WO2011093163A1 - Waste heat boiler - Google Patents

Waste heat boiler Download PDF

Info

Publication number
WO2011093163A1
WO2011093163A1 PCT/JP2011/050690 JP2011050690W WO2011093163A1 WO 2011093163 A1 WO2011093163 A1 WO 2011093163A1 JP 2011050690 W JP2011050690 W JP 2011050690W WO 2011093163 A1 WO2011093163 A1 WO 2011093163A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
chamber
waste heat
outer shell
plate
Prior art date
Application number
PCT/JP2011/050690
Other languages
French (fr)
Japanese (ja)
Inventor
昌計 山田
宏 坪根
満喜一 石原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2011093163A1 publication Critical patent/WO2011093163A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/30Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent in U-loop form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/105Penetrations of tubes through a wall and their sealing

Definitions

  • the present invention relates to a waste heat boiler, and more particularly to a waste heat boiler that recovers waste heat from a chemical plant such as an ammonia plant and generates steam using the waste heat.
  • waste heat boilers Conventionally, two types of waste heat boilers, a vertical water tube type and a horizontal smoke tube type, have been proposed as waste heat boilers that generate steam using waste heat (process gas) discharged from plant equipment.
  • FIG. 15 shows an example of a conventional vertical water tube waste heat boiler.
  • a conventional waste heat boiler 61 shown in FIG. 15 includes a cylindrical shell 62 extending in the vertical direction and a water chamber 63 provided on the upper portion of the shell 62.
  • a tube bundle (tube bundle) 65 composed of a plurality of heat transfer tubes 64 and a plurality of baffle plates 66 extending in a direction orthogonal to the plurality of heat transfer tubes 64 are arranged.
  • the shell 62 includes a cylindrical shroud 67 extending in the vertical direction and a fireproof heat insulating material 68 arranged so as to cover the periphery of the shroud 67.
  • a gas inlet 69 is provided at the lower end of the shell 62.
  • a process gas flows into the gas inlet 69 from a plant facility (not shown) via a gas pipe 70.
  • a gas outlet 71 is provided in the upper part of the shell 62, and the process gas after flowing into the shell 62 and completing the heat exchange is discharged from the gas outlet 71.
  • a bypass nozzle 72 is provided below the shell 62.
  • the bypass nozzle 72 discharges the process gas flowing into the shell 62 in a high temperature state, and controls the temperature of the process gas discharged from the gas outlet 71 and supplied to the downstream equipment.
  • the water chamber 63 disposed on the upper side of the tube plate 73 is divided into two rooms by a partition plate 74.
  • the water chamber 63 includes a first chamber 76 into which water supplied from a steam drum (not shown) flows, and a second chamber 78 into which water and steam heated in the shell 62 flow.
  • the first chamber 76 is provided with a feed water inlet nozzle 75 connected to the steam drum, while the second chamber 78 is provided with a steam outlet nozzle 77 for discharging the mixed water and steam mixed phase fluid after heating. Is provided.
  • each heat transfer tube 64 has one end 64 a connected to the first chamber 76 of the water chamber 63 and the other end 64 b connected to the second chamber 78 of the water chamber 63.
  • Each of the heat transfer tubes 64 is formed in a U-shape, extends downward from the first chamber 76 of the water chamber 63, is folded at the lower portion of the shell 62, and other than the second chamber 78 of the water chamber 63. The connection is made at the end 64b.
  • the plurality of baffle plates 66 includes a substantially rectangular first plate member 79 and a pair of second plate members 80 disposed so as to sandwich the first plate member 79.
  • the first plate member 79 and the second plate member 80 are alternately arranged in parallel along the vertical direction of the shell 62.
  • each heat transfer tube 64 is disposed so as to pass through holes (not shown) provided in the plurality of baffle plates 66.
  • cylindrical spacers 81 and tie rods 82 are arranged at appropriate locations in the tube group of the heat transfer tubes 64 as shown in FIG. I am doing so.
  • skis 83 are attached to the outer circumferences of the plurality of baffle plates 66 so as to connect the baffle plates 66.
  • the ski 83 has a function of facilitating insertion into a temporary cylinder (not shown) when transporting the tube bundle 65 and sliding the tube bundle 65 when inserting the tube bundle 65 into the shroud 67 to facilitate insertion. It comes to play a role.
  • the shroud 67 and the plurality of baffle plates 66 constitute a process gas flow path.
  • the process gas rises while changing the flow direction along the flow path, and performs heat exchange with water in the heat transfer pipe 64.
  • the water that has flowed into the first chamber 76 of the water chamber 63 flows through the heat transfer pipe 64 to exchange heat with the process gas, and becomes a mixed phase fluid of water and water vapor.
  • This mixed phase of water and water vapor flows into the second chamber 78 of the water chamber 63 from the heat transfer tube 64 and is discharged from the steam outlet nozzle 77.
  • FIG. 18 shows an example of a conventional horizontal smoke tube waste heat boiler.
  • FIG. 19 is an arrow view from the direction A in FIG.
  • the conventional waste heat boiler 91 of FIG. 18 includes an inlet gas chamber 92 into which process gas flows from a upstream device (not shown), an outlet gas chamber 93 into which process gas after heat exchange flows, and an inlet gas chamber 92. And an outlet gas chamber 93 are provided with a water chamber 94 extending in the horizontal direction.
  • the inlet gas chamber 92 and the outlet gas chamber 93 are composed of a shroud 95 and a refractory heat insulating material 96 disposed so as to cover the periphery of the shroud 95.
  • An inlet tube plate 97 is disposed between the inlet gas chamber 92 and the water chamber 94, and an outlet tube plate 98 is disposed between the outlet gas chamber 93 and the water chamber 94.
  • a plurality of heat transfer tubes 99 are arranged so as to pass through the water chamber 94, and one end 99a of each heat transfer tube 99 is connected to an inlet tube plate 97, and the other end 99b is an outlet tube. It is connected to the plate 98.
  • bypass pipe 100 is disposed so as to pass through the center of the water chamber 94 in the axial direction.
  • the bypass pipe 100 has one end 100a connected to the inlet tube plate 97 and the other end 100b connected to the outlet pipe. It is connected to the plate 98.
  • a steam drum 101 is provided above the water chamber 94.
  • the steam drum 101 is provided with a downcomer (downcomer) 102, which extends along the outer periphery of the water chamber 94 and is connected to the lower portion of the water chamber 94.
  • the steam drum 101 includes a riser (rising pipe) 103, and the riser 103 is connected to an upper nozzle 94 a provided at the upper part of the water chamber 64.
  • a pedestal 104 having a U-shaped cross section is provided below the water chamber 94.
  • the water chamber 94 is supported by a support member 105 extending in the horizontal direction from the water chamber 94.
  • a shock absorber 106 is disposed between the support member 105 and the pedestal 104 in order to buffer the force in the vertical direction.
  • the shock absorber 106 is composed of, for example, a spring.
  • a sliding device 108 for sliding the support member 105 in the horizontal direction is disposed between the support member 105 and the pedestal 104. Therefore, even when the water chamber 94 is thermally expanded in the arrow Y direction (see FIG. 18), the horizontal force applied to the support member 105 can be released.
  • FIG. 20 is an enlarged cross-sectional view of a portion B in FIG.
  • the end 99 c of the heat transfer tube 99 is attached to the side surface 97 a of the inlet tube plate 97 on the water chamber side by strength welding 109.
  • a ferrule (joint pipe) 110 made of high alloy steel is inserted into the end portion 99c of the heat transfer pipe 99 through the shroud 95 and the refractory heat insulating material 96, whereby the heat transfer pipe 99 and the inlet gas are inserted.
  • the chamber 92 is connected.
  • the process gas flowing into the inlet gas chamber 92 exchanges heat with water in the water chamber 94 through the heat transfer tube 99.
  • the exhaust gas chamber 93 is discharged.
  • the water in the steam drum 101 flows into the water chamber 94 through the downcomer 102 and exchanges heat with the heat transfer pipe 99 to become a mixed phase fluid of water and water vapor. Thereafter, this mixed phase of water and water vapor returns to the steam drum 101 through the riser 103.
  • Patent Document 1 discloses a waste heat recovery boiler device that cools combustion gas generated in a chemical plant or the like.
  • the waste heat recovery boiler apparatus of Patent Document 1 includes a gas chamber to which combustion gas is supplied, a cooling chamber in which can water for cooling the combustion gas is stored, and a cooling chamber disposed in the cooling chamber. It consists of a heat transfer tube that is introduced to exchange heat with canned water.
  • the baffle plate 66 when the baffle plate 66 comes into contact with the high-temperature process gas, the baffle plate 66 expands toward the outside of the shell 62, so that a compression surface pressure is generated between the hole provided in the baffle plate 66 and the heat transfer tube 64. As a result, the baffle plate 66 cannot move downward, and as shown in FIG. 17, the spacer 81, the tie rod 82, and the ski 83 are greatly buckled. At this time, these bucklings deform the baffle plate 66 and the shroud 67. Eventually, a gap is created between the baffle plate 66 and the shroud 67, and the amount of process gas passing through this gap increases. When the amount of the non-regular process gas increases at a high temperature passing through the gap as described above, a temperature difference is locally generated in the shroud 67, and the drift of the process gas flowing bypassing the bypass nozzle 72 is increased. Will be transformed.
  • the ski 83 creeps in a buckled state, when the operation stops, the ski 83 contracts while maintaining the buckled shape, and the baffle plate 66 is pulled up. At this time, the welded portion between the baffle plate 66 and the ski 83 is broken, and the heat transfer tube 64 passing through the tube hole of the baffle plate 66 is in contact with the corner of the tube hole to damage the heat transfer tube 64. become. Further, when the tube bundle 65 of the heat transfer tube 64 is pulled out from the shell 62 for maintenance, the shroud 67 and the baffle plate 66 are deformed and cannot be pulled out easily. Therefore, periodic maintenance is also affected.
  • the surface 97a of the inlet tube plate 97 on the water chamber 94 side is complicatedly reinforced.
  • the structure was more complicated, such as requiring (not shown).
  • the heat transfer tube 99 and the tube plate 97 may be damaged by metal dusting or the like. Therefore, in the waste heat boiler 91, the ferrule 110 made of a high alloy has to be inserted into each heat transfer tube 99, which has also caused an increase in cost.
  • the present invention has been made in view of such circumstances, and its purpose is to prevent process gas drift and local temperature differences resulting therefrom, as well as deformation and damage of parts disposed in the shell. Is to provide a waste heat boiler that can reduce costs with a simple structure.
  • a waste heat boiler that generates water vapor using waste heat discharged from plant equipment, and has a cylindrical shape extending in the vertical direction.
  • An outer shell formed so that process gas discharged from the plant equipment flows into the lower end, a first chamber provided at the upper portion of the outer shell and supplied with water, and after heating
  • a water chamber having a second chamber into which water and water vapor flow in, and extending downward from the first chamber of the water chamber, folded back at a lower portion of the outer shell, and the second of the water chamber.
  • Both waste heat boiler and a bypass pipe for discharging the process gas that has flowed into the outer shell is provided.
  • the bypass pipe penetrates the water chamber and extends through the axial center of the outer shell to the lower portion of the outer shell.
  • the present invention has an inner tube and an outer tube extending downward from the water chamber, the outer tube is connected to the first chamber of the water chamber and the inner tube Comprises a plurality of double tubes connected to the second chamber of the water chamber, and each heat transfer tube is disposed so as to pass through holes provided in the plurality of plate-like members, A double tube passes through holes provided in the plurality of plate-like members and supports the plurality of plate-like members.
  • the second chamber of the water chamber is provided with a first screw hole at a connection portion between the double tube and the inner tube, A cylindrical first tube holding member having a thread groove formed on the outer peripheral surface thereof is screwed into the screw hole, and the terminal portion of the inner tube of the double tube is connected to the first tube holding member. And is attached to the second chamber.
  • a step portion is formed at a position on the outer shell side on the inner peripheral surface of the first tube holding member, and the double tube is formed on the step portion.
  • the end portion of the inner tube is fitted, and the first tube holding member presses the end portion of the inner tube of the double tube with the stepped portion, while the first chamber of the second chamber is
  • the screw hole is configured to be screwed.
  • the second chamber of the water chamber is provided with a second screw hole at the position of the heat transfer tube, and the second screw hole has an outer periphery.
  • a cylindrical second tube holding member having a thread groove formed on the surface is screwed together, a ferrule is inserted into the heat transfer tube, and a ferrule end portion inserted into the heat transfer tube is It is attached to the second chamber via the second tube holding member.
  • a stepped portion is formed at a position on the outer shell side on the inner peripheral surface of the second tube holding member, and the end of the ferrule is formed on the stepped portion.
  • the second tube holding member is configured to be screwed into the second screw hole of the second chamber while pressing the end portion of the ferrule with the stepped portion.
  • a plurality of rod-shaped members that extend in the vertical direction of the outer shell and support the plate-shaped member disposed on the upper portion of the outer shell,
  • a spacer disposed around the rod-shaped member and configured to maintain a space between the plate-shaped members, and the hole of the plate-shaped member disposed at the lower portion of the outer shell has a first screw portion.
  • Each of the double pipes is formed with a second screw part at a position corresponding to the first screw part, and the first screw part of the plate-like member and the second screw part of the double pipe are formed.
  • a cylindrical member is disposed around the outer tube at a connection portion between the outer tube of the double tube and the first chamber of the water chamber.
  • the outer diameter of the cylindrical member is larger than the outer diameter of the portion of the double pipe provided with the second threaded portion.
  • an outer shell that is formed in a cylindrical shape extending in the vertical direction and configured so that process gas discharged from the plant equipment flows into a lower end portion, and an upper portion of the outer shell.
  • a water chamber comprising a first chamber to which water is supplied, a second chamber into which heated water and water vapor flows, and extends downward from the first chamber of the water chamber.
  • a plurality of heat transfer tubes that are folded back at a lower portion of the outer shell and connected to the second chamber of the water chamber, and extend in a direction orthogonal to the plurality of heat transfer tubes, A plurality of plate-like members arranged in parallel in the vertical direction, and the process gas that extends from the upper part of the outer shell to the lower part of the outer shell along the vertical direction of the outer shell and flows into the outer shell
  • a bypass pipe that discharges Is harvested by bypass pipe in the lower part of the shell can be discharged from the top of the shell.
  • a drift that causes a high-temperature process gas to flow toward the side surface of the outer shell has occurred.
  • the drift of the process gas is prevented and a temperature difference caused locally due to this is prevented.
  • components in the shell for example, baffle plates (plate-like members), inner cylinders, and the like.
  • the bypass pipe extends through the water chamber and passes through the axial center of the outer shell to the lower portion of the outer shell.
  • the process gas flowing into the shell is collected axisymmetrically around the bypass pipe and discharged from the upper part of the outer shell.
  • the waste heat boiler according to the present invention further includes an inner pipe and an outer pipe extending downward from the water chamber, the outer pipe being connected to the first chamber of the water chamber and the inner pipe.
  • the plate-like member is supported by the tie rod and the spacer.
  • the plate-like member is supported only by the double pipe, so when the waste heat boiler is operated, the double pipe is used. And a heat exchanger tube and a plate-shaped member will move similarly to an up-down direction, and can prevent a deformation
  • a step portion is formed at a position on the outer shell side on the inner peripheral surface of the first tube holding member, and the double pipe is formed on the step portion.
  • the end portion of the inner tube is fitted, and the first tube holding member presses the end portion of the inner tube of the double tube with the stepped portion, while the first chamber of the second chamber is
  • the inner pipe of the double pipe is securely held by the first pipe holding member and the non-rotating nut so that the waste heat boiler can be operated for a long time.
  • the structure is not loosened.
  • a stepped portion is formed at a position on the outer shell side on the inner peripheral surface of the second tube holding member, and the stepped portion is formed on the heat transfer tube.
  • the end portion of the inserted ferrule is fitted, and the second tube holding member is screwed into the second screw hole of the second chamber while pressing the end portion of the ferrule with the stepped portion.
  • the rotation stop nut since the rotation is stopped by the rotation stop nut, the ferrule is securely held by the second tube holding member, and the structure is such that it does not loosen even during long-time operation of the waste heat boiler.
  • the plurality of rod-shaped members that extend along the vertical direction of the outer shell and support the plate-shaped member disposed on the upper portion of the outer shell,
  • a spacer disposed around the rod-shaped member and configured to maintain a space between the plate-shaped members, and the hole of the plate-shaped member disposed at the lower portion of the outer shell has a first screw portion.
  • Each of the double pipes is formed with a second screw part at a position corresponding to the first screw part, and the first screw part of the plate-like member and the second screw part of the double pipe are formed.
  • the plate-like member arranged at the lower part of the outer shell is supported by being screwed with the screw part 2, the plate-like member arranged at the upper part of the outer shell is supported by the rod-like member
  • the plate-like member disposed at the lower part of the outer shell is supported by the double pipe.
  • the lower plate member of the outer shell was supported by a rod member (tie rod) and a spacer, but according to the present invention, the lower plate member of the outer shell is not a rod member or a spacer, Supported only by double tubes. Therefore, problems such as buckling of the rod-shaped member and the spacer due to the high-temperature process gas do not occur in the lower part of the outer shell.
  • the rod-shaped member and the spacer are not arranged in the lower part of the outer shell, when the waste heat boiler is operated, the double tube, the heat transfer tube, and the plate-like member move in the same manner in the vertical direction. Also, deformation and damage of the plate-like member can be prevented. On the other hand, since the temperature of the process gas is low at the upper part of the outer shell, even if the plate member is supported by the rod member and the spacer, the rod member and the spacer do not buckle.
  • a cylindrical member is disposed around the outer pipe at a connection portion between the outer pipe of the double pipe and the first chamber of the water chamber.
  • the outer diameter of the cylindrical member is larger than the outer diameter of the portion of the double pipe provided with the second threaded portion.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 16 is a cross-sectional view taken along line AA in FIG. It is the figure which showed the state after driving
  • FIG. 1 is an overall cross-sectional view of a waste heat boiler according to the present embodiment.
  • 2 is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • the waste heat boiler 1 generates steam by using waste heat discharged from plant equipment.
  • waste heat discharged from a chemical plant such as an ammonia plant is used as an example of plant equipment.
  • the waste heat boiler 1 includes a shell (outer shell) 2 formed in a cylindrical shape extending in the vertical direction.
  • the shell 2 includes a cylindrical shroud 3 extending in the vertical direction and a refractory heat insulating material 4 arranged so as to cover the periphery of the shroud 3.
  • a flange portion 2 a extending outward in the circumferential direction is provided at the upper end portion of the shell 2, and the flange portion 2 a is fixed to a tube plate 5 provided above the shell 2 by bolts 6. ing.
  • a cylindrical inner cylinder 7 extending in the vertical direction is disposed inside the shroud 3.
  • a flange portion 7 a extending toward the outer side in the circumferential direction is provided at the upper end portion of the inner cylinder 7, and the flange portion 7 a is fixed to the tube plate 5 with bolts 8.
  • a gas inlet 9 is provided at the lower end of the shell 2.
  • the gas inlet 9 is connected to the upstream device 54 (see FIG. 7) via the gas pipe 10, so that the high-temperature process gas discharged from the upstream device 54 flows into the gas inlet 9. It has become.
  • a refractory brick 11 is laid around the gas inlet 9, and the refractory brick 11 rectifies the flow of the process gas flowing from the gas inlet 9.
  • a gas collecting chamber 12 is provided in the upper part of the shell 2 along the circumferential direction of the shell 2.
  • the gas collecting chamber 12 is connected to a gas outlet nozzle 13 provided in the horizontal direction at the top of the shell 2.
  • the gas collecting chamber 12 and the gas outlet nozzle 13 are joined by an expansion joint 14.
  • the gas collecting chamber 12 includes an inner cylinder 7 disposed inside the shell 2 and an outer diameter portion 15 provided along the outer diameter of the shell 2.
  • the inner cylinder 7 is provided with a gas through hole 16 at a position corresponding to the gas collecting chamber 12, and the process gas flowing into the shell 2 enters the gas collecting chamber 12 through the gas through hole 16, and then It flows from the gas collecting chamber 12 to the gas outlet nozzle 13.
  • a water chamber 17 is provided on the upper side of the tube plate 5.
  • the water chamber 17 is divided into two upper and lower rooms by a partition plate 18 extending in the horizontal direction.
  • the water chamber 17 includes a first chamber 19 provided below the partition plate 18 and a second chamber 20 provided above the partition plate 18.
  • a water supply inlet nozzle 21 is provided in the first chamber 19 so that water supplied from a steam drum (not shown) flows in.
  • a steam outlet nozzle 22 is provided in the second chamber 20, and water and steam heated in the shell 2 are discharged from the steam outlet nozzle 22.
  • the second chamber 20 is provided with a manhole 23 for the purpose of internal inspection.
  • the waste heat boiler 1 further includes a plurality of heat transfer tubes 24.
  • the plurality of heat transfer tubes 24 bundles several heat transfer tubes 24 as one tube bundle (tube bundle).
  • the plurality of heat transfer tubes 24 are divided into three tube groups of a first tube bundle 24A, a second tube bundle 24B, and a third tube bundle (not shown).
  • each heat transfer tube 24 has both ends 25 connected to the first chamber 19 of the water chamber 17.
  • Each heat transfer tube 24 is formed in a U shape, extends downward from the first chamber 19 of the water chamber 17, is folded at the lower portion of the shell 2, and is connected to the first chamber 19 of the water chamber 17. is doing.
  • a ferrule 50 is inserted into one end 25 of the heat transfer tube 24, and the upper end of the ferrule 50 is connected to the second chamber 20 of the water chamber 17.
  • the waste heat boiler 1 includes a plurality of double tubes (bionette heat transfer tubes) 27.
  • each double pipe 27 has an outer pipe 28 and an inner pipe 29 that extend downward from the water chamber 17.
  • the outer tube 28 is connected to the first chamber 19 of the water chamber 17, and the inner tube 29 is connected to the second chamber 20 of the water chamber 17.
  • the double tube 27 is mixed in the heat transfer tube bundles 24A and 24B described above, and the heat transfer tube 24 and the double tube 27 constitute one tube bundle 24A and 24B.
  • a plurality of dummy pipes 30 are also arranged in the first tube bundle 24A.
  • the dummy pipe 30 is disposed under the first tube bundle 24A and serves to rectify the process gas flowing into the shell 2.
  • the waste heat boiler 1 includes a plurality of baffle plates (plate members) 31 extending in a direction orthogonal to the plurality of heat transfer tubes 24 and the double tubes 27.
  • the plurality of baffle plates 31 includes a first plate member 32 formed in a circular shape and a second plate member 33 formed concentrically with the first plate member 32 and formed in a donut shape. Has been.
  • the first plate material 32 and the second plate material 33 are alternately arranged in parallel along the vertical direction of the shell 2.
  • each heat transfer tube 24 is disposed so as to pass through holes (not shown) provided in the first and second plate members 32 and 33.
  • each double tube 27 penetrates through a hole 34 provided in the first and second plate members 32 and 33 and supports the first and second plate members 32 and 33.
  • a plurality of baffle plates 31 are supported not by the U-shaped heat transfer tube 24 but by the double tube 27.
  • the support structure of the baffle plate 31 includes a cylindrical spacer 35 disposed around the double pipe 27 in the upper part of the shell 2, and the gap between the tube plate 5 and the baffle plate 31. It is designed to hold the interval.
  • the baffle plate 31 is attached to the double pipe 27 via a stopper 36.
  • the waste heat boiler 1 includes a bypass pipe 37 that extends along the vertical direction of the shell 2 and discharges the process gas flowing into the shell 2.
  • the bypass pipe 37 extends from a bypass nozzle 38 provided in the upper part of the water chamber 17, passes through the first and second chambers 19 and 20 of the water chamber 17, and further passes through the tube plate 5 to pass through the shell 2. It extends to the bottom of the.
  • the bypass pipe 37 extends to the lower part of the shell 2 through the center in the axial direction of the shell 2, and collects and discharges the high-temperature process gas in an axisymmetric manner. It has become.
  • the bypass nozzle 38 is provided with a process gas damper 39.
  • the process gas damper 39 is a ball valve, and includes a ball-shaped valve body 40 and a valve chamber 41 in which the valve body 40 is disposed.
  • the valve body 40 is provided with a through hole (not shown), and the valve body 40 rotates in the valve chamber 41 to open and close the flow path of the bypass pipe 37.
  • FIG. 4 is a cross-sectional view showing a double tube support structure according to the present embodiment
  • FIG. 5 is a cross-sectional view showing a heat transfer tube support structure according to the present embodiment
  • FIG. 6 is an enlarged cross-sectional view of a portion C in FIG.
  • the upper surface 5 a of the tube plate 5 is overlaid with a high alloy containing nickel or the like, and the end portion 28 a of the outer tube 28 of the double tube 27 is attached to the overlay portion 42 by strength welding 43. It has been.
  • the inner pipe 29 of the double pipe 27 is attached to the partition plate 18 of the water chamber 17 via the first pipe holding member 44.
  • the partition plate 18 of the water chamber 17 is provided with a first screw hole 45 at a position corresponding to the inner tube 29 of the double tube 27.
  • the first screw hole 45 is formed by a female screw.
  • the first tube holding member 44 is a cylindrical member, and a thread groove 46 is formed on the outer peripheral surface of the first tube holding member 44.
  • the screw groove 46 is formed by a male screw, and the outer peripheral surface of the first tube holding member 44 is screwed into the first screw hole 45.
  • the first tube holding member 44 has two holes with different inner diameters, and a step 47 is formed at a position on the shell 2 side of the first tube holding member 44.
  • a step 47 is formed at a position on the shell 2 side of the first tube holding member 44.
  • the end portion 29 a of the inner tube 29 of the double tube 27 is fitted to the stepped portion 47, and the first tube holding member 44 connects the end portion 29 a of the inner tube 29 of the double tube 27 to the stepped portion 47.
  • the first screw hole 45 of the partitioning plate 18 is screwed into the separator plate 18 while being pressed.
  • a gap 48 is provided between the inner peripheral surface of the first tube holding member 44 and the outer peripheral surface of the inner tube 29 of the double tube 27.
  • the gap 48 functions as an adjustment portion when there is a manufacturing error. For example, even if there is a manufacturing error in the pitch of the inner tube 29 of the double tube 27, the end portion 29a of the inner tube 29 is fitted to the stepped portion 47 of the first tube holding member 44. Further, a locking nut 49 is screwed into the first tube holding member 44 from the partition plate 18 side. As a result, the first tube holding member 44 is configured not to loosen even when there is vibration or the like.
  • both ends 25 of the heat transfer tube 24 connected to the first chamber 19 of the water chamber 17 are attached to the overlay portion 42 on the tube plate 5 by strength welding 43 as described above.
  • One end of the heat transfer tube 24 is connected to the first chamber 19, while the other end of the heat transfer tube 24 is connected to the second chamber 20 via a ferrule (joint tube) 50 as shown in FIG. It is connected.
  • the end portion 25 of the heat transfer tube 24 is attached to the overlay portion 42 on the tube sheet 5 by strength welding 43.
  • the outer diameter of the end portion 50 a on the heat transfer tube side of the ferrule 50 is formed to a size corresponding to the inner diameter of the end portion 25 of the heat transfer tube 24, and the end portion 50 a of the ferrule 50 is the end portion of the heat transfer tube 24. It is attached so as to be inserted into the portion 25.
  • the end portion 50 b of the ferrule 50 on the side of the partition plate 18 is attached to the partition plate 18 of the water chamber 17 via the second tube holding member 51.
  • the partition plate 18 of the water chamber 17 is provided with a second screw hole 52 at a position corresponding to the ferrule 50.
  • the second screw hole 52 is formed by a female screw.
  • the second tube holding member 51 is a cylindrical member, and a screw groove 53 is formed on the outer peripheral surface of the second tube holding member 51.
  • the screw groove 53 is formed of a male screw, and the outer peripheral surface of the second tube holding member 51 is screwed into the second screw hole 52.
  • tube holding member 51 since it is the same structure as the 1st pipe
  • FIG. 7 is a diagram showing the installation level of the waste heat boiler according to the present embodiment and the upstream apparatus disposed on the upstream side of the waste heat boiler.
  • the installation level 55 is the same between the waste heat boiler 1 and the upstream apparatus 54 that supplies the process gas.
  • the waste heat boiler 1 and the upstream device 54 are similarly heated in the vertical direction, if the installation level 55 is the same, a shock absorber as in the prior art is not necessary.
  • the process gas is supplied from the upstream device 54 (see FIG. 7) to the gas inlet 9 through the gas pipe 10. Thereafter, the process gas flowing in from the gas inlet 9 is rectified by the refractory brick 11, and then rises while meandering the flow path formed by the inner cylinder 7 and the baffle plate 31. In the lower part of the shell 2, the high-temperature process gas is collected in an axisymmetric manner in the bypass pipe 37 and is discharged to the outside of the shell 2 by the bypass pipe 37. On the other hand, the process gas that has not flowed into the bypass pipe 37 exchanges heat with water in the outer pipe 28 (see FIG. 4) of the heat transfer pipe 24 and the double pipe 27 while rising in the shell 2. Then, as shown in FIG. 2, the process gas after the heat exchange enters the gas collecting chamber 12 through the gas through hole 16 at the upper portion of the shell 2, and then the gas outlet nozzle from the gas collecting chamber 12. It flows to 13.
  • the water supplied from the steam drum to the water chamber 17 flows into the heat transfer tube 24 and the double tube 27 through the first chamber 19.
  • the inflowing water exchanges heat with the process gas to become a mixed phase of water and water vapor, and flows into the second chamber 20 of the water chamber 17.
  • the double pipe 27 the inflowing water exchanges heat with the process gas while passing through the outer pipe 28 to become a mixed phase of water and water vapor.
  • a mixed phase fluid of water and water vapor flows into the second chamber 20 of the water chamber 17 through the inner pipe 29.
  • the mixed phase fluid of water and steam flowing into the second chamber 20 is discharged from the steam outlet nozzle 22.
  • the shell 2 is formed in a cylindrical shape extending in the vertical direction, and is configured so that the process gas discharged from the upstream device 54 flows into the lower end portion.
  • a water chamber 17 provided in the upper part of the shell 2 and provided with a first chamber 19 to which water is supplied and a second chamber 20 into which water and water vapor after heating flow, and a first of the water chamber 17.
  • the inside of the shell 2. Inflowing process gas, the central axis symmetrically gathered in the bypass pipe 37 and is discharged from the top of the shell 2. Conventionally, a drift has occurred in which a high-temperature process gas flows toward the side surface of the shell.
  • the process gas is prevented from drifting, and a temperature difference caused locally is also caused. Can be prevented. Thereby, it can prevent that the components in the shell 2, for example, a baffle plate (plate-shaped member) 31, the shroud 3, the inner cylinder 7, etc., are deformed.
  • the plurality of baffle plates 31 include a first plate member 32 formed in a circular shape and a second plate formed in a donut shape concentrically with the first plate member 32. Since the plate material 33 is used, the process gas flowing in the shell 2 can flow axisymmetrically around the bypass pipe 37. Thereby, the drift of process gas can be prevented effectively.
  • pipe 28 is connected to the 1st chamber 19 of the water chamber 17, and
  • the inner tube 29 includes a plurality of double tubes 27 connected to the second chamber 20 of the water chamber 17, and each heat transfer tube 24 is disposed so as to penetrate through holes provided in the plurality of baffle plates 31.
  • Each double tube 27 passes through holes 34 provided in the plurality of baffle plates 31 and supports the plurality of baffle plates 31.
  • the baffle plate is supported by the tie rod 82 and the spacer 81 (see FIG.
  • the 1st screw hole 45 is provided in the connection part with the inner tube
  • a cylindrical first tube holding member 44 having a screw groove 46 formed on the outer peripheral surface is screwed into the screw hole 45, and a stepped portion 47 is formed on the inner peripheral surface of the first tube holding member 44.
  • the end portion 29a of the inner tube 29 of the double tube 27 is fitted to the step portion 47, and the first tube holding member 44 connects the end portion 29a of the inner tube 29 of the double tube 27 to the step portion 47. It is configured to be screwed into the first screw hole 45 of the partition plate 18 while being pressed.
  • the inner pipe was attached to the partition plate by welding, but according to the present invention, the first pipe holding member 44 is configured to be removable, so that the maintenance of the double pipe 27 is performed. Sometimes the inner tube 29 or the like can be easily removed. Moreover, according to the waste heat boiler 1 which concerns on this embodiment, the inner pipe
  • the 2nd screw hole 52 is provided in the connection part with the ferrule 50 in the partition plate 18 of the water chamber 17, and in the 2nd screw hole 52, A cylindrical second tube holding member 51 having a thread groove 53 formed on the outer peripheral surface is screwed together. A stepped portion 47 is formed on the inner peripheral surface of the second tube holding member 51. The end portion 50b of the ferrule 50 is fitted, and the second tube holding member 51 is screwed into the second screw hole 52 of the partition plate 18 while pressing the end portion 50b of the ferrule 50 with the stepped portion 47. It is configured as follows.
  • the ferrule 50 can be easily taken out during maintenance of the heat transfer tube 24. Moreover, according to the waste heat boiler 1 which concerns on this embodiment, the ferrule 50 connected to the heat exchanger tube 24 is reliably hold
  • the structure is such that the waste heat boiler 1 does not loosen even during long-time operation.
  • the plurality of heat transfer tubes 24 are divided into three tube groups of the first tube bundle 24A, the second tube bundle 24B, and the third tube bundle.
  • the U-shaped maximum bending radius of the heat transfer tube 24 can be reduced. Thereby, the vibration of the U-shaped portion of the heat transfer tube 24 due to the flow of the process gas can be prevented without attaching a special vibration-proofing fitting or the like.
  • this structure can respond also to the enlargement of the waste heat boiler 1. FIG.
  • the gap 48 is provided between the inner peripheral surface of the first tube holding member 44 and the outer peripheral surface of the inner tube 29 of the double tube 27. Therefore, for example, even when there is a manufacturing error in the inner tube 29 of the double tube 27 or the pitch of the ferrule 50, the end portion 29 a of the inner tube 29 is fitted into the stepped portion 47 of the first tube holding member 44. be able to.
  • the installation level 55 is the same between the waste heat boiler 1 and the upstream apparatus 54 that supplies process gas.
  • the waste heat boiler 1 and the upstream apparatus 54 are similarly heated in the vertical direction, if the installation level 55 is the same, a shock absorber as in the prior art is not necessary and simple. The cost can be reduced with a simple structure.
  • FIG. 8 is an overall cross-sectional view of the waste heat boiler according to the present embodiment.
  • FIG. 9 is a view showing a double tube and a tie rod according to the present embodiment.
  • symbol is attached
  • the support structure of the baffle plate 31 is different between the upper part and the lower part of the shell 2.
  • the waste heat boiler 201 of this embodiment is arranged around a plurality of tie rods (bar-shaped members) 202 extending along the vertical direction of the shell 2 and the tie rods 202, And a spacer 203 for maintaining a gap therebetween.
  • the tie rod 202 and the spacer 203 are disposed only on the upper portion of the shell 2 and support the baffle plate 31 disposed on the upper portion of the shell 2.
  • the tie rod 202 includes a main body portion 204 having a thread groove formed on the outer peripheral surface of the lower end portion 204b, and an insertion portion 205 having a screw groove formed on the outer peripheral surface of the upper end portion. .
  • the body portion 204 of the tie rod 202 is disposed so as to penetrate the hole 31 a provided in the baffle plate 31.
  • the insertion portion 205 of the tie rod 202 is screwed into a screw groove 5 b provided in the tube plate 5.
  • a nut 206 is screwed into the lower end portion 204 b of the main body portion 204 of the tie rod 202.
  • the spacer 203 is formed in a cylindrical shape and is disposed around the main body portion 204 of the tie rod 202.
  • the tie rod 202 is disposed between the two baffle plates 31 disposed above and below, and maintains a distance between the baffle plates 31.
  • the tie rod 202 and the spacer 203 are disposed at approximately the upper half position in the shell 2.
  • the present invention is not limited to this arrangement, and the arrangement positions of the tie rod 202 and the spacer 203 can be changed. Inside the shell 2, the temperature is higher in the lower part where the process gas flows. In view of this, the tie rod 202 and the spacer 203 can be extended from the position of the tube plate 5 to a temperature at which the tie rod 202 and the spacer 203 are not buckled.
  • a first screw portion 207 is formed in the hole 34 of the baffle plate 31 arranged at the lower part of the shell 2.
  • the first screw portion 207 is a female screw.
  • a second screw portion 208 is formed in the outer tube 28 of the double tube 27 at a position corresponding to the first screw portion 207.
  • the second screw portion 208 is a male screw and is screwed with the first screw portion 207. Therefore, the first screw portion 207 of the baffle plate 31 and the second screw portion 208 of the outer tube 28 of the double tube 27 are screwed together, so that the baffle plate 31 disposed at the lower portion of the shell 2 is supported. It has become so.
  • the vacuum diffusion welding method is a method in which a base material is brought into close contact, pressure is applied under a temperature condition equal to or lower than the melting point of the base material, and joining is performed using diffusion of atoms generated on a joint surface. In this method, the welding atmosphere is performed under vacuum. As shown in FIG. 10, when this method is used, a base material for welding is separately welded to the outer periphery of the outer tube 28 of the double tube 27, and then a screw is cut to the base material to form a second screw. A portion 208 is formed.
  • the extrusion molding method is a method of forming a cross section of a pipe by extruding a raw material from a mold. When this method is used, a groove is previously formed in a mold for forming the outer tube 28 of the double tube 27, and the second screw portion is formed in the outer tube 28 by this groove as shown in FIG. 208 will be formed.
  • a sleeve tubular shape
  • Member 209 is inserted in the tube plate 5 (the connection portion between the outer tube 28 of the double tube 27 and the first chamber 19 of the water chamber 17).
  • An upper end portion 209 a of the sleeve 209 is attached to the overlay portion 42 by strength welding 210.
  • the end portion 28 a of the outer tube 28 of the double tube 27 is attached to the upper end portion 209 a of the sleeve 209 by strength welding 211.
  • the outer tube 28 of the double tube 27 and the sleeve 209 are fitted so that there is no gap between them, and the sleeve 209 and the tube plate 5 are fitted so that there is no gap between them. Match. Therefore, even if the double pipe 27 in the shell 2 is vibrated by the flow of the process gas, the influence is not exerted on the strength welds 210 and 211.
  • the outer diameter of the sleeve 209 is larger than the outer diameter of the portion of the outer tube 28 of the double tube 27 where the second screw portion 208 is provided. Therefore, when the outer pipe 28 of the double pipe 27 leaks and the double pipe 27 is removed, the sleeve 209 is removed first, whereby the outer pipe 28 of the double pipe 27 passes through the pipe plate 5 and the tube plate 5 is removed. It is possible to pull up to the upper water chamber 17.
  • FIG. 13 is a cross-sectional view of the entire waste heat boiler according to the second embodiment, showing a process of taking out a leaked double pipe.
  • illustration of tie rods and spacers is omitted for explanation.
  • the strength weld 210 (see FIG. 12) between the sleeve 209 and the tube plate 5 is removed, and the strength weld 211 between the outer tube 28 and the sleeve 209 is removed. Thereafter, the sleeve 209 is pulled out from the tube plate 5. After pulling out the sleeve 209, the outer tube 28 of the double tube 27 is pulled up. At this time, since the first screw portion 207 of the baffle plate 31 and the second screw portion 208 of the outer tube 28 are screwed together, the outer tube 28 is turned to remove all screwed portions and then The tube 28 is pulled up. Here, the worker takes out the outer tube 28 from the water vapor outlet nozzle 22 or the manhole 23 while cutting the outer tube 28 at an appropriate position.
  • the plug 212 is disposed at the place where the double tube 27 is removed.
  • the plug 212 has the same outer diameter as the sleeve 209, and the plug 212 and the tube plate 5 are fitted so that there is no gap between them.
  • the upper end portion 212 a of the plug 212 is attached to the overlay portion 42 by strength welding 213. With the above procedure, the removal of the leaked double tube 27 is completed.
  • a plurality of tie rods 202 that extend along the vertical direction of the shell 2 and support the baffle plate 31 disposed on the upper portion of the shell 2, and around the tie rods 202.
  • the first screw portion 207 is formed in the hole 34 of the baffle plate 31 disposed at the lower part of the shell 2 and is provided with a spacer 203 for holding the gap between the baffle plates 31.
  • a second screw portion 208 is formed at a position corresponding to the first screw portion 207 in the outer tube 28 of the tube 27, and the first screw portion 207 of the baffle plate 31 and the outer tube 28 of the double tube 27 are formed.
  • the baffle plate 31 arranged at the lower part of the shell 2 is supported by screwing with the second screw part 208, the baffle plate 31 arranged at the upper part of the shell 2 is supported by the tie rod 202. Supported by Baffles 31 arranged in the lower part of the E le 2 is supported by the double pipe 27.
  • the baffle plate 66 at the bottom of the shell 62 is supported by the tie rod 82 and the spacer 81 (see FIG. 15).
  • the baffle plate 31 at the bottom of the shell 2 is a bar-like member and spacer. Instead, it is supported only by the double pipe 27.
  • the tie rod 82 and the spacer 81 are buckled by the high temperature process gas in the lower part of the shell 66 as in the prior art.
  • the tie rod 202 and the spacer 203 are not arranged in the lower part of the shell 2, when the waste heat boiler 201 is operated, the double tube 27 and the heat transfer tube 24 and the baffle plate 31 are the same in the vertical direction. Therefore, deformation and damage of the baffle plate 31 can also be prevented.
  • the temperature of the process gas is low at the upper part of the shell 2 of this embodiment, even if the baffle plate 31 is supported by the tie rod 202 and the spacer 203, the tie rod 202 and the spacer 203 will not buckle.
  • the sleeve 209 is fitted around the outer tube 28 of the double tube 27 in the tube plate 5, and the outer diameter of the sleeve 209 is the second diameter of the outer tube 28. This is larger than the outer diameter of the portion where the screw portion 208 is provided. According to this configuration, by removing the sleeve 209 first from the tube plate 5, a space for allowing the outer tube 28 of the double tube 27 to pass through the tube plate 5 can be created. Therefore, in the configuration in which the second screw portion 208 is provided on the outer tube 28 of the double tube 27, the double tube 27 is connected to the water chamber 17 on the upper side of the shell 2 even when the outer tube 28 of the double tube 27 leaks. The double pipe 27 can be removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a waste heat boiler which enables the prevention of the biased flow of process gas and a local temperature difference caused thereby, the prevention of the deformation and damage of a component disposed in a shell, and the reduction of cost by a simple structure. Specifically provided is a waste heat boiler (1) provided with: a cylindrically formed outer shell (2) which extends in a vertical direction; a water chamber (17) provided with a first chamber (19) to which water is supplied and a second chamber (20) into which heated water and water vapor flow; a plurality of heat transfer tubes (24); a plurality of plate-shaped members (31) which extend in the direction orthogonal to the plurality of heat transfer tubes (24) and are arranged along the vertical direction of the outer shell (2), and a bypass tube (37) which extends from the upper portion of the outer shell (2) to the lower portion of the outer shell (2) along the vertical direction of the outer shell (2) and through which the process gas that has flowed into the outer shell (2) is discharged.

Description

廃熱ボイラWaste heat boiler
 本発明は、廃熱ボイラに関し、特に、アンモニアプラント等の化学プラントから廃熱を回収し、その廃熱を利用して蒸気を発生させる廃熱ボイラに関する。 The present invention relates to a waste heat boiler, and more particularly to a waste heat boiler that recovers waste heat from a chemical plant such as an ammonia plant and generates steam using the waste heat.
 従来より、プラント設備から排出された廃熱(プロセスガス)を用いて蒸気を発生させる廃熱ボイラとして、縦型水管式と横型煙管式の2つの種類の廃熱ボイラが提案されている。 Conventionally, two types of waste heat boilers, a vertical water tube type and a horizontal smoke tube type, have been proposed as waste heat boilers that generate steam using waste heat (process gas) discharged from plant equipment.
 図15は、従来の縦型水管式廃熱ボイラの一例を示している。
 図15の従来の廃熱ボイラ61は、上下方向に延びる円筒状のシェル62と、シェル62の上部に設けられた水室63とを備えている。
 シェル62の内部には、複数の伝熱管64からなる管束(チューブバンドル)65と、複数の伝熱管64に対して直交する方向に延在する複数の邪魔板66とが配置されている。
FIG. 15 shows an example of a conventional vertical water tube waste heat boiler.
A conventional waste heat boiler 61 shown in FIG. 15 includes a cylindrical shell 62 extending in the vertical direction and a water chamber 63 provided on the upper portion of the shell 62.
Inside the shell 62, a tube bundle (tube bundle) 65 composed of a plurality of heat transfer tubes 64 and a plurality of baffle plates 66 extending in a direction orthogonal to the plurality of heat transfer tubes 64 are arranged.
 図15に示すように、シェル62は、上下方向に延びる円筒状のシュラウド67と、このシュラウド67の周囲を覆うように配置された耐火断熱材68とから構成されている。また、シェル62の下端部には、ガス入口69が設けられている。このガス入口69には、ガス配管70を介してプラント設備(図示せず)からプロセスガスが流入するようになっている。一方、シェル62の上部には、ガス出口71が設けられており、シェル62内に流入して熱交換が終わった後のプロセスガスが、ガス出口71から排出されるようになっている。 As shown in FIG. 15, the shell 62 includes a cylindrical shroud 67 extending in the vertical direction and a fireproof heat insulating material 68 arranged so as to cover the periphery of the shroud 67. A gas inlet 69 is provided at the lower end of the shell 62. A process gas flows into the gas inlet 69 from a plant facility (not shown) via a gas pipe 70. On the other hand, a gas outlet 71 is provided in the upper part of the shell 62, and the process gas after flowing into the shell 62 and completing the heat exchange is discharged from the gas outlet 71.
 また、図15に示すように、シェル62の下部には、バイパスノズル72が設けられている。このバイパスノズル72は、シェル62内に流入したプロセスガスを高温の状態で排出して、ガス出口71から排出されて下流機器に供給されるプロセスガスの温度をコントロールするようになっている。
 また、管板73の上側に配置された水室63は、区切板74によって2つの部屋に分割されている。水室63は、蒸気ドラム(図示せず)から供給された水が流入する第1の室76と、シェル62内で加熱された水及び水蒸気が流入する第2の室78とを備えている。第1の室76には、蒸気ドラムに接続された給水入口ノズル75が設けられており、一方、第2の室78には、加熱後の水及び蒸気の混相流体を排出する蒸気出口ノズル77が設けられている。
As shown in FIG. 15, a bypass nozzle 72 is provided below the shell 62. The bypass nozzle 72 discharges the process gas flowing into the shell 62 in a high temperature state, and controls the temperature of the process gas discharged from the gas outlet 71 and supplied to the downstream equipment.
Further, the water chamber 63 disposed on the upper side of the tube plate 73 is divided into two rooms by a partition plate 74. The water chamber 63 includes a first chamber 76 into which water supplied from a steam drum (not shown) flows, and a second chamber 78 into which water and steam heated in the shell 62 flow. . The first chamber 76 is provided with a feed water inlet nozzle 75 connected to the steam drum, while the second chamber 78 is provided with a steam outlet nozzle 77 for discharging the mixed water and steam mixed phase fluid after heating. Is provided.
 図15に示すように、各伝熱管64は、一端64aが水室63の第1の室76に接続されており、他端64bが水室63の第2の室78に接続されている。また、各伝熱管64は、U字状に形成されており、水室63の第1の室76から下方に延びて、シェル62の下部で折り返して水室63の第2の室78に他端64bで接続している。 As shown in FIG. 15, each heat transfer tube 64 has one end 64 a connected to the first chamber 76 of the water chamber 63 and the other end 64 b connected to the second chamber 78 of the water chamber 63. Each of the heat transfer tubes 64 is formed in a U-shape, extends downward from the first chamber 76 of the water chamber 63, is folded at the lower portion of the shell 62, and other than the second chamber 78 of the water chamber 63. The connection is made at the end 64b.
 図16に示すように、複数の邪魔板66は、略矩形の第1の板材79と、この第1の板材79を挟むように配置される2つ1組の第2の板材80とから構成されている。従来例では、図15に示すように、第1の板材79と第2の板材80とが、シェル62の上下方向に沿って交互に並列されている。また、各伝熱管64は、複数の邪魔板66に設けられた穴(図示せず)を貫通するように配置されている。邪魔板66の支持構造としては、円筒状のスペーサ81及びタイロッド82を、図16に示すように伝熱管64の管群中の適当な箇所に配置して、邪魔板66間の間隔を保持するようにしている。 As shown in FIG. 16, the plurality of baffle plates 66 includes a substantially rectangular first plate member 79 and a pair of second plate members 80 disposed so as to sandwich the first plate member 79. Has been. In the conventional example, as shown in FIG. 15, the first plate member 79 and the second plate member 80 are alternately arranged in parallel along the vertical direction of the shell 62. Further, each heat transfer tube 64 is disposed so as to pass through holes (not shown) provided in the plurality of baffle plates 66. As a support structure for the baffle plates 66, cylindrical spacers 81 and tie rods 82 are arranged at appropriate locations in the tube group of the heat transfer tubes 64 as shown in FIG. I am doing so.
 また、複数の邪魔板66の外周には、図16に示すように、各邪魔板66を結ぶようにスキー83が取付けられている。このスキー83は、管束65を輸送する際の仮筒(図示せず)への挿入を容易にする役目と、管束65をシュラウド67へ挿入する際に管束65を滑らせて挿入を容易にする役目を果たすようになっている。 Further, as shown in FIG. 16, skis 83 are attached to the outer circumferences of the plurality of baffle plates 66 so as to connect the baffle plates 66. The ski 83 has a function of facilitating insertion into a temporary cylinder (not shown) when transporting the tube bundle 65 and sliding the tube bundle 65 when inserting the tube bundle 65 into the shroud 67 to facilitate insertion. It comes to play a role.
 以上のように、従来例の縦型水管式廃熱ボイラ61では、シュラウド67と複数の邪魔板66とでプロセスガスの流路を構成している。プロセスガスは、その流路に沿って流れ方向を変えながら上昇し、伝熱管64内の水と熱交換を行うようになっている。一方、水室63の第1の室76に流入した水は、伝熱管64内を流れてプロセスガスと熱交換を行い、水及び水蒸気の混相流体となる。この水及び水蒸気の混相は、伝熱管64から水室63の第2の室78に流入し、蒸気出口ノズル77から排出されるようになっている。 As described above, in the conventional vertical water pipe waste heat boiler 61, the shroud 67 and the plurality of baffle plates 66 constitute a process gas flow path. The process gas rises while changing the flow direction along the flow path, and performs heat exchange with water in the heat transfer pipe 64. On the other hand, the water that has flowed into the first chamber 76 of the water chamber 63 flows through the heat transfer pipe 64 to exchange heat with the process gas, and becomes a mixed phase fluid of water and water vapor. This mixed phase of water and water vapor flows into the second chamber 78 of the water chamber 63 from the heat transfer tube 64 and is discharged from the steam outlet nozzle 77.
 図18は、従来の横型煙管式廃熱ボイラの一例を示している。また、図19は、図18のA方向からの矢視図である。
 図18の従来の廃熱ボイラ91は、前流装置(図示せず)からプロセスガスが流入する入口ガス室92と、熱交換後のプロセスガスが流入する出口ガス室93と、入口ガス室92と出口ガス室93との間に水平方向に延在する水室94とを備えている。
FIG. 18 shows an example of a conventional horizontal smoke tube waste heat boiler. FIG. 19 is an arrow view from the direction A in FIG.
The conventional waste heat boiler 91 of FIG. 18 includes an inlet gas chamber 92 into which process gas flows from a upstream device (not shown), an outlet gas chamber 93 into which process gas after heat exchange flows, and an inlet gas chamber 92. And an outlet gas chamber 93 are provided with a water chamber 94 extending in the horizontal direction.
 図18に示すように、入口ガス室92及び出口ガス室93は、シュラウド95と、シュラウド95の周囲を覆うように配置された耐火断熱材96とから構成されている。入口ガス室92と水室94との間には、入口管板97が配置されており、出口ガス室93と水室94との間には、出口管板98が配置されている。この従来例では、複数の伝熱管99が、水室94内を通るように配置されており、各伝熱管99の一端99aは、入口管板97に連結されるとともに、他端99bは出口管板98に連結されている。また、バイパス管100が、水室94の軸方向の中心を通るように配置されており、バイパス管100も同様に、一端100aが入口管板97に連結されるとともに、他端100bが出口管板98に連結されている。 As shown in FIG. 18, the inlet gas chamber 92 and the outlet gas chamber 93 are composed of a shroud 95 and a refractory heat insulating material 96 disposed so as to cover the periphery of the shroud 95. An inlet tube plate 97 is disposed between the inlet gas chamber 92 and the water chamber 94, and an outlet tube plate 98 is disposed between the outlet gas chamber 93 and the water chamber 94. In this conventional example, a plurality of heat transfer tubes 99 are arranged so as to pass through the water chamber 94, and one end 99a of each heat transfer tube 99 is connected to an inlet tube plate 97, and the other end 99b is an outlet tube. It is connected to the plate 98. Further, the bypass pipe 100 is disposed so as to pass through the center of the water chamber 94 in the axial direction. Similarly, the bypass pipe 100 has one end 100a connected to the inlet tube plate 97 and the other end 100b connected to the outlet pipe. It is connected to the plate 98.
 図19に示すように、水室94の上方には、蒸気ドラム101が設けられている。蒸気ドラム101はダウンカマー(下降管)102を備えており、このダウンカマー102は、水室94の外周に沿って延在して、水室94の下部に接続している。また、蒸気ドラム101は、ライザー(上昇管)103を備えており、このライザー103は、水室64の上部に設けられた上部ノズル94aに接続している。 As shown in FIG. 19, a steam drum 101 is provided above the water chamber 94. The steam drum 101 is provided with a downcomer (downcomer) 102, which extends along the outer periphery of the water chamber 94 and is connected to the lower portion of the water chamber 94. The steam drum 101 includes a riser (rising pipe) 103, and the riser 103 is connected to an upper nozzle 94 a provided at the upper part of the water chamber 64.
 また、図19に示すように、水室94の下方には、断面U字形状の台座104が設けられている。水室94は、水室94から水平方向に延びるサポート部材105により支持されている。また、サポート部材105と台座104との間には、上下方向の力を緩衝するため緩衝装置106が配置されている。この緩衝装置106は、例えば、ばね等から構成されている。これにより、前流装置に接続されたL字状の接続管107が、矢印X方向(図18参照)に熱伸びした場合でもサポート部材105にかかる上下方向の力を抑えることができる。
 さらに、サポート部材105と台座104との間には、サポート部材105を水平方向にスライドさせるための摺動装置108が配置されている。これにより、水室94が矢印Y方向(図18参照)に熱伸びした場合でもサポート部材105にかかる水平方向の力を逃がすことができる。
Further, as shown in FIG. 19, a pedestal 104 having a U-shaped cross section is provided below the water chamber 94. The water chamber 94 is supported by a support member 105 extending in the horizontal direction from the water chamber 94. Further, a shock absorber 106 is disposed between the support member 105 and the pedestal 104 in order to buffer the force in the vertical direction. The shock absorber 106 is composed of, for example, a spring. Thereby, even when the L-shaped connecting pipe 107 connected to the upstream device is thermally expanded in the arrow X direction (see FIG. 18), the vertical force applied to the support member 105 can be suppressed.
Furthermore, a sliding device 108 for sliding the support member 105 in the horizontal direction is disposed between the support member 105 and the pedestal 104. Thereby, even when the water chamber 94 is thermally expanded in the arrow Y direction (see FIG. 18), the horizontal force applied to the support member 105 can be released.
 図20は、図18におけるBの部分の拡大断面図である。
 図20に示すように、伝熱管99の端部99cは、入口管板97の水室側の側面97aに強度溶接109により取付けられている。また、伝熱管99の端部99cには、高合金鋼製のフェルール(継ぎ手管)110がシュラウド95及び耐火断熱材96を貫通して差込まれており、これにより、伝熱管99と入口ガス室92とが接続されるようになっている。
20 is an enlarged cross-sectional view of a portion B in FIG.
As shown in FIG. 20, the end 99 c of the heat transfer tube 99 is attached to the side surface 97 a of the inlet tube plate 97 on the water chamber side by strength welding 109. Further, a ferrule (joint pipe) 110 made of high alloy steel is inserted into the end portion 99c of the heat transfer pipe 99 through the shroud 95 and the refractory heat insulating material 96, whereby the heat transfer pipe 99 and the inlet gas are inserted. The chamber 92 is connected.
 以上の構成から、従来例の横型煙管式廃熱ボイラ91では、図18に示すように、入口ガス室92に流入したプロセスガスが、伝熱管99を通って水室94内の水と熱交換を行い、出口ガス室93に排出されるようになっている。一方、図19に示すように、蒸気ドラム101の水は、ダウンカマー102を通って水室94に流入し、伝熱管99と熱交換を行って、水及び水蒸気の混相流体となる。その後、この水及び水蒸気の混相は、ライザー103を通って蒸気ドラム101へ戻ることになる。 With the above configuration, in the conventional horizontal-type smoke tube waste heat boiler 91, as shown in FIG. 18, the process gas flowing into the inlet gas chamber 92 exchanges heat with water in the water chamber 94 through the heat transfer tube 99. The exhaust gas chamber 93 is discharged. On the other hand, as shown in FIG. 19, the water in the steam drum 101 flows into the water chamber 94 through the downcomer 102 and exchanges heat with the heat transfer pipe 99 to become a mixed phase fluid of water and water vapor. Thereafter, this mixed phase of water and water vapor returns to the steam drum 101 through the riser 103.
 なお、その他の従来例として、特許文献1には、化学プラントなどにおいて発生する燃焼ガスを冷却する廃熱回収ボイラ装置が開示されている。特許文献1の廃熱回収ボイラ装置は、燃焼ガスが供給されるガスチャンバと、燃焼ガスを冷却する缶水を貯留した冷却室と、この冷却室に配設され、ガスチャンバ内の燃焼ガスを導入して缶水と熱交換させる伝熱管とから構成されている。 As another conventional example, Patent Document 1 discloses a waste heat recovery boiler device that cools combustion gas generated in a chemical plant or the like. The waste heat recovery boiler apparatus of Patent Document 1 includes a gas chamber to which combustion gas is supplied, a cooling chamber in which can water for cooling the combustion gas is stored, and a cooling chamber disposed in the cooling chamber. It consists of a heat transfer tube that is introduced to exchange heat with canned water.
特開2004-92980号公報JP 2004-92980 A
 以下に、従来の縦型水管式廃熱ボイラ61の問題点を図面を参照しながら説明する。
 図15の廃熱ボイラ61では、運転が始まると、伝熱管64内には水が流れているので、伝熱管64の管壁の温度はあまり上がらない。しかしながら、高温のプロセスガスに直接触れるスペーサ81、タイロッド82、及びスキー83は、高温になり、伝熱管64との温度差が大きくなる。その結果、スペーサ81、タイロッド82、及びスキー83は、熱で下方に伸びて、邪魔板66を押し下げることになる。
Hereinafter, problems of the conventional vertical water tube waste heat boiler 61 will be described with reference to the drawings.
In the waste heat boiler 61 of FIG. 15, when the operation starts, water flows in the heat transfer pipe 64, so that the temperature of the tube wall of the heat transfer pipe 64 does not rise so much. However, the spacer 81, the tie rod 82, and the ski 83 that directly contact the high temperature process gas become high temperature, and the temperature difference from the heat transfer tube 64 increases. As a result, the spacer 81, the tie rod 82, and the ski 83 extend downward due to heat, and push down the baffle plate 66.
 一方、邪魔板66は、高温のプロセスガスに接触すると、シェル62の外側方向に膨張するので、邪魔板66に設けられた穴と伝熱管64との間に圧縮面圧が生じる。これにより、邪魔板66は下方に移動ができなくなるので、図17に示すように、スペーサ81、タイロッド82、及びスキー83は、大きく座屈してしまう。この際、これらの座屈が、邪魔板66とシュラウド67を変形させることになる。最終的に、邪魔板66とシュラウド67との間に隙間が生じ、この隙間を通るプロセスガスの量が増大する。このように隙間を通る高温で正規でないプロセスガスの量が増大すると、局部的にシュラウド67に温度差が生じ、且つバイパスノズル72へバイパスして流れるプロセスガスの偏流が増大し、益々シュラウド67が変形することになる。 On the other hand, when the baffle plate 66 comes into contact with the high-temperature process gas, the baffle plate 66 expands toward the outside of the shell 62, so that a compression surface pressure is generated between the hole provided in the baffle plate 66 and the heat transfer tube 64. As a result, the baffle plate 66 cannot move downward, and as shown in FIG. 17, the spacer 81, the tie rod 82, and the ski 83 are greatly buckled. At this time, these bucklings deform the baffle plate 66 and the shroud 67. Eventually, a gap is created between the baffle plate 66 and the shroud 67, and the amount of process gas passing through this gap increases. When the amount of the non-regular process gas increases at a high temperature passing through the gap as described above, a temperature difference is locally generated in the shroud 67, and the drift of the process gas flowing bypassing the bypass nozzle 72 is increased. Will be transformed.
 さらに、図17に示すように、シュラウド67が変形すると、シュラウド67とバイパスノズル72との連結部が変形し、その結果、この部分に更に隙間を生じさせることになる。シュラウド67とバイパスノズル72との連結部に隙間が生じると、今度は、管束65内を流れない高温のプロセスガスが、シュラウド67と耐火断熱材68との間を直接バイパスして、バイパスノズル72へと流れることになる。このように、シェル62の側面にバイパスノズル72を設けると、高温のプロセスガスの偏流及びバイパス流れが生じ、それによりシュラウド67等に温度差ができるので、結果として、シュラウド67が変形し、損傷を招くことになる。 Furthermore, as shown in FIG. 17, when the shroud 67 is deformed, the connecting portion between the shroud 67 and the bypass nozzle 72 is deformed, and as a result, a further gap is generated in this portion. When a gap is generated in the connecting portion between the shroud 67 and the bypass nozzle 72, a high-temperature process gas that does not flow in the tube bundle 65 directly bypasses between the shroud 67 and the refractory heat insulating material 68, thereby bypassing the bypass nozzle 72. Will flow into. As described above, when the bypass nozzle 72 is provided on the side surface of the shell 62, a high-temperature process gas drift and a bypass flow are generated, thereby causing a temperature difference in the shroud 67 and the like. As a result, the shroud 67 is deformed and damaged. Will be invited.
 また、スキー83は座屈した状態でクリープするので、運転が停止すると、座屈した形状を保ちながら収縮することになり、邪魔板66を引っ張り上げることになってしまう。この際、邪魔板66とスキー83との溶接部分が破断するとともに、邪魔板66の管穴を貫通している伝熱管64と管穴の角が接触して、伝熱管64に損傷を与えることになる。
 また、メンテナンスのために伝熱管64の管束65をシェル62から引き抜く場合、シュラウド67や邪魔板66が変形しているので、容易に抜くことができない。したがって、定期的なメンテナンスにも影響を与えることになる。
Further, since the ski 83 creeps in a buckled state, when the operation stops, the ski 83 contracts while maintaining the buckled shape, and the baffle plate 66 is pulled up. At this time, the welded portion between the baffle plate 66 and the ski 83 is broken, and the heat transfer tube 64 passing through the tube hole of the baffle plate 66 is in contact with the corner of the tube hole to damage the heat transfer tube 64. become.
Further, when the tube bundle 65 of the heat transfer tube 64 is pulled out from the shell 62 for maintenance, the shroud 67 and the baffle plate 66 are deformed and cannot be pulled out easily. Therefore, periodic maintenance is also affected.
 次に、従来の横型煙管式廃熱ボイラ91の問題点を図面を参照しながら説明する。
 図18の廃熱ボイラ91においては、入口ガス室92に高温のプロセスガスが流入するので、入口管板97及び伝熱管99が高温になる。そのため、入口管板97は耐火断熱材96で被覆し、伝熱管99と入口管板97との強度溶接109は、損傷を防ぐため入口管板97の水室94側の表面97aに配置している。この他、入口管板97は、ガス側表面97b(図20参照)の温度上昇を防ぐために厚さを厚くできないので、その結果、入口管板97の水室94側の表面97aに複雑な補強(図示せず)を要する等、構造がより複雑となっていた。
 また、伝熱管99にはプロセスガスが高温の状態で流入すると、伝熱管99及び管板97がメタルダスティング等により損傷する可能性がある。したがって、廃熱ボイラ91においては、高合金製のフェルール110を各伝熱管99に挿入しなければならず、コストが増大する原因にもなっていた。
Next, problems of the conventional horizontal smoke tube type waste heat boiler 91 will be described with reference to the drawings.
In the waste heat boiler 91 of FIG. 18, since the high-temperature process gas flows into the inlet gas chamber 92, the inlet tube plate 97 and the heat transfer tube 99 become high temperature. Therefore, the inlet tube plate 97 is covered with a refractory heat insulating material 96, and the strength weld 109 between the heat transfer tube 99 and the inlet tube plate 97 is disposed on the surface 97a of the inlet tube plate 97 on the water chamber 94 side in order to prevent damage. Yes. In addition, since the thickness of the inlet tube plate 97 cannot be increased in order to prevent the temperature of the gas side surface 97b (see FIG. 20) from increasing, the surface 97a of the inlet tube plate 97 on the water chamber 94 side is complicatedly reinforced. The structure was more complicated, such as requiring (not shown).
Further, if the process gas flows into the heat transfer tube 99 in a high temperature state, the heat transfer tube 99 and the tube plate 97 may be damaged by metal dusting or the like. Therefore, in the waste heat boiler 91, the ferrule 110 made of a high alloy has to be inserted into each heat transfer tube 99, which has also caused an increase in cost.
 また、接続管107が、矢印X方向(図18参照)に熱伸びした場合の対策として、図19に示すように、サポート部材105と台座104との間には、上下方向の力を緩衝するための緩衝装置106を配置しなければならなかった。加えて、廃熱ボイラ91においては、水室94と蒸気ドラム101とをダウンカマー102及びライザー103でつなぎ且つ数本のライザー103で蒸気ドラム101を支持する構成もまた、構造を複雑にし、コストが増大する原因になっていた。 Further, as a countermeasure when the connecting pipe 107 is thermally expanded in the arrow X direction (see FIG. 18), the force in the vertical direction is buffered between the support member 105 and the pedestal 104 as shown in FIG. It was necessary to arrange a shock absorber 106 for the purpose. In addition, in the waste heat boiler 91, the structure in which the water chamber 94 and the steam drum 101 are connected by the downcomer 102 and the riser 103 and the steam drum 101 is supported by the several risers 103 also complicates the structure and reduces the cost. Was the cause of the increase.
 本発明はこのような実情に鑑みてなされたものであって、その目的は、プロセスガスの偏流及びこれに起因する局部的な温度差を防ぐとともに、シェル内に配置された部品の変形及び損傷を防ぎ、シンプルな構造でコストの削減も可能な廃熱ボイラを提供することである。 The present invention has been made in view of such circumstances, and its purpose is to prevent process gas drift and local temperature differences resulting therefrom, as well as deformation and damage of parts disposed in the shell. Is to provide a waste heat boiler that can reduce costs with a simple structure.
 上記従来技術の有する課題を解決するために、本発明の実施態様によれば、プラント設備から排出される廃熱を利用して水蒸気を生成する廃熱ボイラであって、上下方向に延びる円筒状に形成され、下端部に前記プラント設備から排出されたプロセスガスが流入するように構成された外殻と、前記外殻の上部に設けられ、水が供給される第1の室と、加熱後の水及び水蒸気が流入する第2の室とを備えている水室と、前記水室の前記第1の室から下方に延びて、前記外殻の下部で折り返して前記水室の前記第2の室に接続されている複数の伝熱管と、前記複数の伝熱管に対して直交する方向に延在し、前記外殻の上下方向に沿って並列された複数の板状部材と、前記外殻の上下方向に沿って前記外殻の上部から前記外殻の下部まで延在するとともに、前記外殻に流入した前記プロセスガスを排出するバイパス管とを備えている廃熱ボイラが提供される。 In order to solve the above-described problems of the prior art, according to an embodiment of the present invention, a waste heat boiler that generates water vapor using waste heat discharged from plant equipment, and has a cylindrical shape extending in the vertical direction. An outer shell formed so that process gas discharged from the plant equipment flows into the lower end, a first chamber provided at the upper portion of the outer shell and supplied with water, and after heating A water chamber having a second chamber into which water and water vapor flow in, and extending downward from the first chamber of the water chamber, folded back at a lower portion of the outer shell, and the second of the water chamber. A plurality of heat transfer tubes connected to the chamber, a plurality of plate-like members extending in a direction orthogonal to the plurality of heat transfer tubes and arranged in parallel along the vertical direction of the outer shell, Extends from the upper part of the outer shell to the lower part of the outer shell along the vertical direction of the shell Both waste heat boiler and a bypass pipe for discharging the process gas that has flowed into the outer shell is provided.
 また、本発明の別の実施態様によれば、前記バイパス管が、前記水室を貫通するとともに前記外殻の軸方向の中心を通って前記外殻の下部まで延在している。 Further, according to another embodiment of the present invention, the bypass pipe penetrates the water chamber and extends through the axial center of the outer shell to the lower portion of the outer shell.
 また、本発明の別の実施態様によれば、前記水室から下方に延びる内管及び外管を有し、前記外管が前記水室の前記第1の室に接続されるとともに前記内管が前記水室の前記第2の室に接続されている複数の二重管を備え、各伝熱管が、前記複数の板状部材に設けられた穴を貫通するように配置されており、各二重管が、前記複数の板状部材に設けられた穴を貫通するとともに前記複数の板状部材を支持している。 Moreover, according to another embodiment of the present invention, it has an inner tube and an outer tube extending downward from the water chamber, the outer tube is connected to the first chamber of the water chamber and the inner tube Comprises a plurality of double tubes connected to the second chamber of the water chamber, and each heat transfer tube is disposed so as to pass through holes provided in the plurality of plate-like members, A double tube passes through holes provided in the plurality of plate-like members and supports the plurality of plate-like members.
 また、本発明の別の実施態様によれば、前記水室の前記第2の室には、前記二重管の前記内管との接続部に第1のネジ孔が設けられ、該第1のネジ孔には、外周面にネジ溝が形成された円筒状の第1の管保持部材が螺合され、前記二重管の前記内管の終端部が、前記第1の管保持部材を介して前記第2の室に取付けられている。 According to another embodiment of the present invention, the second chamber of the water chamber is provided with a first screw hole at a connection portion between the double tube and the inner tube, A cylindrical first tube holding member having a thread groove formed on the outer peripheral surface thereof is screwed into the screw hole, and the terminal portion of the inner tube of the double tube is connected to the first tube holding member. And is attached to the second chamber.
 また、本発明の別の実施態様によれば、前記第1の管保持部材の内周面には、前記外殻側の位置に段差部が形成され、該段差部には、前記二重管の前記内管の終端部が嵌合され、前記第1の管保持部材は、前記二重管の前記内管の前記終端部を前記段差部で押圧しながら前記第2の室の前記第1のネジ孔に螺合するように構成されている。 According to another embodiment of the present invention, a step portion is formed at a position on the outer shell side on the inner peripheral surface of the first tube holding member, and the double tube is formed on the step portion. The end portion of the inner tube is fitted, and the first tube holding member presses the end portion of the inner tube of the double tube with the stepped portion, while the first chamber of the second chamber is The screw hole is configured to be screwed.
 また、本発明の別の実施態様によれば、前記水室の前記第2の室には、前記伝熱管の位置に第2のネジ孔が設けられ、該第2のネジ孔には、外周面にネジ溝が形成された円筒状の第2の管保持部材が螺合され、前記伝熱管には、フェルールが差込まれており、前記伝熱管に差込まれたフェルールの終端部が、前記第2の管保持部材を介して前記第2の室に取付けられている。 According to another embodiment of the present invention, the second chamber of the water chamber is provided with a second screw hole at the position of the heat transfer tube, and the second screw hole has an outer periphery. A cylindrical second tube holding member having a thread groove formed on the surface is screwed together, a ferrule is inserted into the heat transfer tube, and a ferrule end portion inserted into the heat transfer tube is It is attached to the second chamber via the second tube holding member.
 また、本発明の別の実施態様によれば、前記第2の管保持部材の内周面には、前記外殻側の位置に段差部が形成され、該段差部には、前記フェルールの終端部が嵌合され、前記第2の管保持部材は、前記フェルールの前記終端部を前記段差部で押圧しながら前記第2の室の前記第2のネジ孔に螺合するように構成されている。 According to another embodiment of the present invention, a stepped portion is formed at a position on the outer shell side on the inner peripheral surface of the second tube holding member, and the end of the ferrule is formed on the stepped portion. And the second tube holding member is configured to be screwed into the second screw hole of the second chamber while pressing the end portion of the ferrule with the stepped portion. Yes.
 また、本発明の別の実施態様によれば、前記外殻の上下方向に沿って延在するとともに、前記外殻の上部に配置された前記板状部材を支持する複数の棒状部材と、前記棒状部材の周囲に配置され、前記板状部材の間の間隔を保持するためのスペーサとを備え、前記外殻の下部に配置された前記板状部材の前記穴には、第1のネジ部が形成され、各二重管には、前記第1のネジ部に対応する位置に第2のネジ部が形成され、前記板状部材の前記第1のネジ部と前記二重管の前記第2のネジ部とが螺合することにより、前記外殻の下部に配置された前記板状部材が支持されるようになっている。 According to another embodiment of the present invention, a plurality of rod-shaped members that extend in the vertical direction of the outer shell and support the plate-shaped member disposed on the upper portion of the outer shell, A spacer disposed around the rod-shaped member and configured to maintain a space between the plate-shaped members, and the hole of the plate-shaped member disposed at the lower portion of the outer shell has a first screw portion. Each of the double pipes is formed with a second screw part at a position corresponding to the first screw part, and the first screw part of the plate-like member and the second screw part of the double pipe are formed. When the two screw portions are screwed together, the plate-like member disposed at the lower portion of the outer shell is supported.
 また、本発明の別の実施態様によれば、前記二重管の前記外管と前記水室の前記第1の室との接続部分には、前記外管の周囲に筒状部材が配置されており、該筒状部材の外径は、前記二重管の前記第2のネジ部が設けられた部分の外径よりも大きくなっている。 According to another embodiment of the present invention, a cylindrical member is disposed around the outer tube at a connection portion between the outer tube of the double tube and the first chamber of the water chamber. The outer diameter of the cylindrical member is larger than the outer diameter of the portion of the double pipe provided with the second threaded portion.
 本発明に係る廃熱ボイラによれば、上下方向に延びる円筒状に形成され、下端部に前記プラント設備から排出されたプロセスガスが流入するように構成された外殻と、前記外殻の上部に設けられ、水が供給される第1の室と、加熱後の水及び水蒸気が流入する第2の室とを備えている水室と、前記水室の前記第1の室から下方に延びて、前記外殻の下部で折り返して前記水室の前記第2の室に接続されている複数の伝熱管と、前記複数の伝熱管に対して直交する方向に延在し、前記外殻の上下方向に沿って並列された複数の板状部材と、前記外殻の上下方向に沿って前記外殻の上部から前記外殻の下部まで延在するとともに、前記外殻に流入した前記プロセスガスを排出するバイパス管とを備えているので、外殻内に流入したプロセスガスを外殻の下部においてバイパス管で回収して、外殻の上部から排出することができる。
 従来では、外殻の側面に向かって高温のプロセスガスが流れるような偏流が生じていたが、本発明によれば、プロセスガスの偏流を防ぎ、これに起因して局地的に生じる温度差も防ぐことができる。これにより、シェル内の部品、例えば、邪魔板(板状部材)、内筒等が変形するのを防止することができる。
According to the waste heat boiler according to the present invention, an outer shell that is formed in a cylindrical shape extending in the vertical direction and configured so that process gas discharged from the plant equipment flows into a lower end portion, and an upper portion of the outer shell. A water chamber comprising a first chamber to which water is supplied, a second chamber into which heated water and water vapor flows, and extends downward from the first chamber of the water chamber. A plurality of heat transfer tubes that are folded back at a lower portion of the outer shell and connected to the second chamber of the water chamber, and extend in a direction orthogonal to the plurality of heat transfer tubes, A plurality of plate-like members arranged in parallel in the vertical direction, and the process gas that extends from the upper part of the outer shell to the lower part of the outer shell along the vertical direction of the outer shell and flows into the outer shell And a bypass pipe that discharges Is harvested by bypass pipe in the lower part of the shell can be discharged from the top of the shell.
Conventionally, a drift that causes a high-temperature process gas to flow toward the side surface of the outer shell has occurred. However, according to the present invention, the drift of the process gas is prevented and a temperature difference caused locally due to this is prevented. Can also prevent. Thereby, it is possible to prevent deformation of components in the shell, for example, baffle plates (plate-like members), inner cylinders, and the like.
 また、本発明に係る廃熱ボイラによれば、前記バイパス管が、前記水室を貫通するとともに前記外殻の軸方向の中心を通って前記外殻の下部まで延在しているので、外殻内に流入したプロセスガスが、バイパス管を中心に軸対称的に集められ、外殻の上部から排出されることになる。これにより、プロセスガスの偏流をより効果的に防ぎ、これに起因して局地的に生じる温度差も防ぐことができる。 Further, according to the waste heat boiler according to the present invention, the bypass pipe extends through the water chamber and passes through the axial center of the outer shell to the lower portion of the outer shell. The process gas flowing into the shell is collected axisymmetrically around the bypass pipe and discharged from the upper part of the outer shell. Thereby, the drift of process gas can be prevented more effectively, and the temperature difference which arises locally by this can also be prevented.
 また、本発明に係る廃熱ボイラによれば、前記水室から下方に延びる内管及び外管を有し、前記外管が前記水室の前記第1の室に接続されるとともに前記内管が前記水室の前記第2の室に接続されている複数の二重管を備え、各伝熱管が、前記複数の板状部材に設けられた穴を貫通するように配置されており、各二重管が、前記複数の板状部材に設けられた穴を貫通するとともに前記複数の板状部材を支持している。
 従来では、タイロッド及びスペーサで板状部材を支持していたが、本発明によれば、二重管のみで板状部材を支持しているので、廃熱ボイラを運転した際に、二重管及び伝熱管と板状部材が上下方向に同じように移動することになり、板状部材の変形及び損傷を防ぐことができる。
The waste heat boiler according to the present invention further includes an inner pipe and an outer pipe extending downward from the water chamber, the outer pipe being connected to the first chamber of the water chamber and the inner pipe. Comprises a plurality of double tubes connected to the second chamber of the water chamber, and each heat transfer tube is disposed so as to pass through holes provided in the plurality of plate-like members, A double tube passes through holes provided in the plurality of plate-like members and supports the plurality of plate-like members.
Conventionally, the plate-like member is supported by the tie rod and the spacer. However, according to the present invention, the plate-like member is supported only by the double pipe, so when the waste heat boiler is operated, the double pipe is used. And a heat exchanger tube and a plate-shaped member will move similarly to an up-down direction, and can prevent a deformation | transformation and damage of a plate-shaped member.
 また、本発明に係る廃熱ボイラによれば、前記第1の管保持部材の内周面には、前記外殻側の位置に段差部が形成され、該段差部には、前記二重管の前記内管の終端部が嵌合され、前記第1の管保持部材は、前記二重管の前記内管の前記終端部を前記段差部で押圧しながら前記第2の室の前記第1のネジ孔に螺合するように構成されているので、二重管の内管が第1の管保持部材と廻り止めナットで確実に保持されることになり、廃熱ボイラの長時間運転においても緩まない構造となっている。 Further, according to the waste heat boiler according to the present invention, a step portion is formed at a position on the outer shell side on the inner peripheral surface of the first tube holding member, and the double pipe is formed on the step portion. The end portion of the inner tube is fitted, and the first tube holding member presses the end portion of the inner tube of the double tube with the stepped portion, while the first chamber of the second chamber is The inner pipe of the double pipe is securely held by the first pipe holding member and the non-rotating nut so that the waste heat boiler can be operated for a long time. The structure is not loosened.
 また、本発明に係る廃熱ボイラによれば、前記第2の管保持部材の内周面には、前記外殻側の位置に段差部が形成され、該段差部には、前記伝熱管に差込まれたフェルールの終端部が嵌合され、前記第2の管保持部材は、前記フェルールの前記終端部を前記段差部で押圧しながら前記第2の室の前記第2のネジ孔に螺合し更に廻り止めナットにより廻り止めされているので、フェルールが第2の管保持部材で確実に保持されることになり、廃熱ボイラの長時間運転においても緩まない構造となっている。 Further, according to the waste heat boiler according to the present invention, a stepped portion is formed at a position on the outer shell side on the inner peripheral surface of the second tube holding member, and the stepped portion is formed on the heat transfer tube. The end portion of the inserted ferrule is fitted, and the second tube holding member is screwed into the second screw hole of the second chamber while pressing the end portion of the ferrule with the stepped portion. Further, since the rotation is stopped by the rotation stop nut, the ferrule is securely held by the second tube holding member, and the structure is such that it does not loosen even during long-time operation of the waste heat boiler.
 また、本発明に係る廃熱ボイラによれば、前記外殻の上下方向に沿って延在するとともに、前記外殻の上部に配置された前記板状部材を支持する複数の棒状部材と、前記棒状部材の周囲に配置され、前記板状部材の間の間隔を保持するためのスペーサとを備え、前記外殻の下部に配置された前記板状部材の前記穴には、第1のネジ部が形成され、各二重管には、前記第1のネジ部に対応する位置に第2のネジ部が形成され、前記板状部材の前記第1のネジ部と前記二重管の前記第2のネジ部とが螺合することにより、前記外殻の下部に配置された前記板状部材が支持されるようになっているので、外殻の上部に配置された板状部材が棒状部材により支持されるとともに、外殻の下部に配置された板状部材は、二重管により支持されることになる。
 従来では、外殻の下部の板状部材は、棒状部材(タイロッド)及びスペーサで支持されていたが、本発明によれば、外殻の下部の板状部材は、棒状部材及びスペーサではなく、二重管のみで支持されている。したがって、外殻の下部において高温のプロセスガスによって棒状部材及びスペーサが座屈するなどの問題が生じない。また、外殻の下部では、棒状部材及びスペーサが配置されていないので、廃熱ボイラを運転した際に、二重管及び伝熱管と板状部材が上下方向に同じように移動することになり、板状部材の変形及び損傷も防ぐことができる。
 一方、外殻の上部では、プロセスガスの温度が低いため、棒状部材及びスペーサで板状部材を支持しても、棒状部材及びスペーサが座屈することはない。
Further, according to the waste heat boiler according to the present invention, the plurality of rod-shaped members that extend along the vertical direction of the outer shell and support the plate-shaped member disposed on the upper portion of the outer shell, A spacer disposed around the rod-shaped member and configured to maintain a space between the plate-shaped members, and the hole of the plate-shaped member disposed at the lower portion of the outer shell has a first screw portion. Each of the double pipes is formed with a second screw part at a position corresponding to the first screw part, and the first screw part of the plate-like member and the second screw part of the double pipe are formed. Since the plate-like member arranged at the lower part of the outer shell is supported by being screwed with the screw part 2, the plate-like member arranged at the upper part of the outer shell is supported by the rod-like member The plate-like member disposed at the lower part of the outer shell is supported by the double pipe. .
Conventionally, the lower plate member of the outer shell was supported by a rod member (tie rod) and a spacer, but according to the present invention, the lower plate member of the outer shell is not a rod member or a spacer, Supported only by double tubes. Therefore, problems such as buckling of the rod-shaped member and the spacer due to the high-temperature process gas do not occur in the lower part of the outer shell. Moreover, since the rod-shaped member and the spacer are not arranged in the lower part of the outer shell, when the waste heat boiler is operated, the double tube, the heat transfer tube, and the plate-like member move in the same manner in the vertical direction. Also, deformation and damage of the plate-like member can be prevented.
On the other hand, since the temperature of the process gas is low at the upper part of the outer shell, even if the plate member is supported by the rod member and the spacer, the rod member and the spacer do not buckle.
 また、本発明に係る廃熱ボイラによれば、前記二重管の前記外管と前記水室の前記第1の室との接続部分には、前記外管の周囲に筒状部材が配置されており、該筒状部材の外径は、前記二重管の前記第2のネジ部が設けられた部分の外径よりも大きくなっている。この構成によれば、二重管の外管と水室の第1の室との接続部分において筒状部材を先に取り外すことにより、接続部分に二重管の外管を通すための空間を作ることができる。したがって、二重管の外管がリークした場合でも、二重管を外殻の上側の水室まで引き上げることが可能となり、二重管の取り外しを行うことができる。 Further, according to the waste heat boiler according to the present invention, a cylindrical member is disposed around the outer pipe at a connection portion between the outer pipe of the double pipe and the first chamber of the water chamber. The outer diameter of the cylindrical member is larger than the outer diameter of the portion of the double pipe provided with the second threaded portion. According to this configuration, by removing the cylindrical member first at the connection portion between the outer tube of the double tube and the first chamber of the water chamber, a space for passing the outer tube of the double tube through the connection portion is provided. Can be made. Therefore, even when the outer pipe of the double pipe leaks, the double pipe can be pulled up to the water chamber above the outer shell, and the double pipe can be removed.
第1実施形態に係る廃熱ボイラの全体の断面図である。It is a sectional view of the whole waste heat boiler concerning a 1st embodiment. 図1におけるA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 第1実施形態に係る二重管の支持構造を示した断面図である。It is sectional drawing which showed the support structure of the double pipe which concerns on 1st Embodiment. 第1実施形態に係る伝熱管の支持構造を示した断面図である。It is sectional drawing which showed the support structure of the heat exchanger tube which concerns on 1st Embodiment. 図5におけるCの部分を拡大した断面図である。It is sectional drawing to which the part of C in FIG. 5 was expanded. 第1実施形態に係る廃熱ボイラと、廃熱ボイラの上流側に配置された前流装置との据付レベルを示した図である。It is the figure which showed the installation level of the waste heat boiler which concerns on 1st Embodiment, and the upstream apparatus arrange | positioned upstream of a waste heat boiler. 第2実施形態に係る廃熱ボイラの全体の断面図である。It is sectional drawing of the whole waste heat boiler which concerns on 2nd Embodiment. 第2実施形態に係る二重管とタイロッドを示した断面図である。It is sectional drawing which showed the double pipe and tie rod which concern on 2nd Embodiment. 第2実施形態に係る二重管の外管の第2のネジ部を拡大した断面図であり、真空拡散溶接法により形成した外管を示した図である。It is sectional drawing to which the 2nd thread part of the outer tube of the double tube which concerns on 2nd Embodiment was expanded, and is the figure which showed the outer tube formed by the vacuum diffusion welding method. 第2実施形態に係る二重管の外管の第2のネジ部を拡大した断面図であり、押出し成形法により形成した外管を示した図である。It is sectional drawing to which the 2nd thread part of the outer tube of the double tube which concerns on 2nd Embodiment was expanded, and is the figure which showed the outer tube formed by the extrusion molding method. 図9におけるDの部分を拡大した断面図である。It is sectional drawing to which the part of D in FIG. 9 was expanded. 第2実施形態に係る廃熱ボイラの全体の断面図であり、リークした二重管を取り出す過程を示した図である。It is sectional drawing of the whole waste heat boiler which concerns on 2nd Embodiment, and is the figure which showed the process of taking out the leaked double pipe. 図9におけるDの部分を拡大した断面図であり、二重管を取外した後の構成を示した図である。It is sectional drawing to which the D section in Drawing 9 was expanded, and is a figure showing the composition after removing a double pipe. 従来の縦型水管式廃熱ボイラの全体の断面図である。It is sectional drawing of the whole conventional vertical water pipe | tube type waste heat boiler. 図15におけるA-A線断面図である。FIG. 16 is a cross-sectional view taken along line AA in FIG. 従来の縦型水管式廃熱ボイラを運転した後の状態を示した図であり、プロセスガスの偏流により変形したシェル内の部品を示した図である。It is the figure which showed the state after driving | running the conventional vertical water pipe | tube-type waste heat boiler, and is the figure which showed the components in the shell deform | transformed by the drift of the process gas. 従来の横型煙管式廃熱ボイラの全体の断面図である。It is sectional drawing of the whole conventional horizontal-type smoke pipe type waste heat boiler. 図18のA方向からの矢視図である。It is an arrow view from the A direction of FIG. 図18におけるBの部分を拡大した断面図である。It is sectional drawing which expanded the part of B in FIG.
[第1実施形態]
 以下、本発明の第1実施形態に係る廃熱ボイラを、図面を参照しながら説明する。図1は、本実施形態に係る廃熱ボイラの全体の断面図である。また、図2は、図1におけるA-A線断面図であり、図3は、図1におけるB-B線断面図である。
[First Embodiment]
Hereinafter, a waste heat boiler according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall cross-sectional view of a waste heat boiler according to the present embodiment. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line BB in FIG.
 本実施形態に係る廃熱ボイラ1は、プラント設備から排出される廃熱を利用して水蒸気を生成するものである。本実施形態では、プラント設備の例として、アンモニアプラント等の化学プラントから排出される廃熱を利用している。 The waste heat boiler 1 according to the present embodiment generates steam by using waste heat discharged from plant equipment. In this embodiment, waste heat discharged from a chemical plant such as an ammonia plant is used as an example of plant equipment.
 図1に示すように、廃熱ボイラ1は、上下方向に延びる円筒状に形成されたシェル(外殻)2を備えている。シェル2は、上下方向に延びる円筒状のシュラウド3と、このシュラウド3の周囲を覆うように配置された耐火断熱材4とから構成されている。このシェル2の上端部には、周方向外側に向かって延出するフランジ部2aが設けられており、このフランジ部2aは、シェル2の上方に設けられた管板5にボルト6により固定されている。 As shown in FIG. 1, the waste heat boiler 1 includes a shell (outer shell) 2 formed in a cylindrical shape extending in the vertical direction. The shell 2 includes a cylindrical shroud 3 extending in the vertical direction and a refractory heat insulating material 4 arranged so as to cover the periphery of the shroud 3. A flange portion 2 a extending outward in the circumferential direction is provided at the upper end portion of the shell 2, and the flange portion 2 a is fixed to a tube plate 5 provided above the shell 2 by bolts 6. ing.
 また、シュラウド3の内側には、上下方向に延びる円筒状の内筒7が配置されている。この内筒7の上端部には、周方向外側に向かって延出するフランジ部7aが設けられており、このフランジ部7aは、ボルト8により管板5に固定されている。 Also, a cylindrical inner cylinder 7 extending in the vertical direction is disposed inside the shroud 3. A flange portion 7 a extending toward the outer side in the circumferential direction is provided at the upper end portion of the inner cylinder 7, and the flange portion 7 a is fixed to the tube plate 5 with bolts 8.
 図1に示すように、シェル2の下端部には、ガス入口9が設けられている。このガス入口9は、ガス配管10を介して前流装置54(図7参照)に接続されており、ガス入口9には、前流装置54から排出された高温のプロセスガスが流入するようになっている。また、ガス入口9の周囲には、耐火煉瓦11が敷きつめられており、この耐火煉瓦11は、ガス入口9から流入したプロセスガスの流れを整流するようになっている。 As shown in FIG. 1, a gas inlet 9 is provided at the lower end of the shell 2. The gas inlet 9 is connected to the upstream device 54 (see FIG. 7) via the gas pipe 10, so that the high-temperature process gas discharged from the upstream device 54 flows into the gas inlet 9. It has become. Further, a refractory brick 11 is laid around the gas inlet 9, and the refractory brick 11 rectifies the flow of the process gas flowing from the gas inlet 9.
 図1に示すように、シェル2の上部には、シェル2の周方向に沿ってガス集合チャンバ12が設けられている。ガス集合チャンバ12は、シェル2の上部で横向きに設けられたガス出口ノズル13に接続されている。ここで、ガス集合チャンバ12とガス出口ノズル13とは、伸縮継ぎ手(エクスパンション・ジョイント)14によって接合されている。
 また、図2に示すように、ガス集合チャンバ12は、シェル2の内側に配置された内筒7と、シェル2の外径に沿って設けられた外径部15とから構成されている。内筒7には、ガス集合チャンバ12に対応する位置にガス通孔16が設けられており、シェル2に流入したプロセスガスは、ガス通孔16からガス集合チャンバ12内に入って、その後、ガス集合チャンバ12からガス出口ノズル13へ流れるようになっている。
As shown in FIG. 1, a gas collecting chamber 12 is provided in the upper part of the shell 2 along the circumferential direction of the shell 2. The gas collecting chamber 12 is connected to a gas outlet nozzle 13 provided in the horizontal direction at the top of the shell 2. Here, the gas collecting chamber 12 and the gas outlet nozzle 13 are joined by an expansion joint 14.
As shown in FIG. 2, the gas collecting chamber 12 includes an inner cylinder 7 disposed inside the shell 2 and an outer diameter portion 15 provided along the outer diameter of the shell 2. The inner cylinder 7 is provided with a gas through hole 16 at a position corresponding to the gas collecting chamber 12, and the process gas flowing into the shell 2 enters the gas collecting chamber 12 through the gas through hole 16, and then It flows from the gas collecting chamber 12 to the gas outlet nozzle 13.
 図1に示すように、管板5の上側には、水室17が設けられている。水室17は、水平方向に延在する区切板18によって上下2つの部屋に分割されている。水室17は、区切板18の下方に設けられた第1の室19と、区切板18の上方に設けられた第2の室20とを備えている。第1の室19には、給水入口ノズル21が設けられており、スチームドラム(図示せず)から供給される水が流入するようになっている。一方、第2の室20には、水蒸気出口ノズル22が設けられており、シェル2内で加熱された水及び水蒸気が、水蒸気出口ノズル22から排出されるようになっている。また、第2の室20には、内部点検を目的としてマンホール23が設けられている。 As shown in FIG. 1, a water chamber 17 is provided on the upper side of the tube plate 5. The water chamber 17 is divided into two upper and lower rooms by a partition plate 18 extending in the horizontal direction. The water chamber 17 includes a first chamber 19 provided below the partition plate 18 and a second chamber 20 provided above the partition plate 18. A water supply inlet nozzle 21 is provided in the first chamber 19 so that water supplied from a steam drum (not shown) flows in. On the other hand, a steam outlet nozzle 22 is provided in the second chamber 20, and water and steam heated in the shell 2 are discharged from the steam outlet nozzle 22. The second chamber 20 is provided with a manhole 23 for the purpose of internal inspection.
 図1に示すように、廃熱ボイラ1は、複数の伝熱管24を更に備えている。複数の伝熱管24は、いくつかの伝熱管24を1つの管束(チューブバンドル)として束ねるようにしている。本実施形態では、複数の伝熱管24は、第1の管束24Aと、第2の管束24Bと、第3の管束(図示せず)の3つの管群に分けられている。
 図1に示すように、各伝熱管24は、両端25が水室17の第1の室19に接続されている。各伝熱管24は、U字状に形成されており、水室17の第1の室19から下方に延びて、シェル2の下部で折り返して、同じく水室17の第1の室19に接続している。また、図6に示すように、伝熱管24の一端25には、フェルール50が差し込まれ、フェルール50の上端は、水室17の第2の室20に接続されている。
As shown in FIG. 1, the waste heat boiler 1 further includes a plurality of heat transfer tubes 24. The plurality of heat transfer tubes 24 bundles several heat transfer tubes 24 as one tube bundle (tube bundle). In the present embodiment, the plurality of heat transfer tubes 24 are divided into three tube groups of a first tube bundle 24A, a second tube bundle 24B, and a third tube bundle (not shown).
As shown in FIG. 1, each heat transfer tube 24 has both ends 25 connected to the first chamber 19 of the water chamber 17. Each heat transfer tube 24 is formed in a U shape, extends downward from the first chamber 19 of the water chamber 17, is folded at the lower portion of the shell 2, and is connected to the first chamber 19 of the water chamber 17. is doing. As shown in FIG. 6, a ferrule 50 is inserted into one end 25 of the heat transfer tube 24, and the upper end of the ferrule 50 is connected to the second chamber 20 of the water chamber 17.
 さらに、図1に示すように、廃熱ボイラ1は、複数の二重管(バイオネット式伝熱管)27を備えている。図4に示すように、各二重管27は、水室17から下方に延びる外管28及び内管29を有している。外管28は、水室17の第1の室19に接続され、内管29は、水室17の第2の室20に接続されている。
 本実施形態では、二重管27が上述した伝熱管の管束24A,24Bに混在しており、伝熱管24と二重管27とで1つの管束24A,24Bを構成している。なお、本実施形態では、第1の管束24Aの中には、複数のダミーパイプ30も配置されている。このダミーパイプ30は、第1の管束24Aの下部に配置されており、シェル2に流入したプロセスガスを整流する役目を果たすようになっている。
Furthermore, as shown in FIG. 1, the waste heat boiler 1 includes a plurality of double tubes (bionette heat transfer tubes) 27. As shown in FIG. 4, each double pipe 27 has an outer pipe 28 and an inner pipe 29 that extend downward from the water chamber 17. The outer tube 28 is connected to the first chamber 19 of the water chamber 17, and the inner tube 29 is connected to the second chamber 20 of the water chamber 17.
In the present embodiment, the double tube 27 is mixed in the heat transfer tube bundles 24A and 24B described above, and the heat transfer tube 24 and the double tube 27 constitute one tube bundle 24A and 24B. In the present embodiment, a plurality of dummy pipes 30 are also arranged in the first tube bundle 24A. The dummy pipe 30 is disposed under the first tube bundle 24A and serves to rectify the process gas flowing into the shell 2.
 図1に示すように、廃熱ボイラ1は、複数の伝熱管24及び二重管27に対して直交する方向に延在する複数の邪魔板(板状部材)31を備えている。
 図3に示すように、複数の邪魔板31は、円状に形成された第1の板材32と、この第1の板材32と同心でドーナツ形状に形成された第2の板材33とから構成されている。本実施形態では、図1に示すように、第1の板材32と第2の板材33とが、シェル2の上下方向に沿って交互に並列されている。
As shown in FIG. 1, the waste heat boiler 1 includes a plurality of baffle plates (plate members) 31 extending in a direction orthogonal to the plurality of heat transfer tubes 24 and the double tubes 27.
As shown in FIG. 3, the plurality of baffle plates 31 includes a first plate member 32 formed in a circular shape and a second plate member 33 formed concentrically with the first plate member 32 and formed in a donut shape. Has been. In the present embodiment, as shown in FIG. 1, the first plate material 32 and the second plate material 33 are alternately arranged in parallel along the vertical direction of the shell 2.
 本実施形態においては、各伝熱管24は、第1及び第2の板材32,33に設けられた穴(図示せず)を貫通するように配置されている。また、図3に示すように、各二重管27は、第1及び第2の板材32,33に設けられた穴34を貫通するとともに、第1及び第2の板材32,33を支持している。すなわち、本実施形態では、U字形状の伝熱管24ではなく、二重管27によって複数の邪魔板31を支持する構成となっている。
 邪魔板31の支持構造としては、図4に示すように、シェル2の上部においては、二重管27の周囲に円筒状のスペーサ35を配置して、管板5と邪魔板31との間の間隔を保持するようになっている。また、シェル2の下部においては、邪魔板31は、ストッパ36を介して二重管27に取付けられている。
In the present embodiment, each heat transfer tube 24 is disposed so as to pass through holes (not shown) provided in the first and second plate members 32 and 33. As shown in FIG. 3, each double tube 27 penetrates through a hole 34 provided in the first and second plate members 32 and 33 and supports the first and second plate members 32 and 33. ing. That is, in the present embodiment, a plurality of baffle plates 31 are supported not by the U-shaped heat transfer tube 24 but by the double tube 27.
As shown in FIG. 4, the support structure of the baffle plate 31 includes a cylindrical spacer 35 disposed around the double pipe 27 in the upper part of the shell 2, and the gap between the tube plate 5 and the baffle plate 31. It is designed to hold the interval. In the lower part of the shell 2, the baffle plate 31 is attached to the double pipe 27 via a stopper 36.
 本実施形態においては、図1に示すように、廃熱ボイラ1は、シェル2の上下方向に沿って延在するとともに、シェル2内に流入したプロセスガスを排出するバイパス管37を備えている。このバイパス管37は、水室17の上部に設けられたバイパスノズル38から延びて水室17の第1及び第2の室19,20を貫通し、さらに、管板5を貫通してシェル2の下部まで延在している。また、図3に示すように、バイパス管37は、シェル2の軸方向の中心を通ってシェル2の下部まで延在しており、高温のプロセスガスを軸対称的に集めて排出するようになっている。 In the present embodiment, as shown in FIG. 1, the waste heat boiler 1 includes a bypass pipe 37 that extends along the vertical direction of the shell 2 and discharges the process gas flowing into the shell 2. . The bypass pipe 37 extends from a bypass nozzle 38 provided in the upper part of the water chamber 17, passes through the first and second chambers 19 and 20 of the water chamber 17, and further passes through the tube plate 5 to pass through the shell 2. It extends to the bottom of the. Further, as shown in FIG. 3, the bypass pipe 37 extends to the lower part of the shell 2 through the center in the axial direction of the shell 2, and collects and discharges the high-temperature process gas in an axisymmetric manner. It has become.
 また、図1に示すように、バイパスノズル38には、プロセスガスダンパ39が設けられている。プロセスガスダンパ39は、ボールバルブであり、ボール状の弁体40と、弁体40が配置される弁室41とを備えている。弁体40には、貫通穴(図示せず)が設けられており、この弁体40が弁室41内で回転することにより、バイパス管37の流路を開閉するようになっている。 Further, as shown in FIG. 1, the bypass nozzle 38 is provided with a process gas damper 39. The process gas damper 39 is a ball valve, and includes a ball-shaped valve body 40 and a valve chamber 41 in which the valve body 40 is disposed. The valve body 40 is provided with a through hole (not shown), and the valve body 40 rotates in the valve chamber 41 to open and close the flow path of the bypass pipe 37.
 次に、二重管27及び伝熱管24の取付構造を、図面を参照しながら詳しく説明する。図4は、本実施形態に係る二重管の支持構造を示した断面図であり、図5は、本実施形態に係る伝熱管の支持構造を示した断面図である。また、図6は、図5におけるCの部分を拡大した断面図である。 Next, the mounting structure of the double tube 27 and the heat transfer tube 24 will be described in detail with reference to the drawings. FIG. 4 is a cross-sectional view showing a double tube support structure according to the present embodiment, and FIG. 5 is a cross-sectional view showing a heat transfer tube support structure according to the present embodiment. FIG. 6 is an enlarged cross-sectional view of a portion C in FIG.
 図4に示すように、管板5の上面5aは、ニッケル等を含む高合金でオーバレイされており、二重管27の外管28の端部28aは、オーバレイ部42に強度溶接43により取付けられている。一方、二重管27の内管29は、第1の管保持部材44を介して水室17の区切板18に取付けられている。水室17の区切板18には、二重管27の内管29に対応する位置に第1のネジ孔45が設けられている。ここで、第1のネジ孔45は雌ネジで形成されている。また、第1の管保持部材44は、円筒状の部材であり、第1の管保持部材44の外周面には、ネジ溝46が形成されている。ここで、ネジ溝46は雄ネジで形成されており、第1の管保持部材44の外周面が、第1のネジ孔45に螺合するようになっている。 As shown in FIG. 4, the upper surface 5 a of the tube plate 5 is overlaid with a high alloy containing nickel or the like, and the end portion 28 a of the outer tube 28 of the double tube 27 is attached to the overlay portion 42 by strength welding 43. It has been. On the other hand, the inner pipe 29 of the double pipe 27 is attached to the partition plate 18 of the water chamber 17 via the first pipe holding member 44. The partition plate 18 of the water chamber 17 is provided with a first screw hole 45 at a position corresponding to the inner tube 29 of the double tube 27. Here, the first screw hole 45 is formed by a female screw. The first tube holding member 44 is a cylindrical member, and a thread groove 46 is formed on the outer peripheral surface of the first tube holding member 44. Here, the screw groove 46 is formed by a male screw, and the outer peripheral surface of the first tube holding member 44 is screwed into the first screw hole 45.
 図4に示すように、第1の管保持部材44には、内径の異なる2つの穴が形成されており、第1の管保持部材44のシェル2側の位置には、段差部47が形成されている。段差部47には、二重管27の内管29の終端部29aが嵌合されており、第1の管保持部材44は、二重管27の内管29の終端部29aを段差部47で押圧しながら区切板18の第1のネジ孔45に螺合している。 As shown in FIG. 4, the first tube holding member 44 has two holes with different inner diameters, and a step 47 is formed at a position on the shell 2 side of the first tube holding member 44. Has been. The end portion 29 a of the inner tube 29 of the double tube 27 is fitted to the stepped portion 47, and the first tube holding member 44 connects the end portion 29 a of the inner tube 29 of the double tube 27 to the stepped portion 47. The first screw hole 45 of the partitioning plate 18 is screwed into the separator plate 18 while being pressed.
 また、第1の管保持部材44の内周面と二重管27の内管29の外周面との間には、隙間48が設けられている。この隙間48は、製造誤差があった場合の調整部分として機能を果たすものである。例えば、二重管27の内管29のピッチ等に製造誤差があった場合でも第1の管保持部材44の段差部47に内管29の終端部29aが嵌合するようになっている。
 また、第1の管保持部材44には、区切板18側から廻り止めナット49が螺合されている。これにより、振動等があった場合においても、第1の管保持部材44が緩まないような構成となっている。
Further, a gap 48 is provided between the inner peripheral surface of the first tube holding member 44 and the outer peripheral surface of the inner tube 29 of the double tube 27. The gap 48 functions as an adjustment portion when there is a manufacturing error. For example, even if there is a manufacturing error in the pitch of the inner tube 29 of the double tube 27, the end portion 29a of the inner tube 29 is fitted to the stepped portion 47 of the first tube holding member 44.
Further, a locking nut 49 is screwed into the first tube holding member 44 from the partition plate 18 side. As a result, the first tube holding member 44 is configured not to loosen even when there is vibration or the like.
 図6に示すように、水室17の第1の室19に接続された伝熱管24の両端25は、上述と同様に、管板5上のオーバレイ部42に強度溶接43により取付けられている。
 伝熱管24の一端側は、第1の室19に接続させ、一方、図5に示すように、伝熱管24の他端側は、フェルール(継ぎ手管)50を介して第2の室20に接続されている。図6に示すように、伝熱管24の終端部25は、管板5上のオーバレイ部42に強度溶接43により取付けられている。また、フェルール50の伝熱管側の端部50aの外径は、伝熱管24の終端部25の内径に対応する大きさに形成されており、フェルール50の端部50aは、伝熱管24の終端部25に差込むようにして取付けられている。
As shown in FIG. 6, both ends 25 of the heat transfer tube 24 connected to the first chamber 19 of the water chamber 17 are attached to the overlay portion 42 on the tube plate 5 by strength welding 43 as described above. .
One end of the heat transfer tube 24 is connected to the first chamber 19, while the other end of the heat transfer tube 24 is connected to the second chamber 20 via a ferrule (joint tube) 50 as shown in FIG. It is connected. As shown in FIG. 6, the end portion 25 of the heat transfer tube 24 is attached to the overlay portion 42 on the tube sheet 5 by strength welding 43. Further, the outer diameter of the end portion 50 a on the heat transfer tube side of the ferrule 50 is formed to a size corresponding to the inner diameter of the end portion 25 of the heat transfer tube 24, and the end portion 50 a of the ferrule 50 is the end portion of the heat transfer tube 24. It is attached so as to be inserted into the portion 25.
 また、図5に示すように、フェルール50の区切板18側の端部50bは、第2の管保持部材51を介して水室17の区切板18に取付けられている。水室17の区切板18には、フェルール50に対応する位置に第2のネジ孔52が設けられている。ここで、第2のネジ孔52は雌ネジで形成されている。また、第2の管保持部材51は、円筒状の部材であり、第2の管保持部材51の外周面には、ネジ溝53が形成されている。ここで、ネジ溝53は雄ネジで形成されており、第2の管保持部材51の外周面が、第2のネジ孔52に螺合するようになっている。なお、第2の管保持部材51のその他の構成については、上述した第1の管保持部材44と同じ構成であるため説明を省略する。 Further, as shown in FIG. 5, the end portion 50 b of the ferrule 50 on the side of the partition plate 18 is attached to the partition plate 18 of the water chamber 17 via the second tube holding member 51. The partition plate 18 of the water chamber 17 is provided with a second screw hole 52 at a position corresponding to the ferrule 50. Here, the second screw hole 52 is formed by a female screw. The second tube holding member 51 is a cylindrical member, and a screw groove 53 is formed on the outer peripheral surface of the second tube holding member 51. Here, the screw groove 53 is formed of a male screw, and the outer peripheral surface of the second tube holding member 51 is screwed into the second screw hole 52. In addition, about the other structure of the 2nd pipe | tube holding member 51, since it is the same structure as the 1st pipe | tube holding member 44 mentioned above, description is abbreviate | omitted.
 次に、本実施形態に係る廃熱ボイラ1と、廃熱ボイラの上流側に配置された前流装置との関係について説明する。図7は、本実施形態に係る廃熱ボイラと、廃熱ボイラの上流側に配置された前流装置との据付レベルを示した図である。 Next, the relationship between the waste heat boiler 1 according to the present embodiment and the upstream apparatus disposed on the upstream side of the waste heat boiler will be described. FIG. 7 is a diagram showing the installation level of the waste heat boiler according to the present embodiment and the upstream apparatus disposed on the upstream side of the waste heat boiler.
 図7に示すように、廃熱ボイラ1とプロセスガスを供給する前流装置54とは、据付レベル55が同じになっている。本実施形態においては、廃熱ボイラ1と前流装置54が同じように上下方向に熱伸びをするため、据付レベル55を同じにしておけば、従来技術のような緩衝装置が必要なくなる。 As shown in FIG. 7, the installation level 55 is the same between the waste heat boiler 1 and the upstream apparatus 54 that supplies the process gas. In the present embodiment, since the waste heat boiler 1 and the upstream device 54 are similarly heated in the vertical direction, if the installation level 55 is the same, a shock absorber as in the prior art is not necessary.
 次に、本実施形態に係る廃熱ボイラ1におけるプロセスガス及び水の流れについて図面を用いて説明する。 Next, the flow of process gas and water in the waste heat boiler 1 according to this embodiment will be described with reference to the drawings.
 図1に示すように、プロセスガスは、前流装置54(図7参照)からガス配管10を介してガス入口9に供給される。その後、ガス入口9から流入したプロセスガスは、耐火煉瓦11によって整流された後、内筒7と邪魔板31とによって形成された流路を蛇行しながら上昇する。
 シェル2の下部においては、高温のプロセスガスが、バイパス管37に軸対称的に集められ、バイパス管37によってシェル2の外部に排出される。一方、バイパス管37に流入しなかったプロセスガスは、シェル2内を上昇しながら、伝熱管24及び二重管27の外管28(図4参照)内の水と熱交換を行う。
 そして、熱交換を行った後のプロセスガスは、図2に示すように、シェル2の上部において、ガス通孔16からガス集合チャンバ12内に入って、その後、ガス集合チャンバ12からガス出口ノズル13へ流れるようになっている。
As shown in FIG. 1, the process gas is supplied from the upstream device 54 (see FIG. 7) to the gas inlet 9 through the gas pipe 10. Thereafter, the process gas flowing in from the gas inlet 9 is rectified by the refractory brick 11, and then rises while meandering the flow path formed by the inner cylinder 7 and the baffle plate 31.
In the lower part of the shell 2, the high-temperature process gas is collected in an axisymmetric manner in the bypass pipe 37 and is discharged to the outside of the shell 2 by the bypass pipe 37. On the other hand, the process gas that has not flowed into the bypass pipe 37 exchanges heat with water in the outer pipe 28 (see FIG. 4) of the heat transfer pipe 24 and the double pipe 27 while rising in the shell 2.
Then, as shown in FIG. 2, the process gas after the heat exchange enters the gas collecting chamber 12 through the gas through hole 16 at the upper portion of the shell 2, and then the gas outlet nozzle from the gas collecting chamber 12. It flows to 13.
 図1に示すように、スチームドラムから水室17に供給される水は、第1の室19を通って、伝熱管24及び二重管27に流入する。
 伝熱管24においては、流入した水が、プロセスガスと熱交換を行って水及び水蒸気の混相となり、水室17の第2の室20に流入する。
 一方、二重管27においては、流入した水が、外管28を通っている間にプロセスガスと熱交換を行って水及び水蒸気の混相となる。その後、水及び水蒸気の混相流体が、内管29を通って水室17の第2の室20に流入することになる。最終的に、第2の室20に流入した水及び水蒸気の混相流体は、水蒸気出口ノズル22から排出されるようになっている。
As shown in FIG. 1, the water supplied from the steam drum to the water chamber 17 flows into the heat transfer tube 24 and the double tube 27 through the first chamber 19.
In the heat transfer tube 24, the inflowing water exchanges heat with the process gas to become a mixed phase of water and water vapor, and flows into the second chamber 20 of the water chamber 17.
On the other hand, in the double pipe 27, the inflowing water exchanges heat with the process gas while passing through the outer pipe 28 to become a mixed phase of water and water vapor. Thereafter, a mixed phase fluid of water and water vapor flows into the second chamber 20 of the water chamber 17 through the inner pipe 29. Finally, the mixed phase fluid of water and steam flowing into the second chamber 20 is discharged from the steam outlet nozzle 22.
 このように本実施形態に係る廃熱ボイラ1によれば、上下方向に延びる円筒状に形成され、下端部に前流装置54から排出されたプロセスガスが流入するように構成されたシェル2と、シェル2の上部に設けられ、水が供給される第1の室19と加熱後の水及び水蒸気が流入する第2の室20とを備えている水室17と、水室17の第1の室19から下方に延びて、シェル2の下部で折り返して水室17の第2の室20にフェルール50を介して接続されている複数の伝熱管24と、複数の伝熱管24に対して直交する方向に延在し、シェル2の上下方向に沿って並列された複数の邪魔板31と、水室17を貫通するとともにシェル2の軸方向の中心を通ってシェル2の下部まで延在しているバイパス管37とを備えているので、シェル2内に流入したプロセスガスが、バイパス管37を中心に軸対称的に集められ、シェル2の上部から排出されることになる。
 従来では、シェルの側面に向かって高温のプロセスガスが流れるような偏流が生じていたが、本発明によれば、プロセスガスの偏流を防ぎ、これに起因して局地的に生じる温度差も防ぐことができる。これにより、シェル2内の部品、例えば、邪魔板(板状部材)31、シュラウド3又は内筒7等が変形するのを防止することができる。
As described above, according to the waste heat boiler 1 according to the present embodiment, the shell 2 is formed in a cylindrical shape extending in the vertical direction, and is configured so that the process gas discharged from the upstream device 54 flows into the lower end portion. A water chamber 17 provided in the upper part of the shell 2 and provided with a first chamber 19 to which water is supplied and a second chamber 20 into which water and water vapor after heating flow, and a first of the water chamber 17. A plurality of heat transfer tubes 24 extending downward from the chamber 19, folded back at the bottom of the shell 2 and connected to the second chamber 20 of the water chamber 17 via the ferrule 50, and the plurality of heat transfer tubes 24 A plurality of baffle plates 31 that extend in a direction perpendicular to each other and are arranged in parallel along the vertical direction of the shell 2, pass through the water chamber 17, and extend to the lower portion of the shell 2 through the axial center of the shell 2. The inside of the shell 2. Inflowing process gas, the central axis symmetrically gathered in the bypass pipe 37 and is discharged from the top of the shell 2.
Conventionally, a drift has occurred in which a high-temperature process gas flows toward the side surface of the shell. However, according to the present invention, the process gas is prevented from drifting, and a temperature difference caused locally is also caused. Can be prevented. Thereby, it can prevent that the components in the shell 2, for example, a baffle plate (plate-shaped member) 31, the shroud 3, the inner cylinder 7, etc., are deformed.
 本実施形態に係る廃熱ボイラ1よれば、複数の邪魔板31は、円状に形成された第1の板材32と、この第1の板材32と同心でドーナツ形状に形成された第2の板材33とから構成されているので、シェル2内を流れるプロセスガスを、バイパス管37を中心に軸対称的に流すことができる。これにより、プロセスガスの偏流を効果的に防ぐことができる。 According to the waste heat boiler 1 according to the present embodiment, the plurality of baffle plates 31 include a first plate member 32 formed in a circular shape and a second plate formed in a donut shape concentrically with the first plate member 32. Since the plate material 33 is used, the process gas flowing in the shell 2 can flow axisymmetrically around the bypass pipe 37. Thereby, the drift of process gas can be prevented effectively.
 また、本実施形態に係る廃熱ボイラ1よれば、水室17から下方に延びる内管29及び外管28を有し、外管28が水室17の第1の室19に接続されるとともに内管29が水室17の第2の室20に接続されている複数の二重管27を備え、各伝熱管24が、複数の邪魔板31に設けられた穴を貫通するように配置されており、各二重管27が、複数の邪魔板31に設けられた穴34を貫通するとともに複数の邪魔板31を支持している。
 従来では、タイロッド82及びスペーサ81(図15参照)で邪魔板を支持していたため、高温のプロセスガスによって、タイロッド及びスペーサが座屈するという問題があったが、本発明によれば、二重管27のみで邪魔板31を支持しているので、廃熱ボイラ1を運転した際に、二重管27及び伝熱管24が邪魔板31と上下方向に同じように移動することになり、邪魔板31の変形及び損傷を防ぐことができる。
 また、本実施形態では、シェル2の下部においては、従来と異なり、スペーサやタイロッドを用いてないので、高温のプロセスガスによってスペーサやタイロッドが変形するなどの問題が生じない。
Moreover, according to the waste heat boiler 1 which concerns on this embodiment, while having the inner tube | pipe 29 and the outer tube | pipe 28 which extend below from the water chamber 17, the outer tube | pipe 28 is connected to the 1st chamber 19 of the water chamber 17, and The inner tube 29 includes a plurality of double tubes 27 connected to the second chamber 20 of the water chamber 17, and each heat transfer tube 24 is disposed so as to penetrate through holes provided in the plurality of baffle plates 31. Each double tube 27 passes through holes 34 provided in the plurality of baffle plates 31 and supports the plurality of baffle plates 31.
Conventionally, since the baffle plate is supported by the tie rod 82 and the spacer 81 (see FIG. 15), there is a problem that the tie rod and the spacer are buckled by a high-temperature process gas. Since the baffle plate 31 is supported only by 27, when the waste heat boiler 1 is operated, the double tube 27 and the heat transfer tube 24 move in the same manner as the baffle plate 31 in the vertical direction. The deformation and damage of 31 can be prevented.
In the present embodiment, unlike the conventional case, no spacers or tie rods are used in the lower part of the shell 2, so that problems such as deformation of the spacers and tie rods due to high-temperature process gas do not occur.
 また、本実施形態に係る廃熱ボイラ1よれば、水室17の区切板18には、二重管27の内管29との接続部に第1のネジ孔45が設けられ、第1のネジ孔45には、外周面にネジ溝46が形成された円筒状の第1の管保持部材44が螺合され、第1の管保持部材44の内周面には、段差部47が形成され、段差部47には、二重管27の内管29の終端部29aが嵌合され、第1の管保持部材44は、二重管27の内管29の終端部29aを段差部47で押圧しながら区切板18の第1のネジ孔45に螺合するように構成されている。
 したがって、従来では、例えば、内管は溶接により区切板に取付けられていたが、本発明によれば、第1の管保持部材44が取外し可能に構成されているので、二重管27のメンテナンス時に容易に内管29等を取り出すことができる。
 また、本実施形態に係る廃熱ボイラ1によれば、二重管27の内管29が第1の管保持部材44で確実に保持されることになり、廃熱ボイラ1の長時間運転においても緩まない構造となっている。特に、第1の管保持部材44には、区切板18側から廻り止めナット49が螺合されているので、振動があった場合においても、第1の管保持部材44が緩まないような構成となっている。
Moreover, according to the waste heat boiler 1 which concerns on this embodiment, the 1st screw hole 45 is provided in the connection part with the inner tube | pipe 29 of the double pipe 27 in the partition plate 18 of the water chamber 17, and 1st A cylindrical first tube holding member 44 having a screw groove 46 formed on the outer peripheral surface is screwed into the screw hole 45, and a stepped portion 47 is formed on the inner peripheral surface of the first tube holding member 44. The end portion 29a of the inner tube 29 of the double tube 27 is fitted to the step portion 47, and the first tube holding member 44 connects the end portion 29a of the inner tube 29 of the double tube 27 to the step portion 47. It is configured to be screwed into the first screw hole 45 of the partition plate 18 while being pressed.
Therefore, in the past, for example, the inner pipe was attached to the partition plate by welding, but according to the present invention, the first pipe holding member 44 is configured to be removable, so that the maintenance of the double pipe 27 is performed. Sometimes the inner tube 29 or the like can be easily removed.
Moreover, according to the waste heat boiler 1 which concerns on this embodiment, the inner pipe | tube 29 of the double pipe 27 will be reliably hold | maintained with the 1st pipe | tube holding member 44, and in the long-time driving | operation of the waste heat boiler 1. The structure is not loosened. In particular, since the locking nut 49 is screwed into the first tube holding member 44 from the partition plate 18 side, the first tube holding member 44 is not loosened even when there is vibration. It has become.
 また、本実施形態に係る廃熱ボイラ1よれば、水室17の区切板18には、フェルール50との接続部に第2のネジ孔52が設けられ、第2のネジ孔52には、外周面にネジ溝53が形成された円筒状の第2の管保持部材51が螺合され、第2の管保持部材51の内周面には、段差部47が形成され、段差部47には、フェルール50の終端部50bが嵌合され、第2の管保持部材51は、フェルール50の終端部50bを段差部47で押圧しながら区切板18の第2のネジ孔52に螺合するように構成されている。
 本発明によれば、第2の管保持部材51が取外し可能に構成されているので、伝熱管24のメンテナンス時に容易にフェルール50を取り出すことができる。
 また、本実施形態に係る廃熱ボイラ1によれば、伝熱管24に接続されたフェルール50が第2の管保持部材51で確実に保持され且つ廻り止めナット49が螺合されていることにより、廃熱ボイラ1の長時間運転においても緩まない構造となっている。
Moreover, according to the waste heat boiler 1 which concerns on this embodiment, the 2nd screw hole 52 is provided in the connection part with the ferrule 50 in the partition plate 18 of the water chamber 17, and in the 2nd screw hole 52, A cylindrical second tube holding member 51 having a thread groove 53 formed on the outer peripheral surface is screwed together. A stepped portion 47 is formed on the inner peripheral surface of the second tube holding member 51. The end portion 50b of the ferrule 50 is fitted, and the second tube holding member 51 is screwed into the second screw hole 52 of the partition plate 18 while pressing the end portion 50b of the ferrule 50 with the stepped portion 47. It is configured as follows.
According to the present invention, since the second tube holding member 51 is configured to be removable, the ferrule 50 can be easily taken out during maintenance of the heat transfer tube 24.
Moreover, according to the waste heat boiler 1 which concerns on this embodiment, the ferrule 50 connected to the heat exchanger tube 24 is reliably hold | maintained by the 2nd tube holding member 51, and the non-rotating nut 49 is screwed together. The structure is such that the waste heat boiler 1 does not loosen even during long-time operation.
 また、本実施形態に係る廃熱ボイラ1よれば、複数の伝熱管24が、第1の管束24Aと、第2の管束24Bと、第3の管束の3つの管群に分けられているので、伝熱管24のU字形状の最大曲げ半径を小さくすることが可能となる。これにより、プロセスガスの流れによる伝熱管24のU字部の振動を、特別な防振金具などを取付けることなく防ぐことができる。また、この構成は、廃熱ボイラ1の大型化にも対応することができる。 Further, according to the waste heat boiler 1 according to the present embodiment, the plurality of heat transfer tubes 24 are divided into three tube groups of the first tube bundle 24A, the second tube bundle 24B, and the third tube bundle. The U-shaped maximum bending radius of the heat transfer tube 24 can be reduced. Thereby, the vibration of the U-shaped portion of the heat transfer tube 24 due to the flow of the process gas can be prevented without attaching a special vibration-proofing fitting or the like. Moreover, this structure can respond also to the enlargement of the waste heat boiler 1. FIG.
 また、本実施形態に係る廃熱ボイラ1よれば、第1の管保持部材44の内周面と二重管27の内管29の外周面との間には、隙間48が設けられているので、例えば、二重管27の内管29又はフェルール50のピッチ等に製造誤差があった場合でも、第1の管保持部材44の段差部47に内管29の終端部29aを嵌合させることができる。 Further, according to the waste heat boiler 1 according to the present embodiment, the gap 48 is provided between the inner peripheral surface of the first tube holding member 44 and the outer peripheral surface of the inner tube 29 of the double tube 27. Therefore, for example, even when there is a manufacturing error in the inner tube 29 of the double tube 27 or the pitch of the ferrule 50, the end portion 29 a of the inner tube 29 is fitted into the stepped portion 47 of the first tube holding member 44. be able to.
 また、本実施形態に係る廃熱ボイラ1よれば、廃熱ボイラ1とプロセスガスを供給する前流装置54とは、据付レベル55を同じになっている。本実施形態においては、廃熱ボイラ1と前流装置54が同じように上下方向に熱伸びをするため、据付レベル55を同じにしておけば、従来技術のような緩衝装置が必要なくなり、シンプルな構造でコストの削減を図ることが可能となる。 Further, according to the waste heat boiler 1 according to the present embodiment, the installation level 55 is the same between the waste heat boiler 1 and the upstream apparatus 54 that supplies process gas. In the present embodiment, since the waste heat boiler 1 and the upstream apparatus 54 are similarly heated in the vertical direction, if the installation level 55 is the same, a shock absorber as in the prior art is not necessary and simple. The cost can be reduced with a simple structure.
[第2実施形態]
 以下、本発明の第2実施形態に係る廃熱ボイラを、図面を参照しながら説明する。図8は、本実施形態に係る廃熱ボイラの全体の断面図である。また、図9は、本実施形態に係る二重管とタイロッドを示した図である。なお、前述した実施形態で説明したものと同様の部分については、同一の符号を付して重複する説明は省略する。
[Second Embodiment]
Hereinafter, the waste heat boiler which concerns on 2nd Embodiment of this invention is demonstrated, referring drawings. FIG. 8 is an overall cross-sectional view of the waste heat boiler according to the present embodiment. FIG. 9 is a view showing a double tube and a tie rod according to the present embodiment. In addition, about the part similar to what was demonstrated by embodiment mentioned above, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 この第2実施形態においては、上記第1実施形態と異なり、邪魔板31の支持構造が、シェル2の上部と下部とで異なっている。
 図8に示すように、本実施形態の廃熱ボイラ201は、シェル2の上下方向に沿って延在する複数のタイロッド(棒状部材)202と、タイロッド202の周囲に配置され、邪魔板31の間の間隔を保持するためのスペーサ203とを備えている。図8に示すように、タイロッド202及びスペーサ203は、シェル2の上部にだけに配置され、シェル2の上部に配置された邪魔板31を支持している。
In the second embodiment, unlike the first embodiment, the support structure of the baffle plate 31 is different between the upper part and the lower part of the shell 2.
As shown in FIG. 8, the waste heat boiler 201 of this embodiment is arranged around a plurality of tie rods (bar-shaped members) 202 extending along the vertical direction of the shell 2 and the tie rods 202, And a spacer 203 for maintaining a gap therebetween. As shown in FIG. 8, the tie rod 202 and the spacer 203 are disposed only on the upper portion of the shell 2 and support the baffle plate 31 disposed on the upper portion of the shell 2.
図9に示すように、タイロッド202は、下端部204bの外周面にネジ溝が形成された本体部204と、上端部の外周面にネジ溝が形成された差込部205とを備えている。タイロッド202の本体部204は、邪魔板31に設けられた穴31aを貫通するように配置されている。タイロッド202の差込部205は、管板5に設けられたネジ溝5bに螺合されている。一方、タイロッド202の本体部204の下端部204bには、ナット206が螺合されている。 As shown in FIG. 9, the tie rod 202 includes a main body portion 204 having a thread groove formed on the outer peripheral surface of the lower end portion 204b, and an insertion portion 205 having a screw groove formed on the outer peripheral surface of the upper end portion. . The body portion 204 of the tie rod 202 is disposed so as to penetrate the hole 31 a provided in the baffle plate 31. The insertion portion 205 of the tie rod 202 is screwed into a screw groove 5 b provided in the tube plate 5. On the other hand, a nut 206 is screwed into the lower end portion 204 b of the main body portion 204 of the tie rod 202.
 図9に示すように、スペーサ203は、円筒状に形成されており、タイロッド202の本体部204の周囲に配置されている。タイロッド202は、上下に配置された2つの邪魔板31の間に配置され、邪魔板31の間の間隔を保持するようになっている。 As shown in FIG. 9, the spacer 203 is formed in a cylindrical shape and is disposed around the main body portion 204 of the tie rod 202. The tie rod 202 is disposed between the two baffle plates 31 disposed above and below, and maintains a distance between the baffle plates 31.
 なお、図8に示すように、本実施形態では、タイロッド202及びスペーサ203は、シェル2におけるおよそ上半分の位置に配置されている。しかしながら、本発明は、この配置に限定されず、タイロッド202及びスペーサ203の配置位置は変更することができる。
 シェル2の内部では、プロセスガスが流入する下部ほど温度が高い。これを考慮して、タイロッド202及びスペーサ203は、管板5の位置から、タイロッド202及びスペーサ203が座屈しない程度の温度の位置まで延在させることができる。
As shown in FIG. 8, in the present embodiment, the tie rod 202 and the spacer 203 are disposed at approximately the upper half position in the shell 2. However, the present invention is not limited to this arrangement, and the arrangement positions of the tie rod 202 and the spacer 203 can be changed.
Inside the shell 2, the temperature is higher in the lower part where the process gas flows. In view of this, the tie rod 202 and the spacer 203 can be extended from the position of the tube plate 5 to a temperature at which the tie rod 202 and the spacer 203 are not buckled.
 次に、シェル2の下部における邪魔板31の支持構造を説明する。
 図9に示すように、シェル2の下部に配置された邪魔板31の穴34には、第1のネジ部207が形成されている。第1のネジ部207は、雌ネジになっている。また、二重管27の外管28には、第1のネジ部207に対応する位置に第2のネジ部208が形成されている。第2のネジ部208は、雄ネジになっており、第1のネジ部207と螺合するようになっている。したがって、邪魔板31の第1のネジ部207と二重管27の外管28の第2のネジ部208とが螺合することにより、シェル2の下部に配置された邪魔板31が支持されるようになっている。
Next, the support structure of the baffle plate 31 in the lower part of the shell 2 will be described.
As shown in FIG. 9, a first screw portion 207 is formed in the hole 34 of the baffle plate 31 arranged at the lower part of the shell 2. The first screw portion 207 is a female screw. Further, a second screw portion 208 is formed in the outer tube 28 of the double tube 27 at a position corresponding to the first screw portion 207. The second screw portion 208 is a male screw and is screwed with the first screw portion 207. Therefore, the first screw portion 207 of the baffle plate 31 and the second screw portion 208 of the outer tube 28 of the double tube 27 are screwed together, so that the baffle plate 31 disposed at the lower portion of the shell 2 is supported. It has become so.
 外管28の第2のネジ部208の形成方法としては、真空拡散溶接法がある。真空拡散溶接法は、母材を密着させ、母材の融点以下の温度条件で加圧して、接合面に生じる原子の拡散を利用して接合する方法である。なお、この方法では、溶接時の雰囲気は真空下で行われる。図10に示すように、この方法を用いる場合、二重管27の外管28の外周に溶接用の母材を別個に溶接し、その後、母材に対してネジを切って第2のネジ部208を形成する。 As a method for forming the second threaded portion 208 of the outer tube 28, there is a vacuum diffusion welding method. The vacuum diffusion welding method is a method in which a base material is brought into close contact, pressure is applied under a temperature condition equal to or lower than the melting point of the base material, and joining is performed using diffusion of atoms generated on a joint surface. In this method, the welding atmosphere is performed under vacuum. As shown in FIG. 10, when this method is used, a base material for welding is separately welded to the outer periphery of the outer tube 28 of the double tube 27, and then a screw is cut to the base material to form a second screw. A portion 208 is formed.
 また、外管28の第2のネジ部208の別の形成方法として、押出し成形法がある。押出し成形法は、金型から原料を押し出すことによって管の断面を形成する方法である。この方法を用いる場合、二重管27の外管28を形成するための金型に予め溝を形成しておき、この溝によって、図11に示すように、外管28に第2のネジ部208が形成されることになる。 Further, as another method for forming the second screw portion 208 of the outer tube 28, there is an extrusion molding method. The extrusion molding method is a method of forming a cross section of a pipe by extruding a raw material from a mold. When this method is used, a groove is previously formed in a mold for forming the outer tube 28 of the double tube 27, and the second screw portion is formed in the outer tube 28 by this groove as shown in FIG. 208 will be formed.
 また、図12に示すように、管板5(二重管27の外管28と水室17の第1の室19との接続部分)において、外管28の周囲には、スリーブ(筒状部材)209が嵌入されている。スリーブ209の上端部209aは、オーバレイ部42に強度溶接210により取付けられている。また、二重管27の外管28の端部28aは、スリーブ209の上端部209aに強度溶接211により取付けられている。 In addition, as shown in FIG. 12, in the tube plate 5 (the connection portion between the outer tube 28 of the double tube 27 and the first chamber 19 of the water chamber 17), a sleeve (tubular shape) is provided around the outer tube 28. Member) 209 is inserted. An upper end portion 209 a of the sleeve 209 is attached to the overlay portion 42 by strength welding 210. Further, the end portion 28 a of the outer tube 28 of the double tube 27 is attached to the upper end portion 209 a of the sleeve 209 by strength welding 211.
 図12に示すように、二重管27の外管28とスリーブ209とは、その間に隙間がないように嵌合しており、スリーブ209と管板5とも、その間に隙間ができないように嵌合している。したがって、シェル2内にある二重管27が、プロセスガスの流れにより振動しても、その影響を強度溶接210,211に及ぼさないようになっている。 As shown in FIG. 12, the outer tube 28 of the double tube 27 and the sleeve 209 are fitted so that there is no gap between them, and the sleeve 209 and the tube plate 5 are fitted so that there is no gap between them. Match. Therefore, even if the double pipe 27 in the shell 2 is vibrated by the flow of the process gas, the influence is not exerted on the strength welds 210 and 211.
 また、スリーブ209の外径は、二重管27の外管28の第2のネジ部208が設けられた部分の外径よりも大きくなっている。したがって、二重管27の外管28がリークして、二重管27を取外すときに、スリーブ209を先に取り外すことにより、二重管27の外管28を管板5を通して管板5の上側の水室17まで引き上げることが可能となる。 Also, the outer diameter of the sleeve 209 is larger than the outer diameter of the portion of the outer tube 28 of the double tube 27 where the second screw portion 208 is provided. Therefore, when the outer pipe 28 of the double pipe 27 leaks and the double pipe 27 is removed, the sleeve 209 is removed first, whereby the outer pipe 28 of the double pipe 27 passes through the pipe plate 5 and the tube plate 5 is removed. It is possible to pull up to the upper water chamber 17.
 次に、本実施形態に係る廃熱ボイラ201において、二重管がリークした場合、これを取り出す手順について図面を用いて説明する。
 図13は、第2実施形態に係る廃熱ボイラの全体の断面図であり、リークした二重管を取り出す過程を示した図である。なお、図13では、説明のためにタイロッド及びスペーサの図示を省略している。
Next, when the double pipe leaks in the waste heat boiler 201 according to this embodiment, a procedure for taking out the double pipe will be described with reference to the drawings.
FIG. 13 is a cross-sectional view of the entire waste heat boiler according to the second embodiment, showing a process of taking out a leaked double pipe. In FIG. 13, illustration of tie rods and spacers is omitted for explanation.
 図13に示すように、二重管27の外管28がリークした場合、まずプラントの運転を停止する。その後、水室17内に作業員が入って以下の作業を行う。
 まず、第1の管保持部材44(図9参照)に螺合された廻り止めナット49(図9参照)を取外し、第1の管保持部材44を区切板18(図9参照)から取外す。
 次に、水室17内の区切板18を取外す。その後、二重管27の内管29(図9参照)を引き上げる。この際、図13に示すように、作業員は、適当な位置で内管29を切断しながら、水蒸気出口ノズル22又はマンホール23から内管29を取り出す。
As shown in FIG. 13, when the outer pipe 28 of the double pipe 27 leaks, the operation of the plant is first stopped. Thereafter, an operator enters the water chamber 17 and performs the following operations.
First, the locking nut 49 (see FIG. 9) screwed into the first tube holding member 44 (see FIG. 9) is removed, and the first tube holding member 44 is removed from the partition plate 18 (see FIG. 9).
Next, the partition plate 18 in the water chamber 17 is removed. Thereafter, the inner pipe 29 (see FIG. 9) of the double pipe 27 is pulled up. At this time, as shown in FIG. 13, the worker takes out the inner tube 29 from the water vapor outlet nozzle 22 or the manhole 23 while cutting the inner tube 29 at an appropriate position.
 次に、スリーブ209と管板5との間の強度溶接210(図12参照)を外すとともに、外管28とスリーブ209との間の強度溶接211を外す。その後、管板5からスリーブ209を引き抜く。
 スリーブ209を引き抜いた後、二重管27の外管28を引き上げる。この際、邪魔板31の第1のネジ部207と外管28の第2のネジ部208とが螺合しているので、外管28を回して、螺合箇所が全て外れた後に、外管28を上方に引き上げる。ここで、作業員は、適当な位置で外管28を切断しながら、水蒸気出口ノズル22又はマンホール23から外管28を取り出す。
Next, the strength weld 210 (see FIG. 12) between the sleeve 209 and the tube plate 5 is removed, and the strength weld 211 between the outer tube 28 and the sleeve 209 is removed. Thereafter, the sleeve 209 is pulled out from the tube plate 5.
After pulling out the sleeve 209, the outer tube 28 of the double tube 27 is pulled up. At this time, since the first screw portion 207 of the baffle plate 31 and the second screw portion 208 of the outer tube 28 are screwed together, the outer tube 28 is turned to remove all screwed portions and then The tube 28 is pulled up. Here, the worker takes out the outer tube 28 from the water vapor outlet nozzle 22 or the manhole 23 while cutting the outer tube 28 at an appropriate position.
 次に、図14に示すように、二重管27を取外した箇所にプラグ212を配置する。プラグ212は、スリーブ209と同じ外径を有しており、プラグ212と管板5とは、その間に隙間がないように嵌合している。最後に、プラグ212の上端部212aを強度溶接213によりオーバレイ部42に取付ける。
 以上の手順により、リークした二重管27を取り出しが完了する。
Next, as shown in FIG. 14, the plug 212 is disposed at the place where the double tube 27 is removed. The plug 212 has the same outer diameter as the sleeve 209, and the plug 212 and the tube plate 5 are fitted so that there is no gap between them. Finally, the upper end portion 212 a of the plug 212 is attached to the overlay portion 42 by strength welding 213.
With the above procedure, the removal of the leaked double tube 27 is completed.
 本実施形態に係る廃熱ボイラ201よれば、シェル2の上下方向に沿って延在するとともに、シェル2の上部に配置された邪魔板31を支持する複数のタイロッド202と、タイロッド202の周囲に配置され、邪魔板31の間の間隔を保持するためのスペーサ203とを備え、シェル2の下部に配置された邪魔板31の穴34には、第1のネジ部207が形成され、二重管27の外管28には、第1のネジ部207に対応する位置に第2のネジ部208が形成され、邪魔板31の第1のネジ部207と二重管27の外管28の第2のネジ部208とが螺合することにより、シェル2の下部に配置された邪魔板31が支持されるようになっているので、シェル2の上部に配置された邪魔板31がタイロッド202により支持されるとともに、シェル2の下部に配置された邪魔板31は、二重管27により支持されている。
 従来では、シェル62の下部の邪魔板66は、タイロッド82及びスペーサ81で支持していたが(図15参照)、本発明によれば、シェル2の下部の邪魔板31は、棒状部材及びスペーサではなく、二重管27のみで支持されている。したがって、従来のようにシェル66の下部において高温のプロセスガスによってタイロッド82及びスペーサ81が座屈するという問題が生じない。本実施形態において、シェル2の下部では、タイロッド202及びスペーサ203が配置されていないので、廃熱ボイラ201を運転した際に、二重管27及び伝熱管24と邪魔板31が上下方向に同じように移動することになり、邪魔板31の変形及び損傷も防ぐことができる。
 一方、本実施形態のシェル2の上部では、プロセスガスの温度が低いため、タイロッド202及びスペーサ203で邪魔板31を支持しても、タイロッド202及びスペーサ203が座屈することはない。
According to the waste heat boiler 201 according to the present embodiment, a plurality of tie rods 202 that extend along the vertical direction of the shell 2 and support the baffle plate 31 disposed on the upper portion of the shell 2, and around the tie rods 202. The first screw portion 207 is formed in the hole 34 of the baffle plate 31 disposed at the lower part of the shell 2 and is provided with a spacer 203 for holding the gap between the baffle plates 31. A second screw portion 208 is formed at a position corresponding to the first screw portion 207 in the outer tube 28 of the tube 27, and the first screw portion 207 of the baffle plate 31 and the outer tube 28 of the double tube 27 are formed. Since the baffle plate 31 arranged at the lower part of the shell 2 is supported by screwing with the second screw part 208, the baffle plate 31 arranged at the upper part of the shell 2 is supported by the tie rod 202. Supported by Baffles 31 arranged in the lower part of the E le 2 is supported by the double pipe 27.
Conventionally, the baffle plate 66 at the bottom of the shell 62 is supported by the tie rod 82 and the spacer 81 (see FIG. 15). However, according to the present invention, the baffle plate 31 at the bottom of the shell 2 is a bar-like member and spacer. Instead, it is supported only by the double pipe 27. Therefore, there is no problem that the tie rod 82 and the spacer 81 are buckled by the high temperature process gas in the lower part of the shell 66 as in the prior art. In this embodiment, since the tie rod 202 and the spacer 203 are not arranged in the lower part of the shell 2, when the waste heat boiler 201 is operated, the double tube 27 and the heat transfer tube 24 and the baffle plate 31 are the same in the vertical direction. Therefore, deformation and damage of the baffle plate 31 can also be prevented.
On the other hand, since the temperature of the process gas is low at the upper part of the shell 2 of this embodiment, even if the baffle plate 31 is supported by the tie rod 202 and the spacer 203, the tie rod 202 and the spacer 203 will not buckle.
 本実施形態に係る廃熱ボイラ201よれば、管板5には、二重管27の外管28の周囲にスリーブ209が嵌入されており、スリーブ209の外径は、外管28の第2のネジ部208が設けられた部分の外径よりも大きくなっている。この構成によれば、管板5においてスリーブ209を先に取り外すことにより、管板5に二重管27の外管28を通すための空間を作ることができる。したがって、二重管27の外管28に第2のネジ部208を設けた構成において、二重管27の外管28がリークした場合でも、二重管27をシェル2の上側の水室17まで引き上げることが可能となり、二重管27の取り外しを行うことができる。 According to the waste heat boiler 201 according to the present embodiment, the sleeve 209 is fitted around the outer tube 28 of the double tube 27 in the tube plate 5, and the outer diameter of the sleeve 209 is the second diameter of the outer tube 28. This is larger than the outer diameter of the portion where the screw portion 208 is provided. According to this configuration, by removing the sleeve 209 first from the tube plate 5, a space for allowing the outer tube 28 of the double tube 27 to pass through the tube plate 5 can be created. Therefore, in the configuration in which the second screw portion 208 is provided on the outer tube 28 of the double tube 27, the double tube 27 is connected to the water chamber 17 on the upper side of the shell 2 even when the outer tube 28 of the double tube 27 leaks. The double pipe 27 can be removed.
 以上、本発明の実施の形態につき述べたが、本発明は既述の実施形態に限定されるものでなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.
1 廃熱ボイラ
2 シェル
3 シュラウド
4 耐火断熱材
5 管板
17 水室
18 区切板
19 第1の室
20 第2の室
24 伝熱管
27 二重管
28 二重管の外管
29 二重管の内管
31 邪魔板
32 邪魔板の第1の板材
33 邪魔板の第2の板材
37 バイパス管
44,51 管保持部材
45,52 ネジ孔
46,53 管保持部材のネジ溝
47 段差部
202 タイロッド
203 スペーサ
207 邪魔板の第1のネジ部
208 外管の第2のネジ部
209 スリーブ
212 プラグ
 
DESCRIPTION OF SYMBOLS 1 Waste heat boiler 2 Shell 3 Shroud 4 Refractory heat insulating material 5 Tube plate 17 Water chamber 18 Partition plate 19 First chamber 20 Second chamber 24 Heat transfer tube 27 Double tube 28 Double tube outer tube 29 Double tube Inner tube 31 Baffle plate 32 Baffle plate first plate member 33 Baffle plate second plate member 37 Bypass pipes 44 and 51 Tube holding members 45 and 52 Screw holes 46 and 53 Screw grooves 47 of the tube holding member Stepped portion 202 Tie rod 203 Spacer 207 First screw portion 208 of baffle plate Second screw portion 209 of outer tube Sleeve 212 Plug

Claims (9)

  1.  プラント設備から排出される廃熱を利用して水蒸気を生成する廃熱ボイラであって、
     上下方向に延びる円筒状に形成され、下端部に前記プラント設備から排出されたプロセスガスが流入するように構成された外殻と、
     前記外殻の上部に設けられ、水が供給される第1の室と、加熱後の水及び水蒸気が流入する第2の室とを備えている水室と、
     前記水室の前記第1の室から下方に延びて、前記外殻の下部で折り返して前記水室の前記第2の室に接続されている複数の伝熱管と、
     前記複数の伝熱管に対して直交する方向に延在し、前記外殻の上下方向に沿って並列された複数の板状部材と、
     前記外殻の上下方向に沿って前記外殻の上部から前記外殻の下部まで延在するとともに、前記外殻に流入した前記プロセスガスを排出するバイパス管と
     を備えている廃熱ボイラ。
    A waste heat boiler that generates steam using waste heat discharged from plant equipment,
    An outer shell formed in a cylindrical shape extending in the up-down direction, and configured so that process gas discharged from the plant equipment flows into a lower end portion;
    A water chamber provided at an upper part of the outer shell and provided with a first chamber into which water is supplied; and a second chamber into which water and water vapor after heating flow in;
    A plurality of heat transfer tubes extending downward from the first chamber of the water chamber, folded back at a lower portion of the outer shell, and connected to the second chamber of the water chamber;
    A plurality of plate-like members extending in a direction orthogonal to the plurality of heat transfer tubes and arranged in parallel along the vertical direction of the outer shell;
    A waste heat boiler, comprising: a bypass pipe extending from an upper part of the outer shell along a vertical direction of the outer shell to a lower part of the outer shell and discharging the process gas flowing into the outer shell.
  2.  前記バイパス管が、前記水室を貫通するとともに前記外殻の軸方向の中心を通って前記外殻の下部まで延在していることを特徴とする請求項1に記載の廃熱ボイラ。 The waste heat boiler according to claim 1, wherein the bypass pipe passes through the water chamber and extends through the axial center of the outer shell to a lower portion of the outer shell.
  3.  前記水室から下方に延びる内管及び外管を有し、前記外管が前記水室の前記第1の室に接続されるとともに前記内管が前記水室の前記第2の室に接続されている複数の二重管を備え、
     各伝熱管が、前記複数の板状部材に設けられた穴を貫通するように配置されており、各二重管が、前記複数の板状部材に設けられた穴を貫通するとともに前記複数の板状部材を支持していることを特徴とする請求項1又は2に記載の廃熱ボイラ。
    An inner tube and an outer tube extending downward from the water chamber; the outer tube is connected to the first chamber of the water chamber; and the inner tube is connected to the second chamber of the water chamber. With multiple double tubes
    Each of the heat transfer tubes is disposed so as to pass through the holes provided in the plurality of plate-like members, and each of the double tubes passes through the holes provided in the plurality of plate-like members and the plurality of the plurality of plate-like members. The waste heat boiler according to claim 1 or 2, wherein a plate-like member is supported.
  4.  前記水室の前記第2の室には、前記二重管の前記内管との接続部に第1のネジ孔が設けられ、該第1のネジ孔には、外周面にネジ溝が形成された円筒状の第1の管保持部材が螺合され、前記二重管の前記内管の終端部が、前記第1の管保持部材を介して前記第2の室に取付けられていることを特徴とする請求項3に記載の廃熱ボイラ。 In the second chamber of the water chamber, a first screw hole is provided at a connection portion of the double pipe with the inner pipe, and a screw groove is formed on an outer peripheral surface of the first screw hole. The cylindrical first pipe holding member is screwed, and the end portion of the inner pipe of the double pipe is attached to the second chamber via the first pipe holding member. A waste heat boiler according to claim 3.
  5.  前記第1の管保持部材の内周面には、前記外殻側の位置に段差部が形成され、該段差部には、前記二重管の前記内管の終端部が嵌合され、前記第1の管保持部材は、前記二重管の前記内管の前記終端部を前記段差部で押圧しながら前記第2の室の前記第1のネジ孔に螺合するように構成されていることを特徴とする請求項4に記載の廃熱ボイラ。 On the inner peripheral surface of the first tube holding member, a step portion is formed at a position on the outer shell side, and the end portion of the inner tube of the double tube is fitted to the step portion, The first tube holding member is configured to be screwed into the first screw hole of the second chamber while pressing the end portion of the inner tube of the double tube with the stepped portion. The waste heat boiler according to claim 4 characterized by things.
  6.  前記水室の前記第2の室には、前記伝熱管の位置に第2のネジ孔が設けられ、該第2のネジ孔には、外周面にネジ溝が形成された円筒状の第2の管保持部材が螺合され、前記伝熱管には、フェルールが差込まれており、前記伝熱管に差込まれた前記フェルールの終端部が、前記第2の管保持部材を介して前記第2の室に取付けられていることを特徴とする請求項1ないし5のいずれか一項に記載の廃熱ボイラ。 The second chamber of the water chamber is provided with a second screw hole at the position of the heat transfer tube, and the second screw hole has a cylindrical second shape in which a screw groove is formed on the outer peripheral surface. The ferrule is inserted into the heat transfer tube, and the end portion of the ferrule inserted into the heat transfer tube is inserted into the heat transfer tube via the second tube holding member. The waste heat boiler according to any one of claims 1 to 5, wherein the waste heat boiler is attached to the second chamber.
  7.  前記第2の管保持部材の内周面には、前記外殻側の位置に段差部が形成され、該段差部には、前記フェルールの終端部が嵌合され、前記第2の管保持部材は、前記フェルールの前記終端部を前記段差部で押圧しながら前記第2の室の前記第2のネジ孔に螺合するように構成されていることを特徴とする請求項6に記載の廃熱ボイラ。 On the inner peripheral surface of the second tube holding member, a step portion is formed at a position on the outer shell side, and the end portion of the ferrule is fitted to the step portion, and the second tube holding member 7. The waste according to claim 6, wherein the ferrule is configured to be screwed into the second screw hole of the second chamber while pressing the end portion of the ferrule with the stepped portion. Thermal boiler.
  8.  前記外殻の上下方向に沿って延在するとともに、前記外殻の上部に配置された前記板状部材を支持する複数の棒状部材と、
     前記棒状部材の周囲に配置され、前記板状部材の間の間隔を保持するためのスペーサとを備え、
     前記外殻の下部に配置された前記板状部材の前記穴には、第1のネジ部が形成され、各二重管には、前記第1のネジ部に対応する位置に第2のネジ部が形成され、
     前記板状部材の前記第1のネジ部と前記二重管の前記第2のネジ部とが螺合することにより、前記外殻の下部に配置された前記板状部材が支持されるようになっていることを特徴とする請求項3ないし5のいずれか一項に記載の廃熱ボイラ。
    A plurality of bar-shaped members extending along the vertical direction of the outer shell and supporting the plate-shaped member disposed on the upper portion of the outer shell;
    A spacer disposed around the rod-shaped member, and for maintaining a gap between the plate-shaped members;
    A first screw portion is formed in the hole of the plate-like member arranged at the lower portion of the outer shell, and each double pipe has a second screw at a position corresponding to the first screw portion. Part is formed,
    As the first screw portion of the plate-like member and the second screw portion of the double pipe are screwed together, the plate-like member disposed at the lower portion of the outer shell is supported. The waste heat boiler according to any one of claims 3 to 5, wherein the waste heat boiler is configured.
  9.  前記二重管の前記外管と前記水室の前記第1の室との接続部分には、前記外管の周囲に筒状部材が配置されており、該筒状部材の外径は、前記二重管の前記第2のネジ部が設けられた部分の外径よりも大きくなっていることを特徴とする請求項8に記載の廃熱ボイラ。
     
     
    A cylindrical member is disposed around the outer tube at a connection portion between the outer tube of the double tube and the first chamber of the water chamber, and the outer diameter of the cylindrical member is The waste heat boiler according to claim 8, wherein the waste heat boiler is larger than an outer diameter of a portion of the double pipe where the second screw portion is provided.

PCT/JP2011/050690 2010-01-26 2011-01-18 Waste heat boiler WO2011093163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014536 2010-01-26
JP2010014536A JP2013092260A (en) 2010-01-26 2010-01-26 Waste heat boiler

Publications (1)

Publication Number Publication Date
WO2011093163A1 true WO2011093163A1 (en) 2011-08-04

Family

ID=44319155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050690 WO2011093163A1 (en) 2010-01-26 2011-01-18 Waste heat boiler

Country Status (2)

Country Link
JP (1) JP2013092260A (en)
WO (1) WO2011093163A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296118A (en) * 2014-10-14 2015-01-21 常州大学 Upright tube plate evaporator
US20160161106A1 (en) * 2013-08-29 2016-06-09 Casale Sa A shell-and-tube apparatus for heat recovery from a hot process stream
CN108870364A (en) * 2018-09-19 2018-11-23 无锡维邦工业设备成套技术有限公司 A kind of spiral pure steam tank
EP3406970A1 (en) * 2017-05-26 2018-11-28 ALFA LAVAL OLMI S.p.A. Vapour and liquid drum for a shell-and-tube heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836758B (en) * 2016-06-15 2018-06-19 浙江大学 A kind of monoblock type ammonium chloride pyrolysis installation and pyrolytic process based on cross-flow heat exchange

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149502A (en) * 1976-06-07 1977-12-12 Mitsubishi Heavy Ind Ltd Waste heat boiler
JPH0854103A (en) * 1994-06-29 1996-02-27 Haldor Topsoe As Waste heat boiler
JP2007155328A (en) * 2005-12-01 2007-06-21 Alstom Technology Ltd Waste heat boiler
JP2008235301A (en) * 2007-03-16 2008-10-02 Dainippon Screen Mfg Co Ltd Substrate processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149502A (en) * 1976-06-07 1977-12-12 Mitsubishi Heavy Ind Ltd Waste heat boiler
JPH0854103A (en) * 1994-06-29 1996-02-27 Haldor Topsoe As Waste heat boiler
JP2007155328A (en) * 2005-12-01 2007-06-21 Alstom Technology Ltd Waste heat boiler
JP2008235301A (en) * 2007-03-16 2008-10-02 Dainippon Screen Mfg Co Ltd Substrate processing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160161106A1 (en) * 2013-08-29 2016-06-09 Casale Sa A shell-and-tube apparatus for heat recovery from a hot process stream
US10684007B2 (en) * 2013-08-29 2020-06-16 Casale Sa Shell-and-tube apparatus for heat recovery from a hot process stream
CN104296118A (en) * 2014-10-14 2015-01-21 常州大学 Upright tube plate evaporator
EP3406970A1 (en) * 2017-05-26 2018-11-28 ALFA LAVAL OLMI S.p.A. Vapour and liquid drum for a shell-and-tube heat exchanger
WO2018215161A1 (en) * 2017-05-26 2018-11-29 Alfa Laval Olmi S.P.A Vapour and liquid drum for a shell-and-tube heat exchanger
US11536447B2 (en) 2017-05-26 2022-12-27 Alfa Laval Olmi S.P.A. Vapour and liquid drum for a shell-and-tube heat exchanger
CN108870364A (en) * 2018-09-19 2018-11-23 无锡维邦工业设备成套技术有限公司 A kind of spiral pure steam tank

Also Published As

Publication number Publication date
JP2013092260A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
KR101962996B1 (en) Modular plate and shell heat exchanger
WO2011093163A1 (en) Waste heat boiler
US10337800B2 (en) Modular plate and shell heat exchanger
CA2673885C (en) Tube support system for nuclear steam generators
US6957695B2 (en) Heat exchanger housing and seals
TW201638456A (en) Collar supported pressure parts for heat recovery steam generators
JP4939980B2 (en) EGR cooler
JP6004413B2 (en) Tube support structure
CA2673881C (en) Tube support system for nuclear steam generators
JP6071298B2 (en) Method for additionally installing gap expansion jig for heat transfer tube and vibration suppressing member
KR101465047B1 (en) Heat recovery steam generator and method of manufacturing the same
US10041744B2 (en) Heat exchanger for recovery of waste heat
KR101076220B1 (en) Brazing apparatus for al clad oblong tube for air cooling system condensing plant
CA2673904C (en) Tube support system for nuclear steam generators
KR101479565B1 (en) Sealing arrangement for internal tubesheet for tubular heat exchangers
US11306972B2 (en) Shell and tube heat exchangers
KR20200022478A (en) Heat exchanger for harsh conditions of use
JP6501459B2 (en) Piping protection device and nuclear equipment
JP3177117U (en) Repair jig for heat exchanger
JPS58209434A (en) Assembling method of multitubular heat exchanger
SU1032324A1 (en) Method of fixing pipe in opening of double tube plate of heat exchanger
JP2017166792A (en) Method of repairing exhaust heat recovery boiler
JP2005321125A (en) Condenser
JPH08110183A (en) Heat exchanger
KR20180000486A (en) Heat exchanger for anaerobic digester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP