WO2011095055A1 - 一种用于垂直轴风力发电机的制动装置及其制动方法 - Google Patents
一种用于垂直轴风力发电机的制动装置及其制动方法 Download PDFInfo
- Publication number
- WO2011095055A1 WO2011095055A1 PCT/CN2011/000175 CN2011000175W WO2011095055A1 WO 2011095055 A1 WO2011095055 A1 WO 2011095055A1 CN 2011000175 W CN2011000175 W CN 2011000175W WO 2011095055 A1 WO2011095055 A1 WO 2011095055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brake
- braking
- generator
- mechanical
- vertical axis
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000005611 electricity Effects 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0244—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
- F03D7/0248—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking by mechanical means acting on the power train
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/005—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor the axis being vertical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/90—Braking
- F05B2260/902—Braking using frictional mechanical forces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/90—Braking
- F05B2260/903—Braking using electrical or magnetic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Definitions
- the present invention relates to a brake device for a vertical axis wind turbine, and also to a brake method for the brake device.
- BACKGROUND OF THE INVENTION Wind energy is a renewable energy source with the greatest application prospects beyond water energy, and has been highly valued by countries all over the world.
- Wind turbines are divided according to the direction of the rotating shaft and can be divided into two types: horizontal axis and vertical axis.
- horizontal axis wind turbines are widely used, but they have the disadvantages of complicated structure and high manufacturing and maintenance costs.
- the improved vertical-axis wind turbine has the advantages of lower starting wind speed, higher wind energy utilization and low noise, and has a broader market application prospect.
- braking In the process of using the wind turbine, in order to avoid the sudden increase of the wind and bring harm to the operation of the unit, certain braking measures are required.
- braking can be performed by means of yaw system, aerodynamic braking, mechanical braking, and the like. Since the vertical axis wind turbine cannot reduce the windward area by yaw during strong wind, a brake device with a larger braking torque is required to ensure its safety.
- some mechanical braking solutions have been proposed. For example, in the Chinese Patent Application No. 200910003965. 5, a brake device for a vertical shaft and a brake method therefor are disclosed.
- the brake device includes a brake device connected to the rotor shaft of the generator or the vertical shaft of the wind turbine, brake brake arm or brake system controlled by the brake solenoid valve Moving brakes, friction plates.
- the brake device is a brake ferrule, a brake disc or a brake disc, and also includes a safety pin and a safety solenoid valve that controls the safety pin.
- start the brake solenoid valve When the wind speed exceeds the maximum generator wind speed and needs braking, start the brake solenoid valve, control the brake brake arm or brake brake disc, and brake the fan through the action of the friction plate.
- the brake solenoid valve is closed, and the brake brake arm or brake disc is controlled to maintain the initial state.
- a brake device for a vertical axis wind power generator of the present invention includes a brake disk coupled to a generator rotor, a brake bracket mounted on a fixed rotating shaft, and a mechanical brake mounted on the brake bracket. composition.
- the brake disk is coaxial with the generator rotor.
- the mechanical brake is a caliper hydraulic brake or a pneumatic brake, and has a brake pad on the upper and lower jaws, and the friction portion of the brake disc is inserted between the upper and lower brake pads.
- the brake device for a vertical axis wind power generator of the present invention wherein the mechanical brakes may be one or more, symmetrically distributed with a rotational center axis of the generator when a plurality of mechanical brakes are employed.
- the present invention also provides a braking method using the brake device for a vertical axis wind power generator of the present invention.
- the mechanical brake closes the jaws, so that the upper and lower friction plates are pressed against the brake disk.
- the generator rotor is braked; when the brake needs to be released, the mechanical brake opens the jaws so that the generator rotor can rotate.
- the brake device for a vertical axis wind power generator of the present invention and the braking method using the brake device avoid emergency stop under high wind speed conditions, and not only improve vertical axis wind power generator The safety, but also avoids the impact on the power grid.
- Figure 1 is a cross-sectional view of a vertical-axis wind turbine employing a brake device provided by the present invention
- Figure 2 is a schematic view showing the distribution of a plurality of mechanical brakes disposed along the circumference of the brake disk.
- BEST MODE FOR CARRYING OUT THE INVENTION The existing horizontal-axis wind turbine needs to reduce the rotational speed of the wind turbine by yaw or the like after the wind speed exceeds a predetermined safety range, especially when the wind speed reaches a large value, often after yaw Forced shutdown by an emergency brake or the like mounted on the drive shaft for self-protection.
- the vertical axis wind turbine cannot yaw in the high wind to reduce the windward area to reduce the braking force requirement of the mechanical brake device. Instead, it needs to reduce and limit the speed by mechanical braking and increase the generator braking torque to control the wind.
- the wheel inputs torque to protect the unit.
- the mechanical brake must be used to provide additional braking force to control the generator speed not exceeding the maximum speed for safe operation. In the extreme case, when the generator fails or the grid fails to output power, it is necessary to perform an emergency braking to stop by the mechanical brake device to achieve self-protection.
- the vertical axis wind turbine can adopt the permanent magnet generator structure with no outer core of the outer rotor.
- the wind wheel can directly drive the outer rotor to generate electricity.
- As a direct-drive wind turbine its speed is low and the torque is large, so the brake device is required to provide more torque.
- the invention adopts a brake disc directly connected with the outer rotor, which is beneficial to enlarge the braking radius of the brake disc and increase the braking torque.
- the invention also employs a plurality of symmetrically distributed brakes, which can make the braking torque proportional to the number of brakes and increase the braking torque.
- Clamp-type knot The friction plate is distributed on the upper and lower sides of the jaws, and the friction part of the brake disc is inserted between the upper and lower friction plates, so that the braking torque is increased to twice that of the single-sided friction structure.
- a brake disc 8 having a Z-shaped cross section is mounted on the bottom of the outer ring sub-disc ironless generator.
- a mechanical brake symmetrically distributed along the circumference of the generator is mounted outside the disk projecting outwardly from the bottom of the brake disc.
- the mechanical brake can be either hydraulic or pneumatic.
- the hydraulic brake controls the opening of the hydraulic pump through the control system, so that the jaws of the brake are opened and closed and the brake pressure is changed.
- the pneumatic brake controls the opening and closing of the solenoid valve through the control system, adjusts the internal air pressure of the pneumatic brake to open and close the jaws of the brake, and changes the brake pressure.
- the air source is provided by the air compressor.
- Fig. 2 there are four mechanical brakes distributed symmetrically along the circumference, and actually one or more of the above mechanical brakes can be used.
- multiple mechanical brakes are used, they are symmetrically distributed along the generator brake disc about the generator center axis, and usually two sets of two brakes symmetric about the generator center axis act simultaneously to balance the braking force and reduce the mechanical stress of the components. .
- the brakes can be grouped according to the braking force. For example, in Figure 2, if the required braking force is small, only the upper and lower brakes can be used for braking; when the braking force is required, the upper, lower, left and right brakes are simultaneously operated. move. Other cases and so on.
- the detailed description is given. Any obvious modifications made to the present invention will be made to the infringement of the patent right of the present invention without departing from the spirit of the invention.
- the brake device for a vertical axis wind power generator of the present invention and the system using the brake device The method is applied to the field of wind power generation, avoiding emergency shutdown under high wind speed conditions, not only improving the safety of vertical axis wind turbines, but also avoiding excessive impact on the power grid.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011213427A AU2011213427A1 (en) | 2010-02-08 | 2011-01-31 | Braking equipment for vertical shaft wind generator and braking method therefor |
EP11739334A EP2535560A1 (en) | 2010-02-08 | 2011-01-31 | Braking equipment for vertical shaft wind generator and braking method therefor |
JP2012551472A JP2013519023A (ja) | 2010-02-08 | 2011-01-31 | 垂直軸風力発電機用ブレーキ及びそのブレーキ方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201019114063 CN101922413A (zh) | 2010-02-08 | 2010-02-08 | 用于垂直轴风力发电机的制动方法及制动装置 |
CN201019114063.9 | 2010-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011095055A1 true WO2011095055A1 (zh) | 2011-08-11 |
Family
ID=43337544
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/000955 WO2011094910A1 (zh) | 2010-02-08 | 2010-06-28 | 用于垂直轴风力发电机的制动方法及制动装置 |
PCT/CN2011/000175 WO2011095055A1 (zh) | 2010-02-08 | 2011-01-31 | 一种用于垂直轴风力发电机的制动装置及其制动方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/000955 WO2011094910A1 (zh) | 2010-02-08 | 2010-06-28 | 用于垂直轴风力发电机的制动方法及制动装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2535560A1 (zh) |
CN (2) | CN101922413A (zh) |
AU (1) | AU2011213427A1 (zh) |
WO (2) | WO2011094910A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208953B (zh) * | 2012-01-16 | 2016-05-04 | 北京能高自动化技术股份有限公司 | 永磁同步风力发电机组电阻制动设计方法 |
CN103776598A (zh) * | 2014-01-17 | 2014-05-07 | 日照市北业制动泵有限公司 | 钳盘式制动器真空密封性试验装置 |
CN105156269A (zh) * | 2015-09-25 | 2015-12-16 | 杭州恒龙新能源科技有限公司 | 垂直轴风机的手动刹车机构 |
CN108644065B (zh) * | 2018-04-17 | 2019-11-05 | 江苏昊诚电气科技有限公司 | 一种基于物联网的安全可靠型风力发电设备 |
CN109340049B (zh) * | 2018-11-15 | 2024-03-19 | 中国华能集团清洁能源技术研究院有限公司 | 一种风力发电制氢制动装置及方法 |
CN109905003A (zh) * | 2019-04-16 | 2019-06-18 | 珠海市绿田机械有限公司 | 三相交流同步电机及电器设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316751A (ja) * | 2005-05-16 | 2006-11-24 | Takumi Hashizume | ダリウス・サボニウス式風力発電装置 |
CN201250868Y (zh) * | 2008-05-29 | 2009-06-03 | 台州本菱发动机制造工业有限公司 | 风力发电制动装置 |
CN101482097A (zh) * | 2009-01-21 | 2009-07-15 | 严强 | 一种用于垂直轴风力发电机的制动系统及其制动方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87208277U (zh) * | 1987-05-15 | 1988-03-02 | 张若林 | 风力发电机制动装置 |
ATE257218T1 (de) * | 1998-08-13 | 2004-01-15 | Neg Micon As | Regelvorrichtung für das verstellen und stillsetzen der flügel einer windkraftmaschine |
US7075192B2 (en) * | 2004-04-19 | 2006-07-11 | Northern Power Systems, Inc. | Direct drive wind turbine |
DE102006001613B4 (de) * | 2006-01-11 | 2008-01-31 | Repower Systems Ag | Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage |
JP5307323B2 (ja) * | 2006-06-22 | 2013-10-02 | 那須電機鉄工株式会社 | 風力発電機の回転子のブレーキ制御方法及び風力発電機 |
KR100810990B1 (ko) * | 2006-10-18 | 2008-03-11 | 주식회사 에어로네트 | 제트 휠 방식의 수직축 터빈을 채용한 풍력발전시스템 |
CN201198815Y (zh) * | 2008-03-11 | 2009-02-25 | 扬州神州风力发电机有限公司 | 风力发电机的刹车装置 |
CN101363418B (zh) * | 2008-09-19 | 2010-12-01 | 北京清桦华丰科技股份有限公司 | 带制动装置的立轴式双组风车叶片风力发电设备 |
CN101514687B (zh) * | 2009-04-10 | 2011-07-20 | 重庆大学 | 一种兆瓦级风力发电机组的刹车系统及控制方法 |
-
2010
- 2010-02-08 CN CN 201019114063 patent/CN101922413A/zh active Pending
- 2010-06-28 WO PCT/CN2010/000955 patent/WO2011094910A1/zh active Application Filing
-
2011
- 2011-01-31 WO PCT/CN2011/000175 patent/WO2011095055A1/zh active Application Filing
- 2011-01-31 CN CN 201110035534 patent/CN102192088A/zh active Pending
- 2011-01-31 AU AU2011213427A patent/AU2011213427A1/en not_active Abandoned
- 2011-01-31 EP EP11739334A patent/EP2535560A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316751A (ja) * | 2005-05-16 | 2006-11-24 | Takumi Hashizume | ダリウス・サボニウス式風力発電装置 |
CN201250868Y (zh) * | 2008-05-29 | 2009-06-03 | 台州本菱发动机制造工业有限公司 | 风力发电制动装置 |
CN101482097A (zh) * | 2009-01-21 | 2009-07-15 | 严强 | 一种用于垂直轴风力发电机的制动系统及其制动方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2011094910A1 (zh) | 2011-08-11 |
EP2535560A1 (en) | 2012-12-19 |
AU2011213427A1 (en) | 2012-07-05 |
CN101922413A (zh) | 2010-12-22 |
CN102192088A (zh) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011095055A1 (zh) | 一种用于垂直轴风力发电机的制动装置及其制动方法 | |
CN101482097B (zh) | 一种用于垂直轴风力发电机的制动系统及其制动方法 | |
CN106321359B (zh) | 一种立轴离合式风力发电装置 | |
US8646177B2 (en) | Method and apparatus for mounting a rotor blade on a wind turbine | |
EP2290236B1 (en) | Method and system for extracting inertial energy from a wind turbine | |
CN101476543B (zh) | 用于风力发电机上的无偏航齿轮的偏航驱动装置 | |
WO2013060165A1 (zh) | 垂直轴风力发电机储能发电系统及方法 | |
CN206111429U (zh) | 一种摩擦离合式垂直轴风力发电装置 | |
WO2008134963A1 (fr) | Générateur d'énergie éolienne à l'épreuve de vents violents | |
CN102042179B (zh) | 一种风叶可折叠、油阻调速和控制的垂直轴风力发电装置 | |
CN101806281B (zh) | 用于风力发电机组主轴制动的液压装置 | |
CN202883244U (zh) | 一种风力发电机负载接入式安全制动装置 | |
CN201705556U (zh) | 一种智能控制的风力发电机刹车系统 | |
CN201827024U (zh) | 制动装置及采用该装置的垂直轴风力发电机 | |
CN201708766U (zh) | 带变频器的偏航一体电动机 | |
JP2013519023A (ja) | 垂直軸風力発電機用ブレーキ及びそのブレーキ方法 | |
CN105134492B (zh) | 减轻风力发电机齿轮箱齿面点蚀的方法 | |
CN102751814A (zh) | 小型风力发电机混合制动系统和制动方法 | |
CN101956672A (zh) | 一种适于宽风速范围的风力发电方法及装置 | |
CN207297234U (zh) | 一种垂直轴风力发电机 | |
CN202215431U (zh) | 一种垂直轴风力发电机的刹车装置 | |
CN208675079U (zh) | 一种大吊扇用直驱永磁同步电机 | |
CN101566137A (zh) | 风力发动机的主轴系统制动装置及停机时的安全保护方法 | |
CN201953564U (zh) | 一种大功率风电机组的制动系统 | |
WO2015024500A1 (zh) | 分层式风光发电塔 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739334 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011213427 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011739334 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012551472 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2011213427 Country of ref document: AU Date of ref document: 20110131 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |