WO2011095103A1 - 聚合载波小区测量的方法、装置及系统 - Google Patents

聚合载波小区测量的方法、装置及系统 Download PDF

Info

Publication number
WO2011095103A1
WO2011095103A1 PCT/CN2011/070682 CN2011070682W WO2011095103A1 WO 2011095103 A1 WO2011095103 A1 WO 2011095103A1 CN 2011070682 W CN2011070682 W CN 2011070682W WO 2011095103 A1 WO2011095103 A1 WO 2011095103A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
cell
measurement period
information
inactive
Prior art date
Application number
PCT/CN2011/070682
Other languages
English (en)
French (fr)
Inventor
邓天乐
汤斌淞
王君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112012019347A priority Critical patent/BR112012019347B8/pt
Priority to EP11739382.7A priority patent/EP2533562B1/en
Publication of WO2011095103A1 publication Critical patent/WO2011095103A1/zh
Priority to US13/565,052 priority patent/US8774792B2/en
Priority to US13/687,501 priority patent/US20130088988A1/en
Priority to US14/284,705 priority patent/US9020494B2/en
Priority to US14/663,857 priority patent/US9301190B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a technical solution for aggregate carrier cell measurement. Background technique
  • the user equipment (UE) in the active state determines the serving cell according to the signal power of the cell, and the UE in the idle state determines the camped cell according to the signal power of the cell. Therefore, the UE needs to measure the signals of the serving cell or the camping cell, as well as the signals of the neighboring cells.
  • one cell has one carrier, and the UE only needs to measure the signal of the unique carrier in the serving cell or the camped cell.
  • LTE-Advanced Long Term Evolution advanced
  • the UE provides higher service data speeds.
  • the base station can dynamically schedule each component carrier (CC) according to the capabilities and service types of the UE, and increase or decrease the number of component carriers used by the UE.
  • CC component carrier
  • An aspect of the present invention provides a method for aggregate carrier cell measurement, including: Obtaining measurement configuration information of the aggregated carrier cell, where the measurement configuration information includes signal estimation value information and a corresponding measurement period thereof; the user equipment acquiring the foregoing according to the signal estimation value of the inactive component carrier in the aggregated carrier cell and the measurement configuration information.
  • the measurement period of the inactive unit carrier the user equipment measures the inactive unit carrier according to the measurement period of the inactive unit carrier.
  • a user equipment including: a first acquiring unit, configured to acquire measurement configuration information of an aggregate carrier cell, where the measurement configuration information includes signal estimation value information and a corresponding measurement period thereof; And a measurement period for acquiring the inactive cell carrier according to the signal estimation value of the inactive cell carrier in the aggregate carrier cell and the foregoing measurement configuration information; and a measuring unit, configured to use, according to the measurement period of the inactive cell carrier The inactive cell carrier is measured.
  • Still another aspect of the present invention provides a system for aggregated carrier cell measurement, comprising a base station and a user equipment as described above.
  • the user equipment performs different periods of measurement on different cell carriers, thereby avoiding power consumption caused by excessive measurement.
  • FIG. 1 is a schematic diagram of a method for measuring an aggregate carrier cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for measuring an aggregate carrier cell according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for measuring an aggregate carrier cell according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method for measuring an aggregate carrier cell according to still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for measuring an aggregate carrier cell according to still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for measuring an aggregate carrier cell according to still another embodiment of the present invention.
  • FIG. 6-a is a schematic diagram showing a linear relationship in a method for measuring a modulated carrier cell according to another embodiment of the present invention
  • FIG. 6-b is a schematic diagram showing a nonlinear relationship in a method for measuring a modulated carrier cell according to still another embodiment of the present invention
  • FIG. 7 is a schematic diagram of a method for measuring an aggregated carrier cell according to another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an aggregate carrier cell measurement system according to an embodiment of the present invention. detailed description
  • This embodiment provides a method for measuring aggregate carrier cells, as shown in FIG. 1, including the following content.
  • the UE acquires measurement configuration information of the aggregate carrier cell, where the measurement configuration information includes signal estimation value information and a corresponding measurement period.
  • the UE selects a measurement period of the inactive unit carrier according to the signal estimation value of the inactive unit carrier in the aggregate carrier cell and the measurement configuration information.
  • the UE measures the inactive cell carrier according to the measurement period of the inactive cell carrier.
  • the method for measuring the aggregated carrier cell provided in this embodiment can implement different periods of measurement of different cell carriers in the aggregated carrier cell, and avoid the power consumption caused by excessive measurement.
  • the acquiring, by the UE, the measurement configuration information of the aggregated carrier cell in the foregoing 101 may include: receiving, by the UE, measurement configuration information sent by the serving base station, or obtaining, by the UE, measurement configuration information from the preset information.
  • the signal estimation value information in the foregoing 101 and the corresponding measurement period may be signal power (such as Reference Signal Receiving Power, RSRP for short) and its corresponding measurement period, and correspondingly,
  • the signal estimation value of the inactive unit carrier in the aggregated carrier cell in the above 102 is the signal power (such as RSRP) of the inactive unit carrier in the aggregated carrier cell.
  • the signal power information in the measurement configuration information and the corresponding measurement period include: a signal power interval and a corresponding measurement period, or a signal power value, and a corresponding measurement period.
  • the UE may select the non-selection in the measurement configuration information according to the signal power of the inactive unit carrier in the aggregate carrier cell.
  • the measurement period of the cell carrier is activated.
  • the measurement configuration information may further include: type information or power information of the aggregated carrier cell, or speed information.
  • the UE may also combine the type information or power information of the aggregated carrier cell sent by the serving base station, or according to the current speed of the UE ( For example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself is selected, and the measurement period of the inactive unit carrier is selected in the measurement configuration information.
  • the UE receives the measurement period calculation information sent by the serving base station, and according to the inactive unit carrier in the aggregated carrier cell.
  • the signal power, the above-mentioned measurement configuration information, and the above-described measurement period calculation information are used to calculate a measurement period in which the inactive cell carrier is obtained.
  • the foregoing measurement configuration information may further include: type information or power information of the aggregated carrier cell, or speed information. In this case, the UE firstly uses the type information or power information of the aggregated carrier cell sent by the serving base station, or the current speed of the UE (for example, the network).
  • the signal power of the unit carrier, and the selected signal power value and the corresponding measurement period thereof are calculated, and the measurement period of the inactive unit carrier is calculated.
  • the method for acquiring the signal power of the inactive cell carrier in the aggregated carrier cell in the foregoing 102 may include: the UE measures the inactive cell carrier in the aggregated carrier cell, acquires the signal power of the inactive cell carrier, or the UE 4 aggregates the carrier cell The signal power of the known unit carrier is obtained, and the signal power of the inactive unit carrier in the aggregated carrier cell is obtained. Further, the signal power of the above-described inactive cell carrier may be an average value of the signal power of the above-described inactive cell carrier.
  • the signal estimation value information in the foregoing 101 and the corresponding measurement period may be signal quality (such as Reference Signal Receiving Quality, reference signal reception).
  • the quality, abbreviated as RSRQ) information and its corresponding measurement period correspondingly, the signal estimation value of the inactive unit carrier in the aggregated carrier cell in the above 102 is the signal quality (such as RSRQ) of the inactive unit carrier in the aggregated carrier cell.
  • the signal quality information in the measurement configuration information and the corresponding measurement period include: a signal quality interval and a corresponding measurement period, or a signal quality value and a corresponding measurement period.
  • the UE may select a non-selection in the measurement configuration information according to the signal quality of the inactive unit carrier in the aggregate carrier cell.
  • the measurement period of the cell carrier is activated.
  • the measurement configuration information may further include: type information or power information of the aggregated carrier cell, or speed information.
  • the UE may also combine the type information or power information of the aggregated carrier cell sent by the serving base station, or according to the current speed of the UE ( For example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself is selected, and the measurement period of the inactive unit carrier is selected in the measurement configuration information.
  • the UE receives the measurement period calculation information sent by the serving base station, and according to the inactive unit carrier in the aggregated carrier cell.
  • the signal quality, the above-mentioned measurement configuration information, and the above-described measurement period calculation information are calculated, and the measurement period of the inactive cell carrier is calculated.
  • the foregoing measurement configuration information may further include: type information or power information of the aggregated carrier cell, or speed information. In this case, the UE firstly uses the type information or power information of the aggregated carrier cell sent by the serving base station, or the current speed of the UE (for example, the network).
  • the signal power of the unit carrier, and the selected signal quality value and the corresponding measurement period thereof are calculated, and the measurement period of the inactive unit carrier is calculated.
  • the method for acquiring the signal quality of the inactive unit carrier in the aggregated carrier cell in the foregoing 102 may include: the UE measuring the inactive unit carrier in the aggregated carrier cell, and acquiring the inactive unit carrier.
  • the signal quality, or the UE 4 obtains the signal quality of the inactive unit carrier in the aggregated carrier cell according to the signal quality of the known unit carrier in the aggregated carrier cell.
  • the signal quality of the inactive cell carrier may be an average value of the signal quality of the inactive cell carrier.
  • the signal estimation value information in the foregoing 101 and the corresponding measurement period may be path loss information and corresponding measurement periods, and correspondingly, the signal estimation of the inactive unit carrier in the aggregate carrier cell in the foregoing 102 The value is the path loss of the inactive cell carrier in the aggregated carrier cell.
  • the signal path loss information in the measurement configuration information and the corresponding measurement period include: a signal path loss interval and a corresponding measurement period, or a signal path loss value and a corresponding measurement period.
  • the UE may use the measurement path configuration information according to the signal path loss of the inactive unit carrier in the aggregate carrier cell. Select the measurement period of the inactive cell carrier.
  • the measurement configuration information may further include: type information or power information of the aggregated carrier cell, or speed information.
  • the UE may also combine the type information or power information of the aggregated carrier cell sent by the serving base station, or according to the current speed of the UE ( For example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself is selected, and the measurement period of the inactive unit carrier is selected in the measurement configuration information.
  • the UE receives the measurement period calculation information sent by the serving base station, and according to the inactive unit in the aggregated carrier cell.
  • the signal path loss of the carrier, the above-mentioned measurement configuration information, and the above-described measurement period calculation information are calculated to obtain a measurement period of the inactive cell carrier.
  • the foregoing measurement configuration information may further include: type information or power information of the aggregated carrier cell, or speed information. In this case, the UE firstly uses the type information or power information of the aggregated carrier cell sent by the serving base station, or the current speed of the UE (for example, the network).
  • the quantity period is further calculated according to the measurement period calculation information, the signal path loss of the inactive unit carrier in the aggregate carrier cell, and the selected signal path loss value and the corresponding measurement period, to obtain a measurement period of the inactive unit carrier.
  • the method for obtaining the path loss of the inactive cell carrier in the aggregated carrier cell in the foregoing 102 may include: the UE measuring the inactive cell carrier in the aggregated carrier cell, acquiring the path loss of the inactive cell carrier, or the UE according to the aggregated carrier cell Knowing the signal path loss of the cell carrier, obtaining the signal path loss of the inactive cell carrier in the aggregated carrier cell. Further, the signal path loss of the inactive cell carrier may be an average value of the signal path loss of the inactive cell carrier.
  • the present invention will be described in detail by taking the signal estimation value information in the measurement configuration information and its corresponding measurement period as follows: the signal power information and its corresponding measurement period are taken as an example to specifically describe the present invention. Implementation.
  • the signal power is specifically taken as an example of the RSRP
  • the serving cell in which the aggregated carrier cell in the evolved NodeB (eNB) is the UE is taken as an example, and an aggregate cell in the eNB includes three units.
  • the RSRP information included in the measurement configuration information and its corresponding measurement period are the RSRP interval and its corresponding measurement period.
  • An embodiment of the aggregate carrier cell measurement method shown in FIG. 2 includes the following.
  • the UE receives measurement configuration information sent by the eNB, where the measurement configuration information includes an RSRP interval and a corresponding measurement period.
  • the eNB may send the foregoing measurement configuration information by using a broadcast message or a radio resource control message, where the measurement configuration information may be a measurement configuration table as shown in Table 1.
  • the RSRP and its corresponding measurement period in Table 1 are only exemplary values, which can be set according to the actual situation of the network during the specific implementation process. Table 1
  • the UE selects measurement periods of CC1 and CC2 in the foregoing measurement configuration information (such as Table 1) according to the RSRP of the inactive cell carriers CC1 and CC2 in the aggregated carrier cell.
  • the UE selects the measurement period of CC1 and CC2 according to Table 1 as 10s; when the UE moves to the position of time T2, the RSRP of CC1 and CC2 is -100 dBm and Between -60 dBm, the UE selects the measurement period of CC1 and CC2 as ls according to Table 1.
  • the UE selects the measurement period of CC1 according to Table 1 as 10s, selects the measurement period of CC2 as Is; when the UE moves When the time is T2, the RSRP of CC1 is between -100 dBm and -60 dBm, and the RSRP of CC2 is greater than -60 dBm. Then, according to Table 1, the UE selects the measurement period of CC1 as Is, and selects the measurement period of CC2 as 100 ms.
  • the UE measures CC1 and CC2 according to the selected measurement period.
  • the method for measuring the aggregated carrier cell according to the embodiment can be implemented in the aggregated carrier cell, and the UE performs different periods of measurement on different component carriers to avoid power consumption caused by excessive measurement, and can activate the inactive component carrier according to the RSRP in time. .
  • An embodiment of the aggregate carrier cell measurement method shown in FIG. 3 includes the following.
  • the eNB starts the UE to perform measurement. For example: The UE receives the measurement indication sent by the eNB. This step is optional.
  • the UE obtains measurement configuration information from the preset information, where the measurement configuration information includes an RSRP interval and a corresponding measurement period.
  • the measurement configuration information may be preset by the UE manufacturer, for example, preset to an external storage device (such as a user card) of the UE, or preset to the information stored by the UE,
  • the UE may obtain the foregoing measurement configuration information from the user card or the preset information stored by the UE.
  • the upgrade can be performed by using the UE software.
  • the foregoing measurement configuration information may be a measurement configuration table as shown in Table 2.
  • the RSRP and its corresponding measurement period in Table 2 are only exemplary values, which can be set according to the actual situation of the network during the specific implementation process.
  • the UE selects measurement periods of CC1 and CC2 in the foregoing measurement configuration information (such as Table 2) according to the RSRP of the inactive cell carriers CC1 and CC2 in the aggregated carrier cell.
  • the UE selects the measurement period of CC1 and CC2 according to Table 2 as 10s; when the UE moves to the position of time T2, the RSRP of CC1 and CC2 is -100 dBm and Between -60dBm, the UE selects the measurement period of CC1 and CC2 according to Table 2 as 2s.
  • the UE selects the measurement period of CC1 according to Table 2 as 10 s, and selects the measurement period of CC2 as 2 s; when the UE moves When the time is T2, the RSRP of CC1 is between -100 dBm and -60 dBm, and the RSRP of CC2 is greater than -60 dBm. Then, according to Table 2, the UE selects the measurement period of CC1 as 2 s, and selects the measurement period of CC2 as 500 ms.
  • the UE performs measurements on CC1 and CC2 according to the selected measurement period.
  • the method for measuring the aggregated carrier cell according to the embodiment can be implemented in the aggregated carrier cell, and the UE performs different periods of measurement on different component carriers to avoid power consumption caused by excessive measurement, and can activate the inactive component carrier according to the RSRP in time.
  • An embodiment of the method for measuring aggregated carrier cells shown in FIG. 4 includes the following.
  • the UE receives the measurement configuration information sent by the eNB. For example, the UE receives the eNB to send the measurement configuration information to the UE by using a broadcast message or a radio resource control message; or the UE acquires the measurement configuration information from the preset information.
  • the above measurement configuration information includes an RSRP interval and its corresponding measurement period, and also includes the aggregate carrier ' ⁇ !, type information or power information of the area.
  • the type information of the aggregated carrier cell indicates the type of the aggregated carrier cell, for example, a micro cell (referred to as a Pico cell), a macro cell (referred to as a macro cell), and a home base station cell (referred to as a Femto cell).
  • the power of the cell can also indicate the type of the cell. For example, when the cell power is 40 W, the cell is generally considered to be a Macro cell, and the cell power is 1 W. The cell is generally considered to be a Pico cell.
  • the measurement configuration information may be a measurement configuration table differentiated by cell type or power as shown in Tables 3-1 and 3-2; or may be a measurement configuration table as shown in Table 4.
  • the RSRPs in Table 3-1, 3-2, and Table 4 and their corresponding measurement periods are only exemplary values. They can be set according to the actual conditions of the network during the specific implementation.
  • the UE receives type information or power information of the aggregated carrier cell sent by the eNB.
  • the eNB may send type information or power information of the aggregate carrier cell to the UE through a broadcast message or a radio resource control message.
  • the UE compares the type information or power information of the aggregated carrier cell that is received, and the RSRP of the inactive cell carriers CC1 and CC2 in the aggregated carrier cell, and the foregoing measurement configuration information (Tables 3-1 and 3-2). , or Table 4) Select the measurement period for CC1 and CC2.
  • the UE receives the type information of the aggregated carrier cell sent by the eNB as Pico, and the RSRP of both CC1 and CC2 is less than -84 dBm at time T1, the UE selects the measurement period of CC1 and CC2 according to Table 3-2 or Table 4 as 10s; When the UE moves to the position of time T2, the RSRP of CC1 and CC2 is between -84dBm and -44dBm, then the UE selects the measurement period of CC1 and CC2 as ls according to Table 3-2 or Table 4.
  • the UE if the power of the aggregated carrier cell sent by the eNB is 40 W, the RSRP of CC1 is less than -100 dBm at time T1, and the RSRP of CC2 is between -100 dBm and -60 dBm, then the UE according to Table 3-1 or Table 4
  • the measurement period of CC1 is selected to be 10s, and the measurement period of CC2 is selected as Is; when the UE moves to the position of T2, the RSRP of CC1 is between -100 dBm and -60 dBm, and the RSRP of CC2 is greater than -60 dBm, then the UE according to Table 3- 1 or Table 4 selects the measurement period of CC1 as ls, and selects the measurement period of CC2 as 100 ms.
  • the UE performs measurements on CC1 and CC2 according to the selected measurement period.
  • the method for measuring the aggregated carrier cell according to the embodiment can be implemented in the aggregated carrier cell, and the UE performs different periods of measurement on different component carriers to avoid power consumption caused by excessive measurement, and can activate the inactive component carrier according to the RSRP in time. .
  • An embodiment of the aggregate carrier cell measurement method shown in FIG. 5 includes the following.
  • the UE receives the measurement configuration information sent by the eNB. For example, the UE receives the measurement configuration information sent by the eNB to the UE by using a broadcast message or a radio resource control message, or obtains measurement configuration information from the preset information, where the measurement configuration information includes an RSRP interval. And its corresponding measurement period, also includes speed information.
  • the measurement configuration information may be a measurement configuration table according to the UE speed information as shown in Tables 5-1, 5-2, and 5-3, or may be a measurement configuration table as shown in Table 6. .
  • the RSRPs in Table 5-1, 5-2, 5-3, and Table 6 and their corresponding measurement periods are only exemplary values. You can set them according to the actual network conditions during the implementation.
  • the UE according to the current speed of the UE (for example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself) and the RSRP of the inactive unit carriers CC1 and CC2 in the aggregated carrier cell, and the foregoing measurement configuration information (for example, 5-1, 5-2, and 5-3, or Table 6) Select CC1 and CC2 measurement cycles.
  • the current speed of the UE for example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself
  • the RSRP of the inactive unit carriers CC1 and CC2 in the aggregated carrier cell for example, 5-1, 5-2, and 5-3, or Table 6
  • the UE selects the measurement period of CC1 and CC2 according to Table 5-1 or Table 6 above to be 20 s;
  • the UE moves to the position at time T2 if the UE is at medium speed, the speed is greater than 5 km/h and less than 30 km/h, and the RSRP of CC1 and CC2 is at -100 dBm.
  • the UE selects the measurement period of CC1 and CC2 as 2s according to Table 5-2 or Table 6.
  • the UE selects CC1 according to Table 5-1 or Table 6.
  • the measurement period is 20s, and the measurement period of CC2 is selected to be 5s.
  • the UE When the UE moves to the position of T2, if the UE is moving at a high speed, the speed is greater than 30km/h, and the RSRP of CC1 is between -l lOdBm and -70dBm, CC2 If the RSRP is greater than -70 dBm, the UE selects the measurement period of CC1 as ls according to Table 5-3 or Table 6, and selects the measurement period of CC2 as 100 ms.
  • the UE performs measurements on CC1 and CC2 according to the selected measurement period.
  • the method for measuring the aggregated carrier cell according to the embodiment can be implemented in the aggregated carrier cell, and the UE performs different periods of measurement on different component carriers to avoid power consumption caused by excessive measurement, and can activate the inactive component carrier according to the RSRP in time. .
  • the RSRP information included in the measurement configuration information and the corresponding measurement period are RSRP values and corresponding measurement periods.
  • the method for measuring aggregate carrier cells includes the following content. 601.
  • the UE receives measurement configuration information sent by the eNB, or the UE obtains measurement configuration information from the preset information, where the measurement configuration information includes an RSRP value and a corresponding measurement period.
  • the eNB may send the foregoing measurement configuration information by using a broadcast message or a radio resource control message; or the foregoing measurement configuration information may be preset by the UE manufacturer, for example, an external storage device (such as a user preset to the UE).
  • the UE may obtain the measurement configuration information from the user card or the preset information stored by the UE.
  • the upgrade can be performed by using the UE software.
  • the measurement configuration information described above may be a measurement configuration table as shown in Table 7.
  • the RSRP values in Table 7 and their corresponding measurement periods are only exemplary values. In the specific implementation process, they can be set according to the actual network conditions. Table 7
  • the foregoing table 7 may further include a measurement period upper limit value (for example, 20 s) and a corresponding RSRP minimum threshold value, and a measurement period lower limit value (for example, 10 ms) and a corresponding RSRP maximum threshold value, when CC1 Or the RSRP of CC2 is less than the minimum threshold of RSRP, and the upper limit of the measurement period is used for measurement.
  • a measurement period upper limit value for example, 20 s
  • a corresponding RSRP minimum threshold value for example, and a measurement period lower limit value (for example, 10 ms) and a corresponding RSRP maximum threshold value
  • the RSRP of CC1 or CC2 is greater than the maximum threshold of RSRP
  • the lower limit of the measurement period is used for measurement.
  • the UE receives measurement period calculation information sent by the eNB.
  • the UE calculates a measurement period of CC1 and CC2 according to RSRP of the inactive cell carriers CC1 and CC2 in the aggregate carrier cell, the foregoing measurement period calculation information, and the foregoing measurement configuration information (Table 7).
  • the measurement period of CC 1 can be calculated as:
  • Yccl Yb-(Yb-Ya)*( Xccl-Xa)/(Xb-Xa);
  • the measurement cycle of CC2 is:
  • Ycc2 Yb-(Yb-Ya) ⁇ (Xcc2-Xa)/(Xb-Xa).
  • the measurement periods Yccl and Ycc2 of CCl and CC2 can be calculated according to the following formulas:
  • the plurality of intervals may be divided into a plurality of intervals according to the plurality of RSRP values, and the calculation is performed according to the measurement period calculation information in each of the areas.
  • the UE measures CC1 and CC2 according to the measurement period obtained by the above calculation.
  • the method for measuring the aggregated carrier cell according to the embodiment can be implemented in the aggregated carrier cell, and the UE performs different periods of measurement on different component carriers to avoid power consumption caused by excessive measurement, and can activate the inactive component carrier according to the RSRP in time. .
  • the method for measuring aggregate carrier cells includes the following content. 701.
  • the UE receives the measurement configuration information sent by the eNB, or the UE obtains the measurement configuration information from the preset information, where the measurement configuration information includes an RSRP value and a corresponding measurement period, and further includes type information or power information of the aggregated carrier cell. Or it also contains speed information.
  • the eNB may send the foregoing measurement configuration information by using a broadcast message or a radio resource control message; or the foregoing measurement configuration information may be preset by the UE manufacturer, for example, an external storage device (such as a user preset to the UE).
  • the UE may obtain the measurement configuration information from the user card or the preset information stored by the UE.
  • the upgrade can be performed by using the UE software.
  • the measurement configuration information including the type information or the power information of the aggregated carrier cell may be a measurement configuration table as shown in Tables 8-1 and 8-2, or may be a measurement configuration table as shown in Table 9.
  • the measurement configuration information including the speed information may be a measurement configuration table as shown in Tables 10-1, 10-2, and 10-3, or may be a measurement configuration table as shown in Table 11.
  • the RSRP values in Tables 8-1, 8-2, 9, 10-1, 10-2, 10-3, and Table 11 above and their corresponding measurement periods are only exemplary values, which may be based on the network in the specific implementation process. Set the actual situation. Table 8-1 Macro cell (or cell transmission power is 40W)
  • the above table 8-1, 8-2, 9, 10-1, 10-2, 10-3, and Table 11 may further include a measurement period upper limit value (for example, 20s) and a corresponding RSRP minimum threshold.
  • the value, and the lower limit of the measurement period for example, 10ms
  • the upper limit of the measurement period is used to measure the RSRP of CC1 or CC2. It is greater than the maximum RSRP threshold and is measured using the lower limit of the measurement period.
  • the UE receives the type information or the power information of the aggregated carrier cell that is sent by the serving base station, or selects a corresponding RSRP value according to the current speed of the UE, such as the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself. And its corresponding measurement period.
  • the UE selects the RSRP value of Table 8-1 and its corresponding measurement period, or selects the corresponding Macro cell in Table 9 or The power information is a 40 W RSRP value and its corresponding measurement period. If the current speed of the UE is 20 km/h, the UE selects the RSRP value of the table 10-2 and its corresponding measurement period, or selects the corresponding RSRP value (5 km/h, 30 km/h) in Table 11 and its corresponding measurement period. .
  • the UE receives measurement period calculation information sent by the eNB.
  • the order of execution of 703 and 702 can be interchanged.
  • the UE calculates a measurement period of obtaining the inactive cell carriers CC1 and CC2 according to the RSRP of the inactive cell carriers CC1 and CC2 in the aggregate carrier cell, the RSRP value selected above, the corresponding measurement period, and the measurement period calculation information.
  • the specific calculation method reference may be made to the specific content of 603 in the foregoing embodiment, and details are not described herein again.
  • the UE measures CC1 and CC2 according to the measurement period obtained by the foregoing calculation.
  • the method for measuring the aggregated carrier cell according to the embodiment can be implemented in the aggregated carrier cell, and the UE performs different periods of measurement on different component carriers to avoid power consumption caused by excessive measurement, and can activate the inactive component carrier according to the RSRP in time. .
  • the method for obtaining the RSRP of the inactive cell carriers CC1 and CC2 may include: measuring the inactive cell carriers CC1 and CC2 in the aggregated carrier cell, and acquiring the RSRP of CC1 and CC2; or, according to the existing active cell carrier Or the RSRP of the inactive unit carrier calculates the RSRP of the above-mentioned inactive unit carrier. For example: According to the RSRP of the activated unit carrier CC1, the RSRP of the inactive unit carriers CC1 and CC2 is calculated; or the RSRP of the inactive unit carrier CC1 is known, and the RSRP of CC2 is calculated according to the RSRP of CC1.
  • the UE calculates that the RSRP of CC2 and CC1 is less than -100 dBm according to the RSRP of CC3.
  • the UE selects the measurement period of CC1 and CC2 as 10s;
  • the UE calculates that the RSRP of CC2 is -60dBm to -100dBm, and the RSRP of CC1 is less than -100dBm.
  • the UE selects the measurement period of CC2 as ls, and the measurement period of CC1 is 10s. .
  • the principle of calculating the RSRP of other CCs in the aggregated carrier cell according to the RSRP of the known CC is as follows:
  • the transmit powers of CC1, CC2, and CC3 are different, and the RSRP is outwardly attenuated in a concentric manner, resulting in CC1, CC2, and CC3 reaching
  • the RSRP of the UE is different, but there is a difference between the CCs. Therefore, the RSRP of other CCs can be obtained from the RSRP of the known CC and the difference.
  • the RSRP difference value of each unit carrier is statistically fixed, and thus the RSRP of the other unit carriers can be obtained by calculating the RSRP and the fixed difference value of the known unit carrier.
  • the RSRP difference value of each unit carrier is not fixed, it can be calculated, for example, the UE actually reports the RSRP, and then the network sends the actual difference to the UE.
  • the UE can calculate the RSRP of the other CC according to the RSRP of the known CC and the actual difference; or configure the difference between the fixed CCs when the system is configured, for example, according to the measured data, when the system is configured.
  • the UE can calculate the RSRP of other CCs according to the difference between the RSRP of the known CC and the system configuration.
  • the configuration information may be configured: when the inactive carrier RSRP value is less than a certain threshold, the measurement period of the inactive carrier is + ⁇ , that is, not measured. .
  • the method embodiment corresponding to FIG. 2 to FIG. 7 is only described by taking the signal estimation value information in the measurement configuration information as RSRP information, and the signal estimation value information in the measurement configuration information is signal quality information (such as RSRQ) or a signal.
  • the implementation of the path loss information is similar to that of the above embodiment.
  • the signal power in Tables 1 to 11 above may be replaced by signal quality (for example, RSRQ) or signal path loss, and the value and the measurement period may be replaced accordingly. I will not repeat them here.
  • the user equipment 80 is provided as shown in FIG. 6, and includes a first acquiring unit 801, a selecting unit 802, and a measuring unit 803.
  • the first obtaining unit 801 acquires measurement configuration information of the aggregate carrier cell, where the measurement configuration information includes signal estimation value information and a corresponding measurement period.
  • the second obtaining unit 802 acquires the measurement period of the inactive unit carrier according to the signal estimation value of the inactive unit carrier in the aggregated carrier cell and the measurement configuration information.
  • the measuring unit 803 measures the above-mentioned inactive cell carrier based on the above measurement period.
  • the first obtaining unit 801 is further configured to: receive the measurement configuration information sent by the serving base station, or obtain the measurement configuration information from the preset information of the user equipment 80. Further, the signal estimation value information in the measurement configuration information acquired by the first acquiring unit 801 and the corresponding measurement period thereof include: a signal estimation value interval and a corresponding measurement period.
  • the second obtaining unit 802 is further configured to: select, according to a signal estimation value of the inactive cell carrier in the aggregate carrier cell, a measurement period of the inactive cell carrier in the measurement configuration information.
  • the measurement configuration information acquired by the first acquiring unit 801 further includes: type information or power information of the aggregated carrier cell; the second acquiring unit 802 is configured according to type information or power information of the aggregated carrier cell received from the serving base station, and the foregoing A signal estimation value of the inactive cell carrier in the aggregate carrier cell, and a measurement period of the inactive cell carrier is selected in the measurement configuration information.
  • the measurement configuration information acquired by the first acquiring unit further includes: speed information; the second acquiring unit 802 is configured according to the current speed of the user equipment 80 (for example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself), And estimating a signal estimated value of the inactive unit carrier in the carrier cell, and selecting a measurement period of the inactive unit carrier in the measurement configuration information.
  • speed information for example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself
  • the signal estimation value information in the measurement configuration information acquired by the first acquiring unit 801 and the corresponding measurement period thereof include: a signal estimation value and a corresponding measurement period.
  • the user equipment 80 further includes a receiving unit 804, configured to receive measurement period calculation information sent by the serving base station.
  • the second obtaining unit 802 calculates and obtains the inactive according to the signal estimation value of the inactive unit carrier in the aggregate carrier cell, the signal estimation value and the corresponding measurement period, and the measurement period calculation information received by the receiving unit 804. The measurement period of the cell carrier.
  • the measurement configuration information acquired by the first acquiring unit 801 further includes: type information or power information of the aggregated carrier cell; the second acquiring unit 802, according to the type information or power information of the aggregated carrier cell received from the serving base station, Selecting, in the foregoing measurement configuration information, a signal estimation value and a corresponding measurement period, and according to the signal estimation value of the inactive unit carrier in the aggregate carrier cell, the selected signal estimation value and the corresponding measurement period, and the receiving unit 804
  • the received measurement period calculation information is calculated to obtain a measurement period of the inactive unit carrier.
  • the measurement configuration information acquired by the first acquiring unit 801 further includes: speed information;
  • the obtaining unit 802 selects a signal estimation value and a corresponding measurement period in the measurement configuration information according to the current speed of the user equipment (for example, the current speed value of the UE obtained by the network calculation or the current speed value obtained by the UE itself), and according to The signal estimation value of the inactive cell carrier in the aggregated carrier cell, the selected signal estimation value and the corresponding measurement period, and the measurement period calculation information received by the receiving unit 804, and the measurement period of the inactive cell carrier is calculated and obtained. .
  • the signal estimation value information and the corresponding measurement period may be signal power (such as RSRP) information and a corresponding measurement period, and correspondingly, the signal estimation value of the inactive unit carrier in the aggregate carrier cell is The signal power of the inactive unit carrier (eg, RSRP) in the aggregated carrier cell; or the signal estimation value information and the corresponding measurement period may also be signal quality information and a corresponding measurement period, and correspondingly, the aggregated carrier cell
  • the signal estimation value of the medium-non-active cell carrier is the signal quality of the inactive cell carrier in the aggregate carrier cell; or the signal estimation value information and the corresponding measurement period may also be the signal path loss information and the corresponding measurement period.
  • the signal estimation value of the inactive unit carrier in the aggregate carrier cell is a signal path loss of the inactive unit carrier in the aggregate carrier cell.
  • the second obtaining unit 802 is further configured to: measure an inactive cell carrier in the aggregated carrier cell, obtain a signal estimation value of the inactive cell carrier, or obtain an aggregation according to a signal estimation value of a known component carrier in the aggregate carrier cell. Signal estimate of the inactive unit carrier in the carrier cell.
  • the signal estimation value of the inactive unit carrier may be an average of the signal estimation values of the inactive unit carrier.
  • the embodiment further provides a system for aggregate carrier cell measurement, including a base station 90 and a user equipment 80 as shown in FIG.
  • the user equipment and the aggregate carrier cell measurement system provided in this embodiment can implement different periods of measurement of different unit carriers in the aggregate carrier cell to avoid excessive measurement.
  • the resulting power consumption is also able to activate the inactive unit carrier based on the signal estimate in time.
  • the systems, devices, and methods disclosed in the several embodiments provided herein may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • each functional unit in the embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may also be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM, a random access memory), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

聚合载波小区测量的方法、 装置及系统
本申请要求于 2010 年 2 月 3 日提交中国专利局、 申请号为 201010107381.5、 发明名称为"聚合载波小区测量的方法、 装置及系统"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信领域, 尤其涉及聚合载波小区测量的技术方案。 背景技术
在无线蜂窝通信系统中,激活( Active )状态的用户设备( User Equipment, UE )根据小区的信号功率确定服务小区, 空闲 (Idle )状态的 UE根据小区 的信号功率确定驻留小区。 因此, UE需要测量服务小区或驻留小区的信号, 以及周边小区的信号。
在单载波小区系统中,一个小区有一个载波, UE只需要测量服务小区或 驻留小区中唯一载波的信号。
随着通信技术的发展, 在高级长期演进 ( Long Term Evolution advanced, LTE- Advanced ) 系统中提出了聚合载波的概念, 即将多个载波聚合在一起 成为一个小区,该小区称为聚合载波小区, 为 UE提供更高的服务数据速度。 基站根据 UE的能力和业务类型,可以动态地调度各个单元载波( Component Carrier, CC ) , 增加或减少 UE使用的单元载波数量。
对于聚合载波小区, 由于一个小区中的载波不唯一, 无法使用现有单一 载波小区的测量方法对各载波进行测量, 所以, 如何对聚合载波小区中的 单元载波进行测量, 是亟待解决的问题。 发明内容
本发明一方面提供一种聚合载波小区测量的方法, 包括: 用户设备获 取聚合载波小区的测量配置信息, 该测量配置信息中包括信号估计值信息 及其对应的测量周期; 上述用户设备根据上述聚合载波小区中非激活单元 载波的信号估计值以及上述测量配置信息获取上述非激活单元载波的测量 周期, 该用户设备根据该上述非激活单元载波的测量周期对该非激活单元 载波进行测量。
本发明另一方面提供一种用户设备, 包括: 第一获取单元, 用于获取 聚合载波小区的测量配置信息, 该测量配置信息中包括信号估计值信息及 其对应的测量周期; 第二获取单元, 用于根据上述聚合载波小区中非激活 单元载波的信号估计值以及上述测量配置信息获取所述非激活单元载波的 测量周期; 和测量单元, 用于根据上述非激活单元载波的测量周期对该非 激活单元载波进行测量。
本发明再一方面还提供一种聚合载波小区测量的系统, 包括基站和如 上所述的用户设备。
通过上述技术方案, 能够实现在聚合载波小区中,用户设备对不同的单 元载波进行不同周期的测量, 避免过度测量导致的电量耗费。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需要使用的 附图作筒单地介绍。 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其 他的附图。
图 1是本发明一实施例提供的聚合载波小区测量方法的示意图;
图 2是本发明另一实施例提供的聚合载波小区测量方法的示意图;
图 3是本发明又一实施例提供的聚合载波小区测量方法的示意图;
图 4是本发明再一实施例提供的聚合载波小区测量方法的示意图;
图 5是本发明再一实施例提供的聚合载波小区测量方法的示意图;
图 6是本发明再一实施例提供的聚合载波小区测量方法的示意图;
图 6-a是本发明再一实施例提供的聚合载波小区测量方法中线性关系的示意图; 图 6-b是本发明再一实施例提供的聚合载波小区测量方法中非线性关系的示意图; 图 7是本发明再一实施例提供的聚合载波小区测量方法的示意图; 图 8是本发明一实施例提供的用户设备的结构示意图;
图 9是本发明一实施例提供的聚合载波小区测量系统的结构示意图。 具体实施方式
下面将结合附图具体说明本发明的具体实施方式。
本实施例提供一种聚合载波小区测量的方法, 如图 1 所示, 包括以下 内容。
101 , UE 获取聚合载波小区的测量配置信息, 该测量配置信息中包括 信号估计值信息及其对应的测量周期。
102, 该 UE根据聚合载波小区中非激活单元载波的信号估计值以及上 述测量配置信息选择非激活单元载波的测量周期。
103 , 该 UE根据上述非激活单元载波的测量周期对非激活单元载波进 行测量。
本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费。
在具体实现过程中,上述 101中 UE获取聚合载波小区的测量配置信息 可包括: UE接收服务基站发送的测量配置信息, 或者 UE从预设信息中获 取测量配置信息。
作为一种实施方式, 上述 101 中的信号估计值信息及其对应的测量周 期可以为信号功率 (如 Reference Signal Receiving Power, 参考信号接收功 率, 简称 RSRP )信息及其对应的测量周期, 相应地, 上述 102中聚合载波 小区中非激活单元载波的信号估计值为该聚合载波小区中非激活单元载波 的信号功率 (如 RSRP )。 可选地, 上述测量配置信息中的信号功率信息及 其对应的测量周期包括: 信号功率区间及其对应的测量周期、 或信号功率 值及其对应的测量周期。 当上述测量配置信息中的信号功率信息及其对应的测量周期为信号功 率区间及其对应的测量周期时, UE可以根据聚合载波小区中非激活单元载 波的信号功率在上述测量配置信息中选择非激活单元载波的测量周期。 上 述测量配置信息还可包括: 聚合载波小区的类型信息或功率信息、 或者速 度信息, 此时, UE还可结合服务基站发送的聚合载波小区的类型信息或功 率信息, 或者根据 UE当前的速度(例如网络计算获得的 UE当前速度值或 UE 自身获得的当前速度值), 在测量配置信息中选择非激活单元载波的测 量周期。
当上述测量配置信息中的信号功率信息及其对应的测量周期为信号功 率值及其对应的测量周期时, UE接收服务基站发送的测量周期计算信息, 并根据聚合载波小区中非激活单元载波的信号功率、 上述测量配置信息以 及上述测量周期计算信息, 计算获得非激活单元载波的测量周期。 上述测 量配置信息还可包括: 聚合载波小区的类型信息或功率信息、 或者速度信 息,此时, UE先根据服务基站发送的聚合载波小区的类型信息或功率信息、 或 UE当前的速度(例如网络计算获得的 UE当前速度值或 UE自身获得的 当前速度值), 在上述测量配置信息中选择相应的信号功率值及其对应的测 量周期, 再根据上述测量周期计算信息、 聚合载波小区中非激活单元载波 的信号功率、 以及上述选择的信号功率值及其对应的测量周期, 计算获得 非激活单元载波的测量周期。
上述 102 中聚合载波小区中非激活单元载波的信号功率的获取方法可 包括: UE测量聚合载波小区中的非激活单元载波, 获取非激活单元载波的 信号功率, 或者, UE 4艮据聚合载波小区中已知单元载波的信号功率, 获取 聚合载波小区中非激活单元载波的信号功率。 另外, 上述非激活单元载波 的信号功率也可以是上述非激活单元载波的信号功率的平均值。
作为另一种实施方式, 上述 101 中的信号估计值信息及其对应的测量 周期可以为信号质量(如 Reference Signal Receiving Quality, 参考信号接收 质量, 简称 RSRQ )信息及其对应的测量周期, 相应地, 上述 102中聚合载 波小区中非激活单元载波的信号估计值为该聚合载波小区中非激活单元载 波的信号质量(如 RSRQ )。 可选地, 上述测量配置信息中的信号质量信息 及其对应的测量周期包括: 信号质量区间及其对应的测量周期、 或信号质 量值及其对应的测量周期。
当上述测量配置信息中的信号质量信息及其对应的测量周期为信号质 量区间及其对应的测量周期时, UE可以根据聚合载波小区中非激活单元载 波的信号质量在上述测量配置信息中选择非激活单元载波的测量周期。 上 述测量配置信息还可包括: 聚合载波小区的类型信息或功率信息、 或者速 度信息, 此时, UE还可结合服务基站发送的聚合载波小区的类型信息或功 率信息, 或者根据 UE当前的速度(例如网络计算获得的 UE当前速度值或 UE 自身获得的当前速度值), 在测量配置信息中选择非激活单元载波的测 量周期。
当上述测量配置信息中的信号质量信息及其对应的测量周期为信号质 量值及其对应的测量周期时, UE接收服务基站发送的测量周期计算信息, 并根据聚合载波小区中非激活单元载波的信号质量、 上述测量配置信息以 及上述测量周期计算信息, 计算获得非激活单元载波的测量周期。 上述测 量配置信息还可包括: 聚合载波小区的类型信息或功率信息、 或者速度信 息,此时, UE先根据服务基站发送的聚合载波小区的类型信息或功率信息、 或 UE当前的速度(例如网络计算获得的 UE当前速度值或 UE自身获得的 当前速度值), 在上述测量配置信息中选择相应的信号质量值及其对应的测 量周期, 再根据上述测量周期计算信息、 聚合载波小区中非激活单元载波 的信号功率、 以及上述选择的信号质量值及其对应的测量周期, 计算获得 非激活单元载波的测量周期。
上述 102 中聚合载波小区中非激活单元载波的信号质量的获取方法可 包括: UE测量聚合载波小区中的非激活单元载波, 获取非激活单元载波的 信号质量, 或者, UE 4艮据聚合载波小区中已知单元载波的信号质量, 获取 聚合载波小区中非激活单元载波的信号质量。 另外, 上述非激活单元载波 的信号质量也可以是上述非激活单元载波的信号质量的平均值。
作为再一种实施方式, 上述 101 中的信号估计值信息及其对应的测量 周期可以为路损信息及其对应的测量周期, 相应地, 上述 102 中聚合载波 小区中非激活单元载波的信号估计值为该聚合载波小区中非激活单元载波 的路损。
可选地, 上述测量配置信息中的信号路损信息及其对应的测量周期包 括: 信号路损区间及其对应的测量周期、 或信号路损值及其对应的测量周 期。
当上述测量配置信息中的信号路损信息及其对应的测量周期为信号路 损区间及其对应的测量周期时, UE可以根据聚合载波小区中非激活单元载 波的信号路损在上述测量配置信息中选择非激活单元载波的测量周期。 上 述测量配置信息还可包括: 聚合载波小区的类型信息或功率信息、 或者速 度信息, 此时, UE还可结合服务基站发送的聚合载波小区的类型信息或功 率信息, 或者根据 UE当前的速度(例如网络计算获得的 UE当前速度值或 UE 自身获得的当前速度值), 在测量配置信息中选择非激活单元载波的测 量周期。
当上述测量配置信息中的信号路损信息及其对应的测量周期为信号路 损值及其对应的测量周期时, UE接收服务基站发送的测量周期计算信息, 并根据聚合载波小区中非激活单元载波的信号路损、 上述测量配置信息以 及上述测量周期计算信息, 计算获得非激活单元载波的测量周期。 上述测 量配置信息还可包括: 聚合载波小区的类型信息或功率信息、 或者速度信 息,此时, UE先根据服务基站发送的聚合载波小区的类型信息或功率信息、 或 UE当前的速度(例如网络计算获得的 UE当前速度值或 UE自身获得的 当前速度值), 在上述测量配置信息中选择相应的信号路损值及其对应的测 量周期, 再根据上述测量周期计算信息、 聚合载波小区中非激活单元载波 的信号路损、 以及上述选择的信号路损值及其对应的测量周期, 计算获得 非激活单元载波的测量周期。
上述 102中聚合载波小区中非激活单元载波的路损的获取方法可包括: UE测量聚合载波小区中的非激活单元载波, 获取非激活单元载波的路损, 或者, UE根据聚合载波小区中已知单元载波的信号路损, 获取聚合载波小 区中非激活单元载波的信号路损。 另外, 上述非激活单元载波的信号路损 也可以是上述非激活单元载波的信号路损的平均值。
为方便本领域技术人员更清楚地理解本发明, 下面将以测量配置信息 中的信号估计值信息及其对应的测量周期为: 信号功率信息及其对应的测 量周期为例, 具体介绍本发明的实施方式。
以下各各实施例中, 信号功率具体以 RSRP 为例, 并且以演进基站 ( evolved NodeB, eNB )下的聚合载波小区为 UE的服务小区为例,该 eNB 下的一个聚合小区中包含三个单元载波 CC1、 CC2和 CC3, 其中 CC3为激 活单元载波( active CC ), CC1和 CC2为非激活单元载波( non-active CC )。
以下图 2-5所示的方法实施例中,测量配置信息中包含的 RSRP信息及 其对应的测量周期为 RSRP区间及其对应的测量周期。
图 2所示的聚合载波小区测量方法的实施例, 包括以下内容。
201 , UE接收 eNB发送的测量配置信息,该测量配置信息中包括 RSRP 区间及其对应的测量周期。 在具体实现过程中, eNB 可以通过广播消息或 无线资源控制消息发送上述测量配置信息, 该测量配置信息可以是如表 1 所示的测量配置表。 表 1中的 RSRP及其对应的测量周期仅为示例性数值, 在具体实现过程中可以根据网络实际情况进行设定。 表 1
Figure imgf000010_0001
202, UE根据聚合载波小区中非激活单元载波 CC1和 CC2的 RSRP, 在上述测量配置信息 (如表 1 ) 中选择 CC1和 CC2的测量周期。
例如, 如果在 T1 时刻 CC1和 CC2的 RSRP都小于 -lOOdBm, 则 UE 根据表 1选择 CC1和 CC2的测量周期为 10s; 当 UE移动到 T2时刻的位置 时, CC1和 CC2的 RSRP在 -lOOdBm和 -60dBm之间, 则 UE根据表 1选择 CC1和 CC2的测量周期为 ls。 或者, 如果在 T1时刻, CC1的 RSRP小于 -lOOdBm, CC2的 RSRP在 -lOOdBm和 -60dBm之间, 则 UE根据表 1选择 CC1的测量周期为 10s, 选择 CC2的测量周期为 Is; 当 UE移动到 T2时刻 位置时, CC1的 RSRP在 -lOOdBm和 -60dBm之间, CC2的 RSRP大于 -60dBm, 则 UE根据表 1选择 CC1的测量周期为 Is,选择 CC2的测量周期为 100ms。
203 , UE根据上述选择的测量周期对 CC1和 CC2进行测量。
本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费, 同时能够及时根据 RSRP激活非激活单元载波。
图 3所示的聚合载波小区测量方法的实施例, 包括以下内容。
300, eNB启动 UE进行测量。 例如: UE接收 eNB发送的测量指示。 本步骤可选。
301 , UE从预设信息中获取测量配置信息, 该测量配置信息中包括 RSRP区间及其对应的测量周期。
本实施例中,该测量配置信息可以是该 UE生产厂商预设的,例如预设 到该 UE的外部存储设备(如用户卡)中,或者预设到该 UE存储的信息中, UE可以从用户卡或者该 UE存储的预设信息中获取上述测量配置信息。 可 选地, 当运营商需要更新或优化该测量配置表时,可以通过 UE软件进行升 级。
在具体实现过程中, 上述测量配置信息可以是如表 2所示的测量配置 表。 表 2 中的 RSRP及其对应的测量周期仅为示例性数值, 在具体实现过 程中可以根据网络实际情况进行设定。
表 2
Figure imgf000011_0001
302, UE根据聚合载波小区中非激活单元载波 CC1和 CC2的 RSRP, 在上述测量配置信息 (如表 2 ) 中选择 CC1和 CC2的测量周期。
例如, 如果在 T1 时刻 CC1和 CC2的 RSRP都小于 -lOOdBm, 则 UE 根据表 2选择 CC1和 CC2的测量周期为 10s; 当 UE移动到 T2时刻的位置 时, CC1和 CC2的 RSRP在 -lOOdBm和 -60dBm之间, 则 UE根据表 2选 择 CC1和 CC2的测量周期为 2s。 或者, 如果在 T1时刻, CC1的 RSRP小 于 -lOOdBm, CC2的 RSRP在 -lOOdBm和 -60dBm之间, 则 UE根据表 2选 择 CC1的测量周期为 10s, 选择 CC2的测量周期为 2s; 当 UE移动到 T2 时刻位置时, CC1的 RSRP在 -lOOdBm和 -60dBm之间, CC2的 RSRP大于 -60dBm, 则 UE根据表 2选择 CC1的测量周期为 2s, 选择 CC2的测量周 期为 500ms。
303 , UE根据上述选择的测量周期对 CC1和 CC2进行测量。
本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费, 同时能够及时根据 RSRP激活非激活单元载波。 图 4所示的聚合载波小区测量方法的实施例, 包括以下内容。
401 , UE接收 eNB发送的测量配置信息, 例如 UE接收 eNB通过广播 消息或无线资源控制消息向 UE发送该测量配置信息;或者 UE从预设信息 中获取测量配置信息。 上述测量配置信息中包括 RSRP 区间及其对应的测 量周期, 还包括该聚合载波'■!、区的类型信息或功率信息。
上述聚合载波小区的类型信息表明该聚合载波小区的类型, 例如: 微 蜂窝小区 (简称 Pico小区)、 宏蜂窝小区 (简称 Macro小区)、 家用基站小 区 (简称 Femto小区)。 通常, 小区的功率也能够表示小区的类型, 例如: 小区功率为 40W时, 通常认为该小区为 Macro小区, 小区功率为 1W是, 通常认为该小区为 Pico小区。
在具体实现过程中,上述测量配置信息可以是如表 3-1和 3-2所示的按 小区类型或功率区分的测量配置表; 也可以是如表 4所示的测量配置表。 表 3-1、 3-2和表 4中的 RSRP及其对应的测量周期仅为示例性数值, 在具 体实现过程中可以根据网络实际情况进行设定。
Macro小区 (或者小区传输功率为 40W )
Figure imgf000012_0001
表 4
Figure imgf000013_0001
402, UE接收 eNB发送的聚合载波小区的类型信息或功率信息。 在具 体实现过程中, eNB可以通过广播消息或无线资源控制消息向 UE发送聚 合载波小区的类型信息或功率信息。
403, UE才艮据上述接收到的聚合载波小区的类型信息或功率信息, 以 及上述聚合载波小区中非激活单元载波 CC1和 CC2的 RSRP和上述测量配 置信息 (如表 3-1和 3-2, 或者表 4 )选择 CC1和 CC2的测量周期。
例如, 如果 UE收到 eNB发送的聚合载波小区的类型信息为 Pico, 并 且在 T1时刻 CC1和 CC2的 RSRP都小于 -84dBm, 则 UE根据表 3-2或表 4选择 CC1和 CC2的测量周期为 10s;当 UE移动到 T2时刻的位置时, CC1 和 CC2的 RSRP在 -84dBm和 -44dBm之间, 则 UE根据表 3-2或表 4选择 CC1和 CC2的测量周期为 ls。 或者, 如果 UE收到 eNB发送的聚合载波小 区的功率为 40W, 在 T1时刻, CC1的 RSRP小于 -lOOdBm, CC2的 RSRP 在 -lOOdBm和 -60dBm之间, 则 UE根据表 3-1或表 4选择 CC1的测量周期 为 10s, 选择 CC2的测量周期为 Is; 当 UE移动到 T2时刻位置时, CC1的 RSRP在 -lOOdBm和 -60dBm之间, CC2的 RSRP大于 -60dBm, 则 UE根据 表 3-1或表 4选择 CC1的测量周期为 ls, 选择 CC2的测量周期为 100ms。
404, UE根据上述选择的测量周期对 CC 1和 CC2进行测量。 本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费, 同时能够及时根据 RSRP激活非激活单元载波。
图 5所示的聚合载波小区测量方法的实施例, 包括以下内容。
501 , UE接收 eNB发送的测量配置信息, 例如 UE接收 eNB通过广播 消息或无线资源控制消息向 UE发送该测量配置信息,或者从预设信息中获 取测量配置信息, 该测量配置信息中包括 RSRP区间及其对应的测量周期, 还包括速度信息。
在具体实现过程中, 上述测量配置信息可以是如表 5-1、 5-2和 5-3所 示的根据 UE速度信息区分的测量配置表;也可以是如表 6所示的测量配置 表。 表 5-1、 5-2、 5-3和表 6中的 RSRP及其对应的测量周期仅为示例性数 值, 在具体实现过程中可以根据网络实际情况进行设定。
UE速度 < 5km/h
Figure imgf000014_0001
UE速度〉 30km/h
Figure imgf000015_0001
表 6
Figure imgf000015_0002
502, UE根据自身当前的速度(例如网络计算获得的 UE 当前速度值 或 UE自身获得的当前速度值)和上述聚合载波小区中非激活单元载波 CC1 和 CC2的 RSRP, 以及上述测量配置信息(例如 5-1、 5-2和 5-3, 或者表 6 ) 选择 CC1和 CC2测量周期。
例如, 在 T1时刻, 如果 UE为低速运动, 速度小于 5km/h, 并且 CC1 和 CC2的 RSRP都小于 -84dBm, 则 UE根据上述表 5-1或表 6选择 CC1和 CC2的测量周期为 20s; 当 UE移动到 T2时刻的位置时, 如果 UE为中速 运动,速度大于 5km/h小于 30km/h, 并且 CC1和 CC2的 RSRP在 -lOOdBm 和 -70dBm之间, 则 UE根据表 5-2或表 6选择 CC1和 CC2的测量周期为 2s。或者,在 T1时刻,如果 UE为低速运动,速度小于 5km/h, CC1的 RSRP 小于 -84dBm, CC2的 RSRP在 -84dBm和 -44dBm之间, 则 UE根据表 5-1 或表 6选择 CC1的测量周期为 20s, 选择 CC2的测量周期为 5s; 当 UE移 动到 T2时刻的位置时, 如果 UE为高速运动, 速度大于 30km/h, CC1 的 RSRP在 -l lOdBm和 -70dBm之间, CC2的 RSRP大于 -70dBm, 则 UE根据 表 5-3或表 6选择 CC1的测量周期为 ls, 选择 CC2的测量周期为 100ms。
503 , UE根据上述选择的测量周期对 CC1和 CC2进行测量。
本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费, 同时能够及时根据 RSRP激活非激活单元载波。
与上述图 2-图 5所示的方法实施例不同, 以下方法实施例中, 测量配置 信息中包含的 RSRP信息及其对应的测量周期为 RSRP值及其对应的测量周 期。
如图 6所示, 本实施例提供的聚合载波小区测量方法, 包括以下内容。 601 , UE接收 eNB发送的测量配置信息, 或 UE从预设信息中获取测 量配置信息, 该测量配置信息中包含 RSRP值及其对应的测量周期。
在具体实现过程中, eNB 可以通过广播消息或无线资源控制消息发送 上述测量配置信息; 或者上述测量配置信息可以是该 UE生产厂商预设的, 例如预设到该 UE的外部存储设备(如用户卡)中, 或者预设到该 UE存储 的信息中, UE可以从用户卡或者该 UE存储的预设信息中获取上述测量配 置信息。 可选地, 当运营商需要更新或优化该测量配置表时, 可以通过 UE 软件进行升级。
上述该测量配置信息可以是如表 7所示的测量配置表。表 7中的 RSRP 值及其对应的测量周期仅为示例性数值, 在具体实现过程中可以根据网络 实际情况进行设定。 表 7
Figure imgf000017_0001
可选地,上述表 7中还可包含测量周期上限值(例如 20s )及对应的 RSRP 最小门限值, 以及测量周期下限值 (例如 10ms )及对应的 RSRP最大门限值, 当 CC1或 CC2的 RSRP小于 RSRP最小门限值, 都采用测量周期上限值进行测 量, 当 CC1或 CC2的 RSRP大于 RSRP最大门限值, 都采用测量周期下限值进 行测量。
602, UE接收 eNB发送的测量周期计算信息。
603 , UE根据聚合载波小区中非激活单元载波 CC1和 CC2的 RSRP、上述 测量周期计算信息、 以及上述测量配置信息 (如表 7 )计算 CC1和 CC2的测 量周期。
例如, 当上述测量周期计算信息为线性差计算规则, 根据上述表 7和图 6-a所示线性关系示意图, A点 RSRP为 Xa= -70dBm, 对应的测量周期为 Ya=10s; B点 RSRP为 Xb= -44dBm, 对应的测量周期为 Yb=100ms; CCl的 RSRP为 Xcc 1, CC2的 RSRP为 Xcc2。根据线性关系可计算 CC 1的测量周期为:
Yccl= Yb-(Yb-Ya)*( Xccl-Xa)/(Xb-Xa);
CC2的测量周期为:
Ycc2= Yb-(Yb-Ya) · ( Xcc2-Xa)/(Xb-Xa)。
再例如, 当上述 eNB发给 UE的测量周期计算信息为: 如图 6-b所示的非 线性(如抛物线)计算规则和测量周期计算参数 γ (如 -0.1 ), 根据上述表 7 和图 6-b, A点 RSRP为 Xa= -70dBm,对应的测量周期为 Ya=10s; CCl的 RSRP 为 Xccl, CC2的 RSRP为 Xcc2。 可分别根据如下公式计算 CCl和 CC2的测量 周期 Yccl和 Ycc2:
(Xccl-Xa)=y · (Yccl-Ya)2; (Xcc2-Xa)=y · (Ycc2-Ya)2
除上述两种举例的测量周期计算信息和相应计算方法, 本领域技术人 员还可以使用例如立方差等其他计算方法计算获得 CC1 和 CC2 的测量周 期。 另外, 本实施例还可以根据多个 RSRP值划分为多个区间, 在每个区 间内分别根据测量周期计算信息进行计算。
604, UE根据上述计算获得的测量周期对 CC1和 CC2进行测量。
本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费, 同时能够及时根据 RSRP激活非激活单元载波。
如图 7所示, 本实施例提供的聚合载波小区测量方法, 包括以下内容。 701 , UE接收 eNB发送的测量配置信息, 或 UE从预设信息中获取测 量配置信息, 该测量配置信息中包含 RSRP值及其对应的测量周期, 还包 含聚合载波小区的类型信息或功率信息, 或者还包含速度信息。
在具体实现过程中, eNB 可以通过广播消息或无线资源控制消息发送 上述测量配置信息; 或者上述测量配置信息可以是该 UE生产厂商预设的, 例如预设到该 UE的外部存储设备(如用户卡)中, 或者预设到该 UE存储 的信息中, UE可以从用户卡或者该 UE存储的预设信息中获取上述测量配 置信息。 可选地, 当运营商需要更新或优化该测量配置表时, 可以通过 UE 软件进行升级。
上述包含聚合载波小区的类型信息或功率信息的测量配置信息可以是 如表 8-1和 8-2所示的测量配置表, 也可以是如表 9所示的测量配置表。 上 述包含速度信息的测量配置信息, 可以是如表 10-1、 10-2和 10-3所示的测 量配置表, 也可以是如表 11所示的测量配置表。 上述表 8-1、 8-2、 9、 10-1、 10-2、 10-3和表 11中的 RSRP值及其对应的测量周期仅为示例性数值, 在 具体实现过程中可以根据网络实际情况进行设定。 表 8-1 Macro小区 (或者小区传输功率为 40W )
Figure imgf000019_0001
表 9
Figure imgf000019_0002
表 10-1 UE速度 < 5km/h
Figure imgf000019_0003
表 10-3 UE速度〉 30km/h
Figure imgf000020_0001
表 11
Figure imgf000020_0002
可选地, 上述表 8-1、 8-2、 9、 10-1、 10-2、 10-3和表 11中还可包含测 量周期上限值 (例如 20s )及对应的 RSRP最小门限值, 以及测量周期下限 值(例如 10ms )及对应的 RSRP最大门限值, 当 CC1或 CC2的 RSRP小 于 RSRP最小门限值, 都采用测量周期上限值进行测量, 当 CC1或 CC2的 RSRP大于 RSRP最大门限值, 都采用测量周期下限值进行测量。
702, UE接收服务基站发送的该聚合载波小区的类型信息或功率信息, 或根据 UE当前的速度 (例如网络计算获得的 UE当前速度值或 UE自身获得 的当前速度值), 选择相应的 RSRP值及其对应的测量周期。
例如,如果 UE接收到 eNB发送的聚合载波小区的类型信息为 Macro小区 或功率信息为 40W, 则 UE选择表 8-1的 RSRP值及其对应的测量周期, 或选 择表 9中对应 Macro小区或功率信息为 40 W的 RSRP值及其对应的测量周期。 如果 UE当前速度为 20km/h, 则 UE选择表 10-2的 RSRP值及其对应的测量周 期, 或选择表 11中对应 (5km/h, 30km/h )的 RSRP值及其对应的测量周期。
703 , UE接收 eNB发送的测量周期计算信息。 703和 702的执行顺序可以 互换。
704, UE根据聚合载波小区中非激活单元载波 CC1和 CC2的 RSRP、 上述选择的 RSRP值及其对应的测量周期、 以及上述测量周期计算信息, 计算获得非激活单元载波 CC1和 CC2的测量周期。具体的计算方法可参考 上述实施例中 603的具体内容, 此处不再赘述。
705 , UE根据上述计算获得的测量周期对 CC1和 CC2进行测量。
本实施例提供的聚合载波小区测量的方法, 能够实现在聚合载波小区 中, UE对不同的单元载波进行不同周期的测量, 避免过度测量导致的电量 耗费, 同时能够及时根据 RSRP激活非激活单元载波。
在上述实施例中,非激活单元载波 CC1和 CC2的 RSRP的获取方法可 以包括: 测量聚合载波小区中的非激活单元载波 CC1和 CC2, 获取 CC1和 CC2的 RSRP; 或者,根据已有激活单元载波或非激活单元载波的 RSRP计 算上述非激活单元载波的 RSRP。 例如: 根据激活单元载波 CC1的 RSRP, 计算非激活单元载波 CC1和 CC2的 RSRP; 或者已知非激活单元载波 CC1 的 RSRP, 根据 CC1的 RSRP计算 CC2的 RSRP。 例如: 在 T1时刻所在地 理位置上 UE根据 CC3 的 RSRP计算得到 CC2 和 CC1 的 RSRP都小于 -lOOdBm,根据前述表 1的内容,则 UE选择 CC1和 CC2的测量周期为 10s; 而在 T2时刻所在地理位置上 UE根据 CC3的 RSRP计算出 CC2的 RSRP 是 -60dBm到 -100dBm, CC1的 RSRP小于 -100dBm, 根据前述表 1的内容, 则 UE选择 CC2的测量周期为 ls, CC1的测量周期为 10s。
具体根据已知 CC的 RSRP计算聚合载波小区中其他 CC的 RSRP的原理 如下: CC1, CC2和 CC3的发射功率不同, 且 RSRP都是以同心圓的方式向 外衰减, 导致 CC1, CC2和 CC3达到 UE的 RSRP不同, 但 CC之间存在差值, 因此可以根据已知 CC的 RSRP和该差值计算获得其他 CC的 RSRP。 具体地, 在各个单元载波同频带的情况下, 在统计学上各个单元载波的 RSRP差值是 固定的, 因此可以通过已知单元载波的 RSRP和固定差值计算获得其他单元 载波的 RSRP。 在各个单元载波异频带的情况下, 虽然在统计学上各个单元 载波的 RSRP差值是不固定的,但也可以计算获得,例如: UE实测上报 RSRP, 然后网络将该实际差值发送给 UE, UE就能够根据已知的 CC的 RSRP和该实 际差值计算其他 CC的 RSRP; 或者也可以在系统配置的时候, 配置固定的 CC之间的差值, 例如根据实测数据在系统配置时设置聚合载波小区中不同 CC之间的差值, 那么 UE就能够根据已知 CC的 RSRP和该系统配置的差值计 算其他 CC的 RSRP。在利用已知单元载波的计算非激活载波 RSRP的方式下, 配置信息中可以配置: 当非激活载波 RSRP值小于某个门限值时, 该非激活 载波的测量周期为 +∞, 即不测量。
上述图 2-图 7对应的方法实施例仅以测量配置信息中的信号估计值信 息为 RSRP信息为例进行介绍, 当测量配置信息中的信号估计值信息为信 号质量信息(如 RSRQ )或信号路损信息时的实现方式,与上述实施例类似, 例如可以将上述表 1-表 11中的信号功率替换为信号质量(例如 RSRQ )或 信号路损, 并相应替换其中的数值和测量周期, 此处不再赘述。
本实施例提供一种用户设备 80,如图 6所示,包括:第一获取单元 801、 选择单元 802和测量单元 803。第一获取单元 801获取聚合载波小区的测量 配置信息, 该测量配置信息中包括信号估计值信息及其对应的测量周期。 第二获取单元 802根据上述聚合载波小区中非激活单元载波的信号估计值 以及上述测量配置信息获取非激活单元载波的测量周期。 测量单元 803根 据上述测量周期对上述非激活单元载波进行测量。
上述第一获取单元 801 进一步用于, 接收服务基站发送的上述测量配 置信息, 或者从用户设备 80的预设信息中获取所述测量配置信息。 进一步地, 上述第一获取单元 801 获取的测量配置信息中的信号估计 值信息及其对应的测量周期包括: 信号估计值区间及其对应的测量周期。 上述第二获取单元 802进一步用于, 根据聚合载波小区中非激活单元载波 的信号估计值, 在上述测量配置信息中选择所述非激活单元载波的测量周 期。 如果上述第一获取单元 801 获取的测量配置信息还包括: 聚合载波小 区的类型信息或功率信息; 上述第二获取单元 802根据从服务基站接收到 的聚合载波小区的类型信息或功率信息, 以及上述聚合载波小区中非激活 单元载波的信号估计值, 在上述测量配置信息中选择所述非激活单元载波 的测量周期。 如果上述第一获取单元获取的测量配置信息还包括: 速度信 息; 上述第二获取单元 802根据用户设备 80当前的速度(例如网络计算获 得的 UE当前速度值或 UE 自身获得的当前速度值), 以及聚合载波小区中 非激活单元载波的信号估计值, 在上述测量配置信息中选择所述非激活单 元载波的测量周期。
进一步地,上述第一获取单元 801获取的测量配置信息中的信号估计值 信息及其对应的测量周期包括: 信号估计值及其对应的测量周期。 该用户 设备 80还包括接收单元 804,用于接收服务基站发送的测量周期计算信息。 上述第二获取单元 802根据聚合载波小区中非激活单元载波的信号估计值、 上述信号估计值及其对应的测量周期、 以及上述接收单元 804接收到的测 量周期计算信息, 计算获得所述非激活单元载波的测量周期。 如果上述第 一获取单元 801 获取的测量配置信息还包括: 聚合载波小区的类型信息或 功率信息; 上述第二获取单元 802根据从服务基站接收到的所述聚合载波 小区的类型信息或功率信息, 在上述测量配置信息中选择信号估计值及其 对应的测量周期, 并根据聚合载波小区中非激活单元载波的信号估计值、 上述选择的信号估计值及其对应的测量周期、 以及上述接收单元 804接收 到的测量周期计算信息, 计算获得所述非激活单元载波的测量周期。 如果 上述第一获取单元 801 获取的测量配置信息还包括: 速度信息; 上述第二 获取单元 802根据所述用户设备当前的速度(例如网络计算获得的 UE当前 速度值或 UE自身获得的当前速度值), 在上述测量配置信息中选择信号估 计值及其对应的测量周期, 并根据聚合载波小区中非激活单元载波的信号 估计值、 上述选择的信号估计值及其对应的测量周期、 以及上述接收单元 804接收到的测量周期计算信息, 计算获得所述非激活单元载波的测量周 期。
在具体实现过程中, 上述信号估计值信息及其对应的测量周期可以为 信号功率(如 RSRP )信息及其对应的测量周期, 相应地, 上述聚合载波小 区中非激活单元载波的信号估计值为该聚合载波小区中非激活单元载波的 信号功率 (如 RSRP ); 或者, 上述信号估计值信息及其对应的测量周期也 可以为信号质量信息及其对应的测量周期, 相应地, 上述聚合载波小区中 非激活单元载波的信号估计值为该聚合载波小区中非激活单元载波的信号 质量; 或者, 上述信号估计值信息及其对应的测量周期还可以为信号路损 信息及其对应的测量周期, 相应地, 上述聚合载波小区中非激活单元载波 的信号估计值为该聚合载波小区中非激活单元载波的信号路损。
上述第二获取单元 802进一步用于, 测量所述聚合载波小区中的非激 活单元载波, 获取非激活单元载波的信号估计值, 或者根据聚合载波小区 中已知单元载波的信号估计值, 获取聚合载波小区中非激活单元载波的信 号估计值。 可选地, 上述非激活单元载波的信号估计值可以为非激活单元 载波的信号估计值的平均值。
如图 9所示, 本实施例还提供一种聚合载波小区测量的系统, 包括基 站 90和如图 8所示的用户设备 80。
为描述的方便和简洁, 上述实施例描述的系统和用户设备的具体工作 过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
本实施例提供的用户设备和聚合载波小区测量的系统, 能够实现在聚 合载波小区中, UE对不同的单元载波进行不同周期的测量, 避免过度测量 导致的电量耗费, 同时能够及时根据信号估计值激活非激活单元载波。 在本申请所提供的几个实施例中所揭露的系统, 装置和方法, 可以通 过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外 的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。
另外, 在本发明实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个 单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功 能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 也可以存储在一个计算机可读取存储介质中。 基于这样的理 解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软 件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括 若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网 络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的 存储介质包括: U盘、移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM , Random Access Memory )、磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种聚合载波小区测量的方法, 其特征在于, 包括:
用户设备获取聚合载波小区的测量配置信息, 所述测量配置信息中包 括信号估计值信息及其对应的测量周期;
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计值 以及所述测量配置信息获取所述非激活单元载波的测量周期;
所述用户设备根据所述非激活单元载波的测量周期对所述非激活单元 载波进行测量。
2、 根据权利要求 1所述的方法, 其特征在于, 所述用户设备获取聚合 载波小区的测量配置信息, 包括: 所述用户设备接收服务基站发送的所述 测量配置信息, 或者所述用户设备从预设信息中获取所述测量配置信息。
3、 根据权利要求 1所述的方法, 其特征在于, 所述聚合载波小区中非 激活单元载波的信号估计值的获取方法包括: 所述用户设备测量所述聚合 载波小区中的非激活单元载波, 获取所述非激活单元载波的信号估计值, 或者, 所述用户设备根据所述聚合载波小区中已知单元载波的信号估计值, 获取所述聚合载波小区中非激活单元载波的信号估计值。
4、 根据权利要求 3所述的方法, 其特征在于, 所述非激活单元载波的 信号估计值包括: 所述非激活单元载波信号估计值的平均值。
5、 根据权利要求 1所述的方法, 其特征在于, 所述测量配置信息中的 信号估计值信息及其对应的测量周期包括: 信号估计值区间及其对应的测 量周期。
6、 根据权利要求 5所述的方法, 其特征在于, 所述用户设备根据所述 聚合载波小区中非激活单元载波的信号估计值以及所述测量配置信息获取 所述非激活单元载波的测量周期, 进一步包括:
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计 值, 在所述测量配置信息中选择所述非激活单元载波的测量周期。
7、 根据权利要求 5所述的方法, 其特征在于, 所述测量配置信息还包 括: 所述聚合载波小区的类型信息或功率信息;
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计值 以及所述测量配置信息获取所述非激活单元载波的测量周期, 进一步包括: 所述用户设备根据从服务基站接收到的所述聚合载波小区的类型信息 或功率信息, 以及所述聚合载波小区中非激活单元载波的信号估计值, 在 所述测量配置信息中选择所述非激活单元载波的测量周期。
8、 根据权利要求 5所述的方法, 其特征在于, 所述测量配置信息还包 括: 速度信息;
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计值 以及所述测量配置信息获取所述非激活单元载波的测量周期, 进一步包括: 所述用户设备根据当前的速度, 以及所述聚合载波小区中非激活单元 载波的信号估计值, 在所述测量配置信息中选择所述非激活单元载波的测 量周期。
9、 根据权利要求 1所述的方法, 其特征在于, 所述测量配置信息中的 信号估计值信息及其对应的测量周期包括: 信号估计值及其对应的测量周 期; 所述方法还包括: 接收服务基站发送的测量周期计算信息。
10、 根据权利要求 9所述的方法, 其特征在于, 所述用户设备根据所 述聚合载波小区中非激活单元载波的信号估计值以及所述测量配置信息获 取所述非激活单元载波的测量周期, 进一步包括:
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计 值、 所述信号估计值及其对应的测量周期、 以及所述测量周期计算信息, 计算获得所述非激活单元载波的测量周期。
11、 根据权利要求 9所述的方法, 其特征在于, 所述测量配置信息还 包括: 所述聚合载波小区的类型信息或功率信息;
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计值 以及所述测量配置信息获取所述非激活单元载波的测量周期, 进一步包括: 所述用户设备根据从服务基站接收到的所述聚合载波小区的类型信息 或功率信息, 在所述测量配置信息中选择信号估计值及其对应的测量周期, 并根据所述聚合载波小区中非激活单元载波的信号估计值、 所述选择的信 号估计值及其对应的测量周期、 以及所述测量周期计算信息, 计算获得所 述非激活单元载波的测量周期。
12、 根据权利要求 9所述的方法, 其特征在于, 所述测量配置信息还 包括: 速度信息;
所述用户设备根据所述聚合载波小区中非激活单元载波的信号估计值 以及所述测量配置信息获取所述非激活单元载波的测量周期, 进一步包括: 所述用户设备根据当前的速度, 在所述测量配置信息中选择信号估计 值及其对应的测量周期, 并根据所述聚合载波小区中非激活单元载波的信 号估计值、 所述选择的信号估计值及其对应的测量周期、 以及所述测量周 期计算信息, 计算获得所述非激活单元载波的测量周期。
13、 根据权利要求 1-12任一所述的方法, 其特征在于, 所述信号估计 值信息及其对应的测量周期为信号功率信息及其对应的测量周期, 所述聚 合载波小区中非激活单元载波的信号估计值为所述聚合载波小区中非激活 单元载波的信号功率; 或者
所述信号估计值信息及其对应的测量周期为信号质量信息及其对应的 测量周期, 所述聚合载波小区中非激活单元载波的信号估计值为所述聚合 载波小区中非激活单元载波的信号质量; 或者
所述信号估计值信息及其对应的测量周期为信号路损信息及其对应的 测量周期, 所述聚合载波小区中非激活单元载波的信号估计值为所述聚合 载波小区中非激活单元载波的信号路损。
14、 一种用户设备, 其特征在于, 所述用户设备, 包括:
第一获取单元, 用于获取聚合载波小区的测量配置信息, 所述测量配 置信息中包括信号估计值信息及其对应的测量周期;
第二获取单元, 用于根据所述聚合载波小区中非激活单元载波的信号 估计值以及所述测量配置信息获取所述非激活单元载波的测量周期; 和 测量单元, 用于根据所述非激活单元载波的测量周期对所述非激活单 元载波进行测量。
15、 根据权利要求 14所述的用户设备, 其特征在于, 所述第一获取单 元进一步用于: 接收服务基站发送的所述测量配置信息, 或者从所述用户 设备的预设信息中获取所述测量配置信息。
16、 根据权利要求 14所述的用户设备, 其特征在于, 所述第二获取单 元进一步用于, 测量所述聚合载波小区中的非激活单元载波, 获取所述非 激活单元载波的信号估计值, 或者根据所述聚合载波小区中已知单元载波 的信号估计值, 获取所述聚合载波小区中非激活单元载波的信号估计值。
17、 根据权利要求 16所述的方法, 其特征在于, 所述非激活单元载波 信号估计值包括: 所述非激活单元载波信号估计值的平均值。
18、 根据权利要求 14所述的用户设备, 其特征在于, 所述第一获取单 元获取的测量配置信息中的信号估计值信息及其对应的测量周期包括: 信 号估计值区间及其对应的测量周期。
19、 根据权利要求 18所述的用户设备, 其特征在于, 所述第二获取单 元进一步用于, 根据所述聚合载波小区中非激活单元载波的信号估计值, 在所述测量配置信息中选择所述非激活单元载波的测量周期。
20、 根据权利要求 18所述的用户设备, 其特征在于, 所述第一获取单 元获取的测量配置信息还包括: 所述聚合载波小区的类型信息或功率信息; 所述第二获取单元进一步用于, 根据从服务基站接收到的所述聚合载 波小区的类型信息或功率信息, 以及所述聚合载波小区中非激活单元载波 的信号估计值, 在所述测量配置信息中选择所述非激活单元载波的测量周 期。
21、 根据权利要求 18所述的用户设备, 其特征在于, 所述第一获取单 元获取的测量配置信息还包括: 速度信息;
所述第二获取单元进一步用于, 根据所述用户设备当前的速度, 以及 所述聚合载波小区中非激活单元载波的信号估计值, 在所述测量配置信息 中选择所述非激活单元载波的测量周期。
22、 根据权利要求 14所述的用户设备, 其特征在于, 所述第一获取单 元获取的测量配置信息中的信号估计值信息及其对应的测量周期包括: 信 号估计值及其对应的测量周期;
所述用户设备还包括接收单元, 用于接收服务基站发送的测量周期计 算信息。
23、 根据权利要求 22所述的用户设备, 其特征在于, 所述第二获取单 元进一步用于, 根据所述聚合载波小区中非激活单元载波的信号估计值、 所述信号估计值及其对应的测量周期、 以及所述测量周期计算信息, 计算 获得所述非激活单元载波的测量周期。
24、 根据权利要求 22所述的用户设备, 其特征在于, 所述第一获取单 元获取的测量配置信息还包括: 所述聚合载波小区的类型信息或功率信息; 所述第二获取单元进一步用于, 根据从服务基站接收到的所述聚合载 波小区的类型信息或功率信息, 在所述测量配置信息中选择信号估计值及 其对应的测量周期, 并根据所述聚合载波小区中非激活单元载波的信号估 计值、 所述选择的信号估计值及其对应的测量周期、 以及所述测量周期计 算信息, 计算获得所述非激活单元载波的测量周期。
25、 根据权利要求 22所述的用户设备, 其特征在于, 所述第一获取单 元获取的测量配置信息还包括: 速度信息;
所述第二获取单元进一步用于, 根据所述用户设备当前的速度, 在所 述测量配置信息中选择信号估计值及其对应的测量周期, 并根据所述聚合 载波小区中非激活单元载波的信号估计值、 所述选择的信号估计值及其对 应的测量周期、 以及所述测量周期计算信息, 计算获得所述非激活单元载 波的测量周期。
26、根据权利要求 14-25任一所述的用户设备, 其特征在于, 所述信号 估计值信息及其对应的测量周期为信号功率信息及其对应的测量周期, 所 述聚合载波小区中非激活单元载波的信号估计值为所述聚合载波小区中非 激活单元载波的信号功率; 或者
所述信号估计值信息及其对应的测量周期为信号质量信息及其对应的 测量周期, 所述聚合载波小区中非激活单元载波的信号估计值为所述聚合 载波小区中非激活单元载波的信号质量; 或者
所述信号估计值信息及其对应的测量周期为信号路损信息及其对应的 测量周期, 所述聚合载波小区中非激活单元载波的信号估计值为所述聚合 载波小区中非激活单元载波的信号路损。
27、 一种聚合载波小区测量的系统, 其特征在于, 包括基站和如权利 要求 14-26任一所述的用户设备。
PCT/CN2011/070682 2010-02-03 2011-01-27 聚合载波小区测量的方法、装置及系统 WO2011095103A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112012019347A BR112012019347B8 (pt) 2010-02-03 2011-01-27 método, equipamento de usuário e sistema para medir célula portadora agregada
EP11739382.7A EP2533562B1 (en) 2010-02-03 2011-01-27 Aggregated carrier cell measurement method, device and system
US13/565,052 US8774792B2 (en) 2010-02-03 2012-08-02 Method, apparatus, and system for measuring aggregated carrier cell
US13/687,501 US20130088988A1 (en) 2010-02-03 2012-11-28 Method, apparatus, and system for measuring aggregated carrier cell
US14/284,705 US9020494B2 (en) 2010-02-03 2014-05-22 Method, apparatus, and system for measuring aggregated carrier cell
US14/663,857 US9301190B2 (en) 2010-02-03 2015-03-20 Method, apparatus, and system for measuring aggregated carrier cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010107381.5 2010-02-03
CN2010101073815A CN102143505B (zh) 2010-02-03 2010-02-03 聚合载波小区测量的方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/565,052 Continuation US8774792B2 (en) 2010-02-03 2012-08-02 Method, apparatus, and system for measuring aggregated carrier cell

Publications (1)

Publication Number Publication Date
WO2011095103A1 true WO2011095103A1 (zh) 2011-08-11

Family

ID=44354967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070682 WO2011095103A1 (zh) 2010-02-03 2011-01-27 聚合载波小区测量的方法、装置及系统

Country Status (5)

Country Link
US (4) US8774792B2 (zh)
EP (2) EP2533562B1 (zh)
CN (1) CN102143505B (zh)
BR (1) BR112012019347B8 (zh)
WO (1) WO2011095103A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001333A1 (en) * 2011-06-29 2013-01-03 Nokia Corporation Method and apparatus for terminal measurement configuration in multi-radio access technology environment
WO2013168966A1 (en) * 2012-05-09 2013-11-14 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
EP2747474A1 (en) * 2011-12-15 2014-06-25 Huawei Technologies Co., Ltd Method for user equipment (ue) to report measurement result and ue

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143505B (zh) 2010-02-03 2013-10-02 华为技术有限公司 聚合载波小区测量的方法、装置及系统
US8666398B2 (en) * 2010-04-13 2014-03-04 Qualcomm Incorporated Random access procedure enhancements for heterogeneous networks
CN102378210A (zh) * 2010-08-17 2012-03-14 中兴通讯股份有限公司 多载波系统中的载波测量方法及系统
US8565686B2 (en) * 2011-06-30 2013-10-22 Sprint Communications Company L.P. Power status multipath search window sizing for wireless communications
CN102883343B (zh) * 2011-07-13 2017-08-29 华为技术有限公司 一种扩展载波路径损耗测量方法和相关设备
CN103327590B (zh) * 2012-03-21 2017-10-10 华为技术有限公司 确定发射功率的方法和设备
US9226174B2 (en) * 2012-06-09 2015-12-29 Apple Inc. Improving reception by a wireless communication device
GB2504293B (en) * 2012-07-24 2015-01-14 Anritsu Corp A carrier aggregation testing method and apparatus for performing the same
CN104521318B (zh) * 2012-08-02 2018-06-22 夏普株式会社 终端、基站、通信方法以及集成电路
US9661610B2 (en) * 2012-08-30 2017-05-23 Lg Electronics Inc. Communication method based on automatic serving cell management in wireless communication system, and device for supporting same
CN103686778B (zh) * 2012-09-04 2018-02-23 中国移动通信集团公司 新型载波测量方法、系统和装置
JP2014072580A (ja) * 2012-09-27 2014-04-21 Fujitsu Ltd 受信機および受信品質測定方法
JP6225552B2 (ja) * 2013-08-08 2017-11-08 富士通株式会社 無線通信方法、無線通信システムおよび通信装置
US9510273B2 (en) * 2013-09-18 2016-11-29 Samsung Electronics Co., Ltd. Communication system with cell selection mechanism and method of operation thereof
MY176650A (en) * 2013-09-30 2020-08-19 Ericsson Telefon Ab L M Configuration of mobility management measurement method
US9602229B2 (en) * 2014-01-29 2017-03-21 Mediatek Inc. Method for cancelling a data transmission of a neighboring cell
US9973958B2 (en) * 2014-01-30 2018-05-15 Intel IP Corporation Systems, methods, and devices for improved inter-frequency measurement
US10411847B2 (en) 2015-04-10 2019-09-10 Futurewei Technologies, Inc. Communications with carrier selection, switching and measurements
KR102656957B1 (ko) * 2016-12-16 2024-04-16 삼성전자 주식회사 무선통신 시스템에서 고속 이동을 위한 측정 방법 및 장치
US20180343689A1 (en) * 2017-05-26 2018-11-29 Mediatek Inc. Method And Apparatus For Handling Problem Cell In Mobile Communications
CN109041098A (zh) 2017-06-12 2018-12-18 维沃移动通信有限公司 一种终端测量配置方法、终端及基站
CN109309900B (zh) * 2017-07-27 2020-10-23 维沃移动通信有限公司 一种测量方法和用户终端
CN110611922B (zh) * 2018-06-15 2021-10-22 华为技术有限公司 测量小区的方法及终端设备
WO2019242021A1 (zh) 2018-06-22 2019-12-26 Oppo广东移动通信有限公司 信息测量方法、终端设备和网络设备
WO2020228948A1 (en) * 2019-05-15 2020-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Reporting of network performance degradation in a communications system
CN111918326A (zh) * 2020-08-03 2020-11-10 上海闻泰信息技术有限公司 信号检测周期的确定方法、装置、电子设备和存储介质
CN116709370B (zh) * 2022-10-27 2024-03-08 荣耀终端有限公司 一种滤波系数调整方法、装置及用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505498A (zh) * 2009-03-17 2009-08-12 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
CN101541029A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 载波聚合情况下测量参考信号的发送方法和装置
CN101594683A (zh) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 一种载波聚合时的信号传输方法及系统

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349094B1 (en) * 1997-07-03 2002-02-19 Mdiversity Inc. Method and apparatus for wireless communications employing control for broadcast transmission
US6295279B1 (en) 1998-09-02 2001-09-25 Ericsson Inc. System and method for measuring reverse-link carrier-to-interference ratio for a time division multiple access system in the field environment
GB9920615D0 (en) 1999-09-02 1999-11-03 Koninkl Philips Electronics Nv Battery economising in a communications system
US6463105B1 (en) 1999-09-13 2002-10-08 Ericsson Inc. Methods and systems for estimation of the carrier to interference ratio for a wireless communication channel
EP1161107A4 (en) * 2000-01-07 2003-02-12 Mitsubishi Electric Corp CELL CHANGE DEVICE AND METHOD
DK1520360T3 (da) * 2002-06-27 2007-04-30 Koninkl Philips Electronics Nv Måling af kanalkarakteristikker i et kommunikationssystem
US8477592B2 (en) * 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
US7274936B2 (en) * 2004-02-06 2007-09-25 Interdigital Technology Corporation Method and apparatus for measuring channel quality using a smart antenna in a wireless transmit/receive unit
US7961700B2 (en) * 2005-04-28 2011-06-14 Qualcomm Incorporated Multi-carrier operation in data transmission systems
WO2007066949A2 (en) 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Transmitting/receiving apparatus of wideband wireless channel apparatus using multiple carriers
ES2964018T3 (es) * 2007-08-08 2024-04-03 Ericsson Telefon Ab L M Sondeo de canales utilizando múltiples configuraciones de señales de sondeo
US9491722B2 (en) 2007-08-10 2016-11-08 Qualcomm Incorporated Adaptation of transmit power based on channel quality
CN101159953B (zh) 2007-11-07 2011-11-30 中兴通讯股份有限公司 一种对专用信道的周期性测量方法
JP5228065B2 (ja) * 2008-01-30 2013-07-03 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Tddシステムの移動体端末のための測定タイムスロット構成
US8498599B2 (en) * 2008-01-31 2013-07-30 Telefonaktiebolaget L M Ericsson (Publ) Signal power measurement methods and apparatus
EP2321994B1 (en) * 2008-03-13 2016-02-24 Telefonaktiebolaget LM Ericsson (publ) Quality based handover procedure between co-located cells
US8699467B2 (en) * 2008-03-25 2014-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Anchor carrier selection in multi-carrier wireless network
MY152790A (en) * 2008-06-04 2014-11-28 Ericsson Telefon Ab L M Method and arrangements in a mobile communication network
US8706068B2 (en) * 2008-06-23 2014-04-22 Telefonaktiebolaget L M Ericsson (Publ) Adaptive signal power measurement methods and apparatus
US8537802B2 (en) 2008-07-23 2013-09-17 Marvell World Trade Ltd. Channel measurements in aggregated-spectrum wireless systems
KR101642513B1 (ko) * 2008-09-05 2016-08-01 엘지전자 주식회사 다중 반송파를 이용한 통신 방법 및 장치
CN101420723A (zh) 2008-11-14 2009-04-29 中兴通讯股份有限公司 系统测量方法及装置
US20100130218A1 (en) * 2008-11-21 2010-05-27 Interdigital Patent Holdings, Inc. Method and apparatus for supporting aggregation of multiple component carriers
ES2368385T3 (es) * 2009-01-29 2011-11-16 Lg Electronics Inc. Esquema de transmisión de señales para una gestión eficaz del canal dedicado mejorado común.
WO2010091425A2 (en) * 2009-02-09 2010-08-12 Interdigital Patent Holdings, Inc. Apparatus and method for uplink power control for a wireless transmitter/receiver unit utilizing multiple carriers
WO2010099105A1 (en) * 2009-02-27 2010-09-02 Interdigital Patent Holdings, Inc. Anchor carrier reselection and cell reselection in long term evolution-advanced
US8385833B2 (en) * 2009-04-30 2013-02-26 Telefonaktiebolaget L M Ericsson (Publ) Adaptive idle mode measurement methods and apparatus
ES2405786T3 (es) * 2009-05-08 2013-06-03 Telefonaktiebolaget L M Ericsson (Publ) Métodos y aparatos para soportar DTX
US8666389B2 (en) * 2009-08-05 2014-03-04 Htc Corporation Method of handling system information reception with measurement gap configuration and related communication device
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
CN102143505B (zh) 2010-02-03 2013-10-02 华为技术有限公司 聚合载波小区测量的方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505498A (zh) * 2009-03-17 2009-08-12 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置
CN101541029A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 载波聚合情况下测量参考信号的发送方法和装置
CN101594683A (zh) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 一种载波聚合时的信号传输方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2533562A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001333A1 (en) * 2011-06-29 2013-01-03 Nokia Corporation Method and apparatus for terminal measurement configuration in multi-radio access technology environment
US9686704B2 (en) 2011-06-29 2017-06-20 Nokia Technologies Oy Method and apparatus for terminal measurement configuration in multi-radio access technology environment
EP2747474A1 (en) * 2011-12-15 2014-06-25 Huawei Technologies Co., Ltd Method for user equipment (ue) to report measurement result and ue
EP2747474A4 (en) * 2011-12-15 2014-12-17 Huawei Tech Co Ltd METHOD FOR USER EQUIPMENT (UE) REPORTING A MEASUREMENT RESULT, AND EU
WO2013168966A1 (en) * 2012-05-09 2013-11-14 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
US10306555B2 (en) 2012-05-09 2019-05-28 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
US10674444B2 (en) 2012-05-09 2020-06-02 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof
US11252660B2 (en) 2012-05-09 2022-02-15 Samsung Electronics Co., Ltd. Method and apparatus for measuring inter-frequency neighboring cell and user equipment thereof

Also Published As

Publication number Publication date
CN102143505A (zh) 2011-08-03
BR112012019347B1 (pt) 2019-05-21
US9301190B2 (en) 2016-03-29
EP2533562A1 (en) 2012-12-12
EP2533562A4 (en) 2013-02-27
US9020494B2 (en) 2015-04-28
BR112012019347B8 (pt) 2019-12-10
BR112012019347A2 (pt) 2016-05-03
US8774792B2 (en) 2014-07-08
US20150195735A1 (en) 2015-07-09
CN102143505B (zh) 2013-10-02
EP3169099A1 (en) 2017-05-17
EP2533562B1 (en) 2016-09-14
US20140256309A1 (en) 2014-09-11
US20130088988A1 (en) 2013-04-11
US20120295610A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2011095103A1 (zh) 聚合载波小区测量的方法、装置及系统
US10601556B2 (en) Measurement gap configuration
US11832138B2 (en) Methods and apparatuses for handling the configuration of measurements to be performed by a user equipment in a wireless communication network
US11589345B2 (en) Management of resource allocation and notification control over RAN interfaces
CN111801981B (zh) 用于高效早期数据的传感器数据批处理
EP3925305B1 (en) Controlling the reporting of early measurements and connected mode measurements based on traffic volume and other conditions
CN114466420A (zh) 进行测量报告的方法及其设备
US20120252432A1 (en) Method, apparatus and computer program product for obtaining deactivated secondary cell measurements while a mobile terminal is in motion
RU2744617C1 (ru) Сообщение глобального идентификатора соты в системе беспроводной связи
US20140171086A1 (en) Mobile station and mobile communication method
EP3718338B1 (en) On triggering measurements in lte-nr interworking
EP2747492A2 (en) Method and apparatus for cell activation
WO2020200120A1 (zh) 一种测量方法、设备及装置
WO2014022960A1 (zh) 重叠覆盖网络的能效参数获取方法、装置和网络管理系统
CN113615261A (zh) 延长不连续接收活动时间
US20220330339A1 (en) Systems and methods for ue operation in presence of cca
US20230262501A1 (en) Early Measurement Reporting of Suspended Secondary Cell Group (SCG)
US20220095143A1 (en) ANR Configuration, Measurements and Reporting for Power Limited Devices
EP3182779B1 (en) User apparatus and measurement control method
US20230217280A1 (en) Measurement Triggering Based on Data Traffic
US20230044648A1 (en) Method for Capacity Indication in Extended UE Configuration
CN113875183B (zh) 发送和接收指示
US20240196325A1 (en) Method for Switching Off Network Cells based on the Capability of Wireless Devices in the Network
US20220346021A1 (en) PSM and ANR Handling for Power Limited Devices
WO2022060272A1 (en) Methods of reporting information collected by a communication device and related devices and nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011739382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011739382

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019347

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019347

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120802