WO2011095554A2 - Wirkstoffkombination enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung - Google Patents

Wirkstoffkombination enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung Download PDF

Info

Publication number
WO2011095554A2
WO2011095554A2 PCT/EP2011/051577 EP2011051577W WO2011095554A2 WO 2011095554 A2 WO2011095554 A2 WO 2011095554A2 EP 2011051577 W EP2011051577 W EP 2011051577W WO 2011095554 A2 WO2011095554 A2 WO 2011095554A2
Authority
WO
WIPO (PCT)
Prior art keywords
spp
azadirachtin
plants
active ingredient
seed
Prior art date
Application number
PCT/EP2011/051577
Other languages
English (en)
French (fr)
Other versions
WO2011095554A3 (de
Inventor
Michael Kilian
Margit Doth
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to ES11701689.9T priority Critical patent/ES2437759T3/es
Priority to EP11701689.9A priority patent/EP2531030B1/de
Priority to UAA201210471A priority patent/UA107008C2/uk
Priority to AU2011212451A priority patent/AU2011212451B2/en
Priority to RU2012137685/13A priority patent/RU2553248C2/ru
Priority to CA2788995A priority patent/CA2788995C/en
Publication of WO2011095554A2 publication Critical patent/WO2011095554A2/de
Publication of WO2011095554A3 publication Critical patent/WO2011095554A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings

Definitions

  • Active substance combination comprising azadirachtin and a substituted enaminocarbonyl compound
  • the present invention relates to novel drug combinations which contain at least one particular substituted enaminocarbonyl compound and azadirachtin and are very well suited for controlling animal pests such as insects and unwanted acarids.
  • the invention also relates to methods for controlling animal pests on plants and seeds, the use of the active compound combinations according to the invention for the treatment of seed, a method for protecting seed and, not least, the seed treated with the active compound combinations according to the invention.
  • WO 2009/043443 describes drug combinations containing certain substituted enaminocarbonyl compounds and certain neonicotinoid insecticides, such as clothianidin or thiamethoxam.
  • Azadirachtin belongs to the limonoids and is a secondary metabolite
  • Azadirachtin is a highly oxidized tetranortriterpenoid with enol ether, acetal, semacteal and epoxide functions
  • Azadirachtin shows above all ecdysone-like effects, especially in the presence of azadirachtin. ie it inhibits the larval development of various insects (Z.
  • the object of the present invention is therefore to provide further insecticides which show an improved action or a broadened activity spectrum compared with known active substance combinations and avoid the abovementioned disadvantages.
  • the inventors have now found that s has a combination of certain substituted enaminocarbonyl compounds with the existing in the extract of the seeds of the Neem tree active ingredient azadirachtin in addition to a synergistic increase in activity, a broadened spectrum of activity. Likewise, it has been found that the course of action of the azadirachtin is accelerated by the combination of active substances according to the invention. Furthermore, an improvement in the duration of action can be observed.
  • the invention therefore relates to an active ingredient combination comprising at least one substituted enaminocarbonyl compound of the formula (1-1), (1-2) or (1-3) and azadirachtin. Azadirachtin can thereby be contained in the form of the pure active substance or as a formulation containing Azadirachtin or in the form of the extract of the seeds of the Neem tree as well as their formulations.
  • the substituted enaminocarbonyl compounds of the present invention 4- ⁇ [(6-chloropyrid-3-yl) methyl] (2,2-difluoroethyl) amino ⁇ furan-2 (5H) -one (compound (1-1)) whose insecticidal activity is first-in WO 2 0 0 7/1 1 5 6 4 4; 4- ⁇ [(6-chloropyrid-3-yl) methyl] (cyclopropyl) amino ⁇ furan-2 (5H) -one (compound (1-2)) and 4- ⁇ [(6-chloropyrid-3-yl) methyl] (methyl) amino ⁇ furan-2 (5H) -one (compound (1-3)) whose insecticidal activity is described for the first time in EP-A-0 539 588.
  • the compounds can be prepared by the processes described in WO2007 / 1 15644 and EP-A-0539588 and have the following structures: l
  • the active compound combinations according to the invention can show even further surprising advantages, including increased safety in use; a reduced phytotoxicity and thus a better Plant tolerance; the control of pests at their various stages of development; better behavior during the preparation of the insecticidal compounds, for example during milling or mixing, during their storage or during their application; a very advantageous biocidal spectrum even at low concentrations with associated good compatibility by warm-blooded animals, fish and plants; and the achievement of an additional effect, for example an algicidal, anthelmintic, avicidal, bactericidal, fungicidal, molluscicidal, nematicidal, plant-activating, rodenticidal or virucidal action.
  • the active compound combinations according to the invention are particularly suitable for protecting seeds and / or sprouts and leaves of a plant grown from the seeds against damage by pests.
  • the active compound combinations according to the invention thus show a negligible phytotoxicity when applied to the plant propagation material, a compatibility with soil conditions (eg as regards the binding of the compound to the soil), a systemic effect in the plant, no negative impact on germination and efficacy during the corresponding pest life cycle.
  • the invention relates to an active ingredient combination consisting essentially of 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (2,2-difluoroethyl) amino ⁇ furan-2 (5H) -one (compound ( 1-1)) and azadirachtin, preferably in an azadirachtin accelerating ratio.
  • the invention relates to a combination of active ingredients consisting essentially of 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (cyclopropyl) amino ⁇ furan-2 (5H) -one (compound (1-2 )) and azadirachtin, preferably in an azadirachtin accelerating ratio.
  • the invention relates to an active ingredient combination consisting essentially of 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (methyl) amino ⁇ furan-2 (5H) -one (compound (1) 3)) and azadirachtin, preferably in an azadirachtin accelerating ratio.
  • the active ingredient combination according to the invention preferably contains one of the compounds of the formula (1-1), (1-2) or (1-3) and azadirachtin in a mixing ratio in the range from about 125: 1 to about 1: 125, particularly preferably in the range from about 25: 1 to about 1:25, most preferably in the range of about 5: 1 to about 1: 5.
  • Compounds of formula (II), (1-2) or (1-3) having at least one basic center are capable of forming, for example, acid addition salts, eg with strong inorganic acids such as mineral acids, eg perchloric acid, sulfuric acid, nitric acid, nitrous Acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids such as unsubstituted or substituted, eg halogen-substituted, Ci-C pAlkancarbonklaren, eg acetic acid, saturated or unsaturated dicarboxylic acids, eg oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid and phthalic acid, hydroxycarboxylic acids, eg ascorbic acid , Lactic acid, malic acid, tartaric acid and citric acid, or benzoic acid, or with organic sulfonic acids such as unsubstituted or substituted, for example halogen-substi
  • the compounds of the formula (II), (1-2) or (1-3) having at least one acidic group are capable of forming, for example, salts with bases, for example metal salts such as alkali metal or alkaline earth metal salts, for example sodium, Potassium or magnesium salts, or salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a lower mono-, di- or trialkylamine, for example ethyl, diethyl, triethyl or dimethylpropylamine, or a lower mono-, di-, or trihydroxyalkylamine, eg mono-, di- or triethanolamine.
  • bases for example metal salts such as alkali metal or alkaline earth metal salts, for example sodium, Potassium or magnesium salts, or salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a lower mono-, di- or trialkylamine, for example ethyl, die
  • Agrochemically advantageous salts are preferred in the context of the invention.
  • any reference to the free compounds of formula (II), ( 1-2) or (1-3) or their salts are understood to include the corresponding salts or the free compounds of the formula (II), (1-2) or (1-3), if this appropriate and appropriate.
  • This also applies correspondingly to possible tautomers of the compounds of the formula (II), (1-2) or (1-3) and to their salts.
  • Extracts from seeds of the neem tree in the present case are to be understood as meaning all customary products from the seeds of the neem tree by extraction or pressing of isolatable products which contain substantial amounts of azadirachtin.
  • the extraction process also produces byproducts that also contain azadirachtin, such as neem oil or the solid cake residue, which essentially contains the solid components of neem seeds and is often used as a fertilizer.
  • the excretion product contains the various azadirachtin isomers A to K, but mainly azadirachtin A.
  • azadirachtin-containing products are to be understood as meaning not only the extraction product itself but also the by-products.
  • Both the extract products and the by-products can be present in formulations which can likewise be used according to the invention.
  • the proportion of azadirachtin A (molecular weight 720.7 g / mol) serves to characterize the products on the market.
  • the proportion of isomers can be determined by HPLC. Prefers Products are used which have a proportion of 20% to 50%, preferably 25% to 40%, particularly preferably 30% to 40% Azadirachtin A. Particularly preferred NeemAzal ® technical Fa. Trifolio-M GmbH.
  • active ingredient combination stands for various combinations of compounds of the formula (1-1), (1-2) or (1-3) and azadirachtin, for example in the form of a single ready-mix (“ready-mix”).
  • ready-mix a combined spray mixture composed of separate formulations of the individual active ingredients, eg. a tank mix or in a combined use of the individual active substances, if they are applied sequentially, for example successively within a reasonably short period of time, eg a few hours or days
  • the order of application of the compounds is the Formula (1-1), (1-2) or (1-3) and azadirachtin are not critical to the practice of the present invention.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the application rate of the active compound combinations according to the invention is in the treatment of parts of plants, e.g.
  • Leaves and pests from 0.1 to 10,000 g / ha preferably from 10 to 1,000 g / ha, more preferably from 50 to 300g / ha (when applied by pouring or drop, the application rate can even be reduced, especially if inert substrates such as rockwool or perlite are used); in the seed treatment of 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, most preferably from 2.5 to 12.5 g per 100 kg of seed; in the soil treatment from 0.1 to 10,000 g / ha, preferably from 1 to 5,000 g / ha.
  • the active compound combinations according to the invention can be used to protect plants within a certain period after treatment against the infestation by said animal pests.
  • the period within which protection is brought about generally extends from 1 to 42 days, preferably from 1 to 28 days, particularly preferably from 1 to 14 days after the treatment of the plants and / or pests with the active substances or up to 200 days after a seed treatment.
  • the active compounds according to the invention are suitable for plant tolerance, favorable warm-blood toxicity and good environmental compatibility for the protection of plants and plant organs, for increasing crop yields, improving the quality of the crop and for controlling animal pests, in particular insects, arachnids, helminths, nematodes and molluscs which are found in agriculture, horticulture, livestock, forests, gardens and recreational facilities, in the protection of materials and materials and in the hygiene sector. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the above mentioned pests include:
  • Arachnids e.g. Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssius , Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Halotydeus destructor, Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodect
  • Symphyla e.g. Scutigerella spp.
  • Chilopoda e.g. Geophilus spp.
  • Scutigera spp. From the order of Collembola e.g. Onychiurus armatus.
  • diplopoda e.g. Blaniulus guttulatus.
  • Zygentoma e.g. Lepisma saccharina, Thermobia domestica.
  • Orthoptera e.g. Acheta domesticus, Blatta orientalis, Blattella germanica, Dichroplus spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta spp., Pulex irritans, Schistocerca gregaria, Supella longipalpa.
  • Anoplura e.g. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Ptirus pubis, Trichodectes spp.
  • Curculio spp. Curculio spp., Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, Hellula and alis, Heteronychus arator, Heteronyx spp Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypothenemus spp., Lachnosterna consanguinea, Lema spp., Leptinotarsa decemlineata, Leucoptera spp., Lissorhoptrus oryzophilus, Lixus spp., Luperodes spp., Lyctus spp., Megascelis s
  • Melanotus spp. Meligethes aeneus, Melolontha spp., Migdolus spp., Monochamus spp., Naupactus xanthographus, Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorrhynchus spp., Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllotreta spp ., Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., Sphenophorus spp., Stegobium paniceum, Starchus
  • Hymenoptera e.g. Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Solenopsis invicta, Tapinoma spp., Vespa spp.
  • Lepidoptera From the order of Lepidoptera, for example, Acronicta major, Adoxophyes spp., Aedia leucomelas, Agrotis spp., Alabama spp., Amyelois transitella, Anarsia spp., Anticarsia spp., Argyroploce spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius , Busseola spp., Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheimatobia brumata, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocerus spp., Cnephasia spp., Conopomorph
  • Copitarsia spp. Cydia spp., Dalaca noctuides, Diaphania spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eidana saccharina, Ephestia spp., Epinotia spp., Epiphyas postvittana, Etiella spp., Eulia spp.
  • Eupoecilia ambiguella Euproctis spp., Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., Hedylepta spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homoeosoma spp., Homona spp.
  • Lucilla spp. Lutzomia spp., Mansonia spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia spp., Phlebotomus spp., Phorbia spp., Phormia spp., Prodiplosis spp., Psila rosae, Rhagoletis spp., Sarcophaga spp., Simulium spp, Stomoxys spp., Tabanus spp., Tannia spp., Tetanops spp., Tipula spp.
  • Thysanoptera e.g. Anaphothrips obscurus, Baliothrips biformis, Drepanothris reuteri, Enneothrips hevens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamoni, Thrips spp.
  • Anaphothrips obscurus e.g. Anaphothrips obscurus, Baliothrips biformis, Drepanothris reuteri, Enneothrips hevens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamoni, Thrips spp.
  • siphonaptera e.g. Ceratophyllus spp., Ctenocephalides spp., Tunga penetrans, Xenopsylla cheopis.
  • Plathelminthen and nematodes as animal parasites eg from the class of the Helminthen eg Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp.
  • Helminthen eg Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp.
  • Cooperia spp. Dicrocoelium spp, Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp , Oesophagostomum spp., Opisthorchis spp., Onchocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomes spp, Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiral
  • nematodes as plant pests, eg, Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Trichodorus spp., Tylenchulus semipenetrans, Xiphinema spp .. From the subphylum of protozoa eg Eimeria.
  • the active compound combinations according to the invention may optionally also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including anti-viral agents) or as anti-MLO agents ( Mycoplasma-like-organism) and RLO (Rickettsia-like-organism).
  • the present invention furthermore relates to formulations and use forms prepared therefrom (crop protection agents or pesticides) comprising the combination of active substances according to the invention.
  • They are preferably insecticidal formulations or use forms which contain auxiliaries, such as extenders, solvents, carriers and / or further auxiliaries, such as, for example, surface-active substances.
  • the extracts of seeds of the neem tree are used in commercially available preparation or in the form of the isolated substance.
  • Typical formulations are, for example, solutions, emulsions, wettable powders, water- and oil-based suspensions, water and oil-based suspension concentrates, powders, dusts, pastes, soluble powders, foams, granules, dispersible granules, soluble granules, scattering granules, suspension-emulsion concentrates, active substance impregnated natural products, active ingredient-impregnated synthetic substances, fertilizers and microencapsulation in polymeric substances.
  • These formulations are prepared in a known manner, for example by mixing the active compounds with excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surface-active substances.
  • Adjuvants which can be used are those which are suitable for the formulation of the active substance or for the use forms prepared from these formulations (such as, for example, usable plant protection agents such as spray mixtures or seed dressing) Properties, such as certain physical, technical and / or biological properties.
  • Typical auxiliaries are: extenders, solvents and carriers.
  • polar and non-polar organic chemical liquids e.g. from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted, etherified and / or esterified), ketones (such as acetone, cyclohexanone), Esters (including fats and oils) and (poly) ethers, simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethylsulfoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or esterified
  • ketones such as
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Suitable solvents are, for example, aromatic hydrocarbons, e.g. Xylene, toluene or alkylnaphthalenes, chlorinated aromatic or aliphatic hydrocarbons, e.g. Chlorobenzene, chloroethylene, or methylene chloride, aliphatic hydrocarbons, such as. Cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, e.g. Methanol, ethanol, isopropanol, butanol or glycol, and their ethers and esters, ketones such as e.g. Acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strong polar solvents, such as dimethyl sulfoxide, and water.
  • aromatic hydrocarbons e.g. Xylene, toluene or alkylnaphthalenes
  • chlorinated aromatic or aliphatic hydrocarbons e.
  • Suitable carriers are in particular: for example, ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and / or solid Fertilizer. Mixtures of such carriers can also be used.
  • Suitable carriers for granules are: for example broken and fractionated natural rocks such as bentonite, calcite, marble, pumice, sepiolite, dolomite, kaolinite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stems , Also liquefied gaseous extenders or solvents can be used. Particularly suitable are those extenders or carriers which are gaseous at normal temperature and under atmospheric pressure, for example aerosol propellants, such as halogenated hydrocarbons, as well as butane, propane, nitrogen, carbon dioxide and compressed air.
  • aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen, carbon dioxide and compressed air.
  • surface-active agents are emulsifying and / or foam-forming agents, dispersants or wetting agents having ionic or nonionic properties or mixtures of these surface-active substances.
  • examples thereof are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulpho-diesters, taurine derivatives (preferably alkyl taurates ), Phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylarylpoly glycol ethers, alkylsulphonates, alkylsulphates, arylsulphon
  • dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present. It may also contain foam-forming agents or defoamers.
  • auxiliaries also adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-containing polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins, and synthetic phospholipids.
  • Other auxiliaries may be mineral and vegetable oils.
  • auxiliaries may be present in the formulations and in the use forms derived therefrom.
  • additives are, for example Fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, retention promoters, stabilizers, sequestering agents, complexing agents.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the formulations preferably contain between 0.00000001 and 98 wt .-% of active ingredient or, more preferably between 0.01 and 95 wt .-% active ingredient, more preferably between 0.5 and 90 wt .-% active ingredient, based on the weight of Formulation.
  • active ingredient also includes active ingredient combinations.
  • the active ingredient combination according to the invention can be used in its commercial formulations and in the formulations prepared from these formulations in admixture with other active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers, semiochemicals or even with agents to improve plant properties.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers, semiochemicals or even with agents to improve plant properties.
  • the active compound combination according to the invention can furthermore be present in mixtures with synergists when used as insecticides in their formulations and in the forms of use prepared from these formulations.
  • synergists are compounds which increase the effect of the active ingredients without the added synergist itself having to be active.
  • the active ingredient combination according to the invention can also be present in its commercial formulations and in the forms of application prepared from these formulations in mixtures with inhibitors which reduce the active ingredient after application in the environment of the plant, on the surface of parts of plants or in plants Reduce tissue.
  • the efficacy of the application forms (pesticides) prepared from the preparations can vary widely.
  • the active ingredient concentration of the application forms can usually be between 0.00000001 and 95% by weight of active compound, preferably between 0.00001 and 1% by weight, based on the weight of the application form.
  • the application is done in a custom forms adapted to the application.
  • plants and parts of plants with and without infestation can be treated.
  • a treatment of the plant surrounding the habitat preferably the soil.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • crops may be plants which may be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering techniques or combinations of these methods, including transgenic plants and including plant varieties that are protectable or unprotectable by plant variety rights.
  • Plant parts are to be understood as meaning all aboveground and underground parts and organs of the plants, such as shoot, leaf, flower and root, by way of example leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example fruits, seeds, cuttings, tubers, rhizomes, offshoots, seeds, bulbs, sinkers and shoots.
  • the treatment according to the invention of the plants and plant parts with the active compound combinations takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, pouring, mixing, evaporating, nebulizing, spreading, brushing, injecting and propagating material, in particular in the case of seeds, further by single or multi-layer coating.
  • Plants which can be treated according to the invention are in particular selected from the following.
  • vegetables such as fruit vegetables and inflorescences (eg peppers, hot peppers, tomatoes, aubergines, cucumbers, squashes, courgettes, field beans, runner beans, bush beans, peas, artichokes), leafy vegetables (eg lettuce, chicory, endives, kraken, ruffle, Corn salad, iceberg lettuce, leeks, spinach, chard), tubers, rootlets and stalk vegetables (eg celery, beetroot, carrots, radishes, horseradish, salsify, asparagus, turnips, palm sprouts, bamboo shoots, as well as onions, for example onions, leeks, fennel , Garlic), cabbage (eg cauliflower, broccoli, kohlrabi, red cabbage, cabbage, kale, savoy cabbage, Brussels sprouts, Chinese cabbage), ornamental plants such as cut flowers (eg roses, carnations, gerberas, lilies, daisies, chrysanthemums, tulips, d
  • Perennial crops such as citrus (eg orange, grapefruit, mandarin, lemon, lime, bitter orange, kumquat, satsumas), pome fruit (eg apples, pears and quince), stone fruits (eg peaches, nectarines, cherries, plums, plums, apricots), Wine, hops, olives, tea and tropical crops such as mangoes, papayas, figs, pineapples, dates, bananas, durians, kakis, coconuts, cocoa, coffee, avocados, lychees, passion fruits, guavas, almonds and nuts hazelnuts, walnuts, pistachios, Cashews, Brazil nuts, pecans, butternuts, chestnuts, hickory nuts, macadamia nuts, peanuts, berries (eg currants, gooseberries, raspberries, blackberries, blueberries, strawberries, cranberries, kiwis, cranberries), ornamental plants such as cut flowers (eg rose
  • Ornamental plants such as e.g. Roses, geraniums, fuchsias, margarites, bedding plants, potted plants, medicinal and spice plants such as e.g. Sage, parsley, basil, coneflower, laburnum, pharmaceutical willow, bittersweet nightshade and perennials, e.g. Phlox, monkshood, anemones, vegetables, including fruit, tuber, root and stem vegetables, leafy and stemmed vegetables, cabbage, legumes and perennial crops such as citrus, pome fruit such as apple or pear, stone fruit such as cherry, vines, hops, olives, tea and tropical cultures, artichoke, tobacco, peppermint, Kalanchoe and scorpionfish.
  • medicinal and spice plants such as e.g. Sage, parsley, basil, coneflower, laburnum, pharmaceutical willow, bittersweet nightshade and perennials, e.g. Phlox, monkshood, anemones, vegetables, including fruit, tuber, root and stem vegetables, leafy and
  • the present invention therefore also relates, in particular, to a method for protecting seed and germinating plants from attack by pests by treating the seed with a combination of active substances according to the invention.
  • the method according to the invention for protecting seed and germinating plants from infestation by pests comprises a method in which the seed is at the same time treated with an active ingredient of the formula (1-1), (1-2) or (I-3) and azadirachtin is treated. It also includes a method in which the seed is treated at different times with an active ingredient of the formula (1-1), (1-2) or (1-3) and azadirachtin.
  • the invention also relates to the use of the active ingredient combinations according to the invention for the treatment of seed for the protection of the seed and the resulting plant from pests.
  • the invention relates to seed which has been treated for protection against pests with a combination of active substances according to the invention.
  • the invention also relates to seed treated at the same time with an active ingredient of formula (1-1), (1-2) or (1-3) and azadirachtin.
  • the invention further relates to seed which has been treated at different times with an active ingredient of the formula (1-1), (1-2) or (1-3) and azadirachtin.
  • the individual active substances of the agent according to the invention can be present in different layers on the seed.
  • the layers containing an active ingredient of the formula (1-1), (1-2) or (1-3) and azadirachtin may optionally be separated by an intermediate layer.
  • the invention also relates to seeds in which an active ingredient of the formula (1-1), (1-2) or (I-3) and azadirachtin are applied as part of a coating or as a further layer or further layers in addition to a coating ,
  • One of the advantages of the present invention is that because of the particular systemic properties of some of the active ingredient combinations according to the invention, the treatment of the seed with these active ingredient combinations protects not only the seed itself, but also the resulting plants after emergence from pests. In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
  • a further advantage consists in the synergistic increase in the insecticidal activity of the active compound combinations according to the invention over the insecticidal single active substance, which goes beyond the expected effectiveness of the two individually applied active substances. Also advantageous is the synergistic increase in the fungicidal activity of the active compound combinations according to the invention compared with the fungicidal single active substance, which goes beyond the expected effectiveness of the individually applied active ingredient. This allows optimization of the amount of active ingredients used.
  • the active compound combinations according to the invention can be used in particular also in transgenic seed, wherein the plants resulting from this seed are capable of expressing a protein directed against pests.
  • certain pests can already be detected by the expression of e.g. Insecticidal protein are controlled, and in addition by the active compound combinations according to the invention from damage.
  • the active compound combinations according to the invention are suitable for the protection of seed of any plant variety as already mentioned above, which is used in agriculture, in the greenhouse, in forests or in horticulture.
  • these are corn, peanut, canola, rapeseed, poppy, soybean, cotton, turnip (eg sugarbeet and fodder beet), rice, millet, wheat, barley, oats, rye, sunflower, tobacco, potatoes or vegetables ( eg tomatoes, cabbage).
  • the active compound combinations according to the invention are likewise suitable for the treatment of the seed of fruit plants and vegetables as already mentioned above. Of particular importance is the treatment of the seeds of maize, soya, cotton, wheat and canola or rapeseed.
  • transgenic seed with a combination of active substances according to the invention is of particular importance.
  • These are the seeds of plants, which usually contain at least one heterologous gene which controls the expression of a polypeptide, in particular insecticidal properties.
  • the heterologous genes in transgenic seed can come from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly useful for the treatment of transgenic seed containing at least one heterologous gene derived from Bacillus sp. and whose gene product shows activity against corn borer and / or corn rootworm.
  • the active ingredient combination according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a state where it is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • the amount of the active ingredient combination and / or other additives applied to the seed is chosen so that germination of the seed is not impaired or the resulting plant is not damaged. This is especially important for active ingredients, which can show phytotoxic effects in certain application rates.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 AI, WO 2002/080675 AI, WO 2002/028186 A2.
  • the active compounds which can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned are the dyes known under the names Rhodamine B, CI Pigment Red 1 12 and CI Solvent Red 1.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all customary for the formulation of agrochemical active compounds Wetting demanding substances in question.
  • Preferably usable are alkylnaphthalene sulfonates such as diisopropyl or diisobutylnaphthalene sulfonates.
  • Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds.
  • Preferably usable are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Particularly suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • all substances which can be used for such purposes in agrochemical compositions can be present in the seed dressing formulations which can be used according to the invention. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly dispersed silicic acid.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • polyvinylpyrrolidone polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol 2, Springer Verlag, 1970, pages 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds, including of Seed transgenic plants, are used. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • all mixing devices customarily usable for the dressing can be considered. Specifically, in the pickling procedure, the seed is placed in a mixer which adds either desired amount of seed dressing formulations either as such or after prior dilution with water and mixes until evenly distributed the formulation on the seed.
  • a drying process follows.
  • all plants and their parts can be treated.
  • wild-type or plant species obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and plant cultivars and their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods such as antisense or cosuppression technology, RNA interference RNAi technology, optionally in combination with conventional methods (Genetically Modified Organisms) and their parts are treated .
  • genetic engineering methods such as antisense or cosuppression technology, RNA interference RNAi technology, optionally in combination with conventional methods (Genetically Modified Organisms) and their parts are treated .
  • RNA interference RNAi technology optionally in combination with conventional methods (Genetically Modified Organisms) and their parts
  • Plant varieties are understood as meaning plants with new traits produced by conventional breeding, mutagenesis or recombinant DNA techniques. These can be varieties, biotypes and genotypes.
  • the treatment according to the invention may also give rise to superadditive ("synergistic") effects.
  • superadditive for example, reduced application rates and / or enhancements of the spectrum of action and / or enhancement of the effect of the substances and agents that can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content are increased Flowering performance, easier harvest, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvest products possible, which go beyond the expected effects actually.
  • the preferred plants or plant varieties to be treated according to the invention to be treated include all plants which, as a result of the genetic engineering modification, obtained genetic material which gives these plants particularly advantageous valuable properties ("traits").
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms, increased flowering, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value the harvested products, higher shelf life and / or workability of the harvested products.
  • Further and particularly emphasized examples of such properties are an increased defense of the plants against animal and microbial pests, as against insects, mites, phytopathogenic fungi, bacteria and / or viruses as well as an increased tolerance of the plants against certain herbicidal active substances.
  • transgenic plants are the important crops such as cereals (wheat, rice), corn, soybeans, potatoes, sugar beets, tomatoes, peas and other vegetables, cotton, tobacco, oilseed rape and fruit plants (with the fruits apples, pears, citrus fruits and Grapes), with special emphasis on maize, soya, potato, cotton, tobacco and oilseed rape.
  • Traits which are particularly emphasized are the increased defense of the plants against insects, arachnids, nematodes and snails by toxins produced in the plants, in particular those produced by the genetic material from Bacillus thuringiensis (eg by the genes CrylA (a) , CrylA (b), CrylA (c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and combinations thereof) in the plants (hereinafter "Bt plants”). Traits also highlight the increased resistance of plants to fungi, bacteria and viruses by systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins.
  • SAR systemic acquired resistance
  • Traits that are also particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT" gene).
  • the genes which confer the desired properties (“traits") can also occur in combinations with one another in the transgenic plants.
  • “Bt plants” are maize varieties, cotton varieties, soybean varieties and potato varieties which are sold under the trade names YIELD GARD® (eg corn, cotton, soya), KnockOut® (eg maize), StarLink® (eg maize), Bollgard® ( Cotton), Nucotn® (cotton) and NewLeaf® (potato).
  • herbicide-tolerant plants are maize varieties, cotton varieties and soybean varieties, which are sold under the trade names Roundup Ready® (tolerance to glyphosate eg corn, cotton, soy), Liberty Link® (tolerance to phosphinotricin, eg rapeseed), IMI® (tolerance against imidazolinone) and STS® (tolerance to sulfonylureas eg corn) to be expelled.
  • Roundup Ready® tolerance to glyphosate eg corn, cotton, soy
  • Liberty Link® tolerance to phosphinotricin, eg rapeseed
  • IMI® tolerance against imidazolinone
  • STS® tolerance to sulfonylureas eg corn
  • insects living in any turfgrasses.
  • insects to be controlled include: lepidopterans such as grass weevils (Crambus sperryellus or bonifatellus) or e.g.
  • Blaugraeser blue grasses
  • Bougraeser blue grasses
  • Bougraeser blue grasses
  • Fescue Fescues, Festucu spp.
  • red fescue Festuca rubra L. spp. Rubra
  • creeping fescue Festuca rubra L.
  • chewings fescue Festuca rubra commutata Gaud.
  • sheep fescue (Festuca ovina L.)
  • hard fescue (Festuca longifolia Thuill.)
  • hair fescue (Festucu capillata Lam.)
  • tall fescue (Festuca arundinacea Schreb.) and” meadow fescue "(Festuca elanor L.);
  • Lolium ryegrasses, Lolium spp.
  • Examples of other "cool season turfgrasses” are “beachgrass” ⁇ Ammophila breviligulata Fern.), “Smooth bromegrass” (Bromus inermis leyss.), Reeds ("cattails") such as “Timothy” ⁇ Phleum pratense L.), “sand cattail “ ⁇ Phleum subulatum L.),” orchardgrass “ ⁇ Dactylis glomerata L.),” weeping alkaligrass “ ⁇ Puccinellia distans (L.) Pari.) And” crested dog's-tail “(Cynosurus cristatus L.).
  • Examples of “warm season turfgrasses” are “Bermudagrass” (Cynodon spp., LC Rieh), “zoysiagrass” (Zoysia spp. Willd.), “St. Augustine grass” (Stenotaphrum secundatum Walt Kuntze), “centipedegrass” (Eremochloa ophiuroides Munrohack.), “Carpetgrass” ⁇ Axonopus affinis chase), “Bahia grass” (Paspalum notatum flügge), “Kikuyugrass” (Pennisetum clandestinum detergent, ex Chiov.), “Buffalo grass” (Buchloe daetyloids (Nutt.) Engelm.) , “Blue gramma” (Bouteloua gracilis (HBK) lag.
  • Application is in aerosols, non-pressurized sprays, e.g. Pump and atomizer sprays, fog machines, foggers, foams, gels, evaporator products with evaporator wafers of cellulose eo the plastic, liquid evaporators, gel and membrane evaporators, propeller driven evaporators, energyless or passive evaporation systems, moth papers, moth sacs and moth gels, as granules or dusts , in straw bait or bait stations.
  • Pump and atomizer sprays e.g. Pump and atomizer sprays, fog machines, foggers, foams, gels, evaporator products with evaporator wafers of cellulose eo the plastic, liquid evaporators, gel and membrane evaporators, propeller driven evaporators, energyless or passive evaporation systems, moth papers, moth sacs and moth gels, as granules or dusts , in straw bait or bait stations.
  • X means the degree of killing, expressed in% of the untreated control, when using the active substance A at a rate of m g / ha or in a concentration of m ppm,
  • Y means the degree of killing, expressed in% of the untreated control, when using the active ingredient B in an application rate of n g / ha or in a concentration of n ppm
  • E is the killing degree, expressed in% of the untreated control, when using the active compounds A and B in application rates of m and n g / ha or in a concentration of m and n ppm, then is
  • the combination is over-additive in its killing, ie there is a synergistic effect.
  • the actually observed kill rate must be greater than the expected kill rate (E) value calculated from the above formula.
  • Example 1 describes the effect of the combination according to the invention against the caterpillars of the owlet butterfly ⁇ Spodoptera exigua) on carnations (Dianthus caryophyllus).
  • Azadirachtin was used as NeemAzal ® from Trifolio GmbH. The test was carried out according to EPPO guidelines PP 1/152 (2), PP 1/181 (3), PP 1/135 (3) and PP 1/210 (1) with 4 replications of 10 plants each. At the beginning of the infection, the plants were treated as follows:
  • Azadirachtin 30 g active ingredient / ha 4.
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000L / ha. 3 applications were performed every 10 to 14 days.
  • the feeding damage of the caterpillars on the carnation leaves was rated at weekly intervals. The results are summarized in Table 1
  • Table 1 Effectiveness of insecticidal treatment against Spodoptera exigua.
  • Beetle larvae are significant pests in the lawn. On the one hand, they eat the roots of the grasses and damage them directly, on the other hand, they are a popular food for birds that destroy the grass in search of Engerlingen. Infested lawns are usually watered with insecticidal agents to treat grubs. This type of treatment replicates Example 2 in the laboratory.
  • Emulsifier 2 parts by weight of alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the mixture is diluted
  • Cabbage leaves ⁇ Brassica oleraced are treated by spraying with the preparation of active compound in the desired concentration and are populated with larvae of the horseradish leaf beetle ⁇ Phaedon cochleariae) while the leaves are still moist.
  • the kill is determined in%. 100% means that all beetle larvae have been killed; 0% means that no beetle larvae have been killed.
  • the determined kill values are calculated according to the Colby formula.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • the preparation of active compound is mixed with soil.
  • Corn rootworm ⁇ Diabrotica balteata placed in the treated soil.
  • the efficiency is calculated from the number of accrued maize plants.
  • Example 5 describes the effect of the combination according to the invention against whitefly (Trialeurodes vaporariorum) on tomatoes (Lycopersicon esculentum).
  • the experiment was carried out under GEP in accordance with EPPO guideline PP 1/36 (2) with 3 repetitions of 4 plants each. At the beginning of the infection, the plants were treated as follows:
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000 L / ha.
  • Two applications were performed every 14 days.
  • the number of adult flies and the number of larvae were scored on days 2 to 21 after the first application.
  • the results are summarized in Table 5. Shown is the effect of the products, which is shown in a reduction in the number of insects or larvae compared to the untreated control. As a positive control imidacloprid was included.
  • This example describes another experiment with the formulation according to the invention against whitefly (Trialeurodes vaporariorum) on tomatoes (Lycopersicon esculentum).
  • the experiment was carried out under GEP in accordance with EPPO Guideline PP 1/36 (2) with 4 replications of 5 plants each. At the beginning of the infection, the plants were treated as follows:
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000 L / ha.
  • Two applications were performed every 10 days.
  • the number of adult flies and the number of larvae were scored on days 2 to 32 after the first application.
  • the results are summarized in Table 6. Shown is the effect of the products, which is shown in a reduction in the number of insects or larvae compared to the untreated control. As a positive control imidacloprid was included.
  • Example 7 describes the effect of the combination according to the invention against the common spider mite (Tetranychus urticae) on roses.
  • the experiment was carried out in the greenhouse under GEP in accordance with EPPO guideline PP 1/168 (2) with 4 repetitions of 4 plants each. At the beginning of the infection, the plants were treated as follows:
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000 L / ha.
  • Two applications were performed every 14 days.
  • the number of spider mites was scored on days 2 to 32 after the first application.
  • Example 8 describes the effect of the combination according to the invention against the caterpillars of the moth Spodoptera frugiperda on maize (Zea mays).
  • the experiment was carried out in the greenhouse under GEP with 2 replications of 8 plants each. After a uniform infection, the plants were treated as follows:
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000 L / ha.
  • the feeding damage was graded on days 7 to 42 after the first application made by the caterpillars on the maize.
  • Table 8 Shown is the effect of the products, which is shown in a reduction of the feeding damage compared to the untreated control.
  • Table 8 Effectiveness of insecticidal treatment on moth caterpillars on maize
  • Example 9 also describes the effect of the combination according to the invention against the caterpillars of the vegetable moth Plutella xylostella on savoy cabbage.
  • the plants were grown in the greenhouse and five plants each were treated as follows:
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000 L / ha.
  • the plants were incubated under greenhouse conditions (20 ° C 70% relative humidity), wherein the establishment of the plants is randomized. After 3 days, the first leaf removal took place. Here 5 leaves were picked from each plant. From the leaves, 10 leaf discs were punched out with a diameter of 6cm and placed in Petri dishes, with moistened filter paper. After filling the leaf discs into the Petri dishes, 5 Plutella xylostella larvae were placed in the L2 stage. The Petri dishes were placed in a tray, covered with a dark foil and stored at 20 ° C in the laboratory. The evaluation took place on days 9, 14 and 21 after the laying on of the larvae, whereby the number of surviving animals was rated.
  • Example 10 describes the effect of the combination according to the invention against the caterpillars of the cabbage flea Phyllotreta nigripes on cabbage.
  • the experiment was carried out as a field test according to EPPO guidelines PP 1/210 (1), PP 1/152 (2), PP 1/181 (3), PP 1/135 with 4 replications of 10 plants each.
  • the plants were treated as follows:
  • the spray solution was prepared by mixing commercial formulations and adjusting with water to the stated concentration.
  • the application amount was 1000 L / ha.
  • Two applications were performed every 14 days.
  • the number of live caterpillars was scored on days 7 to 32 after the first application.
  • Table 10 Shown is the effect of the products, which is shown in a reduction in the number of beads compared to the untreated control.
  • Table 10 Effectiveness of insecticide treatment against cabbage flea.
  • Table 10 Effectiveness of insecticidal treatment against cabbage flea

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die mindestens eine bestimmte substituierte Enaminocarbonylverbindungund Azadirachtin enthält und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden geeignet sind.

Description

Wirkstoffkombination enthaltend Azadirachtin und eine substituierte Enaminocarbonylverbindung
Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die mindestens eine bestimmte substituierte Enaminocarbonylverbindung und Azadirachtin enthält und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden geeignet sind.
Die Erfindung betrifft auch Verfahren zur Bekämpfung tierischer Schädlinge auf pflanzen und Saatgut, die Verwendung der erfindungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut, ein Verfahren zum Schutz von Saatgut und nicht zuletzt das mit den erfindungsgemäßen Wirkstoffkombinationen behandelte Saatgut. E s i s t aus EP-A-0 539 588 und WO 2007/115644 bekannt, substituierte Enaminocarbonylverbindungen als Pflanzenschutzmittel zur Bekämpfung von Insekten und Akariden zu verwenden. Gleichfalls ist bekannt, substituierte Enaminocarbonylverbindungen zusammen mit anderen Insektiziden zu verwenden. So beschreibt beispielsweise WO 2009/043443 Wirkstoffkombinationen die bestimmte substituierte Enaminocarbonylverbindungen und bestimmte Neonicotinoid Insektizide, wie beispielsweise Clothianidin oder Thiamethoxam, enthalten.
Es ist bereits ebenfalls bekannt, dass die Extrakte aus den Samen des Neem-Baumes Insektizide Eigenschaften besitzen (vgl.„Römpp Chemie Lexikon", 9. Auflage, Seite 2954, Georg Thieme Verlag, Stuttgart-New York, 1991). Die Wirkung des Neem-Baumextraktes wird im Allgemeinem dem Vorhandensein von Azadirachtin zugeordnet. Azadirachtin gehört zu den Limonoiden und ist ein sekundärer Metabolit. Azadirachtin ist ein hoch oxidiertes Tetranortriterpenoid mit Enolether-, Acetal-, Halbacteal- und Epoxid-Funktionen. Azadirachtin zeigt vor allem Ecdysonartige Wirkung, d.h. es hemmt die Larvenentwicklung verschiedener Insekten (Z. Naturforsch., Teil C, 42, 4 (1987)). Nachteilig an Azadirachtin ist, dass die Wirkung diese Wirkstoffs nur verzögert eintritt und bei niedrigen Aufwandmengen die Wirksamkeit in manchen Fällen zu wünschen übrig lässt. Die Wirkung der bekannten substituierte Enaminocarbonylverbindungen und von Azadirachtin ist im Allgemeinen gut. Insbesondere bei niedrigen Aufwandmengen und bei bestimmten Schädlingen befriedigen sie jedoch nicht immer die Bedürfnisse der landwirtschaftlichen und gartenbaulichen Praxis, und es besteht immer noch ein Bedarf an einer ökonomisch effizienten und ökologisch sicheren Schädlingsbekämpfung. Da sich aber die ökologischen und ökonomischen Anforderungen an moderne Pflanzenbehandlungsmittel laufend erhöhen, beispielsweise was Toxizität, Selektivität, Aufwandmenge, Rückstandsbildung und günstige Herstellbarkeit angeht, und außerdem z.B. Probleme mit Resistenzen auftreten können, besteht die ständige Aufgabe neue Pflanzenbehandlungsmittel zu entwickeln, die zumindest in Teilbereichen Vorteile gegenüber den bekannten aufweisen.
Aufgabe der vorliegenden Erfindung ist deshalb die Bereitstellung von weiteren Insektiziden die gegenüber bekannten Wirkstoffkombinationen eine verbesserte Wirkung bzw. ein verbreitertes Wirkspektrum zeigen und die vorgenannten Nachteile vermeiden.
Die Erfinder haben nun gefunden, das s eine Kombination bestimmter substituierter Enaminocarbonylverbindungen mit dem im Extrakt der Samen des Neem-Baumes vorhandenen Wirkstoff Azadirachtin neben einer synergistischen Wirkungssteigerung, ein verbreitertes Wirkspektrum aufweist. Gleichfalls wurde gefunden, dass durch die erfindungsgemäße Wirkstoffkombination der Wirkungsverlauf des Azadirachtins beschleunigt wird. Des Weiteren kann eine Verbesserung der Wirkdauer beobachtet werden. Die Erfindung bezieht sich deshalb auf eine Wirkstoffkombination enthaltend mindestens eine substituierte Enaminocarbonylverbindung der Formel (1-1), (1-2) oder (1-3) und Azadirachtin. Azadirachtin kann dabei in Form des reinen Wirkstoffes oder als Formulierung, enthaltend Azadirachtin oder in Form des Extraktes der Samen des Neem-Baumes sowie deren Formulierungen enthalten sein.
D i e e rfindungsgemäßen substituierten Enaminocarbonylverbindungen 4- {[(6-Chlorpyrid-3- yl)methyl](2,2-difluorethyl)amino}furan-2(5H)-on (Verbindung (1-1)), dessen Insektizide Wirkung e r s t m a l s i n W O 2 0 0 7 / 1 1 5 6 4 4 b e s c h r i e b e n i s t ; 4- {[(6-Chlorpyrid-3- yl)methyl](cyclopropyl)amino}furan-2(5H)-on (Verbindung (1-2)) und 4- {[(6-Chlorpyrid-3- yl)methyl](methyl)amino}furan-2(5H)-on (Verbindung (1-3)) deren Insektizide Wirkung erstmals in EP-A-0 539 588 beschrieben ist. Die Verbindungen lassen sich nach den in WO2007/1 15644 und EP-A-0539588 beschriebenen Verfahren herstellen und sie besitzen die folgenden Strukturen: l
Figure imgf000003_0001
(1-1) (1-2) (1-3)
Zus ätzlich zu der ob en b e schrieb enen Wirkung können die erfindungsgemäßen Wirkstoffkombinationen noch weitere überraschende Vorteile zeigen, einschließlich einer erhöhten Anwendungssicherheit; einer verminderten Phytotoxizität und somit einer besseren Pflanzenverträglichkeit; der Bekämpfung von Schädlingen in ihren verschiedenen Entwicklungsstadien; eines besseren Verhaltens während der Herstellung der Insektiziden Verbindungen, zum Beispiel während des Vermahlens oder des Mixens, während ihrer Lagerung oder während ihrer Anwendung; eines sehr vorteilhaften bioziden Spektrums selbst bei niedrigen Konzentrationen mit damit einhergehender guter Verträglichkeit durch Warmblüter, Fische und Pflanzen; und des Erzielens einer zusätzlichen Wirkung, zum Beispiel einer algiziden, anthelminti sehen, aviziden, bakteriziden, fungiziden, molluskiziden, nematiziden, pflanzenaktivierenden, rodentiziden oder viruziden Wirkung.
Weiterhin wurde gefunden, dass sich die erfindungsgemäßen Wirkstoffkombinationen besonders zum Schutz von Samen und/oder Sprösslingen und Blättern einer aus den Samen herangezogenen Pflanze gegen eine Schädigung durch Schädlinge eignet. Die erfindungsgemäßen Wirkstoffkombinationen zeigen somit eine vernachlässigbare Phytotoxizität bei der Anwendung auf das Pflanzenfortpflanzungsmaterial, eine Verträglichkeit mit Bodenbedingungen (z.B. was die Bindung der Verbindung an den Boden betrifft), eine systemische Wirkung in der Pflanze, keinen negativen Einfluss auf die Keimung und Wirksamkeit während des entsprechenden Schädlingslebenszyklus.
In einer Ausführungsform bezieht sich die Erfindung auf eine Wirkstoffkombination, die im Wesentlichen aus 4-{[(6-Chlorpyrid-3-yl)methyl](2,2-difluorethyl)amino}furan-2(5H)-on (Verbindung (1-1)) und Azadirachtin besteht, bevorzugt in einem die Wirkung von Azadirachtin beschleunigenden Verhältnis.
In einer weiteren Ausführungsform bezieht sich die Erfindung auf eine Wirkstoffkombination, die im Wesentlichen aus 4-{[(6-Chlorpyrid-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-on (Verbindung (1-2)) und Azadirachtin besteht, bevorzugt in einem die Wirkung von Azadirachtin beschleunigenden Verhältnis. In einer noch weiteren Ausführungsform bezieht sich die Erfindung auf eine Wirkstoffkombination, die im Wesentlichen aus 4-{[(6-Chlorpyrid-3- yl)methyl](methyl)amino}furan-2(5H)-on (Verbindung (1-3)) und Azadirachtin besteht, bevorzugt in einem die Wirkung von Azadirachtin beschleunigenden Verhältnis.
Erfindungsgemäß bevorzugt enthält die erfindungsgemäße Wirkstoffkombination eine der Verbindungen der Formel (1-1), (1-2) oder (1-3) und Azadirachtin in einem Mischungsverhältnis im Bereich von etwa 125:1 bis etwa 1:125, besonders bevorzugt im Bereich von etwa 25:1 bis etwa 1 :25, ganz besonders bevorzugt im Bereich von etwa 5:1 bis etwa 1 :5. Verbindungen der Formel (I-l), (1-2) oder (1-3) mit wenigstens einem basischen Zentrum sind dazu in der Lage, beispielsweise Säureadditionssalze zu bilden, z.B. mit starken anorganischen Säuren wie Mineralsäuren, z.B. Perchlorsäure, Schwefelsäure, Salpetersäure, salpetriger Säure, einer Phosphorsäure oder einer Halogenwasserstoffsäure, mit starken organischen Carbonsäuren wie unsubstituierten oder substituierten, z.B. halogensubstituierten, Ci-C pAlkancarbonsäuren, z.B. Essigsäure, gesättigten oder ungesättigten Dicarbonsäuren, z.B. Oxalsäure, Malonsäure, Bernsteinsäure, Maleinsäure, Fumarsäure und Phthalsäure, Hydroxycarbonsäuren, z.B. Ascorbinsäure, Milchsäure, Äpfelsäure, Weinsäure und Citronensäure, oder Benzoesäure, oder mit organischen Sulfonsäuren wie unsubstituierten oder substituierten, z.B. halogensubstituierten, Cp C pAlkan- oder Arylsulfonsäuren, z.B. Methan- oder p-Toluolsulfonsäure. Die Verbindungen der Formel (I-l ), (1-2) oder (1-3) mit wenigstens einer sauren Gruppe sind dazu in der Lage, zum Beispiel Salze mit Basen zu bilden, z.B. Metallsalze wie Alkali- oder Erdalkalisalze, z.B. Natrium-, Kalium- oder Magnesiumsalze, oder Salze mit Ammoniak oder einem organischen Amin wie Morpholin, Piperidin, Pyrrolidin, einem niederen Mono-, Di- oder Trialkylamin, z.B. Ethyl-, Diethyl-, Triethyl- oder Dimethylpropylamin, oder einem niederen Mono-, Di- oder Trihydroxyalkylamin, z.B. Mono-, Di- oder Triethanolamin. Darüber hinaus können gegebenenfalls entsprechende innere Salze gebildet werden. Im Rahmen der Erfindung sind agrochemisch vorteilhafte Salze bevorzugt. Angesichts der engen Beziehung zwischen den Verbindungen der Formel (I-l), (1-2) oder (1-3) in freier Form und in Form ihrer Salze sollte oben und im folgenden jeder Verweis auf die freien Verbindungen der Formel (I-l), (1-2) oder (1-3) oder auf ihre Salze so verstanden werden, dass auch die entsprechenden Salze bzw. die freien Verbindungen der Formel (I-l), (1-2) oder (1-3) eingeschlossen sind, wenn dies angebracht und zweckmäßig ist. Dies trifft entsprechend auch auf mögliche Tautomere der Verbindungen der Formel (I-l), (1-2) oder (1-3) und auf ihre Salze zu. Unter Extrakten aus Samen des Neem-Baumes sind im vorliegenden Fall alle üblichen aus den Samen des Neem-Baumes durch Extraktion oder Auspressen isolierbarer Produkte zu verstehen, die wesentliche Mengen an Azadirachtin enthalten. Bei dem Extraktionsprozess entstehen auch Neben-Produkte, die ebenfalls Azadirachtin enthalten wie z.B. das Neem-Öl oder der feste Rückstandskuchen, der im Wesentlichen die festen Bestandteile der Neem-Samen enthält und oft als Dünger eingesetzt wird. Das Exraktionsprodukt enthält die verschiedenen Azadirachtin- Isomeren A bis K, jeoch hauptsächlich Azadirachtin A. Im Rahmen dieser Erfindung sind unter Azadirachtin-haltigen Produkten nicht nur das Exraktionsprodukt selber, sondern auch die Neben- Produkte zu verstehen. Dabei können sowohl die Extraktsprodukte als auch die Neben-Produkte in Formulierungen vorliegen, die ebenfalls erfindungsgemäß eingesetzt werden können. Der Anteil von Azadirachtin A (Molekulargewicht 720,7 g/mol) dient zur Charakterisierung der im Markt befindlichen Produkte. Der Anteil der Isomern kann über HPLC bestimmt werden. Bevorzugt werden Produkte eingesetzt, die einen Anteil von 20 % bis 50 %, bevorzugt 25 % bis 40 %, besonders bevorzugt 30 % bis 40 % Azadirachtin A aufweisen. Besonders bevorzugt ist NeemAzal® technical der Fa. Trifolio-M GmbH.
Im Rahmen der vorliegenden Erfindung steht der Begriff„Wirkstoffkombination" für verschiedene Kombinationen von Verbindungen der Formel (1-1), (1-2) oder (1-3) und Azadirachtin z.B. in Form einer einzelnen Fertigmischung („Ready-Mix"), in einer kombinierten Spraymischung, die zusammengesetzt ist aus getrennten Formulierungen der einzelnen Wirkstoffe, z.B . einer Tankmischung („Tank-Mix") oder in einer kombinierten Verwendung der einzelnen Wirkstoffe, wenn diese sequentiell appliziert werden, z.B. nacheinander innerhalb eines angemessen kurzen Zeitraums, z.B. wenigen Stunden oder Tagen. Gemäß einer bevorzugten Ausführungsform ist die Reihenfolge der Applikation der Verbindungen der Formel (1-1), (1-2) oder (1-3) und Azadirachtin für die Ausführung der vorliegenden Erfindung nicht entscheidend.
Beim Einsatz der erfindungsgemäßen Wirkstoffkombinationen als Insektizide und Akarizide können die Aufwandmengen je nach Applikations art innerhalb eines größeren Bereiches variiert werden. Die Aufwandmenge der erfindungsgemäßen Wirkstoffkombinationen beträgt bei der Behandlung von Pflanzenteilen, z.B. Blättern und von Schädlingen von 0,1 bis 10.000 g/ha, bevorzugt von 10 bis 1.000 g/ha, besonders bevorzugt von 50 bis 300g/ha (bei Anwendung durch Gießen oder Tropfen kann die Aufwandmenge sogar verringert werden, vor allem wenn inerte Substrate wie Steinwolle oder Perlit verwendet werden); bei der Saatgutbehandlung von 2 bis 200 g pro 100 kg Saatgut, bevorzugt von 3 bis 150 g pro 100 kg Saatgut, besonders bevorzugt von 2,5 bis 25 g pro 100 kg Saatgut, ganz besonders bevorzugt von 2,5 bis 12,5 g pro 100 kg Saatgut; bei der Bodenbehandlung von 0,1 bis 10.000 g/ha, bevorzugt von 1 bis 5.000 g/ha.
Die erfindungsgemäßen Wirkstoffkombinationen können eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten tierischen Schädlinge zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen auf 1 bis 42 Tage, bevorzugt auf 1 bis 28 Tage, besonders bevorzugt auf 1 bis 14 Tage nach der Behandlung der Pflanzen und/oder Schädlinge mit den Wirkstoffen bzw. auf bis zu 200 Tage nach einer Saatgutbehandlung.
Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warm- blütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes und zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen, Nematoden und Mollusken, die in der Landwirtschaft, im Gartenbau, bei der Tierzucht, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Aus dem Stamm Mollusca z.B. aus der Klasse der Lamellibranchiata z.B. Dreissena spp. Aus der Klasse der Gastropoda z.B. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp..
Aus dem Stamm Arthropoda z.B. aus der Ordnung der Isopoda z.B. Armadillidium vulgare, Oniscus asellus, Porcellio scaber.
Aus der Klasse der Arachnida z.B. Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssius, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Halotydeus destructor, Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodectus spp., Loxosceles spp., Metatetranychus spp., Nuphersa spp., Oligonychus spp., Ornithodorus spp., Ornithonyssus spp. , Panonychus spp. , Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Stenotarsonemus spp., Tarsonemus spp., Tetranychus spp., Vaejovis spp., Vasates lycopersici.
Aus der Ordnung der Symphyla z.B. Scutigerella spp.. Aus der Ordnung der Chilopoda z.B. Geophilus spp., Scutigera spp.. Aus der Ordnung der Collembola z.B. Onychiurus armatus. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Zygentoma z.B. Lepisma saccharina, Thermobia domestica.
Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Blatta orientalis, Blattella germanica, Dichroplus spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta spp., Pulex irritans, Schistocerca gregaria, Supella longipalpa.
Aus der Ordnung der Isoptera z.B. Coptotermes spp., Comitermes cumulans, Cryptotermes spp., Incisitermes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp., Aus der Ordnung der Heteroptera z.B. Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex lectularius, Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., Heliopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Monaionion atratum, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
Aus der Ordnung der Anoplura (Phthiraptera) z.B. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Ptirus pubis, Trichodectes spp..
Aus der Ordnung der Homoptera z.B. Acyrthosipon spp., Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleurodes spp., Aleurolobus barodensis, Aleurothrixus spp., Amrasca spp., Anuraphis cardui, Aonidiella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia spp., Brachycaudus helichrysii, Brachycolus spp., Brevicoryne brassicae, Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Dalbulus spp., Dialeurodes spp., Diaphorina spp., Diaspis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Euscelis bilobatus, Ferrisia spp., Geococcus coffeae, Hieroglyphus spp., Homalodisca coagulata, Hyalopterus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Lao- delphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribisnigri, Nephotettix spp., Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Parabemisia myricae, Paratrioza spp., Parlatoria spp., Pemphigus spp., Peregrinus maidis, Phenacoccus spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Planococcus spp., Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoides titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Tenalaphara malayensis, Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes spp., Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp.. Aus der Ordnung der Coleoptera z.B. Acalymma vittatum, Acanthoscelides obtectus, Adoretus spp., Agelastica alni, Agriotes spp., Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., Chaetocnema spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Ctenicera spp., Curculio spp., Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypothenemus spp., Lachnosterna consanguinea, Lema spp., Leptinotarsa decemlineata, Leucoptera spp., Lisso- rhoptrus oryzophilus, Lixus spp., Luperodes spp., Lyctus spp., Megascelis spp., Melanotus spp., Meligethes aeneus, Melolontha spp., Migdolus spp., Monochamus spp., Naupactus xanthographus, Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorrhynchus spp., Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllotreta spp., Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., Sphenophorus spp., Stegobium paniceum, Sternechus spp., Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp..
Aus der Ordnung der Hymenoptera z.B. Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Solenopsis invicta, Tapinoma spp., Vespa spp..
Aus der Ordnung der Lepidoptera z.B. Acronicta major, Adoxophyes spp., Aedia leucomelas, Agrotis spp., Alabama spp., Amyelois transitella, Anarsia spp., Anticarsia spp., Argyroploce spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheimatobia brumata, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocerus spp., Cnephasia spp., Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Cydia spp., Dalaca noctuides, Diaphania spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eidana saccharina, Ephestia spp., Epinotia spp., Epiphyas postvittana, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., Hedylepta spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., Lithocolletis spp., Lithophane antennata, Lobesia spp., Loxagrotis albicosta, Lymantria spp., Lyonetia spp., Malacosoma neustria, Maruca testulalis, Mamestra brassicae, Mocis spp., Mythimna separata, Nymphula spp., Oiketicus spp., Oria spp., Orthaga spp., Ostrinia spp., Oulema oryzae, Panolis flammea, Parnara spp., Pectinophora spp., Perileucoptera spp., Phthorimaea spp., Phyllocnistis citrella, Phyllonorycter spp., Pieris spp., Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella, Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Scirpophaga spp., Scotia segetum, Sesamia spp., Sparganothis spp., Spodoptera spp., Stathmopoda spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thermesia gemmatalis, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., Tuta absoluta, Virachola spp..
Aus der Ordnung der Diptera z.B. Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Asphondylia spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Ceratitis capitata, Chironomus spp., Chrysomyia spp., Chrysops spp., Cochliomyia spp., Contarinia spp., Cordylobia anthropophaga, Culex spp., Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasyneura spp., Delia spp., Dermatobia hominis, Drosophila spp., Echinocnemus spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hylemyia spp., Hyppobosca spp., Hypoderma spp., Liriomyza spp.. Lucilla spp., Lutzomia spp., Mansonia spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia spp., Phlebotomus spp., Phorbia spp., Phormia spp., Prodiplosis spp., Psila rosae, Rhagoletis spp., Sarcophaga spp., Simulium spp, Stomoxys spp., Tabanus spp., Tannia spp., Tetanops spp., Tipula spp..
Aus der Ordnung der Thysanoptera z.B. Anaphothrips obscurus, Baliothrips biformis, Drepanothris reuteri, Enneothrips Hävens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamoni, Thrips spp..
Aus der Ordnung der Siphonaptera z.B. Ceratophyllus spp., Ctenocephalides spp., Tunga penetrans, Xenopsylla cheopis.
Aus dem Stämmen der Plathelminthen und Nematoden als Tierparasiten z.B. aus der Klasse der Helminthen z.B. Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., Onchocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomen spp, Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti. Aus dem Stamm der Nematoden als Pflanzenschädlinge z.B. Aphelenchoides spp., Bursa- phelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Trichodorus spp., Tylenchulus semipenetrans, Xiphinema spp.. Aus dem Subphylum der Protozoa z.B. Eimeria.
Die erfindungsgemäßen Wirkstoffkombinationen können gegebenenfalls in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide, Safener, Wachstumsregulatoren oder Mittel zur Verbesserung der Pflanzeneigenschaften, oder als Mikrobizide, beispielsweise als Fungizide, Antimykotika, Bakterizide, Virizide (einschließlich Mittel gegen Viroide) oder als Mittel gegen MLO (Mycoplasma- like-organism) und RLO (Rickettsia- like-organism) verwendet werden.
Die vorliegende Erfindung betrifft weiterhin Formulierungen und daraus b ereitete Anwendungsformen (Pflanzenschutzmittel oder Schädlingsbekämpfungsmittel), umfassend die erfindungsgemäße Wirkstoffkombination. Vorzugsweise handelt es sich um Insektizide Formulierungen oder Anwendungsformen, welche Hilfsstoffe, wie beispielsweise Streckmittel, Lösemittel, Trägerstoffe und und/oder weitere Hilfsstoffe, wie beispielsweise oberflächenaktive Stoffe, enthalten.
Zur Herstellung der Formulierungen werden die Extrakte aus Samen des Neem-Baumes in handelüblicher Zubereitung oder in Form der isolierten Substanz eingesetzt.
Übliche Formulierungen sind beispielsweise Lösungen, Emulsionen, Spritzpulver, wasser- und ölbasierte Suspensionen, wasser- und ölbasierte Suspensionskonzentrate, Pulver, Stäubemittel, Pasten, lösliche Pulver, Schäume, Granulate, dispergierbare Granulate, lösliche Granulate, Streugranulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Naturstoffe, Wirkstoff- imprägnierte synthetische Stoffe, Düngemittel sowie Feinstverkapselungen in polymeren Stoffen. Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Hilfsstoffen wie beispielsweise Streckmitteln, Lösemitteln und/oder festen Trägerstoffen und/oder weiteren Hilfsstoffen wie beispielsweise oberflächenaktive Stoffe. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anlagen oder auch vor oder während der Anwendung. Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, der Formulierung des Wirkstoffs oder den aus diesen Formulierungen bereiteten Anwendungsformen (wie z.B. gebrauchsfähigen Pflanzenschutzmitteln wie Spritzbrühen oder Saatgutbeizen) besondere Eigenschaften, wie bestimmte physikalische, technische und/oder biologische Eigenschaften, zu verleihen. Als typische Hilfsstoffe kommen in Frage: Streckmittel, Lösemittel und Trägerstoffe.
Als Streckmittel eignen sich z.B. Wasser, polare und unpolare organische chemische Flüssigkeiten z.B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine, Alkylbenzole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substituiert, verethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon), Ester (auch Fette und Öle) und (Poly-)Ether, der einfachen und substituierten Amine, Amide, L actame (wie N-Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsulfoxid) . Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösemittel als Hilfslösemittel verwendet werden. Als flüssige Lösemittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösemittel wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
Grundsätzlich können alle geeigneten Lösemittel verwendet werden. Geeignete Lösemittel sind beispielsweise aromatische Kohlenwasserstoffe, wie z.B. Xylol, Toluol oder Alkylnaphthaline, chlorierte aromatische oder aliphatische Kohlenwasserstoffe, wie z.B. Chlorbenzol, Chlorethylen, oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie z.B . Cyclohexan, Paraffine, Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie z.B. Methanol, Ethanol, iso- Propanol, Butanol oder Glykol sowie deren Ether und Ester, Ketone wie z.B. Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösemittel, wie Dimethylsulfoxid, sowie Wasser.
Grundsätzlich können alle geeigneten Trägerstoffe eingesetzt werden. Als Trägerstoffe kommen insbesondere infrage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse und /oder feste Düngemittel. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Bentonit, Calcit, Marmor, Bims, Sepiolith, Dolomit, Kaolinit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Papier, Kokosnussschalen, Maiskolben und Tabakstängel. Auch verflüssigte gasformige Streckmittel oder Lösemittel können eingesetzt werden. Insbesondere eignen sich solche Streckmittel oder Trägerstoffe, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff, Kohlendioxid und Pressluft. Unter oberflächenaktiven Stoffen werden erfindungsgemäß Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe verstanden. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, mit substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), S alze von Sulphob ernsteins äureestern, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpoly- glycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Lignin-Sulfitablaugen und Methylcellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist vorteilhaft, wenn einer der Wirkstoffe und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt.
Als weitere Hilfsstoffe können in den Formulierungen und den daraus abgeleiteten Anwendungsformen Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Nähr- und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink vorhanden sein.
Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidationsschutzmittel, Lichtschutzmittel oder andere die chemische und / oder physikalische Stabilität verbessernde Mittel. Weiterhin enthalten sein können schaumerzeugende Mittel oder Entschäumer.
Ferner können die Formulierungen und daraus abgeleiteten Anwendungs formen als zusätzliche Hilfsstoffe auch Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere enthalten, wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Hilfsstoffe können mineralische und vegetabile Öle sein.
Gegebenenfalls können noch weitere Hilfsstoffe in den Formulierungen und den daraus abgeleiteten Anwendungsformen enthalten sein. Solche Zusatzstoffe sind beispielsweise Duftstoffe, schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Retentions för derer, Stabilisatoren, Sequesti ermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Zusatzstoff, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Die Formulierungen enthalten bevorzugt zwischen 0,00000001 und 98 Gew.-% Wirkstoff oder, besonders bevorzugt zwischen 0,01 und 95 Gew.-% Wirkstoff, besonders bevorzugt zwischen 0,5 und 90 Gew.-% Wirkstoff, bezogen auf das Gewicht der Formulierung. In vorgenannten Zusammenhang schliesst der Begriff "Wirkstoff auch Wirkstoffkombinationen mit ein.
Die erfindungsgemäße Wirkstoffkombination kann in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen, Herbiziden, Safenern, Düngemitteln, Semiochemicals oder auch mit Mitteln zur Verbesserung der Pflanzeneigenschaften vorliegen.
Die erfindungsgemäße Wirkstoffkombination kann ferner beim Einsatz als Insektizide in ihren Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.
Die erfindungsgemäße Wirkstoffkombination kann ferner beim Einsatz als Insektizid in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungs- formen in Mischungen mit Hemmstoffen vorliegen, die einen Abbau des Wirkstoffes nach Anwendung in der Umgebung der Pflanze, auf der Oberfläche von Pflanzenteilen oder in pflanzlichen Geweben vermindern.
D er Wirksto ffg ehalt der aus den F ormuli erung en b ereiteten Anwendungs formen (Pflanzenschutzmittel) kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der An- wendungs formen kann üblicherweise zwischen 0,00000001 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-%, bezogen auf das Gewicht der Anwendungsform, liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile mit und ohne Befall (preventiv und kurativ, Kontakt- oder Frassmittel) behandelt werden. Ebenfalls möglich ist eine Behandlung des die Pflanze umgebenen Lebensraum, bevorzugt das Erdreich. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Saatgut sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Früchte, Samen, Stecklinge, Knollen, Rhizome, Ableger, Saatgut, Brutzwiebeln, Absenker und Ausläufer.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffkombinationen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Angiessen, Einmischen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Injizieren und bei Vermehrungsmaterial, ins- besondere bei Saatgut, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Pflanzen, welche erfindungsgemäß behandelt werden können, sind insbesondere ausgewählt unter den nachfolgend genannten.
Einjährige Kulturen wie beispielsweise: Gemüse wie Fruchtgemüse und Blütenstände (z.B. Paprika, Peperoni, Tomaten, Auberginen, Gurken, Kürbisse, Zucchini, Ackerbohnen, Stangenbohnen, Buschbohnen, Erbsen, Artischocken), Blattgemüse (z.B. Kopfsalat, Chicoree, Endivien, Kressen, Rauken, Feldsalat, Eisbergsalat, Lauch, Spinat, Mangold), Knollen-, Wurzel- und Stängelgemüse (z.B. Sellerie, Rote Beete, Möhren, Radieschen, Meerrettich, Schwarzwurzeln, Spargel, Speiserüben, Palmsprossen, Bambussprossen, außerdem Zwiebelgemüse, beispielsweise Zwiebeln, Lauch, Fenchel, Knoblauch), Kohlgemüse (z.B. Blumenkohl, Broccoli, Kohlrabi, Rotkohl, Weißkohl, Grünkohl, Wirsing, Rosenkohl, Chinakohl), Zierpflanzen, wie Schnittblumen (z.B. Rosen, Nelken, Gerbera, Lilien, Margeriten, Chrysanthemen, Tulpen, Narzissen, Anemonen, Mohn, Amaryllis, Dahlien, Azaleen, Malven, Sonnenblumen), Beetpflanzen, Topfpflanzen und Stauden (z.B. Tagetes, Stiefmütterchen, Fleißige Lieschen, Begonien), Melonen und Mais.
Mehrjährige Kulturen wie beispielsweise Zitrus (z.B. Orangen, Grapefruits, Mandarinen, Zitronen, Limetten, Bitterorangen, Kumquats, Satsumas), Kernobst (z.B. Äpfel, Birnen und Quitten), Steinobst (z.B. Pfirsiche, Nektarinen, Kirschen, Pflaumen, Zwetschgen, Aprikosen), Wein, Hopfen, Oliven, Tee und tropische Kulturen, wie beispielsweise Mangos, Papayas, Feigen, Ananas, Datteln, Bananen, Durians (Stinkfrüchte), Kakis, Kokosnüsse, Kakao, Kaffee, Avocados, Litschis, Maracujas, Guaven, Mandeln und Nüsse wie beispielsweise Haselnüsse, Walnüsse, Pistazien, Cashewnüsse, Paranüsse, Pekannüsse, Butternüsse, Kastanien, Hickorynüsse, Macadamianüsse, Erdnüsse, Beerenfrüchte (z.B. Johannisbeeren, Stachelbeeren, Himbeeren, Brombeeren, Heidelbeeren, Erdbeeren, Preiselbeeren, Kiwis, Cranberries), Zierpflanzen, wie Schnittblumen (z.B. Rosen, Nelken, Gerbera, Lilien, Margeriten, Chrysanthemen, Tulpen, Narzissen, Anemonen, Mohn, Amaryllis, Dahlien, Azaleen, Malven), Beetpflanzen, Topfpflanzen und Stauden (z.B. Rosen, Tagetes, Stiefmütterchen, Geranien, Fuchsien, Hibiscus, Chrysanthemen, Fleißige Lieschen, Alpenveilchen, Usambaraveilchen, Sonnenblumen, Begonien), Sträucher und Koniferen (z.B. Ficus, Rhododendron, Fichten, Tannen, Kiefern, Eiben, Wacholder, Pinien, Oleander), Gewürze (z.B. Anis, Chilli, Paprika, Pfeffer, Vanille, Majoran, Thymian, Gewürznelken, Wacholderbeeren, Zimt, Estragon, Koriander, Safran, Ingwer).
Erfindungsgemäß bevorzugt werden Zierpflanzen wie z.B. Rosen, Geranien, Fuchsien, Margariten, Beetpflanzen, Topfpflanzen, Heil- und Gewürzpflanzen wie z.B. Salbei, Petersilie, Basilikum, Sonnenhut, Goldregen, Pharmaweide, Bittersüßer Nachtschatten und Stauden, wie z.B. Phlox, Eisenhut, Anemonen, Gemüse, einschliesslich Fruchtgemüse, Knollen-, Wurzel- und Stängelgemüse, Blatt- und Sprossgemüse, Kohlgemüse sowie Hülsenfrüchte und mehrjährige Kulturen wie Zitrus, Kernobst wie Apfel oder Birne, Steinobst wie Kirsche, Weinreben, Hopfen, Oliven, Tee und tropische Kulturen, Artischocke, Tabak, Pfefferminze, Kalanchoe und Drachenkopf. Besonders bevorzugt sind Zierpflanzen in Haus- und Garten, Gemüse sowie Kern,- und Steinobst. Die erfindungsgemäßen Wirkstoffkombinationen eignen sich ebenfalls zur Behandlung von Saatgut. Bevorzugt sind dabei die vorstehend als bevorzugt oder besonders bevorzugt genannten erfindungsgemäßen Kombinationen zu nennen. So entsteht ein großer Teil des durch Schädlinge verursachten Schadens an Kulturpflanzen bereits durch den Befall des Saatguts während der Lagerung und nach dem Einbringen des Saatguts in den Boden sowie während und unmittelbar nach der Keimung der Pflanzen. Diese Phase ist besonders kritisch, da die Wurzeln und Sprosse der wachsenden Pflanze besonders empfindlich sind und bereits ein geringer Schaden zum Absterben der ganzen Pflanze führen kann. Es besteht daher ein insbesondere großes Interesse daran, das Saatgut und die keimende Pflanze durch den Einsatz geeigneter Mittel zu schützen.
Die Bekämpfung von Schädlingen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufrieden stellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu entwickeln, die das zusätzliche Ausbringen von Pflanzenschutzmitteln nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen. Es ist weiterhin erstrebenswert, die Menge des eingesetzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch Schädlinge bestmöglich geschützt werden, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen Insektiziden Eigenschaften transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und auch der keimenden Pflanze bei einem minimalen Aufwand an Pflanzenschutzmitteln zu erreichen.
Die vorliegende Erfindung bezieht sich daher insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen, indem das Saatgut mit einer erfindungsgemäßen Wirkstoffkombination behandelt wird. Das erfindungsgemäße Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen umfasst ein Verfahren, in dem das Saatgut zur gleichen Zeit mit einem Wirkstoff der Formel (1-1), (1-2) oder (I- 3) und Azadirachtin behandelt wird. Es umfasst auch ein Verfahren, in dem das Saatgut zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (1-1), (1-2) oder (1-3) und Azadirachtin behandelt wird. Die Erfindung bezieht sich ebenfalls auf die Verwendung der erfindungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut zum Schutz des Saatguts und der daraus entstehenden Pflanze vor Schädlingen. Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor Schädlingen mit einer erfindungsgemäßen Wirkstoffkombination behandelt wurde. Die Erfindung bezieht sich auch auf Saatgut, welches zur gleichen Zeit mit einem Wirkstoff der Formel (1-1 ), (1-2) oder (1-3) und Azadirachtin behandelt wurde. Die Erfindung bezieht sich weiterhin auf Saatgut, welches zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (1-1), (1-2) oder (1-3) und Azadirachtin behandelt wurde. Bei Saatgut, welches zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (1-1), (1-2) oder (1-3) und Azadirachtin behandelt wurde, können die einzelnen Wirkstoffe des erfindungsgemäßen Mittels in unterschiedlichen Schichten auf dem Saatgut enthalten sein. Dabei können die Schichten, die einen Wirkstoff der Formel (1-1), (1-2) oder (1-3) und Azadirachtin enthalten, gegebenenfalls durch eine Zwischenschicht getrennt sein. Die Erfindung bezieht sich auch auf Saatgut, bei dem ein Wirkstoff der Formel (1-1), (1-2) oder (I- 3) und Azadirachtin als Bestandteil einer Umhüllung oder als weitere Schicht oder weitere Schichten zusätzlich zu einer Umhüllung aufgebracht sind.
Einer der Vorteile der vorliegenden Erfindung ist es, dass aufgrund der besonderen systemischen Eigenschaften einiger der erfindungsgemäßen Wirkstoffkombinationen die Behandlung des Saatguts mit diesen Wirkstoffkombinationen nicht nur das Saatgut selbst, sondern auch die daraus hervorgehenden Pflanzen nach dem Auflaufen vor Schädlingen schützt. Auf diese Weise kann die unmittelbare Behandlung der Kultur zum Zeitpunkt der Aussaat oder kurz danach entfallen. Ein weiterer Vorteil besteht in der synergistischen Erhöhung der Insektiziden Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen gegenüber dem Insektiziden Einzelwirkstoff, die über die zu erwartende Wirksamkeit der beiden einzeln angewendeten Wirkstoffe hinausgeht. Vorteilhaft ist auch die synergistische Erhöhung der fungiziden Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen gegenüber dem fungiziden Einzelwirkstoff, die über die zu erwartende Wirksamkeit des einzeln angewendeten Wirkstoffs hinausgeht. Damit wird eine Optimierung der Menge der eingesetzten Wirkstoffe ermöglicht.
Ebenso ist es als vorteilhaft anzusehen, dass die erfindungsgemäßen Wirkstoffkombinationen insbesondere auch bei transgenem Saatgut eingesetzt werden können, wobei die aus diesem Saatgut hervorgehenden Pflanzen zur Expression eines gegen Schädlinge gerichteten Proteins befähigt sind. Durch die Behandlung solchen Saatguts mit den erfindungsgemäßen Wirkstoffkombinationen können bestimmte Schädlinge bereits durch die Expression des z.B. Insektiziden Proteins kontrolliert werden, und zusätzlich durch die erfindungsgemäßen Wirkstoffkombinationen vor Schäden bewahrt werden. Die erfindungsgemäßen Wirkstoffkombinationen eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte wie bereits vorstehend genannt, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Gartenbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Mais, Erdnuss, Canola, Raps, Mohn, Soja, Baumwolle, Rübe (z.B. Zuckerrübe und Futterrübe), Reis, Hirse, Weizen, Gerste, Hafer, Roggen, Sonnenblume, Tabak, Kartoffeln oder Gemüse (z.B. Tomaten, Kohlgewächs). Die erfindungsgemäßen Wirkstoffkombinationen eignen sich ebenfalls zur Behandlung des Saatguts von Obstpflanzen und Gemüse wie vorstehend bereits genannt. Besondere Bedeutung kommt der Behandlung des Saatguts von Mais, Soja, Baumwolle, Weizen und Canola oder Raps zu.
Wie vorstehend bereits erwähnt, kommt auch der Behandlung von transgenem Saatgut mit einer erfindungsgemäßen Wirkstoffkombination eine besondere Bedeutung zu. Dabei handelt es sich um das Saatgut von Pflanzen, die in der Regel zumindest ein heterologes Gen enthalten, das die Expression eines Polypeptids mit insbesondere Insektiziden Eigenschaften steuert. Die heterologen Gene in transgenem Saatgut können dabei aus Mikroorganismen wie Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Die vorliegende Erfindung eignet sich besonders für die Behandlung von transgenem Saatgut, das zumindest ein heterologes Gen enthält, das aus Bacillus sp. stammt und dessen Genprodukt Wirksamkeit gegen Maiszünsler und/oder Maiswurzel-Bohrer zeigt. Besonders bevorzugt handelt es sich dabei um ein heterologes Gen, das aus Bacillus thuringiensis stammt. Im Rahmen der vorliegenden Erfindung wird die erfindungsgemäße Wirkstoffkombination alleine oder in einer geeigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem es so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge der auf das Saatgut aufgebrachten erfindungsgemäßen Wirkstoffkombination und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 AI, WO 2002/080675 AI, WO 2002/028186 A2.
Die erfindungsgemäß verwendbaren Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser. Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 1 12 und C.I. Solvent Red 1 bekannten Farbstoffe. Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fordernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diisopropyl- oder Diisobutylnaphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Ge- eignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat-Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat. Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure- derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose. Als Gibberelline, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen vorzugsweise die Gibberelline AI , A3 (= Gibberellinsäure), A4 und A7 infrage, besonders bevorzugt verwendet man die Gibberellinsäure. Die Gibberelline sind bekannt (vgl. R. Wegler„Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", Bd. 2, Springer Verlag, 1970, S. 401-412). Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-Formulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an. Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden, wie beispielsweise Antisense- oder Cosuppressions-Technologie, RNA-Interferenz - RNAi - Technologie, gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Die Begriffe "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurden oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken erzeugt wurden. Dies können Sorten, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungs Spektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen. Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ( "Traits " ) verleiht. B eispiele für s olche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Zuckerrüben, Tomaten, Erbsen und andere Gemüsesorten, Baumwolle, Tabak, Raps, sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosat e oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid-tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid- resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die erfindungsgemäßen Wirkstoffkombinationen können auch zur Behandlung von in beliebigen Rasenarten ("turfgrasses") lebenden Insekten eingesetzt werden. Als zu bekämpfende Insekten seien beispielsweise genannt: Lepidopteren wie Grasschollwürmer (Crambus sperryellus oder bonifatellus) oder z.B. Pseudaletia unipuncta, Feltia subterrane, Peridroma saucia, Agrotis ipsilon, Hylephi phylaeus, Nomophila noctuella, Käfer (Coleoptera) (z.B. Listroderes costirostris obliquus oder Flohkäfer Chaetocnema repens) wie auch Adulte und Larven der Skarabaeidae (Phyllopertha horticola, Gartenlaubkäfer, Amphimallon solstitiale, Junikäfer, Melolantha melolantha, Maikäfer, PopilUa japonica, Japankäfer, Cyclocephala spp., masked chafer, Mollusken (Nackt- und Gehäuseschnecken), Zikaden wie Draeculacephala minerva oder Deltacephalus sonorus, Blattwanzen (Blissus insularis Barber) und Weichwanzen (Familie Miridae z.B. Spanogonicus albofäsciatus, Dipteren (z.B. Oscinella frit), Schildläuse (z.B. Odonaspis ruthae, Antoninia graminis), Spinnmilben wie Bryobia praetiosa (The clover mite) oder Aceria neocynodonis (Bermudagrass mite) und Rüsselkäfer wie Spenophorus phoeniciensis Chitt. oder S. venatus vestitus. Beispiele fuer Rasenarten fuer die kalte Jahreszeit sind Blaugraeser ("blue grasses"; Poa spp.), wie "Kentucky bluegrass" (Poa pratensis L.), "rough bluegrass" {Poa trivialis L.), "Canada bluegrass" {Poa compressa L.), "annual bluegrass" {Poa annua L.), "upland bluegrass" {Poa glaucantha Gaudin), "wood bluegrass" {Poa nemoralis L.) und "bulbous bluegrass" {Poa bulbosa L.); Straussgraeser ("Bentgrass", Agrostis spp.), wie "creeping bentgrass" {Agrostis palustris Huds.), "colonial bentgrass" {Agrostis tenuis Sibth.), "velvet bentgrass" {Agrostis canina L.), "South German Mixed Bentgrass" {Agrostis spp. einschliesslich Agrostis tenius Sibth., Agrostis canina L., und Agrostis palustris Huds.), und "redtop" {Agrostis alba L.);
Schwingel ("Fescues", Festucu spp.), wie "red fescue" (Festuca rubra L. spp. rubra), "creeping fescue" (Festuca rubra L.), "chewings fescue" (Festuca rubra commutata Gaud.), "sheep fescue" (Festuca ovina L.), "hard fescue" (Festuca longifolia Thuill.), "hair fescue" (Festucu capillata Lam.), "tall fescue" (Festuca arundinacea Schreb.) und "meadow fescue" (Festuca elanor L.);
Lolch ("ryegrasses", Lolium spp.), wie "annual ryegrass" (Lolium multiflorum Lam.), "perennial ryegrass" (Lolium perenne L.) und "italian ryegrass" (Lolium multiflorum Lam.); und Weizengraeser ("wheatgrasses", Agropyron spp..), wie "fairway wheatgrass" (Agropyron cristatum (L.) Gaertn.), "crested wheatgrass" {Agropyron desertorum (Fisch.) Schult.) und "western wheatgrass" {Agropyron smithii Rydb.).
Beispiele fuer weitere "cool season turfgrasses" sind "beachgrass" {Ammophila breviligulata Fern.), "smooth bromegrass" (Bromus inermis Leyss.), Schilf ("cattails") wie "Timothy" {Phleum pratense L.), "sand cattail" {Phleum subulatum L.), "orchardgrass" {Dactylis glomerata L.), "weeping alkaligrass" {Puccinellia distans (L.) Pari.) und "crested dog's-tail" (Cynosurus cristatus L.).
Beispiele fuer "warm season turfgrasses" sind "Bermudagrass" (Cynodon spp. L. C. Rieh), "zoysiagrass" (Zoysia spp. Willd.), "St. Augustine grass" (Stenotaphrum secundatum Walt Kuntze), "centipedegrass" (Eremochloa ophiuroides Munro Hack.), "carpetgrass" {Axonopus affinis Chase), "Bahia grass" (Paspalum notatum Flügge), "Kikuyugrass" (Pennisetum clandestinum Höchst, ex Chiov.), "buffalo grass" (Buchloe daetyloids (Nutt.) Engelm.), "Blue gramma" (Bouteloua gracilis (H.B.K.) Lag. ex Griffiths), "seashore paspalum" {Paspalum vaginatum Swartz) und "sideoats grama" (Bouteloua curtipendula (Michx. Torr.). "Cool season turfgrasses" sind im Allgemeinen bevorzugt. Besonders bevorzugt sind Blaugras, Straussgras und "redtop", Schwingel und Lolch. Straussgras ist insbesondere bevorzugt.
Die Anwendung im Bereich der Haushaltsinsektizide erfolgt allein oder in Kombination mit anderen geeigneten Wirkstoffen wie Phosphorsäureestern, Carbamaten, Pyrethroiden, Neo- nicotinoiden, Wachstumsregulatoren oder Wirkstoffen aus anderen bekannten Insektizidklassen.
Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulos e o der Kunststo ff, Flüssigverdamp fern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Die gute msektizide und akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht. Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.
Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S.R. Colby, Weeds 15 (1967), 20-22 wie folgt berechnet werden:
Wenn
X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha oder in einer Konzentration von m ppm bedeutet,
Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha oder in einer Konzentration von n ppm bedeutet und
E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Wirkstoffe A und B in Aufwandmengen von m und n g/ha oder in einer Konzentration von m und n ppm bedeutet, dann ist
X Y
E=X + Y- 100
Ist der tatsächliche Insektizide oder akarizide Abtötungsgrad größer als berechnet, so ist die Kombination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).
Beispiel 1
Beispiel 1 beschreibt die Wirkung der erfindungsgemäßen Kombination gegen die Raupen des Eulenfalters {Spodoptera exigua) auf Nelken (Dianthus caryophyllus). Azadirachtin wurde als NeemAzal® der Firma Trifolio GmbH eingesetzt. Der Versuch wurde nach EPPO-Richtlinen PP 1/152 (2), PP 1/181 (3), PP 1/135 (3) und PP 1/210 (1) mit 4 Wiederholungen zu je 10 Pflanzen durchgeführt. Zu Beginn der Infektion wurden die Pflanzen folgendermassen behandelt:
1. unbehandelt
2. Verbindung (1-1) als SL 200 (17 %ig), 150 g Wirkstoff/ha
3. Azadirachtin 30 g Wirkstoff/ha 4. Verbindung (I- 1 ) als SL 200 + Azadirachtin, 150 + 30 g Wirkstoff/ha 5. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applicationsmenge betrug 1000L/ha. Es wurden 3 Applikationen im Abstand von 10 - 14 Tagen durchgeführt. Bonitiert wurde der Frassschaden der Raupen an den Nelkenblättern im Wochenabstand. Die Ergebnisse sind in Tabelle 1 zusammengefasst
Tabelle 1 : Wirksamkeit insektizider Behandlung gegen Spodoptera exigua bzgl.
Fraßschaden an Nelken
Figure imgf000026_0001
Aus der Tabelle wird deutlich, dass die Wirkstoffe Azadirachtin und Verbindung (1-1) einzeln am Tag 25 noch keine Wirkung entfalten. Erst am Tag 32 setzt die Wirkung hier ein. Für die Mischung von Azadirachtin und Verbindung (I-l) sieht man aber schon 100% Wirkung am Tag 25. Dieser Versuch verdeutlicht die Beschleunigung der Wirkung bei der Mischung im Vergleich zu den einzelnen Wirkstoffen.
Beispiel 2 Angiessversuch gegen Käferlarven
Käferlarven (Engerlinge) sind bedeutende Schädlinge im Rasen. Einerseits fressen sie die Wurzeln der Gräser und schädigen diese direkt, andererseits sind sie beliebtes Futter für Vögel, die auf der Suche nach Engerlingen die Grassnarbe zerstören. Zur Behandlung gegen Engerlinge werden befallene Rasenflächen üblicherweise mit msektiziden Mitteln begossen. Diese Art der Behandlung stellt das Beispiel 2 im Labor nach.
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man eine handelsübliche Formulierung von Wirkstoff oder Wirkstoffkombination mit Wasser bis zum Erreichen der gewünschten Konzentration. Töpfe mit Erdsubstrat wurden mit folgenden Wirkstoffzubereitungen angegossen:
1. unbehandelt
2. Verbindung (1-1) als SL 200, 600 g Wirkstoff/ha
3. Azadirachtin, 60 g Wirkstoff/ha
4. Verbindung (1-1) als SL 200 + Azadirachtin, 600 + 60 g Wirkstoff/ha 5. Positive Kontrolle: Trichlorfon 4529 g Wirkstoff/ha
L3 Larven von Cyclocephala immaculata wurden auf die Töpfe gesetzt. Nach 1, 4, 7, 14 Tagen wurde die Überlebensrate bestimmt und daraus die Wirksamkeit der Mittel errechnet. 100% bedeutet, dass alle Engerlinge abgetötet wurden, 0% bedeutet keine Wirkung. Die Ergebnisse sind in Tabelle 2 zusammengefasst. Tabelle 2: Wirksamkeit insektizider Giess-Behandlung gegen Cyclocephala immaculata
Testsubstanz Wirkung am Wirkung am Wirkung am Wirkung am
Tag 1 in % Tag 4 in % Tag 7 in % Tag 14 in %
(1-1) 0 28 0 29
Azadirachtin 0 0 0 7
(1-1) + 0 39 43 57
Azadirachtin
gemessen
(1-1) + 0 28 0 34
Azadirachtin
berechnet
Trichlorfon 0 17 29 50 Aus der Tabelle 2 wird deutlich, dass der Wirkstoff Azadirachtin über die gesamte Laufzeit keine Wirkung gegen Engerlinge hatte. An den Tagen 4, 7 und 14 sieht man einen deutlichen synergistischen Effekt. Dieser Versuch verdeutlicht die Erweiterung des Wirkspektums der Mischung im Vergleich zu den einzelnen Wirkstoffen.
Beispiel 3
Phaedon cochleariae - Larven -Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das
Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter {Brassica oleraced) werden durch Spritzen mit der Wirkstoffzubereitung in der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers {Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel.
Bei diesem Test zeigt die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle 3: Phaedon cochleariae Larven - Test
Figure imgf000030_0001
* gef =gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung Beispiel 4
Diabrotica balteata -Test, Larven im Boden (DIABBA)
Lösungsmittel: 4 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das
Konzentrat mit Wasser auf die gewünschte Konzentration.
Die Wirkstoffzubereitung wird mit Erde vermischt. Die angegebene Konzentration bezieht sich auf die Wirkstoffmenge pro Volumeneinheit Boden (mg/1 = ppm). Man füllt den behandelten Boden in Töpfe und legt je Topf 5 Maiskörner aus. 3 Tage nach Aussaat werden Larven des
Maiswurzelbohrers {Diabrotica balteata) in den behandelten Boden gesetzt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Der Wirkungsgrad berechnet sich aus der Anzahl der aufgelaufenen Maispflanzen.
Bei diesem Test zeigt die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle 4: Diabrotica balteata Larven - Test
Figure imgf000031_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby- Formel berechnete Wirkung Beispiel 5
Beispiel 5 beschreibt die Wirkung der erfindungsgemäßen Kombination gegen Weiße Fliege (Trialeurodes vaporariorum) auf Tomaten (Lycopersicon esculentum). Der Versuch wurde unter GEP in Anlehnung an EPPO-Richtline PP 1/36(2) mit 3 Wiederholungen zu je 4 Pflanzen durchgeführt. Zu Beginn der Infektion wurden die Pflanzen folgendermaßen behandelt:
1. unbehandelt
2. Verbindung (1-1) als SL 200 (Verbindung gemäß Formel (1-1), 17 %ig), 50 g Wirkstoff/ha
3. Azadirachtin 30 g Wirkstoff/ha, NeemAzal®
4. Azadirachtin 15 g Wirkstoff/ha, NeemAzal®
5. Azadirachtin 5 g Wirkstoff/ha, NeemAzal®
6. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 30 g Wirkstoff/ha
7. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 15 g Wirkstoff/ha
8. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 5 g Wirkstoff/ha
9. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applikationsmenge betrug 1000L/ha. Es wurden 2 Applikationen im Abstand von 14 Tagen durchgeführt. Bonitiert wurden die Anzahl der adulten Fliegen und die Anzahl der Larven an den Tagen 2 bis 21 nach der ersten Applikation. Die Ergebnisse sind in Tabelle 5 zusammengefasst. Dargestellt ist die Wirkung der Produkte, die sich in einer Reduktion der Anzahl der Insekten bzw. Larven im Vergleich zur unbehandelten Kontrolle zeigt. Als positive Kontrolle wurde Imidacloprid mitgeführt.
Bei den adulten Weißen Fliegen zeigen die Ergebnisse eine bessere gemessene Wirkung der Kombination 1-1 + Azadirachtin gegenüber der Wirkung, die aus den Einzelwerten berechnetet werden kann. Diese Synergie ist besonders ausgeprägt an den ersten Tagen nach der Behandlung. An Tag 2 und Tag 7 konnte bei allen Azadirachtin-Konzentrationen eine verbesserte Wirkung festgestellt werden. Bei 15 und 5 g/ha Azadirachtin gab es diese Synergie auch am Tag 14.
Die Wirkung gegenüber den Larven der Weissen Fliege setzt insgesamt später ein, da die Tiere die Wirkstoffe erst über Fraß aufnehmen müssen. An allen beobachteten Tagen (Tag 7, 14, 21) und bei allen Azadirachtin-Konzentrationen (30, 15, 5 g/ha) war ein deutlicher synergistischer Effekt zu erkennen. Erst die Kombination der beiden Wirkstoffe 1-1 und Azadirachtin ergibt eine Wirkhöhe, die eine Bekämpfung der Weißen Fliege möglich macht und die Wirksamkeit der Kontrolle Imidacloprid übersteigt.
Tabelle 5: Wirksamkeit insektizider Behandlung gegen Trialeurodes vaporariorum an Tomaten
Tabelle 5: Wirksamkeit insektizider Behandlung gegen
Trialeurodes vaporariorum an Tomaten
Figure imgf000033_0001
Beispiel 6
Dieses Beispiel beschreibt einen weiteren Versuch mit der erfindungsgemäßen Formulierung gegen Weiße Fliege (Trialeurodes vaporariorum) auf Tomaten (Lycopersicon esculentum). Der Versuch wurde unter GEP in Anlehnung an EPPO-Richtline PP 1/36(2) mit 4 Wiederholungen zu je 5 Pflanzen durchgeführt. Zu Beginn der Infektion wurden die Pflanzen folgendermaßen behandelt:
1. unbehandelt
2. Verbindung (1-1) als SL 200 (Verbindung gemäß Formel (1-1), 17 %ig), 50 g Wirkstoff/ha
3. Azadirachtin 15 g Wirkstoff/ha, NeemAzal®
4. Azadirachtin 5 g Wirkstoff/ha, NeemAzal®
5. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 15 g Wirkstoff/ha
6. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 5 g Wirkstoff/ha
7. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applikationsmenge betrug 1000L/ha. Es wurden 2 Applikationen im Abstand von 10 Tagen durchgeführt. Bonitiert wurden die Anzahl der adulten Fliegen und die Anzahl der Larven an den Tagen 2 bis 32 nach der ersten Applikation. Die Ergebnisse sind in Tabelle 6 zusammengefasst. Dargestellt ist die Wirkung der Produkte, die sich in einer Reduktion der Anzahl der Insekten bzw. Larven im Vergleich zur unbehandelten Kontrolle zeigt. Als positive Kontrolle wurde Imidacloprid mitgeführt.
Insbesondere bei der Wirkung gegen Larven der Weißen Fliege setzte die Wirkstoff-bedingte Reduktion der Tierzahlen bei der Wirkstoffkombination viel früher ein als bei einer Behandlung mit den Einzelwirkstoffen. Bei den Einzelwirkstoffen war eine Reduktion der Larven erst am Tag 14 zu sehen, während die Wirkung der erfindungsgemäßen Kombination schon am Tag 2 und am Tag 7 zu erkennen war. Weiterhin war an den Tagen 14 und 21 die Wirkung der Kombination sehr viel besser. Damit hat die erfindungsgemäße Kombination einen großen Vorteil gegenüber den Einzelformulierungen und macht eine sinnvolle Bekämpfung der Weißen Fliege erst möglich. Tabelle 6: Wirksamkeit insektizider Behandlung gegen Trialeurodes vaporariorum an Tomaten
Tabelle 6: Wirksamkeit insektizider Behandlung gegen Trialeurodes vaporarwrum an Tomaten
Figure imgf000035_0001
Beispiel 7
Beispiel 7 beschreibt die Wirkung der erfindungsgemäßen Kombination gegen die Gemeine Spinnmilbe (Tetranychus urticae) auf Rosen. Der Versuch wurde im Gewächshaus unter GEP in Anlehnung an EPPO-Richtline PP 1/168(2) mit 4 Wiederholungen zu je 4 Pflanzen durchgeführt. Zu Beginn der Infektion wurden die Pflanzen folgendermaßen behandelt:
1. unbehandelt
2. Verbindung (1-1) als SL 200 (Verbindung gemäß Formel (1-1), 17 %ig), 50 g Wirkstoff/ha
3. Azadirachtin 30 g Wirkstoff/ha, NeemAzal®
4. Azadirachtin 5 g Wirkstoff/ha, NeemAzal®
5. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 30 g Wirkstoff/ha
6. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 5 g Wirkstoff/ha
7. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applikationsmenge betrug 1000L/ha. Es wurden 2 Applikationen im Abstand von 14 Tagen durchgeführt. Bonitiert wurden die Anzahl der Spinnmilben an den Tagen 2 bis 32 nach der ersten Applikation. Die Ergebnisse sind in Tabelle 7 zusammengefasst. Dargestellt ist die Wirkung der Produkte, die sich in einer Reduktion der Anzahl der Spinnmilben im Vergleich zur unbehandelten Kontrolle zeigt.
Tabelle 7: Wirksamkeit insektizider Behandlung gegen Spinnmilben an Rosen
Tabelle 7 : Wirksamkeit insektizider Behandlung gegen Spinnmilben an Rosen
Figure imgf000037_0001
Die Ergebnisse zeigen eine bessere gemessene Wirkung der Kombination I-l + Azadirachtin gegenüber der Wirkung, die aus den Einzelwerten berechnetet werden kann. Diese Synergie ist sichtbar an den Tagen 7, 21 und 28-32 nach der ersten Behandlung. Die verbesserte Wirkung konnte bei 30 und 5 g/ha Azadirachtin festgestellt werden.
Beispiel 8
Beispiel 8 beschreibt die Wirkung der erfindungsgemäßen Kombination gegen die Raupen des Nachtfalters Spodoptera frugiperda auf Mais (Zea mays). Der Versuch wurde im Gewächshaus unter GEP mit 2 Wiederholungen zu je 8 Pflanzen durchgeführt. Nach einer gleichmäßigen Infektion wurden die Pflanzen folgendermaßen behandelt:
1. unbehandelt
2. Verbindung (1-1) als SL 200 (Verbindung gemäß Formel (1-1), 17 %ig), 50 g Wirkstoff/ha
3. Azadirachtin 30 g Wirkstoff/ha, NeemAzal®
4. Azadirachtin 5 g Wirkstoff/ha, NeemAzal®
5. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 30 g Wirkstoff/ha
6. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 5 g Wirkstoff/ha
7. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applikationsmenge betrug 1000L/ha. Es wurden 2 Applikationen im Abstand von 1 1 Tagen durchgeführt. Bonitiert wurden der Fraßschaden an den Tagen 7 bis 42 nach der ersten Applikation, den die Raupen am Mais bewirkten. Die Ergebnisse sind in Tabelle 8 zusammengefasst. Dargestellt ist die Wirkung der Produkte, die sich in einer Reduktion des Fraßschadens im Vergleich zur unbehandelten Kontrolle zeigt.
Tabelle 8: Wirksamkeit insektizider Behandlung gegen Nachtfalterraupen auf Mais
Teabelle 8: Wirksamkeit insektizider Behandlung gegen Nachtfalterraupen
auf Mais
Figure imgf000039_0001
Bei beiden untersuchten Azadirachtin-Konzentrationen (30 und 5 g/ha) war bei der Kombination der Wirkstoffe I-l und Azadirachtin ein schnelleres Einsetzen der Wirkung und eine verbesserte Wirkung gegen die Raupen des Nachtfalters im Vergleich zu den Einzelwirkstoffen zu erkennen.
Beispiel 9 - Bioassay
Beispiel 9 beschreibt ebenfalls die Wirkung der erfindungsgemäßen Kombination gegen die Raupen der Gemüsemotte Plutella xylostella auf Wirsing. Die Pflanzen wurden im Gewächshaus angezogen und je fünf Pflanzen wurden folgendermaßen behandelt: Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applikationsmenge betrug 1000L/ha.
1. unbehandelt
2. Verbindung (1-1) als SL 200 (Verbindung gemäß Formel (1-1), 17 %ig), 50 g Wirkstoff/ha
3. Azadirachtin 30 g Wirkstoff/ha, NeemAzal®
4. Azadirachtin 15 g Wirkstoff/ha, NeemAzal®
5. Azadirachtin 5 g Wirkstoff/ha, NeemAzal®
6. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 30 g Wirkstoff/ha
7. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 15 g Wirkstoff/ha
8. Verbindung (1-1) als SL 200 + Azadirachtin, 50 + 5 g Wirkstoff/ha
9. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Pflanzen wurden unter Gewächshausbedingungen inkubiert (20°C 70% relative Luftfeuchte), wobei die Aufstellung der Pflanzen randomisiert erfolgt. Nach 3 Tagen erfolgte die erste Blattentnahme. Hierbei wurden von jeder Pflanze 5 Blätter gepflückt. Aus den Blättern wurden 10 Blattscheiben mit einem Durchmesser von 6cm ausgestanzt und in Petrischalen, mit angefeuchtetem Filterpapier gelegt. Nach dem Einfüllen der Blattscheiben in die Petrischalen wurden 5 Plutella xylostella - Larven im L2-Stadium aufgesetzt. Die Petrischalen wurden in ein Tablett gestellt, mit einer dunklen Folie abgedeckt und bei 20°C im Labor gelagert. Die Auswertung erfolgte an Tag 9, 14 und 21 nach dem Aufsetzen der Larven, wobei die Anzahl der überlebenden Tiere bonitiert wurden.
Die Ergebnisse sind in Tabelle 9 zusammengefasst. Dargestellt ist die Wirkung der Produkte, die sich in einer Reduktion der Anzahl der Gemüsemotten im Vergleich zur unbehandelten Kontrolle zeigt. Auch hier ist die um ca. 5 Tage früher einsetzende Wirkung der erfindungsgemäßen Kombination von I-l und Azadirachtin besonders bemerkenswert. Bei der Konzentration 50 g/ha I-l und 30 g/ha Azadirachtin wird eine 100%ige Wirkung schon am Tag 9 erreicht. Bei der niedrigeren Konzentration von 50 g/ha I-l und 5 g/ha Azadirachtin erreicht man am Tag 9 immerhin schon eine fast 50%ige Wirkung gegenüber 0% Wirkung der Einzelkomponenten. Am Tag 14 ist bei allen Konzentrationen eine deutliche Verbesserung der Wirkung zu erkennen.
Tabelle 9: Wirksamkeit insektizider Behandlung gegen Gemüsemotte auf Wirsing
Tabelle 9: Wirksamkeit insektizider Behandlung gegen Gemüsemotte auf
Figure imgf000041_0001
Beispiel 10
Beispiel 10 beschreibt die Wirkung der erfindungsgemäßen Kombination gegen die Raupen des Kohlerdflohs Phyllotreta nigripes auf Kohl. Der Versuch wurde als Feldversuch nach den EPPO Richtlinien PP 1/210(1), PP 1/152 (2), PP 1/181 (3), PP 1/135 mit 4 Wiederholungen zu je 10 Pflanzen durchgeführt. Die Pflanzen wurden folgendermaßen behandelt:
1. unbehandelt
2. Verbindung (1-1) als SL 200 (Verbindung gemäß Formel (1-1), 17 %ig), 150 g Wirkstoff/ha
3. Azadirachtin 30 g Wirkstoff/ha, NeemAzal®
4. Verbindung (1-1) als SL 200 + Azadirachtin, 150 + 30 g Wirkstoff/ha
5. Positive Kontrolle: Imidacloprid 100 g Wirkstoff/ha
Die Spritzlösung wurde hergestellt, indem handelsübliche Formulierungen gemischt und mit Wasser auf die genannte Konzentration eingestellt wurden. Die Applikationsmenge betrug 1000L/ha. Es wurden 2 Applikationen im Abstand von 14 Tagen durchgeführt. Bonitiert wurden die Anzahl lebender Raupen an den Tagen 7 bis 32 nach der ersten Applikation. Die Ergebnisse sind in Tabelle 10 zusammengefasst. Dargestellt ist die Wirkung der Produkte, die sich in einer Reduktion der Raupenzahl im Vergleich zur unbehandelten Kontrolle zeigt.
Die Ergebnisse zeigen eine bessere gemessene Wirkung der Kombination 1-1 + Azadirachtin gegenüber der Wirkung, die aus den Einzelwerten berechnetet werden kann. Diese Synergie ist sichtbar an allen untersuchten Tagen bei einer Dosierung von 150 g/ha 1-1 und 30 g/ha Azadirachtin
Tabelle 10: Wirksamkeit insektizider Behandlung gegen Kohlerdfloh Tabelle 10: Wirksamkeit insektizider Behandlung gegen Kohlerdfloh
Figure imgf000043_0001

Claims

Patentansprüche
W i rk s t o f fk o m b i n at i o n e n th a l t e n d m i n d e s t e n s substituierte Enaminocarbonylverbindung der Formel (1-1), (1-2) oder (1-3)
Figure imgf000044_0001
(1-1) (1-2) (1-3) und Azadirachtin.
2. Wirkstoffkombination gemäß Anspruch 1, dadurch gekennzeichnet, dass das Azadirachtin in Form des reinen Wirkstoffes oder als Formulierung enthaltend Azadirachtin oder in Form von Extrakten der Samen des Neem-Baumes sowie deren Formulierungen enthalten ist.
3. Wirkstoffkombination gemäß Anspruch 1, dadurch gekennzeichnet, dass eine substituierte Enaminocarbonylverbindung 4- {[(6-Chlorpyrid-3-yl)methyl](2,2-difluorethyl)amino} - furan-2(5H)-on (Verbindung (1-1)) ist.
4. Wirkstoffkombination gemäß Anspruch 1, dadurch gekennzeichnet, dass das Azadirachtin einen Anteil von Azadirachtin A (Molekulargewicht 720,7 g/mol) von 20 % bis 50 % enthält.
5. Wirkstoffkombination gemäß Anspruch 1 , dadurch gekennzeichnet, dass diese eine der Verbindungen der Formel (1-1), (1-2) oder (1-3) und Azadirachtin in einem Mischungsverhältnis im Bereich von etwa 125:1 bis etwa 1 :125 enthält.
6. Formulierungen enthaltend die Wirkstoffkombination gemäß Anspruch 1.
7. Verfahren zur Bekämpfung von Insekten und Akariden, dadurch gekennzeichent, dass die Wirkstoffkombination gemäß Anspruch 1 auf die Pflanzen und Pflanzenteile mit und ohne Befall von Schädlingen ausgebracht wird. Verfahren zur Bekämpfung von Insekten und Akariden, dadurch gekennzeichent, dass die Wirkstoffkombination gemäß Anspruch 1 in den die Pflanze umgebenen Lebensraum eingetragen wird.
Verfahren gemäß der Ansprüche 7 o d er 8, dadurch gekennzeichnet, dass Pflanzen Zierpflanzen im Haus- und Garten sind.
Verwendung der Wirkstoffkombination gemäß Anspruch 1 zur Bekämpfung von Insekten und Akariden.
PCT/EP2011/051577 2010-02-05 2011-02-03 Wirkstoffkombination enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung WO2011095554A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES11701689.9T ES2437759T3 (es) 2010-02-05 2011-02-03 Combinaciones de principios activos que contienen azadiractina y un compuesto de enaminocarbonilo sustituido
EP11701689.9A EP2531030B1 (de) 2010-02-05 2011-02-03 Wirkstoffkombinationen enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung
UAA201210471A UA107008C2 (uk) 2010-02-05 2011-02-03 Комбінація активних речовин, яка містить азадирахтин і заміщену енамінокарбонільну сполуку
AU2011212451A AU2011212451B2 (en) 2010-02-05 2011-02-03 Active substance combination containing azadirachtin and a substituted enamino carbonyl compound
RU2012137685/13A RU2553248C2 (ru) 2010-02-05 2011-02-03 Комбинация биологически активных веществ, содержащая азадирахтин и замещенное енаминокарбонильное соединение
CA2788995A CA2788995C (en) 2010-02-05 2011-02-03 Active substance combination containing azadirachtin and a substituted enamino carbonyl compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30175510P 2010-02-05 2010-02-05
US61/301,755 2010-02-05
EP10152723A EP2353386A1 (de) 2010-02-05 2010-02-05 Wirkstoffkombination enthaltend Azadirachtin und eine substituierte Enaminocarbonylverbindung
EP10152723.2 2010-02-05

Publications (2)

Publication Number Publication Date
WO2011095554A2 true WO2011095554A2 (de) 2011-08-11
WO2011095554A3 WO2011095554A3 (de) 2011-11-03

Family

ID=42235732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/051577 WO2011095554A2 (de) 2010-02-05 2011-02-03 Wirkstoffkombination enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung

Country Status (8)

Country Link
US (1) US8653110B2 (de)
EP (2) EP2353386A1 (de)
AR (1) AR081619A1 (de)
AU (1) AU2011212451B2 (de)
CA (1) CA2788995C (de)
ES (1) ES2437759T3 (de)
RU (1) RU2553248C2 (de)
WO (1) WO2011095554A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503162C1 (ru) * 2012-10-09 2014-01-10 Михаил Аркадьевич Ершов Способ предпосевной обработки пасленовых культур
JP6830487B2 (ja) * 2015-12-08 2021-02-17 ダウ アグロサイエンシィズ エルエルシー 4‐アミノ‐3‐クロロ−6−(4−クロロ−2−フルオロ−3−メトキシフェニル)ピリジン−2−カルボン酸、フロラスラムおよびピロックススラムまたはその誘導体を含有する除草組成物。
CA3162841A1 (en) 2018-09-27 2020-04-02 0903608 B.C. Ltd. Synergistic pesticidal compositions and methods for delivery of insecticidal active ingredients

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0539588A1 (de) 1990-07-05 1993-05-05 Nippon Soda Co., Ltd. Aminderivat
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2007115644A1 (de) 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituierte enaminocarbonylverbindungen
WO2009043443A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69626516T2 (de) * 1996-10-02 2003-11-20 Council Of Scientific & Industrial Research, Neu Delhi Azadirachtin Formulierungen und deren Herstellung aus Samenkernen des Neembaumes
DE102006015468A1 (de) * 2006-03-31 2007-10-04 Bayer Cropscience Ag Substituierte Enaminocarbonylverbindungen
DE102007045921A1 (de) * 2007-09-26 2009-04-02 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0539588A1 (de) 1990-07-05 1993-05-05 Nippon Soda Co., Ltd. Aminderivat
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
WO2007115644A1 (de) 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituierte enaminocarbonylverbindungen
WO2009043443A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Römpp Chemie Lexikon", 1991, GEORG THIEME VERLAG, pages: 2954
R. WEGLER: "Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", vol. 2, 1970, SPRINGER VERLAG, pages: 401 - 412
S.R. COLBY, WEEDS, vol. 15, 1967, pages 20 - 22
Z. NATURFORSCH., vol. 42, 1987, pages 4

Also Published As

Publication number Publication date
ES2437759T3 (es) 2014-01-14
EP2531030B1 (de) 2013-10-23
AU2011212451B2 (en) 2014-04-10
EP2531030A2 (de) 2012-12-12
AR081619A1 (es) 2012-10-10
CA2788995C (en) 2018-10-16
CA2788995A1 (en) 2011-08-11
AU2011212451A1 (en) 2012-08-30
WO2011095554A3 (de) 2011-11-03
US20110207778A1 (en) 2011-08-25
US8653110B2 (en) 2014-02-18
RU2012137685A (ru) 2014-03-10
RU2553248C2 (ru) 2015-06-10
EP2353386A1 (de) 2011-08-10

Similar Documents

Publication Publication Date Title
EP2582242B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP3146841B1 (de) Wirkstoffkombinationen enthaltend penflufen und sulfoxaflor
TR201816257T4 (tr) Bir biyolojik kontrol ajanı ve trifloksistrobin içeren bileşim.
TR201816272T4 (tr) Bir biyolojik kontrol ajanı ve flopikolid içeren bileşim.
RU2565081C2 (ru) Комбинации активных соединений
EP2645857A1 (de) Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
TR201816247T4 (tr) Metalaksil ve metalaksil-m'den seçilen bir fungisit ve bir biyolojik kontrol ajanı içeren bileşim.
WO2012010525A2 (de) Verwendung von anthranilsäureamidderivaten zur bekämpfung von insekten und spinnmilben durch angiessen, bodenmischung, furchenbehandlung, tröpfchenapplikation, boden-, stamm- oder blüteninjektion, in hydroponischen systemen, durch pflanzlochbehandlung oder tauchapplikation, floating- oder saatboxapplikation oder durch behandlung von saatgut, sowie zur steigerung der stresstoleranz in pflanzen gegenüber abiotischem stress
WO2015150348A1 (de) VERWENDUNG VON N-ARYLAMIDIN-SUBSTITUIERTEN TRIFLUOROETHYLSULFOXID-DERIVATEN ZUR BEKÄMPFUNG VON SCHÄDLINGEN DURCH ANGIEßEN, TRÖPFCHENAPPLIKATION, TAUCHAPPLIKATION, BODENINJEKTION ODER DURCH DIE BEHANDLUNG VON SAATGUT
WO2010054757A2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
KR102625757B1 (ko) 살곤충/살진드기 특성을 갖는 활성 화합물 조합물
KR20200066631A (ko) 살곤충/살진드기 특성을 갖는 활성 화합물 조합물
WO2010127787A2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP2531030B1 (de) Wirkstoffkombinationen enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung
WO2012028583A1 (de) Deltamethrin enthaltende formulierungen
KR102650038B1 (ko) 살곤충/살진드기 특성을 갖는 활성 화합물 조합물
WO2020078839A1 (de) Wirkstoffkombinationen
AU2019250592B2 (en) Use of tetramic acid derivatives for controlling pests by watering or droplet application
WO2017174430A1 (en) Combination of nuclear polyhedrosis virus and diamides
WO2010063382A2 (de) Verwendung bestimmter enaminocarbonylverbindungen zur selektiven bekämpfung von insekten
WO2019197617A1 (de) Verwendung von tetramsäurederivaten zur bekämpfung von tierischen schädlingen durch angiessen, tröpfchenapplikation. pflanzlochbehandlung oder furchenapplikation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11701689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011701689

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2788995

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011212451

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011212451

Country of ref document: AU

Date of ref document: 20110203

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201210471

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2012137685

Country of ref document: RU