WO2011093234A1 - Projection image display device - Google Patents

Projection image display device Download PDF

Info

Publication number
WO2011093234A1
WO2011093234A1 PCT/JP2011/051186 JP2011051186W WO2011093234A1 WO 2011093234 A1 WO2011093234 A1 WO 2011093234A1 JP 2011051186 W JP2011051186 W JP 2011051186W WO 2011093234 A1 WO2011093234 A1 WO 2011093234A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
display apparatus
unit
projection display
housing
Prior art date
Application number
PCT/JP2011/051186
Other languages
French (fr)
Japanese (ja)
Inventor
誠 前田
真文 田中
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011093234A1 publication Critical patent/WO2011093234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/04Catoptric systems, e.g. image erecting and reversing system using prisms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • the present invention relates to a projection display apparatus including a light modulation element that modulates light emitted from a light source and a projection optical system that projects light emitted from the light modulation element onto a projection surface.
  • a projection display apparatus including a light modulation element that modulates light emitted from a light source and a projection optical system that projects light emitted from the light modulation element onto a projection surface.
  • Patent Document 1 a technique for shortening the distance between the projection light emission position and the projection surface by using a convex mirror or a concave mirror as the last optical member in the projection optical system including the mirror is disclosed (for example, Patent Documents 2 and 3).
  • the projection display apparatus is provided with a power switch and the like, and it is necessary to press the power switch in order to start the projection display apparatus.
  • the power switch in order to start the projection display apparatus.
  • fewer user operations are preferable.
  • an object of the present invention is to provide a projection display apparatus that can easily start the projection display apparatus.
  • a projection display apparatus includes a light modulation element (DMD 70) for modulating light emitted from a light source (light source 10), and light emitted from the light modulation element on a projection surface.
  • a housing (housing 200) for housing a projection optical system (projection optical system 110) for projection is provided.
  • the projection display apparatus is disposed on the reference plane.
  • the housing has a bottom surface (first surface 220 or second surface 230) facing the reference surface.
  • a detection unit (detection unit 400) configured to be able to detect the reference surface is provided on the bottom surface.
  • the projection display apparatus includes an operation control unit (operation control unit 320) that starts the operation of the device when the reference unit is detected by the detection unit.
  • the detection unit has at least three detection points for detecting the reference plane.
  • the at least three or more detection points are mechanical switches that are energized in a state where the casing is disposed on the reference plane.
  • the housing includes a cover body (first housing 200A or cover body 200C) configured to cover a transmission region that transmits light emitted from the projection optical system;
  • a focus adjustment tool (focus adjustment tool 260) that is linked to a lens provided in the projection optical system.
  • the cover body transitions to a covering state covering the transmission region and an uncovering state not covering the transmission region by the movement of the cover body.
  • the focus adjustment tool returns to the initial position by the movement of the cover body.
  • the operation control unit operates the projection display device when the cooling state in the housing is worse than a predetermined state after the start of operation of the projection display device. finish.
  • a projection display apparatus includes a light modulation element that modulates light emitted from a light source, and a projection optical system that projects light emitted from the light modulation element onto a projection plane.
  • a housing is provided.
  • the projection display apparatus is disposed on the reference plane.
  • the housing includes a cover body configured to be able to cover a transmission region that transmits light emitted from the projection optical system, and a focus adjustment tool that works with a lens provided in the projection optical system.
  • the cover body transitions to a covering state covering the transmission region and an uncovering state not covering the transmission region by the movement of the cover body.
  • the focus adjustment tool returns to the initial position by the movement of the cover body.
  • a projection display apparatus includes an image light generation unit that generates image light, a housing that houses the image light generation unit, and the image light emitted from the image light generation unit.
  • a projection unit that bends the image light in a direction different from the emission direction of the image and projects the image light onto a projection surface.
  • the surface from which the image light is emitted from the housing is the front surface
  • the surface facing the front surface is the back surface
  • the surface substantially parallel to the projection surface and the closest surface is the bottom surface
  • the operation unit (power button 2166, menu button 2167, direction) for giving various commands to the projection display apparatus, where the bottom surface and the surface other than the top surface are side surfaces between the front surface and the back surface.
  • a button 2168) is disposed on the top surface and / or the side surface.
  • the operation buttons are arranged at positions that do not affect the projection screen when the operation buttons are operated. Even if the operation button is operated during projection, the projected image is not blocked by the user.
  • the 2-1 feature may be characterized in that the operation section has operation buttons, and the operation buttons are arranged symmetrically in the front-rear direction when confirmed from the front and back of the housing.
  • the feature 2-1 may further include an adjustment unit that adjusts a state of the projected image light, and an adjustment knob of the adjustment unit is arranged on the side surface.
  • the feature 2-1 may further include an adjustment unit that adjusts a state of the projected image light, and an adjustment knob of the adjustment unit is arranged on the front surface.
  • an input unit for inputting a power source and an input signal may be provided, and the input unit may be arranged on the side surface.
  • a cover that covers the adjustment knob and / or the input unit may be provided.
  • the housing has an intake port for introducing cooling air into the housing and an exhaust port for discharging cooling air from the housing, and the casing is movable at least in one direction. And opening and closing at least one of the knob, the input unit, the intake port, and the exhaust port by moving the cover in conjunction with moving the movable unit. Good.
  • the projection type video display device (projection type video display device 1100) according to the 3-1 characteristic includes a video light generation unit (video light generation unit 1140) for generating video light, and the video light generation unit.
  • a mirror (for example, an aspherical mirror 1112) that reflects the image light toward the projection surface.
  • the projection display apparatus includes a power supply unit (for example, a battery unit 1150) that supplies power to the video light generation unit, and the power supply unit is provided as far as possible from the mirror.
  • the heavy mirror and the power supply unit are provided at positions separated from each other, the weight balance of the entire apparatus can be kept in equilibrium.
  • a cooling unit (cooling unit 1170) for cooling the image light generation unit may be further provided, and the cooling unit may be provided at a position as far as possible from the mirror.
  • the cooling unit may be provided at a position as far as possible from the mirror.
  • the 3-1 feature may further include a housing (housing 1101) that houses the image light generation unit and has a substantially rectangular parallelepiped shape, and a surface from which the image light is emitted from the housing is a front surface (front surface 1106).
  • a housing housing 1101 that houses the image light generation unit and has a substantially rectangular parallelepiped shape
  • a surface from which the image light is emitted from the housing is a front surface (front surface 1106).
  • the back surface back surface
  • the operation unit for example, the power switch 1166 and the operation button 1167) is preferably provided on a surface excluding the front surface, the back surface, and the bottom surface.
  • the power supply unit is positioned at the bottom of the apparatus, and the mirror is connected to the power supply unit.
  • the gist is that the image light emitted upward from the image generation unit provided in the upper part is provided at a position where the image light is reflected to the projection plane.
  • 1 is a diagram showing a schematic configuration of a projection display apparatus 100 according to Embodiment 1-1.
  • 1 is a diagram showing a schematic configuration of a projection display apparatus 100 according to Embodiment 1-1. It is a figure for demonstrating the optical structure of the projection type video display apparatus 100 concerning 1st-1 embodiment. It is a diagram for explaining the sliding of the first housing 200A according to the 1-1 embodiment. It is a diagram for explaining the sliding of the first housing 200A according to the 1-1 embodiment.
  • 1 is a block diagram showing a control unit 300 according to Embodiment 1-1.
  • FIG. It is a figure for demonstrating the example of a structure of the detection part 400 concerning 1st-1 embodiment.
  • a projection display apparatus includes a light modulation element that modulates light emitted from a light source, and a projection optical system that projects light emitted from the light modulation element onto a projection surface.
  • the projection display apparatus is disposed on the reference plane.
  • the housing has a bottom surface facing the reference surface.
  • a detection unit configured to be able to detect the reference surface is provided on the bottom surface.
  • the projection display apparatus includes an operation control unit that starts operation of the own device when the reference surface is detected by the detection unit.
  • the operation control unit starts the operation of its own device when the reference surface is detected by the detection unit. Therefore, since the projection display apparatus is activated only by placing the projection display apparatus on the reference plane, it is not necessary to press the power switch. In addition, since the detection unit is configured to be able to detect the reference plane, erroneous start-up of the projection display apparatus is suppressed.
  • the projection display apparatus includes a light modulation element that modulates light emitted from a light source, and a projection optical system that projects light emitted from the light modulation element onto a projection surface.
  • the projection display apparatus is disposed on the reference plane.
  • the housing includes a cover body configured to be able to cover a transmission region that transmits light emitted from the projection optical system, and a focus adjustment tool that is linked to a lens provided in the projection optical system. By moving the cover body, the cover body transitions between a covering state that covers the transmissive area and an uncovered state that does not cover the transmissive area.
  • the focus adjustment tool returns to the initial position by the movement of the cover body.
  • the focus adjustment tool returns to the initial position by the movement of the cover body. Therefore, since the focus adjustment tool is returned to the initial position when the projection display device is started, the amount of focus adjustment using the focus adjustment tool can be reduced, and the operations required when starting the projection display device are simplified. Is done.
  • FIG. 1 is a diagram showing a projection display apparatus 100 (floor projection) according to Embodiment 1-1.
  • FIG. 2 is a diagram showing the projection display apparatus 100 (wall surface projection) according to the 1-1 embodiment.
  • the projection display apparatus 100 includes a housing 200 and projects an image on a projection surface (not shown).
  • the housing 200 is provided with a transmission region 210 that transmits light emitted from the projection optical system 110 described later.
  • the projection surface may be provided on a horizontal surface such as a floor surface or a desk as shown in FIG. 1, or provided on a vertical surface (for example, a screen) such as a wall surface as shown in FIG. Also good. That is, the projection display apparatus 100 may be arranged to project image light onto a horizontal surface such as a floor surface or a desk, or may be arranged to project image light onto a vertical surface such as a wall surface.
  • the first surface 220 constitutes a bottom surface facing a reference surface such as a floor surface.
  • the second surface 230 of the surfaces of the substantially rectangular parallelepiped housing 200 constitutes a bottom surface facing a reference surface such as a floor surface.
  • the first surface 220 may be considered as the bottom surface.
  • the first surface 220 is a surface farthest from the transmission region 210 among the surfaces of the substantially rectangular parallelepiped casing 200 in order to ensure a long projection distance.
  • the second surface 230 is a surface provided on the opposite side of the surface provided with the transmission region 210 among the surfaces of the substantially rectangular parallelepiped casing 200.
  • the size of the projection display apparatus 100 is about a PET bottle having a volume of 200 ml to 2 l.
  • the volume of the projection display apparatus 100 is about 900 ml, and the weight of the projection display apparatus 100 is about 800 g.
  • the size of the image displayed by the projection display apparatus 100 is, for example, about 20 inches. Also, it should be noted that the distance between the projection display apparatus 100 and the projection surface is very close.
  • FIG. 3 is a diagram mainly showing an optical configuration of the projection display apparatus 100 according to the 1-1 embodiment.
  • the projection display apparatus 100 includes a projection optical system 110, an illumination optical system 120, a cooling fan 130, a battery 140, a power supply board 150, a main control board 160, and an operation board 170. And have.
  • the projection display apparatus 100 includes a DMD 70 and a reflecting prism 80.
  • the housing 200 is constituted by a first housing 200A and a second housing 200B.
  • the transmissive region 210 described above is provided in the first housing 200A.
  • Part or all of the first housing 200A is configured to be accommodated in the second housing 200B, as will be described later.
  • the projection optical system 110 projects the color component light (image light) emitted from the DMD 70 onto the projection surface.
  • the projection optical system 110 includes a projection lens group 111 and a reflection mirror 112.
  • the projection lens group 111 emits the color component light (image light) emitted from the DMD 70 to the reflection mirror 112 side.
  • the projection lens group 111 is configured by a substantially circular lens centered on the optical axis L of the projection optical system 110 and a part (for example, a lower part) of a substantially circular shape centered on the optical axis L of the projection optical system 110.
  • a half-semicircular lens A half-semicircular lens.
  • the diameter of the lens included in the projection lens group 111 is larger as it is closer to the reflection mirror 112.
  • the reflection mirror 112 reflects the color component light (image light) emitted from the projection lens group 111.
  • the reflection mirror 112 condenses the image light and then widens the image light.
  • the reflection mirror 112 is an aspherical mirror having a concave surface on the projection lens group 111 side.
  • the reflection mirror 112 has a shape (for example, a lower half semicircle) constituted by a part of a substantially circular shape centering on the optical axis L of the projection optical system 110.
  • the image light collected by the reflection mirror 112 is transmitted through a transmission region 210 provided in the housing 200.
  • the transmission region 210 provided in the housing 200 is preferably provided in the vicinity of the position where the image light is collected by the reflection mirror 112.
  • the illumination optical system 120 includes a light source 10, a dichroic prism 30, a rod integrator 40, a mirror 51, a mirror 52, a lens 61, a lens 62, and a lens 63.
  • the light source 10 is configured to individually emit a plurality of color component lights.
  • the light source 10 may be provided with a heat sink that dissipates heat generated by the light source 10.
  • the light source 10 includes, for example, a light source 10R, a light source 10G, and a light source 10B.
  • the light source 10R is a light source that emits red component light R, and is, for example, a red LED (Light Emitting Diode) or a red LD (Laser Diode).
  • the light source 10R may be provided with a heat sink composed of a member having good heat dissipation such as metal.
  • the light source 10G is a light source that emits green component light G, and is, for example, a green LED or a green LD.
  • the light source 10G may be provided with a heat sink composed of a member having good heat dissipation such as metal.
  • the light source 10B is a light source that emits blue component light B, and is, for example, a blue LED or a blue LD.
  • the light source 10B may be provided with a heat sink made of a member having good heat dissipation such as metal.
  • the dichroic prism 30 combines the red component light R emitted from the light source 10R, the green component light G emitted from the light source 10G, and the blue component light B emitted from the light source 10B.
  • the rod integrator 40 has a light incident surface, a light emitting surface, and a light reflecting side surface provided from the outer periphery of the light incident surface to the outer periphery of the light emitting surface.
  • the rod integrator 40 makes the color component light emitted from the dichroic prism 30 uniform. Specifically, the rod integrator 40 makes the color component light uniform by reflecting the color component light on the light reflection side surface.
  • the rod integrator 40 may be a solid rod made of glass or the like, or a hollow rod having an inner surface constituted by a mirror surface.
  • the rod integrator 40 has a tapered shape in which a cross section perpendicular to the light traveling direction increases toward the traveling direction of the light emitted from the light source 10.
  • the embodiment is not limited to this.
  • the rod integrator 40 may have an inversely tapered shape in which the cross section perpendicular to the light traveling direction decreases toward the traveling direction of the light emitted from the light source 10.
  • the mirror 51 and the mirror 52 are reflection mirrors that bend the optical path of light in order to guide the light emitted from the rod integrator 40 to the DMD 70.
  • the lens 61, the lens 62, and the lens 63 are relay lenses that form an image of the color component light on the DMD 70 while suppressing the expansion of the color component light emitted from the light source 10.
  • the battery 140 stores power to be supplied to the projection display apparatus 100.
  • the power supply board 150 is connected to the battery 140 and has a power conversion circuit that converts AC power into DC power.
  • the main control board 160 has a main control circuit (a control unit 300 described later) that controls the operation of the projection display apparatus 100.
  • the operation board 170 is connected to an operation unit (button or the like) provided in the projection display apparatus 100, and transmits an operation signal input from the operation unit to the main control board 160 (main control circuit).
  • the DMD 70 is composed of a plurality of minute mirrors, and the plurality of minute mirrors are movable. Each micromirror basically corresponds to one pixel. The DMD 70 switches whether to reflect the color component light so that the color component light is guided to the projection optical system 110 side as effective light by changing the angle of each micromirror.
  • the reflecting prism 80 transmits the light emitted from the illumination optical system 120 to the DMD 70 side.
  • the reflecting prism 80 reflects the light emitted from the DMD 70 toward the projection optical system 110 side.
  • the first housing 200A is configured to be slidable along the inner wall of the second housing 200B.
  • the reflection mirror 112 rotates about the rotation axis P in conjunction with the slide of the first housing 200A.
  • FIG. 6 is a block diagram showing the control unit 300 according to the 1-1 embodiment.
  • the control unit 300 is provided in the projection display apparatus 100 and controls the projection display apparatus 100.
  • control unit 300 is connected to the detection unit 400 and the battery 140.
  • the control unit 300 includes a determination unit 310 and an operation control unit 320.
  • the detection unit 400 is provided on the bottom surface (the first surface 220 or the second surface 230) of the housing 200.
  • the detection unit 400 is configured to be able to detect the reference plane. Details of the detection unit 400 will be described later (see FIGS. 7 to 11).
  • the determination unit 310 determines whether or not the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is disposed on the reference surface based on the detection result of the detection unit 400. Specifically, when the determination unit 310 obtains a detection result indicating that the bottom surface of the housing 200 is stably disposed on a flat surface, the determination unit 310 determines that the bottom surface of the housing 200 is disposed on the reference surface. It is determined that On the other hand, the determination unit 310 determines that the bottom surface of the housing 200 is not disposed on the reference surface when a detection result indicating that the bottom surface of the housing 200 is disposed on a surface having unevenness is obtained. .
  • the operation control unit 320 controls the operation of the projection display apparatus 100 based on the determination result of the determination unit 310. Specifically, the operation control unit 320 determines that the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is disposed on the reference surface, and the projection display apparatus 100. Start driving. That is, the operation control unit 320 activates the projection display apparatus 100. On the other hand, when it is determined that the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is not disposed on the reference surface, the operation control unit 320 operates the projection display apparatus 100. Do not start. That is, the operation control unit 320 does not activate the projection display apparatus 100.
  • the operation control unit 320 instructs the battery 140 to supply power when the operation of the projection display apparatus 100 is started.
  • FIG. 7 and 8 are diagrams schematically illustrating a configuration example of the detection unit 400 according to the first to first embodiments.
  • the detection unit 400 has a plurality of detection points 410 (detection points 410A to 410C).
  • the plurality of detection points 410 are mechanical switches that are energized in a state where the bottom surface of the housing 200 is stably disposed on a flat surface. That is, the plurality of detection points 410 are configured to be energized in a state where all the detection points 410 receive a uniform stress from a flat plane.
  • a portion where the detection point 410 is provided in the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is configured by an elastic member 411 (elastic member 411A to elastic member 411C) such as rubber.
  • the Each elastic member 411 is deformed toward the inside of the housing 200 according to a certain stress. That is, when the detection point 410 receives a certain stress, the detection point 410 sinks inside the housing 200 as the elastic member 411 is deformed.
  • the constant stress may be the weight of the projection display apparatus 100 ⁇ 1 / N.
  • the detection unit 400 cannot detect the energization. Detects that it is not placed on a surface.
  • the detection unit 400 detects the energization, so the detection unit 400 places the housing 200 on the reference surface. It is detected that it is being done.
  • the number of detection points 410 may be two as shown in FIG.
  • the two detection points 410 (detection points 410A to 410B) are arranged diagonally on the bottom surface of the housing 200.
  • dummy points 510 (dummy points 510A and dummy points 510B) are provided. Note that, in the direction perpendicular to the bottom surface of the housing 200, the height of the dummy point 510 is preferably substantially the same as the height of the detection point 410 in a state where it is sunk inside the housing 200.
  • the number of detection points 410 may be three as shown in FIG. 10, or may be four as shown in FIG. As shown in FIGS. 10 and 11, dummy points 510 are preferably provided according to the number of detection points 410. Needless to say, the number of detection points 410 may be five or more.
  • the plurality of detection points 410 are preferably arranged in a distributed manner on the bottom surface of the housing 200 in order to increase the detection accuracy that the housing 200 is disposed on the reference surface.
  • the operation control unit 320 starts the operation of the own device when the detection unit 400 detects the reference plane. Accordingly, since the projection display apparatus 100 is activated only by placing the projection display apparatus 100 on the reference plane, it is not necessary to press the power switch.
  • FIG. 12 is a diagram showing a configuration of the projection display apparatus 100 according to the first to second embodiments.
  • FIG. 12 is a diagram of the projection display apparatus 100 as viewed from the front.
  • the same reference numerals are given to the same configurations as those in the first to first embodiments.
  • the casing 200 includes a first casing 200A and a second casing 200B, as in the first to first embodiments.
  • the first housing 200A is configured to be slidable along the outer wall of the second housing 200B.
  • the first housing 200A constitutes a cover body configured to be able to cover the transmission region 210 that transmits the light emitted from the projection optical system 110.
  • the first housing 200A transitions between a covering state that covers the transmissive region 210 and a non-covering state that does not cover the transmissive region 210 by sliding (moving) the first housing 200A.
  • the first housing 200A has a protrusion 201A.
  • the second housing 200B has a focus adjustment tool 260.
  • the focus adjustment tool 260 is configured to work with a lens provided in the projection optical system 110, and is an adjustment tool for adjusting the focus of an image projected on the projection surface.
  • the focus adjustment tool 260 is configured to return to the initial position by sliding (moving) the first housing 200A. Specifically, in the transition from the non-covering state to the covering state, the protrusion 201A of the first housing 200A pushes the focus adjusting tool 260. As a result, the focus adjustment tool 260 returns to the initial position.
  • the initial position of the focus adjustment tool 260 is preferably determined so that the image projected on the projection plane is in focus.
  • the positional relationship between the projection optical system 110 and the projection plane is fixed, so that an “initial position” can be determined as an initial setting. Should be noted.
  • the focus adjustment tool 260 returns to the initial position by sliding (moving) the first housing 200A (cover body). Therefore, since the focus adjustment tool 260 has returned to the initial position when the projection display apparatus 100 is activated, the amount of focus adjustment using the focus adjustment tool 260 can be reduced, and is necessary when the projection display apparatus 100 is activated. Operation is simplified.
  • FIG. 13 is a diagram illustrating a configuration of a projection display apparatus 100 according to the first modification of the first embodiment.
  • FIG. 13 is a view of the projection display apparatus 100 as viewed from the side.
  • the same components as those in the first to first embodiments are denoted by the same reference numerals.
  • the housing 200 has a cover body 200C.
  • the cover body 200 ⁇ / b> C is a cover body configured to be able to cover the transmission region 210 that transmits the light emitted from the projection optical system 110.
  • the cover body 200 ⁇ / b> C is configured to be rotatable about a rotation shaft 211 provided in the housing 200.
  • the cover body 200 ⁇ / b> C transitions between a covered state that covers the transmissive area 210 and an uncovered state that does not cover the transmissive area 210 by the rotation (movement) of the cover body 200 ⁇ / b> C.
  • the cover body 200C has a protrusion 201C.
  • the housing 200 has a focus adjustment tool 260.
  • the focus adjustment tool 260 is configured to work with a lens provided in the projection optical system 110, and is an adjustment tool for adjusting the focus of an image projected on the projection surface.
  • the focus adjustment tool 260 is configured to return to the initial position by the rotation (movement) of the cover body 200C. Specifically, in the transition from the non-covering state to the covering state, the protrusion 201C of the cover body 200C pushes the focus adjusting tool 260. As a result, the focus adjustment tool 260 returns to the initial position.
  • the focus adjustment tool 260 returns to the initial position by the rotation (movement) of the cover body 200C. Therefore, since the focus adjustment tool 260 has returned to the initial position when the projection display apparatus 100 is activated, the amount of focus adjustment using the focus adjustment tool 260 can be reduced, and is necessary when the projection display apparatus 100 is activated. Operation is simplified.
  • the projection display apparatus includes an image light generation unit that generates image light, and a mirror (aspherical mirror) that reflects the image light emitted from the image light generation unit toward the projection surface.
  • a power supply unit battery unit
  • this power supply unit is located as far as possible from the mirror, specifically, the mirror is provided at the top.
  • the power supply unit is provided at the bottom.
  • a cooling unit for cooling the image light generation unit is further provided, and this cooling unit is also provided as far as possible from the mirror, specifically, slightly above the power supply unit.
  • the projection display apparatus includes at least a casing that stores the image light generation unit, and a transmission area (projection window) provided on the top of the casing, and passes through the transmission area. Project image light.
  • This housing has a movable portion (sliding portion) whose dimension in at least one direction (Z-axis direction) changes, and when the image light is not projected, the transmission region is accommodated inside the housing by the movable portion. Move to a hidden position.
  • FIG. 14 is a front view showing the configuration of the projection display apparatus according to the 2-1 embodiment
  • FIG. 15 is a side view.
  • the projection display apparatus 1100 includes a projection unit 1110 including a projection lens group 1111 and an aspherical mirror 1112, a DMD (Digital Micromirror Device) 1120 as a light modulation element, and a DMD 1120. It includes an illumination unit 1130 that emits light, and a battery unit 1150 that supplies power to a DMD 1120, an LED (Light Emitted Device) 1131 that constitutes the illumination unit 1130, and the like.
  • the projection display apparatus 1100 is installed such that the battery unit 1150 is at the bottom.
  • a plane (horizontal plane) on which the projection display apparatus 1100 is installed is defined as an XY plane, and a direction perpendicular to the installation plane (vertical direction) is defined as a Z-axis direction.
  • the X-axis direction is defined as the direction corresponding to the width direction in the housing 1101 of the projection display apparatus 1100
  • the Y-axis direction is defined as the direction corresponding to the depth direction in the housing 1101.
  • the housing 1101 has a side surface 1102 that is a right side surface, another side surface 1103 that is a left side surface, a top surface 1104 that is an upper surface, and a bottom surface 1105 that is a lower surface.
  • the housing 1101 includes a front surface 1106 that is a surface on the side from which the image light is emitted in FIG. 15 and a back surface 1107 that is the back surface of the front surface 1106.
  • one side 1102, the other side 1103, the top surface 1104, the bottom 1105, the front 1106, and the back 1107 should not be taken narrowly as being only the surface of the housing 1101.
  • surfaces that can be recognized from the top, bottom, front, back, left, and right, such as surfaces exposed by movement or the like, are one side 1102, another side 1103, top surface 1104, bottom surface 1105, front surface 1106, and back surface 1107, respectively. It should be understood broadly as a concept.
  • the housing 1101 has a substantially rectangular parallelepiped shape whose six surfaces are flat, but is not limited thereto.
  • at least one of the six surfaces may have a curved surface. Therefore, it should be noted that the surface of the present invention is a concept including a curved surface.
  • the DMD 1120 modulates blue, green, and red illumination light emitted from the illumination unit 1130 in a time-sharing manner according to the video input signal.
  • the DMD 1120 is provided integrally with a prism block 1121 that guides image light to the projection lens group 1111.
  • the prism block 1121 has a surface 1121 a that transmits the illumination light from the illumination unit 1130 and totally reflects the image light modulated by the DMD 1120 and guides it to the projection lens group 1111.
  • a DMD control circuit 1122 that controls the DMD 1120 is disposed in the vicinity of the DMD 1120.
  • the DMD control circuit 1122 controls the DMD 1120 according to the video input signal and the LED control signal.
  • the illumination unit 1130 includes LEDs 1131R, 1131G, and 1131B that emit red, green, and blue light, and a plurality of optical members that synthesize the red, green, and blue light and irradiate the DMD 1120.
  • a dichroic prism 1132 is used as an optical member that combines red, green, and blue light.
  • the combined light combined by the dichroic prism 1132 uses the taper rod 1133 to make the light amount distribution uniform.
  • the lenses 1134, 1135, and 1136 subsequent to the taper rod 1133 have a function of collimating the light emitted from the taper rod 1133 and forming an image on the DMD 1120.
  • the mirrors 1137 and 1138 have an action of bending the optical path of the combined light according to the space.
  • an LED control circuit 1139 for controlling the LED 1131 is disposed.
  • the LED control circuit 1139 controls the light emission amount and the light emission timing of the LEDs 1131R, 1131G, and 1131B according to the video input signal. Also, the LED control circuit 1139 sends an LED control signal related to the light emission amount and the light emission timing to the DMD control circuit 1122.
  • the LED control circuit 1139 is desirably arranged near the LED 1131 in order to shorten the wiring. On the other hand, in consideration of the influence of electromagnetic waves, it is also desired to dispose the DMD control circuit 1122 as far as possible.
  • the DMD 1120 and the illumination unit 1130 are collectively referred to as an image light generation unit 1140.
  • the battery unit 1150 includes a battery 1151 composed of a nickel metal hydride secondary battery, a battery control circuit 1152 that controls charging / discharging of the battery 1151, and a power connector 1153 connected to a commercial power source.
  • the battery 1151 has a shape in which the dimension in the X-axis direction or the Y-axis direction is sufficiently larger (twice or more) than the dimension in the Z-axis direction.
  • the battery control circuit 1152 controls the power supplied from the commercial power supply to the battery 1151 via the power connector 1153 and also controls the power supplied from the battery 1151 to the video light generation unit 1140 (in particular, the LED 1131 and the DMD 1120).
  • the battery may be a lithium ion secondary battery or a capacitor in addition to the nickel metal hydride secondary battery.
  • the control unit 1160 roughly includes a DMD control circuit 1122, an LED control circuit 1139, and a control circuit 1169 that controls the projection display apparatus 1100 as a whole. Specifically, a control circuit 1169 is arranged in a region on one side 1102 side of the projection unit 1110 (particularly, the projection lens group 1111).
  • the control circuit 1169 is a DMD control circuit according to a video input signal or the like. A control signal is sent to 1122 and the LED control circuit 1139.
  • the video input signal is input from the video connector 1161, the SD card slot 1163, and the USB connector 1164 connected to the control circuit 1169 (see FIG. 16).
  • the control circuit 1169 is also connected to the power button 1166 and the direction button 1168.
  • the control circuit 1169 controls the entire projection display apparatus 1100 according to user instructions from the power button 1166 and the direction button 1168.
  • a cooling unit 1170 is disposed in the area on the other side surface 1103 side of the projection lens group 1111. Specifically, an axial fan 1172 provided near the exhaust port 1171, a sirocco fan 1173 that cools the LED 1131, and a heat sink (not shown) that cools the DMD 1120 are arranged. Air for cooling the projection display apparatus 1100 is supplied from an air inlet 1174 provided on the upper side of one side 1102 and flows through the projection display apparatus 1100 to cool the control unit 1160 and the image light generation unit 1140. Thereafter, the air is exhausted from an exhaust port 1171 provided at the lower part of the other side surface 1103.
  • the projection display apparatus 1100 can be efficiently cooled.
  • the intake port 1174 and the exhaust port 1171 are provided on the one side surface 1102 and the other side surface 1103, respectively, the intake / exhaust port is not blocked even when the back surface 1107 is an installation surface.
  • the intake port 1174 is closed by a slide portion described later when the projection display apparatus 1100 is not used. With this configuration, it is possible to prevent dust and the like from entering the projection display apparatus 1100 during storage.
  • the sirocco fan 1173 may be provided with an air inlet different from the air inlet 1174.
  • FIG. 16A and 16B are diagrams showing an external configuration of the projection display apparatus according to the 2-1 embodiment.
  • FIG. 16A is a left perspective view
  • FIG. 16B is a right perspective view.
  • the housing 1101 has a projection window 1113, a front surface 1106 that is a surface on the side from which image light is emitted, and a back surface 1107 that is disposed at a position facing the front surface 1106.
  • the casing 1101 has a top surface 1104 that is an upper surface when the projection display apparatus 1100 is installed so as to project image light on a desk or a floor surface, and a bottom surface that is disposed at a position facing the top surface 1104. 1105.
  • the surface on which the power connector 1153 is disposed is one side surface 1102, and the surface disposed at a position facing the one side surface 1102 is the other side surface 1103. To do.
  • a video connector 1161 connected to a video source such as a PC (Personal Computer), an SD card slot 1163, a USB connector 1164, and the like are provided. These connectors are preferably provided in a portion of one side 1102 close to the bottom 1105.
  • the one side 1102 has an overlapping portion 1102a that is housed inside when stored by a slide portion described later.
  • the intake port 1174 disposed on the one side surface 1102 may be provided at a position overlapping the one side surface 1102 of the slide portion 1190 when the slide portion 1190 is stored.
  • the other side 1103 is provided with an exhaust port 1171.
  • the intake port 1174 is provided at a position that overlaps the one side surface 1102 when the overlapping portion 1102a is accommodated, specifically, at a position close to the top surface 1104 of the one side surface 1102,
  • the mouth 1171 may be provided in a portion of the other side surface 1103 close to the bottom surface 1105.
  • the projection lens group 1111 is provided with a focus lens that is movable in the Z direction and adjusts the focus of the projected image.
  • the focus lens is attached to a cam tube (not shown) and can be accurately moved in the Z direction.
  • the other side surface 1103 is provided with an adjustment knob 1165 for the user to pinch to adjust the focus lens. By moving the adjustment knob 1165 in the Y-axis direction, the movable direction of the focus lens can be changed in the Z-axis direction by the cam tube.
  • the adjustment knob 1165 may be provided in a portion of the other side surface 1103 that is close to the top surface 1104.
  • the adjustment knob 1165 When the user A or user F who operates the projection display apparatus 1100 operates the adjustment knob 1165 in the installation state as shown in FIGS. Because it is easy to operate. When the adjustment knob 1165 is operated, the operation can be performed without blocking the projected image.
  • the surface on which the adjustment knob 1165 is disposed need not be an installation surface.
  • the adjustment knob 1165 for adjusting the focus lens is provided on the other side surface 1103.
  • the present invention is not limited to this, and a knob for adjusting the zoom lens is provided on the other side surface 1103. Also good.
  • the power button 1166, the menu button 1167, and the direction button 1168 are provided on the top surface 1104.
  • the bottom surface 1105 and the back surface 1107 are the installation surfaces. Therefore, it is preferable that the bottom surface 1105 and the back surface 1107 are not provided with an interface or an intake / exhaust port.
  • the power button 1166, the menu button 1167, and the direction button 1168 are confirmed from the direction of the front 1106 and the direction of the back 1107 where the operator performs normal operation so that the convenience of operation is not impaired.
  • a direction button 1168 is arranged.
  • the power button 1166, the menu button 1167, and the direction button 1168 are provided only on the top surface 1104.
  • the present invention is not limited thereto, and may be provided on one side 1102 or another side 1103.
  • One side 1102 or another side 1103) may be provided.
  • FIG. 17 is a diagram showing a power button 1166, a menu button 1167, and direction buttons 1168 (direction buttons 11681 to 11684 and an enter button 11585) arranged on the top surface 1104 of the projection display apparatus 1100 (hereinafter, each button is shown).
  • the button is also referred to as an “operation button”).
  • the operation buttons 1168 are arranged symmetrically in the front-rear direction as confirmed from the direction of the front face 1106 and the direction of the rear face 1107.
  • a power button 1166, a menu button 1167, and direction buttons 1168 are arranged from the side closer to one side 1102, and a determination button 11585 is arranged at the center of each direction button 11681 to 11684.
  • the symbol black circle symbol in FIG. 17
  • the operation buttons are equal in distance. Even when operating from the back surface 1107, the operation feeling is the same and the user can easily operate.
  • buttons 1166, the direction buttons 1168 (direction buttons 11681 to 11684, the enter button 11585), and the menu button 1167 are arranged from the side closer to the one side 1102 than the arrangement of the operation buttons in FIG. It should be noted that the buttons are different in that they are arranged in a direction that can be confirmed correctly from the direction of the front face 1106.
  • the power symbol written on the power button 1166 the “Power” character written in the vicinity of the power button 1166, the “Menu” character written in the vicinity of the menu button 1167, and the decision button 11865.
  • “OK” characters are described in a direction that can be confirmed correctly from the direction of the front face 1106.
  • the operation buttons are arranged symmetrically in the front / rear and left / right directions as a whole.
  • FIG. 19 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus
  • FIG. 20 is a diagram illustrating an internal configuration when the slide portion is housed.
  • the projection display apparatus 1100 needs to provide a predetermined distance between the projection lens group 1111 and the aspherical mirror 1112 when projecting image light.
  • This distance (space 1180) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 20, when the slide portion 1190 is accommodated, the slide portion 1190 including the aspherical mirror 1112 and the projection window 1113 is translated so as to be accommodated in the space 1180.
  • the projection window 1113 overlaps the front surface 1106 and moves to a position hidden from the surface, so that it can be prevented from becoming dirty during storage.
  • the air inlet 1174 overlaps with the one side surface 1102 and is closed, so that dust can be prevented from entering the projection display apparatus 1100.
  • FIG. 21 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus
  • FIG. 22 is a diagram illustrating an internal configuration when the slide portion is housed.
  • the projection display apparatus 1100 needs to provide a predetermined distance between a plurality of lenses arranged in the projection lens group 1111 when projecting image light.
  • This distance (space 1181) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 22, when the slide portion 1190 is housed, the distance between the lenses of the projection lens group 1111 is made as narrow as possible in conjunction with the parallel movement of the slide portion 1190.
  • the slide portion 1190 including the aspherical mirror 1112 and the projection window 1113 is accommodated in the space generated by shrinking the space 1181.
  • FIG. 23 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus
  • FIG. 24 is a diagram illustrating an internal configuration when the slide portion is housed.
  • the arrangement of the DMD 1120 and the illumination unit 1130 is changed, and the illumination unit 1130 is arranged in a region of the projection lens group 1111 where the lens diameter is small.
  • the cooling unit 1170 also needs to be moved to a region corresponding to the positions of the DMD 1120 and the illumination unit 1130.
  • the projection display apparatus 1100 when projecting image light, a space 1182 is generated between the DMD 1120 and the illumination unit 1130 (equivalent to the image light generation unit 1140) and the battery unit 1150. Therefore, as shown in FIG. 24, when the slide portion 1190 is housed, the projection lens group 1111, the image light generation portion 1140, and the cooling portion 1170 are placed in the space 1182 together with the aspherical mirror 1112 and the slide portion 1190 including the projection window 1113. Translate to accommodate.
  • FIG. 25 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus
  • FIG. 26 is a diagram illustrating an internal configuration when the slide portion is housed.
  • the aspherical mirror 1112 is disposed to be inclined toward the back surface 1107 with respect to the optical axis of the projection lens group 1111 when projecting image light. Therefore, as shown in FIG. 26, when the slide portion 1190 is housed, the aspherical mirror 1112 is rotated about one end of the aspherical mirror 1112 as the central axis in conjunction with the parallel movement of the slide portion 1190. As the aspherical mirror 1112 rotates, the dimension of the projection display apparatus 1100 in the Z-axis direction decreases, and the slide portion 1190 including the projection window 1113 is stored in the space 1183.
  • the cooling unit 1170 may be disposed below the illumination unit 1130 (image light generation unit 1140), and a space may be provided between the cooling unit 1170 and the illumination unit 1130.
  • the slide unit 1190 including the projection unit 1110 and the image light generation unit 1140 is accommodated in this space.
  • the DMD 1120 may be disposed so as to be perpendicular to the optical axis of the projection lens group 1111, and a space may be provided between the projection lens group 1111 and the DMD 1120. In this case, the projection unit 1110 is accommodated in this space.
  • the projection display apparatus 1100 includes an image light generation unit 1140 that generates image light, an aspherical mirror 1112 that reflects the image light emitted from the image light generation unit to the projection plane side, and , Are provided.
  • the projection display apparatus 1100 includes a battery unit 1150 that supplies power to the image light generation unit 1140.
  • the battery unit 1150 is located as far as possible from the aspherical mirror 1112, specifically, an aspherical mirror. 1112 is provided at the top, and the battery unit 1150 is provided at the bottom. Therefore, since the heavy aspherical mirror 1112 and the battery unit 1150 are provided at positions separated from each other, the weight balance of the entire apparatus can be kept in balance.
  • the projection display apparatus 1100 includes an image light generation unit 1140 that generates image light, a case 1101 that houses the image light generation unit 1140, and an image provided in the case 1101.
  • the housing 1101 has a slide portion 1190 whose dimensions in the Z-axis direction change.
  • the projection window 1113 is housed in the housing 1101 by the slide portion 1190 when no image light is projected. Accordingly, it is possible to prevent the projection window 1113 from being scratched or dirty.
  • FIG. 27 is a diagram showing a configuration of a projection display apparatus according to the 2-2 embodiment.
  • FIG. 27A is a diagram showing a front view and a side view of both in a state where the projection display apparatus does not project an image.
  • FIG. 27B is a diagram showing a front view and a side view of both in a state where the projection display apparatus can project an image.
  • the projection display apparatus 1100 slides a U-shaped housing in which the top surface 1104, one side surface 1102, and the other side surface 1103 are integrated, so that the power supply connector 1153, together with the projection window 1113,
  • the video connector 1161, the SD card slot 1163, the USB connector 1164, the adjustment knob 1165, the exhaust port 1171, and the intake port 1174 are exposed at the same time, which is greatly different from the second to the first embodiments.
  • a hole 1174H having the same size as the air inlet 1174 is provided near the center of the one side 1102.
  • the hole 1174H overlaps with the intake port 1174.
  • the air inlet 1174 disposed inside the one side 1102 is exposed.
  • the power connector 1153, the video connector 1161, the SD card slot 1163, and the USB connector 1164 arranged inside the one side surface 1102 are exposed.
  • a hole 1165H having the same size as the adjustment knob 1165 is provided near the center of the other side surface 1103.
  • a U-shaped housing in which the top surface 1104, one side surface 1102, and another side surface 1103 are integrated is slid in the direction of the top surface 1104, and the slide is stopped by a stopper (not shown).
  • a hole 1165H overlaps with the adjustment knob 1165, and the like.
  • the adjustment knob 1165 disposed inside the side surface 1103 of the first side is exposed.
  • a U-shaped housing in which the top surface 1104, one side surface 1102 and the other side surface 1103 are integrated, a power connector 1153, a video connector 1161, The structure in which the slot 1163, the USB connector 1164, the adjustment knob 1165, the exhaust port 1171, and the intake port 1174 of the SD card are exposed at the same time is shown, but the top surface 1104, one side surface 1102, and the other side surface 1103 are integrated into a U-shape.
  • a slide-type cover may be provided individually without opening and closing at once by the housing. Of course, it is not limited to a slide type, and may be an open door or folding door type cover.
  • the connectors can be protected by the cover when not in use, the connectors can be prevented from being damaged even if a strong impact is applied to the projection display apparatus.
  • the presence of a cover when not in use is also effective as a dust-proof measure for connectors.
  • the knob can be protected by the cover when not in use, the focus position previously projected can be held even when the projector is in contact with the projector during transport of the projection display, and the focus adjustment must be performed again. Disappears. Further, it is possible to prevent dust from entering through the gap between the knob and the housing and entering the inside of the projection display apparatus.
  • the projection-type image display apparatus 1200 is greatly different from the 2-1 embodiment in the configuration of the image light generation unit 1240 and the arrangement of the cooling unit 1270.
  • the bottom surface 1205 is an installation surface (horizontal plane)
  • the state in which image light is projected onto a horizontal plane such as a floor or a desk
  • the back surface 1207 is an installation plane (horizontal plane).
  • the state in which image light is projected onto the vertical plane is referred to as a wall surface projection mode.
  • the LEDs 1231R, 1231G, and 1231B that emit red, green, and blue light, the dichroic prism 1232, and the taper rod 1233 are arranged on the back surface 1207 side of the projection lens group 1211. In FIG. 28, these optical members are hidden by the projection lens group 1211.
  • the light emitted from the taper rod 1233 is bent by the lenses 1234, 1235, 1236 and mirrors 1237, 1238 in accordance with the optical path of the combined light, and forms an image on the DMD 1220.
  • the DMD 1220 is arranged so as to be perpendicular to the optical axis of the projection lens group 1211. Therefore, in the second to third embodiments, the prism block is unnecessary.
  • the DMD 1220 is irradiated with combined light guided from an acute angle with respect to the optical axis of the projection lens group 1211 by each optical member of the illumination unit 1230.
  • the DMD 1220 reflects the image light modulated in accordance with the image input signal out of the combined light toward the projection lens group 1211.
  • a DMD control circuit 1222 that controls the DMD 1220 is disposed in the vicinity of the DMD 1220. In the second to third embodiments, the DMD control circuit 1222 is disposed on the back side of the DMD 1220.
  • the LED control circuit 1239 for controlling the LED 1231 is disposed in the vicinity of the LED 1231.
  • the LED control circuit 1239 is disposed on the back surface 1207 side of the outer lens of the projection lens group 1211.
  • the LED control circuit 1239 is arranged in the vicinity of the LED 1231, and can be arranged as far as possible from the DMD control circuit 1222.
  • the control circuit 1268 of the control unit 1260 has a tilt sensor 1269.
  • the tilt sensor 1269 transmits information regarding the detected tilt to the control circuit 1268. From the received information, the control circuit 1268 determines whether the user uses the projection display apparatus 1200 in the floor projection mode with the bottom surface 1205 as the installation surface or in the wall projection mode with the back surface 1207 as the installation surface. Is determined.
  • the control circuit 1268 sends a control signal to the DMD control circuit 1222 according to the determined projection mode. Although details will be described later, the DMD control circuit 1222 controls the size and aspect ratio of the effective area of the DMD 1220 and the vertical and horizontal directions of the projected image according to the control signal relating to the projection mode.
  • a cooling unit 1270 is disposed in the region on the other side surface 1203 side of the projection lens group 1211.
  • a sirocco fan 1275 and a heat sink 1276 that cool the DMD 1220 are arranged.
  • FIG. 29 is a diagram showing a projection mode of the projection display apparatus according to the second to third embodiments.
  • FIG. 29A shows a floor projection mode
  • FIG. 29B shows a wall projection mode.
  • the projection display apparatus 1200 determines the installation surface based on information about the tilt detected by the tilt sensor 1269 when projecting image light. As shown in FIG. 29A, when the installation surface is the bottom surface 1205, the user (observer) often observes the projected image from the far side (Far side), and thus the projection display apparatus 1200. Project the projected image so that the Far side is facing down. Specifically, when the tilt sensor 1269 determines that the bottom surface 1205 is the installation surface, the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that the Far side is down.
  • the installation surface is the back surface 1207
  • the user observes with the close side (Near side) of the projected image facing down, so that the projection display apparatus 1200 projects the direction of the projected image so that the Near side is downward.
  • the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that the near side is down.
  • FIG. 30 is a diagram illustrating a projection mode of the projection display apparatus according to the first modification.
  • FIG. 30A illustrates a floor projection mode
  • FIG. 30B illustrates a wall projection mode.
  • the projection display apparatus 1200 determines the installation surface based on information about the tilt detected by the tilt sensor 1269 when projecting image light.
  • the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that H: V is 3: 4.
  • the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that H: V is 4: 3.
  • FIG. 31 is a diagram showing a floor projection mode of the projection display apparatus according to the modification 2.
  • FIG. 31A is a normal floor projection mode (hereinafter referred to as a normal mode) and
  • FIG. b) is a floor projection mode in which the area of the projected image is increased (hereinafter referred to as an enlargement mode).
  • the projection display apparatus 1200 includes a leg 1208 on the bottom surface 1205 and a leg sensor 1208s that detects the length of the leg 1208.
  • the projection display apparatus 1200 estimates the projection distance based on information on the length of the leg 1208 detected by the leg sensor 1208s.
  • the light quantity of the LED 1231 necessary for projection so that the brightness of the projected image is L with respect to the area where the area of the projected image is S is E.
  • the area S ′ of the projection image in the enlarged mode is the normal mode. Is larger than the area S (S ′> S). At this time, if the light quantity of the LED 1231 is E, the brightness of the projection image in the enlargement mode is lower than the brightness L in the normal mode.
  • the control circuit 1268 sends a control signal to the LED drive circuit 1239 so that the light quantity of the LED 1231 becomes E '(> E).
  • the luminance L in the normal mode and the luminance L ′ in the enlargement mode become substantially the same luminance (L ⁇ L ′).
  • FIG. 32 is a diagram showing a floor projection mode of the projection display apparatus according to the third modification. In Modification 3, only differences from Modification 2 will be described.
  • the projection display apparatus 1200 includes a neck 1209 at the top and a neck sensor 1209s that detects the length of the neck 1209.
  • An aspherical mirror 1212 is disposed above the neck 1209, and the distance between the projection lens group 1211 and the aspherical mirror 1212 is adjusted by expanding and contracting the neck 1209.
  • the projection display apparatus 1200 determines the projection distance and the distance between the projection lens group 1211 and the aspherical mirror 1212 based on information on the length of the neck 1209 detected by the leg sensor 1209 s when projecting image light. presume.
  • the top surface 1204 is provided with a handle portion 1204h for pulling the neck portion 1209. Further, a button (not shown) may be provided on the handle portion 1204h so that the neck portion 1209 can be extended when the button is pressed. Since the neck portion 1209 does not extend when the button is not pressed, the handle portion 1204h is also useful when carrying the projection display apparatus 1200.
  • FIG. 34 is a diagram showing a floor projection mode of the projection display apparatus according to the modification 4.
  • FIG. 35 is a diagram illustrating a side view of the projection display apparatus according to the fourth modification.
  • the adjustment knob 1165 is disposed on the front surface 1106 of the housing 1101. Specifically, as shown in FIG. 35, the adjustment knob 1165 is preferably disposed in the region X of the front surface 1106 so as not to block the image light emitted from the projection window 1113.
  • the upper end X1 of the region X is the upper end of the region where the adjustment knob 1165 does not block the image light emitted from the projection window 1113.
  • the lower end X1 of the region X is the lower end of the region where the projection lens group 1111 can be adjusted by the adjustment knob 1165.
  • FIG. 36 is a diagram illustrating the internal structure of the projection display apparatus according to the fourth modification.
  • FIG. 37 is a diagram illustrating a right side view (RIGHT), a front view (FRONT), and a left side view (LEFT) of a projection display apparatus according to Modification 4.
  • the internal structure of the projection display apparatus 1100 is different from that of the second embodiment.
  • the projection display apparatus 1100 includes a heat pipe 1531G, a heat pipe 1531B, and a heat dissipation unit 1533BG.
  • the heat pipe 1531G is composed of a member having high thermal conductivity (such as copper). One end of the heat pipe 1531G is connected to the heat radiating unit 1533BG. The other end of the heat pipe 1531G is connected to a heat receiving portion 1532G that receives heat from the LED 1131G.
  • the heat pipe 1531B is configured by a member (such as copper) having high thermal conductivity. One end of the heat pipe 1531B is connected to the heat radiating portion 1533BG. The other end of the heat pipe 1531B is connected to a heat receiving unit 1532B that receives heat from the LED 1131B.
  • the heat dissipation unit 1533BG is configured by a heat sink or the like. As described above, since the heat radiating unit 1533BG is connected to the heat pipe 1531G and the heat pipe 1531B, it should be noted that the degree of freedom of arrangement of the heat radiating unit 1533BG is increased. In the fourth modification, the heat radiating portion 1533BG is disposed on the side of the aspherical mirror 1112.
  • the projection display apparatus 1100 includes an axial fan 1172A and an axial fan 1172B as the axial fan 1172.
  • the axial fan 1172A generates cooling air that cools the heat dissipating unit 1533BG. Specifically, the axial fan 1172A circulates the cooling air so that the air sucked from the intake port 1174A shown in RIGHT of FIG. 37 is exhausted from the exhaust port 1171A shown in LEFT of FIG. Here, the cooling air generated by the axial fan 1172A is guided to the heat radiating portion 1533BG side by the transparent plate 1113X that covers the projection window 1113.
  • the axial fan 1172B generates cooling air that cools the LED 1131R and the DMD 1120. Specifically, the axial fan 1172B circulates the cooling air so that the air sucked from the intake port 1174B shown in LEFT in FIG. 37 is exhausted from the exhaust port 1171B shown in LEFT in FIG. Here, the cooling air generated by the axial fan 1172B is guided to the LED 1131R having a large heat generation amount and then to the DMD 1120 having a small heat generation amount.
  • the cooling air flow path is preferably covered with a duct or the like.
  • the duct is not an essential configuration.
  • the adjustment knob 1165 has an arc shape along the outer periphery of the projection lens group 1111 and is disposed along the outer periphery of the projection lens group 1111. Accordingly, the focus lens provided in the projection lens group 1111 can be moved in the vertical direction (Z-axis direction) as the adjustment knob 1165 rotates.
  • the projection display apparatus 1200 may include an illuminance sensor.
  • the brightness sensor makes it possible to estimate the brightness of the usage environment of the projection display apparatus 1200.
  • the area S of the projection screen may be increased by adjusting the leg 1208.
  • the effective display area of the DMD 1220 is deformed by signal processing in the DMD control circuit 1222. Thereby, the effective display area of the DMD 1220 is reduced, and the area S of the projection screen is reduced. Therefore, the area S can be maintained by extending the leg 1208 to increase the projection distance.
  • the projection display apparatus 1200 includes an image light generation unit 1240 that generates image light, and an aspherical mirror 1212 that reflects the image light emitted from the image light generation unit 1240 toward the projection surface.
  • the projection display apparatus 1200 includes a battery unit 1250 that supplies power to the image light generation unit 1240, and the battery unit 1250 is provided at a position as far as possible from the aspherical mirror 1212.
  • the cooling unit 1270 further includes a cooling unit 1270 for cooling the image light generation unit 1240.
  • a cooling unit 1270 for cooling the image light generation unit 1240.
  • an axial fan 1272, a sirocco fan 1275, a heat sink 1276, and a sirocco fan 1277 are also included in the aspherical mirror 1212. It may be provided at a position close to the bottom surface 1205 as far as possible. Accordingly, since the heavy cooling unit 1270 is provided at a position away from the aspherical mirror 1212 after the aspherical mirror 1212 and the battery unit 1250, the weight balance of the entire apparatus can be kept in balance. In addition, since battery unit 1250 and cooling unit 1270 are close to each other and provided at a position close to the bottom surface, the battery unit 1250 and the cooling unit 1270 can be stably installed even if the bottom surface area is small.
  • the projection display apparatus 1200 includes the inclination sensor 1269 that detects the state of the own apparatus with respect to the projection plane, the leg sensor 1208 s, the neck sensor 1209 s, and the detected state. And a control unit 1260 for controlling the state of the image light. Accordingly, the projection display apparatus 1200 judges the state of the apparatus itself, specifically the installation surface and the projection distance, and projects the image in a state (orientation, brightness, etc.) that is considered most observable for the user. High convenience can be given to the user.
  • the projection display apparatus includes an image light generation unit that generates image light, and a mirror (aspherical mirror) that reflects the image light emitted from the image light generation unit toward the projection surface.
  • a power supply unit battery unit
  • this power supply unit is located as far as possible from the mirror, specifically, the mirror is provided at the top.
  • the power supply unit is provided at the bottom.
  • a cooling unit for cooling the image light generation unit is further provided, and this cooling unit is also provided as far as possible from the mirror, specifically, slightly above the power supply unit.
  • the projection display apparatus includes at least a housing that stores the image light generation unit, and a transmission area (projection window) provided on the top of the casing, and passes through the transmission area. Project image light.
  • This housing has a movable portion (sliding portion) whose dimension in at least one direction (Z-axis direction) changes, and when the image light is not projected, the transmission region is accommodated inside the housing by the movable portion. Move to a hidden position.
  • the projection display apparatus includes a detection unit (such as an inclination sensor) that detects the state of the own apparatus with respect to the projection plane, and a control that controls the state of the image light according to the detected state. Means (control unit).
  • FIG. 38 is a front view showing the configuration of the projection display apparatus according to Embodiment 3-1
  • FIG. 39 is a side view.
  • the projection display apparatus 2100 includes a projection unit 110 including a projection lens group 2111 and an aspherical mirror 2112, a DMD (Digital Micromirror Device) 2120 as a light modulation element, and the DMD 2120. It has the illumination part 2130 which irradiates light, and the battery part 2150 which supplies electric power to LED (Light Emitted Device) 2131 etc. which comprise DMD2120 and the illumination part 2130.
  • a projection unit 110 including a projection lens group 2111 and an aspherical mirror 2112, a DMD (Digital Micromirror Device) 2120 as a light modulation element, and the DMD 2120. It has the illumination part 2130 which irradiates light, and the battery part 2150 which supplies electric power to LED (Light Emitted Device) 2131 etc. which comprise DMD2120 and the illumination part 2130.
  • LED Light Emitted Device
  • the housing 2101 has a side surface 2102 serving as a right side surface, another side surface 2103 serving as a left side surface, a top surface 2104 serving as an upper surface, and a bottom surface 2105 serving as a lower surface.
  • the housing 2101 includes a front surface 2106 that is a surface on the side from which the image light is emitted in FIG. 39 and a back surface 2107 that is the back surface of the front surface 2106.
  • the projection unit 110 includes a projection lens group 2111 composed of a plurality of lenses, an aspherical mirror 2112 composed of a concave aspherical mirror, and a projection window 2113 (see FIG. 39) through which image light is emitted.
  • the projection lens group 2111 emits image light modulated by the DMD 2120 in the Z-axis direction.
  • the aspherical mirror 2112 is provided above the projection lens group 2111 and reflects the image light from the projection lens group 2111 downward. Since the aspherical mirror 2112 is a concave mirror, the image light is condensed and projected on an enlarged scale.
  • the projection window 2113 is provided in the vicinity of the position where the image light is collected. The image light forms an image between the projection lens group 2111 and the aspherical mirror 2112, and forms an image again on the installation surface (XY plane in the drawing) of the projection display apparatus 2100.
  • the illumination unit 2130 includes LEDs 2131R, 2131G, and 2131B that emit red, green, and blue light, and a plurality of optical members that synthesize the red, green, and blue light and irradiate the DMD 2120.
  • a dichroic prism 2132 is used as an optical member that combines red, green, and blue light.
  • the combined light combined by the dichroic prism 2132 uses the taper rod 2133 to make the light amount distribution uniform.
  • the lenses 2134, 2135, and 2136 subsequent to the taper rod 2133 have an effect of collimating the light emitted from the taper rod 2133 and forming an image on the DMD 2120.
  • the mirrors 2137 and 2138 have an action of bending the optical path of the combined light according to the space.
  • the DMD 2120 and the illumination unit 2130 are collectively referred to as a video generation unit 2140.
  • the battery unit 2150 includes a battery 2151 composed of a nickel metal hydride secondary battery, a battery control circuit 2152 that controls charging / discharging of the battery 2151, and a power connector 2153 connected to a commercial power source.
  • the battery 2151 has a shape in which the dimension in the X-axis direction or the Y-axis direction is sufficiently larger (twice or more) than the dimension in the Z-axis direction.
  • the battery control circuit 2152 controls the power supplied from the commercial power supply to the battery 2151 via the power connector 2153 and also controls the power supplied from the battery 2151 to the video generation unit 2140 (particularly, the LED 2131 and the DMD 2120).
  • the battery may be a lithium ion secondary battery or a capacitor in addition to the nickel metal hydride secondary battery.
  • the control unit 2160 roughly includes a DMD control circuit 2122, an LED control circuit 2139, and a control circuit 2168 that controls the entire projection display apparatus 2100.
  • a control circuit 2168 is disposed in a region on one side 2102 side of the projection unit 110 (particularly, the projection lens group 2111), and the control circuit 2168 corresponds to a DMD control circuit according to a video input signal or the like.
  • a control signal is sent to 2122 and the LED control circuit 2139.
  • video input signals are input from video connectors 2161 and 2162 connected to the control circuit 2168, an SD card slot 2163, a USB connector 2164, and a LAN connector 2165.
  • Control circuit 2168 is also connected to power switch 2166 and operation button 2167.
  • the control circuit 2168 controls the entire projection display apparatus 2100 in response to a user instruction from the power switch 2166 or the operation button 2167.
  • the cooling unit 2170 is disposed in the area on the other side surface 2103 side of the projection lens group 2111. Specifically, an axial fan 2172 provided near the exhaust port 2171, a sirocco fan 2173 that cools the LED 2131, and a heat sink (not shown) that cools the DMD 2120 are arranged. Air for cooling the projection display 2100 is supplied from an air inlet 2174 provided on the upper side of the one side 2102, and flows through the projection display 2100 to cool the control unit 2160 and the image generation unit 2140. The air is exhausted from an exhaust port 2171 provided at the lower side of the other side surface 2103.
  • the projection display apparatus 2100 can be efficiently cooled.
  • the intake port 2174 and the exhaust port 2171 are provided on the one side surface 2102 and the other side surface 2103, respectively, the intake / exhaust port is not blocked even when the back surface 2107 is an installation surface.
  • the intake port 2174 is closed by a slide portion described later when the projection display apparatus 2100 is not used. With this configuration, it is possible to prevent dust and the like from entering the projection display apparatus 2100 during storage.
  • the sirocco fan 2173 may be provided with an air inlet different from the air inlet 2174.
  • FIGS. 40A and 40B are diagrams showing an external configuration of the projection display apparatus according to the 3-1 embodiment.
  • FIG. 40A is a left perspective view
  • FIG. 40B is a right perspective view.
  • the housing 2101 is provided with a projection window 2113 and has a front surface 2106 which is a surface on the side from which image light is emitted, and a back surface 2107 disposed at a position facing the front surface 2106.
  • the housing 2101 has a top surface 2104 as a top surface and a bottom surface disposed at a position facing the top surface 2104 when the projection display apparatus 2100 is installed so as to project image light on a desk or a floor surface. 2105.
  • the remaining two surfaces are the surface on which the power connector 2153 is disposed as one side surface 2102, and the surface disposed at a position facing the one side surface 2102 is the other side surface 2103. To do.
  • video connectors 2161 and 2162 connected to a video source such as a PC (Personal Computer), an SD card slot 2163, USB connectors 2164 a and 2164 b, a LAN connector 2165, and the like are provided. .
  • These connectors are preferably provided in a portion of one side 2102 close to the bottom surface 2105.
  • the one side surface 2102 has an overlapping portion 2102a that is housed inside when stored by a slide portion described later.
  • the intake port 2174 disposed on the one side surface 2102 may be provided at a position overlapping the one side surface 2192 of the slide portion 2190 when the slide portion 2190 is stored.
  • the other side surface 2103 is provided with an exhaust port 2171.
  • the intake port 2174 is provided at a position overlapping the one side surface 2102 when the overlapping portion 2102a is accommodated, specifically, at a position close to the top surface 2104 of the one side surface 2102.
  • the mouth 2171 may be provided in a portion of the other side surface 2103 close to the bottom surface 2105.
  • the power switch 2166 and the operation button 2167 are provided on the top surface 2104. Since the bottom surface 2105 and the back surface 2107 serve as installation surfaces, it is desirable not to provide an interface or an intake / exhaust port.
  • FIG. 41 is a diagram showing an internal configuration when projecting image light from the projection display apparatus
  • FIG. 42 is a diagram showing an internal configuration when the slide portion is housed.
  • the projection display apparatus 2100 needs to provide a predetermined distance between the projection lens group 2111 and the aspherical mirror 2112 when projecting image light.
  • This distance space 2180 becomes a dead space when image light is not projected. Therefore, as shown in FIG. 42, when the slide portion 2190 is accommodated, the slide portion 2190 including the aspherical mirror 2112 and the projection window 2113 is translated so as to be accommodated in the space 2180.
  • the volume of the projection display apparatus 2100 can be reduced.
  • the projection window 2113 overlaps with the front surface 2106 and moves to a position hidden from the surface, it can be prevented from becoming dirty during storage.
  • the air inlet 2174 overlaps with the one side surface 2102 and is closed, so that dust can be prevented from entering the projection display apparatus 2100.
  • FIG. 43 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus
  • FIG. 44 is a diagram illustrating an internal configuration when the slide portion is housed.
  • the projection display apparatus 2100 needs to keep a predetermined distance between a plurality of lenses arranged in the projection lens group 2111 when projecting image light.
  • This distance (space 2181) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 44, when the slide portion 2190 is housed, the distance between the lenses of the projection lens group 2111 is made as narrow as possible in conjunction with the parallel movement of the slide portion 2190.
  • the slide part 2190 including the aspherical mirror 2112 and the projection window 2113 is accommodated in the space 2181 by reducing the dimension of the projection lens group 2111 in the Z-axis direction.
  • FIG. 45 is a diagram showing an internal configuration when projecting image light from the projection display apparatus
  • FIG. 46 is a diagram showing an internal configuration when the slide portion is housed.
  • the arrangement of the DMD 2120 and the illumination unit 2130 is changed, and the illumination unit 2130 is arranged in an area where the lens diameter is small in the projection lens group 2111.
  • the cooling unit 2170 also needs to be moved to a region corresponding to the positions of the DMD 2120 and the illumination unit 2130.
  • the projection display apparatus 2100 when projecting image light, a space 2182 is generated between the DMD 2120 and the illumination unit 2130 (corresponding to the image generation unit 2140) and the battery unit 2150. Therefore, as shown in FIG. 46, when the slide part 2190 is accommodated, the projection lens group 2111, the image generation part 2140 and the cooling part 2170 are accommodated in the space 2182 together with the aspherical mirror 2112 and the slide part 2190 including the projection window 2113. Move in parallel.
  • FIG. 47 is a diagram showing an internal configuration when projecting image light from the projection display apparatus
  • FIG. 48 is a diagram showing an internal configuration when the slide portion is housed.
  • the cooling unit 2170 may be disposed below the illumination unit 2130 (video generation unit 2140), and a space may be provided between the cooling unit 2170 and the illumination unit 2130.
  • the slide unit 2190 including the projection unit 2110 and the image generation unit 2140 is stored in this space.
  • the DMD 2120 may be arranged so as to be perpendicular to the optical axis of the projection lens group 2111 without using the prism block 2121, and a space may be provided between the projection lens group 2111 and the DMD 2120. In this case, the projection unit 2110 is accommodated in this space.
  • the projection display apparatus 2100 includes an image light generation unit 2140 that generates image light, an aspherical mirror 2112 that reflects the image light emitted from the image light generation unit to the projection surface side, and , Are provided.
  • the projection display apparatus 2100 includes a battery unit 2150 that supplies power to the image light generation unit 2140.
  • the battery unit 2150 is located as far as possible from the aspherical mirror 2112, specifically, an aspherical mirror. 2112 is provided in the uppermost part, and the battery part 2150 is provided in the lowermost part. Therefore, since the heavy aspherical mirror 2112 and the battery unit 2150 are provided at positions separated from each other, the weight balance of the entire apparatus can be kept in balance.
  • the projection display apparatus 2100 includes an image light generation unit 2140 that generates image light, a case 2101 that houses the image light generation unit 2140, and an image provided in the case 2101. And a projection window 2113 through which the image light emitted from the light generation unit 2140 is transmitted.
  • the housing 2101 has a slide portion 2190 whose dimensions in the Z-axis direction change.
  • the projection window 2113 is housed inside the housing 2101 by the slide portion 2190 when no image light is projected. Therefore, the projection window 2113 can be prevented from being scratched or soiled.
  • FIG. 49 is a front view showing the configuration of the projection display apparatus according to the third to second embodiments.
  • the projection display apparatus 2200 is significantly different from the configuration of the 3-1 embodiment in the configuration of the image generation unit 2240 and the arrangement of the cooling unit 2270.
  • the bottom surface 2205 is an installation surface (horizontal plane)
  • the state in which image light is projected onto a horizontal plane such as a floor or a desk is a floor projection mode
  • the back surface 2207 is an installation plane (horizontal plane).
  • the state in which image light is projected onto the vertical plane is referred to as a wall surface projection mode.
  • the LEDs 2231R, 2231G, and 2231B that emit red, green, and blue light, the dichroic prism 2232, and the taper rod 2233 are disposed on the back surface 2207 side of the projection lens group 2211. In FIG. 49, these optical members are hidden by the projection lens group 2211. The light emitted from the taper rod 2233 is bent by the lenses 2234, 2235, 2236 and mirrors 2237, 2238 according to the space of the combined light, and forms an image on the DMD 2220.
  • the DMD 2220 is arranged so as to be perpendicular to the optical axis of the projection lens group 2211. Therefore, in the 3-2 embodiment, the prism block is unnecessary.
  • the DMD 2220 is irradiated with combined light guided from an acute angle with respect to the optical axis of the projection lens group 2211 by each optical member of the illumination unit 2230.
  • the DMD 2220 reflects the image light modulated in accordance with the image input signal out of the combined light toward the projection lens group 2211.
  • a DMD control circuit 2222 that controls the DMD 2220 is disposed in the vicinity of the DMD 2220. In the 3-2 embodiment, the DMD control circuit 2222 is disposed on the back side of the DMD 2220.
  • the LED control circuit 2239 for controlling the LED 2231 is disposed in the vicinity of the LED 2231.
  • the LED control circuit 2239 is disposed on the back surface 2207 side of the outer lens of the projection lens group 2211. As a result, the LED control circuit 2239 can be arranged in the vicinity of the LED 2231 and as far away from the DMD control circuit 2222 as possible.
  • the control circuit 2268 of the control unit 2260 has a tilt sensor 2269.
  • the tilt sensor 2269 transmits information regarding the detected tilt to the control circuit 2268. From the received information, the control circuit 2268 determines whether the user uses the projection display apparatus 2200 in the floor projection mode with the bottom surface 2205 as the installation surface or in the wall projection mode with the back surface 2207 as the installation surface. Is determined.
  • the control circuit 2268 sends a control signal to the DMD control circuit 2222 according to the determined projection mode. Although details will be described later, the DMD control circuit 2222 controls the size and aspect ratio of the effective area of the DMD 2220 and the vertical and horizontal directions of the projected image according to the control signal relating to the projection mode.
  • a cooling unit 2270 is disposed in the area on the other side surface 2203 side of the projection lens group 2211.
  • a sirocco fan 2275 and a heat sink 2276 that cool the DMD 2220 are arranged.
  • FIG. 50 is a diagram showing a projection mode of the projection display apparatus according to the third to second embodiments.
  • FIG. 50A shows a floor projection mode
  • FIG. 50B shows a wall projection mode.
  • the projection display apparatus 2200 discriminates the installation surface based on information about the tilt detected by the tilt sensor 2269 when projecting image light. As shown in FIG. 50A, when the installation surface is the bottom surface 2205, the user (observer) often observes the projected image from the far side (Far side). Project the projected image so that the Far side is facing down. Specifically, when the inclination sensor 2269 determines that the bottom surface 2205 is the installation surface, the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that the Far side is down.
  • the installation surface is the back surface 2207
  • the user observes with the close side (Near side) of the projected image facing down. 2200 projects the projected image so that the near side is the bottom.
  • the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that the Near side is down.
  • FIG. 51A and 51B are diagrams showing a projection mode of the projection display apparatus according to the modification 1.
  • FIG. 51A shows a floor projection mode
  • FIG. 51B shows a wall projection mode.
  • the projection display apparatus 2200 determines the installation surface based on information about the tilt detected by the tilt sensor 2269 when projecting image light.
  • the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that H: V is 3: 4.
  • the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that H: V is 4: 3.
  • FIG. 52 is a diagram showing a floor projection mode of the projection display apparatus according to the modification 2.
  • FIG. 52A is a normal floor projection mode (hereinafter referred to as a normal mode) and
  • FIG. b) is a floor projection mode in which the area of the projected image is increased (hereinafter referred to as an enlargement mode).
  • the projection display apparatus 2200 has a leg 2208 on the bottom surface 2205 and a leg sensor 2208s for detecting the length of the leg 2208.
  • the projection display apparatus 2200 estimates the projection distance based on information about the length of the leg 2208 detected by the leg sensor 2208s.
  • the light quantity of the LED 2231 necessary for projection so that the brightness of the projected image is L with respect to the area where the area of the projected image is S is E.
  • the area S ′ of the projection image in the enlarged mode is set to the normal mode. Is larger than the area S (S ′> S). At this time, if the light quantity of the LED 2231 is E, the luminance of the projection image in the enlargement mode is lower than the luminance L in the normal mode.
  • the control circuit 2268 sends a control signal to the LED drive circuit 2239 so that the light quantity of the LED 2231 becomes E '(> E).
  • the luminance L in the normal mode and the luminance L ′ in the enlargement mode become substantially the same luminance (L ⁇ L ′).
  • FIG. 53 is a diagram showing a floor projection mode of the projection display apparatus according to the third modification. In Modification 3, only differences from Modification 2 will be described.
  • the projection display apparatus 2200 has a neck 2209 at the top and a neck sensor 2209s for detecting the length of the neck 2209.
  • An aspherical mirror 2212 is disposed above the neck 2209, and the distance between the projection lens group 2211 and the aspherical mirror 2212 is adjusted by expanding and contracting the neck 2209.
  • the projection display apparatus 2200 calculates the projection distance and the distance between the projection lens group 2211 and the aspherical mirror 2212 based on information on the length of the neck 2209 detected by the leg sensor 2209s when projecting image light. presume.
  • the top surface 2204 is provided with a handle portion 2204h for pulling the neck portion 2209. Further, a button (not shown) may be provided on the handle portion 2204h so that the neck portion 2209 can be extended when the button is pressed. Since the neck portion 2209 does not extend when the button is not pressed, the handle portion 2204h is also useful when carrying the projection display apparatus 2200.
  • the projection display apparatus 2200 may include an illuminance sensor.
  • the brightness sensor makes it possible to estimate the brightness of the usage environment of the projection display apparatus 2200.
  • the projection display apparatus 2200 can be operated with low power consumption, and the user can see it. A gentle image can be provided.
  • the leg portion 2208 may be adjusted to increase the area S of the projection screen.
  • the effective display area of the DMD 2220 is deformed by signal processing in the DMD control circuit 2222. Thereby, the effective display area of the DMD 2220 is reduced, and the area S of the projection screen is reduced. Therefore, the area S can be maintained by extending the leg 2208 to increase the projection distance.
  • the projection display apparatus 2200 includes an image light generation unit 2240 that generates image light, and an aspherical mirror 2212 that reflects the image light emitted from the image light generation unit 2240 toward the projection surface.
  • the projection display apparatus 2200 includes a battery unit 2250 that supplies power to the image light generation unit 2240, and the battery unit 2250 is provided at a position as far as possible from the aspherical mirror 2212.
  • the cooling unit 2270 further includes a cooling unit 2270 for cooling the image light generation unit 2240.
  • a cooling unit 2270 for cooling the image light generation unit 2240.
  • an axial fan 2272, a sirocco fan 2275, a heat sink 2276, and a sirocco fan 2277 are also included in the aspherical mirror 2212. It may be provided at a position close to the bottom surface 2205 as far as possible.
  • the heavy cooling unit 2270 is provided at a position away from the aspherical mirror 2212 after the aspherical mirror 2212 and the battery unit 2250, the weight balance of the entire apparatus can be kept in balance.
  • battery unit 2250 and cooling unit 2270 are close to each other and provided at a position close to the bottom surface, the battery unit 2250 and the cooling unit 2270 can be stably installed even if the bottom surface area is small.
  • the projection display apparatus 2200 includes an inclination sensor 2269 that detects the state of the own apparatus with respect to the projection plane, a leg sensor 2208s, and a neck sensor 2209s, depending on the detected state. And a control unit 2260 for controlling the state of the image light. Therefore, the projection display apparatus 2200 judges the state of the apparatus itself, specifically the installation surface and the projection distance, and projects the image in a state (orientation, brightness, etc.) that is considered most observable for the user. Therefore, the convenience of the user can be improved.
  • FIG. 54 is a diagram showing an appearance of the projection display apparatus 100 according to the fourth embodiment.
  • FIG. 55 is a diagram showing the inside of the projection display apparatus 100 according to the fourth embodiment.
  • FIG. 56 is a diagram showing a front view of the projection display apparatus 100 according to the fourth embodiment.
  • the imaging device and the control board are preferably arranged in a region Y1 shown in FIGS. As shown in FIG. 54, the region Y1 is a region closer to the top plate than the transmission region 210 (projection window), and is a region closer to the front side than the reflection mirror 112 as shown in FIG. Needless to say, the imaging device and the control board are arranged at positions where the image light reflected by the reflection mirror 112 is not shielded.
  • the light intake port of the imaging device is arranged in the region Z1 or the region Z2 shown in FIG.
  • the region Z1 is a region closer to the top plate than the transmission region 210, as shown in FIG.
  • the region Z2 is a part of the transmissive region 210 as shown in FIG.
  • the light inlet of the image pickup apparatus is arranged at a position where the image light transmitted through the transmission region 210 is not blocked.
  • the imaging device and the control board are arranged in a region Y1 shown in FIGS.
  • the region Y1 is a dead space. Since such a dead space can be used effectively, the projection display apparatus 100 can be reduced in size.
  • the light intake port of the imaging apparatus is arranged in the region Z1 or the region Z2 shown in FIG.
  • the reflected light from the projection surface is taken in at a height equal to or higher than that of the transmissive region 210, the image on the projection surface can be displayed even when the distance between the projection display apparatus and the projection surface is very close. An image can be taken. Further, since the distance between the light intake and the imaging device (or control board) is short, no extra wiring or the like is necessary.
  • a DMD Digital Micromirror Device
  • the light modulation element may be a reflective liquid crystal panel or a transmissive liquid crystal panel.
  • the focus adjustment tool 260 returns to the initial position by the movement of the cover body (first housing 200A or cover body 200C) in the transition from the non-covering state to the covering state.
  • the embodiment is not limited to this.
  • the focus adjustment tool 260 may return to the initial position by the movement of the cover body (first housing 200A or cover body 200C) in the transition from the covered state to the uncovered state.
  • the operation control unit 320 ends the operation of the projection display apparatus 100 when the cooling state is poor due to the case 200 not being properly arranged.
  • the operation control unit 320 is a projection type video display device even when the detection unit 400 detects a reference surface erroneously. The operation of 100 can be properly terminated.
  • the detection point 410 is a mechanical switch.
  • the detection point 410 may be a pressure sensor.
  • the detection unit 400 may be a pressure sensor configured to be able to detect the pressure distribution of the entire bottom surface of the housing 200.
  • the LED is used as the light source.
  • the light source is not limited to the LED, and a laser light source can be used as the solid light source, and a high-pressure mercury lamp or a xenon lamp can be used as the lamp light source.
  • the DMD is used as the light modulation element, a transmissive, transflective, or reflective liquid crystal panel can also be used.
  • the case has been described as a substantially rectangular parallelepiped shape having six surfaces, but the shape of the case is not limited to a rectangular parallelepiped, and may be a shape that emphasizes design. Further, it may be rounded at the apexes and sides of the rectangular parallelepiped, and may have a shape having a protrusion or a recess near the center or the center of gravity. If there is a protrusion or dent near the center or center of gravity, it is convenient to carry.
  • the slide unit may function as a power switch. That is, the projection unit is activated when the slide part is pulled out and the image light can be emitted from the projection window, and is stopped when the slide part is housed in the housing. Also good.
  • the operation may be performed using a remote control.
  • the light receiving unit that receives a signal from the remote controller may be arranged on the front or upper side (aspherical mirror side).
  • the signal is not shielded.
  • Focus adjustment tool 300 ... Control unit 310 ... Determining unit 320 ... Operation control unit, 400 ... detection unit, 410 ... detection point, 500 ... battery, 1100, 1200 ... projection display apparatus, 110 , 1201... Casing (1102, 1202... One side, 1102a. Superimposed portion of one side, 1103, 1203... Other side, 1104, 1204 ... top, 1105, 1205 ... bottom, 1106, 1206 ... front, 1107, 1207 ... Back, 1110, 1210 ... Projection unit, 1111, 1211 ... Projection lens group, 1112, 1212 ... Aspherical mirror, 1113, 1213 ... Projection window, 1120, 1220 ... DMD, 1121 ...
  • Prism block (1121a ... surface), 1122, 1222 ... DMD control circuit, 1130, 1230 ... illumination unit, 1311, 1231 ... LED (1131R, 1231R ... red LED, 1131G, 1231G ... green LED, 1131B, 1231B ... blue LED), 1132, 1232 ... dichroic prism, 1133, 1 33 ... Tapered rod, 1134, 1135, 1136, 1234, 1235, 1236 ... Lens, 1137, 1138, 1237, 1338 ... Mirror, 1139, 1239 ... LED control circuit, 1140, 1140 ... Image light generator, 1150, 1250 ... Battery 1151, 1251 ... Battery, 1152, 1252 ...
  • Battery control circuit 1153, 1253 ... Power connector, 1160, 1260 ... Control part, 1161 ... Video connector, 1163 ... SD card slot, 1164 ... USB connector, 1166 ... Power supply Button, 1167 ... Menu button, 1168 ... Direction button, 1169, 1268 ... Control circuit, 1170, 1270 ... Cooling unit, 1171, 1271 ... Exhaust port, 1172, 1272 ... Axial fan, 1173, 1273, 1275 , 1277 ... Sirocco fan, 1174, 1274 ... Intake port, 1180, 1181, 1182, 1183 ... Space, 1190 ... Slide part (1192 ... One side, 1193 ... Other side, 1194 ... Top side, 1196 ...
  • projection window 2120, 2220 ... DMD, 2121 ... prism block (2121a ... surface), 2122, 2222 ... DMD control circuit, 2130, 2230 ... illumination unit, 2131, 2231 ... LED (2131R, 2231R ... red LED, 2131G, 2231G ... green LED, 2131B, 2231B ... blue LED), 2132, 2232 ... dichroic prism, 2133, 2233 ... taper rod, 2134, 2135, 2136, 2234, 2235, 2236 ... Lens, 2137, 2138, 2237, 2338 ... Mirror, 2139, 2239 ... LED control circuit, 2140, 2240 ... Video generation unit, 2150, 2250 ... Battery unit, 2151, 2251 ...

Abstract

Disclosed is a projection image display device which can be easily started up. The projection image display device (100) is provided with a housing (200) which houses a DMD (70) and a projection optical system (110). The housing (200) has the bottom surface (a first surface (220) or a second surface (230)) that faces a reference surface. The bottom surface (the first surface (220) or the second surface (230)) is provided with a detecting unit (400) which can detect the reference surface. The projection image display device (100) is provided with an operation control unit (320), which makes the projection image display device start operation when the reference surface is detected by the detecting unit (400).

Description

投写型映像表示装置Projection display device
 本発明は、光源から出射される光を変調する光変調素子と、光変調素子から出射される光を投写面上に投写する投写光学系とを備える投写型映像表示装置に関する。 The present invention relates to a projection display apparatus including a light modulation element that modulates light emitted from a light source and a projection optical system that projects light emitted from the light modulation element onto a projection surface.
 従来、光源から出射される光を変調する光変調素子と、光変調素子から出射される光を投写面上に投写する投写光学系とを備える投写型映像表示装置が知られている。 2. Description of the Related Art Conventionally, there has been known a projection display apparatus including a light modulation element that modulates light emitted from a light source and a projection optical system that projects light emitted from the light modulation element onto a projection surface.
 近年では、机などの基準面上に配置するタイプの投写型映像表示装置が提案されている。投写型映像表示装置は、基準面と平行な投写面上に光を投写する(例えば、特許文献1)。また、ミラーを含む投写光学系のうち、最後の光学部材として凸面ミラーや凹面ミラーを用いることによって、投写光の出射位置と被投写面との距離を短くする技術が開示されている(例えば、特許文献2、3)。 In recent years, there has been proposed a projection display apparatus of a type that is arranged on a reference surface such as a desk. A projection display apparatus projects light onto a projection plane parallel to a reference plane (for example, Patent Document 1). Further, a technique for shortening the distance between the projection light emission position and the projection surface by using a convex mirror or a concave mirror as the last optical member in the projection optical system including the mirror is disclosed (for example, Patent Documents 2 and 3).
特開2008-89928号公報JP 2008-89928 A 特開2008-134350号公報JP 2008-134350 A 特開2004-258620号公報JP 2004-258620 A
 ところで、投写型映像表示装置には、電源スイッチなどが設けられており、投写型映像表示装置を起動するためには、電源スイッチを押下する必要がある。一方で、ユーザの利便性の観点からは、ユーザ操作が少ない方が好ましい。 By the way, the projection display apparatus is provided with a power switch and the like, and it is necessary to press the power switch in order to start the projection display apparatus. On the other hand, from the viewpoint of user convenience, fewer user operations are preferable.
 そこで、本発明は、上述した課題を解決するためになされたものであり、投写型映像表示装置を簡易に起動することを可能とする投写型映像表示装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a projection display apparatus that can easily start the projection display apparatus.
 第1-1の特徴に係る投写型映像表示装置は、光源(光源10)から出射される光を変調する光変調素子(DMD70)と、前記光変調素子から出射される光を投写面上に投写する投写光学系(投写光学系110)とを収容する筐体(筐体200)を備える。投写型映像表示装置は、基準面上に配置される。前記筐体は、前記基準面と対向する底面(第1の面220又は第2の面230)を有する。前記底面には、前記基準面を検出可能に構成された検出部(検出部400)が設けられる。投写型映像表示装置は、前記検出部によって前記基準面が検出された場合に、自装置の運転を開始する運転制御部(運転制御部320)を備える。 A projection display apparatus according to the 1-1 feature includes a light modulation element (DMD 70) for modulating light emitted from a light source (light source 10), and light emitted from the light modulation element on a projection surface. A housing (housing 200) for housing a projection optical system (projection optical system 110) for projection is provided. The projection display apparatus is disposed on the reference plane. The housing has a bottom surface (first surface 220 or second surface 230) facing the reference surface. A detection unit (detection unit 400) configured to be able to detect the reference surface is provided on the bottom surface. The projection display apparatus includes an operation control unit (operation control unit 320) that starts the operation of the device when the reference unit is detected by the detection unit.
 第1-1の特徴において、前記検出部は、前記基準面を検出する少なくとも3つ以上の検出点を有する。 1-1. In the feature 1-1, the detection unit has at least three detection points for detecting the reference plane.
 第1-1の特徴において、前記少なくとも3つ以上の検出点は、前記筐体が前記基準面に配置された状態で通電する機械的なスイッチである。 1-1. In the feature 1-1, the at least three or more detection points are mechanical switches that are energized in a state where the casing is disposed on the reference plane.
 第1-1の特徴において、前記筐体は、前記投写光学系から出射される光を透過する透過領域を被覆可能に構成されたカバー体(第1筐体200A又はカバー体200C)と、前記投写光学系に設けられたレンズと連動するフォーカス調整具(フォーカス調整具260)とを有する。前記カバー体は、前記カバー体の移動によって、前記透過領域を被覆する被覆状態及び前記透過領域を被覆しない非被覆状態に遷移する。前記フォーカス調整具は、前記カバー体の移動によって初期位置に戻る。 In the first-first feature, the housing includes a cover body (first housing 200A or cover body 200C) configured to cover a transmission region that transmits light emitted from the projection optical system; A focus adjustment tool (focus adjustment tool 260) that is linked to a lens provided in the projection optical system. The cover body transitions to a covering state covering the transmission region and an uncovering state not covering the transmission region by the movement of the cover body. The focus adjustment tool returns to the initial position by the movement of the cover body.
 第1-1の特徴において、前記運転制御部は、前記投写型映像表示装置の運転開始後において、前記筐体内の冷却状態が所定状態よりも悪い場合に、前記投写型映像表示装置の運転を終了する。 In the first-first feature, the operation control unit operates the projection display device when the cooling state in the housing is worse than a predetermined state after the start of operation of the projection display device. finish.
 第1-2の特徴に係る投写型映像表示装置は、光源から出射される光を変調する光変調素子と、前記光変調素子から出射される光を投写面上に投写する投写光学系とを収容する筐体を備える。投写型映像表示装置は、基準面上に配置される。前記筐体は、前記投写光学系から出射される光を透過する透過領域を被覆可能に構成されたカバー体と、前記投写光学系に設けられたレンズと連動するフォーカス調整具と有する。前記カバー体は、前記カバー体の移動によって、前記透過領域を被覆する被覆状態及び前記透過領域を被覆しない非被覆状態に遷移する。前記フォーカス調整具は、前記カバー体の移動によって初期位置に戻る。 A projection display apparatus according to the first-second feature includes a light modulation element that modulates light emitted from a light source, and a projection optical system that projects light emitted from the light modulation element onto a projection plane. A housing is provided. The projection display apparatus is disposed on the reference plane. The housing includes a cover body configured to be able to cover a transmission region that transmits light emitted from the projection optical system, and a focus adjustment tool that works with a lens provided in the projection optical system. The cover body transitions to a covering state covering the transmission region and an uncovering state not covering the transmission region by the movement of the cover body. The focus adjustment tool returns to the initial position by the movement of the cover body.
 第2-1の特徴に係る投写型映像表示装置は、映像光を生成する映像光生成部と、前記映像光生成部を収納する筐体と、前記映像光生成部から出射された前記映像光の出射方向とは異なる方向へ前記映像光を折り曲げて投写面へ投写させる投写部とを備える。投写型映像表示装置は、前記映像光が前記筐体から出射する面を正面、前記正面に対向する面を背面、前記投写面と略平行で且つ最も近い面を底面、前記底面に対抗する面を天面、前記正面と前記背面との間で前記底面と前記天面以外の面を側面としたとき、投写型映像表示装置に各種指令を与える操作部(電源ボタン2166、メニューボタン2167、方向ボタン2168)が前記天面及び/又は前記側面に配される。 A projection display apparatus according to the 2-1 feature includes an image light generation unit that generates image light, a housing that houses the image light generation unit, and the image light emitted from the image light generation unit. A projection unit that bends the image light in a direction different from the emission direction of the image and projects the image light onto a projection surface. In the projection display apparatus, the surface from which the image light is emitted from the housing is the front surface, the surface facing the front surface is the back surface, the surface substantially parallel to the projection surface and the closest surface is the bottom surface, and the surface facing the bottom surface , The operation unit (power button 2166, menu button 2167, direction) for giving various commands to the projection display apparatus, where the bottom surface and the surface other than the top surface are side surfaces between the front surface and the back surface. A button 2168) is disposed on the top surface and / or the side surface.
 かかる特徴によれば、投写型映像表示装置が映像を投写する状態(図33参照)で設置されたとき、操作ボタンの操作時に投写画面に影響の出ない位置に操作ボタンを配置されているので、投写中に操作ボタンを操作してもユーザにより投写映像を遮ることがなくなる。 According to such a feature, when the projection display apparatus is installed in a state of projecting an image (see FIG. 33), the operation buttons are arranged at positions that do not affect the projection screen when the operation buttons are operated. Even if the operation button is operated during projection, the projected image is not blocked by the user.
 第2-1の特徴において、前記操作部は操作ボタンを有し、前記操作ボタンの配置は、前記筺体の正面及び背面から確認したときに前後対称に配されていることを特徴としてもよい。 The 2-1 feature may be characterized in that the operation section has operation buttons, and the operation buttons are arranged symmetrically in the front-rear direction when confirmed from the front and back of the housing.
 第2-1の特徴において、投写される前記映像光の状態を調整する調整部を備え、前記調整部の調整つまみは前記側面に配されていることを特徴としてもよい。 The feature 2-1 may further include an adjustment unit that adjusts a state of the projected image light, and an adjustment knob of the adjustment unit is arranged on the side surface.
 第2-1の特徴において、投写される前記映像光の状態を調整する調整部を備え、前記調整部の調整つまみは前記正面に配されていることを特徴としてもよい。 The feature 2-1 may further include an adjustment unit that adjusts a state of the projected image light, and an adjustment knob of the adjustment unit is arranged on the front surface.
 第2-1の特徴において、電源及び入力信号を入力する入力部を備え、前記入力部は、前記側面に配されることを特徴としてもよい。 In the 2-1st feature, an input unit for inputting a power source and an input signal may be provided, and the input unit may be arranged on the side surface.
 第2-1の特徴において、前記調整つまみ及び/又は前記入力部を覆うカバーを備えることを特徴としてもよい。 In the 2-1st feature, a cover that covers the adjustment knob and / or the input unit may be provided.
 第2-1の特徴において、前記筺体内部に冷却風を導く吸気口と、前記筺体内部から冷却風を排出する排気口とを有し、前記筐体は、少なくとも一方向の寸法が変化する可動部を有し、前記可動部を可動させることと連動して前記カバーを可動させることにより前記つまみ、前記入力部、前記吸気口、前記排気口のうち少なくとも一の開閉を行うことを特徴としてもよい。 In the 2-1st feature, the housing has an intake port for introducing cooling air into the housing and an exhaust port for discharging cooling air from the housing, and the casing is movable at least in one direction. And opening and closing at least one of the knob, the input unit, the intake port, and the exhaust port by moving the cover in conjunction with moving the movable unit. Good.
 第3-1の特徴に係る投写型映像表示装置(投写型映像表示装置1100)は、映像光を生成する映像光生成部(映像光生成部1140)と、前記映像光生成部から出射された前記映像光を投写面側へ反射するミラー(例えば、非球面ミラー1112)と、を備えるものである。投写型映像表示装置は、前記映像光生成部へ電力を供給する電力供給部(例えば、バッテリ部1150)を備え、前記電力供給部は、前記ミラーと可及的に離れた位置に設けられる。 The projection type video display device (projection type video display device 1100) according to the 3-1 characteristic includes a video light generation unit (video light generation unit 1140) for generating video light, and the video light generation unit. A mirror (for example, an aspherical mirror 1112) that reflects the image light toward the projection surface. The projection display apparatus includes a power supply unit (for example, a battery unit 1150) that supplies power to the video light generation unit, and the power supply unit is provided as far as possible from the mirror.
 かかる構成によれば、重量のあるミラーと電力供給部とが離れた位置に設けられるので、装置全体の重量バランスを平衡に保つことができる。 According to such a configuration, since the heavy mirror and the power supply unit are provided at positions separated from each other, the weight balance of the entire apparatus can be kept in equilibrium.
 第3-1の特徴において、前記映像光生成部を冷却する冷却部(冷却部1170)をさらに備え、前記冷却部もまた、前記ミラーと可及的に離れた位置に設けられるとよい。これにより、ミラーや電力供給部についで、重量のある冷却部がミラーと離れた位置に設けられるので、装置全体の重量バランスを平衡に保つことができる。また、電力供給部と冷却部とが近接した位置に設けられる場合、電力供給部と冷却部とが設けられる領域が底部となるように設置すれば、底面積が小さい場合でも安定して設置することができる。 In the 3-1 feature, a cooling unit (cooling unit 1170) for cooling the image light generation unit may be further provided, and the cooling unit may be provided at a position as far as possible from the mirror. Thereby, since the heavy cooling unit is provided at a position away from the mirror after the mirror and the power supply unit, the weight balance of the entire apparatus can be kept in balance. In addition, when the power supply unit and the cooling unit are provided at close positions, if the region where the power supply unit and the cooling unit are provided is located at the bottom, the power supply unit and the cooling unit can be stably installed even when the bottom area is small. be able to.
 第3-1の特徴において、前記映像光生成部を収納し、略直方体形状を有する筐体(筐体1101)をさらに備え、前記映像光が前記筐体から出射する面を正面(正面1106)、前記正面に対向する面を背面(背面1107)、前記正面と前記背面との間に位置する面であって前記電力供給部が配される面を底面(底面1105)としたとき、自装置を操作する操作部(例えば、電源スイッチ1166や操作ボタン1167)は、前記正面、前記背面および前記底面を除く面に設けられるとよい。これにより、筐体の正面に操作部が無いので、ユーザが操作部を操作するときに、映像光が通る正面側の領域に手が入り、映像光を遮光してしまう虞がない。また、設置面となる背面や底面にも操作部が無いので、どのような設置状態でもユーザは操作部を操作することができる。 The 3-1 feature may further include a housing (housing 1101) that houses the image light generation unit and has a substantially rectangular parallelepiped shape, and a surface from which the image light is emitted from the housing is a front surface (front surface 1106). When the surface facing the front surface is the back surface (back surface 1107) and the surface between the front surface and the back surface and the surface on which the power supply unit is arranged is the bottom surface (bottom surface 1105), The operation unit (for example, the power switch 1166 and the operation button 1167) is preferably provided on a surface excluding the front surface, the back surface, and the bottom surface. Thereby, since there is no operation part in the front of a housing | casing, when a user operates an operation part, a hand will enter into the area | region of the front side along which image light passes, and there is no possibility of shielding image light. Moreover, since there is no operation part in the back surface and bottom face used as an installation surface, the user can operate an operation part in any installation state.
 詳細には、第3-1の特徴において、前記投写面が水平面(例えば、XY面)であるとき、前記電力供給部は自装置の最下部に位置し、前記ミラーは、前記電力供給部の上部に設けられた前記映像生成部から上方へ出射された前記映像光を前記投写面へ反射する位置に設けられることを要旨とする。 Specifically, in the feature 3-1, when the projection plane is a horizontal plane (for example, an XY plane), the power supply unit is positioned at the bottom of the apparatus, and the mirror is connected to the power supply unit. The gist is that the image light emitted upward from the image generation unit provided in the upper part is provided at a position where the image light is reflected to the projection plane.
 かかる構成によれば、様々な設置状態において、安定性のよい投写型映像表示装置を提供することができる。 According to such a configuration, it is possible to provide a projection-type image display device having good stability in various installation states.
 本発明によれば、投写型映像表示装置を簡易に起動することを可能とする投写型映像表示装置を提供することができる。 According to the present invention, it is possible to provide a projection display apparatus that can easily start the projection display apparatus.
第1-1実施形態に係る投写型映像表示装置100の概略構成を示す図である。1 is a diagram showing a schematic configuration of a projection display apparatus 100 according to Embodiment 1-1. 第1-1実施形態に係る投写型映像表示装置100の概略構成を示す図である。1 is a diagram showing a schematic configuration of a projection display apparatus 100 according to Embodiment 1-1. 第1-1実施形態に係る投写型映像表示装置100の光学構成を説明するための図である。It is a figure for demonstrating the optical structure of the projection type video display apparatus 100 concerning 1st-1 embodiment. 第1-1実施形態に係る第1筐体200Aのスライドを説明するための図である。It is a diagram for explaining the sliding of the first housing 200A according to the 1-1 embodiment. 第1-1実施形態に係る第1筐体200Aのスライドを説明するための図である。It is a diagram for explaining the sliding of the first housing 200A according to the 1-1 embodiment. 第1-1実施形態に係る制御ユニット300を示すブロック図である。1 is a block diagram showing a control unit 300 according to Embodiment 1-1. FIG. 第1-1実施形態に係る検出部400の構成例を説明するための図である。It is a figure for demonstrating the example of a structure of the detection part 400 concerning 1st-1 embodiment. 第1-1実施形態に係る検出部400の構成例を説明するための図である。It is a figure for demonstrating the example of a structure of the detection part 400 concerning 1st-1 embodiment. 第1-1実施形態に係る検出点410の配置例を説明するための図である。It is a figure for demonstrating the example of arrangement | positioning of the detection point 410 which concerns on 1-1st embodiment. 第1-1実施形態に係る検出点410の配置例を説明するための図である。It is a figure for demonstrating the example of arrangement | positioning of the detection point 410 which concerns on 1-1st embodiment. 第1-1実施形態に係る検出点410の配置例を説明するための図である。It is a figure for demonstrating the example of arrangement | positioning of the detection point 410 which concerns on 1-1st embodiment. 第1-2実施形態に係る投写型映像表示装置100の構成例を示す図である。It is a figure which shows the structural example of the projection type video display apparatus 100 concerning 1st-2 embodiment. 第1実施形態の変形例1に係る投写型映像表示装置100の構成例を示す図である。It is a figure which shows the structural example of the projection type video display apparatus 100 which concerns on the modification 1 of 1st Embodiment. 第2-1実施形態に係る投写型映像表示装置の構成を示す正面図である。It is a front view which shows the structure of the projection type video display apparatus concerning 2nd-1 embodiment. 第2-1実施形態に係る投写型映像表示装置の構成を示す側面図である。It is a side view which shows the structure of the projection type video display apparatus concerning 2nd-1 embodiment. 第2-1実施形態に係る投写型映像表示装置の外部構成を示す斜視図である。It is a perspective view which shows the external structure of the projection type video display apparatus concerning 2nd-1 embodiment. 第2-1実施形態に係る操作ボタンを示す図である。It is a figure which shows the operation button which concerns on 2nd-1 embodiment. 第2-1実施形態に係る操作ボタンの変形例を示す図である。It is a figure which shows the modification of the operation button which concerns on 2nd-1 embodiment. 第2-1実施形態に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning 2nd-1 embodiment projects image light. 第2-1実施形態に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning 2nd-1 embodiment is accommodated. 第2-1実施形態の変形例1に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 1 of 2nd-1 embodiment projects image light. 第2-1実施形態の変形例1に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 1 of 2nd-1 embodiment is accommodated. 第2-1実施形態の変形例2に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 2 of 2nd-1 embodiment projects image light. 第2-1実施形態の変形例2に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 2 of 2nd-1 embodiment is accommodated. 第2-1実施形態の変形例3に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 3 of 2nd-1 embodiment projects image light. 第2-1実施形態の変形例3に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 3 of 2nd-1 embodiment is accommodated. 第2-2実施形態に係る投写型映像表示装置の構成を示す正面図及び側面図である。It is the front view and side view which show the structure of the projection type video display apparatus concerning 2-2 embodiment. 第2-3実施形態に係る投写型映像表示装置の構成を示す正面図である。It is a front view which shows the structure of the projection type video display apparatus concerning 2-3 embodiment. 第2-3実施形態に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning 2-3 embodiment. 第2-3実施形態の変形例1に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning modification 1 of the 2-3 embodiment. 第2-3実施形態の変形例2に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning the modification 2 of the 2-3 embodiment. 第2-3実施形態の変形例3に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning the modification 3 of the 2-3 embodiment. 投写型映像表示装置の使用例を示す図である。It is a figure which shows the usage example of a projection type video display apparatus. 第2実施形態の変形例4に係る投写型映像表示装置の床面投写モードを示す図である。It is a figure which shows the floor surface projection mode of the projection type video display apparatus concerning the modification 4 of 2nd Embodiment. 第2実施形態の変形例4に係る投写型映像表示装置の側面視を示す図である。It is a figure which shows the side view of the projection type video display apparatus concerning the modification 4 of 2nd Embodiment. 第2実施形態の変形例4に係る投写型映像表示装置の内部構造を示す図である。It is a figure which shows the internal structure of the projection type video display apparatus concerning the modification 4 of 2nd Embodiment. 第2実施形態の変形例4に係る投写型映像表示装置の右側面視(RIGHT)、正面視(FRONT)及び左側面視(LEFT)を示す図である。It is a figure which shows the right view (RIGHT), front view (FRONT), and left view (LEFT) of the projection type video display apparatus concerning the modification 4 of 2nd Embodiment. 第3-1実施形態に係る投写型映像表示装置の構成を示す正面図である。It is a front view which shows the structure of the projection type video display apparatus concerning 3rd-1 embodiment. 第3-1実施形態に係る投写型映像表示装置の構成を示す側面図である。It is a side view which shows the structure of the projection type video display apparatus concerning 3rd-1 embodiment. 第3-1実施形態に係る投写型映像表示装置の外部構成を示す斜視図である。It is a perspective view which shows the external structure of the projection type video display apparatus concerning 3rd-1 embodiment. 第3-1実施形態に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning 3rd-1 embodiment projects image light. 第3-1実施形態に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning 3rd-1 embodiment is accommodated. 第3-1実施形態の変形例1に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 1 of 3rd-1 embodiment projects image light. 第3-1実施形態の変形例1に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 1 of 3rd-1 embodiment is accommodated. 第3-1実施形態の変形例2に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 2 of 3rd-1 embodiment projects image light. 第3-1実施形態の変形例2に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 2 of 3rd-1 embodiment is accommodated. 第3-1実施形態の変形例3に係る投写型映像表示装置が映像光を投写するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 3 of 3rd-1 embodiment projects image light. 第3-1実施形態の変形例3に係る投写型映像表示装置を収納するときの内部構成を示す図である。It is a figure which shows an internal structure when the projection type video display apparatus concerning the modification 3 of 3rd-1 embodiment is accommodated. 第3-2実施形態に係る投写型映像表示装置の構成を示す正面図である。It is a front view which shows the structure of the projection type video display apparatus concerning 3-2 embodiment. 第3-2実施形態に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning 3-2 embodiment. 第3-2実施形態の変形例1に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning modification 1 of the 3-2 embodiment. 第3-2実施形態の変形例2に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning modification 2 of the 3-2 embodiment. 第3-2実施形態の変形例3に係る投写型映像表示装置の投写モードを説明する図である。It is a figure explaining the projection mode of the projection type video display apparatus concerning modification 3 of the 3-2 embodiment. 第4実施形態に係る投写型映像表示装置100の外観を示す図である。It is a figure which shows the external appearance of the projection type video display apparatus 100 concerning 4th Embodiment. 第4実施形態に係る投写型映像表示装置100の内部を示す図である。It is a figure which shows the inside of the projection type video display apparatus 100 concerning 4th Embodiment. 第4実施形態に係る投写型映像表示装置100の正面視を示す図である。It is a figure which shows the front view of the projection type video display apparatus 100 concerning 4th Embodiment.
 以下において、本発明の実施形態に係る投写型映像表示装置について、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。 Hereinafter, a projection display apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 However, it should be noted that the drawings are schematic and ratios of dimensions are different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [第1実施形態の概要]
 第1に、第1実施形態に係る投写型映像表示装置は、光源から出射される光を変調する光変調素子と、光変調素子から出射される光を投写面上に投写する投写光学系とを収容する筐体を備える。投写型映像表示装置は、基準面上に配置される。筐体は、基準面と対向する底面を有する。底面には、基準面を検出可能に構成された検出部が設けられる。投写型映像表示装置は、検出部によって基準面が検出された場合に、自装置の運転を開始する運転制御部を備える。
[Outline of First Embodiment]
First, a projection display apparatus according to the first embodiment includes a light modulation element that modulates light emitted from a light source, and a projection optical system that projects light emitted from the light modulation element onto a projection surface. A housing for housing the container. The projection display apparatus is disposed on the reference plane. The housing has a bottom surface facing the reference surface. A detection unit configured to be able to detect the reference surface is provided on the bottom surface. The projection display apparatus includes an operation control unit that starts operation of the own device when the reference surface is detected by the detection unit.
 第1実施形態では、運転制御部は、検出部によって基準面が検出された場合に、自装置の運転を開始する。従って、投写型映像表示装置を基準面に配置するだけで、投写型映像表示装置が起動するため、電源スイッチを押下が不要である。また、検出部が基準面を検出可能に構成されるため、投写型映像表示装置の誤起動が抑制される。 In the first embodiment, the operation control unit starts the operation of its own device when the reference surface is detected by the detection unit. Therefore, since the projection display apparatus is activated only by placing the projection display apparatus on the reference plane, it is not necessary to press the power switch. In addition, since the detection unit is configured to be able to detect the reference plane, erroneous start-up of the projection display apparatus is suppressed.
 第2に、第1実施形態に係る投写型映像表示装置は、光源から出射される光を変調する光変調素子と、光変調素子から出射される光を投写面上に投写する投写光学系とを収容する筐体を備える。投写型映像表示装置は、基準面上に配置される。筐体は、投写光学系から出射される光を透過する透過領域を被覆可能に構成されたカバー体と、投写光学系に設けられたレンズと連動するフォーカス調整具と有する。カバー体は、カバー体の移動によって、透過領域を被覆する被覆状態及び透過領域を被覆しない非被覆状態に遷移する。フォーカス調整具は、カバー体の移動によって初期位置に戻る。 Second, the projection display apparatus according to the first embodiment includes a light modulation element that modulates light emitted from a light source, and a projection optical system that projects light emitted from the light modulation element onto a projection surface. A housing for housing the container. The projection display apparatus is disposed on the reference plane. The housing includes a cover body configured to be able to cover a transmission region that transmits light emitted from the projection optical system, and a focus adjustment tool that is linked to a lens provided in the projection optical system. By moving the cover body, the cover body transitions between a covering state that covers the transmissive area and an uncovered state that does not cover the transmissive area. The focus adjustment tool returns to the initial position by the movement of the cover body.
 第1実施形態では、フォーカス調整具は、カバー体の移動によって初期位置に戻る。従って、投写型映像表示装置の起動時に、フォーカス調整具が初期位置に戻っているため、フォーカス調整具を用いたフォーカス調整量を少なくでき、投写型映像表示装置の起動時に必要な操作が簡略化される。 In the first embodiment, the focus adjustment tool returns to the initial position by the movement of the cover body. Therefore, since the focus adjustment tool is returned to the initial position when the projection display device is started, the amount of focus adjustment using the focus adjustment tool can be reduced, and the operations required when starting the projection display device are simplified. Is done.
 [第1-1実施形態]
 (投写型映像表示装置の概略構成)
 以下において、第1-1実施形態に係る投写型映像表示装置の概略構成について、図面を参照しながら説明する。図1は、第1-1実施形態に係る投写型映像表示装置100(床面投写)を示す図である。図2は、第1-1実施形態に係る投写型映像表示装置100(壁面投写)を示す図である。
[First Embodiment]
(Schematic configuration of the projection display device)
The schematic configuration of the projection display apparatus according to Embodiment 1-1 will be described below with reference to the drawings. FIG. 1 is a diagram showing a projection display apparatus 100 (floor projection) according to Embodiment 1-1. FIG. 2 is a diagram showing the projection display apparatus 100 (wall surface projection) according to the 1-1 embodiment.
 図1及び図2に示すように、投写型映像表示装置100は、筐体200を有しており、投写面(不図示)に映像を投写する。筐体200には、後述する投写光学系110から出射される光を透過する透過領域210が設けられる。 As shown in FIGS. 1 and 2, the projection display apparatus 100 includes a housing 200 and projects an image on a projection surface (not shown). The housing 200 is provided with a transmission region 210 that transmits light emitted from the projection optical system 110 described later.
 ここで、投写面は、図1に示すように、床面や机上などの水平面に設けられていてもよく、図2に示すように、壁面などの垂直面(例えば、スクリーン)に設けられてもよい。すなわち、投写型映像表示装置100は、映像光を床面や机上などの水平面に投写するように配置されてもよく、映像光を壁面などの垂直面に投写するように配置されてもよい。 Here, the projection surface may be provided on a horizontal surface such as a floor surface or a desk as shown in FIG. 1, or provided on a vertical surface (for example, a screen) such as a wall surface as shown in FIG. Also good. That is, the projection display apparatus 100 may be arranged to project image light onto a horizontal surface such as a floor surface or a desk, or may be arranged to project image light onto a vertical surface such as a wall surface.
 図1に示すケースでは、略直方体の筐体200が有する面のうち、第1の面220が、床面などの基準面と対向する底面を構成する。一方で、図2に示すケースでは、略直方体の筐体200が有する面のうち、第2の面230が、床面などの基準面と対向する底面を構成する。なお、図2に示すケースにおいて、投写面と略平行な面(壁面など)に当接するように筐体200が配置される場合には、投写面と略平行な面が基準面であると捉えて、第1の面220を底面と考えてもよい。 In the case shown in FIG. 1, among the surfaces of the substantially rectangular parallelepiped housing 200, the first surface 220 constitutes a bottom surface facing a reference surface such as a floor surface. On the other hand, in the case shown in FIG. 2, the second surface 230 of the surfaces of the substantially rectangular parallelepiped housing 200 constitutes a bottom surface facing a reference surface such as a floor surface. In the case shown in FIG. 2, when the housing 200 is disposed so as to abut on a surface (such as a wall surface) substantially parallel to the projection surface, the surface substantially parallel to the projection surface is regarded as the reference surface. Thus, the first surface 220 may be considered as the bottom surface.
 ここで、第1の面220は、長い投写距離を確保するために、略直方体の筐体200が有する面のうち、透過領域210から最も離れた面であることに留意すべきである。また、第2の面230は、略直方体の筐体200が有する面のうち、透過領域210が設けられる面の反対側に設けられた面であることに留意すべきである。 Here, it should be noted that the first surface 220 is a surface farthest from the transmission region 210 among the surfaces of the substantially rectangular parallelepiped casing 200 in order to ensure a long projection distance. In addition, it should be noted that the second surface 230 is a surface provided on the opposite side of the surface provided with the transmission region 210 among the surfaces of the substantially rectangular parallelepiped casing 200.
 なお、投写型映像表示装置100のサイズは、200ml~2lの容積を有するペットボトル程度である。例えば、投写型映像表示装置100の容積は、900ml程度であり、投写型映像表示装置100の重量は、800g程度である。投写型映像表示装置100によって表示される映像のサイズは、例えば、20インチ程度である。また、投写型映像表示装置100と投写面との距離が非常に近いことに留意すべきである。 Note that the size of the projection display apparatus 100 is about a PET bottle having a volume of 200 ml to 2 l. For example, the volume of the projection display apparatus 100 is about 900 ml, and the weight of the projection display apparatus 100 is about 800 g. The size of the image displayed by the projection display apparatus 100 is, for example, about 20 inches. Also, it should be noted that the distance between the projection display apparatus 100 and the projection surface is very close.
 (投写型映像表示装置の光学構成)
 以下において、第1-1実施形態に係る投写型映像表示装置の光学構成について、図面を参照しながら説明する。図3は、第1-1実施形態に係る投写型映像表示装置100の光学構成を主として示す図である。
(Optical configuration of the projection display)
Hereinafter, the optical configuration of the projection display apparatus according to Embodiment 1-1 will be described with reference to the drawings. FIG. 3 is a diagram mainly showing an optical configuration of the projection display apparatus 100 according to the 1-1 embodiment.
 図3に示すように、投写型映像表示装置100は、投写光学系110と、照明光学系120と、冷却ファン130と、バッテリ140と、電源基板150と、主制御基板160と、操作基板170とを有する。また、投写型映像表示装置100は、DMD70と、反射プリズム80とを有する。 As shown in FIG. 3, the projection display apparatus 100 includes a projection optical system 110, an illumination optical system 120, a cooling fan 130, a battery 140, a power supply board 150, a main control board 160, and an operation board 170. And have. The projection display apparatus 100 includes a DMD 70 and a reflecting prism 80.
 また、筐体200は、第1筐体200A及び第2筐体200Bによって構成される。上述した透過領域210は、第1筐体200Aに設けられる。なお、第1筐体200Aの一部又は全部は、後述するように、第2筐体200Bに収容可能に構成される。 Further, the housing 200 is constituted by a first housing 200A and a second housing 200B. The transmissive region 210 described above is provided in the first housing 200A. Part or all of the first housing 200A is configured to be accommodated in the second housing 200B, as will be described later.
 投写光学系110は、DMD70から出射された色成分光(映像光)を投写面に投写する。具体的には、投写光学系110は、投写レンズ群111と、反射ミラー112とを有する。 The projection optical system 110 projects the color component light (image light) emitted from the DMD 70 onto the projection surface. Specifically, the projection optical system 110 includes a projection lens group 111 and a reflection mirror 112.
 投写レンズ群111は、DMD70から出射された色成分光(映像光)を反射ミラー112側に出射する。投写レンズ群111は、投写光学系110の光軸Lを中心とする略円形形状のレンズ、投写光学系110の光軸Lを中心とする略円形形状の一部分によって構成される形状(例えば、下半分の半円形状)のレンズなどを含む。 The projection lens group 111 emits the color component light (image light) emitted from the DMD 70 to the reflection mirror 112 side. The projection lens group 111 is configured by a substantially circular lens centered on the optical axis L of the projection optical system 110 and a part (for example, a lower part) of a substantially circular shape centered on the optical axis L of the projection optical system 110. A half-semicircular lens).
 なお、投写レンズ群111に含まれるレンズの径は、反射ミラー112に近いほど大きいことに留意すべきである。 It should be noted that the diameter of the lens included in the projection lens group 111 is larger as it is closer to the reflection mirror 112.
 反射ミラー112は、投写レンズ群111から出射された色成分光(映像光)を反射する。反射ミラー112は、映像光を集光した上で、映像光を広角化する。例えば、反射ミラー112は、投写レンズ群111側に凹面を有する非球面ミラーである。ここで、反射ミラー112は、投写光学系110の光軸Lを中心とする略円形形状の一部分によって構成される形状(例えば、下半分の半円形状)を有する。 The reflection mirror 112 reflects the color component light (image light) emitted from the projection lens group 111. The reflection mirror 112 condenses the image light and then widens the image light. For example, the reflection mirror 112 is an aspherical mirror having a concave surface on the projection lens group 111 side. Here, the reflection mirror 112 has a shape (for example, a lower half semicircle) constituted by a part of a substantially circular shape centering on the optical axis L of the projection optical system 110.
 反射ミラー112で集光された映像光は、筐体200に設けられた透過領域210を透過する。筐体200に設けられた透過領域210は、反射ミラー112によって映像光が集光される位置近傍に設けられることが好ましい。 The image light collected by the reflection mirror 112 is transmitted through a transmission region 210 provided in the housing 200. The transmission region 210 provided in the housing 200 is preferably provided in the vicinity of the position where the image light is collected by the reflection mirror 112.
 照明光学系120は、光源10と、ダイクロイックプリズム30と、ロッドインテグレータ40と、ミラー51と、ミラー52と、レンズ61と、レンズ62と、レンズ63とを有する。 The illumination optical system 120 includes a light source 10, a dichroic prism 30, a rod integrator 40, a mirror 51, a mirror 52, a lens 61, a lens 62, and a lens 63.
 光源10は、複数色の色成分光を個別に出射するように構成される。また、光源10には、光源10で生じる熱を放熱するヒートシンクが併設されていてもよい。なお、光源10は、例えば、光源10R、光源10G及び光源10Bによって構成される。 The light source 10 is configured to individually emit a plurality of color component lights. The light source 10 may be provided with a heat sink that dissipates heat generated by the light source 10. Note that the light source 10 includes, for example, a light source 10R, a light source 10G, and a light source 10B.
 光源10Rは、赤成分光Rを出射する光源であり、例えば、赤LED(Light Emitting Diode)や赤LD(Laser Diode)である。光源10Rには、金属などのように放熱性が良好な部材によって構成されるヒートシンクが併設されてもよい。 The light source 10R is a light source that emits red component light R, and is, for example, a red LED (Light Emitting Diode) or a red LD (Laser Diode). The light source 10R may be provided with a heat sink composed of a member having good heat dissipation such as metal.
 光源10Gは、緑成分光Gを出射する光源であり、例えば、緑LEDや緑LDである。光源10Gには、金属などのように放熱性が良好な部材によって構成されるヒートシンクが併設されてもよい。 The light source 10G is a light source that emits green component light G, and is, for example, a green LED or a green LD. The light source 10G may be provided with a heat sink composed of a member having good heat dissipation such as metal.
 光源10Bは、青成分光Bを出射する光源であり、例えば、青LEDや青LDである。光源10Bには、金属などのように放熱性が良好な部材によって構成されるヒートシンクが併設されてもよい。 The light source 10B is a light source that emits blue component light B, and is, for example, a blue LED or a blue LD. The light source 10B may be provided with a heat sink made of a member having good heat dissipation such as metal.
 ダイクロイックプリズム30は、光源10Rから出射される赤成分光R、光源10Gから出射される緑成分光G、光源10Bから出射される青成分光Bを合成する。 The dichroic prism 30 combines the red component light R emitted from the light source 10R, the green component light G emitted from the light source 10G, and the blue component light B emitted from the light source 10B.
 ロッドインテグレータ40は、光入射面と、光出射面と、光入射面の外周から光出射面の外周に亘って設けられる光反射側面とを有する。ロッドインテグレータ40は、ダイクロイックプリズム30から出射された色成分光を均一化する。詳細には、ロッドインテグレータ40は、光反射側面で色成分光を反射することによって、色成分光を均一化する。なお、ロッドインテグレータ40は、ガラスなどによって構成される中実ロッドであってもよく、ミラー面によって内面が構成される中空ロッドであってもよい。 The rod integrator 40 has a light incident surface, a light emitting surface, and a light reflecting side surface provided from the outer periphery of the light incident surface to the outer periphery of the light emitting surface. The rod integrator 40 makes the color component light emitted from the dichroic prism 30 uniform. Specifically, the rod integrator 40 makes the color component light uniform by reflecting the color component light on the light reflection side surface. The rod integrator 40 may be a solid rod made of glass or the like, or a hollow rod having an inner surface constituted by a mirror surface.
 例えば、第1-1実施形態では、ロッドインテグレータ40は、光源10から出射される光の進行方向に向けて、光の進行方向に垂直な断面が大きくなるテーパ形状を有する。但し、実施形態は、これに限定されるものではない。ロッドインテグレータ40は、光源10から出射される光の進行方向に向けて、光の進行方向に垂直な断面が小さくなる逆テーパ形状を有してもよい。 For example, in the first to first embodiments, the rod integrator 40 has a tapered shape in which a cross section perpendicular to the light traveling direction increases toward the traveling direction of the light emitted from the light source 10. However, the embodiment is not limited to this. The rod integrator 40 may have an inversely tapered shape in which the cross section perpendicular to the light traveling direction decreases toward the traveling direction of the light emitted from the light source 10.
 ミラー51及びミラー52は、ロッドインテグレータ40から出射された光をDMD70に導くために、光の光路を折り曲げる反射ミラーである。 The mirror 51 and the mirror 52 are reflection mirrors that bend the optical path of light in order to guide the light emitted from the rod integrator 40 to the DMD 70.
 レンズ61、レンズ62及びレンズ63は、光源10から出射された色成分光の拡大を抑制しながら、色成分光をDMD70上に略結像するリレーレンズである。 The lens 61, the lens 62, and the lens 63 are relay lenses that form an image of the color component light on the DMD 70 while suppressing the expansion of the color component light emitted from the light source 10.
 冷却ファン130は、筐体200の外部に連通しており、筐体200内の熱を放出するように構成される。或いは、冷却ファン130は、筐体200の外部の空気を筐体200内に送り込むように構成される。例えば、冷却ファン130は、光源10の近傍に設けられており、光源10を冷却するように構成される。 The cooling fan 130 communicates with the outside of the housing 200 and is configured to release heat in the housing 200. Alternatively, the cooling fan 130 is configured to send air outside the housing 200 into the housing 200. For example, the cooling fan 130 is provided in the vicinity of the light source 10 and is configured to cool the light source 10.
 バッテリ140は、投写型映像表示装置100に供給すべき電力を蓄積する。 The battery 140 stores power to be supplied to the projection display apparatus 100.
 電源基板150は、バッテリ140に接続されており、AC電力をDC電力に変換する電力変換回路を有する。 The power supply board 150 is connected to the battery 140 and has a power conversion circuit that converts AC power into DC power.
 主制御基板160は、投写型映像表示装置100の動作を制御する主制御回路(後述する制御ユニット300)を有する。 The main control board 160 has a main control circuit (a control unit 300 described later) that controls the operation of the projection display apparatus 100.
 操作基板170は、投写型映像表示装置100に設けられる操作部(ボタンなど)に接続されており、操作部から入力される操作信号を主制御基板160(主制御回路)に伝達する。 The operation board 170 is connected to an operation unit (button or the like) provided in the projection display apparatus 100, and transmits an operation signal input from the operation unit to the main control board 160 (main control circuit).
 DMD70は、複数の微小ミラーによって構成されており、複数の微小ミラーは可動式である。各微小ミラーは、基本的に1画素に相当する。DMD70は、各微小ミラーの角度を変更することによって、色成分光が有効光として投写光学系110側に導かれるように色成分光を反射するか否かを切り替える。 The DMD 70 is composed of a plurality of minute mirrors, and the plurality of minute mirrors are movable. Each micromirror basically corresponds to one pixel. The DMD 70 switches whether to reflect the color component light so that the color component light is guided to the projection optical system 110 side as effective light by changing the angle of each micromirror.
 反射プリズム80は、照明光学系120から出射される光をDMD70側に透過する。一方で、反射プリズム80は、DMD70から出射される光を投写光学系110側に反射する。 The reflecting prism 80 transmits the light emitted from the illumination optical system 120 to the DMD 70 side. On the other hand, the reflecting prism 80 reflects the light emitted from the DMD 70 toward the projection optical system 110 side.
 なお、図4及び図5に示すように、第1筐体200Aは、第2筐体200Bの内壁に沿ってスライド可能に構成される。反射ミラー112は、第1筐体200Aのスライドと連動して、回動軸Pを中心として回動する。 As shown in FIGS. 4 and 5, the first housing 200A is configured to be slidable along the inner wall of the second housing 200B. The reflection mirror 112 rotates about the rotation axis P in conjunction with the slide of the first housing 200A.
 (制御ユニットの構成)
 以下において、第1-1実施形態に係る制御ユニットについて、図面を参照しながら説明する。図6は、第1-1実施形態に係る制御ユニット300を示すブロック図である。制御ユニット300は、投写型映像表示装置100に設けられており、投写型映像表示装置100を制御する。
(Configuration of control unit)
Hereinafter, the control unit according to the 1-1 embodiment will be described with reference to the drawings. FIG. 6 is a block diagram showing the control unit 300 according to the 1-1 embodiment. The control unit 300 is provided in the projection display apparatus 100 and controls the projection display apparatus 100.
 図6に示すように、制御ユニット300は、検出部400及びバッテリ140に接続される。制御ユニット300は、判定部310と、運転制御部320とを有する。 As shown in FIG. 6, the control unit 300 is connected to the detection unit 400 and the battery 140. The control unit 300 includes a determination unit 310 and an operation control unit 320.
 検出部400は、筐体200の底面(第1の面220或いは第2の面230)に設けられる。検出部400は、基準面を検出可能に構成される。なお、検出部400の詳細については後述する(図7~図11を参照)。 The detection unit 400 is provided on the bottom surface (the first surface 220 or the second surface 230) of the housing 200. The detection unit 400 is configured to be able to detect the reference plane. Details of the detection unit 400 will be described later (see FIGS. 7 to 11).
 判定部310は、検出部400の検出結果に基づいて、筐体200の底面(第1の面220或いは第2の面230)が基準面に配置されているか否かを判定する。具体的には、判定部310は、平らな面に筐体200の底面が安定的に配置されている旨の検出結果が得られた場合に、筐体200の底面が基準面に配置されていると判定する。一方で、判定部310は、凹凸を有する面に筐体200の底面が配置されている旨の検出結果が得られた場合に、筐体200の底面が基準面に配置されていないと判定する。 The determination unit 310 determines whether or not the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is disposed on the reference surface based on the detection result of the detection unit 400. Specifically, when the determination unit 310 obtains a detection result indicating that the bottom surface of the housing 200 is stably disposed on a flat surface, the determination unit 310 determines that the bottom surface of the housing 200 is disposed on the reference surface. It is determined that On the other hand, the determination unit 310 determines that the bottom surface of the housing 200 is not disposed on the reference surface when a detection result indicating that the bottom surface of the housing 200 is disposed on a surface having unevenness is obtained. .
 運転制御部320は、判定部310の判定結果に基づいて、投写型映像表示装置100の運転を制御する。具体的には、運転制御部320は、筐体200の底面(第1の面220或いは第2の面230)が基準面に配置されていると判定された場合に、投写型映像表示装置100の運転を開始する。すなわち、運転制御部320は、投写型映像表示装置100を起動する。一方で、運転制御部320は、筐体200の底面(第1の面220或いは第2の面230)が基準面に配置されていないと判定された場合に、投写型映像表示装置100の運転を開始しない。すなわち、運転制御部320は、投写型映像表示装置100を起動しない。 The operation control unit 320 controls the operation of the projection display apparatus 100 based on the determination result of the determination unit 310. Specifically, the operation control unit 320 determines that the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is disposed on the reference surface, and the projection display apparatus 100. Start driving. That is, the operation control unit 320 activates the projection display apparatus 100. On the other hand, when it is determined that the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is not disposed on the reference surface, the operation control unit 320 operates the projection display apparatus 100. Do not start. That is, the operation control unit 320 does not activate the projection display apparatus 100.
 第1-1実施形態では、運転制御部320は、投写型映像表示装置100の運転を開始する場合に、バッテリ140に対して電力を供給するように指示する。 In the first to first embodiments, the operation control unit 320 instructs the battery 140 to supply power when the operation of the projection display apparatus 100 is started.
 (検出部の構成例)
 以下において、第1-1実施形態に係る検出部の構成例について、図面を参照しながら説明する。図7及び図8は、第1-1実施形態に係る検出部400の構成例を模式的に示す図である。
(Configuration example of detector)
Hereinafter, a configuration example of the detection unit according to the 1-1 embodiment will be described with reference to the drawings. 7 and 8 are diagrams schematically illustrating a configuration example of the detection unit 400 according to the first to first embodiments.
 図7及び図8に示すように、検出部400は、複数の検出点410(検出点410A~検出点410C)を有する。複数の検出点410は、平らな面に筐体200の底面が安定的に配置された状態で通電する機械的なスイッチである。すなわち、複数の検出点410は、全ての検出点410が平らな平面から均一な応力を受ける状態で通電するように構成される。 7 and 8, the detection unit 400 has a plurality of detection points 410 (detection points 410A to 410C). The plurality of detection points 410 are mechanical switches that are energized in a state where the bottom surface of the housing 200 is stably disposed on a flat surface. That is, the plurality of detection points 410 are configured to be energized in a state where all the detection points 410 receive a uniform stress from a flat plane.
 例えば、筐体200の底面(第1の面220或いは第2の面230)のうち、検出点410が設けられる部分は、ゴムなどの弾性部材411(弾性部材411A~弾性部材411C)によって構成される。各弾性部材411は、一定の応力に応じて、筐体200の内側に向けて変形する。すなわち、検出点410が一定の応力を受けると、弾性部材411の変形に伴って検出点410が筐体200の内側に沈み込む。 For example, a portion where the detection point 410 is provided in the bottom surface (the first surface 220 or the second surface 230) of the housing 200 is configured by an elastic member 411 (elastic member 411A to elastic member 411C) such as rubber. The Each elastic member 411 is deformed toward the inside of the housing 200 according to a certain stress. That is, when the detection point 410 receives a certain stress, the detection point 410 sinks inside the housing 200 as the elastic member 411 is deformed.
 なお、検出点410の数がN個である場合に、一定の応力は、投写型映像表示装置100の重量×1/Nであってもよい。或いは、一定の応力は、検出精度に幅を持たせるために、投写型映像表示装置100の重量×1/(N+1)であってもよい。例えば、投写型映像表示装置100の重量が800gであり、検出点410の数が3個である場合には、200g(=800g×1/4)である。 Note that when the number of detection points 410 is N, the constant stress may be the weight of the projection display apparatus 100 × 1 / N. Alternatively, the constant stress may be the weight of the projection display apparatus 100 × 1 / (N + 1) in order to give a wide detection accuracy. For example, when the weight of the projection display apparatus 100 is 800 g and the number of detection points 410 is three, it is 200 g (= 800 g × 1/4).
 従って、図7に示すように、凹凸を有する面に筐体200の底面が配置された場合には、検出部400が通電を検出することができないため、検出部400は、筐体200が基準面に配置されていない旨を検出する。 Therefore, as shown in FIG. 7, when the bottom surface of the housing 200 is arranged on a surface having irregularities, the detection unit 400 cannot detect the energization. Detects that it is not placed on a surface.
 一方で、図8に示すように、平らな平面に筐体200の底面が配置された場合には、検出部400が通電を検出するため、検出部400は、筐体200が基準面に配置されている旨を検出する。 On the other hand, as shown in FIG. 8, when the bottom surface of the housing 200 is arranged on a flat plane, the detection unit 400 detects the energization, so the detection unit 400 places the housing 200 on the reference surface. It is detected that it is being done.
 ここで、検出点410の数は、図9に示すように、2つであってもよい。このような場合には、2つの検出点410(検出点410A~検出点410B)は、筐体200の底面において対角線上に配置される。また、筐体200の安定性を向上するために、ダミー点510(ダミー点510A及びダミー点510B)が設けられている。なお、筐体200の底面に対する垂直方向において、ダミー点510の高さは、筐体200の内側に沈み込んだ状態の検出点410の高さと略同様であることが好ましい。 Here, the number of detection points 410 may be two as shown in FIG. In such a case, the two detection points 410 (detection points 410A to 410B) are arranged diagonally on the bottom surface of the housing 200. Further, in order to improve the stability of the housing 200, dummy points 510 (dummy points 510A and dummy points 510B) are provided. Note that, in the direction perpendicular to the bottom surface of the housing 200, the height of the dummy point 510 is preferably substantially the same as the height of the detection point 410 in a state where it is sunk inside the housing 200.
 或いは、検出点410の数は、図10に示すように、3つであってもよく、図11に示すように、4つであってもよい。なお、図10及び図11に示すように、検出点410の数に応じて、ダミー点510が設けられることが好ましい。また、検出点410の数は、5つ以上であってもよいことは勿論である。 Alternatively, the number of detection points 410 may be three as shown in FIG. 10, or may be four as shown in FIG. As shown in FIGS. 10 and 11, dummy points 510 are preferably provided according to the number of detection points 410. Needless to say, the number of detection points 410 may be five or more.
 なお、筐体200が基準面に配置されている旨の検出精度を高めるために、複数の検出点410は、筐体200の底面において分散して配置されることが好ましい。 It should be noted that the plurality of detection points 410 are preferably arranged in a distributed manner on the bottom surface of the housing 200 in order to increase the detection accuracy that the housing 200 is disposed on the reference surface.
 (作用及び効果)
 第1-1実施形態では、運転制御部320は、検出部400によって基準面が検出された場合に、自装置の運転を開始する。従って、投写型映像表示装置100を基準面に配置するだけで、投写型映像表示装置100が起動するため、電源スイッチを押下が不要である。
(Action and effect)
In the first to first embodiments, the operation control unit 320 starts the operation of the own device when the detection unit 400 detects the reference plane. Accordingly, since the projection display apparatus 100 is activated only by placing the projection display apparatus 100 on the reference plane, it is not necessary to press the power switch.
 また、検出部400は、基準面を検出可能に構成される。検出部400は、筐体200の底面が平らな面に安定的に配置されている旨を検出可能に構成される。従って、投写型映像表示装置100の誤起動が抑制される。 The detection unit 400 is configured to be able to detect the reference plane. The detection unit 400 is configured to be able to detect that the bottom surface of the housing 200 is stably disposed on a flat surface. Therefore, erroneous start-up of the projection display apparatus 100 is suppressed.
 [第1-2実施形態]
 以下において、第1-2実施形態について、図面を参照しながら説明する。以下においては、第1-1実施形態との相違点について主として説明する。
[1-2 embodiment]
The first to second embodiments will be described below with reference to the drawings. In the following, differences from the 1-1 embodiment will be mainly described.
 (投写型映像表示装置の構成)
 以下において、第1-2実施形態に係る投写型映像表示装置の構成について、図面を参照しながら説明する。図12は、第1-2実施形態に係る投写型映像表示装置100の構成を示す図である。なお、図12は、投写型映像表示装置100を正面から見た図である。図12では、第1-1実施形態と同様の構成について、同様の符号を付している。
(Configuration of projection display device)
The configuration of the projection display apparatus according to the first to second embodiments will be described below with reference to the drawings. FIG. 12 is a diagram showing a configuration of the projection display apparatus 100 according to the first to second embodiments. FIG. 12 is a diagram of the projection display apparatus 100 as viewed from the front. In FIG. 12, the same reference numerals are given to the same configurations as those in the first to first embodiments.
 図12に示すように、筐体200は、第1-1実施形態と同様に、第1筐体200A及び第2筐体200Bによって構成される。なお、第1-2実施形態では、第1筐体200Aは、第2筐体200Bの外壁に沿ってスライド可能に構成される。 As shown in FIG. 12, the casing 200 includes a first casing 200A and a second casing 200B, as in the first to first embodiments. In the first to second embodiments, the first housing 200A is configured to be slidable along the outer wall of the second housing 200B.
 ここで、第1筐体200Aは、投写光学系110から出射される光を透過する透過領域210を被覆可能に構成されたカバー体を構成する。第1筐体200Aは、第1筐体200Aのスライド(移動)によって、透過領域210を被覆する被覆状態と透過領域210を被覆しない非被覆状態とに遷移する。 Here, the first housing 200A constitutes a cover body configured to be able to cover the transmission region 210 that transmits the light emitted from the projection optical system 110. The first housing 200A transitions between a covering state that covers the transmissive region 210 and a non-covering state that does not cover the transmissive region 210 by sliding (moving) the first housing 200A.
 第1-2実施形態では、第1筐体200Aは、突起201Aを有する。第2筐体200Bは、フォーカス調整具260を有する。フォーカス調整具260は、投写光学系110に設けられたレンズと連動するように構成されており、投写面に投写される映像のフォーカスを調整するための調整具である。 In the first to second embodiments, the first housing 200A has a protrusion 201A. The second housing 200B has a focus adjustment tool 260. The focus adjustment tool 260 is configured to work with a lens provided in the projection optical system 110, and is an adjustment tool for adjusting the focus of an image projected on the projection surface.
 ここで、フォーカス調整具260は、第1筐体200Aのスライド(移動)によって初期位置に戻るように構成される。具体的には、非被覆状態から被覆状態への遷移において、第1筐体200Aの突起201Aがフォーカス調整具260を押し込む。これによって、フォーカス調整具260が初期位置に戻る。 Here, the focus adjustment tool 260 is configured to return to the initial position by sliding (moving) the first housing 200A. Specifically, in the transition from the non-covering state to the covering state, the protrusion 201A of the first housing 200A pushes the focus adjusting tool 260. As a result, the focus adjustment tool 260 returns to the initial position.
 例えば、投写面と同じ面内に基準面が設けられているケースにおいて、投写面に投写される映像のフォーカスが合った状態となるように、フォーカス調整具260の初期位置が定められることが好ましい。投写面と同じ面内に基準面が設けられているケースでは、投写光学系110と投写面との位置関係が固定的であるため、初期設定として「初期位置」を定めることが可能であることに留意すべきである。 For example, in the case where the reference plane is provided in the same plane as the projection plane, the initial position of the focus adjustment tool 260 is preferably determined so that the image projected on the projection plane is in focus. . In the case where the reference plane is provided in the same plane as the projection plane, the positional relationship between the projection optical system 110 and the projection plane is fixed, so that an “initial position” can be determined as an initial setting. Should be noted.
 (作用及び効果)
 第1-2実施形態では、フォーカス調整具260は、第1筐体200A(カバー体)のスライド(移動)によって初期位置に戻る。従って、投写型映像表示装置100の起動時に、フォーカス調整具260が初期位置に戻っているため、フォーカス調整具260を用いたフォーカス調整量を少なくでき、投写型映像表示装置100の起動時に必要な操作が簡略化される。
(Action and effect)
In the first to second embodiments, the focus adjustment tool 260 returns to the initial position by sliding (moving) the first housing 200A (cover body). Therefore, since the focus adjustment tool 260 has returned to the initial position when the projection display apparatus 100 is activated, the amount of focus adjustment using the focus adjustment tool 260 can be reduced, and is necessary when the projection display apparatus 100 is activated. Operation is simplified.
 [第1実施形態の変形例1]
 以下において、第1実施形態の変形例1について、図面を参照しながら説明する。以下においては、第1-2実施形態との相違点について主として説明する。なお、第1実施形態の変形例1では、第1-2実施形態と比べて、投写型映像表示装置100の構成が異なっている。
[First Modification of First Embodiment]
Hereinafter, Modification 1 of the first embodiment will be described with reference to the drawings. In the following, differences from the first to second embodiments will be mainly described. In the first modification of the first embodiment, the configuration of the projection display apparatus 100 is different from that of the first to second embodiments.
 (投写型映像表示装置の構成)
 以下において、第1実施形態の変形例1に係る投写型映像表示装置の構成について、図面を参照しながら説明する。図13は、第1実施形態の変形例1に係る投写型映像表示装置100の構成を示す図である。なお、図13は、投写型映像表示装置100を側方から見た図である。図13では、第1-1実施形態と同様の構成について、同様の符号を付している。
(Configuration of projection display device)
Hereinafter, the configuration of the projection display apparatus according to the first modification of the first embodiment will be described with reference to the drawings. FIG. 13 is a diagram illustrating a configuration of a projection display apparatus 100 according to the first modification of the first embodiment. FIG. 13 is a view of the projection display apparatus 100 as viewed from the side. In FIG. 13, the same components as those in the first to first embodiments are denoted by the same reference numerals.
 図13に示すように、筐体200は、カバー体200Cを有する。カバー体200Cは、投写光学系110から出射される光を透過する透過領域210を被覆可能に構成されたカバー体である。 As shown in FIG. 13, the housing 200 has a cover body 200C. The cover body 200 </ b> C is a cover body configured to be able to cover the transmission region 210 that transmits the light emitted from the projection optical system 110.
 具体的には、カバー体200Cは、筐体200に設けられた回動軸211を中心として回動可能に構成される。カバー体200Cは、カバー体200Cの回動(移動)によって、透過領域210を被覆する被覆状態と透過領域210を被覆しない非被覆状態とに遷移する。 Specifically, the cover body 200 </ b> C is configured to be rotatable about a rotation shaft 211 provided in the housing 200. The cover body 200 </ b> C transitions between a covered state that covers the transmissive area 210 and an uncovered state that does not cover the transmissive area 210 by the rotation (movement) of the cover body 200 </ b> C.
 第1実施形態の変形例1では、カバー体200Cは、突起201Cを有する。筐体200は、フォーカス調整具260を有する。フォーカス調整具260は、投写光学系110に設けられたレンズと連動するように構成されており、投写面に投写される映像のフォーカスを調整するための調整具である。 In the first modification of the first embodiment, the cover body 200C has a protrusion 201C. The housing 200 has a focus adjustment tool 260. The focus adjustment tool 260 is configured to work with a lens provided in the projection optical system 110, and is an adjustment tool for adjusting the focus of an image projected on the projection surface.
 ここで、フォーカス調整具260は、カバー体200Cの回動(移動)によって初期位置に戻るように構成される。具体的には、非被覆状態から被覆状態への遷移において、カバー体200Cの突起201Cがフォーカス調整具260を押し込む。これによって、フォーカス調整具260が初期位置に戻る。 Here, the focus adjustment tool 260 is configured to return to the initial position by the rotation (movement) of the cover body 200C. Specifically, in the transition from the non-covering state to the covering state, the protrusion 201C of the cover body 200C pushes the focus adjusting tool 260. As a result, the focus adjustment tool 260 returns to the initial position.
 (作用及び効果)
 第1実施形態の変形例1では、フォーカス調整具260は、カバー体200Cの回動(移動)によって初期位置に戻る。従って、投写型映像表示装置100の起動時に、フォーカス調整具260が初期位置に戻っているため、フォーカス調整具260を用いたフォーカス調整量を少なくでき、投写型映像表示装置100の起動時に必要な操作が簡略化される。
(Action and effect)
In the first modification of the first embodiment, the focus adjustment tool 260 returns to the initial position by the rotation (movement) of the cover body 200C. Therefore, since the focus adjustment tool 260 has returned to the initial position when the projection display apparatus 100 is activated, the amount of focus adjustment using the focus adjustment tool 260 can be reduced, and is necessary when the projection display apparatus 100 is activated. Operation is simplified.
 [第2実施形態の概要]
 (課題)
 例えば図33のように小型のプロジェクタでは、一人のユーザ(例えばユーザA)が机上に投写して映像を観察するだけでなく、会議用テーブルに投写して複数のユーザ(例えばユーザB~ユーザE)が映像を観察したり、プロジェクタを床面や壁面に設置して壁面に投写するなど、様々な利用状況が想定される。さらにこれらのプロジェクタを操作する場合であれば、図33(a)~(c)に示されているユーザの位置から操作することとなり操作インターフェースや入力インターフェース等の配置を十分考慮する必要がある。
[Outline of Second Embodiment]
(Task)
For example, in a small projector as shown in FIG. 33, a single user (for example, user A) not only projects on a desk and observes an image, but also projects it on a conference table and projects a plurality of users (for example, user B to user E). ) Observe images, or install projectors on the floor or wall surface and project them onto the wall surface. Further, when these projectors are operated, the operation is performed from the position of the user shown in FIGS. 33 (a) to 33 (c), and it is necessary to sufficiently consider the arrangement of the operation interface and the input interface.
 (構成)
 第2実施形態に係る投写型映像表示装置は、映像光を生成する映像光生成部と、映像光生成部から出射された映像光を投写面側へ反射するミラー(非球面ミラー)と、を備える。そして、映像光生成部へ電力を供給する電力供給部(バッテリ部)を備え、この電力供給部は、ミラーと可及的に離れた位置、具体的には、ミラーが最上部に設けられる場合、電力供給部が最下部に設けられる。また、映像光生成部を冷却する冷却部をさらに備えており、この冷却部もまた、ミラーと可及的に離れた位置、具体的には、電力供給部の少し上方に設けられる。
(Constitution)
The projection display apparatus according to the second embodiment includes an image light generation unit that generates image light, and a mirror (aspherical mirror) that reflects the image light emitted from the image light generation unit toward the projection surface. Prepare. In addition, a power supply unit (battery unit) that supplies power to the image light generation unit is provided, and this power supply unit is located as far as possible from the mirror, specifically, the mirror is provided at the top. The power supply unit is provided at the bottom. In addition, a cooling unit for cooling the image light generation unit is further provided, and this cooling unit is also provided as far as possible from the mirror, specifically, slightly above the power supply unit.
 さらに、第2実施形態に係る投写型映像表示装置は、少なくとも映像光生成部を収納する筐体と、筐体の上部に設けられた透過領域(投写窓)とを備え、透過領域を通って映像光を投写する。この筐体は、少なくとも一方向の寸法(Z軸方向)が変化する可動部(スライド部)を有しており、映像光を投写しないとき、透過領域は、可動部によって筐体内部に収納され、隠された位置に移動する。 Furthermore, the projection display apparatus according to the second embodiment includes at least a casing that stores the image light generation unit, and a transmission area (projection window) provided on the top of the casing, and passes through the transmission area. Project image light. This housing has a movable portion (sliding portion) whose dimension in at least one direction (Z-axis direction) changes, and when the image light is not projected, the transmission region is accommodated inside the housing by the movable portion. Move to a hidden position.
 さらに、第2実施形態に係る投写型映像表示装置は、投写面に対する自装置の状態を検出する検出手段(傾斜センサなど)と、検出された状態に応じて、映像光の状態を制御する制御手段(制御部)と、を備えるものである。 Furthermore, the projection display apparatus according to the second embodiment includes a detection unit (such as an inclination sensor) that detects the state of the own apparatus with respect to the projection plane, and a control that controls the state of the image light according to the detected state. Means (control unit).
 [第2-1実施形態]
 (投写型映像表示装置の構成)
 以下において、第2-1実施形態に係る投写型映像表示装置の構成について、図面を参照しながら説明する。図14は、第2-1実施形態に係る投写型映像表示装置の構成を示す正面図であり、図15は側面図である。
[Second Embodiment]
(Configuration of projection display device)
Hereinafter, the configuration of the projection display apparatus according to Embodiment 2-1 will be described with reference to the drawings. FIG. 14 is a front view showing the configuration of the projection display apparatus according to the 2-1 embodiment, and FIG. 15 is a side view.
 図14に示すように、投写型映像表示装置1100は、投写レンズ群1111と非球面ミラー1112とから構成される投写部1110と、光変調素子としてのDMD(Digital Micromirror Device)1120と、DMD1120へ光を照射する照明部1130と、DMD1120や照明部1130を構成するLED(Light Emitted Device)1131などへ電力を供給するバッテリ部1150とを有する。 As shown in FIG. 14, the projection display apparatus 1100 includes a projection unit 1110 including a projection lens group 1111 and an aspherical mirror 1112, a DMD (Digital Micromirror Device) 1120 as a light modulation element, and a DMD 1120. It includes an illumination unit 1130 that emits light, and a battery unit 1150 that supplies power to a DMD 1120, an LED (Light Emitted Device) 1131 that constitutes the illumination unit 1130, and the like.
 第2実施形態では、投写型映像表示装置1100は、バッテリ部1150が下部となるように設置するものとする。投写型映像表示装置1100が設置される面(水平面)をXY平面とし、設置面に対し垂直な方向(鉛直方向)をZ軸方向と定義する。X軸方向は投写型映像表示装置1100の筐体1101における幅方向に相当する方向、Y軸方向は筐体1101における奥行方向に相当する方向と定義する。 In the second embodiment, the projection display apparatus 1100 is installed such that the battery unit 1150 is at the bottom. A plane (horizontal plane) on which the projection display apparatus 1100 is installed is defined as an XY plane, and a direction perpendicular to the installation plane (vertical direction) is defined as a Z-axis direction. The X-axis direction is defined as the direction corresponding to the width direction in the housing 1101 of the projection display apparatus 1100, and the Y-axis direction is defined as the direction corresponding to the depth direction in the housing 1101.
 筐体1101は、図14において、右側面となる一側面1102、左側面となる他の側面1103、上面となる天面1104及び下面となる底面1105を有する。また、筐体1101は、図15における映像光が出射する側の面となる正面1106、正面1106の裏面となる背面1107を有する。 In FIG. 14, the housing 1101 has a side surface 1102 that is a right side surface, another side surface 1103 that is a left side surface, a top surface 1104 that is an upper surface, and a bottom surface 1105 that is a lower surface. The housing 1101 includes a front surface 1106 that is a surface on the side from which the image light is emitted in FIG. 15 and a back surface 1107 that is the back surface of the front surface 1106.
 尚、一側面1102、他の側面1103、天面1104、底面1105、正面1106、背面1107は、筺体1101の面のみであると狭義に捉えるべきではない。後述するが可動等により露出する面や段差のある部分にある面等、上下前後左右より認識できる面はそれぞれ一側面1102、他の側面1103、天面1104、底面1105、正面1106、背面1107の概念と、広く捉えるべきである。 Note that one side 1102, the other side 1103, the top surface 1104, the bottom 1105, the front 1106, and the back 1107 should not be taken narrowly as being only the surface of the housing 1101. As will be described later, surfaces that can be recognized from the top, bottom, front, back, left, and right, such as surfaces exposed by movement or the like, are one side 1102, another side 1103, top surface 1104, bottom surface 1105, front surface 1106, and back surface 1107, respectively. It should be understood broadly as a concept.
 また、筐体1101は、6面が平面である略直方体形状を有しているがそれに限るものではない。例えば6面の少なくとも一面が曲面を有していてもよい。従って本発明の面は、曲面を含む概念であることに留意すべきである。 Further, the housing 1101 has a substantially rectangular parallelepiped shape whose six surfaces are flat, but is not limited thereto. For example, at least one of the six surfaces may have a curved surface. Therefore, it should be noted that the surface of the present invention is a concept including a curved surface.
 投写部1110は、複数のレンズから構成される投写レンズ群1111と凹面の非球面ミラーから構成される非球面ミラー1112と映像光が出射する投写窓1113(図15参照)とを有する。投写レンズ群1111は、DMD1120にて変調された映像光をZ軸方向へ出射する。非球面ミラー1112は、投写レンズ群1111の上方に設けられており、投写レンズ群1111からの映像光を斜め下方に向けて反射する。非球面ミラー1112は凹面ミラーであるので、映像光は集光した後、拡大投写される。投写窓1113は、映像光が集光する位置の近傍に設けられる。映像光は、投写レンズ群1111と非球面ミラー1112との間で結像し、投写型映像表示装置1100の設置面(図中のXY平面)にて、再度、結像する。 The projection unit 1110 includes a projection lens group 1111 composed of a plurality of lenses, an aspherical mirror 1112 composed of a concave aspherical mirror, and a projection window 1113 (see FIG. 15) through which image light is emitted. The projection lens group 1111 emits the image light modulated by the DMD 1120 in the Z-axis direction. The aspherical mirror 1112 is provided above the projection lens group 1111 and reflects image light from the projection lens group 1111 obliquely downward. Since the aspherical mirror 1112 is a concave mirror, the image light is condensed and projected on an enlarged scale. The projection window 1113 is provided in the vicinity of the position where the image light is collected. The image light forms an image between the projection lens group 1111 and the aspherical mirror 1112, and forms an image again on the installation surface (XY plane in the drawing) of the projection display apparatus 1100.
 DMD1120は、照明部1130から時分割で照射される青、緑、赤の照明光を、映像入力信号に応じて変調する。DMD1120は、映像光を投写レンズ群1111へ導くプリズムブロック1121と一体的に設けられる。プリズムブロック1121は、照明部1130からの照明光を透過するとともに、DMD1120にて変調した映像光を全反射して、投写レンズ群1111へ導く面1121aを有する。DMD1120の近傍には、DMD1120を制御するDMD制御回路1122が配される。DMD制御回路1122は、映像入力信号及びLED制御信号に応じてDMD1120を制御する。 The DMD 1120 modulates blue, green, and red illumination light emitted from the illumination unit 1130 in a time-sharing manner according to the video input signal. The DMD 1120 is provided integrally with a prism block 1121 that guides image light to the projection lens group 1111. The prism block 1121 has a surface 1121 a that transmits the illumination light from the illumination unit 1130 and totally reflects the image light modulated by the DMD 1120 and guides it to the projection lens group 1111. A DMD control circuit 1122 that controls the DMD 1120 is disposed in the vicinity of the DMD 1120. The DMD control circuit 1122 controls the DMD 1120 according to the video input signal and the LED control signal.
 照明部1130は、赤、緑、青の光を出射するLED1131R、1131G、1131Bと、赤、緑、青の光を合成してDMD1120へ照射する複数の光学部材を有する。第2実施形態では、赤、緑、青の光を合成する光学部材として、ダイクロイックプリズム1132を用いる。ダイクロイックプリズム1132にて合成された合成光は、テーパロッド1133を用いて光量分布を均一化する。テーパロッド1133後段のレンズ1134、1135、1136には、テーパロッド1133から出射した光を平行光化するとともにDMD1120に結像させる作用を有する。ミラー1137、1138には、合成光の光路をスペースに合わせて折り曲げる作用を有する。 The illumination unit 1130 includes LEDs 1131R, 1131G, and 1131B that emit red, green, and blue light, and a plurality of optical members that synthesize the red, green, and blue light and irradiate the DMD 1120. In the second embodiment, a dichroic prism 1132 is used as an optical member that combines red, green, and blue light. The combined light combined by the dichroic prism 1132 uses the taper rod 1133 to make the light amount distribution uniform. The lenses 1134, 1135, and 1136 subsequent to the taper rod 1133 have a function of collimating the light emitted from the taper rod 1133 and forming an image on the DMD 1120. The mirrors 1137 and 1138 have an action of bending the optical path of the combined light according to the space.
 LED1131近傍には、LED1131を制御するLED制御回路1139が配される。LED制御回路1139は、映像入力信号に応じてLED1131R、1131G、1131Bの発光量及び発光タイミングを制御する。また、LED制御回路1139は、発光量及び発光タイミングに関するLED制御信号をDMD制御回路1122へ送る。LED制御回路1139は、配線を短くするため、LED1131近傍に配することが望ましい。一方、電磁波の影響を考慮して、DMD制御回路1122とは可及的に離して配置することも望まれる。 In the vicinity of the LED 1131, an LED control circuit 1139 for controlling the LED 1131 is disposed. The LED control circuit 1139 controls the light emission amount and the light emission timing of the LEDs 1131R, 1131G, and 1131B according to the video input signal. Also, the LED control circuit 1139 sends an LED control signal related to the light emission amount and the light emission timing to the DMD control circuit 1122. The LED control circuit 1139 is desirably arranged near the LED 1131 in order to shorten the wiring. On the other hand, in consideration of the influence of electromagnetic waves, it is also desired to dispose the DMD control circuit 1122 as far as possible.
 DMD1120と照明部1130とを併せて映像光生成部1140と称する。 The DMD 1120 and the illumination unit 1130 are collectively referred to as an image light generation unit 1140.
 バッテリ部1150は、ニッケル水素2次電池から構成されるバッテリ1151と、バッテリ1151の充放電を制御するバッテリ制御回路1152と、商用電源と接続される電源コネクタ1153とを有する。バッテリ1151は、Z軸方向の寸法に対し、X軸方向またはY軸方向の寸法が十分に大きい(2倍以上)形状を有する。バッテリ制御回路1152は、商用電源から電源コネクタ1153を介してバッテリ1151へ供給される電力を制御するとともに、バッテリ1151から映像光生成部1140(特に、LED1131やDMD1120)へ供給される電力を制御する。バッテリとしては、ニッケル水素2次電池以外にも、リチウムイオン2次電池でもキャパシタでもよい。 The battery unit 1150 includes a battery 1151 composed of a nickel metal hydride secondary battery, a battery control circuit 1152 that controls charging / discharging of the battery 1151, and a power connector 1153 connected to a commercial power source. The battery 1151 has a shape in which the dimension in the X-axis direction or the Y-axis direction is sufficiently larger (twice or more) than the dimension in the Z-axis direction. The battery control circuit 1152 controls the power supplied from the commercial power supply to the battery 1151 via the power connector 1153 and also controls the power supplied from the battery 1151 to the video light generation unit 1140 (in particular, the LED 1131 and the DMD 1120). . The battery may be a lithium ion secondary battery or a capacitor in addition to the nickel metal hydride secondary battery.
 制御部1160は、大別して、DMD制御回路1122、LED制御回路1139及び投写型映像表示装置1100全体を制御する制御回路1169を含む。具体的には、投写部1110(特に、投写レンズ群1111)の一側面1102側の領域に、制御回路1169が配されており、制御回路1169は、映像入力信号などに応じて、DMD制御回路1122及びLED制御回路1139へ制御信号を送る。詳細は後述するが、映像入力信号は、制御回路1169と接続された映像コネクタ1161、SDカードのスロット1163、USBコネクタ1164から入力される(図16参照)。制御回路1169は、電源ボタン1166及び方向ボタン1168にも接続される。制御回路1169は、電源ボタン1166や方向ボタン1168からのユーザ指示に応じて、投写型映像表示装置1100全体を制御する。 The control unit 1160 roughly includes a DMD control circuit 1122, an LED control circuit 1139, and a control circuit 1169 that controls the projection display apparatus 1100 as a whole. Specifically, a control circuit 1169 is arranged in a region on one side 1102 side of the projection unit 1110 (particularly, the projection lens group 1111). The control circuit 1169 is a DMD control circuit according to a video input signal or the like. A control signal is sent to 1122 and the LED control circuit 1139. Although details will be described later, the video input signal is input from the video connector 1161, the SD card slot 1163, and the USB connector 1164 connected to the control circuit 1169 (see FIG. 16). The control circuit 1169 is also connected to the power button 1166 and the direction button 1168. The control circuit 1169 controls the entire projection display apparatus 1100 according to user instructions from the power button 1166 and the direction button 1168.
 投写レンズ群1111の、他の側面1103側の領域には、冷却部1170が配される。具体的には、排気口1171近傍に設けられた軸流ファン1172、LED1131を冷却するシロッコファン1173及びDMD1120を冷却するヒートシンク(不図示)が配される。投写型映像表示装置1100を冷却する空気は、一側面1102上部に設けられた吸気口1174から供給され、投写型映像表示装置1100内部を流通して制御部1160、映像光生成部1140を冷却した後、他の側面1103下部に設けられた排気口1171から排気される。 A cooling unit 1170 is disposed in the area on the other side surface 1103 side of the projection lens group 1111. Specifically, an axial fan 1172 provided near the exhaust port 1171, a sirocco fan 1173 that cools the LED 1131, and a heat sink (not shown) that cools the DMD 1120 are arranged. Air for cooling the projection display apparatus 1100 is supplied from an air inlet 1174 provided on the upper side of one side 1102 and flows through the projection display apparatus 1100 to cool the control unit 1160 and the image light generation unit 1140. Thereafter, the air is exhausted from an exhaust port 1171 provided at the lower part of the other side surface 1103.
 筐体1101の対角となる位置に吸気口1174及び排気口1171を設けることにより、効率よく投写型映像表示装置1100を冷却することができる。また、吸気口1174及び排気口1171は、それぞれ一側面1102及び他の側面1103に設けられているので、背面1107が設置面となる場合でも、吸排気口が塞がれることはない。吸気口1174は、後述するスライド部により、投写型映像表示装置1100を使用しないときには閉鎖される。この構成により、保管中に、投写型映像表示装置1100内部に埃などが侵入することを防止することができる。なお、シロッコファン1173は、吸気口1174とは別の吸気口を設けるとよい。 By providing the air inlet 1174 and the air outlet 1171 at the diagonal positions of the housing 1101, the projection display apparatus 1100 can be efficiently cooled. In addition, since the intake port 1174 and the exhaust port 1171 are provided on the one side surface 1102 and the other side surface 1103, respectively, the intake / exhaust port is not blocked even when the back surface 1107 is an installation surface. The intake port 1174 is closed by a slide portion described later when the projection display apparatus 1100 is not used. With this configuration, it is possible to prevent dust and the like from entering the projection display apparatus 1100 during storage. Note that the sirocco fan 1173 may be provided with an air inlet different from the air inlet 1174.
 (投写型映像表示装置の外部構成)
 以下において、第2-1実施形態に係る投写型映像表示装置の外部構成について、図面を参照しながら説明する。図16は第2-1実施形態に係る投写型映像表示装置の外部構成を示す図であって、図16(a)は左斜視図、図16(b)は右斜視図である。
(External configuration of the projection display)
Hereinafter, the external configuration of the projection display apparatus according to Embodiment 2-1 will be described with reference to the drawings. 16A and 16B are diagrams showing an external configuration of the projection display apparatus according to the 2-1 embodiment. FIG. 16A is a left perspective view, and FIG. 16B is a right perspective view.
 筐体1101は、投写窓1113が配され、映像光が出射する側の面である正面1106、正面1106と対向する位置に配された背面1107を有する。また、筐体1101は、投写型映像表示装置1100が机上または床面に映像光を投写するように設置したときに、上面となる天面1104、天面1104と対向する位置に配された底面1105を有する。略直方体形状を有する投写型映像表示装置1100において、残る2面において、上述した電源コネクタ1153を配した面を一側面1102、一側面1102と対向する位置に配された面を他の側面1103とする。 The housing 1101 has a projection window 1113, a front surface 1106 that is a surface on the side from which image light is emitted, and a back surface 1107 that is disposed at a position facing the front surface 1106. The casing 1101 has a top surface 1104 that is an upper surface when the projection display apparatus 1100 is installed so as to project image light on a desk or a floor surface, and a bottom surface that is disposed at a position facing the top surface 1104. 1105. In the projection display apparatus 1100 having a substantially rectangular parallelepiped shape, of the remaining two surfaces, the surface on which the power connector 1153 is disposed is one side surface 1102, and the surface disposed at a position facing the one side surface 1102 is the other side surface 1103. To do.
 一側面1102には、電源コネクタ1153のほか、PC(Personal Computer)などの映像ソースと接続される映像コネクタ1161、SDカードのスロット1163、USBコネクタ1164などが設けられる。これらのコネクタ類は、一側面1102のうち、底面1105に近い部分に設けられるとよい。 On one side 1102, in addition to a power connector 1153, a video connector 1161 connected to a video source such as a PC (Personal Computer), an SD card slot 1163, a USB connector 1164, and the like are provided. These connectors are preferably provided in a portion of one side 1102 close to the bottom 1105.
 これらのコネクタ類は、一側面1102のうち、底面1105に近い部分に設けられると、コネクタ類に接続されたコードが長く垂れ下がることがなく、ユーザがコードに引っかかるといったことが生じる可能性が低くなる。さらにコネクタ部分に定常的な応力が加わり、コネクタやコードが変形する可能性が低くなる。図33に示されるように投写型映像表示装置1100は、図33(a)(c)のような設置状態としたとき、コネクタ類が配される面を設置面にする必要がない。 If these connectors are provided in a portion of one side 1102 close to the bottom surface 1105, the cord connected to the connectors does not hang down for a long time, and the possibility that the user will be caught by the cord is reduced. . Furthermore, steady stress is applied to the connector portion, and the possibility that the connector and the cord are deformed is reduced. As shown in FIG. 33, when the projection display apparatus 1100 is set in the installation state as shown in FIGS. 33 (a) and 33 (c), the surface on which the connectors are arranged need not be the installation surface.
 一側面1102は、後述するスライド部により、保管するときには、内部に収納される重畳部1102aを有する。一側面1102に配された吸気口1174は、スライド部1190が収納されたときにスライド部1190の一側面1102と重畳する位置に設けられるとよい。 The one side 1102 has an overlapping portion 1102a that is housed inside when stored by a slide portion described later. The intake port 1174 disposed on the one side surface 1102 may be provided at a position overlapping the one side surface 1102 of the slide portion 1190 when the slide portion 1190 is stored.
 他の側面1103には排気口1171が設けられる。上述のように、吸気口1174は、重畳部1102aが収納されたときに一側面1102と重畳する位置、具体的には、一側面1102のうち、天面1104に近い位置に設けられるので、排気口1171は、他の側面1103のうち、底面1105に近い部分に設けられるとよい。 The other side 1103 is provided with an exhaust port 1171. As described above, the intake port 1174 is provided at a position that overlaps the one side surface 1102 when the overlapping portion 1102a is accommodated, specifically, at a position close to the top surface 1104 of the one side surface 1102, The mouth 1171 may be provided in a portion of the other side surface 1103 close to the bottom surface 1105.
 また、投写レンズ群1111は、Z方向へ可動し投写映像のフォーカスを調整するフォーカスレンズが設けられている。フォーカスレンズは図示しないカム管に取り付けられZ方向へ精度よく可動させることができる。他の側面1103には、フォーカスレンズを調整するためにユーザがつまむための調整つまみ1165が設けられる。調整つまみ1165をY軸方向へ可動させることにより、カム管によりフォーカスレンズの可動方向をZ軸方向へ変更させることができる。調整つまみ1165は、他の側面1103のうち、天面1104に近い部分に設けられるとよい。 The projection lens group 1111 is provided with a focus lens that is movable in the Z direction and adjusts the focus of the projected image. The focus lens is attached to a cam tube (not shown) and can be accurately moved in the Z direction. The other side surface 1103 is provided with an adjustment knob 1165 for the user to pinch to adjust the focus lens. By moving the adjustment knob 1165 in the Y-axis direction, the movable direction of the focus lens can be changed in the Z-axis direction by the cam tube. The adjustment knob 1165 may be provided in a portion of the other side surface 1103 that is close to the top surface 1104.
 図33(a)(c)のような設置状態であり、投写型映像表示装置1100を操作するユーザA又はユーザFが調整つまみ1165を操作するとき、手もとに近いところに調整つまみ1165が設けられているため、操作しやすい。調整つまみ1165を操作するとき、投写映像を遮ることなく操作することができる。調整つまみ1165が配される面を設置面にする必要がない。 When the user A or user F who operates the projection display apparatus 1100 operates the adjustment knob 1165 in the installation state as shown in FIGS. Because it is easy to operate. When the adjustment knob 1165 is operated, the operation can be performed without blocking the projected image. The surface on which the adjustment knob 1165 is disposed need not be an installation surface.
 尚、第2実施形態では、フォーカスレンズを調整するための調整つまみ1165を他の側面1103に設けたがこれに限るものではなく、ズームレンズを調整するためのつまみを他の側面1103に設けてもよい。 In the second embodiment, the adjustment knob 1165 for adjusting the focus lens is provided on the other side surface 1103. However, the present invention is not limited to this, and a knob for adjusting the zoom lens is provided on the other side surface 1103. Also good.
 操作性を考慮して、電源ボタン1166、メニューボタン1167及び方向ボタン1168は天面1104に設けられる。図33(a)(c)のような設置状態としたとき、底面1105、背面1107は設置面となるので、底面1105、背面1107にはインターフェースや吸排気口を設けない方が望ましい。また電源ボタン1166、メニューボタン1167及び方向ボタン1168は操作者が通常操作を行う正面1106の方向及び背面1107の方向から確認して操作の利便性を損なわないように電源ボタン1166、メニューボタン1167及び方向ボタン1168を配置させる。 In consideration of operability, the power button 1166, the menu button 1167, and the direction button 1168 are provided on the top surface 1104. When the installation state is as shown in FIGS. 33A and 33C, the bottom surface 1105 and the back surface 1107 are the installation surfaces. Therefore, it is preferable that the bottom surface 1105 and the back surface 1107 are not provided with an interface or an intake / exhaust port. Further, the power button 1166, the menu button 1167, and the direction button 1168 are confirmed from the direction of the front 1106 and the direction of the back 1107 where the operator performs normal operation so that the convenience of operation is not impaired. A direction button 1168 is arranged.
 上記実施例では天面1104のみに電源ボタン1166、メニューボタン1167及び方向ボタン1168を設けたがそれに限るものではなく、一側面1102又は他の側面1103に設けてもよく、天面1104及び側面(一側面1102若しくは他の側面1103)の2か所に設けてもよい。 In the above embodiment, the power button 1166, the menu button 1167, and the direction button 1168 are provided only on the top surface 1104. However, the present invention is not limited thereto, and may be provided on one side 1102 or another side 1103. One side 1102 or another side 1103) may be provided.
 (操作ボタンの配置)
 以下において、第2-1実施形態に係る投写型映像表示装置の操作ボタンの配置について、図面を参照しながら説明する。
(Operation button layout)
Hereinafter, the arrangement of the operation buttons of the projection display apparatus according to Embodiment 2-1 will be described with reference to the drawings.
 図17は、投写型映像表示装置1100の天面1104に配された電源ボタン1166、メニューボタン1167、方向ボタン1168(方向ボタン11681~11684、決定ボタン11685)を示した図である(以下、各ボタンを「操作ボタン」とも記載する)。操作ボタン1168は、正面1106の方向及び背面1107の方向から確認して前後対称に配置される。具体的には、一側面1102に近い方から電源ボタン1166、メニューボタン1167、方向ボタン1168(方向ボタン11681~11684)が配置され、各方向ボタン11681~11684の中央に決定ボタン11685が配される。また電源ボタン1166上に記載される電源を示す記号(図17では、黒丸記号)は、正面1106及び背面1107から確認したときに前後対称に記載されていることが好ましい。 FIG. 17 is a diagram showing a power button 1166, a menu button 1167, and direction buttons 1168 (direction buttons 11681 to 11684 and an enter button 11585) arranged on the top surface 1104 of the projection display apparatus 1100 (hereinafter, each button is shown). The button is also referred to as an “operation button”). The operation buttons 1168 are arranged symmetrically in the front-rear direction as confirmed from the direction of the front face 1106 and the direction of the rear face 1107. Specifically, a power button 1166, a menu button 1167, and direction buttons 1168 (direction buttons 11681 to 11684) are arranged from the side closer to one side 1102, and a determination button 11585 is arranged at the center of each direction button 11681 to 11684. . Moreover, it is preferable that the symbol (black circle symbol in FIG. 17) indicating the power source described on the power button 1166 is described symmetrically when viewed from the front 1106 and the back 1107.
 このように、正面1106の方向及び背面1107の方向から確認して前後対称に配置されることにより、操作ボタンの正面1106又は背面1107からの距離が等しいため、正面1106の方向から操作するときや背面1107から操作するときでも操作感が同じでユーザが操作しやすくなる。 Thus, since the distance from the front surface 1106 or the back surface 1107 of the operation button is equal by confirming from the direction of the front surface 1106 and the direction of the back surface 1107, the operation buttons are equal in distance. Even when operating from the back surface 1107, the operation feeling is the same and the user can easily operate.
 (操作ボタンの配置の変形例)
 以下において、操作ボタンの配置の変形例に関して図面を参照しながら説明する。
(Modification of operation button layout)
Hereinafter, a modified example of the arrangement of the operation buttons will be described with reference to the drawings.
 図18は、図17の操作ボタンの配置と比較して、一側面1102に近い方から電源ボタン1166、方向ボタン1168(方向ボタン11681~11684、決定ボタン11685)、メニューボタン1167、が配置され、各ボタンは、正面1106の方向から確認して正しく確認できる方向に配置される点で異なることに留意すべきである。 18, the power button 1166, the direction buttons 1168 (direction buttons 11681 to 11684, the enter button 11585), and the menu button 1167 are arranged from the side closer to the one side 1102 than the arrangement of the operation buttons in FIG. It should be noted that the buttons are different in that they are arranged in a direction that can be confirmed correctly from the direction of the front face 1106.
 具体的には、電源ボタン1166上に記載される電源記号や電源ボタン1166の近傍に記載される「Power」文字、メニューボタン1167の近傍に記載される「Menu」文字、決定ボタン11685に記載される「OK」文字、に関しては正面1106の方向から確認して正しく確認できる方向に記載される。操作ボタンは、全体として前後左右対称に配置されている。 Specifically, the power symbol written on the power button 1166, the “Power” character written in the vicinity of the power button 1166, the “Menu” character written in the vicinity of the menu button 1167, and the decision button 11865. “OK” characters are described in a direction that can be confirmed correctly from the direction of the front face 1106. The operation buttons are arranged symmetrically in the front / rear and left / right directions as a whole.
 このような構成にすることにより、特定の方向(第2実施形態では正面1106)から正しく確認できるため、特定の方向から操作することが主であるプロジェクタであれば図17の操作ボタン配置よりも利便性が高いプロジェクタを供給することができる。 By adopting such a configuration, it is possible to correctly confirm from a specific direction (front surface 1106 in the second embodiment). Therefore, if the projector is mainly operated from a specific direction, the operation button arrangement of FIG. A highly convenient projector can be supplied.
 (スライド部の構成)
 以下において、第2-1実施形態に係る投写型映像表示装置のスライド部の構成について、図面を参照しながら説明する。図19は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図20はスライド部を収納したときの内部構成を示す図である。
(Slide configuration)
Hereinafter, the configuration of the slide portion of the projection display apparatus according to the 2-1 embodiment will be described with reference to the drawings. FIG. 19 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus, and FIG. 20 is a diagram illustrating an internal configuration when the slide portion is housed.
 図19に示すように、投写型映像表示装置1100は、映像光を投写するときに、投写レンズ群1111と非球面ミラー1112との間に所定の距離をあける必要がある。この距離(スペース1180)は、映像光を投写しないときにはデッドスペースとなる。そこで、図20に示すように、スライド部1190を収納するときには、非球面ミラー1112、投写窓1113を含むスライド部1190がスペース1180に収納されるように平行移動する。 As shown in FIG. 19, the projection display apparatus 1100 needs to provide a predetermined distance between the projection lens group 1111 and the aspherical mirror 1112 when projecting image light. This distance (space 1180) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 20, when the slide portion 1190 is accommodated, the slide portion 1190 including the aspherical mirror 1112 and the projection window 1113 is translated so as to be accommodated in the space 1180.
 これにより、投写型映像表示装置1100を使用しないときには、投写型映像表示装置1100の体積を小さくすることができる。加えて、投写窓1113は、正面1106と重なり、表面から隠された位置に移動するので、保管中に汚れることを抑制できる。吸気口1174は、一側面1102と重なり、閉鎖されるので、投写型映像表示装置1100内部に埃が侵入することを抑制できる。 Thereby, when the projection display apparatus 1100 is not used, the volume of the projection display apparatus 1100 can be reduced. In addition, the projection window 1113 overlaps the front surface 1106 and moves to a position hidden from the surface, so that it can be prevented from becoming dirty during storage. The air inlet 1174 overlaps with the one side surface 1102 and is closed, so that dust can be prevented from entering the projection display apparatus 1100.
 [変形例1]
 以下において、第2-1実施形態に係るスライド部の一変形例について、図面を参照しながら説明する。図21は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図22はスライド部を収納したときの内部構成を示す図である。
[Modification 1]
Hereinafter, a modified example of the slide portion according to the 2-1 embodiment will be described with reference to the drawings. FIG. 21 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus, and FIG. 22 is a diagram illustrating an internal configuration when the slide portion is housed.
 図21に示すように、投写型映像表示装置1100は、映像光を投写するときに、投写レンズ群1111内に配された複数のレンズ間において所定の距離をあける必要がある。この距離(スペース1181)は、映像光を投写しないときにはデッドスペースとなる。そこで、図22に示すように、スライド部1190を収納するときには、スライド部1190の平行移動に連動して、投写レンズ群1111のレンズ間の距離を可及的に狭くする。投写レンズ群1111のZ軸方向の寸法が小さくなることにより、非球面ミラー1112、投写窓1113を含むスライド部1190はスペース1181が縮められることにより生じたスペースに収納される。 As shown in FIG. 21, the projection display apparatus 1100 needs to provide a predetermined distance between a plurality of lenses arranged in the projection lens group 1111 when projecting image light. This distance (space 1181) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 22, when the slide portion 1190 is housed, the distance between the lenses of the projection lens group 1111 is made as narrow as possible in conjunction with the parallel movement of the slide portion 1190. By reducing the size of the projection lens group 1111 in the Z-axis direction, the slide portion 1190 including the aspherical mirror 1112 and the projection window 1113 is accommodated in the space generated by shrinking the space 1181.
 [変形例2]
 以下において、第2-1実施形態に係るスライド部の他の変形例について、図面を参照しながら説明する。図23は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図24はスライド部を収納したときの内部構成を示す図である。
[Modification 2]
Hereinafter, another modified example of the slide portion according to the 2-1 embodiment will be described with reference to the drawings. FIG. 23 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus, and FIG. 24 is a diagram illustrating an internal configuration when the slide portion is housed.
 図23に示すように、変形例2では、DMD1120及び照明部1130の配置を変更し、照明部1130は、投写レンズ群1111のうち、レンズ径が小さい領域に配する。照明部1130の位置が変更されたことに伴い、冷却部1170もまたDMD1120及び照明部1130の位置に対応する領域に移動させる必要がある。 As shown in FIG. 23, in the second modification, the arrangement of the DMD 1120 and the illumination unit 1130 is changed, and the illumination unit 1130 is arranged in a region of the projection lens group 1111 where the lens diameter is small. As the position of the illumination unit 1130 is changed, the cooling unit 1170 also needs to be moved to a region corresponding to the positions of the DMD 1120 and the illumination unit 1130.
 変形例2に係る投写型映像表示装置1100では、映像光を投写するときに、DMD1120及び照明部1130(映像光生成部1140相当)とバッテリ部1150との間にスペース1182が生じる。そこで、図24に示すように、スライド部1190を収納するときには、非球面ミラー1112、投写窓1113を含むスライド部1190とともに、投写レンズ群1111、映像光生成部1140及び冷却部1170がスペース1182に収納されるように平行移動する。 In the projection display apparatus 1100 according to the second modification, when projecting image light, a space 1182 is generated between the DMD 1120 and the illumination unit 1130 (equivalent to the image light generation unit 1140) and the battery unit 1150. Therefore, as shown in FIG. 24, when the slide portion 1190 is housed, the projection lens group 1111, the image light generation portion 1140, and the cooling portion 1170 are placed in the space 1182 together with the aspherical mirror 1112 and the slide portion 1190 including the projection window 1113. Translate to accommodate.
 [変形例3]
 以下において、第2-1実施形態に係るスライド部の他の変形例について、図面を参照しながら説明する。図25は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図26はスライド部を収納したときの内部構成を示す図である。
[Modification 3]
Hereinafter, another modified example of the slide portion according to the 2-1 embodiment will be described with reference to the drawings. FIG. 25 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus, and FIG. 26 is a diagram illustrating an internal configuration when the slide portion is housed.
 図25に示すように、非球面ミラー1112は、映像光を投写するときに、投写レンズ群1111の光軸に対して、背面1107側に傾いて配置されている。そこで、図26に示すように、スライド部1190を収納するときには、スライド部1190の平行移動に連動して、非球面ミラー1112の一端を中心軸として非球面ミラー1112を回動させる。非球面ミラー1112が回動することに伴って、投写型映像表示装置1100のZ軸方向の寸法が小さくなり、投写窓1113を含むスライド部1190がスペース1183に収納される。 As shown in FIG. 25, the aspherical mirror 1112 is disposed to be inclined toward the back surface 1107 with respect to the optical axis of the projection lens group 1111 when projecting image light. Therefore, as shown in FIG. 26, when the slide portion 1190 is housed, the aspherical mirror 1112 is rotated about one end of the aspherical mirror 1112 as the central axis in conjunction with the parallel movement of the slide portion 1190. As the aspherical mirror 1112 rotates, the dimension of the projection display apparatus 1100 in the Z-axis direction decreases, and the slide portion 1190 including the projection window 1113 is stored in the space 1183.
 [その他の変形例]
 上記の例以外にも、冷却部1170を照明部1130(映像光生成部1140)の下方へ配置して、冷却部1170と照明部1130の間にスペースを設けてもよい。この場合、投写部1110及び映像光生成部1140を含むスライド部1190がこのスペースに収納される。
[Other variations]
In addition to the above example, the cooling unit 1170 may be disposed below the illumination unit 1130 (image light generation unit 1140), and a space may be provided between the cooling unit 1170 and the illumination unit 1130. In this case, the slide unit 1190 including the projection unit 1110 and the image light generation unit 1140 is accommodated in this space.
 プリズムブロック1121を用いず、投写レンズ群1111の光軸に対して垂直となるようにDMD1120を配置して、投写レンズ群1111とDMD1120との間にスペースを設けてもよい。この場合、投写部1110がこのスペースに収納される。 Instead of using the prism block 1121, the DMD 1120 may be disposed so as to be perpendicular to the optical axis of the projection lens group 1111, and a space may be provided between the projection lens group 1111 and the DMD 1120. In this case, the projection unit 1110 is accommodated in this space.
 (作用・効果)
 第2-1実施形態では、投写型映像表示装置1100は、映像光を生成する映像光生成部1140と、映像光生成部から出射された映像光を投写面側へ反射する非球面ミラー1112と、を備えるものである。投写型映像表示装置1100は、映像光生成部1140へ電力を供給するバッテリ部1150を備え、バッテリ部1150は、非球面ミラー1112と可及的に離れた位置、具体的には、非球面ミラー1112が最上部に設けられ、バッテリ部1150が最下部に設けられる。従って、重量のある非球面ミラー1112とバッテリ部1150とが離れた位置に設けられるので、装置全体の重量バランスを平衡に保つことができる。
(Action / Effect)
In the 2-1 embodiment, the projection display apparatus 1100 includes an image light generation unit 1140 that generates image light, an aspherical mirror 1112 that reflects the image light emitted from the image light generation unit to the projection plane side, and , Are provided. The projection display apparatus 1100 includes a battery unit 1150 that supplies power to the image light generation unit 1140. The battery unit 1150 is located as far as possible from the aspherical mirror 1112, specifically, an aspherical mirror. 1112 is provided at the top, and the battery unit 1150 is provided at the bottom. Therefore, since the heavy aspherical mirror 1112 and the battery unit 1150 are provided at positions separated from each other, the weight balance of the entire apparatus can be kept in balance.
 また、第2-1実施形態では、投写型映像表示装置1100は、映像光を生成する映像光生成部1140と、映像光生成部1140を収納する筐体1101と、筐体1101に設けられ映像光生成部1140から出射された映像光が透過する投写窓1113とを備えるものである。筐体1101は、Z軸方向の寸法が変化するスライド部1190を有する。投写窓1113は、映像光を投写しないとき、スライド部1190によって筐体1101内部に収納される。従って、投写窓1113にキズや汚れがつくことを抑制できる。 In the 2-1 embodiment, the projection display apparatus 1100 includes an image light generation unit 1140 that generates image light, a case 1101 that houses the image light generation unit 1140, and an image provided in the case 1101. A projection window 1113 through which the image light emitted from the light generation unit 1140 passes. The housing 1101 has a slide portion 1190 whose dimensions in the Z-axis direction change. The projection window 1113 is housed in the housing 1101 by the slide portion 1190 when no image light is projected. Accordingly, it is possible to prevent the projection window 1113 from being scratched or dirty.
 [第2-2実施形態]
 以下において、第2-2実施形態に係る投写型映像表示装置の構成ついて、図面を参照しながら説明する。なお、第2-2実施形態において、第2-1実施形態と重複するところは、説明を省略する。図27は、第2-2実施形態に係る投写型映像表示装置の構成を示す図である。図27(a)は投写型映像表示装置が映像を投写しない状態の正面図と両方の側面図を示す図である。図27(b)は投写型映像表示装置が映像を投写できる状態の正面図と両方の側面図を示す図である。
[2-2 embodiment]
The configuration of the projection display apparatus according to the 2-2 embodiment will be described below with reference to the drawings. In the 2-2 embodiment, the description of the same part as the 2-1 embodiment is omitted. FIG. 27 is a diagram showing a configuration of a projection display apparatus according to the 2-2 embodiment. FIG. 27A is a diagram showing a front view and a side view of both in a state where the projection display apparatus does not project an image. FIG. 27B is a diagram showing a front view and a side view of both in a state where the projection display apparatus can project an image.
 図27のように、投写型映像表示装置1100は、天面1104、一側面1102、及び他の側面1103を一体としたコ字状の筺体をスライドさせることにより、投写窓1113と共に電源コネクタ1153、映像コネクタ1161、SDカードのスロット1163、USBコネクタ1164、調整つまみ1165、排気口1171、吸気口1174を同時に露出させることが第2-1実施形態と大きく異なることに留意すべきである。 As shown in FIG. 27, the projection display apparatus 1100 slides a U-shaped housing in which the top surface 1104, one side surface 1102, and the other side surface 1103 are integrated, so that the power supply connector 1153, together with the projection window 1113, It should be noted that the video connector 1161, the SD card slot 1163, the USB connector 1164, the adjustment knob 1165, the exhaust port 1171, and the intake port 1174 are exposed at the same time, which is greatly different from the second to the first embodiments.
 第2実施形態では、一側面1102の中央付近に吸気口1174と等しい大きさの孔1174Hが設けられている。天面1104、一側面1102、及び他の側面1103を一体としたコ字状の筺体を天面1104方向へスライドさせ、図示しないストッパによりスライドが抑制されると、孔1174Hが吸気口1174と重なり、一側面1102の内部に配される吸気口1174が露出する。 In the second embodiment, a hole 1174H having the same size as the air inlet 1174 is provided near the center of the one side 1102. When the U-shaped housing with the top surface 1104, one side surface 1102 and the other side surface 1103 integrated is slid in the direction of the top surface 1104 and sliding is suppressed by a stopper (not shown), the hole 1174H overlaps with the intake port 1174. The air inlet 1174 disposed inside the one side 1102 is exposed.
 また、一側面1102が天面1104方向へスライドされると、一側面1102の内部に配される電源コネクタ1153、映像コネクタ1161、SDカードのスロット1163、USBコネクタ1164が露出する。 Further, when the one side surface 1102 is slid in the direction of the top surface 1104, the power connector 1153, the video connector 1161, the SD card slot 1163, and the USB connector 1164 arranged inside the one side surface 1102 are exposed.
 他の側面1103の中央付近に調整つまみ1165と等しい大きさの孔1165Hが設けられている。天面1104、一側面1102、及び他の側面1103を一体としたコ字状の筺体を天面1104方向へスライドさせ、図示しないストッパによりスライドが止められる、孔1165Hが調整つまみ1165と重なり、他の側面1103の内部に配される調整つまみ1165が露出する。 A hole 1165H having the same size as the adjustment knob 1165 is provided near the center of the other side surface 1103. A U-shaped housing in which the top surface 1104, one side surface 1102, and another side surface 1103 are integrated is slid in the direction of the top surface 1104, and the slide is stopped by a stopper (not shown). A hole 1165H overlaps with the adjustment knob 1165, and the like. The adjustment knob 1165 disposed inside the side surface 1103 of the first side is exposed.
 また、他の側面1103が天面1104方向へスライドされると、他の側面1103の内部に配される排気口1171が露出する。 Further, when the other side surface 1103 is slid in the direction of the top surface 1104, the exhaust port 1171 disposed inside the other side surface 1103 is exposed.
 尚、第2-2実施形態では、天面1104、一側面1102、及び他の側面1103を一体としたコ字状の筺体をスライドさせることにより、投写窓1113と共に電源コネクタ1153、映像コネクタ1161、SDカードのスロット1163、USBコネクタ1164、調整つまみ1165、排気口1171、吸気口1174を同時に露出させる構成を示したが天面1104、一側面1102、及び他の側面1103を一体としたコ字状の筺体により一度に開閉を行わなくてもスライド型のカバーを個別に設けてもよい。もちろんスライド型に限らず、開戸、折戸型のカバーでもよい。 In the 2-2 embodiment, by sliding a U-shaped housing in which the top surface 1104, one side surface 1102 and the other side surface 1103 are integrated, a power connector 1153, a video connector 1161, The structure in which the slot 1163, the USB connector 1164, the adjustment knob 1165, the exhaust port 1171, and the intake port 1174 of the SD card are exposed at the same time is shown, but the top surface 1104, one side surface 1102, and the other side surface 1103 are integrated into a U-shape. A slide-type cover may be provided individually without opening and closing at once by the housing. Of course, it is not limited to a slide type, and may be an open door or folding door type cover.
 (作用・効果)
 第2-2実施形態では、未使用時にカバーでコネクタ類を保護することができるため、例え投写型映像表示装置に強い衝撃が加わったとしてもコネクタ類を破損から防ぐことができる。また、未使用時にカバーがあることでコネクタ類の防塵対策にも有効である。
(Action / Effect)
In the 2-2 embodiment, since the connectors can be protected by the cover when not in use, the connectors can be prevented from being damaged even if a strong impact is applied to the projection display apparatus. In addition, the presence of a cover when not in use is also effective as a dust-proof measure for connectors.
 また未使用時にカバーでつまみを保護することができるため、投写型映像表示装置の運搬時につまみに接触するような場面でも、前回投写したフォーカス位置を保持することができ、再度フォーカス調整をやり直すことがなくなる。また、つまみと筺体の隙間から塵が侵入し、投写型映像表示装置の内部に塵が侵入することを防止することができる。 In addition, since the knob can be protected by the cover when not in use, the focus position previously projected can be held even when the projector is in contact with the projector during transport of the projection display, and the focus adjustment must be performed again. Disappears. Further, it is possible to prevent dust from entering through the gap between the knob and the housing and entering the inside of the projection display apparatus.
 また、未使用時にカバーで吸気口及び排気口を保護することができるため、投写型映像表示装置の内部に塵が侵入することを防止することができる。 In addition, since the intake and exhaust ports can be protected by the cover when not in use, it is possible to prevent dust from entering the projection display apparatus.
 [第2-3実施形態]
 以下において、第2-3実施形態に係る投写型映像表示装置の構成について、図面を参照しながら説明する。なお、第2-3実施形態において、第2-1実施形態及び第2-2実施形態と重複するところは、説明を省略する。図28は、第2-3実施形態に係る投写型映像表示装置の構成を示す正面図である。
[Second to Third Embodiment]
The configuration of the projection display apparatus according to the second to third embodiments will be described below with reference to the drawings. Note that in the 2-3 embodiment, the description of the same parts as the 2-1 embodiment and the 2-2 embodiment is omitted. FIG. 28 is a front view showing the configuration of the projection display apparatus according to the second to third embodiments.
 図28に示すように、投写型映像表示装置1200は、映像光生成部1240の構成、冷却部1270の配置が第2-1実施形態と大きく異なることに留意すべきである。また、第2実施形態では、底面1205を設置面(水平面)とし、床や机などの水平面に映像光を投写する状態を床面投写モード、背面1207を設置面(水平面)とし、スクリーンや壁などの鉛直面に映像光を投写する状態を壁面投写モードと称する。 As shown in FIG. 28, it should be noted that the projection-type image display apparatus 1200 is greatly different from the 2-1 embodiment in the configuration of the image light generation unit 1240 and the arrangement of the cooling unit 1270. In the second embodiment, the bottom surface 1205 is an installation surface (horizontal plane), the state in which image light is projected onto a horizontal plane such as a floor or a desk is a floor projection mode, and the back surface 1207 is an installation plane (horizontal plane). The state in which image light is projected onto the vertical plane is referred to as a wall surface projection mode.
 第2実施形態では、赤、緑、青の光を出射するLED1231R、1231G、1231B、ダイクロイックプリズム1232及びテーパロッド1233は、投写レンズ群1211よりも背面1207側に配される。図28では、これらの光学部材は投写レンズ群1211によって隠された位置となる。テーパロッド1233から出射した光は、レンズ1234、1235、1236及びミラー1237、1238によって、合成光の光路をスペースに合わせて折り曲げられ、DMD1220に結像する。 In the second embodiment, the LEDs 1231R, 1231G, and 1231B that emit red, green, and blue light, the dichroic prism 1232, and the taper rod 1233 are arranged on the back surface 1207 side of the projection lens group 1211. In FIG. 28, these optical members are hidden by the projection lens group 1211. The light emitted from the taper rod 1233 is bent by the lenses 1234, 1235, 1236 and mirrors 1237, 1238 in accordance with the optical path of the combined light, and forms an image on the DMD 1220.
 DMD1220は、投写レンズ群1211の光軸に対して垂直となるように配される。従って、第2-3実施形態では、プリズムブロックは不要となる。DMD1220には、照明部1230の各光学部材によって、投写レンズ群1211の光軸に対して鋭角な方向から導かれた合成光が照射される。DMD1220はこの合成光のうち、映像入力信号に応じて変調された映像光を投写レンズ群1211へ向けて反射する。DMD1220の近傍には、DMD1220を制御するDMD制御回路1222が配される。第2-3実施形態では、DMD制御回路1222はDMD1220の裏面側に配される。 The DMD 1220 is arranged so as to be perpendicular to the optical axis of the projection lens group 1211. Therefore, in the second to third embodiments, the prism block is unnecessary. The DMD 1220 is irradiated with combined light guided from an acute angle with respect to the optical axis of the projection lens group 1211 by each optical member of the illumination unit 1230. The DMD 1220 reflects the image light modulated in accordance with the image input signal out of the combined light toward the projection lens group 1211. A DMD control circuit 1222 that controls the DMD 1220 is disposed in the vicinity of the DMD 1220. In the second to third embodiments, the DMD control circuit 1222 is disposed on the back side of the DMD 1220.
 LED1231近傍には、LED1231を制御するLED制御回路1239が配される第2-3実施形態では、LED制御回路1239は、投写レンズ群1211の外玉レンズの背面1207側に配される。これにより、LED制御回路1239は、LED1231近傍に配されるとともに、DMD制御回路1222とは可及的に離して配することができる。 The LED control circuit 1239 for controlling the LED 1231 is disposed in the vicinity of the LED 1231. In the second to third embodiments, the LED control circuit 1239 is disposed on the back surface 1207 side of the outer lens of the projection lens group 1211. As a result, the LED control circuit 1239 is arranged in the vicinity of the LED 1231, and can be arranged as far as possible from the DMD control circuit 1222.
 制御部1260の制御回路1268は、傾斜センサ1269を有する。傾斜センサ1269は、検出した傾きに関する情報を制御回路1268へ送信する。制御回路1268は、受信した情報から、ユーザが投写型映像表示装置1200を、底面1205を設置面とする床面投写モードで利用するか、背面1207を設置面とする壁面投写モードで利用するかを判別する。制御回路1268は、判別した投写モードに応じて、DMD制御回路1222へ制御信号を送る。詳細は後述するが、DMD制御回路1222は、投写モードに関する制御信号に応じて、DMD1220の有効領域の大きさやアスペクト比、投写画像の上下・左右の方向を制御する。 The control circuit 1268 of the control unit 1260 has a tilt sensor 1269. The tilt sensor 1269 transmits information regarding the detected tilt to the control circuit 1268. From the received information, the control circuit 1268 determines whether the user uses the projection display apparatus 1200 in the floor projection mode with the bottom surface 1205 as the installation surface or in the wall projection mode with the back surface 1207 as the installation surface. Is determined. The control circuit 1268 sends a control signal to the DMD control circuit 1222 according to the determined projection mode. Although details will be described later, the DMD control circuit 1222 controls the size and aspect ratio of the effective area of the DMD 1220 and the vertical and horizontal directions of the projected image according to the control signal relating to the projection mode.
 投写レンズ群1211の、他の側面1203側の領域には、冷却部1270が配される。第2-3実施形態では、LED1231を冷却するシロッコファン1273のほか、DMD1220を冷却するシロッコファン1275及びヒートシンク1276が配される。 A cooling unit 1270 is disposed in the region on the other side surface 1203 side of the projection lens group 1211. In the second to third embodiments, in addition to the sirocco fan 1273 that cools the LED 1231, a sirocco fan 1275 and a heat sink 1276 that cool the DMD 1220 are arranged.
 (投写モードの切替機能)
 以下において、第2-3実施形態に係る投写型映像表示装置の投写モードの切替機能について、図面を参照しながら説明する。図29は第2-3実施形態に係る投写型映像表示装置の投写モードを示す図であって、図29(a)は床面投写モード、図29(b)は壁面投写モードである。
(Projection mode switching function)
The projection mode switching function of the projection display apparatus according to the second to third embodiments will be described below with reference to the drawings. FIG. 29 is a diagram showing a projection mode of the projection display apparatus according to the second to third embodiments. FIG. 29A shows a floor projection mode, and FIG. 29B shows a wall projection mode.
 投写型映像表示装置1200は、映像光を投写するときに、傾斜センサ1269によって検出した傾きに関する情報に基づいて設置面を判別する。図29(a)に示すように、設置面が底面1205であるときは、ユーザ(観察者)は、投写画像を遠方側(Far側)から観察する場合が多いので、投写型映像表示装置1200は、投写画像の向きをFar側が下となるように投写する。詳細には、傾斜センサ1269が、底面1205が設置面であると判別したとき、制御回路1268は、Far側が下となるようにDMD制御回路1222へ制御信号を送る。 The projection display apparatus 1200 determines the installation surface based on information about the tilt detected by the tilt sensor 1269 when projecting image light. As shown in FIG. 29A, when the installation surface is the bottom surface 1205, the user (observer) often observes the projected image from the far side (Far side), and thus the projection display apparatus 1200. Project the projected image so that the Far side is facing down. Specifically, when the tilt sensor 1269 determines that the bottom surface 1205 is the installation surface, the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that the Far side is down.
 一方、図29(b)に示すように、設置面が背面1207であるときは、ユーザ(観察者)は、投写画像の近接側(Near側)を下として観察するので、投写型映像表示装置1200は、投写画像の向きをNear側が下となるように投写する。詳細には、傾斜センサ1269が、背面1207が設置面であると判別したとき、制御回路1268は、Near側が下となるようにDMD制御回路1222へ制御信号を送る。 On the other hand, as shown in FIG. 29 (b), when the installation surface is the back surface 1207, the user (observer) observes with the close side (Near side) of the projected image facing down, so that the projection display apparatus 1200 projects the direction of the projected image so that the Near side is downward. Specifically, when the inclination sensor 1269 determines that the back surface 1207 is the installation surface, the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that the near side is down.
 これにより、投写型映像表示装置1200を置くだけで、投写画像が適切な向きで投写されるので、ユーザの利便性が向上する。 Thus, simply placing the projection display apparatus 1200 allows the projected image to be projected in an appropriate direction, thereby improving user convenience.
 [変形例1]
 以下において、第2-3実施形態に係る投写モードの切替機能の一変形例について、図面を参照しながら説明する。図30は変形例1に係る投写型映像表示装置の投写モードを示す図であって、図30(a)は床面投写モード、図30(b)は壁面投写モードである。変形例1においても、投写型映像表示装置1200は、映像光を投写するときに、傾斜センサ1269によって検出した傾きに関する情報に基づいて設置面を判別する。
[Modification 1]
Hereinafter, a modification of the projection mode switching function according to the second to third embodiments will be described with reference to the drawings. FIG. 30 is a diagram illustrating a projection mode of the projection display apparatus according to the first modification. FIG. 30A illustrates a floor projection mode, and FIG. 30B illustrates a wall projection mode. Also in the first modification, the projection display apparatus 1200 determines the installation surface based on information about the tilt detected by the tilt sensor 1269 when projecting image light.
 図30(a)に示すように、設置面が底面1205であるときは、複数のユーザ(観察者)が、投写画像を挟んで対峙して観察する場合があるので、投写型映像表示装置1200は、投写画像のアスペクト比を縦長となるように投写する。具体的には、制御回路1268は、H:Vが3:4となるようにDMD制御回路1222へ制御信号を送る。 As shown in FIG. 30A, when the installation surface is the bottom surface 1205, a plurality of users (observers) may observe each other with the projection image interposed therebetween, and thus the projection display apparatus 1200. Projects the aspect ratio of the projected image so that it is vertically long. Specifically, the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that H: V is 3: 4.
 一方、図30(b)に示すように、設置面が背面1207であるときは、ユーザ(観察者)は、投写画像に対して正面から観察するので、投写型映像表示装置1200は、投写画像のアスペクト比を横長となるように投写する。具体的には、制御回路1268は、H:Vが4:3となるようにDMD制御回路1222へ制御信号を送る。 On the other hand, as shown in FIG. 30B, when the installation surface is the back surface 1207, the user (observer) observes the projected image from the front, so that the projection display apparatus 1200 is the projected image. Project the image so that the aspect ratio is horizontally long. Specifically, the control circuit 1268 sends a control signal to the DMD control circuit 1222 so that H: V is 4: 3.
 [変形例2]
 以下において、第2-3実施形態に係る投写モードの切替機能の他の変形例について、図面を参照しながら説明する。図31は変形例2に係る投写型映像表示装置の床面投写モードを示す図であって、図31(a)は通常の床面投写モード(以下、通常モードと称する。)、図31(b)は投写画像の面積を大きくした床面投写モード(以下、拡大モードと称する。)である。
[Modification 2]
Hereinafter, another modification of the projection mode switching function according to the second to third embodiments will be described with reference to the drawings. FIG. 31 is a diagram showing a floor projection mode of the projection display apparatus according to the modification 2. FIG. 31A is a normal floor projection mode (hereinafter referred to as a normal mode) and FIG. b) is a floor projection mode in which the area of the projected image is increased (hereinafter referred to as an enlargement mode).
 変形例2において、投写型映像表示装置1200は、底面1205に脚部1208と、脚部1208の長さを検出する脚部センサ1208sとを有する。投写型映像表示装置1200は、映像光を投写するときに、脚部センサ1208sによって検出した脚部1208の長さに関する情報に基づいて投写距離を推定する。また、通常モードでは、投写画像の面積がSである領域に対し、投写画像の輝度がLとなるように投写するために必要なLED1231の光量をEとする。 In the second modification, the projection display apparatus 1200 includes a leg 1208 on the bottom surface 1205 and a leg sensor 1208s that detects the length of the leg 1208. When projecting image light, the projection display apparatus 1200 estimates the projection distance based on information on the length of the leg 1208 detected by the leg sensor 1208s. In the normal mode, the light quantity of the LED 1231 necessary for projection so that the brightness of the projected image is L with respect to the area where the area of the projected image is S is E.
 図31(b)に示すように、底面1205から脚部1208を延伸し、投写窓1213から設置面までの距離(投写距離)を長くすると、拡大モードの投写画像の面積S’は、通常モードの面積Sよりも大きくなる(S’>S)。このとき、LED1231の光量がEであると、拡大モードの投写画像の輝度が、通常モードの輝度Lに比べて低下してしまう。 As shown in FIG. 31B, when the leg portion 1208 is extended from the bottom surface 1205 and the distance from the projection window 1213 to the installation surface (projection distance) is increased, the area S ′ of the projection image in the enlarged mode is the normal mode. Is larger than the area S (S ′> S). At this time, if the light quantity of the LED 1231 is E, the brightness of the projection image in the enlargement mode is lower than the brightness L in the normal mode.
 そこで、脚部センサ1208sからの情報により、拡大モードであると推定されたとき、制御回路1268は、LED1231の光量がE’(>E)となるようにLED駆動回路1239へ制御信号を送る。これにより、通常モードのときの輝度Lと拡大モードのときの輝度L’とが、略同じ輝度となる(L≒L’)。 Therefore, when it is estimated from the information from the leg sensor 1208s that the zoom mode is selected, the control circuit 1268 sends a control signal to the LED drive circuit 1239 so that the light quantity of the LED 1231 becomes E '(> E). As a result, the luminance L in the normal mode and the luminance L ′ in the enlargement mode become substantially the same luminance (L≈L ′).
 [変形例3]
 以下において、第2-3実施形態に係る投写モードの切替機能のさらに他の変形例について、図面を参照しながら説明する。図32は変形例3に係る投写型映像表示装置の床面投写モードを示す図である。変形例3では、変形例2との相違点についてのみ説明する。
[Modification 3]
Hereinafter, still another modification of the projection mode switching function according to the second to third embodiments will be described with reference to the drawings. FIG. 32 is a diagram showing a floor projection mode of the projection display apparatus according to the third modification. In Modification 3, only differences from Modification 2 will be described.
 変形例3において、投写型映像表示装置1200は、上部に首部1209と、首部1209の長さを検出する首部センサ1209sとを有する。首部1209の上部には非球面ミラー1212が配され、首部1209を伸縮することにより、投写レンズ群1211と非球面ミラー1212との距離が調整される。投写型映像表示装置1200は、映像光を投写するときに、脚部センサ1209sによって検出した首部1209の長さに関する情報に基づいて、投写距離及び投写レンズ群1211と非球面ミラー1212との距離を推定する。 In Modification 3, the projection display apparatus 1200 includes a neck 1209 at the top and a neck sensor 1209s that detects the length of the neck 1209. An aspherical mirror 1212 is disposed above the neck 1209, and the distance between the projection lens group 1211 and the aspherical mirror 1212 is adjusted by expanding and contracting the neck 1209. The projection display apparatus 1200 determines the projection distance and the distance between the projection lens group 1211 and the aspherical mirror 1212 based on information on the length of the neck 1209 detected by the leg sensor 1209 s when projecting image light. presume.
 天面1204には、首部1209を引っ張るハンドル部1204hが設けられる。さらにハンドル部1204hにボタン(不図示)を設け、ボタンを押下したときに、首部1209を延伸することができるように設定してもよい。ボタンを押下していないときには、首部1209が延伸しないため、ハンドル部1204hは、投写型映像表示装置1200を持ち運ぶときにも有用である。 The top surface 1204 is provided with a handle portion 1204h for pulling the neck portion 1209. Further, a button (not shown) may be provided on the handle portion 1204h so that the neck portion 1209 can be extended when the button is pressed. Since the neck portion 1209 does not extend when the button is not pressed, the handle portion 1204h is also useful when carrying the projection display apparatus 1200.
 [変形例4]
 以下において、第2実施形態に係る調整つまみの配置の変形例について、図面を参照しながら説明する。変形例4では、第2実施形態との相違点についてのみ説明する。
[Modification 4]
Hereinafter, modifications of the arrangement of the adjustment knob according to the second embodiment will be described with reference to the drawings. In Modification 4, only differences from the second embodiment will be described.
 第1に、図34及び図35を参照しながら、調整つまみ1165の配置位置について説明する。図34は、変形例4に係る投写型映像表示装置の床面投写モードを示す図である。図35は、変形例4に係る投写型映像表示装置の側面視を示す図である。 First, the arrangement position of the adjustment knob 1165 will be described with reference to FIGS. FIG. 34 is a diagram showing a floor projection mode of the projection display apparatus according to the modification 4. FIG. 35 is a diagram illustrating a side view of the projection display apparatus according to the fourth modification.
 図34に示すように、調整つまみ1165は、筐体1101の正面1106に配される。具体的には、図35に示すように、調整つまみ1165は、投写窓1113から出射される映像光を遮光しないように、正面1106のうち、領域Xに配置されることが好ましい。領域Xの上端X1は、投写窓1113から出射される映像光を調整つまみ1165が遮光しない領域の上端である。領域Xの下端X1は、調整つまみ1165によって投写レンズ群1111を調整可能な領域の下端である。 As shown in FIG. 34, the adjustment knob 1165 is disposed on the front surface 1106 of the housing 1101. Specifically, as shown in FIG. 35, the adjustment knob 1165 is preferably disposed in the region X of the front surface 1106 so as not to block the image light emitted from the projection window 1113. The upper end X1 of the region X is the upper end of the region where the adjustment knob 1165 does not block the image light emitted from the projection window 1113. The lower end X1 of the region X is the lower end of the region where the projection lens group 1111 can be adjusted by the adjustment knob 1165.
 第2に、図36及び図37を参照しながら、冷却風の流れについて説明する。図36は、変形例4に係る投写型映像表示装置の内部構造を示す図である。図37は、変形例4に係る投写型映像表示装置の右側面視(RIGHT)、正面視(FRONT)及び左側面視(LEFT)を示す図である。 Second, the flow of cooling air will be described with reference to FIGS. FIG. 36 is a diagram illustrating the internal structure of the projection display apparatus according to the fourth modification. FIG. 37 is a diagram illustrating a right side view (RIGHT), a front view (FRONT), and a left side view (LEFT) of a projection display apparatus according to Modification 4.
 図36に示すように、投写型映像表示装置1100の内部構造は、第2実施形態と異なっていることに留意すべきである。具体的には、投写型映像表示装置1100は、ヒートパイプ1531G、ヒートパイプ1531B及び放熱部1533BGを有する。 As shown in FIG. 36, it should be noted that the internal structure of the projection display apparatus 1100 is different from that of the second embodiment. Specifically, the projection display apparatus 1100 includes a heat pipe 1531G, a heat pipe 1531B, and a heat dissipation unit 1533BG.
 ヒートパイプ1531Gは、高熱伝導率を有する部材(銅など)によって構成される。ヒートパイプ1531Gの一端は、放熱部1533BGに接続される。ヒートパイプ1531Gの他端は、LED1131Gから熱を受け取る受熱部1532Gに接続される。 The heat pipe 1531G is composed of a member having high thermal conductivity (such as copper). One end of the heat pipe 1531G is connected to the heat radiating unit 1533BG. The other end of the heat pipe 1531G is connected to a heat receiving portion 1532G that receives heat from the LED 1131G.
 同様に、ヒートパイプ1531Bは、高熱伝導率を有する部材(銅など)によって構成される。ヒートパイプ1531Bの一端は、放熱部1533BGに接続される。ヒートパイプ1531Bの他端は、LED1131Bから熱を受け取る受熱部1532Bに接続される。 Similarly, the heat pipe 1531B is configured by a member (such as copper) having high thermal conductivity. One end of the heat pipe 1531B is connected to the heat radiating portion 1533BG. The other end of the heat pipe 1531B is connected to a heat receiving unit 1532B that receives heat from the LED 1131B.
 放熱部1533BGは、ヒートシンクなどによって構成される。上述したように、放熱部1533BGがヒートパイプ1531G及びヒートパイプ1531Bに接続されているため、放熱部1533BGの配置の自由度が増大することに留意すべきである。なお、変形例4では、放熱部1533BGは、非球面ミラー1112の側方に配置されている。 The heat dissipation unit 1533BG is configured by a heat sink or the like. As described above, since the heat radiating unit 1533BG is connected to the heat pipe 1531G and the heat pipe 1531B, it should be noted that the degree of freedom of arrangement of the heat radiating unit 1533BG is increased. In the fourth modification, the heat radiating portion 1533BG is disposed on the side of the aspherical mirror 1112.
 ここで、変形例4では、投写型映像表示装置1100は、軸流ファン1172として、軸流ファン1172A及び軸流ファン1172Bを有する。 Here, in Modification 4, the projection display apparatus 1100 includes an axial fan 1172A and an axial fan 1172B as the axial fan 1172.
 軸流ファン1172Aは、上述した放熱部1533BGを冷却する冷却風を生成する。具体的には、軸流ファン1172Aは、図37のRIGHTに示す吸気口1174Aから吸気される空気が図37のLEFTに示す排気口1171Aから排気されるように、冷却風を循環させる。ここでは、軸流ファン1172Aによって生成される冷却風は、投写窓1113を被覆する透明板1113Xによって放熱部1533BG側に導かれる。 The axial fan 1172A generates cooling air that cools the heat dissipating unit 1533BG. Specifically, the axial fan 1172A circulates the cooling air so that the air sucked from the intake port 1174A shown in RIGHT of FIG. 37 is exhausted from the exhaust port 1171A shown in LEFT of FIG. Here, the cooling air generated by the axial fan 1172A is guided to the heat radiating portion 1533BG side by the transparent plate 1113X that covers the projection window 1113.
 軸流ファン1172Bは、LED1131RやDMD1120を冷却する冷却風を生成する。具体的には、軸流ファン1172Bは、図37のLEFTに示す吸気口1174Bから吸気される空気が図37のLEFTに示す排気口1171Bから排気されるように、冷却風を循環させる。ここでは、軸流ファン1172Bによって生成される冷却風は、発熱量が大きいLED1131Rに導かれた後に、発熱量が小さいDMD1120に導かれる。 The axial fan 1172B generates cooling air that cools the LED 1131R and the DMD 1120. Specifically, the axial fan 1172B circulates the cooling air so that the air sucked from the intake port 1174B shown in LEFT in FIG. 37 is exhausted from the exhaust port 1171B shown in LEFT in FIG. Here, the cooling air generated by the axial fan 1172B is guided to the LED 1131R having a large heat generation amount and then to the DMD 1120 having a small heat generation amount.
 なお、冷却風の流路は、ダクトなどによって覆われていることが好ましい。但し、光を遮光してしまうようなケースでは、ダクトは必須の構成ではない。 The cooling air flow path is preferably covered with a duct or the like. However, in a case where light is blocked, the duct is not an essential configuration.
 また、図36に示すように、調整つまみ1165は、投写レンズ群1111の外周に沿った円弧状形状を有しており、投写レンズ群1111の外周に沿って配置される。従って、調整つまみ1165の回動に伴って、投写レンズ群1111に設けられるフォーカスレンズを上下方向(Z軸方向)に移動することが可能である。 36, the adjustment knob 1165 has an arc shape along the outer periphery of the projection lens group 1111 and is disposed along the outer periphery of the projection lens group 1111. Accordingly, the focus lens provided in the projection lens group 1111 can be moved in the vertical direction (Z-axis direction) as the adjustment knob 1165 rotates.
 (作用)
 変形例4では、調整つまみ1165が正面1106に配されるため、カム機構などを必要とせずに簡易な構成で、調整つまみ1165を筐体1101の外部に露出させることができる。
(Function)
In Modification 4, since the adjustment knob 1165 is disposed on the front surface 1106, the adjustment knob 1165 can be exposed to the outside of the housing 1101 with a simple configuration without requiring a cam mechanism or the like.
 [その他の変形例]
 上記の例以外にも、投写型映像表示装置1200は、照度センサを備えていてもよい。照度センサにより、投写型映像表示装置1200の使用環境の明るさを推定することが可能となる。使用環境及び投写画像の面積Sに応じて、光源(LED1231)の光量Eを制御することにより、投写型映像表示装置1200の低消費電力運転を実現することができるほか、ユーザに対して目に優しい画像を提供できる。
[Other variations]
In addition to the above example, the projection display apparatus 1200 may include an illuminance sensor. The brightness sensor makes it possible to estimate the brightness of the usage environment of the projection display apparatus 1200. By controlling the light amount E of the light source (LED 1231) in accordance with the usage environment and the area S of the projected image, it is possible to realize the low power consumption operation of the projection display apparatus 1200 and to the user. A gentle image can be provided.
 また、上記の例は組み合わせも可能である。例えば、横長の投写画像を縦長の投写画像へ切り替るとき、脚部1208の調整をして投写画面の面積Sを大きくするとよい。縦長に画像を投写する場合、DMD制御回路1222での信号処理によって、DMD1220の有効表示領域の変形を行う。これにより、DMD1220の有効表示領域が小さくなり、投写画面の面積Sが小さくなる。そこで、脚部1208を延伸して投写距離を長くすることで、面積Sを維持することが可能となる。 Also, the above examples can be combined. For example, when switching a horizontally projected image to a vertically projected image, the area S of the projection screen may be increased by adjusting the leg 1208. When an image is projected vertically, the effective display area of the DMD 1220 is deformed by signal processing in the DMD control circuit 1222. Thereby, the effective display area of the DMD 1220 is reduced, and the area S of the projection screen is reduced. Therefore, the area S can be maintained by extending the leg 1208 to increase the projection distance.
 (作用・効果)
 第2-3実施形態では、投写型映像表示装置1200は、映像光を生成する映像光生成部1240と、映像光生成部1240から出射された映像光を投写面側へ反射する非球面ミラー1212と、を備えるものである。投写型映像表示装置1200は、映像光生成部1240へ電力を供給するバッテリ部1250を備え、バッテリ部1250は、非球面ミラー1212と可及的に離れた位置に設けられる。
(Action / Effect)
In the second to third embodiments, the projection display apparatus 1200 includes an image light generation unit 1240 that generates image light, and an aspherical mirror 1212 that reflects the image light emitted from the image light generation unit 1240 toward the projection surface. Are provided. The projection display apparatus 1200 includes a battery unit 1250 that supplies power to the image light generation unit 1240, and the battery unit 1250 is provided at a position as far as possible from the aspherical mirror 1212.
 また、映像光生成部1240を冷却する冷却部1270をさらに備え、冷却部1270のうち、具体的には軸流ファン1272、シロッコファン1275、ヒートシンク1276、シロッコファン1277もまた、非球面ミラー1212と可及的に離れた底面1205に近い位置に設けられるとよい。これにより、非球面ミラー1212やバッテリ部1250についで、重量のある冷却部1270が非球面ミラー1212と離れた位置に設けられるので、装置全体の重量バランスを平衡に保つことができる。また、バッテリ部1250と冷却部1270とが近接して、底面に近い位置に設けられるので、底面の面積が小さくても安定して設置することができる。 The cooling unit 1270 further includes a cooling unit 1270 for cooling the image light generation unit 1240. Specifically, of the cooling unit 1270, an axial fan 1272, a sirocco fan 1275, a heat sink 1276, and a sirocco fan 1277 are also included in the aspherical mirror 1212. It may be provided at a position close to the bottom surface 1205 as far as possible. Accordingly, since the heavy cooling unit 1270 is provided at a position away from the aspherical mirror 1212 after the aspherical mirror 1212 and the battery unit 1250, the weight balance of the entire apparatus can be kept in balance. In addition, since battery unit 1250 and cooling unit 1270 are close to each other and provided at a position close to the bottom surface, the battery unit 1250 and the cooling unit 1270 can be stably installed even if the bottom surface area is small.
 また、第2-3実施形態では、投写型映像表示装置1200は、投写面に対する自装置の状態を検出する傾斜センサ1269や、脚部センサ1208s、首部センサ1209sと、検出された状態に応じて、映像光の状態を制御する制御部1260とを備えるものである。従って、投写型映像表示装置1200が自装置の状態、具体的には設置面や投写距離を判断し、ユーザにとって最も観察しやすいと考えられる状態(向きや明るさなど)で映像を投写するので、ユーザに高い利便性を与えることができる。 In the second to third embodiments, the projection display apparatus 1200 includes the inclination sensor 1269 that detects the state of the own apparatus with respect to the projection plane, the leg sensor 1208 s, the neck sensor 1209 s, and the detected state. And a control unit 1260 for controlling the state of the image light. Accordingly, the projection display apparatus 1200 judges the state of the apparatus itself, specifically the installation surface and the projection distance, and projects the image in a state (orientation, brightness, etc.) that is considered most observable for the user. High convenience can be given to the user.
 [第3実施形態の概要]
 (課題)
 複数枚のミラーを用いたり、投写レンズ群と凹面または凸面ミラーなどを組み合わせたりすることで、投写光学系が体積的にも重量的にも増加してしまうと、壁面などの鉛直面に投写する場合は問題ないが、机上に置いて机上に投写する場合、プロジェクタの頭部が重くなり、投写型映像表示装置のバランスが悪くなる。
[Outline of Third Embodiment]
(Task)
If the projection optical system increases in volume and weight by using multiple mirrors or combining a projection lens group with a concave or convex mirror, it projects onto a vertical surface such as a wall. In this case, there is no problem, but when the projector is placed on a desk and projected onto the desk, the head of the projector becomes heavy and the balance of the projection display apparatus becomes worse.
 (構成)
 第3実施形態に係る投写型映像表示装置は、映像光を生成する映像光生成部と、映像光生成部から出射された映像光を投写面側へ反射するミラー(非球面ミラー)と、を備える。そして、映像光生成部へ電力を供給する電力供給部(バッテリ部)を備え、この電力供給部は、ミラーと可及的に離れた位置、具体的には、ミラーが最上部に設けられる場合、電力供給部が最下部に設けられる。また、映像光生成部を冷却する冷却部をさらに備えており、この冷却部もまた、ミラーと可及的に離れた位置、具体的には、電力供給部の少し上方に設けられる。
(Constitution)
The projection display apparatus according to the third embodiment includes an image light generation unit that generates image light, and a mirror (aspherical mirror) that reflects the image light emitted from the image light generation unit toward the projection surface. Prepare. In addition, a power supply unit (battery unit) that supplies power to the image light generation unit is provided, and this power supply unit is located as far as possible from the mirror, specifically, the mirror is provided at the top. The power supply unit is provided at the bottom. In addition, a cooling unit for cooling the image light generation unit is further provided, and this cooling unit is also provided as far as possible from the mirror, specifically, slightly above the power supply unit.
 さらに、第3実施形態に係る投写型映像表示装置は、少なくとも映像光生成部を収納する筐体と、筐体の上部に設けられた透過領域(投写窓)とを備え、透過領域を通って映像光を投写する。この筐体は、少なくとも一方向の寸法(Z軸方向)が変化する可動部(スライド部)を有しており、映像光を投写しないとき、透過領域は、可動部によって筐体内部に収納され、隠された位置に移動する。 Furthermore, the projection display apparatus according to the third embodiment includes at least a housing that stores the image light generation unit, and a transmission area (projection window) provided on the top of the casing, and passes through the transmission area. Project image light. This housing has a movable portion (sliding portion) whose dimension in at least one direction (Z-axis direction) changes, and when the image light is not projected, the transmission region is accommodated inside the housing by the movable portion. Move to a hidden position.
 さらに、第3実施形態に係る投写型映像表示装置は、投写面に対する自装置の状態を検出する検出手段(傾斜センサなど)と、検出された状態に応じて、映像光の状態を制御する制御手段(制御部)と、を備えるものである。 Furthermore, the projection display apparatus according to the third embodiment includes a detection unit (such as an inclination sensor) that detects the state of the own apparatus with respect to the projection plane, and a control that controls the state of the image light according to the detected state. Means (control unit).
 [第3-1実施形態]
 (投写型映像表示装置の構成)
 以下において、第3-1実施形態に係る投写型映像表示装置の構成について、図面を参照しながら説明する。図38は、第3-1実施形態に係る投写型映像表示装置の構成を示す正面図であり、図39は側面図である。
[3-1 embodiment]
(Configuration of projection display device)
Hereinafter, the configuration of the projection display apparatus according to Embodiment 3-1 will be described with reference to the drawings. FIG. 38 is a front view showing the configuration of the projection display apparatus according to Embodiment 3-1, and FIG. 39 is a side view.
 図38に示すように、投写型映像表示装置2100は、投写レンズ群2111と非球面ミラー2112とから構成される投写部110と、光変調素子としてのDMD(Digital Micromirror Device)2120と、DMD2120へ光を照射する照明部2130と、DMD2120や照明部2130を構成するLED(Light Emitted Device)2131などへ電力を供給するバッテリ部2150とを有する。 As shown in FIG. 38, the projection display apparatus 2100 includes a projection unit 110 including a projection lens group 2111 and an aspherical mirror 2112, a DMD (Digital Micromirror Device) 2120 as a light modulation element, and the DMD 2120. It has the illumination part 2130 which irradiates light, and the battery part 2150 which supplies electric power to LED (Light Emitted Device) 2131 etc. which comprise DMD2120 and the illumination part 2130.
 第3実施形態では、投写型映像表示装置2100は、バッテリ部2150が下部となるように設置するものとする。投写型映像表示装置2100が設置される面(水平面)をXY平面とし、設置面に対し垂直な方向(鉛直方向)をZ軸方向と定義する。X軸方向は投写型映像表示装置2100の筐体2101における幅方向に相当する方向、Y軸方向は筐体2101における奥行方向に相当する方向と定義する。 In the third embodiment, the projection display apparatus 2100 is installed so that the battery unit 2150 is at the bottom. A plane (horizontal plane) on which the projection display apparatus 2100 is installed is defined as an XY plane, and a direction perpendicular to the installation plane (vertical direction) is defined as a Z-axis direction. The X-axis direction is defined as a direction corresponding to the width direction of the housing 2101 of the projection display apparatus 2100, and the Y-axis direction is defined as a direction corresponding to the depth direction of the housing 2101.
 筐体2101は、図38において、右側面となる一側面2102、左側面となる他の側面2103、上面となる天面2104および下面となる底面2105を有する。また、筐体2101は、図39における映像光が出射する側の面となる正面2106、正面2106の裏面となる背面2107を有する。 In FIG. 38, the housing 2101 has a side surface 2102 serving as a right side surface, another side surface 2103 serving as a left side surface, a top surface 2104 serving as an upper surface, and a bottom surface 2105 serving as a lower surface. The housing 2101 includes a front surface 2106 that is a surface on the side from which the image light is emitted in FIG. 39 and a back surface 2107 that is the back surface of the front surface 2106.
 投写部110は、複数のレンズから構成される投写レンズ群2111と凹面の非球面ミラーから構成される非球面ミラー2112と映像光が出射する投写窓2113(図39参照)とを有する。投写レンズ群2111は、DMD2120にて変調された映像光をZ軸方向へ出射する。非球面ミラー2112は、投写レンズ群2111の上方に設けられており、投写レンズ群2111からの映像光を下方に向けて反射する。非球面ミラー2112は凹面ミラーであるので、映像光は集光した後、拡大投写される。投写窓2113は、映像光が集光する位置の近傍に設けられる。映像光は、投写レンズ群2111と非球面ミラー2112との間で結像し、投写型映像表示装置2100の設置面(図中のXY平面)にて、再度、結像する。 The projection unit 110 includes a projection lens group 2111 composed of a plurality of lenses, an aspherical mirror 2112 composed of a concave aspherical mirror, and a projection window 2113 (see FIG. 39) through which image light is emitted. The projection lens group 2111 emits image light modulated by the DMD 2120 in the Z-axis direction. The aspherical mirror 2112 is provided above the projection lens group 2111 and reflects the image light from the projection lens group 2111 downward. Since the aspherical mirror 2112 is a concave mirror, the image light is condensed and projected on an enlarged scale. The projection window 2113 is provided in the vicinity of the position where the image light is collected. The image light forms an image between the projection lens group 2111 and the aspherical mirror 2112, and forms an image again on the installation surface (XY plane in the drawing) of the projection display apparatus 2100.
 DMD2120は、照明部2130から時分割で照射される青、緑、赤の照明光を、映像入力信号に応じて変調する。DMD2120は、映像光を投写レンズ群2111へ導くプリズムブロック2121と一体的に設けられる。プリズムブロック2121は、照明部2130からの照明光を透過するとともに、DMD2120にて変調した映像光を全反射して、投写レンズ群2111へ導く面2121aを有する。DMD2120の近傍には、DMD2120を制御するDMD制御回路2122が配される。DMD制御回路2122は、映像入力信号およびLED制御信号に応じてDMD2120を制御する。 The DMD 2120 modulates blue, green, and red illumination light emitted from the illumination unit 2130 in a time-sharing manner according to a video input signal. The DMD 2120 is provided integrally with a prism block 2121 that guides image light to the projection lens group 2111. The prism block 2121 has a surface 2121 a that transmits the illumination light from the illumination unit 2130 and totally reflects the image light modulated by the DMD 2120 and guides it to the projection lens group 2111. A DMD control circuit 2122 that controls the DMD 2120 is disposed in the vicinity of the DMD 2120. The DMD control circuit 2122 controls the DMD 2120 according to the video input signal and the LED control signal.
 照明部2130は、赤、緑、青の光を出射するLED2131R、2131G、2131Bと、赤、緑、青の光を合成してDMD2120へ照射する複数の光学部材を有する。第3実施形態では、赤、緑、青の光を合成する光学部材として、ダイクロイックプリズム2132を用いる。ダイクロイックプリズム2132にて合成された合成光は、テーパロッド2133を用いて光量分布を均一化する。テーパロッド2133後段のレンズ2134、2135、2136には、テーパロッド2133から出射した光を平行光化するとともにDMD2120に結像させる作用を有する。ミラー2137、2138には、合成光の光路をスペースに合わせて折り曲げる作用を有する。 The illumination unit 2130 includes LEDs 2131R, 2131G, and 2131B that emit red, green, and blue light, and a plurality of optical members that synthesize the red, green, and blue light and irradiate the DMD 2120. In the third embodiment, a dichroic prism 2132 is used as an optical member that combines red, green, and blue light. The combined light combined by the dichroic prism 2132 uses the taper rod 2133 to make the light amount distribution uniform. The lenses 2134, 2135, and 2136 subsequent to the taper rod 2133 have an effect of collimating the light emitted from the taper rod 2133 and forming an image on the DMD 2120. The mirrors 2137 and 2138 have an action of bending the optical path of the combined light according to the space.
 LED2131近傍には、LED2131を制御するLED制御回路2139が配される。LED制御回路2139は、映像入力信号に応じてLED2131R、2131G、2131Bの発光量および発光タイミングを制御する。また、LED制御回路2139は、発光量および発光タイミングに関するLED制御信号をDMD制御回路2122へ送る。LED制御回路2139は、配線を短くするため、LED2131近傍に配することが望ましい。一方、電磁波の影響を考慮して、DMD制御回路2122とは可及的に離して配置することも望まれる。 In the vicinity of the LED 2131, an LED control circuit 2139 for controlling the LED 2131 is disposed. The LED control circuit 2139 controls the light emission amount and the light emission timing of the LEDs 2131R, 2131G, and 2131B according to the video input signal. In addition, the LED control circuit 2139 sends an LED control signal regarding the light emission amount and the light emission timing to the DMD control circuit 2122. The LED control circuit 2139 is preferably arranged in the vicinity of the LED 2131 in order to shorten the wiring. On the other hand, in consideration of the influence of electromagnetic waves, it is also desired to dispose the DMD control circuit 2122 as far as possible.
 DMD2120と照明部2130とを併せて映像生成部2140と称する。 The DMD 2120 and the illumination unit 2130 are collectively referred to as a video generation unit 2140.
 バッテリ部2150は、ニッケル水素2次電池から構成されるバッテリ2151と、バッテリ2151の充放電を制御するバッテリ制御回路2152と、商用電源と接続される電源コネクタ2153とを有する。バッテリ2151は、Z軸方向の寸法に対し、X軸方向またはY軸方向の寸法が十分に大きい(2倍以上)形状を有する。バッテリ制御回路2152は、商用電源から電源コネクタ2153を介してバッテリ2151へ供給される電力を制御するとともに、バッテリ2151から映像生成部2140(特に、LED2131やDMD2120)へ供給される電力を制御する。バッテリとしては、ニッケル水素2次電池以外にも、リチウムイオン2次電池でもキャパシタでもよい。 The battery unit 2150 includes a battery 2151 composed of a nickel metal hydride secondary battery, a battery control circuit 2152 that controls charging / discharging of the battery 2151, and a power connector 2153 connected to a commercial power source. The battery 2151 has a shape in which the dimension in the X-axis direction or the Y-axis direction is sufficiently larger (twice or more) than the dimension in the Z-axis direction. The battery control circuit 2152 controls the power supplied from the commercial power supply to the battery 2151 via the power connector 2153 and also controls the power supplied from the battery 2151 to the video generation unit 2140 (particularly, the LED 2131 and the DMD 2120). The battery may be a lithium ion secondary battery or a capacitor in addition to the nickel metal hydride secondary battery.
 制御部2160は、大別して、DMD制御回路2122、LED制御回路2139および投写型映像表示装置2100全体を制御する制御回路2168を含む。具体的には、投写部110(特に、投写レンズ群2111)の一側面2102側の領域に、制御回路2168が配されており、制御回路2168は、映像入力信号などに応じて、DMD制御回路2122およびLED制御回路2139へ制御信号を送る。詳細は後述するが、映像入力信号は、制御回路2168と接続された映像コネクタ2161、2162、SDカードのスロット2163、USBコネクタ2164、LANコネクタ2165から入力される。制御回路2168は、電源スイッチ2166および操作ボタン2167にも接続される。制御回路2168は、電源スイッチ2166や操作ボタン2167からのユーザ指示に応じて、投写型映像表示装置2100全体を制御する。 The control unit 2160 roughly includes a DMD control circuit 2122, an LED control circuit 2139, and a control circuit 2168 that controls the entire projection display apparatus 2100. Specifically, a control circuit 2168 is disposed in a region on one side 2102 side of the projection unit 110 (particularly, the projection lens group 2111), and the control circuit 2168 corresponds to a DMD control circuit according to a video input signal or the like. A control signal is sent to 2122 and the LED control circuit 2139. Although details will be described later, video input signals are input from video connectors 2161 and 2162 connected to the control circuit 2168, an SD card slot 2163, a USB connector 2164, and a LAN connector 2165. Control circuit 2168 is also connected to power switch 2166 and operation button 2167. The control circuit 2168 controls the entire projection display apparatus 2100 in response to a user instruction from the power switch 2166 or the operation button 2167.
 投写レンズ群2111の、他の側面2103側の領域には、冷却部2170が配される。具体的には、排気口2171近傍に設けられた軸流ファン2172、LED2131を冷却するシロッコファン2173およびDMD2120を冷却するヒートシンク(不図示)が配される。投写型映像表示装置2100を冷却する空気は、一側面2102上部に設けられた吸気口2174から供給され、投写型映像表示装置2100内部を流通して制御部2160、映像生成部2140を冷却した後、他の側面2103下部に設けられた排気口2171から排気される。 The cooling unit 2170 is disposed in the area on the other side surface 2103 side of the projection lens group 2111. Specifically, an axial fan 2172 provided near the exhaust port 2171, a sirocco fan 2173 that cools the LED 2131, and a heat sink (not shown) that cools the DMD 2120 are arranged. Air for cooling the projection display 2100 is supplied from an air inlet 2174 provided on the upper side of the one side 2102, and flows through the projection display 2100 to cool the control unit 2160 and the image generation unit 2140. The air is exhausted from an exhaust port 2171 provided at the lower side of the other side surface 2103.
 筐体2101の対角となる位置に吸気口2174および排気口2171を設けることにより、効率よく投写型映像表示装置2100を冷却することができる。また、吸気口2174および排気口2171は、それぞれ一側面2102および他の側面2103に設けられているので、背面2107が設置面となる場合でも、吸排気口が塞がれることはない。吸気口2174は、後述するスライド部により、投写型映像表示装置2100を使用しないときには閉鎖される。この構成により、保管中に、投写型映像表示装置2100内部に埃などが侵入することを防止することができる。なお、シロッコファン2173は、吸気口2174とは別の吸気口を設けるとよい。 By providing the intake port 2174 and the exhaust port 2171 at the diagonal positions of the housing 2101, the projection display apparatus 2100 can be efficiently cooled. In addition, since the intake port 2174 and the exhaust port 2171 are provided on the one side surface 2102 and the other side surface 2103, respectively, the intake / exhaust port is not blocked even when the back surface 2107 is an installation surface. The intake port 2174 is closed by a slide portion described later when the projection display apparatus 2100 is not used. With this configuration, it is possible to prevent dust and the like from entering the projection display apparatus 2100 during storage. Note that the sirocco fan 2173 may be provided with an air inlet different from the air inlet 2174.
 (投写型映像表示装置の外部構成)
 以下において、第3-1実施形態に係る投写型映像表示装置の外部構成について、図面を参照しながら説明する。図40は第3-1実施形態に係る投写型映像表示装置の外部構成を示す図であって、図40(a)は左斜視図、図40(b)は右斜視図である。
(External configuration of the projection display)
Hereinafter, the external configuration of the projection display apparatus according to Embodiment 3-1 will be described with reference to the drawings. FIGS. 40A and 40B are diagrams showing an external configuration of the projection display apparatus according to the 3-1 embodiment. FIG. 40A is a left perspective view, and FIG. 40B is a right perspective view.
 筐体2101は、投写窓2113が配され、映像光が出射する側の面である正面2106、正面2106と対向する位置に配された背面2107を有する。また、筐体2101は、投写型映像表示装置2100が机上または床面に映像光を投写するように設置したときに、上面となる天面2104、天面2104と対向する位置に配された底面2105を有する。略直方体形状を有する投写型映像表示装置2100において、残る2面において、上述した電源コネクタ2153を配した面を一側面2102、一側面2102と対向する位置に配された面を他の側面2103とする。 The housing 2101 is provided with a projection window 2113 and has a front surface 2106 which is a surface on the side from which image light is emitted, and a back surface 2107 disposed at a position facing the front surface 2106. The housing 2101 has a top surface 2104 as a top surface and a bottom surface disposed at a position facing the top surface 2104 when the projection display apparatus 2100 is installed so as to project image light on a desk or a floor surface. 2105. In the projection display apparatus 2100 having a substantially rectangular parallelepiped shape, the remaining two surfaces are the surface on which the power connector 2153 is disposed as one side surface 2102, and the surface disposed at a position facing the one side surface 2102 is the other side surface 2103. To do.
 一側面2102には、電源コネクタ2153のほか、PC(Parsonal Computer)などの映像ソースと接続される映像コネクタ2161、2162、SDカードのスロット2163、USBコネクタ2164a、2164b、LANコネクタ2165などが設けられる。これらのコネクタ類は、一側面2102のうち、底面2105に近い部分に設けられるとよい。一側面2102は、後述するスライド部により、保管するときには、内部に収納される重畳部2102aを有する。一側面2102に配された吸気口2174は、スライド部2190が収納されたときにスライド部2190の一側面2192と重畳する位置に設けられるとよい。 On one side 2102, in addition to the power connector 2153, video connectors 2161 and 2162 connected to a video source such as a PC (Personal Computer), an SD card slot 2163, USB connectors 2164 a and 2164 b, a LAN connector 2165, and the like are provided. . These connectors are preferably provided in a portion of one side 2102 close to the bottom surface 2105. The one side surface 2102 has an overlapping portion 2102a that is housed inside when stored by a slide portion described later. The intake port 2174 disposed on the one side surface 2102 may be provided at a position overlapping the one side surface 2192 of the slide portion 2190 when the slide portion 2190 is stored.
 他の側面2103には排気口2171が設けられる。上述のように、吸気口2174は、重畳部2102aが収納されたときに一側面2102と重畳する位置、具体的には、一側面2102のうち、天面2104に近い位置に設けられるので、排気口2171は、他の側面2103のうち、底面2105に近い部分に設けられるとよい。 The other side surface 2103 is provided with an exhaust port 2171. As described above, the intake port 2174 is provided at a position overlapping the one side surface 2102 when the overlapping portion 2102a is accommodated, specifically, at a position close to the top surface 2104 of the one side surface 2102. The mouth 2171 may be provided in a portion of the other side surface 2103 close to the bottom surface 2105.
 操作性を考慮して、電源スイッチ2166および操作ボタン2167は天面2104に設けられる。底面2105、背面2107は設置面となるので、インターフェースや吸排気口を設けない方が望ましい。 In consideration of operability, the power switch 2166 and the operation button 2167 are provided on the top surface 2104. Since the bottom surface 2105 and the back surface 2107 serve as installation surfaces, it is desirable not to provide an interface or an intake / exhaust port.
 (スライド部の構成)
 以下において、第3-1実施形態に係る投写型映像表示装置のスライド部の構成について、図面を参照しながら説明する。図41は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図42はスライド部を収納したときの内部構成を示す図である。
(Slide configuration)
Hereinafter, the configuration of the slide unit of the projection display apparatus according to the third to third embodiments will be described with reference to the drawings. FIG. 41 is a diagram showing an internal configuration when projecting image light from the projection display apparatus, and FIG. 42 is a diagram showing an internal configuration when the slide portion is housed.
 図41に示すように、投写型映像表示装置2100は、映像光を投写するときに、投写レンズ群2111と非球面ミラー2112との間に所定の距離をあける必要がある。この距離(スペース2180)は、映像光を投写しないときにはデッドスペースとなる。そこで、図42に示すように、スライド部2190を収納するときには、非球面ミラー2112、投写窓2113を含むスライド部2190がスペース2180に収納されるように平行移動する。 As shown in FIG. 41, the projection display apparatus 2100 needs to provide a predetermined distance between the projection lens group 2111 and the aspherical mirror 2112 when projecting image light. This distance (space 2180) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 42, when the slide portion 2190 is accommodated, the slide portion 2190 including the aspherical mirror 2112 and the projection window 2113 is translated so as to be accommodated in the space 2180.
 これにより、投写型映像表示装置2100を使用しないときには、投写型映像表示装置2100の体積を小さくすることができる。加えて、投写窓2113は、正面2106と重なり、表面から隠された位置に移動するので、保管中に汚れることを抑制できる。吸気口2174は、一側面2102と重なり、閉鎖されるので、投写型映像表示装置2100内部に埃が侵入することを抑制できる。 Thereby, when the projection display apparatus 2100 is not used, the volume of the projection display apparatus 2100 can be reduced. In addition, since the projection window 2113 overlaps with the front surface 2106 and moves to a position hidden from the surface, it can be prevented from becoming dirty during storage. The air inlet 2174 overlaps with the one side surface 2102 and is closed, so that dust can be prevented from entering the projection display apparatus 2100.
 [変形例1]
 以下において、第3-1実施形態に係るスライド部の一変形例について、図面を参照しながら説明する。図43は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図44はスライド部を収納したときの内部構成を示す図である。
[Modification 1]
In the following, a modified example of the slide part according to the 3-1 embodiment will be described with reference to the drawings. FIG. 43 is a diagram illustrating an internal configuration when projecting image light from the projection display apparatus, and FIG. 44 is a diagram illustrating an internal configuration when the slide portion is housed.
 図43に示すように、投写型映像表示装置2100は、映像光を投写するときに、投写レンズ群2111内に配された複数のレンズ間において所定の距離をあける必要がある。この距離(スペース2181)は、映像光を投写しないときにはデッドスペースとなる。そこで、図44に示すように、スライド部2190を収納するときには、スライド部2190の平行移動に連動して、投写レンズ群2111のレンズ間の距離を可及的に狭くする。投写レンズ群2111のZ軸方向の寸法が小さくなることにより、非球面ミラー2112、投写窓2113を含むスライド部2190がスペース2181に収納される。 As shown in FIG. 43, the projection display apparatus 2100 needs to keep a predetermined distance between a plurality of lenses arranged in the projection lens group 2111 when projecting image light. This distance (space 2181) becomes a dead space when image light is not projected. Therefore, as shown in FIG. 44, when the slide portion 2190 is housed, the distance between the lenses of the projection lens group 2111 is made as narrow as possible in conjunction with the parallel movement of the slide portion 2190. The slide part 2190 including the aspherical mirror 2112 and the projection window 2113 is accommodated in the space 2181 by reducing the dimension of the projection lens group 2111 in the Z-axis direction.
 [変形例2]
 以下において、第3-1実施形態に係るスライド部の他の変形例について、図面を参照しながら説明する。図45は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図46はスライド部を収納したときの内部構成を示す図である。
[Modification 2]
Hereinafter, another modification of the slide portion according to the third to third embodiments will be described with reference to the drawings. FIG. 45 is a diagram showing an internal configuration when projecting image light from the projection display apparatus, and FIG. 46 is a diagram showing an internal configuration when the slide portion is housed.
 図45に示すように、変形例2では、DMD2120および照明部2130の配置を変更し、照明部2130は、投写レンズ群2111のうち、レンズ径が小さい領域に配する。照明部2130の位置が変更されたことに伴い、冷却部2170もまたDMD2120および照明部2130の位置に対応する領域に移動させる必要がある。 45, in the second modification, the arrangement of the DMD 2120 and the illumination unit 2130 is changed, and the illumination unit 2130 is arranged in an area where the lens diameter is small in the projection lens group 2111. As the position of the illumination unit 2130 is changed, the cooling unit 2170 also needs to be moved to a region corresponding to the positions of the DMD 2120 and the illumination unit 2130.
 変形例2に係る投写型映像表示装置2100では、映像光を投写するときに、DMD2120および照明部2130(映像生成部2140相当)とバッテリ部2150との間にスペース2182が生じる。そこで、図46に示すように、スライド部2190を収納するときには、非球面ミラー2112、投写窓2113を含むスライド部2190とともに、投写レンズ群2111、映像生成部2140および冷却部2170がスペース2182に収納されるように平行移動する。 In the projection display apparatus 2100 according to the second modification, when projecting image light, a space 2182 is generated between the DMD 2120 and the illumination unit 2130 (corresponding to the image generation unit 2140) and the battery unit 2150. Therefore, as shown in FIG. 46, when the slide part 2190 is accommodated, the projection lens group 2111, the image generation part 2140 and the cooling part 2170 are accommodated in the space 2182 together with the aspherical mirror 2112 and the slide part 2190 including the projection window 2113. Move in parallel.
 [変形例3]
 以下において、第3-1実施形態に係るスライド部の他の変形例について、図面を参照しながら説明する。図47は投写型映像表示装置から映像光を投写するときの内部構成を示す図であり、図48はスライド部を収納したときの内部構成を示す図である。
[Modification 3]
Hereinafter, another modification of the slide portion according to the third to third embodiments will be described with reference to the drawings. FIG. 47 is a diagram showing an internal configuration when projecting image light from the projection display apparatus, and FIG. 48 is a diagram showing an internal configuration when the slide portion is housed.
 図47に示すように、非球面ミラー2112は、映像光を投写するときに、投写レンズ群2111の光軸に対して、背面2107側にかつ傾いて配置されている。そこで、図48に示すように、スライド部2190を収納するときには、スライド部2190の平行移動に連動して、非球面ミラー2112の一端を中心軸として非球面ミラー2112を回動させる。非球面ミラー2112が回動することに伴って、投写型映像表示装置2100のZ軸方向の寸法が小さくなり、投写窓2113を含むスライド部2190がスペース2183に収納される。 As shown in FIG. 47, the aspherical mirror 2112 is disposed on the back surface 2107 side and inclined with respect to the optical axis of the projection lens group 2111 when projecting image light. Therefore, as shown in FIG. 48, when the slide part 2190 is stored, the aspherical mirror 2112 is rotated about one end of the aspherical mirror 2112 as the central axis in conjunction with the parallel movement of the slide part 2190. As the aspherical mirror 2112 rotates, the dimension of the projection display apparatus 2100 in the Z-axis direction decreases, and the slide portion 2190 including the projection window 2113 is stored in the space 2183.
 [その他の変形例]
 上記の例以外にも、冷却部2170を照明部2130(映像生成部2140)の下方へ配置して、冷却部2170と照明部2130の間にスペースを設けてもよい。この場合、投写部2110および映像生成部2140を含むスライド部2190がこのスペースに収納される。
[Other variations]
In addition to the above example, the cooling unit 2170 may be disposed below the illumination unit 2130 (video generation unit 2140), and a space may be provided between the cooling unit 2170 and the illumination unit 2130. In this case, the slide unit 2190 including the projection unit 2110 and the image generation unit 2140 is stored in this space.
 プリズムブロック2121を用いず、投写レンズ群2111の光軸に対して垂直となるようにDMD2120を配置して、投写レンズ群2111とDMD2120との間にスペースを設けてもよい。この場合、投写部2110がこのスペースに収納される。 The DMD 2120 may be arranged so as to be perpendicular to the optical axis of the projection lens group 2111 without using the prism block 2121, and a space may be provided between the projection lens group 2111 and the DMD 2120. In this case, the projection unit 2110 is accommodated in this space.
 (作用・効果)
 第3-1実施形態では、投写型映像表示装置2100は、映像光を生成する映像光生成部2140と、映像光生成部から出射された映像光を投写面側へ反射する非球面ミラー2112と、を備えるものである。投写型映像表示装置2100は、映像光生成部2140へ電力を供給するバッテリ部2150を備え、バッテリ部2150は、非球面ミラー2112と可及的に離れた位置、具体的には、非球面ミラー2112が最上部に設けられ、バッテリ部2150が最下部に設けられる。従って、重量のある非球面ミラー2112とバッテリ部2150とが離れた位置に設けられるので、装置全体の重量バランスを平衡に保つことができる。
(Action / Effect)
In the 3-1 embodiment, the projection display apparatus 2100 includes an image light generation unit 2140 that generates image light, an aspherical mirror 2112 that reflects the image light emitted from the image light generation unit to the projection surface side, and , Are provided. The projection display apparatus 2100 includes a battery unit 2150 that supplies power to the image light generation unit 2140. The battery unit 2150 is located as far as possible from the aspherical mirror 2112, specifically, an aspherical mirror. 2112 is provided in the uppermost part, and the battery part 2150 is provided in the lowermost part. Therefore, since the heavy aspherical mirror 2112 and the battery unit 2150 are provided at positions separated from each other, the weight balance of the entire apparatus can be kept in balance.
 また、第3-1実施形態では、投写型映像表示装置2100は、映像光を生成する映像光生成部2140と、映像光生成部2140を収納する筐体2101と、筐体2101に設けられ映像光生成部2140から出射された映像光が透過する投写窓2113とを備えるものである。筐体2101は、Z軸方向の寸法が変化するスライド部2190を有する。投写窓2113は、映像光を投写しないとき、スライド部2190によって筐体2101内部に収納される。従って、投写窓2113にキズや汚れがつくことを抑制できる。 In the 3-1 embodiment, the projection display apparatus 2100 includes an image light generation unit 2140 that generates image light, a case 2101 that houses the image light generation unit 2140, and an image provided in the case 2101. And a projection window 2113 through which the image light emitted from the light generation unit 2140 is transmitted. The housing 2101 has a slide portion 2190 whose dimensions in the Z-axis direction change. The projection window 2113 is housed inside the housing 2101 by the slide portion 2190 when no image light is projected. Therefore, the projection window 2113 can be prevented from being scratched or soiled.
 [第3-2実施形態]
 以下において、第3-2実施形態に係る投写型映像表示装置の構成について、図面を参照しながら説明する。なお、第3-2実施形態において、第3-1実施形態と重複するところは、説明を省略する。図49は、第3-2実施形態に係る投写型映像表示装置の構成を示す正面図である。
[Third embodiment]
The configuration of the projection display apparatus according to the third to second embodiments will be described below with reference to the drawings. Note that in the 3-2 embodiment, the description of the same parts as in the 3-1 embodiment is omitted. FIG. 49 is a front view showing the configuration of the projection display apparatus according to the third to second embodiments.
 図49に示すように、投写型映像表示装置2200は、映像生成部2240の構成、冷却部2270の配置が第3-1実施形態と大きく異なることに留意すべきである。また、第3実施形態では、底面2205を設置面(水平面)とし、床や机などの水平面に映像光を投写する状態を床面投写モード、背面2207を設置面(水平面)とし、スクリーンや壁などの鉛直面に映像光を投写する状態を壁面投写モードと称する。 As shown in FIG. 49, it should be noted that the projection display apparatus 2200 is significantly different from the configuration of the 3-1 embodiment in the configuration of the image generation unit 2240 and the arrangement of the cooling unit 2270. Further, in the third embodiment, the bottom surface 2205 is an installation surface (horizontal plane), the state in which image light is projected onto a horizontal plane such as a floor or a desk is a floor projection mode, and the back surface 2207 is an installation plane (horizontal plane). The state in which image light is projected onto the vertical plane is referred to as a wall surface projection mode.
 第3実施形態では、赤、緑、青の光を出射するLED2231R、2231G、2231B、ダイクロイックプリズム2232およびテーパロッド2233は、投写レンズ群2211よりも背面2207側に配される。図49では、これらの光学部材は投写レンズ群2211によって隠された位置となる。テーパロッド2233から出射した光は、レンズ2234、2235、2236およびミラー2237、2238によって、合成光の光路をスペースに合わせて折り曲げられ、DMD2220に結像する。 In the third embodiment, the LEDs 2231R, 2231G, and 2231B that emit red, green, and blue light, the dichroic prism 2232, and the taper rod 2233 are disposed on the back surface 2207 side of the projection lens group 2211. In FIG. 49, these optical members are hidden by the projection lens group 2211. The light emitted from the taper rod 2233 is bent by the lenses 2234, 2235, 2236 and mirrors 2237, 2238 according to the space of the combined light, and forms an image on the DMD 2220.
 DMD2220は、投写レンズ群2211の光軸に対して垂直となるように配される。従って、第3-2実施形態では、プリズムブロックは不要となる。DMD2220には、照明部2230の各光学部材によって、投写レンズ群2211の光軸に対して鋭角な方向から導かれた合成光が照射される。DMD2220はこの合成光のうち、映像入力信号に応じて変調された映像光を投写レンズ群2211へ向けて反射する。DMD2220の近傍には、DMD2220を制御するDMD制御回路2222が配される。第3-2実施形態では、DMD制御回路2222はDMD2220の裏面側に配される。 The DMD 2220 is arranged so as to be perpendicular to the optical axis of the projection lens group 2211. Therefore, in the 3-2 embodiment, the prism block is unnecessary. The DMD 2220 is irradiated with combined light guided from an acute angle with respect to the optical axis of the projection lens group 2211 by each optical member of the illumination unit 2230. The DMD 2220 reflects the image light modulated in accordance with the image input signal out of the combined light toward the projection lens group 2211. A DMD control circuit 2222 that controls the DMD 2220 is disposed in the vicinity of the DMD 2220. In the 3-2 embodiment, the DMD control circuit 2222 is disposed on the back side of the DMD 2220.
 LED2231近傍には、LED2231を制御するLED制御回路2239が配される第3-2実施形態では、LED制御回路2239は、投写レンズ群2211の外玉レンズの背面2207側に配される。これにより、LED制御回路2239は、LED2231近傍に配されるとともに、DMD制御回路2222とは可及的に離して配することができる。 The LED control circuit 2239 for controlling the LED 2231 is disposed in the vicinity of the LED 2231. In the third to second embodiments, the LED control circuit 2239 is disposed on the back surface 2207 side of the outer lens of the projection lens group 2211. As a result, the LED control circuit 2239 can be arranged in the vicinity of the LED 2231 and as far away from the DMD control circuit 2222 as possible.
 制御部2260の制御回路2268は、傾斜センサ2269を有する。傾斜センサ2269は、検出した傾きに関する情報を制御回路2268へ送信する。制御回路2268は、受信した情報から、ユーザが投写型映像表示装置2200を、底面2205を設置面とする床面投写モードで利用するか、背面2207を設置面とする壁面投写モードで利用するかを判別する。制御回路2268は、判別した投写モードに応じて、DMD制御回路2222へ制御信号を送る。詳細は後述するが、DMD制御回路2222は、投写モードに関する制御信号に応じて、DMD2220の有効領域の大きさやアスペクト比、投写画像の上下・左右の方向を制御する。 The control circuit 2268 of the control unit 2260 has a tilt sensor 2269. The tilt sensor 2269 transmits information regarding the detected tilt to the control circuit 2268. From the received information, the control circuit 2268 determines whether the user uses the projection display apparatus 2200 in the floor projection mode with the bottom surface 2205 as the installation surface or in the wall projection mode with the back surface 2207 as the installation surface. Is determined. The control circuit 2268 sends a control signal to the DMD control circuit 2222 according to the determined projection mode. Although details will be described later, the DMD control circuit 2222 controls the size and aspect ratio of the effective area of the DMD 2220 and the vertical and horizontal directions of the projected image according to the control signal relating to the projection mode.
 投写レンズ群2211の、他の側面2203側の領域には、冷却部2270が配される。第3-2実施形態では、LED2231を冷却するシロッコファン2273のほか、DMD2220を冷却するシロッコファン2275およびヒートシンク2276が配される。 A cooling unit 2270 is disposed in the area on the other side surface 2203 side of the projection lens group 2211. In the 3-2 embodiment, in addition to the sirocco fan 2273 that cools the LED 2231, a sirocco fan 2275 and a heat sink 2276 that cool the DMD 2220 are arranged.
 (投写モードの切替機能)
 以下において、第3-2実施形態に係る投写型映像表示装置の投写モードの切替機能について、図面を参照しながら説明する。図50は第3-2実施形態に係る投写型映像表示装置の投写モードを示す図であって、図50(a)は床面投写モード、図50(b)は壁面投写モードである。
(Projection mode switching function)
Hereinafter, the projection mode switching function of the projection display apparatus according to Embodiment 3-2 will be described with reference to the drawings. FIG. 50 is a diagram showing a projection mode of the projection display apparatus according to the third to second embodiments. FIG. 50A shows a floor projection mode, and FIG. 50B shows a wall projection mode.
 投写型映像表示装置2200は、映像光を投写するときに、傾斜センサ2269によって検出した傾きに関する情報に基づいて設置面を判別する。図50(a)に示すように、設置面が底面2205であるときは、ユーザ(観察者)は、投写画像を遠方側(Far側)から観察する場合が多いので、投写型映像表示装置2200は、投写画像の向きをFar側が下となるように投写する。詳細には、傾斜センサ2269が、底面2205が設置面であると判別したとき、制御回路2268は、Far側が下となるようにDMD制御回路2222へ制御信号を送る。 The projection display apparatus 2200 discriminates the installation surface based on information about the tilt detected by the tilt sensor 2269 when projecting image light. As shown in FIG. 50A, when the installation surface is the bottom surface 2205, the user (observer) often observes the projected image from the far side (Far side). Project the projected image so that the Far side is facing down. Specifically, when the inclination sensor 2269 determines that the bottom surface 2205 is the installation surface, the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that the Far side is down.
 一方、図50(b)に示すように、設置面が背面2207であるときは、ユーザ(観察者)は、投写画像の近接側(Near側)を下として観察するので、投写型映像表示装置2200は、投写画像の向きをNear側が下となるように投写する。詳細には、傾斜センサ2269が、背面2207が設置面であると判別したとき、制御回路2268は、Near側が下となるようにDMD制御回路2222へ制御信号を送る。 On the other hand, as shown in FIG. 50 (b), when the installation surface is the back surface 2207, the user (observer) observes with the close side (Near side) of the projected image facing down. 2200 projects the projected image so that the near side is the bottom. Specifically, when the tilt sensor 2269 determines that the back surface 2207 is the installation surface, the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that the Near side is down.
 これにより、投写型映像表示装置2200を置くだけで、投写画像が適切な向きで投写されるので、ユーザの利便性が向上する。 Thus, simply placing the projection display apparatus 2200 allows the projected image to be projected in an appropriate direction, improving the convenience for the user.
 [変形例1]
 以下において、第3-2実施形態に係る投写モードの切替機能の一変形例について、図面を参照しながら説明する。図51は変形例1に係る投写型映像表示装置の投写モードを示す図であって、図51(a)は床面投写モード、図51(b)は壁面投写モードである。変形例1においても、投写型映像表示装置2200は、映像光を投写するときに、傾斜センサ2269によって検出した傾きに関する情報に基づいて設置面を判別する。
[Modification 1]
Hereinafter, a modification of the projection mode switching function according to the third to second embodiments will be described with reference to the drawings. 51A and 51B are diagrams showing a projection mode of the projection display apparatus according to the modification 1. FIG. 51A shows a floor projection mode, and FIG. 51B shows a wall projection mode. Also in the first modification, the projection display apparatus 2200 determines the installation surface based on information about the tilt detected by the tilt sensor 2269 when projecting image light.
 図51(a)に示すように、設置面が底面2205であるときは、複数のユーザ(観察者)が、投写画像を挟んで対峙して観察する場合があるので、投写型映像表示装置2200は、投写画像のアスペクト比を縦長となるように投写する。具体的には、制御回路2268は、H:Vが3:4となるようにDMD制御回路2222へ制御信号を送る。 As shown in FIG. 51 (a), when the installation surface is the bottom surface 2205, a plurality of users (observers) may observe each other with the projected image interposed therebetween, and thus the projection display apparatus 2200. Projects the aspect ratio of the projected image so that it is vertically long. Specifically, the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that H: V is 3: 4.
 一方、図51(b)に示すように、設置面が背面2207であるときは、ユーザ(観察者)は、投写画像に対して正面から観察するので、投写型映像表示装置2200は、投写画像のアスペクト比を横長となるように投写する。具体的には、制御回路2268は、H:Vが4:3となるようにDMD制御回路2222へ制御信号を送る。 On the other hand, as shown in FIG. 51B, when the installation surface is the back surface 2207, the user (observer) observes the projected image from the front, so that the projection display apparatus 2200 displays the projected image. Project the image so that the aspect ratio is horizontally long. Specifically, the control circuit 2268 sends a control signal to the DMD control circuit 2222 so that H: V is 4: 3.
 [変形例2]
 以下において、第3-2実施形態に係る投写モードの切替機能の他の変形例について、図面を参照しながら説明する。図52は変形例2に係る投写型映像表示装置の床面投写モードを示す図であって、図52(a)は通常の床面投写モード(以下、通常モードと称する。)、図52(b)は投写画像の面積を大きくした床面投写モード(以下、拡大モードと称する。)である。
[Modification 2]
Hereinafter, another modification of the projection mode switching function according to the third to second embodiments will be described with reference to the drawings. FIG. 52 is a diagram showing a floor projection mode of the projection display apparatus according to the modification 2. FIG. 52A is a normal floor projection mode (hereinafter referred to as a normal mode) and FIG. b) is a floor projection mode in which the area of the projected image is increased (hereinafter referred to as an enlargement mode).
 変形例2において、投写型映像表示装置2200は、底面2205に脚部2208と、脚部2208の長さを検出する脚部センサ2208sとを有する。投写型映像表示装置2200は、映像光を投写するときに、脚部センサ2208sによって検出した脚部2208の長さに関する情報に基づいて投写距離を推定する。また、通常モードでは、投写画像の面積がSである領域に対し、投写画像の輝度がLとなるように投写するために必要なLED2231の光量をEとする。 In the second modification, the projection display apparatus 2200 has a leg 2208 on the bottom surface 2205 and a leg sensor 2208s for detecting the length of the leg 2208. When projecting image light, the projection display apparatus 2200 estimates the projection distance based on information about the length of the leg 2208 detected by the leg sensor 2208s. In the normal mode, the light quantity of the LED 2231 necessary for projection so that the brightness of the projected image is L with respect to the area where the area of the projected image is S is E.
 図52(b)に示すように、底面2205から脚部2208を延伸し、投写窓2213から設置面までの距離(投写距離)を長くすると、拡大モードの投写画像の面積S’は、通常モードの面積Sよりも大きくなる(S’>S)。このとき、LED2231の光量がEであると、拡大モードの投写画像の輝度が、通常モードの輝度Lに比べて低下してしまう。 As shown in FIG. 52B, when the leg portion 2208 is extended from the bottom surface 2205 and the distance (projection distance) from the projection window 2213 to the installation surface is increased, the area S ′ of the projection image in the enlarged mode is set to the normal mode. Is larger than the area S (S ′> S). At this time, if the light quantity of the LED 2231 is E, the luminance of the projection image in the enlargement mode is lower than the luminance L in the normal mode.
 そこで、脚部センサ2208sからの情報により、拡大モードであると推定されたとき、制御回路2268は、LED2231の光量がE’(>E)となるようにLED駆動回路2239へ制御信号を送る。これにより、通常モードのときの輝度Lと拡大モードのときの輝度L’とが、略同じ輝度となる(L≒L’)。 Therefore, when it is estimated from the information from the leg sensor 2208s that the zoom mode is set, the control circuit 2268 sends a control signal to the LED drive circuit 2239 so that the light quantity of the LED 2231 becomes E '(> E). As a result, the luminance L in the normal mode and the luminance L ′ in the enlargement mode become substantially the same luminance (L≈L ′).
 [変形例3]
 以下において、第3-2実施形態に係る投写モードの切替機能のさらに他の変形例について、図面を参照しながら説明する。図53は変形例3に係る投写型映像表示装置の床面投写モードを示す図である。変形例3では、変形例2との相違点についてのみ説明する。
[Modification 3]
Hereinafter, still another modification of the projection mode switching function according to the third to second embodiments will be described with reference to the drawings. FIG. 53 is a diagram showing a floor projection mode of the projection display apparatus according to the third modification. In Modification 3, only differences from Modification 2 will be described.
 変形例3において、投写型映像表示装置2200は、上部に首部2209と、首部2209の長さを検出する首部センサ2209sとを有する。首部2209の上部には非球面ミラー2212が配され、首部2209を伸縮することにより、投写レンズ群2211と非球面ミラー2212との距離が調整される。投写型映像表示装置2200は、映像光を投写するときに、脚部センサ2209sによって検出した首部2209の長さに関する情報に基づいて、投写距離および投写レンズ群2211と非球面ミラー2212との距離を推定する。 In Modification 3, the projection display apparatus 2200 has a neck 2209 at the top and a neck sensor 2209s for detecting the length of the neck 2209. An aspherical mirror 2212 is disposed above the neck 2209, and the distance between the projection lens group 2211 and the aspherical mirror 2212 is adjusted by expanding and contracting the neck 2209. The projection display apparatus 2200 calculates the projection distance and the distance between the projection lens group 2211 and the aspherical mirror 2212 based on information on the length of the neck 2209 detected by the leg sensor 2209s when projecting image light. presume.
 天面2204には、首部2209を引っ張るハンドル部2204hが設けられる。さらにハンドル部2204hにボタン(不図示)を設け、ボタンを押下したときに、首部2209を延伸することができるように設定してもよい。ボタンを押下していないときには、首部2209が延伸しないため、ハンドル部2204hは、投写型映像表示装置2200を持ち運ぶときにも有用である。 The top surface 2204 is provided with a handle portion 2204h for pulling the neck portion 2209. Further, a button (not shown) may be provided on the handle portion 2204h so that the neck portion 2209 can be extended when the button is pressed. Since the neck portion 2209 does not extend when the button is not pressed, the handle portion 2204h is also useful when carrying the projection display apparatus 2200.
 [その他の変形例]
 上記の例以外にも、投写型映像表示装置2200は、照度センサを備えていてもよい。照度センサにより、投写型映像表示装置2200の使用環境の明るさを推定することが可能となる。使用環境および投写画像の面積Sに応じて、光源(LED2231)の光量Eを制御することにより、投写型映像表示装置2200の低消費電力運転を実現することができるほか、ユーザに対して目に優しい画像を提供できる。
[Other variations]
In addition to the above example, the projection display apparatus 2200 may include an illuminance sensor. The brightness sensor makes it possible to estimate the brightness of the usage environment of the projection display apparatus 2200. By controlling the light amount E of the light source (LED 2231) according to the usage environment and the area S of the projected image, the projection display apparatus 2200 can be operated with low power consumption, and the user can see it. A gentle image can be provided.
 また、上記の例は組み合わせも可能である。例えば、横長の投写画像を縦長の投写画像へ切り替るとき、脚部2208の調整をして投写画面の面積Sを大きくするとよい。縦長に画像を投写する場合、DMD制御回路2222での信号処理によって、DMD2220の有効表示領域の変形を行う。これにより、DMD2220の有効表示領域が小さくなり、投写画面の面積Sが小さくなる。そこで、脚部2208を延伸して投写距離を長くすることで、面積Sを維持することが可能となる。 Also, the above examples can be combined. For example, when switching a horizontally long projection image to a vertically long projection image, the leg portion 2208 may be adjusted to increase the area S of the projection screen. When an image is projected vertically, the effective display area of the DMD 2220 is deformed by signal processing in the DMD control circuit 2222. Thereby, the effective display area of the DMD 2220 is reduced, and the area S of the projection screen is reduced. Therefore, the area S can be maintained by extending the leg 2208 to increase the projection distance.
 (作用・効果)
 第3-2実施形態では、投写型映像表示装置2200は、映像光を生成する映像光生成部2240と、映像光生成部2240から出射された映像光を投写面側へ反射する非球面ミラー2212と、を備えるものである。投写型映像表示装置2200は、映像光生成部2240へ電力を供給するバッテリ部2250を備え、バッテリ部2250は、非球面ミラー2212と可及的に離れた位置に設けられる。
(Action / Effect)
In the third to second embodiments, the projection display apparatus 2200 includes an image light generation unit 2240 that generates image light, and an aspherical mirror 2212 that reflects the image light emitted from the image light generation unit 2240 toward the projection surface. Are provided. The projection display apparatus 2200 includes a battery unit 2250 that supplies power to the image light generation unit 2240, and the battery unit 2250 is provided at a position as far as possible from the aspherical mirror 2212.
 また、映像光生成部2240を冷却する冷却部2270をさらに備え、冷却部2270のうち、具体的には軸流ファン2272、シロッコファン2275、ヒートシンク2276、シロッコファン2277もまた、非球面ミラー2212と可及的に離れた底面2205に近い位置に設けられるとよい。これにより、非球面ミラー2212やバッテリ部2250についで、重量のある冷却部2270が非球面ミラー2212と離れた位置に設けられるので、装置全体の重量バランスを平衡に保つことができる。また、バッテリ部2250と冷却部2270とが近接して、底面に近い位置に設けられるので、底面の面積が小さくても安定して設置することができる。 In addition, the cooling unit 2270 further includes a cooling unit 2270 for cooling the image light generation unit 2240. Specifically, of the cooling unit 2270, an axial fan 2272, a sirocco fan 2275, a heat sink 2276, and a sirocco fan 2277 are also included in the aspherical mirror 2212. It may be provided at a position close to the bottom surface 2205 as far as possible. Thus, since the heavy cooling unit 2270 is provided at a position away from the aspherical mirror 2212 after the aspherical mirror 2212 and the battery unit 2250, the weight balance of the entire apparatus can be kept in balance. In addition, since battery unit 2250 and cooling unit 2270 are close to each other and provided at a position close to the bottom surface, the battery unit 2250 and the cooling unit 2270 can be stably installed even if the bottom surface area is small.
 また、第3-2実施形態では、投写型映像表示装置2200は、投写面に対する自装置の状態を検出する傾斜センサ2269や、脚部センサ2208s、首部センサ2209sと、検出された状態に応じて、映像光の状態を制御する制御部2260とを備えるものである。従って、投写型映像表示装置2200が自装置の状態、具体的には設置面や投写距離を判断し、ユーザにとって最も観察しやすいと考えられる状態(向きや明るさなど)で映像を投写するので、ユーザの利便性の向上を図ることができる。 In the third to second embodiments, the projection display apparatus 2200 includes an inclination sensor 2269 that detects the state of the own apparatus with respect to the projection plane, a leg sensor 2208s, and a neck sensor 2209s, depending on the detected state. And a control unit 2260 for controlling the state of the image light. Therefore, the projection display apparatus 2200 judges the state of the apparatus itself, specifically the installation surface and the projection distance, and projects the image in a state (orientation, brightness, etc.) that is considered most observable for the user. Therefore, the convenience of the user can be improved.
 [第4実施形態]
 以下において、第4実施形態について、図面を参照しながら説明する。以下においては、第1実施形態に対する相違点について主として説明する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment will be described with reference to the drawings. In the following, differences from the first embodiment will be mainly described.
 具体的には、第4実施形態では、インタラクティブ機能で必要とされる撮像装置及び撮像装置の制御基板の配置について、図54~図56を参照しながら説明する。図54は、第4実施形態に係る投写型映像表示装置100の外観を示す図である。図55は、第4実施形態に係る投写型映像表示装置100の内部を示す図である。図56は、第4実施形態に係る投写型映像表示装置100の正面視を示す図である。 Specifically, in the fourth embodiment, the arrangement of the imaging device and the control board of the imaging device required for the interactive function will be described with reference to FIGS. 54 to 56. FIG. 54 is a diagram showing an appearance of the projection display apparatus 100 according to the fourth embodiment. FIG. 55 is a diagram showing the inside of the projection display apparatus 100 according to the fourth embodiment. FIG. 56 is a diagram showing a front view of the projection display apparatus 100 according to the fourth embodiment.
 撮像装置及び制御基板は、図54及び図55に示す領域Y1に配置されることが好ましい。領域Y1は、図54に示すように、透過領域210(投写窓)よりも天板側の領域であり、図55に示すように、反射ミラー112よりも正面側の領域である。なお、撮像装置及び制御基板は、反射ミラー112で反射される映像光を遮光しない位置に配置されることは勿論である。 The imaging device and the control board are preferably arranged in a region Y1 shown in FIGS. As shown in FIG. 54, the region Y1 is a region closer to the top plate than the transmission region 210 (projection window), and is a region closer to the front side than the reflection mirror 112 as shown in FIG. Needless to say, the imaging device and the control board are arranged at positions where the image light reflected by the reflection mirror 112 is not shielded.
 また、撮像装置の光取入口は、図55に示す領域Z1又は領域Z2に配置されることが好ましい。領域Z1は、図55に示すように、透過領域210よりも天板側の領域である。また、領域Z2は、図55に示すように、透過領域210の一部である。なお、撮像装置の光取入口は、透過領域210を透過する映像光を遮光しない位置に配置されることは勿論である。 Further, it is preferable that the light intake port of the imaging device is arranged in the region Z1 or the region Z2 shown in FIG. The region Z1 is a region closer to the top plate than the transmission region 210, as shown in FIG. Further, the region Z2 is a part of the transmissive region 210 as shown in FIG. Of course, the light inlet of the image pickup apparatus is arranged at a position where the image light transmitted through the transmission region 210 is not blocked.
 (作用及び効果)
 第4実施形態では、撮像装置及び制御基板は、図54及び図55に示す領域Y1に配置される。ここで、電源基板150や主制御基板160は、図3に示したように、底面側に配置されるため、領域Y1はデッドスペースである。このようなデッドスペースを有効に利用することができるため、投写型映像表示装置100を小型化することが可能である。
(Action and effect)
In the fourth embodiment, the imaging device and the control board are arranged in a region Y1 shown in FIGS. Here, since the power supply board 150 and the main control board 160 are disposed on the bottom side as shown in FIG. 3, the region Y1 is a dead space. Since such a dead space can be used effectively, the projection display apparatus 100 can be reduced in size.
 第4実施形態では、撮像装置の光取入口は、図55に示す領域Z1又は領域Z2に配置される。すなわち、透過領域210と同程度以上の高さから、投写面の反射光を取入れるため、投写型映像表示装置と投写面との距離が非常に近い場合であっても、投写面の映像を撮像することができる。また、光取入口と撮像装置(又は、制御基板)との距離が近いため、余分な配線等が不要である。 In the fourth embodiment, the light intake port of the imaging apparatus is arranged in the region Z1 or the region Z2 shown in FIG. In other words, since the reflected light from the projection surface is taken in at a height equal to or higher than that of the transmissive region 210, the image on the projection surface can be displayed even when the distance between the projection display apparatus and the projection surface is very close. An image can be taken. Further, since the distance between the light intake and the imaging device (or control board) is short, no extra wiring or the like is necessary.
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 実施形態では、光変調素子として、DMD(Digital Micromirror Device)を例示したに過ぎない。光変調素子は、反射型の液晶パネルであってもよく、透過型の液晶パネルであってもよい。 In the embodiment, a DMD (Digital Micromirror Device) is merely exemplified as the light modulation element. The light modulation element may be a reflective liquid crystal panel or a transmissive liquid crystal panel.
 実施形態では、フォーカス調整具260は、非被覆状態から被覆状態への遷移において、カバー体(第1筐体200A又はカバー体200C)の移動によって初期位置に戻る。しかしながら、実施形態は、これに限定されるものではない。具体的には、フォーカス調整具260は、被覆状態から非被覆状態への遷移において、カバー体(第1筐体200A又はカバー体200C)の移動によって初期位置に戻ってもよい。 In the embodiment, the focus adjustment tool 260 returns to the initial position by the movement of the cover body (first housing 200A or cover body 200C) in the transition from the non-covering state to the covering state. However, the embodiment is not limited to this. Specifically, the focus adjustment tool 260 may return to the initial position by the movement of the cover body (first housing 200A or cover body 200C) in the transition from the covered state to the uncovered state.
 実施形態では特に触れていないが、運転制御部320は、投写型映像表示装置100の運転開始後において、筐体200内の冷却状態が所定状態よりも悪い場合に、投写型映像表示装置100の運転を終了する。すなわち、運転制御部320は、筐体200が正しく配置されていないことに起因して、冷却状態が悪い場合に、投写型映像表示装置100の運転を終了する。言い換えると、運転制御部320は、例えば、筐体200の底面が傾いた平面に配置されたケースにおいて、検出部400によって基準面の誤検出が生じた場合であっても、投写型映像表示装置100の運転を適切に終了することができる。 Although not touched in particular in the embodiment, the operation control unit 320 of the projection display 100 when the cooling state in the housing 200 is worse than a predetermined state after the operation of the projection display 100 is started. End driving. In other words, the operation control unit 320 ends the operation of the projection display apparatus 100 when the cooling state is poor due to the case 200 not being properly arranged. In other words, for example, in the case where the bottom surface of the housing 200 is disposed on a tilted plane, the operation control unit 320 is a projection type video display device even when the detection unit 400 detects a reference surface erroneously. The operation of 100 can be properly terminated.
 実施形態では、検出点410が機械的なスイッチであるケースについて例示した。しかしながら、実施形態は、これに限定されるものではない。検出点410は、圧力センサであってもよい。或いは、検出部400は、筐体200の底面全体の圧力分布を検出可能に構成された圧力センサであってもよい。 In the embodiment, the case where the detection point 410 is a mechanical switch is illustrated. However, the embodiment is not limited to this. The detection point 410 may be a pressure sensor. Alternatively, the detection unit 400 may be a pressure sensor configured to be able to detect the pressure distribution of the entire bottom surface of the housing 200.
 実施形態では、光源としてLEDを用いて説明したが、光源はLEDに限定されるものではなく、固体光源としてはレーザ光源、ランプ光源としては高圧水銀ランプやキセノンランプなども利用可能である。光変調素子としては、DMDを用いて説明したが、透過型、半透過型あるいは反射型の液晶パネルなども利用可能である。 In the embodiment, the LED is used as the light source. However, the light source is not limited to the LED, and a laser light source can be used as the solid light source, and a high-pressure mercury lamp or a xenon lamp can be used as the lamp light source. Although the DMD is used as the light modulation element, a transmissive, transflective, or reflective liquid crystal panel can also be used.
 実施形態では、筐体は6面を有する略直方体の形状で説明したが、筐体形状は直方体に限定されるものではなく、デザイン性を重視した形状でもよい。また、直方体の頂点や辺において丸みを帯びていても良く、中央部分や重心付近に突起や凹みがある形状でもよい。中央部分や重心付近に突起や凹みがあると、持ち運びに便利である。 In the embodiment, the case has been described as a substantially rectangular parallelepiped shape having six surfaces, but the shape of the case is not limited to a rectangular parallelepiped, and may be a shape that emphasizes design. Further, it may be rounded at the apexes and sides of the rectangular parallelepiped, and may have a shape having a protrusion or a recess near the center or the center of gravity. If there is a protrusion or dent near the center or center of gravity, it is convenient to carry.
 バッテリ部としてニッケル水素電池が投写型映像表示装置の底面に固定されている構成を用いて説明したが、ニッケル水素電池は、別の電池と交換できるようにバッテリ制御部とコネクタを介して接続されていてもよい。また、バッテリ制御部は、電源コネクタを介して直接、商用電源から各部へ電力を供給できるように制御してもよい。これにより、1つの電池の残量が低下しても、別の電池と交換したり、商用電源から電力を供給したりすることで、長時間、映像を表示することができる。 Although the description has been given using the configuration in which the nickel-metal hydride battery is fixed to the bottom surface of the projection display apparatus as the battery unit, the nickel-metal hydride battery is connected to the battery control unit via a connector so that it can be replaced with another battery. It may be. Further, the battery control unit may perform control so that power can be supplied directly from a commercial power source to each unit via a power connector. Thereby, even if the remaining amount of one battery is reduced, an image can be displayed for a long time by replacing it with another battery or supplying power from a commercial power source.
 投写型映像表示装置の起動は電源スイッチを押下する構成を用いて説明したが、スライド部が電源スイッチとして機能してもよい。すなわち、スライド部が引き出され、映像光が投写窓から出射できる状態となることにより投写型映像表示装置が起動し、スライド部が筐体の内部に収納されることにより停止するように構成してもよい。 The startup of the projection display apparatus has been described using the configuration in which the power switch is pressed, but the slide unit may function as a power switch. That is, the projection unit is activated when the slide part is pulled out and the image light can be emitted from the projection window, and is stopped when the slide part is housed in the housing. Also good.
 投写画像のアスペクト比はH:V=4:3を標準として説明したが、アスペクト比はH:V=16:9のものがあるのはもちろんである。 Although the aspect ratio of the projected image has been described with H: V = 4: 3 as a standard, it is a matter of course that the aspect ratio is H: V = 16: 9.
 操作ボタンやスイッチが筐体の天面や側面に配される構成を用いて説明したが、操作はリモコンを用いて行なってもよい。この場合、リモコンからの信号を受信する受光部は、正面や側面の上部(非球面ミラー側)に配するとよい。投写型映像表示装置を利用するときに上部となる部分に受光部が配されると、信号が遮蔽されることがない。 Although the description has been given using the configuration in which the operation buttons and switches are arranged on the top and side surfaces of the housing, the operation may be performed using a remote control. In this case, the light receiving unit that receives a signal from the remote controller may be arranged on the front or upper side (aspherical mirror side). When the light receiving unit is arranged at the upper part when using the projection display apparatus, the signal is not shielded.
 10…光源、30…ダイクロイックプリズム、40…ロッドインテグレータ、51~52…ミラー、61~63…レンズ、70…DMD、80…反射プリズム、100…投写型映像表示装置、110…投写光学系、111…投写レンズ群、112…反射ミラー、120…照明光学系、130…冷却ファン、140…バッテリ、150…電源基板、160…主制御基板、170…操作基板、200…筐体、200A…第1筐体、200B…第2筐体、200C…カバー体、201A…突起、201C…突起、210…透過領域、211…回動軸、260…フォーカス調整具、300…制御ユニット、310…判定部、320…運転制御部、400…検出部、410…検出点、500…バッテリ、1100、1200…投写型映像表示装置、1101、1201…筐体(1102、1202…一側面、1102a…一側面の重畳部、1103、1203…他の側面、1104、1204…天面、1105、1205…底面、1106、1206…正面、1107、1207…背面、1110、1210…投写部、1111、1211…投写レンズ群、1112、1212…非球面ミラー、1113、1213…投写窓、1120、1220…DMD、1121…プリズムブロック(1121a…面)、1122、1222…DMD制御回路、1130、1230…照明部、1131、1231…LED(1131R、1231R…赤色LED、1131G、1231G…緑色LED、1131B、1231B…青色LED)、1132、1232…ダイクロイックプリズム、1133、1233…テーパロッド、1134、1135、1136、1234、1235、1236…レンズ、1137、1138、1237、1338…ミラー、1139、1239…LED制御回路、1140、1140…映像光生成部、1150、1250…バッテリ部、1151、1251…バッテリ、1152、1252…バッテリ制御回路、1153、1253…電源コネクタ、1160、1260…制御部、1161…映像コネクタ、1163…SDカードのスロット、1164…USBコネクタ、1166…電源ボタン、1167…メニューボタン、1168…方向ボタン、1169、1268…制御回路、1170、1270…冷却部、1171、1271…排気口、1172、1272…軸流ファン、1173、1273、1275、1277…シロッコファン、1174、1274…吸気口、1180、1181、1182、1183…スペース、1190…スライド部(1192…一側面、1193…他の側面、1194…天面、1196…正面、1197…背面)、1208…脚部(1208s…脚部センサ)、1209…首部(1208s…首部センサ)、1269…傾斜センサ、1276…ヒートシンク、2100、2200…投写型映像表示装置、2101、2201…筐体(1102、XXXXXXX1202X…一側面、2102a…一側面の重畳部、2103、2203…他の側面、2104、2204…天面、2105、2205…底面、2106、2206…正面、2107、2207…背面)、2110…投写部、2111、2211…投写レンズ群、2112、2212…非球面ミラー、2113、2213…投写窓、2120、2220…DMD、2121…プリズムブロック(2121a…面)、2122、2222…DMD制御回路、2130、2230…照明部、2131、2231…LED(2131R、2231R…赤色LED、2131G、2231G…緑色LED、2131B、2231B…青色LED)、2132、2232…ダイクロイックプリズム、2133、2233…テーパロッド、2134、2135、2136、2234、2235、2236…レンズ、2137、2138、2237、2338…ミラー、2139、2239…LED制御回路、2140、2240…映像生成部、2150、2250…バッテリ部、2151、2251…バッテリ、2152、2252…バッテリ制御回路、2153、2253…電源コネクタ、2160、2260…制御部、2161、2162…映像コネクタ、2163…SDカードのスロット、2164…USBコネクタ、2165…LANコネクタ、2166…電源スイッチ、2167…操作ボタン、2168、2268…制御回路、2170、2270…冷却部、2171、2271…排気口、2172、2272…軸流ファン、2173、2273、2275、2277…シロッコファン、2174、2274…吸気口、2180、2181、2182、2183…スペース、2190…スライド部(2192…一側面、2193…他の側面、2194…天面、2196…正面、2197…背面)、2208…脚部(2208s…脚部センサ)、2209…首部(2208s…首部センサ)、2269…傾斜センサ、2276…ヒートシンク DESCRIPTION OF SYMBOLS 10 ... Light source, 30 ... Dichroic prism, 40 ... Rod integrator, 51-52 ... Mirror, 61-63 ... Lens, 70 ... DMD, 80 ... Reflection prism, 100 ... Projection type image display apparatus, 110 ... Projection optical system, 111 ... Projection lens group, 112 ... reflection mirror, 120 ... illumination optical system, 130 ... cooling fan, 140 ... battery, 150 ... power supply board, 160 ... main control board, 170 ... operation board, 200 ... housing, 200A ... first Housing 200B ... Second housing 200C ... Cover body 201A ... Protrusion 201C ... Protrusion 210 ... Transparent area 211 ... Rotating shaft 260 ... Focus adjustment tool 300 ... Control unit 310 ... Determining unit 320 ... Operation control unit, 400 ... detection unit, 410 ... detection point, 500 ... battery, 1100, 1200 ... projection display apparatus, 110 , 1201... Casing (1102, 1202... One side, 1102a. Superimposed portion of one side, 1103, 1203... Other side, 1104, 1204 ... top, 1105, 1205 ... bottom, 1106, 1206 ... front, 1107, 1207 ... Back, 1110, 1210 ... Projection unit, 1111, 1211 ... Projection lens group, 1112, 1212 ... Aspherical mirror, 1113, 1213 ... Projection window, 1120, 1220 ... DMD, 1121 ... Prism block (1121a ... surface), 1122, 1222 ... DMD control circuit, 1130, 1230 ... illumination unit, 1311, 1231 ... LED (1131R, 1231R ... red LED, 1131G, 1231G ... green LED, 1131B, 1231B ... blue LED), 1132, 1232 ... dichroic prism, 1133, 1 33 ... Tapered rod, 1134, 1135, 1136, 1234, 1235, 1236 ... Lens, 1137, 1138, 1237, 1338 ... Mirror, 1139, 1239 ... LED control circuit, 1140, 1140 ... Image light generator, 1150, 1250 ... Battery 1151, 1251 ... Battery, 1152, 1252 ... Battery control circuit, 1153, 1253 ... Power connector, 1160, 1260 ... Control part, 1161 ... Video connector, 1163 ... SD card slot, 1164 ... USB connector, 1166 ... Power supply Button, 1167 ... Menu button, 1168 ... Direction button, 1169, 1268 ... Control circuit, 1170, 1270 ... Cooling unit, 1171, 1271 ... Exhaust port, 1172, 1272 ... Axial fan, 1173, 1273, 1275 , 1277 ... Sirocco fan, 1174, 1274 ... Intake port, 1180, 1181, 1182, 1183 ... Space, 1190 ... Slide part (1192 ... One side, 1193 ... Other side, 1194 ... Top side, 1196 ... Front, 1197 ... 1208 ... Leg part (1208 s ... Leg part sensor), 1209 ... Neck part (1208 s ... Neck part sensor), 1269 ... Tilt sensor, 1276 ... Heat sink, 2100, 2200 ... Projection type image display device, 2101, 2201 ... Housing (1102, XXXXXXX1202X ... one side, 2102a ... one side overlapped part, 2103, 2203 ... other side, 2104, 2204 ... top, 2105, 2205 ... bottom, 2106, 2206 ... front, 2107, 2207 ... back), 2110 ... projection unit, 2112, 2112 ... projection lens Group 2112, 2212 ... aspherical mirror, 2113, 2213 ... projection window, 2120, 2220 ... DMD, 2121 ... prism block (2121a ... surface), 2122, 2222 ... DMD control circuit, 2130, 2230 ... illumination unit, 2131, 2231 ... LED (2131R, 2231R ... red LED, 2131G, 2231G ... green LED, 2131B, 2231B ... blue LED), 2132, 2232 ... dichroic prism, 2133, 2233 ... taper rod, 2134, 2135, 2136, 2234, 2235, 2236 ... Lens, 2137, 2138, 2237, 2338 ... Mirror, 2139, 2239 ... LED control circuit, 2140, 2240 ... Video generation unit, 2150, 2250 ... Battery unit, 2151, 2251 ... Battery 2152, 2252 ... Battery control circuit, 2153, 2253 ... Power connector, 2160, 2260 ... Control unit, 2161, 2162 ... Video connector, 2163 ... SD card slot, 2164 ... USB connector, 2165 ... LAN connector, 2166 ... Power switch , 2167 ... operation buttons, 2168, 2268 ... control circuit, 2170, 2270 ... cooling section, 2171, 2271 ... exhaust ports, 2172, 2272 ... axial fans, 2173, 2273, 2275, 2277 ... sirocco fans, 2174, 2274 ... Air inlet, 2180, 2181, 2182, 2183 ... Space, 2190 ... Slide part (2192 ... One side, 2193 ... Other side, 2194 ... Top, 2196 ... Front, 2197 ... Back), 2208 ... Leg (2208s ... Leg sensor) 2209 ... Neck (2208s ... Neck sensor), 2269 ... Inclination sensor, 2276 ... Heat sink

Claims (17)

  1.  光源から出射される光を変調する光変調素子と、前記光変調素子から出射される光を投写面上に投写する投写光学系とを収容する筐体を備えており、基準面上に配置される投写型映像表示装置であって、
     前記筐体は、前記基準面と対向する底面を有しており、
     前記底面には、前記基準面を検出可能に構成された検出部が設けられており、
     前記検出部によって前記基準面が検出された場合に、自装置の運転を開始する運転制御部を備えることを特徴とする投写型映像表示装置。
    A housing that houses a light modulation element that modulates light emitted from the light source and a projection optical system that projects the light emitted from the light modulation element onto a projection surface is disposed on the reference surface. A projection-type image display device,
    The housing has a bottom surface facing the reference surface,
    The bottom surface is provided with a detection unit configured to be able to detect the reference surface,
    A projection display apparatus, comprising: an operation control unit that starts operation of the device when the reference unit is detected by the detection unit.
  2.  前記検出部は、前記基準面を検出する少なくとも3つ以上の検出点を有することを特徴とする請求項1に記載の投写型映像表示装置。 The projection display apparatus according to claim 1, wherein the detection unit includes at least three detection points for detecting the reference plane.
  3.  前記少なくとも3つ以上の検出点は、前記筐体が前記基準面に配置された状態で通電する機械的なスイッチであることを特徴とする請求項2に記載の投写型映像表示装置。 3. The projection display apparatus according to claim 2, wherein the at least three or more detection points are mechanical switches that are energized in a state where the casing is disposed on the reference plane.
  4.  前記筐体は、前記投写光学系から出射される光を透過する透過領域を被覆可能に構成されたカバー体と、前記投写光学系に設けられたレンズと連動するフォーカス調整具と有しており、
     前記カバー体は、前記カバー体の移動によって、前記透過領域を被覆する被覆状態及び前記透過領域を被覆しない非被覆状態に遷移し、
     前記フォーカス調整具は、前記カバー体の移動によって初期位置に戻ることを特徴とする請求項1に記載の投写型映像表示装置。
    The casing includes a cover body configured to be able to cover a transmission region that transmits light emitted from the projection optical system, and a focus adjustment tool that is linked to a lens provided in the projection optical system. ,
    The cover body transitions to a covering state that covers the transmission region and a non-covering state that does not cover the transmission region by the movement of the cover body,
    The projection image display apparatus according to claim 1, wherein the focus adjustment tool returns to an initial position by movement of the cover body.
  5.  前記運転制御部は、前記投写型映像表示装置の運転開始後において、前記筐体内の冷却状態が所定状態よりも悪い場合に、前記投写型映像表示装置の運転を終了することを特徴とする請求項1に記載の投写型映像表示装置。 The operation control unit ends the operation of the projection display apparatus when the cooling state in the casing is worse than a predetermined state after the operation of the projection display apparatus is started. Item 4. The projection display apparatus according to Item 1.
  6.  光源から出射される光を変調する光変調素子と、前記光変調素子から出射される光を投写面上に投写する投写光学系とを収容する筐体を備えており、基準面上に配置される投写型映像表示装置であって、
     前記筐体は、前記投写光学系から出射される光を透過する透過領域を被覆可能に構成されたカバー体と、前記投写光学系に設けられたレンズと連動するフォーカス調整具と有しており、
     前記カバー体は、前記カバー体の移動によって、前記透過領域を被覆する被覆状態及び前記透過領域を被覆しない非被覆状態に遷移し、
     前記フォーカス調整具は、前記カバー体の移動によって初期位置に戻ることを特徴とする投写型映像表示装置。
    A housing that houses a light modulation element that modulates light emitted from the light source and a projection optical system that projects the light emitted from the light modulation element onto a projection surface is disposed on the reference surface. A projection-type image display device,
    The casing includes a cover body configured to be able to cover a transmission region that transmits light emitted from the projection optical system, and a focus adjustment tool that is linked to a lens provided in the projection optical system. ,
    The cover body transitions to a covering state that covers the transmission region and a non-covering state that does not cover the transmission region by the movement of the cover body,
    The projection image display apparatus according to claim 1, wherein the focus adjustment tool returns to an initial position by the movement of the cover body.
  7.  映像光を生成する映像光生成部と、前記映像光生成部を収納する筐体と、前記映像光生成部から出射された前記映像光の出射方向とは異なる方向へ前記映像光を折り曲げて投写面へ投写させる投写部と、を備えた投写型映像表示装置において、
     前記映像光が前記筐体から出射する面を正面、前記正面に対向する面を背面、前記投写面と略平行で且つ最も近い面を底面、前記底面に対抗する面を天面、前記正面と前記背面との間で前記底面と前記天面以外の面を側面としたとき、投写型映像表示装置に各種指令を与える操作部が前記天面及び/又は前記側面に配されることを特徴とする投写型映像表示装置。
    An image light generation unit that generates image light, a housing that houses the image light generation unit, and the image light that is bent and projected in a direction different from the emission direction of the image light emitted from the image light generation unit A projection-type image display apparatus comprising: a projection unit that projects onto a surface;
    The surface from which the image light exits from the housing is the front surface, the surface facing the front surface is the back surface, the surface that is substantially parallel and closest to the projection surface is the bottom surface, the surface that faces the bottom surface is the top surface, and the front surface When the bottom surface and the surface other than the top surface are side surfaces between the back surface, an operation unit that gives various commands to the projection display apparatus is arranged on the top surface and / or the side surface. Projection-type image display device.
  8.  前記操作部は操作ボタンを有し、前記操作ボタンの配置は、前記筺体の正面及び背面から確認したときに前後対称に配されていることを特徴とする請求項7に記載の投写型映像表示装置。 The projection image display according to claim 7, wherein the operation unit includes an operation button, and the operation buttons are arranged symmetrically in the front-rear direction when confirmed from a front surface and a back surface of the housing. apparatus.
  9.  投写される前記映像光の状態を調整する調整部を備え、前記調整部の調整つまみは前記側面に配されていることを特徴とする請求項7に記載の投写型映像表示装置。 The projection display apparatus according to claim 7, further comprising an adjustment unit that adjusts a state of the image light to be projected, wherein an adjustment knob of the adjustment unit is disposed on the side surface.
  10.  投写される前記映像光の状態を調整する調整部を備え、前記調整部の調整つまみは前記正面に配されていることを特徴とする請求項7に記載の投写型映像表示装置。 8. The projection display apparatus according to claim 7, further comprising an adjustment unit that adjusts a state of the projected image light, wherein an adjustment knob of the adjustment unit is disposed on the front surface.
  11.  電源及び入力信号を入力する入力部を備え、前記入力部は、前記側面に配されることを特徴とする請求項7に記載の投写型映像表示装置。 8. The projection display apparatus according to claim 7, further comprising an input unit for inputting a power source and an input signal, wherein the input unit is disposed on the side surface.
  12.  前記調整つまみ及び/又は前記入力部を覆うカバーを備えることを特徴とする請求項9乃至11のいずれかに記載の投写型映像表示装置。 The projection display apparatus according to claim 9, further comprising a cover that covers the adjustment knob and / or the input unit.
  13.  前記筺体内部に冷却風を導く吸気口と、前記筺体内部から冷却風を排出する排気口とを有し、前記筐体は、少なくとも一方向の寸法が変化する可動部を有し、前記可動部を可動させることと連動して前記カバーを可動させることにより前記つまみ、前記入力部、前記吸気口、前記排気口のうち少なくとも一の開閉を行うことを特徴とする請求項7に記載の投写型映像表示装置。 The housing has an intake port for introducing cooling air into the housing and an exhaust port for discharging cooling air from the housing, and the housing has a movable portion whose dimensions change in at least one direction, and the movable portion 8. The projection type according to claim 7, wherein at least one of the knob, the input unit, the intake port, and the exhaust port is opened and closed by moving the cover in conjunction with moving the cover. Video display device.
  14.  映像光を生成する映像光生成部と、前記映像光生成部から出射された前記映像光を投写面側へ反射するミラーと、を備えた投写型映像表示装置であって、
     前記映像光生成部へ電力を供給する電力供給部を備え、
     前記電力供給部は、前記ミラーと可及的に離れた位置に設けられることを特徴とする投写型映像表示装置。
    A projection display apparatus comprising: an image light generator that generates image light; and a mirror that reflects the image light emitted from the image light generator toward a projection surface,
    A power supply unit for supplying power to the image light generation unit;
    The projection display apparatus, wherein the power supply unit is provided at a position as far as possible from the mirror.
  15.  前記映像光生成部を冷却する冷却部をさらに備え、
     前記冷却部は、前記ミラーと可及的に離れた位置に設けられることを特徴とする請求項14に記載の投写型映像表示装置。
    A cooling unit for cooling the image light generation unit;
    15. The projection display apparatus according to claim 14, wherein the cooling unit is provided at a position as far as possible from the mirror.
  16.  前記映像光生成部を収納し、略直方体形状を有する筐体をさらに備え、
     前記映像光が前記筐体から出射する面を正面、前記正面に対向する面を背面、前記正面と前記背面との間に位置する面であって前記電力供給部が配される面を底面としたとき、
     自装置を操作する操作部は、前記正面、前記背面および前記底面を除く面に設けられることを特徴とする請求項14に記載の投写型映像表示装置。
    The image light generation unit is housed, and further includes a housing having a substantially rectangular parallelepiped shape,
    The surface from which the image light is emitted from the housing is the front surface, the surface facing the front surface is the back surface, the surface located between the front surface and the back surface, and the surface on which the power supply unit is disposed is the bottom surface. When
    The projection display apparatus according to claim 14, wherein an operation unit for operating the device is provided on a surface excluding the front surface, the back surface, and the bottom surface.
  17.  前記投写面が水平面であるとき、
     前記電力供給部は自装置の最下部に位置し、
     前記ミラーは、前記電力供給部の上部に設けられた前記映像生成部から上方へ出射された前記映像光を前記投写面へ反射する位置に設けられることを特徴とする請求項14に記載の投写型映像表示装置。
    When the projection plane is a horizontal plane,
    The power supply unit is located at the bottom of the device,
    The projection according to claim 14, wherein the mirror is provided at a position where the image light emitted upward from the image generation unit provided on the power supply unit is reflected to the projection surface. Type image display device.
PCT/JP2011/051186 2010-01-29 2011-01-24 Projection image display device WO2011093234A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-017891 2010-01-29
JP2010017891 2010-01-29
JP2010039307 2010-02-24
JP2010-039307 2010-02-24
JP2010040397 2010-02-25
JP2010-040397 2010-02-25

Publications (1)

Publication Number Publication Date
WO2011093234A1 true WO2011093234A1 (en) 2011-08-04

Family

ID=44319222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051186 WO2011093234A1 (en) 2010-01-29 2011-01-24 Projection image display device

Country Status (2)

Country Link
JP (1) JP2011197644A (en)
WO (1) WO2011093234A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590020A3 (en) * 2011-11-04 2014-10-29 Ricoh Company Ltd. Image projection apparatus with cooling system
CN109803847A (en) * 2016-09-28 2019-05-24 富士胶片株式会社 Projection display device, the operation method of projection display device and operation program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077055B (en) * 2014-09-26 2019-03-22 富士胶片株式会社 Projection type image display apparatus and heat dissipating method
JP5995154B2 (en) * 2015-02-09 2016-09-21 株式会社リコー Image projection device
JP2017058538A (en) * 2015-09-17 2017-03-23 セイコーエプソン株式会社 projector
JP2016194716A (en) * 2016-07-04 2016-11-17 株式会社リコー Image projection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289931A (en) * 1993-03-31 1994-10-18 Fujitsu General Ltd Autonomous traveling vehicle
JP2002323926A (en) * 2001-04-24 2002-11-08 Toshiba Tec Corp Autonomous travel vehicle
JP2003131118A (en) * 2001-10-24 2003-05-08 Seiko Epson Corp Projector with automatic focusing function
JP2005018313A (en) * 2003-06-25 2005-01-20 Wacom Co Ltd Input pointing unit and input device
JP2005115156A (en) * 2003-10-09 2005-04-28 Nikon Corp Projector
JP2006267181A (en) * 2005-03-22 2006-10-05 Olympus Corp Display device
JP2008170759A (en) * 2007-01-12 2008-07-24 Seiko Epson Corp Projector with placing stand
JP2009058935A (en) * 2007-08-07 2009-03-19 Sanyo Electric Co Ltd Projection image display apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289931A (en) * 1993-03-31 1994-10-18 Fujitsu General Ltd Autonomous traveling vehicle
JP2002323926A (en) * 2001-04-24 2002-11-08 Toshiba Tec Corp Autonomous travel vehicle
JP2003131118A (en) * 2001-10-24 2003-05-08 Seiko Epson Corp Projector with automatic focusing function
JP2005018313A (en) * 2003-06-25 2005-01-20 Wacom Co Ltd Input pointing unit and input device
JP2005115156A (en) * 2003-10-09 2005-04-28 Nikon Corp Projector
JP2006267181A (en) * 2005-03-22 2006-10-05 Olympus Corp Display device
JP2008170759A (en) * 2007-01-12 2008-07-24 Seiko Epson Corp Projector with placing stand
JP2009058935A (en) * 2007-08-07 2009-03-19 Sanyo Electric Co Ltd Projection image display apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590020A3 (en) * 2011-11-04 2014-10-29 Ricoh Company Ltd. Image projection apparatus with cooling system
US8998425B2 (en) 2011-11-04 2015-04-07 Ricoh Company, Limited Image projection apparatus
US9004697B2 (en) 2011-11-04 2015-04-14 Ricoh Company, Limited Image projection apparatus
US9429828B2 (en) 2011-11-04 2016-08-30 Ricoh Company, Ltd. Image projection apparatus
CN109803847A (en) * 2016-09-28 2019-05-24 富士胶片株式会社 Projection display device, the operation method of projection display device and operation program

Also Published As

Publication number Publication date
JP2011197644A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
US20110188008A1 (en) Projection display apparatus
WO2011093234A1 (en) Projection image display device
JP4988948B2 (en) Projection display
JP5509689B2 (en) projector
JP5692654B2 (en) Image projection device
US20110188004A1 (en) Projection-type image display apparatus
JP2013097341A (en) Image projector
EP3855248A1 (en) Projection device and projection lens
JP2013038626A (en) Imaging apparatus and projector
JP2013195668A (en) Image projection device
JP2011158522A (en) Projection video display apparatus
JP5637469B1 (en) Image projection device
JP2013123099A (en) Projection image display device
JP3512033B2 (en) projector
JP2005266602A (en) Transmission type screen and projection type display device
JP6118911B2 (en) Projection display device
JP2013195669A (en) Image projection device
JP2011227300A (en) Projection type video display device
JP2013122490A (en) Projection type video display system
JPH0540318A (en) Projection type display device
JP2013122492A (en) Projection type image display device, projection type video display system, and screen
JP2011180260A (en) Projection display device
JP2013122491A (en) Projection type video display device
JP4906042B2 (en) Image projection optical unit and image projection apparatus
JP2014149539A (en) Projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736947

Country of ref document: EP

Kind code of ref document: A1