor basse pression. En effet, chaque rotor possède une réponse impulsionelle de son premier mode de torsion qui lui est propre. Autrement dit, des modèles de rotor différents possèdent des réponses impulsionelles différentes.
Selon une deuxième variante, la réponse impulsionelle du premier mode de torsion du rotor est déterminée de manière analytique par calcul.
Selon une deuxième variante, l'onde de résonance étalon e(t) correspond à la somme d'une pluralité de modes de torsion d'un même rotor basse pression, de préférence les 2 ou 3 premiers modes de torsion d'un rotor basse pression. Une onde de résonance étalon e(t) comprenant plusieurs modes de torsion permet d'augmenter la fiabilité de la détection et sa précision.
A titre d'exemple, pour mettre en œuvre la comparaison, on réalise un produit de convolution entre la réponse dynamique du rotor basse pression d(t) et l'onde étalon e(t) pour obtenir un indicateur d'ingestion TING.
(4) TING (0 = J e(u) - R(t - u) - du
Il va de soi que d'autres algorithmes de comparaison pourraient également convenir. De préférence, les algorithmes de comparaison sont paramétrés pour prendre en compte des distorsions de l'onde de résonance étalon (retard, bruit, etc.). L'indicateur d'ingestion TING, représenté sur la figure 4, permet de qualifier l'oscillation suspecte 2 détectée dans la mesure du régime du rotor basse pression R(t). Plus la réponse dynamique du rotor basse pression Rd(t) ressemble à la réponse impulsionelle théorique caractéristique d'une réponse à un choc (ici, une ingestion d'un corps étranger), plus la valeur de l'indicateur d'ingestion TING sera élevée.
Après calcul de l'indicateur d'ingestion TING; on le compare à un seuil de détection S de valeur déterminée, une alarme d'ingestion étant émise lorsque l'indicateur d'ingestion TING excède ledit seuil détection S.
La valeur du de détection S est déterminée de manière à ne pas générer d'alarme pour des valeurs d'indicateur TING correspondant au fonctionnement normal du moteur et que l'on peut qualifier de bruit. Ce seuil de détection est donc obtenu en appliquant une marge au niveau moyen du « bruit » Sb. Cette marge est fonction des caractéristiques du signal « bruit » ainsi que du niveau de fiabilité de détection souhaitée. En référence à la figure 4, une marge de 70% sépare le seuil de détection du niveau moyen de bruit.
Cette méthode est très sélective car l'indicateur d'ingestion TING pour un signal de bruit (hors ingestion) est faible étant donné qu'en l'absence d'ingestion, la réponse impulsionelle du premier mode de torsion n'est pas présente dans le signal. Le signal de bruit ne ressemble pas à la réponse impulsionelle du premier mode de torsion.
Lorsqu'une ingestion est détectée, l'alarme générée peut être soit dirigée directement vers le pilote de l'aéronef, sur lequel est monté le moteur, pour être consultée en temps réel, soit stockée dans une mémoire pour être consultée ultérieurement, par exemple, en vue d'une inspection du moteur, soit transmise en temps réel aux services de maintenance de la compagnie aérienne pour permettre à celle-ci d'anticiper et d'organiser, lors de la prochaine escale, une inspection détaillée du moteur impacté et toutes les actions de maintenance nécessaires.
Il va de soi que différents seuils d'alarme peuvent être définis de manière à distinguer différentes sortes d'ingestion (ingestions plus ou moins énergétiques, ingestions plus ou moins sévères).
L'invention a été ici décrite pour un turbomoteur à double corps mais il va de soi que l'invention s'applique de manière similaire à un moteur avec un unique ou plus de deux rotors.

Claims

Revendications
1) Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz comprenant un rotor, méthode selon laquelle :
- on mesure le régime instantané du rotor (R(t));
- on filtre le signal de régime du rotor (R(t)) de manière à dissocier sa composante statique (Rs(t)) de sa composante dynamique (Rd(t));
- on compare la composante dynamique filtrée (Rd(t)) à une onde de résonance étalon (e(t)) du rotor afin d'obtenir un indicateur d'ingestion (TING), l'onde de résonance étalon (e(t)) correspondant à la réponse impulsionelle vibratoire d'un rotor;
- on compare l'indicateur d'ingestion obtenu (TING) à un seuil de détection (S);
- on émet un signal de détection d'une ingestion d'un corps étranger lorsque l'indicateur d'ingestion (TING) est supérieur au seuil de détection (S).
2) Méthode selon la revendication 1, dans laquelle l'onde de résonance étalon (e(t)) du rotor correspond à la réponse impulsionelle du premier mode de torsion du rotor.
3) Méthode selon la revendication 2, dans laquelle l'onde de résonance étalon (e(t)) est définie de manière théorique en fonction des caractéristiques de la réponse impulsionelle du premier mode de torsion du rotor.
4) Méthode selon la revendication 2, dans laquelle on mesure l'onde de résonance étalon (e(t)) directement sur le rotor du moteur sur lequel est mise en œuvre la méthode de détection. 5) Méthode selon l'une des revendications 1 à 4, dans laquelle on réalise un produit de convolution entre la composante dynamique filtrée (Rd(t)) et l'onde de résonance étalon (e(t)).
6) Méthode selon l'une des revendications 1 à 5, dans laquelle le rotor est un rotor basse pression d'un moteur à turbine à gaz, on compare la composante dynamique filtrée (Rd(t)) à une onde de résonance étalon (e(t)) du rotor basse pression afin d'obtenir un indicateur d'ingestion (TING), l'onde de résonance étalon (e(t)) correspondant à la réponse impulsionelle vibratoire d'un rotor basse pression.
PCT/FR2011/050205 2010-02-08 2011-02-02 Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz WO2011095737A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012019559A BR112012019559A2 (pt) 2010-02-08 2011-02-02 metodo para a deteccao automatica da ingestao de pelo menos um corpo estraho por meio de um motor de turbina a gas
JP2012551665A JP5698766B2 (ja) 2010-02-08 2011-02-02 ガスタービンエンジンによる少なくとも1つの異物の吸込みの自動検出方法
RU2012138447/06A RU2551252C2 (ru) 2010-02-08 2011-02-02 Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель
US13/577,455 US9366154B2 (en) 2010-02-08 2011-02-02 Method for the automated detection of the ingestion of at least one foreign body by a gas turbine engine
EP11707886.5A EP2534341B1 (fr) 2010-02-08 2011-02-02 Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz
CA2788901A CA2788901C (fr) 2010-02-08 2011-02-02 Methode de detection automatisee de l'ingestion d'au moins un corps etranger par un moteur a turbine a gaz
CN201180008788.5A CN103026006B (zh) 2010-02-08 2011-02-02 燃气涡轮发动机吸入至少一个异物的自动检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1050870 2010-02-08
FR1050870A FR2956159B1 (fr) 2010-02-08 2010-02-08 Methode de detection automatisee de l'ingestion d'au moins un corps etranger par un moteur a turbine a gaz

Publications (1)

Publication Number Publication Date
WO2011095737A1 true WO2011095737A1 (fr) 2011-08-11

Family

ID=42697390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050205 WO2011095737A1 (fr) 2010-02-08 2011-02-02 Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz

Country Status (9)

Country Link
US (1) US9366154B2 (fr)
EP (1) EP2534341B1 (fr)
JP (1) JP5698766B2 (fr)
CN (1) CN103026006B (fr)
BR (1) BR112012019559A2 (fr)
CA (1) CA2788901C (fr)
FR (1) FR2956159B1 (fr)
RU (1) RU2551252C2 (fr)
WO (1) WO2011095737A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485891A (en) * 2010-11-26 2012-05-30 Snecma Monitoring a Transient Event on an Impeller of an Aircraft Engine
EP2594912A1 (fr) * 2011-11-21 2013-05-22 Eurocopter Deutschland GmbH Système de détection pour la détection de dommages sur des composants rotatifs d'avion et procédé de fonctionnement d'un tel système de détection
GB2500317A (en) * 2012-03-13 2013-09-18 Snecma Detection of defects and impacts on an aircraft propeller wheel
GB2499716B (en) * 2012-01-30 2017-02-01 Snecma System For Detecting An Impact On An Aircraft Engine Impeller Wheel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228304B2 (en) 2016-01-18 2019-03-12 Pratt & Whitney Canada Corp. Shaft shear detection through shaft oscillation
RU2680770C1 (ru) * 2018-06-25 2019-02-26 Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Способ обнаружения попадания несжимаемых объектов в проточную часть турбокомпрессора и система для его реализации

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284392A2 (fr) * 1987-03-25 1988-09-28 Stewart Hughes Limited Appareil de détection de corps étrangers pénétrant dans des moteurs
WO1999020992A2 (fr) * 1997-10-17 1999-04-29 Test Devices, Inc. Detection des anomalies dans des composants rotatifs
EP1312766A2 (fr) 2001-11-07 2003-05-21 ROLLS-ROYCE plc Dispositif et méthode pour détecter une aube endommagée dans une turbomachine
FR2840358A1 (fr) 2002-05-28 2003-12-05 Snecma Moteurs Procede et systeme de detection d'endommagement de rotor d'un moteur d'aeronef

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1082690A1 (fr) * 1999-03-30 2001-03-14 Koninklijke Philips Electronics N.V. Determination de moments a valeur moyennee dans le temps
US6499350B1 (en) * 2000-04-04 2002-12-31 Swantech, L.L.C. Turbine engine foreign object damage detection system
US6668655B2 (en) * 2001-09-27 2003-12-30 Siemens Westinghouse Power Corporation Acoustic monitoring of foreign objects in combustion turbines during operation
EP1574674A1 (fr) * 2004-03-03 2005-09-14 Siemens Aktiengesellschaft Procédé et dispositif pour la détection d'impuretés sur des composants de turbine
JP2006138756A (ja) * 2004-11-12 2006-06-01 Fanuc Ltd 衝撃検知装置
DE102005020900B3 (de) * 2005-05-04 2006-11-02 Siemens Ag Verfahren und System zur Diagnose von mechanischen, elektromechanischen oder fluidischen Komponenten
US8818683B2 (en) * 2006-04-21 2014-08-26 General Electric Company Method and apparatus for operating a gas turbine engine
RU2348911C1 (ru) * 2007-06-21 2009-03-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ диагностики газотурбинных двигателей при попадании посторонних предметов на их вход
RU2367811C2 (ru) * 2007-07-30 2009-09-20 Алексей Александрович Комов Способ регулирования величины обратной тяги газотурбинных двигателей на пробеге четырехдвигательного самолета при использовании реверса тяги двух внутренних двигателей
JP2009278757A (ja) * 2008-05-14 2009-11-26 Toshiba Corp 回転電機又は回転機械のリプレイス情報収集方法及び収集システム
FR2937079B1 (fr) * 2008-10-10 2011-08-26 Snecma Procede et systeme de surveillance d'un turboreacteur
US7855469B2 (en) * 2009-10-02 2010-12-21 General Electric Company Condition monitoring system for wind turbine generator and method for operating wind turbine generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284392A2 (fr) * 1987-03-25 1988-09-28 Stewart Hughes Limited Appareil de détection de corps étrangers pénétrant dans des moteurs
WO1999020992A2 (fr) * 1997-10-17 1999-04-29 Test Devices, Inc. Detection des anomalies dans des composants rotatifs
EP1312766A2 (fr) 2001-11-07 2003-05-21 ROLLS-ROYCE plc Dispositif et méthode pour détecter une aube endommagée dans une turbomachine
FR2840358A1 (fr) 2002-05-28 2003-12-05 Snecma Moteurs Procede et systeme de detection d'endommagement de rotor d'un moteur d'aeronef

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485891A (en) * 2010-11-26 2012-05-30 Snecma Monitoring a Transient Event on an Impeller of an Aircraft Engine
GB2485891B (en) * 2010-11-26 2016-03-09 Snecma System for detecting an ephemeral event on a vane impeller of an aircraft engine
EP2594912A1 (fr) * 2011-11-21 2013-05-22 Eurocopter Deutschland GmbH Système de détection pour la détection de dommages sur des composants rotatifs d'avion et procédé de fonctionnement d'un tel système de détection
GB2499716B (en) * 2012-01-30 2017-02-01 Snecma System For Detecting An Impact On An Aircraft Engine Impeller Wheel
GB2500317A (en) * 2012-03-13 2013-09-18 Snecma Detection of defects and impacts on an aircraft propeller wheel
US8958946B2 (en) 2012-03-13 2015-02-17 Snecma System for detecting defects on an aircraft engine impeller wheel
GB2500317B (en) * 2012-03-13 2016-04-27 Snecma System for Detecting Defects on an Aircraft Engine Impeller Wheel

Also Published As

Publication number Publication date
FR2956159A1 (fr) 2011-08-12
RU2551252C2 (ru) 2015-05-20
JP5698766B2 (ja) 2015-04-08
FR2956159B1 (fr) 2012-02-10
EP2534341A1 (fr) 2012-12-19
RU2012138447A (ru) 2014-03-20
CA2788901A1 (fr) 2011-08-11
JP2013519031A (ja) 2013-05-23
CN103026006A (zh) 2013-04-03
EP2534341B1 (fr) 2013-11-13
CN103026006B (zh) 2015-04-01
US9366154B2 (en) 2016-06-14
US20120303330A1 (en) 2012-11-29
BR112012019559A2 (pt) 2018-03-27
CA2788901C (fr) 2017-01-03

Similar Documents

Publication Publication Date Title
EP2534341B1 (fr) Méthode de détection automatisée de l&#39;ingestion d&#39;au moins un corps étranger par un moteur à turbine à gaz
CA2623617C (fr) Procede de detection d&#39;un endommagement d&#39;un roulement de palier d&#39;un moteur
EP2496921B1 (fr) Procédé de détection d&#39;un endommagement d&#39;au moins un roulement de palier d&#39;un moteur
CA2738893C (fr) Procede et systeme de surveillance d&#39;un turboreacteur
CA2328398C (fr) Detection de l&#39;endommagement de pieces d&#39;un moteur
CA2749214C (fr) Procede et systeme de surveillance de phenomenes vibratoires survenant dans un moteur a turbine a gaz d&#39;aeronef en fonctionnement
EP2507598B1 (fr) Procédé et dispositif de surveillance de vibrations en torsion d&#39;un arbre rotatif d&#39;une turbomachine
CA2804089A1 (fr) Detection de survitesse d&#39;une turbine libre par mesure sur couplemetre
FR2986269A1 (fr) Systeme de detection d&#39;un impact sur une roue aubagee de moteur d&#39;aeronef
FR2934246A1 (fr) Aeronef comprenant au moins un moteur a rotors contrarotatifs
FR2978210A1 (fr) Procede d&#39;alimentation d&#39;un film fluide d&#39;amortissement d&#39;un palier de guidage d&#39;un arbre de turbomachine
EP2303695B1 (fr) Aeronef comprenant un moteur commande par synchrophasage
WO2016198794A1 (fr) Procédé et dispositif de détermination de la vibration d&#39;aubes de rotor
FR3030625B1 (fr) Procede et dispositif de determination de la vibration de pieces rotatives de turbomachine
EP3752811B1 (fr) Procede et systeme de detection d&#39;un endommagement d&#39;aubes mobiles d&#39;un aeronef
EP3303850B1 (fr) Procédé de fabrication d&#39;une soufflante de turbomachine ayant un niveau de bruit réduit a des fréquences multiples de rotation de ladite turbomachine
EP4058772A1 (fr) Procede de surveillance de la torsion d&#39;un arbre rotatif sur une turbomachine d&#39;un aeronef
EP3578929B1 (fr) Procédé et système de détection de la position angulaire des aubes d&#39;une roue à aubes d&#39;une turbomachine
FR3098587A1 (fr) Procédé et système de détection des circuits ouverts des accéléromètres par le bruit de phase
FR2618899A1 (fr) Procede d&#39;analyse de vibrations par un systeme de mesure avec test automatique de la chaine de mesure complete pour turbines a gaz, plus particulierement les turbines a gaz embarquees et dispositif pour la mise en oeuvre du procede
FR3119195A1 (fr) Mesure des déformations dynamiques d’une aube mobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008788.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11707886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2788901

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012551665

Country of ref document: JP

Ref document number: 13577455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011707886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012138447

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019559

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019559

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120803