WO2011093120A1 - Organic electroluminescene element and lighting device - Google Patents

Organic electroluminescene element and lighting device Download PDF

Info

Publication number
WO2011093120A1
WO2011093120A1 PCT/JP2011/050251 JP2011050251W WO2011093120A1 WO 2011093120 A1 WO2011093120 A1 WO 2011093120A1 JP 2011050251 W JP2011050251 W JP 2011050251W WO 2011093120 A1 WO2011093120 A1 WO 2011093120A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
organic
light emitting
resin
Prior art date
Application number
PCT/JP2011/050251
Other languages
French (fr)
Japanese (ja)
Inventor
恭雄 當間
邦雅 檜山
健夫 荒井
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011551788A priority Critical patent/JP5655795B2/en
Publication of WO2011093120A1 publication Critical patent/WO2011093120A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present invention relates to an organic electroluminescence element and a lighting device using the element.
  • ELD electroluminescence display
  • an inorganic electroluminescent element and an organic electroluminescent element are mentioned.
  • Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • the organic electroluminescence device has a configuration in which a light emitting layer containing a compound that emits light (an organic compound thin film containing a fluorescent organic compound) is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer, It is an element that emits light by utilizing light emission (fluorescence / phosphorescence) when excitons (excitons) are generated by recombination and the excitons are deactivated.
  • a transparent conductive layer such as ITO is used for at least one of the electrodes sandwiching the organic compound thin film, and the transparent conductive layer is further supported by a transparent substrate such as glass.
  • Organic EL devices can emit light at a low voltage of several volts to several tens of volts, are self-luminous, have a wide viewing angle, high visibility, and are thin-film, completely solid-state devices that save space. It is attracting attention from the viewpoint of portability.
  • the organic electroluminescence device has a problem that the light extraction efficiency (the ratio of the energy coming out of the substrate to the emitted energy) is low. That is, the light emission of the light emitting layer is not directional and dissipates in all directions, so there is a large loss when guiding light forward from the light emitting layer, and there is a problem that the display screen becomes dark due to insufficient light intensity. .
  • the light emitted from the light emitting layer uses only the light emitted in the forward direction, but the light extraction efficiency (light emission efficiency) in the forward direction derived from multiple reflection based on classical optics is 1 / 2n 2 . It can be approximated, and is almost determined by the refractive index n of the light emitting layer. If the refractive index of the light emitting layer is about 1.7, the light emission efficiency from the organic EL part is simply about 20%. The remaining light propagates in the area direction of the light emitting layer (spray in the lateral direction) or disappears at the metal electrode facing the transparent electrode with the light emitting layer interposed therebetween (absorption in the backward direction).
  • a method of forming a layer containing scattering particles and a low refractive index layer in a matrix having the same refractive index as that of the transparent electrode between the transparent electrode layer and the transparent body, and improving the light extraction efficiency by the light scattering effect For example, see Patent Document 1).
  • This is a method using an inorganic compound such as titania as a high refractive index matrix, and there is no description of a light scattering layer made of a resin containing oxide nanoparticles and a light scattering filler in a resin matrix.
  • a method in which a selective reflection layer is formed on the light emission side and a change in color is suppressed by reflection of light of a specific wavelength (see, for example, Patent Document 3).
  • this method improves the change in color depending on the viewing angle, but the luminance is reduced by the selective reflection layer, and this is used for an organic light emitting layer having different light distribution luminance characteristics depending on the emission wavelength. In such a case, the disadvantage that the brightness at a specific angle is high cannot be improved.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electroluminescent device that greatly improves light extraction efficiency and has small color change and luminance variation depending on an observation angle, and the device. It is in providing the used illuminating device.
  • the inventors of the present invention have an average particle size of 0.1 ⁇ m or more and 0.7 ⁇ m in an organic-inorganic composite material having a refractive index of 1.65 or more and 1.80 or less (hereinafter referred to as composite material).
  • composite material organic-inorganic composite material having a refractive index of 1.65 or more and 1.80 or less.
  • an organic electroluminescence device in which a transparent conductive layer, an organic electroluminescence layer having an electron transport layer, and a counter electrode are sequentially laminated on a transparent substrate, the transparent substrate is an oxide having an average particle diameter of 1 nm to 20 nm on at least one surface.
  • An organic-inorganic composite material composed of nanoparticles and a resin material precursor, and having a refractive index of 1.65 to 1.80 after curing, has an average particle size of 0.1 ⁇ m to 0 ⁇ m.
  • an organic electroluminescence element that is excellent for white illumination, with significantly improved light extraction efficiency compared to the prior art, small changes in color depending on the observation angle, and variations in luminance.
  • Embodiments of an organic electroluminescence element also referred to as an organic EL element
  • a lighting device of the present invention will be described in detail below, but the contents described below are representative examples of the embodiment of the present invention. As long as the gist is not exceeded, it is not limited to these contents.
  • the organic EL device of the present invention is a composite having an oxide nanoparticle having an average particle diameter of 1 nm or more and 20 nm or less and a resin on at least one surface of a transparent substrate, and having a refractive index of 1.65 or more and 1.80 or less.
  • the material has a light scattering layer containing a light scattering filler having an average particle size of 0.1 ⁇ m or more and 0.7 ⁇ m or less, and an electron transport layer having a film thickness of 40 nm or more and 200 nm or less. To do.
  • the transparent substrate is not particularly limited as long as it has high light transmittance.
  • a glass substrate, a resin substrate, a resin film, etc. are preferably mentioned in terms of excellent hardness as a base material and ease of film formation on the surface, but from the viewpoint of lightness and flexibility It is preferable to use a transparent resin film.
  • the transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones.
  • polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, polyamide resin Examples include films, polyimide resin films, acrylic resin films, triacetyl cellulose (TAC) resin films, and the like, but wavelengths in the visible range (380 to 78).
  • TAC triacetyl cellulose
  • the resin film transmittance of 80% or more in nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the refractive index of the transparent resin film is preferably 1.50 or more, more preferably 1.60 or more and 1.80 or less.
  • the thickness of the transparent resin film is preferably 50 ⁇ m or more and 250 ⁇ m or less, and more preferably 75 ⁇ m or more and 200 ⁇ m or less.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the light scattering layer preferably has a small difference in refractive index from the transparent substrate, preferably a composite material having a refractive index of 1.65 or more and 1.80 or less, and more preferably a refractive index of 1.65 or more and 1.75. The following is more preferable.
  • the composite material referred to in the present invention refers to a composite of a resin, which is an organic material, and an inorganic material such as oxide nanoparticles.
  • a resin which is an organic material
  • an inorganic material such as oxide nanoparticles.
  • Hybrid materials are preferably used.
  • the resin used for the composite material according to the present invention is not particularly limited, but it is preferable to use a curable resin in view of cost and convenience when forming the layer.
  • the curable resin used in the present invention can be cured by any of ultraviolet and electron beam irradiation or heat treatment, and is mixed with oxide nanoparticles in an uncured state and then cured.
  • it can be used without particular limitation, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, allyl ester resins, and the like.
  • the curable resin may be an actinic ray curable resin that is cured by being irradiated with ultraviolet rays or electron beams, or may be a thermosetting resin that is cured by heat treatment.
  • Such types of resins can be preferably used, and acrylic resins can be particularly preferably used.
  • ⁇ Acrylic resin examples include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, fluorene acrylate, and N-vinylpyrrolidone.
  • Examples include polyfunctional monomers such as acrylate.
  • the oxide nanoparticles used in the composite material of the present invention are not particularly limited as long as the refractive index of the composite material can be adjusted to a target value, and absorption, emission, fluorescence, etc. occur in the wavelength region to be used. It is preferable to select and use those not present.
  • the composite material formed in the organic EL element has a high light extraction effect due to its high transparency. Therefore, the oxide nanoparticles used in the present invention are 1 nm or more and 20 nm or less. Preferably there is. When the average particle size is less than 1 nm, it is difficult to disperse the particles and the desired performance may not be obtained.
  • the average particle diameter when the average particle diameter exceeds 20 nm, the resulting composite material layer may become turbid depending on the difference in refractive index, resulting in a decrease in transparency, and the oxide nanoparticles acting as an optical scatterer. Therefore, the average particle diameter is preferably 20 nm or less because the contribution to the adjustment of the target refractive index is small.
  • the average particle diameter refers to the volume average value of the diameter (sphere converted particle diameter) when each particle is converted into a sphere having the same volume.
  • the refractive index of the oxide nanoparticles used in the present invention is preferably higher than that of the resin, and the refractive index is preferably 1.6 or more and 2.5 or less.
  • the elements constituting the oxide are Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb. 1 selected from the group consisting of Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth metals
  • Metal oxide nanoparticles that are seeds or two or more metals can be used. Specifically, for example, titanium oxide (titania), zinc oxide, aluminum oxide (alumina), zirconium oxide, hafnium oxide, niobium oxide.
  • rare earth oxides can also be used as the metal oxide nanoparticles, specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, Examples also include terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
  • titanium oxide and zirconium oxide can be preferably used.
  • oxide nanoparticles As a method for preparing oxide nanoparticles, it is possible to obtain fine particles by spraying and firing the raw material of oxide nanoparticles in a gas phase. Furthermore, a method of preparing particles using plasma, a method of ablating raw material solids with a laser or the like to make fine particles, a method of oxidizing evaporated metal gas to prepare fine particles, and the like can be suitably used. Further, as a method for preparing in the liquid phase, it is possible to prepare a dispersion of oxide nanoparticles dispersed almost as primary particles by using a sol-gel method using an alkoxide or chloride solution as a raw material. Alternatively, it is possible to obtain a dispersion having a uniform particle size by using a reaction crystallization method utilizing a decrease in solubility.
  • the filling rate to resin When filling an oxide nanoparticle of 20 nm or less into resin, when ensuring moldability (fluidity, there is no crack), it is preferable that it is 30 volume% or less. .
  • a certain filling rate is required, so 5 volume% or more, further 10 volume% or more is preferable.
  • the volume fraction of the oxide nanoparticles here is expressed by the formula (x / a) / when the specific gravity of the oxide nanoparticles is a, the content is x grams, and the total volume of the composite material produced is Y milliliters.
  • the content of oxide nanoparticles can be determined by observing a semiconductor crystal image with a transmission electron microscope (TEM) (information on the semiconductor crystal composition can also be obtained by local elemental analysis such as EDX) or given resin composition It can be calculated from the contained mass of a predetermined composition obtained by elemental analysis of ash contained in the product and the specific gravity of crystals of the composition.
  • TEM transmission electron microscope
  • the oxide nanoparticles are preferably subjected to a surface treatment in order to increase the affinity with the resin.
  • a surface treatment for the bonding between the necessary surface treating agent and the particle surface, the following introduction methods are conceivable, but not limited to them.
  • Silane coupling agent A condensation reaction or a hydrogen bond between a silanol group and a hydroxyl group on the particle surface is used.
  • Examples include vinylsilazane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethylalkoxysilane, dimethyldialkoxysilane, methyltrialkoxysilane, hexamethyldisilazane, and the like.
  • Trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxy Silane, hexamethyldisilazane and the like are preferably used.
  • Titanate, aluminate, and zirconate coupling agents are also applicable. Further, zircoaluminate, chromate, borate, stannate, isocyanate and the like can be used. A diketone coupling agent can also be used.
  • Resin-based surface treatment After introducing active species to the particle surface by the methods (1) to (3) above, a method of providing a polymer layer on the surface by graft polymerization, or adsorbing a pre-synthesized polymer dispersant to the particle surface , There is a method of combining. In order to provide a polymer layer more firmly on the particle surface, graft polymerization is preferred, and grafting at a high density is particularly preferred.
  • a resin containing fine particles (a molten state when a thermoplastic resin is used and an uncured state when a curable resin is used) is prepared.
  • a composite material turns into a desired layer by apply
  • a curable resin when used as the resin, it may be prepared by mixing the curable resin dissolved in an organic solvent and the fine particles according to the present invention, or in a monomer solution that is one of the raw materials of the curable resin. It may be prepared by adding and mixing the fine particles according to the present invention and then polymerizing them. Alternatively, it may be prepared by melting an oligomer in which a monomer is partially polymerized or a low molecular weight polymer, and adding and mixing the fine particles according to the present invention thereto.
  • organic solvent used herein examples include lower alcohols having about 1 to 4 carbon atoms, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as methyl acetate and ethyl acetate, hydrocarbons such as toluene and xylene, and the like. However, it is not particularly limited as long as it has a boiling point lower than that of the monomer and is compatible with these monomers.
  • a method of polymerizing after adding the fine particles according to the present invention to a monomer solution is preferable, and in particular, a highly viscous solution in which the monomer and the fine particles according to the present invention are mixed is given a share while cooling.
  • a highly viscous solution in which the monomer and the fine particles according to the present invention are mixed is given a share while cooling.
  • the method for adjusting the viscosity include adjustment of the particle diameter, surface state, and addition amount of the fine particles according to the present invention, addition of a solvent and a viscosity modifier, and the fine particles according to the present invention are surface-modified depending on the structure. Since it is easy, an optimal kneading state can be obtained.
  • the fine particles according to the present invention can be added in a powder or agglomerated state. Or it is also possible to add in the state disperse
  • the fine particles according to the present invention are preferably added in a surface-treated state.
  • a method such as an integral blend in which a surface treatment agent and fine particles are added at the same time to form a composite with a curable resin. Is possible.
  • the present invention provides a light-scattering filler having an average particle size of 0.1 ⁇ m or more and 0.7 ⁇ m or less in a composite material comprising oxide nanoparticles having a refractive index of 1.65 or more and 1.80 or less and a resin as a light scattering layer.
  • One of the characteristics is to contain.
  • a light-scattering filler is a filler that has the function of multiple scattering of light that has entered the light-scattering layer.
  • the light-scattering filler is particularly effective for light having different light distribution luminance characteristics depending on the emission wavelength.
  • the particle size is preferably 0.1 ⁇ m or more and 0.7 ⁇ m or less in view of general scattering. If it is less than 0.1 ⁇ m, the effect is small because the intensity of scattered light is low with respect to all wavelengths, and if it exceeds 0.7 ⁇ m, the scattering intensity increases with light of all wavelengths. The desired effect cannot be obtained because it cannot be utilized well.
  • the particle size of the light scattering filler is more preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less.
  • the refractive index of the light scattering filler is preferably 0.01 or more so that the difference in refractive index from the composite material to be added is obtained, and is preferably 0.5 or less.
  • the refractive index difference with the composite material is 0.2 or more and 0.3 or less.
  • the light-scattering filler used in the present invention a known filler made of inorganic or polymer can be used.
  • inorganic compounds include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, And calcium phosphate.
  • the polymer include silicone resin, fluororesin, and acrylic resin.
  • the optical filler used in the present invention is preferably silica or acrylic resin from the viewpoint of the difference in refractive index from the composite material. Further, the addition amount of these light scattering fillers is preferably 1% by mass or more and 30% by mass or less, but may be adjusted according to the degree of light scattering.
  • the light scattering filler can be in any shape such as a sphere, needle shape, flat plate shape, etc., and further, the dispersibility in the resin can be improved by performing the same surface treatment as the above-mentioned inorganic nanoparticles. It is.
  • the film thickness of the light scattering layer of the present invention is preferably about 1 to 10 ⁇ m, more preferably 2 to 7 ⁇ m, as long as it can improve the light extraction efficiency by the light scattering filler and improve the angle dependency of chromaticity and luminance. preferable.
  • the light scattering layer of the present invention may be formed on at least one surface of the transparent substrate, and may be formed on the light incident side surface or the emission side surface with respect to the transparent substrate. It may be formed on both sides.
  • the light scattering layer is formed on both surfaces of the transparent substrate, it is preferable to appropriately adjust the addition amount of the light scattering filler so that the scattering intensity does not become too strong due to both light scattering layers.
  • a resin layer not containing a light scattering filler is formed on the opposite surface, and one surface is warped when handled as a transparent substrate. It is preferable not to cause so-called curling.
  • a layer having a function as a barrier coat layer or a hard coat layer can also be formed.
  • the resin layer not containing this light-scattering filler if the difference in refractive index with the transparent base material is large, deterioration of light extraction due to interface reflection occurs. Therefore, the refractive index is the same as or slightly higher than that of the transparent base material. Preferably it is low.
  • the light scattering layer of the present invention is formed on the surface on the light incident side with respect to the transparent substrate, a transparent conductive layer is formed thereon, so that a smoothing layer is formed on the light scattering layer. It is preferable to form.
  • the smoothing layer it is only necessary to obtain a smoothness that does not cause a short circuit when a transparent conductive layer or an organic light emitting layer is formed on the surface, and a general resin can be used. Therefore, it is preferable to use a matrix resin for the light scattering layer.
  • the light scattering layer used in the organic electroluminescence device of the present invention is formed on the transparent substrate by means such as coating.
  • a coating method it can coat by well-known methods, such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an inkjet method.
  • the light scattering layer can be produced by a method such as curing by ultraviolet rays and heat, film formation by drying, curing by chemical reaction, or the like.
  • a light source for curing by a photocuring reaction to form a cured film layer can be used without limitation as long as it is a light source that generates ultraviolet rays.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the irradiation conditions vary depending on individual lamps, irradiation of active rays, usually 5 ⁇ 500mJ / cm 2, but preferably 5 ⁇ 150mJ / cm 2, particularly preferably 20 ⁇ 100mJ / cm 2.
  • One feature of the present invention is that an organic electroluminescence layer is formed on a transparent substrate having the light scattering layer having a high refractive index.
  • the organic electroluminescence layer as used herein refers to an anode buffer layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, a cathode buffer layer, or a portion between a transparent conductive layer and a counter electrode. Refers to the layer formed.
  • the organic electroluminescence layer of the present invention varies depending on the constituent materials, its refractive index is usually about 1.7.
  • the film thickness of the organic electroluminescence layer is usually 0.05 ⁇ m or more and 0.5 ⁇ m or less, and preferably 0.1 ⁇ m or more and 0.2 ⁇ m or less in terms of light emission efficiency and stability.
  • the film thickness of the electron transport layer in the organic electroluminescence layer in the range of 40 nm or more and 200 nm or less in order to improve the light extraction efficiency.
  • the light emission luminance characteristics in the light emitting layer are changed by changing the thickness of the electron transport layer in the organic electroluminescence layer.
  • the emission luminance of each wavelength is adjusted by adjusting the film thickness of the electron transport layer,
  • the luminance of the emitted light can be changed according to the outgoing angle.
  • the luminance ratio in an appropriate angle direction from the normal direction of the substrate is preferably larger in blue than in red or green, and in order to obtain such light distribution luminance characteristics, the film of the electron transport layer is used.
  • the thickness is preferably 40 nm or more and 200 nm or less, and particularly preferably 50 nm or more and 100 nm or less.
  • the thickness of the electron transport layer is less than 40 nm, the light distribution of each color becomes uniform, and the extraction efficiency of blue light having a particularly low emission luminance is lowered, which is not preferable.
  • the thickness of the electron transport layer exceeds 200 nm, the light distribution of each wavelength is made uniform, and the luminous efficiency is lowered due to the increase in the distance between the transparent conductive layer and the light emitting point. It is not preferable.
  • the luminance or chromaticity of the emitted light varies depending on the angle at which it is observed. Can be confirmed.
  • the transparent conductive layer of the present invention refers to a layer made of a transparent and conductive compound and acting as an electrode.
  • the transparent conductive layer has a refractive index of 1.8 or more and 2.1 or less when a metal oxide material such as ITO is used by vapor deposition or sputtering.
  • the film thickness t2 of the transparent conductive layer is 0.05 ⁇ m or more and 0.15 ⁇ m or less and is formed by coating using metal nanowires or the like, the refractive index is 1.6 or more and 1.8 or less, and the film thickness t2 is Generally, it is 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the refractive index of the transparent conductive layer is preferably close to 1.7. Therefore, the transparent conductive layer of the present invention is preferably formed by applying metal nanowires such as silver nanowires together with a conductive polymer material, and preferably has a refractive index of 1.6 or more and 1.8 or less.
  • the film thickness is preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • a commonly used method can be used as a method for measuring the refractive index.
  • it can be obtained from the measurement result of the spectral reflectance of a spectrophotometer (such as U-4000 type manufactured by Hitachi, Ltd.) for a sample in which each layer is coated alone. After roughening the back surface, light absorption treatment is performed with a black spray to prevent light reflection on the back surface, and the reflectance in the visible light region (400 to 700 nm) is measured under the condition of regular reflection at 5 degrees. Can be obtained.
  • a commonly used method can be used as a method of measuring the film thickness of each layer constituting the organic EL element.
  • the cross section of the organic EL element produced by laminating each layer can be obtained by photographing with a scanning electron microscope and measuring the film thickness.
  • Transparent conductive layer As the transparent conductive layer in the organic EL device of the present invention, a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material for forming the transparent conductive layer is preferably used.
  • electrode substances include metals such as Au, and conductive light-transmitting materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used.
  • the transparent conductive layer is preferably used as an anode.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 50 to 200 nm.
  • the transparent conductive layer can be used in combination with other resins having a relatively low refractive index while having high conductivity, and contains metal nanowires that can be expected to improve light extraction efficiency due to the light scattering effect. It is preferable. Furthermore, since the strength of the transparent conductive layer is increased by the network structure of the metal nanowire and the durability of the organic EL element is improved, it is preferable to use the metal nanowire for the transparent conductive layer.
  • the average length is preferably 3 ⁇ m or more. It is preferably 3 to 500 ⁇ m, particularly preferably 3 to 300 ⁇ m. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint.
  • the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.
  • a metal composition of the metal nanowire which concerns on this invention, although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity.
  • noble metals for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.
  • at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity.
  • the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
  • the metal nanowires come into contact with each other to form a three-dimensional conductive network, exhibiting high conductivity, and allowing light to pass through the window of the conductive network where no metal nanowire exists.
  • the light from the organic light emitting layer can be efficiently extracted by the scattering effect of the metal nanowires. If the metal nanowire is installed in the electrode part on the side close to the organic light emitting layer part, this scattering effect can be used more effectively, and this is a more preferable embodiment.
  • highly conductive electrodes can be completed by coating. Therefore, even if unevenness due to particles exists on the surface of the composite material layer, the unevenness can be relaxed, and the possibility of damaging the light emitting layer can be eliminated.
  • the refractive index of the transparent conductive layer is preferably 1.5 or more and 2.0 or less, more preferably 1.6 or more and 1.9 or less.
  • the present invention by optimizing the balance of the refractive index and thickness of the transparent conductive layer, organic electroluminescence layer, and transparent resin film, not only the conventionally known light extraction efficiency is improved.
  • the film physical properties of the organic electroluminescence device having a fine film structure can be greatly improved.
  • Organic electroluminescence device The preferable specific example of the layer structure of an organic electroluminescent element is shown below.
  • the light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer comprising a plurality of light emitting layers A unit may be formed.
  • the hole transport layer also includes a hole injection layer and an electron blocking layer.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as the contained light emitting material satisfies the above requirements.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained.
  • the sum total of the film thickness of the light emitting layer as used in the field of this invention is a film thickness also including the said intermediate
  • each light emitting layer is preferably adjusted in the range of 1 to 50 nm, more preferably in the range of 1 to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.
  • a light emitting material or a host compound which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.
  • a plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
  • the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
  • a light emitting material also referred to as a light emitting dopant compound
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • known host compounds may be used alone or in combination of two or more.
  • the organic EL element can be made highly efficient.
  • the host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )But it is good.
  • the known host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) is used.
  • a phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Lecture 4 of the 4th edition.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
  • the carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent material.
  • Energy transfer type to obtain light emission from the phosphorescent light emitting material, and another one is that the phosphorescent light emitting material becomes a carrier trap, and recombination of carriers occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained.
  • the excited state energy of the phosphorescent material is required to be lower than the excited state energy of the host compound.
  • the phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • Fluorescent light emitters can also be used for the organic electroluminescence device according to the present invention.
  • fluorescent emitters include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • dopants can also be used in the present invention.
  • International Publication No. 00/70655 pamphlet JP-A Nos. 2002-280178, 2001-181616, 2002-280179, 2001 -181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, International Publication No. 02/15645, JP 2002-332291, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No.
  • At least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.
  • ⁇ Middle layer ⁇ In the present invention, a case where a non-light emitting intermediate layer (also referred to as an undoped region) is provided between the light emitting layers will be described.
  • the non-light emitting intermediate layer is a layer provided between the light emitting layers.
  • the film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 20 nm, and more preferably in the range of 3 to 10 nm to suppress interaction such as energy transfer between adjacent light emitting layers, and This is preferable because a large load is not applied to the voltage characteristics.
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
  • the non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Including the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, and the case where the molecular structure of the host compound is the same, etc.)
  • a compound common to each light-emitting layer for example, a host compound
  • each common host material where a common host material is used
  • the host material is responsible for carrier transportation, and therefore a material having carrier transportation ability is preferable.
  • Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
  • the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and their forefront of industrialization” (published by NTT Corporation on November 30, 1998). There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer in a broad sense, has a function of a hole transport layer, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • the counter electrode of the present invention refers to an electrode facing the transparent conductive layer.
  • the transparent conductive layer is mainly used as an anode, the following cathode can be used as the counter electrode.
  • the cathode a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the cathode after the metal is produced with a thickness of 1 nm to 20 nm on the cathode.
  • An element in which both the anode and the cathode are transmissive can be manufactured.
  • the organic electroluminescence element of the present invention can be produced by sequentially forming a composite material layer, a transparent conductive layer, an organic electroluminescence layer, and a counter electrode on a transparent substrate.
  • a transparent conductive layer can be formed using a desired electrode substance on a transparent substrate on which a light scattering layer is formed.
  • the transparent conductive layer can be formed by a method such as vapor deposition or sputtering.
  • a transparent conductive layer can be formed from a material containing metal nanowires, a conductive polymer, or a transparent conductive metal oxide by a liquid phase film forming method such as a coating method or a printing method.
  • a liquid conductive film forming method such as a coating method or a printing method is applied to a transparent conductive layer containing metal nanowires. It is preferable to form by.
  • coating methods roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used.
  • a letterpress (letter) printing method a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
  • physical surface treatment such as corona discharge treatment or plasma discharge treatment can be applied to the surface of the releasable substrate as a preliminary treatment for improving the adhesion and coating properties.
  • an organic electroluminescence layer As an example of a method for producing this organic electroluminescence layer, a method for producing an organic electroluminescence layer comprising a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer will be described.
  • An organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic electroluminescence element materials, is formed on a transparent substrate on which a transparent conductive layer is formed.
  • a method for thinning the organic compound thin film there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature ⁇ 50 to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm. Is provided.
  • the desired organic electroluminescence element is obtained by the above steps.
  • the organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • a DC voltage is applied to the multicolor liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the surface light emitter and the light emitting panel according to the present invention can be used as a display device, a display, and various light emitting sources.
  • light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors.
  • it is not limited to this, it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
  • the organic electroluminescent material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a light emitting material that emits fluorescent or phosphorescent light, and the light emission. Any combination of a dye material that emits light from the material as excitation light may be used, but in the white organic EL device according to the present invention, a method of combining a plurality of light-emitting dopants is preferable.
  • a method of having a plurality of emission dopants in one emission layer, a plurality of emission layers, and an emission wavelength of each emission layer examples thereof include a method in which different dopants are present, and a method in which minute pixels emitting light of different wavelengths are formed in a matrix.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the platinum complex according to the present invention is known so as to be suitable for the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined to be whitened.
  • the white light-emitting organic EL element is used as a liquid crystal display as a kind of lamp such as various light-emitting light sources and lighting devices, home lighting, interior lighting, and exposure light source. It is also useful for display devices such as device backlights.
  • backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc.
  • Example 1 Production of Composite Material (Organic / Inorganic Composite Material) 1 >> (Preparation of zirconia particles) To a zirconium salt solution in which 2600 g of zirconium oxychloride octahydrate is dissolved in 40 l (liter) of pure water, 340 g of 28% ammonia water and 20 l of dilute ammonia water in pure water are added with stirring to obtain a zirconia precursor. A slurry was prepared.
  • this mixture was dried in the atmosphere at 120 ° C. for 24 hours using a dryer to obtain a solid.
  • the solid was pulverized with an automatic mortar or the like and then baked at 500 ° C. for 1 hour in the air using an electric furnace.
  • This fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, sufficiently removed the added sodium sulfate, dried in a drier, and zirconia particles 1 was prepared.
  • the average particle size was 5 nm.
  • XRD confirmed that the particles were ZrO 2 crystals.
  • the obtained composite material 1 was applied onto a smooth glass substrate so as to have a dry film thickness of 1 ⁇ m, and cured by irradiating with ultraviolet rays to prepare a sample in which a thin film layer was formed.
  • a spectrophotometer such as U-4000 type manufactured by Hitachi, Ltd.
  • the refractive index was 1.75.
  • the thin film layer was observed with a scanning electron microscope, and the spherical equivalent particle diameter of each particle was obtained from the projected area of 200 particles of zirconia nanoparticles, and the average value was obtained.
  • the average particle diameter of the zirconia nanoparticles dispersed in the thin film was 6 nm.
  • the composite material 2 was produced by changing the addition amount of the dispersion liquid of the zirconia particles 1 to 10% by volume in the same manner as the production of the composite material 1.
  • the refractive index and the average particle diameter of the zirconia nanoparticles were measured by the same method as for the composite material 1. As a result, the refractive index was 1.65, and the average particle diameter of the zirconia nanoparticles was 6 nm.
  • a composite material 4 in which titania nanoparticles were dispersed was produced in the same manner as the production method of the composite material 1.
  • the obtained resin monomer solution in which titania nanoparticles were dispersed was applied on a smooth glass substrate so as to have a dry film thickness of 1 ⁇ m, cured by irradiation with ultraviolet rays, and evaluated in the same manner as in the composite material 1. .
  • the refractive index was 1.74
  • the average particle diameter of the dispersed titania nanoparticles was 18 nm.
  • Table 1 shows the evaluation results of the above thin film layers.
  • the composite material 1 is applied to one side of a 125 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so that the dry film thickness is 3 ⁇ m and cured by irradiating with ultraviolet rays. Let this side be the surface. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size 0.3 ⁇ m) manufactured by Nippon Shokubai Co., Ltd. to the composite material 1, ultrasonic dispersion is performed to obtain a resin solution 1A containing a light scattering filler. It was prepared, applied to the back surface of the PEN film so that the dry film thickness was 3 ⁇ m, and cured by irradiation with ultraviolet rays.
  • silica particles KE-P30 average particle size 0.3 ⁇ m
  • ⁇ Preparation of transparent substrate 3 The above-mentioned composite material 2 is applied to one side of a 125 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index: 1.75) so as to have a dry film thickness of 3 ⁇ m and cured by irradiating with ultraviolet rays. Let this side be the surface. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size 0.3 ⁇ m) manufactured by Nippon Shokubai Co., Ltd. to the composite material 2, ultrasonic dispersion is performed to obtain a resin solution 2A containing a light scattering filler. It was prepared, applied to the back surface of the PEN film so that the dry film thickness was 3 ⁇ m, and cured by irradiation with ultraviolet rays.
  • silica particles KE-P30 average particle size 0.3 ⁇ m
  • ⁇ Preparation of transparent substrate 4 The composite material 3 described above is applied to one side of a 125 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so that the dry film thickness is 3 ⁇ m and cured by irradiating with ultraviolet rays. Let this side be the surface. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size 0.3 ⁇ m) manufactured by Nippon Shokubai Co., Ltd. to the composite material 3, ultrasonic dispersion is performed to obtain a resin solution 3A containing a light scattering filler. It was prepared, applied to the back surface of the PEN film so that the dry film thickness was 3 ⁇ m, and cured by irradiation with ultraviolet rays.
  • silica particles KE-P30 average particle size 0.3 ⁇ m
  • Preparation of transparent substrate 6 After adding 20% by mass of silica particles KE-P30 (average particle size 0.3 ⁇ m) manufactured by Nippon Shokubai Co., Ltd. to the composite material 4, ultrasonic dispersion is performed to prepare a resin solution 4A containing a light scattering filler. This was applied to one side of a 125 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 5 ⁇ m, and cured by irradiating with ultraviolet rays.
  • silica particles KE-P30 average particle size 0.3 ⁇ m
  • a light scattering filler This was applied to one side of a 125 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 5 ⁇ m, and cured by irradiating with ultraviolet rays.
  • the composite material 4 was further applied as a smoothing layer so that the dry film thickness was 4 ⁇ m, and cured by irradiating with ultraviolet rays. Thereafter, the composite material 4 was applied to the opposite surface of the PEN film so as to have a dry film thickness of 4 ⁇ m, and cured by irradiation with ultraviolet rays.
  • ⁇ Preparation of transparent substrate 11 After adding 20% by mass of alumina particles AO-802 (average particle size 0.7 ⁇ m) manufactured by Admatechs Co., Ltd. to composite material 2, ultrasonic dispersion is performed to prepare resin solution 2B containing a light scattering filler. This was applied to one side of a 125 ⁇ m thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 5 ⁇ m, and cured by irradiating with ultraviolet rays. Further, the composite material 2 was further applied as a smoothing layer so that the dry film thickness was 4 ⁇ m, and cured by irradiating with ultraviolet rays. Thereafter, the composite material 2 was applied to the opposite surface of the PEN film so as to have a dry film thickness of 4 ⁇ m, and cured by irradiation with ultraviolet rays.
  • alumina particles AO-802 average particle size 0.7 ⁇ m
  • Preparation of transparent substrate 12 After adding 20% by mass of silica particles KE-P30 (average particle size 0.3 ⁇ m) to the composite material 5, ultrasonic dispersion is performed to prepare a resin solution 5A containing a light-scattering filler, which has a thickness of 125 ⁇ m.
  • a biaxially stretched PEN film (manufactured by Teijin DuPont Co., Ltd .; refractive index 1.75) was applied to a dry film thickness of 5 ⁇ m and cured by irradiating with ultraviolet rays. Further, the composite material 5 was further applied as a smoothing layer so that the dry film thickness was 4 ⁇ m, and cured by irradiating with ultraviolet rays. Thereafter, the composite material 5 was applied to the opposite surface of the PEN film so as to have a dry film thickness of 4 ⁇ m, and was cured by irradiation with ultraviolet rays.
  • This substrate was transferred to a glove box in accordance with JIS B 9920 under a nitrogen atmosphere, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or lower, and an oxygen concentration of 0.8 ppm.
  • a coating solution for a hole transport layer was prepared as follows in a glove box, and applied with a spin coater under conditions of 1500 rpm and 30 seconds. This substrate was dried by heating at a substrate surface temperature of 150 ° C. for 30 minutes to provide a hole transport layer. The film thickness was 20 nm when it apply
  • the coating liquid for electron carrying layers was prepared as follows, and it apply
  • a resistance heating boat containing potassium fluoride was energized and heated to provide a 3 nm electron injection layer made of potassium fluoride on the substrate.
  • a resistance heating boat containing aluminum was energized and heated, and a cathode having a thickness of 100 nm made of aluminum was provided at a deposition rate of 1 to 2 nm / second.
  • the thickness of the organic electroluminescence layer was 0.12 ⁇ m, and the thickness of the transparent conductive layer was 0.1 ⁇ m.
  • the produced organic EL device is set in a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing), and the organic EL device emits light and changes the angle with respect to the normal direction, and the luminance and spectral spectrum at each tilt angle.
  • the front luminances of red, green, and blue in the normal direction are each 1, the relative luminances of red, green, and blue in directions inclined by 30 degrees, 45 degrees, and 60 degrees with respect to the normal direction And is shown in Table 2.
  • the relative luminance value is in the range of 0.95 to 1.05, changes in luminance and chromaticity are not visually recognized, and it is favorable as white illumination.
  • the refractive index of the matrix resin is the refractive index of the cured film of the composite material used for each light scattering layer, to which no light scattering layer filler is added.
  • the refractive indexes of the used silica, PMMA, and alumina are 1.45, 1.49, and 1.76, respectively.
  • the organic electroluminescence device having the configuration of the present invention has a high external extraction quantum efficiency, a small luminance and color change depending on the observation angle, and is excellent as white illumination.
  • Example 2 The organic EL element 8 of the present invention produced in Example 1 was covered with a glass case to obtain a lighting device.
  • the glass cover was filled with nitrogen gas, and a water capturing agent was provided in the glass cover on the side opposite to the light emitting surface.
  • the lighting device according to the present invention has high luminous efficiency and can be used as a thin lighting device that emits white light with a long light emission lifetime.
  • Example 3 The organic EL element 8 of the present invention produced in Example 1 was covered with a transparent barrier film (transparent resin film coated with a silicon dioxide film) to obtain a flexible lighting device.
  • the illuminating device according to the present invention can be used as a thin illuminating device that emits white light having a long emission life while maintaining high luminous efficiency even with some bending motion.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed are an electroluminescence element and a lighting device, wherein the electroluminescence element is formed by stacking an organic electroluminescence layer, comprising a transparent electroconductive layer and an electron transport layer, and an opposing electrode in sequence upon a transparent substrate. The transparent substrate comprises oxide nanoparticles with an average diameter between 1nm-20nm and a plastic upon at least one side of the transparent substrate; and further comprises a light-diffusion layer wherein an application fluid whereto a light-diffusing filler with an average particle diameter between 0.1µm-0.7µm is added to a composite material is coated, dried, and hardened, the post-hardening refraction thereof being between 1.65-1.80, inclusive, and the thickness of the electron transport layer is between 40-200nm.

Description

有機エレクトロルミネッセンス素子及び照明装置ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子とその素子を用いた照明装置に関する。 The present invention relates to an organic electroluminescence element and a lighting device using the element.
 発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層(蛍光性有機化合物を含む有機化合物薄膜)を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子である。通常、この発光を利用するために、有機化合物薄膜を挟む電極の少なくとも一方は、ITO等の透明導電層が用いられ、該透明導電層は、さらにガラス等の透明基体によって支持されている。 There is an electroluminescence display (ELD) as a light-emitting electronic display device. As a component of ELD, an inorganic electroluminescent element and an organic electroluminescent element are mentioned. Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements. The organic electroluminescence device has a configuration in which a light emitting layer containing a compound that emits light (an organic compound thin film containing a fluorescent organic compound) is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer, It is an element that emits light by utilizing light emission (fluorescence / phosphorescence) when excitons (excitons) are generated by recombination and the excitons are deactivated. Usually, in order to utilize this light emission, a transparent conductive layer such as ITO is used for at least one of the electrodes sandwiching the organic compound thin film, and the transparent conductive layer is further supported by a transparent substrate such as glass.
 有機EL素子は、数V~数十V程度の低電圧で発光が可能であり、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるので省スペース、携帯性等の観点から注目されている。 Organic EL devices can emit light at a low voltage of several volts to several tens of volts, are self-luminous, have a wide viewing angle, high visibility, and are thin-film, completely solid-state devices that save space. It is attracting attention from the viewpoint of portability.
 しかしながら、今後の実用化に向けた有機エレクトロルミネッセンス素子においては、さらに低消費電力で効率よく高輝度に発光する有機エレクトロルミネッセンス素子の開発が望まれている。 However, in the organic electroluminescence device for practical use in the future, it is desired to develop an organic electroluminescence device that emits light efficiently and with high luminance with low power consumption.
 今後の性能向上のために解決すべき課題の一つとして、有機エレクトロルミネッセンス素子では光の取り出し効率(発光したエネルギーに対して基板の外に出てくるエネルギーの割合)が低いという問題がある。すなわち、発光層の発光には指向性がなく、四方八方に散逸してしまうため、発光層から前方向へ光を導く際のロスが大きく、光強度が足りず表示画面が暗くなる問題がある。 As one of the problems to be solved in order to improve the performance in the future, the organic electroluminescence device has a problem that the light extraction efficiency (the ratio of the energy coming out of the substrate to the emitted energy) is low. That is, the light emission of the light emitting layer is not directional and dissipates in all directions, so there is a large loss when guiding light forward from the light emitting layer, and there is a problem that the display screen becomes dark due to insufficient light intensity. .
 発光層からの発光は、前方向へ出てくるもののみを利用することになるが、古典光学に基づいた多重反射から導き出される前方向への光取り出し効率(発光効率)は1/2nで近似でき、発光層の屈折率nでほぼ決まってしまう。発光層の屈折率を約1.7とすると、単純に前記有機EL部からの発光効率は約20%となる。残りの光は、発光層の面積方向へ伝搬するか(横方向への霧散)、発光層を挟んで透明電極と相対する金属電極で消失する(後方向への吸収)。 The light emitted from the light emitting layer uses only the light emitted in the forward direction, but the light extraction efficiency (light emission efficiency) in the forward direction derived from multiple reflection based on classical optics is 1 / 2n 2 . It can be approximated, and is almost determined by the refractive index n of the light emitting layer. If the refractive index of the light emitting layer is about 1.7, the light emission efficiency from the organic EL part is simply about 20%. The remaining light propagates in the area direction of the light emitting layer (spray in the lateral direction) or disappears at the metal electrode facing the transparent electrode with the light emitting layer interposed therebetween (absorption in the backward direction).
 この光の取り出し効率を向上させる手法としては、様々な方法が検討されている。 A variety of methods have been studied as methods for improving the light extraction efficiency.
 例えば、透明電極層と透光体の間に、透明電極と同等屈折率のマトリクス中に散乱粒子を含有した層と低屈折率層を形成し、光散乱効果により光取り出し効率を向上させる方法(例えば、特許文献1参照)が開示されている。これは、高屈折率のマトリクスとしてチタニア等の無機化合物を用いる方法であり、樹脂マトリクス中に酸化物ナノ粒子と光散乱性フィラーを含有した樹脂からなる光散乱層についての記載はない。また、発光波長によって異なる配光輝度特性を示すような有機エレクトロルミネッセンス層に対して光散乱層を用いて光取り出し効率を向上する方法についての記載はなかった。 For example, a method of forming a layer containing scattering particles and a low refractive index layer in a matrix having the same refractive index as that of the transparent electrode between the transparent electrode layer and the transparent body, and improving the light extraction efficiency by the light scattering effect ( For example, see Patent Document 1). This is a method using an inorganic compound such as titania as a high refractive index matrix, and there is no description of a light scattering layer made of a resin containing oxide nanoparticles and a light scattering filler in a resin matrix. Moreover, there was no description about the method of improving light extraction efficiency using a light-scattering layer with respect to the organic electroluminescent layer which shows the light distribution luminance characteristic which changes with light emission wavelengths.
 一方、素子の正面方向の輝度を抑制し、角度50~70度の輝度を増加させることで、全体の輝度を高める方法(例えば、特許文献2参照)が開示されている。しかしながら、この方法では角度50~70度といった特定角度の輝度が強いため、電球の様な全方向の同一輝度が要求される照明装置等の用途にはふさわしくない。また、正面方向と斜め方向で観察される光スペクトルが異なり、観察角度による色味の変化が生じるという問題もあった。このような問題に対し、光出射側に選択反射層を形成し、特定波長光の反射により色味の変化を抑える方法(例えば、特許文献3参照)が開示されている。しかしながら、この方法では観察角度による色味の変化は改善されるが、選択反射層による輝度の低下が生じるとともに、発光波長によって異なる配光輝度特性を有す有機発光層に対してこれを用いた場合には、特定角度の輝度が高くなるという欠点を改善することはできない。 On the other hand, a method of increasing the overall brightness by suppressing the brightness in the front direction of the element and increasing the brightness at an angle of 50 to 70 degrees is disclosed (for example, see Patent Document 2). However, since this method has a high luminance at a specific angle of 50 to 70 degrees, it is not suitable for a lighting device or the like that requires the same luminance in all directions, such as a light bulb. In addition, there is a problem that the light spectrum observed in the front direction and the oblique direction are different, and the color changes depending on the observation angle. In order to solve such a problem, a method is disclosed in which a selective reflection layer is formed on the light emission side and a change in color is suppressed by reflection of light of a specific wavelength (see, for example, Patent Document 3). However, this method improves the change in color depending on the viewing angle, but the luminance is reduced by the selective reflection layer, and this is used for an organic light emitting layer having different light distribution luminance characteristics depending on the emission wavelength. In such a case, the disadvantage that the brightness at a specific angle is high cannot be improved.
 また、発光波長によって異なる配光輝度特性を有す有機発光層を用い、透光性基板の出射面に表面に凹凸が設けられた透光性の集光板を設けることにより、正面輝度を増大させる方法(例えば、特許文献4参照)が開示されているが、この方法では高い輝度は得られるものの、観察角度による色味の変化や輝度のばらつきが生じるため、白色照明用の有機EL素子としては不十分であった。 In addition, by using an organic light-emitting layer having different light distribution luminance characteristics depending on the emission wavelength, and providing a light-transmitting light collecting plate with unevenness on the surface of the light-transmitting substrate, the front luminance is increased. Although a method (see, for example, Patent Document 4) is disclosed, although high luminance is obtained by this method, a change in color depending on an observation angle and a variation in luminance occur. Therefore, as an organic EL element for white illumination, It was insufficient.
特許第4186847号明細書Japanese Patent No. 4186847 特許第4350996号明細書Japanese Patent No. 4350996 特開2009-231257号公報JP 2009-231257 A 特開2006-278137号公報JP 2006-278137 A
 本発明は、上記課題に鑑みてなされたものであり、その目的は、光取り出し効率が大幅に向上し、かつ観察角度による色味の変化や輝度のばらつきが小さいエレクトロルミネッセンス素子と、その素子を用いた照明装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an electroluminescent device that greatly improves light extraction efficiency and has small color change and luminance variation depending on an observation angle, and the device. It is in providing the used illuminating device.
 本発明者らは、上記課題について鋭意検討した結果、屈折率1.65以上、1.80以下の有機無機複合材料(以下複合材料と称する)中に平均粒径0.1μm以上、0.7μm以下の光散乱性フィラーを含有する光散乱層を形成した透明基板上に、発光波長によって異なる配光輝度特性を有する有機発光層を形成することにより、従来技術では困難であった高い光取り出し効率と観察角度による色味や輝度の変化の抑制を両立できることを見出した。 As a result of intensive studies on the above problems, the inventors of the present invention have an average particle size of 0.1 μm or more and 0.7 μm in an organic-inorganic composite material having a refractive index of 1.65 or more and 1.80 or less (hereinafter referred to as composite material). High light extraction efficiency, which was difficult in the prior art, by forming an organic light-emitting layer with different light distribution luminance characteristics depending on the emission wavelength on a transparent substrate on which a light-scattering layer containing the following light-scattering filler was formed And the suppression of changes in color and brightness depending on the observation angle.
 従って、本発明は以下の構成により達成される。 Therefore, the present invention is achieved by the following configuration.
 1.透明基板上に透明導電層、電子輸送層を有する有機エレクトロルミネッセンス層および対向電極が順次積層された有機エレクトロルミネッセンス素子において、該透明基板は少なくとも片側の面に、平均粒径1nm~20nmの酸化物ナノ粒子と樹脂材料前駆体からなる有機無機複合材料であって、かつ、硬化後の屈折率が1.65以上1.80以下になる該有機無機複合材料に、平均粒径0.1μm~0.7μmの光散乱性フィラーを添加した塗布液を塗布・乾燥・硬化した光散乱層を有し、かつ、該電子輸送層の膜厚が、40~200nmであることすることを特徴とする有機エレクトロルミネッセンス素子。 1. In an organic electroluminescence device in which a transparent conductive layer, an organic electroluminescence layer having an electron transport layer, and a counter electrode are sequentially laminated on a transparent substrate, the transparent substrate is an oxide having an average particle diameter of 1 nm to 20 nm on at least one surface. An organic-inorganic composite material composed of nanoparticles and a resin material precursor, and having a refractive index of 1.65 to 1.80 after curing, has an average particle size of 0.1 μm to 0 μm. An organic layer characterized in that it has a light scattering layer obtained by coating, drying and curing a coating solution to which a light-scattering filler of 7 μm is added, and the thickness of the electron transport layer is 40 to 200 nm Electroluminescence element.
 2.前記光散乱層の複合材料と光散乱性フィラーの屈折率差が、0.2~0.3であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to 1 above, wherein a difference in refractive index between the composite material of the light scattering layer and the light scattering filler is 0.2 to 0.3.
 3.前記1又は2に記載の有機エレクトロルミネッセンス素子を用いることを特徴とする照明装置。 3. 3. An illuminating device using the organic electroluminescence element as described in 1 or 2 above.
 本発明によれば、従来より大幅な光取り出し効率の向上と、観察角度による色味の変化や輝度のばらつきが小さく、白色照明用として優れた有機エレクトロルミネッセンス素子を得ることができるものである。 According to the present invention, it is possible to obtain an organic electroluminescence element that is excellent for white illumination, with significantly improved light extraction efficiency compared to the prior art, small changes in color depending on the observation angle, and variations in luminance.
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 以下に本発明の有機エレクトロルミネッセンス素子(有機EL素子ともいう)および照明装置の実施形態を詳細に説明するが、以下に記載する内容は、本発明の実施態様の代表例であり、本発明はその要旨を超えない限り、これらの内容に限定されない。 Embodiments of an organic electroluminescence element (also referred to as an organic EL element) and a lighting device of the present invention will be described in detail below, but the contents described below are representative examples of the embodiment of the present invention. As long as the gist is not exceeded, it is not limited to these contents.
 [透明基板]
 本発明の有機EL素子は、透明基材の少なくとも片側の面に、平均粒径1nm以上、20nm以下の酸化物ナノ粒子及び樹脂からなり、屈折率が1.65以上1.80以下になる複合材料に平均粒径0.1μm以上、0.7μm以下の光散乱性フィラーを含有する光散乱層、かつ、膜厚が40nm以上、200nm以下である電子輸送層を有していることを特徴とする。
[Transparent substrate]
The organic EL device of the present invention is a composite having an oxide nanoparticle having an average particle diameter of 1 nm or more and 20 nm or less and a resin on at least one surface of a transparent substrate, and having a refractive index of 1.65 or more and 1.80 or less. The material has a light scattering layer containing a light scattering filler having an average particle size of 0.1 μm or more and 0.7 μm or less, and an electron transport layer having a film thickness of 40 nm or more and 200 nm or less. To do.
 透明基材としては、高い光透過性を有していればそれ以外に特に制限はない。例えば、基材としての硬度に優れ、またその表面への膜形成のし易さ等の点で、ガラス基板、樹脂基板、樹脂フィルムなどが好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが好ましい。 The transparent substrate is not particularly limited as long as it has high light transmittance. For example, a glass substrate, a resin substrate, a resin film, etc. are preferably mentioned in terms of excellent hardness as a base material and ease of film formation on the surface, but from the viewpoint of lightness and flexibility It is preferable to use a transparent resin film.
 本発明で透明基材として好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 The transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones. For example, polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, polyamide resin Examples include films, polyimide resin films, acrylic resin films, triacetyl cellulose (TAC) resin films, and the like, but wavelengths in the visible range (380 to 78). If the resin film transmittance of 80% or more in nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明において透明樹脂フィルムの屈折率は、1.50以上であることが好ましく、さらに1.60以上、1.80以下であることが特に好ましい。 In the present invention, the refractive index of the transparent resin film is preferably 1.50 or more, more preferably 1.60 or more and 1.80 or less.
 本発明において透明樹脂フィルムの厚さは、50μm以上、250μm以下であることが好ましく、さらに75μm以上、200μm以下であることが特に好ましい。 In the present invention, the thickness of the transparent resin film is preferably 50 μm or more and 250 μm or less, and more preferably 75 μm or more and 200 μm or less.
 本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Also, examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 光散乱層は、透明基材との屈折率差が小さいことが良く、屈折率1.65以上、1.80以下の複合材料を用いることが好ましく、さらに屈折率1.65以上、1.75以下がより好ましい。 The light scattering layer preferably has a small difference in refractive index from the transparent substrate, preferably a composite material having a refractive index of 1.65 or more and 1.80 or less, and more preferably a refractive index of 1.65 or more and 1.75. The following is more preferable.
 本発明で言う複合材料とは、有機材料である樹脂と酸化物ナノ粒子等の無機材料が複合化されたものをいい、樹脂中に酸化物ナノ粒子が分散した、いわゆるポリマーナノコンポジット材料やポリマーハイブリッド材料が好ましく用いられる。 The composite material referred to in the present invention refers to a composite of a resin, which is an organic material, and an inorganic material such as oxide nanoparticles. A so-called polymer nanocomposite material or polymer in which oxide nanoparticles are dispersed in the resin. Hybrid materials are preferably used.
 以下に、複合材料について、さらに詳しく説明する。 Hereinafter, the composite material will be described in more detail.
 本発明に係る複合材料に用いる樹脂としては特に制限はないが、層形成時のコストおよび利便性を考えた場合には硬化性樹脂を用いることが好ましい。本発明で用いられる硬化性樹脂としては、紫外線及び電子線照射、あるいは加熱処理のいずれかの操作によって硬化し得るもので、酸化物ナノ粒子と未硬化の状態で混合させた後、硬化させることによって透明な樹脂組成物を形成する物であれば特に制限なく使用でき、例えば、シリコーン樹脂、エポキシ樹脂、ビニルエステル樹脂、アクリル系樹脂、アリルエステル系樹脂等が挙げられる。該硬化性樹脂は紫外線や電子線等の照射を受けて硬化する活性光線硬化性樹脂であってもよいし、加熱処理によって硬化する熱硬化性樹脂であってもよく、例えば、下記に列記したような種類の樹脂を好ましく使用することができ、特に好ましくはアクリル系樹脂を用いることができる。 The resin used for the composite material according to the present invention is not particularly limited, but it is preferable to use a curable resin in view of cost and convenience when forming the layer. The curable resin used in the present invention can be cured by any of ultraviolet and electron beam irradiation or heat treatment, and is mixed with oxide nanoparticles in an uncured state and then cured. As long as it forms a transparent resin composition, it can be used without particular limitation, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, allyl ester resins, and the like. The curable resin may be an actinic ray curable resin that is cured by being irradiated with ultraviolet rays or electron beams, or may be a thermosetting resin that is cured by heat treatment. Such types of resins can be preferably used, and acrylic resins can be particularly preferably used.
 <アクリル系樹脂>
 アクリル系樹脂の原料成分としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、フルオレンアクリレート、N-ビニルピロリドン等の単官能モノマー。あるいは、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸変性ジ(又はトリ)アクリレート等の多官能性モノマー等が挙げられる。
<Acrylic resin>
Examples of the raw material component of the acrylic resin include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, fluorene acrylate, and N-vinylpyrrolidone. Alternatively, urethane (meth) acrylate, polyester (meth) acrylate, polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di ( (Meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, isocyanuric acid modified di (or tri) Examples include polyfunctional monomers such as acrylate.
 本発明では、これらのうち3官能以上の多官能性アクリレート系化合物及び3官能以上の多官能性ウレタンアクリレート系化合物を用いることが好ましい。 In the present invention, it is preferable to use a trifunctional or higher polyfunctional acrylate compound and a trifunctional or higher polyfunctional urethane acrylate compound.
 《酸化物ナノ粒子》
 本発明の複合材料に用いられる酸化物ナノ粒子は、該複合材料の屈折率を目的とする値に調整できるものであれば特に制限はなく、使用する波長領域において吸収、発光、蛍光等が生じないものを適宜選択して使用することが好ましい。本発明において、有機EL素子中に形成される複合材料としては、透明性が高いことにより、高い光取出し効果が得られるため、本発明に用いられる酸化物ナノ粒子は、1nm以上、20nm以下であることが好ましい。平均粒子径が1nm未満の場合、粒子の分散が困難になり所望の性能が得られないおそれがある。一方、平均粒子径が20nmを超える場合、屈折率差によっては得られる複合材料層が濁るなどして透明性が低下するおそれがあり、しかも酸化物ナノ粒子が光学的な散乱体として作用することから、目的とする屈折率の調整への寄与が小さくなることから、平均粒子径は20nm以下であることが好ましい。ここで平均粒子径とは、各粒子を同体積の球に換算した時の直径(球換算粒径)の体積平均値をいう。
<Oxide nanoparticles>
The oxide nanoparticles used in the composite material of the present invention are not particularly limited as long as the refractive index of the composite material can be adjusted to a target value, and absorption, emission, fluorescence, etc. occur in the wavelength region to be used. It is preferable to select and use those not present. In the present invention, the composite material formed in the organic EL element has a high light extraction effect due to its high transparency. Therefore, the oxide nanoparticles used in the present invention are 1 nm or more and 20 nm or less. Preferably there is. When the average particle size is less than 1 nm, it is difficult to disperse the particles and the desired performance may not be obtained. On the other hand, when the average particle diameter exceeds 20 nm, the resulting composite material layer may become turbid depending on the difference in refractive index, resulting in a decrease in transparency, and the oxide nanoparticles acting as an optical scatterer. Therefore, the average particle diameter is preferably 20 nm or less because the contribution to the adjustment of the target refractive index is small. Here, the average particle diameter refers to the volume average value of the diameter (sphere converted particle diameter) when each particle is converted into a sphere having the same volume.
 また、本発明に用いられる酸化物ナノ粒子の屈折率は、樹脂よりも高いことが好ましく、屈折率が1.6以上2.5以下であることが好ましい。 The refractive index of the oxide nanoparticles used in the present invention is preferably higher than that of the resin, and the refractive index is preferably 1.6 or more and 2.5 or less.
 酸化物ナノ粒子としては、酸化物を構成する元素が、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb、Bi及び希土類金属からなる群より選ばれる1種または2種以上の金属である金属酸化物ナノ粒子を用いることができ、具体的には、例えば、酸化チタン(チタニア)、酸化亜鉛、酸化アルミニウム(アルミナ)、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化バリウム、酸化インジウム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム、アルミニウム・マグネシウム酸化物(MgAl)等の粒子および複合粒子の中で、屈折率が1.6を満たすものが挙げられる。 As oxide nanoparticles, the elements constituting the oxide are Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb. 1 selected from the group consisting of Sr, Y, Nb, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb, Bi and rare earth metals Metal oxide nanoparticles that are seeds or two or more metals can be used. Specifically, for example, titanium oxide (titania), zinc oxide, aluminum oxide (alumina), zirconium oxide, hafnium oxide, niobium oxide. Tantalum oxide, magnesium oxide, barium oxide, indium oxide, tin oxide, lead oxide, and double oxides composed of these oxides, lithium niobate, potassium niobate, lithium tantalate Um, magnesium aluminum oxide in (MgAl 2 O 4) or the like of the particles and composite particles, the refractive index are those satisfying 1.6.
 また、金属酸化物ナノ粒子として、希土類酸化物を用いることもでき、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等も挙げられる。 Further, rare earth oxides can also be used as the metal oxide nanoparticles, specifically, scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, Examples also include terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, and lutetium oxide.
 本発明においては、特に酸化チタンおよび酸化ジルコニウムが、好ましく利用できる。 In the present invention, particularly titanium oxide and zirconium oxide can be preferably used.
 酸化物ナノ粒子の調製方法としては、気相中で酸化物ナノ粒子の原料を噴霧、焼成して微小な粒子を得ることが可能である。更には、プラズマを用いて粒子を調製する方法、原料固体をレーザー等でアブレーションさせ微粒子化する方法、蒸発させた金属ガスを酸化させ微粒子を調製する方法なども好適に用いることができる。また、液相中で調製する方法として、アルコキシドや塩化物溶液を原料としたゾル-ゲル法等を用い、ほぼ一次粒子として分散した酸化物ナノ粒子分散液を調製することが可能である。あるは、溶解度の低下を利用した反応晶析法を用いて粒子径のそろった分散液を得ることが可能である。 As a method for preparing oxide nanoparticles, it is possible to obtain fine particles by spraying and firing the raw material of oxide nanoparticles in a gas phase. Furthermore, a method of preparing particles using plasma, a method of ablating raw material solids with a laser or the like to make fine particles, a method of oxidizing evaporated metal gas to prepare fine particles, and the like can be suitably used. Further, as a method for preparing in the liquid phase, it is possible to prepare a dispersion of oxide nanoparticles dispersed almost as primary particles by using a sol-gel method using an alkoxide or chloride solution as a raw material. Alternatively, it is possible to obtain a dispersion having a uniform particle size by using a reaction crystallization method utilizing a decrease in solubility.
 樹脂への充填率について特に制約は無いが、20nm以下の酸化物ナノ粒子を樹脂に充填する場合、成型性の確保(流動性、ひび割れなし)を考えると、30体積%以下であることが好ましい。一方、酸化物ナノ粒子を充填することにより光学物性(屈折率)を変化させるにはある程度の充填率が必要であることから5体積%以上、さらには10体積%以上が好ましい。ここでいう酸化物ナノ粒子の体積分率は、酸化物ナノ粒子の比重をa、含有量をxグラム、作製された複合材料の全体積樹脂をYミリリットルとした時に式(x/a)/Y×100で求められる。酸化物ナノ粒子の含有量の定量は、透過型電子顕微鏡(TEM)による半導体結晶像の観察(EDX等の局所元素分析により半導体結晶組成に関する情報も得ることが可能)、あるいは与えられた樹脂組成物が含有する灰分の元素分析により求まる所定組成の含有質量と該組成の結晶の比重とから算出可能である。 Although there is no restriction | limiting in particular about the filling rate to resin, When filling an oxide nanoparticle of 20 nm or less into resin, when ensuring moldability (fluidity, there is no crack), it is preferable that it is 30 volume% or less. . On the other hand, in order to change the optical physical properties (refractive index) by filling the oxide nanoparticles, a certain filling rate is required, so 5 volume% or more, further 10 volume% or more is preferable. The volume fraction of the oxide nanoparticles here is expressed by the formula (x / a) / when the specific gravity of the oxide nanoparticles is a, the content is x grams, and the total volume of the composite material produced is Y milliliters. It is obtained by Y × 100. The content of oxide nanoparticles can be determined by observing a semiconductor crystal image with a transmission electron microscope (TEM) (information on the semiconductor crystal composition can also be obtained by local elemental analysis such as EDX) or given resin composition It can be calculated from the contained mass of a predetermined composition obtained by elemental analysis of ash contained in the product and the specific gravity of crystals of the composition.
 《表面処理剤》
 酸化物ナノ粒子は、それを樹脂と均一に混合する必要があることから、樹脂との親和力を高めるため、表面処理がなされていることが好ましい。必要な表面処理剤と粒子表面との結合には、下記のような導入手法が考えられるが、それらに限るものではない。
<Surface treatment agent>
Since it is necessary to mix the oxide nanoparticles with the resin uniformly, the oxide nanoparticles are preferably subjected to a surface treatment in order to increase the affinity with the resin. For the bonding between the necessary surface treating agent and the particle surface, the following introduction methods are conceivable, but not limited to them.
 A.物理吸着(二次結合性の活性剤処理)
 B.表面化学種の利用反応(表面水酸基との共有結合)
 C.活性種の表面導入と反応(ラジカル等の活性点導入とグラフト重合、高エネルギー線照射とグラフト重合)
 D.樹脂コーティング(カプセル化、プラズマ重合)
 E.沈着固定化(難溶性有機酸塩の沈着)
 更に具体例を示すと下記のようになる。
A. Physical adsorption (secondary binding activator treatment)
B. Utilization reaction of surface chemical species (covalent bond with surface hydroxyl group)
C. Surface introduction and reaction of active species (introduction of active sites such as radicals and graft polymerization, high energy ray irradiation and graft polymerization)
D. Resin coating (encapsulation, plasma polymerization)
E. Deposition immobilization (deposition of sparingly soluble organic acid salts)
Further specific examples are as follows.
 (1)シランカップリング剤
 シラノール基と粒子表面の水酸基との縮合反応や水素結合を利用する。例えば、ビニルシラザン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、トリメチルアルコキシシラン、ジメチルジアルコキシシラン、メチルトリアルコキシシラン、ヘキサメチルジシラザン等が挙げられ、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、ヘキサメチルジシラザン等が好ましく用いられる。
(1) Silane coupling agent A condensation reaction or a hydrogen bond between a silanol group and a hydroxyl group on the particle surface is used. Examples include vinylsilazane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, trimethylalkoxysilane, dimethyldialkoxysilane, methyltrialkoxysilane, hexamethyldisilazane, and the like. Trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxy Silane, hexamethyldisilazane and the like are preferably used.
 (2)その他カップリング剤
 チタネート、アルミナート、ジルコネート系のカップリング剤も適用可能である。さらに、ジルコアルミネート、クロメート、ボレート、スタネート、イソシアネート等も使用可能である。ジケトン系のカップリング剤も使用可能である。
(2) Other coupling agents Titanate, aluminate, and zirconate coupling agents are also applicable. Further, zircoaluminate, chromate, borate, stannate, isocyanate and the like can be used. A diketone coupling agent can also be used.
 (3)表面吸着剤
 アルコール、ノニオン系界面活性剤、イオン系界面活性剤、カルボン酸類、アミン類などが適用可能である。
(3) Surface adsorbents Alcohols, nonionic surfactants, ionic surfactants, carboxylic acids, amines and the like are applicable.
 (4)樹脂系表面処理
 上記(1)~(3)の手法で粒子表面に活性種を導入後、グラフト重合により表面にポリマー層を設ける手法や、あらかじめ合成したポリマー分散剤を粒子表面に吸着、結合させる手法がある。粒子表面により強固にポリマー層を設けるためにはグラフト重合が好ましく、特に高密度にグラフトさせることが好ましい。
(4) Resin-based surface treatment After introducing active species to the particle surface by the methods (1) to (3) above, a method of providing a polymer layer on the surface by graft polymerization, or adsorbing a pre-synthesized polymer dispersant to the particle surface , There is a method of combining. In order to provide a polymer layer more firmly on the particle surface, graft polymerization is preferred, and grafting at a high density is particularly preferred.
 《複合材料の製造方法》
 本発明の複合材料の製造にあたっては、はじめに微粒子を含有する樹脂(熱可塑性樹脂を用いる場合は溶融状態、硬化性用いる場合は未硬化の状態)を調製する。複合材料は、基材上に塗布等をされることにより所望の層となる。
<Production method of composite material>
In producing the composite material of the present invention, first, a resin containing fine particles (a molten state when a thermoplastic resin is used and an uncured state when a curable resin is used) is prepared. A composite material turns into a desired layer by apply | coating etc. on a base material.
 特に樹脂として硬化性樹脂を用いる場合、有機溶媒に溶解した硬化性樹脂と、本発明に係る微粒子を混合することで調製されてもよいし、硬化性樹脂の原料の一つであるモノマー溶液中に本発明に係る微粒子を添加、混合した後に重合して調製されても良い。また、モノマーが一部重合したオリゴマーや低分子量のポリマーを溶融し、そこに本発明に係る微粒子を添加、混合することで調製されても良い。 In particular, when a curable resin is used as the resin, it may be prepared by mixing the curable resin dissolved in an organic solvent and the fine particles according to the present invention, or in a monomer solution that is one of the raw materials of the curable resin. It may be prepared by adding and mixing the fine particles according to the present invention and then polymerizing them. Alternatively, it may be prepared by melting an oligomer in which a monomer is partially polymerized or a low molecular weight polymer, and adding and mixing the fine particles according to the present invention thereto.
 ここで用いられる有機溶媒としては、炭素数1~4程度の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸メチル、酢酸エチルなどのエステル類、トルエン、キシレンなどの炭化水素類などを選択することができるが、モノマーよりも沸点が低く、しかもこれらのモノマーと相溶性を有するものであれば、特に限定されるものではない。 Examples of the organic solvent used herein include lower alcohols having about 1 to 4 carbon atoms, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters such as methyl acetate and ethyl acetate, hydrocarbons such as toluene and xylene, and the like. However, it is not particularly limited as long as it has a boiling point lower than that of the monomer and is compatible with these monomers.
 特に、本発明においては、モノマー溶液中に本発明に係る微粒子を添加した後に重合させる方法が好ましく、特に、モノマーと本発明に係る微粒子を混合した高粘性の溶液を、冷却しながらシェアを与えて混合する方法が好ましい。この時、硬化性樹脂中への本発明に係る微粒子の分散が最適になるように粘度を調整することも重要である。粘度調整の方法としては、本発明に係る微粒子の粒径、表面状態、添加量の調整や、溶媒や粘度調整剤の添加等が挙げられるが、本発明に係る微粒子はその構造により表面修飾が容易なことから、最適な混練状態を得ることが可能である。 In particular, in the present invention, a method of polymerizing after adding the fine particles according to the present invention to a monomer solution is preferable, and in particular, a highly viscous solution in which the monomer and the fine particles according to the present invention are mixed is given a share while cooling. Are preferably mixed. At this time, it is also important to adjust the viscosity so that the dispersion of the fine particles according to the present invention in the curable resin is optimized. Examples of the method for adjusting the viscosity include adjustment of the particle diameter, surface state, and addition amount of the fine particles according to the present invention, addition of a solvent and a viscosity modifier, and the fine particles according to the present invention are surface-modified depending on the structure. Since it is easy, an optimal kneading state can be obtained.
 シェアを与え複合化を行う場合、本発明に係る微粒子は粉体ないし凝集状態のまま添加することが可能である。あるいは、液中に分散した状態で添加することも可能である。液中に分散した状態で添加する場合は、混合後に脱気を行うことが好ましい。 In the case of compounding by giving a share, the fine particles according to the present invention can be added in a powder or agglomerated state. Or it is also possible to add in the state disperse | distributed in the liquid. When adding in the state disperse | distributed in the liquid, it is preferable to deaerate after mixing.
 液中に分散した状態で添加する場合、あらかじめ凝集粒子を一次粒子に分散して添加することが好ましい。分散には各種分散機が使用可能であるが、特にビーズミルが好ましい。ビーズは各種の素材があるがその大きさは小さいものが好ましく、特に直径0.001~0.5mmのものが好ましい。 In the case of adding in a dispersed state in the liquid, it is preferable to add the aggregated particles after dispersing them into the primary particles. Various dispersing machines can be used for dispersion, but a bead mill is particularly preferable. There are various kinds of beads, but those having a small size are preferable, and those having a diameter of 0.001 to 0.5 mm are particularly preferable.
 本発明に係る微粒子は表面処理された状態で加えられることが好ましいが、表面処理剤と微粒子とを同時に添加し、硬化性樹脂との複合化を行うインテグラルブレンドのような方法を用いることも可能である。 The fine particles according to the present invention are preferably added in a surface-treated state. However, it is also possible to use a method such as an integral blend in which a surface treatment agent and fine particles are added at the same time to form a composite with a curable resin. Is possible.
 《光散乱性フィラー》
 本発明は、光散乱層として屈折率1.65以上、1.80以下の酸化物ナノ粒子及び樹脂からなる複合材料中に、平均粒径0.1μm以上、0.7μm以下の光散乱性フィラーを含有することを特徴の一つとする。
《Light scattering filler》
The present invention provides a light-scattering filler having an average particle size of 0.1 μm or more and 0.7 μm or less in a composite material comprising oxide nanoparticles having a refractive index of 1.65 or more and 1.80 or less and a resin as a light scattering layer. One of the characteristics is to contain.
 光散乱性フィラーとは、光散乱層中に入ってきた光を多重散乱させる機能を持ったフィラーであり、本発明においては、特に発光波長によって異なる配光輝度特性を有す光に対して効果的な散乱を示すことから、粒径が0.1μm以上、0.7μm以下であることが好ましい。0.1μm未満では、全波長に対して散乱光の強度が低いため効果が小さく、0.7μmを超えると、全波長の光で散乱強度が高くなるため、発光波長によって異なる配光輝度特性をうまく生かすことができないため所望の効果を得ることができない。本発明においては、発光層での配向輝度特性として短波長光の斜め方向の輝度がより高い時に青色光をより強く散乱させることで、観察角度による色味や輝度を均一化する効果を得られることから、光散乱フィラーの粒径は、0.2μm以上、0.5μm以下がさらに好ましい。 A light-scattering filler is a filler that has the function of multiple scattering of light that has entered the light-scattering layer. In the present invention, the light-scattering filler is particularly effective for light having different light distribution luminance characteristics depending on the emission wavelength. The particle size is preferably 0.1 μm or more and 0.7 μm or less in view of general scattering. If it is less than 0.1 μm, the effect is small because the intensity of scattered light is low with respect to all wavelengths, and if it exceeds 0.7 μm, the scattering intensity increases with light of all wavelengths. The desired effect cannot be obtained because it cannot be utilized well. In the present invention, when the luminance in the oblique direction of the short wavelength light is higher as the alignment luminance characteristic in the light emitting layer, the effect of uniformizing the color and luminance depending on the observation angle can be obtained by scattering blue light more strongly. Therefore, the particle size of the light scattering filler is more preferably 0.2 μm or more and 0.5 μm or less.
 また、光散乱性フィラーの屈折率は、添加する複合材料との屈折率差が0.01以上あることが、光散乱性を得る上で好ましく、0.5以下であることが、透明性を維持する上で好ましく、本発明の波長による散乱強度の違いを利用するためには、特に複合材料との屈折率差が0.2以上0.3以下であることが好ましい。 Further, the refractive index of the light scattering filler is preferably 0.01 or more so that the difference in refractive index from the composite material to be added is obtained, and is preferably 0.5 or less. In order to utilize the difference in scattering intensity depending on the wavelength of the present invention, it is particularly preferable that the refractive index difference with the composite material is 0.2 or more and 0.3 or less.
 本発明に用いられる光散乱性フィラーとしては、無機またはポリマーからなる公知のフィラーを使用することができる。無機化合物の例として、二酸化ケイ素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、およびリン酸カルシウムを挙げることができる。ポリマーの例としては、シリコーン樹脂、フッ素樹脂、アクリル樹脂を挙げることができる。これらのうち、本発明で用いられる光フィラーとしては、複合材料との屈折率差の点から、シリカやアクリル樹脂が好ましい。また、これらの光散乱性フィラーの添加量は1質量%以上、30質量%以下が好ましいが、光散乱性の程度に合わせて調整しても良い。 As the light-scattering filler used in the present invention, a known filler made of inorganic or polymer can be used. Examples of inorganic compounds include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, And calcium phosphate. Examples of the polymer include silicone resin, fluororesin, and acrylic resin. Of these, the optical filler used in the present invention is preferably silica or acrylic resin from the viewpoint of the difference in refractive index from the composite material. Further, the addition amount of these light scattering fillers is preferably 1% by mass or more and 30% by mass or less, but may be adjusted according to the degree of light scattering.
 また、光散乱フィラーは、球形、針状、平板状等の任意な形状が使用でき、さらに上述の無機ナノ粒子と同様の表面処理を行うことにより、樹脂への分散性を向上させることが可能である。 In addition, the light scattering filler can be in any shape such as a sphere, needle shape, flat plate shape, etc., and further, the dispersibility in the resin can be improved by performing the same surface treatment as the above-mentioned inorganic nanoparticles. It is.
 本発明の光散乱層の膜厚は、光散乱性フィラーによる光取り出し効率の向上ならびに色度および輝度の角度依存性の改良効果が発揮できれば良く、1~10μm程度が好ましく、2~7μmがさらに好ましい。 The film thickness of the light scattering layer of the present invention is preferably about 1 to 10 μm, more preferably 2 to 7 μm, as long as it can improve the light extraction efficiency by the light scattering filler and improve the angle dependency of chromaticity and luminance. preferable.
 本発明の光散乱層は、透明基材の少なくとも片側の面に形成されていれば良く、透明基材に対し光の入射側の面に形成されても、出射側の面に形成されてもよく、また両面に形成されていても良い。光散乱層を透明基材の両面に形成する場合には、両方の光散乱層により散乱強度が強くなり過ぎないように、光散乱性フィラーの添加量を適度に調整することが好ましい。また、光散乱層を透明基材の片側にのみ形成する場合には、その反対側の面には光散乱性フィラーを含有しない樹脂層を形成し、透明基板として取り扱う際に一方の面が反ってしまう、いわゆるカールが生じないようにすることが好ましい。さらに、バリアコート層や、ハードコート層としての機能を有する層を形成することもできる。この光散乱性フィラーを含有しない樹脂層としては、透明基材との屈折率差が大きいと界面反射による光取出しの劣化が生じてしまうため、屈折率は透明基材の屈折率と同じかやや低いものであることが好ましい。 The light scattering layer of the present invention may be formed on at least one surface of the transparent substrate, and may be formed on the light incident side surface or the emission side surface with respect to the transparent substrate. It may be formed on both sides. When the light scattering layer is formed on both surfaces of the transparent substrate, it is preferable to appropriately adjust the addition amount of the light scattering filler so that the scattering intensity does not become too strong due to both light scattering layers. When the light scattering layer is formed only on one side of the transparent substrate, a resin layer not containing a light scattering filler is formed on the opposite surface, and one surface is warped when handled as a transparent substrate. It is preferable not to cause so-called curling. Furthermore, a layer having a function as a barrier coat layer or a hard coat layer can also be formed. As the resin layer not containing this light-scattering filler, if the difference in refractive index with the transparent base material is large, deterioration of light extraction due to interface reflection occurs. Therefore, the refractive index is the same as or slightly higher than that of the transparent base material. Preferably it is low.
 また、本発明の光散乱層を、透明基材に対し光の入射側の面に形成する場合には、その上に透明導電層が形成されるため、光散乱層の上に平滑化層を形成することが好ましい。平滑化層としては、その表面に透明導電層や有機発光層を形成した際に短絡が生じない程度の平滑性が得られれば良く、一般的な樹脂を使用することができるが、光散乱層との接着性の点や屈折率差がないことが好ましいため、光散乱層のマトリクス樹脂を用いることが好ましい。 In addition, when the light scattering layer of the present invention is formed on the surface on the light incident side with respect to the transparent substrate, a transparent conductive layer is formed thereon, so that a smoothing layer is formed on the light scattering layer. It is preferable to form. As the smoothing layer, it is only necessary to obtain a smoothness that does not cause a short circuit when a transparent conductive layer or an organic light emitting layer is formed on the surface, and a general resin can be used. Therefore, it is preferable to use a matrix resin for the light scattering layer.
 《光散乱層の形成》
 本発明の有機エレクトロルミネッセンス素子に用いられる光散乱層は、透明基材上に塗布等の手段により形成される。塗布方法としては、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。
<Formation of light scattering layer>
The light scattering layer used in the organic electroluminescence device of the present invention is formed on the transparent substrate by means such as coating. As a coating method, it can coat by well-known methods, such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an inkjet method.
 また、光散乱層は紫外線・熱による硬化、乾燥による製膜や化学反応による硬化等の方法で作製することができる。紫外線硬化性樹脂を用いた場合、光硬化反応により硬化させ、硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば制限無く使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5~500mJ/cm、好ましくは5~150mJ/cmであるが、特に好ましくは20~100mJ/cmである。 The light scattering layer can be produced by a method such as curing by ultraviolet rays and heat, film formation by drying, curing by chemical reaction, or the like. When an ultraviolet curable resin is used, a light source for curing by a photocuring reaction to form a cured film layer can be used without limitation as long as it is a light source that generates ultraviolet rays. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual lamps, irradiation of active rays, usually 5 ~ 500mJ / cm 2, but preferably 5 ~ 150mJ / cm 2, particularly preferably 20 ~ 100mJ / cm 2.
 〔有機エレクトロルミネッセンス素子の層構成〕
 本発明においては、前記の高屈折率な光散乱層を有する透明基板上に有機エレクトロルミネッセンス層を形成することを特徴の一つとする。
[Layer structure of organic electroluminescence element]
One feature of the present invention is that an organic electroluminescence layer is formed on a transparent substrate having the light scattering layer having a high refractive index.
 ここでいう有機エレクトロルミネッセンス層とは、陽極バッファー層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層の全部または一部からなる、透明導電層と対向電極の間に形成された層をいう。 The organic electroluminescence layer as used herein refers to an anode buffer layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, a cathode buffer layer, or a portion between a transparent conductive layer and a counter electrode. Refers to the layer formed.
 本発明の有機エレクトロルミネッセンス層は、構成材料により異なるが、その屈折率は通常約1.7である。有機エレクトロルミネッセンス層の膜厚は、発光効率と安定性の点で、通常0.05μm以上、0.5μm以下であり、0.1μm以上、0.2μm以下であることが好ましい。 Although the organic electroluminescence layer of the present invention varies depending on the constituent materials, its refractive index is usually about 1.7. The film thickness of the organic electroluminescence layer is usually 0.05 μm or more and 0.5 μm or less, and preferably 0.1 μm or more and 0.2 μm or less in terms of light emission efficiency and stability.
 本発明において、有機エレクトロルミネッセンス層中の電子輸送層の膜厚を40nm以上、200nm以下の範囲で形成することが、光取り出し効率を向上するために好ましい。 In the present invention, it is preferable to form the film thickness of the electron transport layer in the organic electroluminescence layer in the range of 40 nm or more and 200 nm or less in order to improve the light extraction efficiency.
 有機エレクトロルミネッセンス層中の電子輸送層の膜厚を変化させることにより発光層での発光輝度特性が変化することが知られている。例えば本発明のような発光層で赤、緑、青の3色またはその他の組み合わせを用いて白色に発光させる有機EL素子の場合には電子輸送層の膜厚調整により、各波長の発光輝度、および出射される角度による発光輝度を変化させることができる。 It is known that the light emission luminance characteristics in the light emitting layer are changed by changing the thickness of the electron transport layer in the organic electroluminescence layer. For example, in the case of an organic EL device that emits white light using three colors of red, green, and blue or other combinations in the light emitting layer as in the present invention, the emission luminance of each wavelength is adjusted by adjusting the film thickness of the electron transport layer, In addition, the luminance of the emitted light can be changed according to the outgoing angle.
 本発明においては、基板の法線方向から適当な角度方向における輝度の比を赤色や緑色よりも青色において大きくすることが良く、そのような配光輝度特性を得るためには電子輸送層の膜厚を40nm以上、200nm以下にすることが好ましく、特に50nm以上、100nm以下にすることが好ましい。ここで、電子輸送層の膜厚を40nm未満にすると各色の配光性が均一化してしまい、特に発光輝度が低い青色光の取り出し効率が下がってしまうため好ましくない。さらに電子輸送層の膜厚が200nmを超える場合にも、各波長の配光性の均一化が生じるとともに、透明導電層と発光点との間隔が広がることにより発光効率が低下してしまうことから好ましくない。 In the present invention, the luminance ratio in an appropriate angle direction from the normal direction of the substrate is preferably larger in blue than in red or green, and in order to obtain such light distribution luminance characteristics, the film of the electron transport layer is used. The thickness is preferably 40 nm or more and 200 nm or less, and particularly preferably 50 nm or more and 100 nm or less. Here, when the thickness of the electron transport layer is less than 40 nm, the light distribution of each color becomes uniform, and the extraction efficiency of blue light having a particularly low emission luminance is lowered, which is not preferable. Further, even when the thickness of the electron transport layer exceeds 200 nm, the light distribution of each wavelength is made uniform, and the luminous efficiency is lowered due to the increase in the distance between the transparent conductive layer and the light emitting point. It is not preferable.
 上記の配光輝度特性については、例えば光の散乱等を生じない平滑な基板を用いて作製した有機エレクトロルミネッセンス層の発光を、観察した際に出射光の輝度や色度が観察する角度により異なることにより確認できる。 Regarding the above light distribution luminance characteristics, for example, when the light emission of the organic electroluminescence layer produced using a smooth substrate that does not cause light scattering or the like is observed, the luminance or chromaticity of the emitted light varies depending on the angle at which it is observed. Can be confirmed.
 本発明の透明導電層とは、透明かつ導電性を有する化合物からなり、電極として作用する層をいう。透明導電層としては、ITO等の金属酸化物材料を蒸着またはスパッタ法で用いた場合には、屈折率が1.8以上、2.1以下である。透明導電層の膜厚t2が0.05μm以上、0.15μm以下となり、金属ナノワイヤ等を用いて塗布形成した場合には、屈折率が1.6以上、1.8以下で、膜厚t2が0.1μm以上、1μm以下となることが一般的である。 The transparent conductive layer of the present invention refers to a layer made of a transparent and conductive compound and acting as an electrode. The transparent conductive layer has a refractive index of 1.8 or more and 2.1 or less when a metal oxide material such as ITO is used by vapor deposition or sputtering. When the film thickness t2 of the transparent conductive layer is 0.05 μm or more and 0.15 μm or less and is formed by coating using metal nanowires or the like, the refractive index is 1.6 or more and 1.8 or less, and the film thickness t2 is Generally, it is 0.1 μm or more and 1 μm or less.
 本発明において、有機エレクトロルミネッセンス層で発光した光を、光散乱層に効率良く移動させるためには、透明導電層の屈折率が1.7に近いことが好ましい。従って、本発明の透明導電層は、銀ナノワイヤ等の金属ナノワイヤを導電性高分子材料とともに塗布して形成されたものが良く、屈折率が1.6以上、1.8以下であることが好ましく、膜厚が0.1μm以上、0.5μm以下であることが好ましい。 In the present invention, in order to efficiently move the light emitted from the organic electroluminescence layer to the light scattering layer, the refractive index of the transparent conductive layer is preferably close to 1.7. Therefore, the transparent conductive layer of the present invention is preferably formed by applying metal nanowires such as silver nanowires together with a conductive polymer material, and preferably has a refractive index of 1.6 or more and 1.8 or less. The film thickness is preferably 0.1 μm or more and 0.5 μm or less.
 〔屈折率の測定方法〕
 本発明において、屈折率の測定方法は通常用いられている方法を用いることができる。例えば、各層を単独で塗設したサンプルについて、分光光度計(日立製作所製U-4000型等)の分光反射率の測定結果から求めることができる。裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面の光反射を防止したうえで、5度正反射の条件で可視光領域(400~700nm)の反射率の測定することで求めることができる。
[Measurement method of refractive index]
In the present invention, a commonly used method can be used as a method for measuring the refractive index. For example, it can be obtained from the measurement result of the spectral reflectance of a spectrophotometer (such as U-4000 type manufactured by Hitachi, Ltd.) for a sample in which each layer is coated alone. After roughening the back surface, light absorption treatment is performed with a black spray to prevent light reflection on the back surface, and the reflectance in the visible light region (400 to 700 nm) is measured under the condition of regular reflection at 5 degrees. Can be obtained.
 〔膜厚の測定方法〕
 本発明において、有機EL素子を構成する各層の膜厚の測定方法は、通常用いられている方法を用いることができる。例えば、各層を積層して作製した有機EL素子の断面を、走査型電子顕微鏡により撮影し、その膜厚を測定することにより求めることができる。
[Measurement method of film thickness]
In the present invention, a commonly used method can be used as a method of measuring the film thickness of each layer constituting the organic EL element. For example, the cross section of the organic EL element produced by laminating each layer can be obtained by photographing with a scanning electron microscope and measuring the film thickness.
 〔透明導電層〕
 本発明の有機EL素子における透明導電層としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物が、透明導電層を形成する電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性光透過性材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。本発明においては、透明導電層は陽極として用いられることが好ましい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは50~200nmの範囲で選ばれる。
[Transparent conductive layer]
As the transparent conductive layer in the organic EL device of the present invention, a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material for forming the transparent conductive layer is preferably used. . Specific examples of such electrode substances include metals such as Au, and conductive light-transmitting materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used. In the present invention, the transparent conductive layer is preferably used as an anode. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. The sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 50 to 200 nm.
 また、この透明導電層に高い導電性を有しながら他の比較的低屈折率の樹脂等を併用することが可能であり、光散乱効果により光取り出し効率の向上が期待できる金属ナノワイヤを含有させることが好ましい。さらに、金属ナノワイヤもネットワーク構造により、透明導電層の強度が増し、有機EL素子の耐久性が向上することから、透明導電層に金属ナノワイヤを用いることが好ましい。 In addition, the transparent conductive layer can be used in combination with other resins having a relatively low refractive index while having high conductivity, and contains metal nanowires that can be expected to improve light extraction efficiency due to the light scattering effect. It is preferable. Furthermore, since the strength of the transparent conductive layer is increased by the network structure of the metal nanowire and the durability of the organic EL element is improved, it is preferable to use the metal nanowire for the transparent conductive layer.
 本発明に金属ナノワイヤを用いる場合、1つの金属ナノワイヤで長い導電パスを形成するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に、3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。 When using a metal nanowire in the present invention, in order to form a long conductive path with one metal nanowire and to express an appropriate light scattering property, the average length is preferably 3 μm or more. It is preferably 3 to 500 μm, particularly preferably 3 to 300 μm. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint. In the present invention, the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.
 本発明に係る金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。 There is no restriction | limiting in particular as a metal composition of the metal nanowire which concerns on this invention, Although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity.
 また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが二種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。 Moreover, in order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable that silver and at least one metal belonging to a noble metal other than silver are included. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
 Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤの製造方法としては特開2006-233252号公報等、Cuナノワイヤの製造方法としては特開2002-266007号公報等、Coナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。 As a manufacturing method of Ag nanowire, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, etc., as a method for producing Co nanowires, such as JP 2006-233252, etc. as a method for producing Au nanowires, and JP 2002-266007, etc., as a method for producing Cu nanowires. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in (1) can be easily produced in an aqueous system, and since the conductivity of silver is the highest among metals, it is preferable as the method for producing metal nanowires according to the present invention. Can be applied.
 本発明においては、金属ナノワイヤが互いに接触し合うことにより3次元的な導電ネットワークを形成し、高い導電性を発現するとともに、金属ナノワイヤが存在しない導電ネットワークの窓部を光が透過することが可能となり、さらに、金属ナノワイヤの散乱効果によって、有機発光層部からの光を効率的に取り出すことが可能となる。電極部において金属ナノワイヤを有機発光層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態でとなる。 In the present invention, the metal nanowires come into contact with each other to form a three-dimensional conductive network, exhibiting high conductivity, and allowing light to pass through the window of the conductive network where no metal nanowire exists. In addition, the light from the organic light emitting layer can be efficiently extracted by the scattering effect of the metal nanowires. If the metal nanowire is installed in the electrode part on the side close to the organic light emitting layer part, this scattering effect can be used more effectively, and this is a more preferable embodiment.
 また、金属ナノワイヤを搭載することで導電性の高い電極を塗布で完成させることが出来る。そのため、複合材料層表面に粒子による凹凸が存在してもその凹凸を緩和することが出来、発光体層にダメージを与える可能性を排除出来る。 Also, by mounting metal nanowires, highly conductive electrodes can be completed by coating. Therefore, even if unevenness due to particles exists on the surface of the composite material layer, the unevenness can be relaxed, and the possibility of damaging the light emitting layer can be eliminated.
 本発明において透明導電層の屈折率は、1.5以上2.0以下であることが好ましく、さらに1.6以上1.9以下であることが特に好ましい。 In the present invention, the refractive index of the transparent conductive layer is preferably 1.5 or more and 2.0 or less, more preferably 1.6 or more and 1.9 or less.
 本発明においては、上述の通り、透明導電層、有機エレクトロルミネッセンス層、透明樹脂フィルムの屈折率や厚さのバランスを最適化することによって、従来から知られている光取り出し効率の向上だけでなく、微細な膜構造を有する有機エレクトロルミネッセンス素子の、膜物性を大幅に向上させることができるものである。 In the present invention, as described above, by optimizing the balance of the refractive index and thickness of the transparent conductive layer, organic electroluminescence layer, and transparent resin film, not only the conventionally known light extraction efficiency is improved. The film physical properties of the organic electroluminescence device having a fine film structure can be greatly improved.
 〔有機エレクトロルミネッセンス素子〕
 有機エレクトロルミネッセンス素子の層構成の好ましい具体例を以下に示す。
[Organic electroluminescence device]
The preferable specific example of the layer structure of an organic electroluminescent element is shown below.
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 ここで、発光層は、少なくとも発光色の異なる2種以上の発光材料を含有していることが好ましく、単層でも複数の発光層からなる発光層ユニットを形成していてもよい。また、正孔輸送層には正孔注入層、電子阻止層も含まれる。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode Here, the light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer comprising a plurality of light emitting layers A unit may be formed. The hole transport layer also includes a hole injection layer and an electron blocking layer.
 《発光層》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
 本発明に係る発光層は、含まれる発光材料が前記要件を満たしていれば、その構成には特に制限はない。 The structure of the light emitting layer according to the present invention is not particularly limited as long as the contained light emitting material satisfies the above requirements.
 また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。 Also, there may be a plurality of layers having the same emission spectrum or emission maximum wavelength.
 各発光層間には非発光性の中間層を有していることが好ましい。 It is preferable to have a non-light emitting intermediate layer between each light emitting layer.
 本発明における発光層の膜厚の総和は1~100nmの範囲にあることが好ましく、更に好ましくは、より低い駆動電圧を得ることができることから30nm以下である。なお、本発明でいうところの発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。 In the present invention, the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained. In addition, the sum total of the film thickness of the light emitting layer as used in the field of this invention is a film thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 個々の発光層の膜厚としては1~50nmの範囲に調整することが好ましく、更に好ましくは1~20nmの範囲に調整することである。青、緑、赤の各発光層の膜厚の関係については、特に制限はない。 The film thickness of each light emitting layer is preferably adjusted in the range of 1 to 50 nm, more preferably in the range of 1 to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.
 発光層の作製には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。 For the production of the light emitting layer, a light emitting material or a host compound, which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.
 本発明においては、各発光層には複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料を同一発光層中に混合して用いてもよい。 In the present invention, a plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
 本発明においては、発光層の構成として、ホスト化合物、発光材料(発光ドーパント化合物ともいう)を含有し、発光材料より発光させることが好ましい。 In the present invention, the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
 本発明に係る有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。更に好ましくは燐光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。 As the host compound contained in the light emitting layer of the organic EL device according to the present invention, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of luminescent material mentioned later, and can thereby obtain arbitrary luminescent colors.
 本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。 The host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )But it is good.
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 Specific examples of known host compounds include compounds described in the following documents. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
 次に、発光材料について説明する。 Next, the light emitting material will be described.
 本発明に係る発光材料としては、蛍光性化合物、燐光発光材料(燐光性化合物、燐光発光性化合物等ともいう)を用いる。 As the light-emitting material according to the present invention, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) is used.
 本発明において、燐光発光材料とは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。 In the present invention, a phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記燐光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光材料を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Lecture 4 of the 4th edition. The phosphorescence quantum yield in a solution can be measured using various solvents. However, when a phosphorescent material is used in the present invention, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
 燐光発光材料の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光材料に移動させることで燐光発光材料からの発光を得るというエネルギー移動型、もう一つは燐光発光材料がキャリアトラップとなり、燐光発光材料上でキャリアの再結合が起こり燐光発光材料からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光材料の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent material. In principle, the carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent material. Energy transfer type to obtain light emission from the phosphorescent light emitting material, and another one is that the phosphorescent light emitting material becomes a carrier trap, and recombination of carriers occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent material is required to be lower than the excited state energy of the host compound.
 燐光発光材料は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
 本発明に係る有機エレクトロルミネッセンス素子には、蛍光発光体を用いることもできる。蛍光発光体(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。 Fluorescent light emitters can also be used for the organic electroluminescence device according to the present invention. Representative examples of fluorescent emitters (fluorescent dopants) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第00/70655号パンフレット、特開2002-280178号公報、同2001-181616号公報、同2002-280179号公報、同2001-181617号公報、同2002-280180号公報、同2001-247859号公報、同2002-299060号公報、同2001-313178号公報、同2002-302671号公報、同2001-345183号公報、同2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、同2002-50484号公報、同2002-332292号公報、同2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、同2002-338588号公報、同2002-170684号公報、同2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、同2002-100476号公報、同2002-173674号公報、同2002-359082号公報、同2002-175884号公報、同2002-363552号公報、同2002-184582号公報、同2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、同2002-226495号公報、同2002-234894号公報、同2002-235076号公報、同2002-241751号公報、同2001-319779号公報、同2001-319780号公報、同2002-62824号公報、同2002-100474号公報、同2002-203679号公報、同2002-343572号公報、同2002-203678号公報等が挙げられる。 Conventionally known dopants can also be used in the present invention. For example, International Publication No. 00/70655 pamphlet, JP-A Nos. 2002-280178, 2001-181616, 2002-280179, 2001 -181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, International Publication No. 02/15645, JP 2002-332291, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No. 2002-359082, No. 2002-17584, No. 2002-363552, No. 2002-184582, No. 2003-7469, No. 2002-525808. JP2003-7471, JP2002-525833A, JP2003-31366A, 2002-226495, 2002-234894, 2002-233506, 2002-2417. No. 1, No. 2001-319779, No. 2001-319780, No. 2002-62824, No. 2002-1000047, No. 2002-203679, No. 2002-343572, No. 2002-203678. Gazettes and the like.
 本発明においては、少なくとも一つの発光層に2種以上の発光材料を含有していてもよく、発光層における発光材料の濃度比が発光層の厚さ方向で変化していてもよい。 In the present invention, at least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.
 《中間層》
 本発明において、各発光層間に非発光性の中間層(非ドープ領域等ともいう)を設ける場合について説明する。
《Middle layer》
In the present invention, a case where a non-light emitting intermediate layer (also referred to as an undoped region) is provided between the light emitting layers will be described.
 非発光性の中間層とは、複数の発光層を有する場合、その発光層間に設けられる層である。 In the case of having a plurality of light emitting layers, the non-light emitting intermediate layer is a layer provided between the light emitting layers.
 非発光性の中間層の膜厚としては1~20nmの範囲にあるのが好ましく、更には3~10nmの範囲にあることが隣接発光層間のエネルギー移動等相互作用を抑制し、且つ素子の電流電圧特性に大きな負荷を与えないということから好ましい。 The film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 20 nm, and more preferably in the range of 3 to 10 nm to suppress interaction such as energy transfer between adjacent light emitting layers, and This is preferable because a large load is not applied to the voltage characteristics.
 この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。 The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
 非発光性の中間層は非発光層、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層-非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。更に、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。 The non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Including the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, and the case where the molecular structure of the host compound is the same, etc.) The barrier is reduced, and the effect of easily maintaining the injection balance of holes and electrons even when the voltage (current) is changed can be obtained. Furthermore, by using a host material having the same physical characteristics or the same molecular structure as the host compound contained in each light-emitting layer in the undoped light-emitting layer, device fabrication, which is a major problem in conventional organic EL device fabrication, is achieved. Complexity can also be eliminated.
 本発明で有機EL素子を用いる場合、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすいため、中間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ましい。 In the case of using the organic EL element in the present invention, the host material is responsible for carrier transportation, and therefore a material having carrier transportation ability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
 また、一方では正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は後述する阻止層、即ち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。 On the other hand, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and their forefront of industrialization” (published by NTT Corporation on November 30, 1998). There is a hole blocking (hole blocking) layer.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 In a broad sense, the hole blocking layer has a function of an electron transport layer and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては好ましくは3~100nmであり、更に好ましくは5~30nmである。 On the other hand, the electron blocking layer, in a broad sense, has a function of a hole transport layer, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
 《正孔輸送層》
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 《電子輸送層》
 電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Further, the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《対向電極》
 本発明の対向電極としては、前記透明導電層に対向する電極をいう。本発明においては、透明導電層を主に陽極として使用するため、対向電極としては以下に示す陰極を用いることができる。陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
《Counter electrode》
The counter electrode of the present invention refers to an electrode facing the transparent conductive layer. In the present invention, since the transparent conductive layer is mainly used as an anode, the following cathode can be used as the counter electrode. As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material on the cathode after the metal is produced with a thickness of 1 nm to 20 nm on the cathode. An element in which both the anode and the cathode are transmissive can be manufactured.
 〔有機エレクトロルミネッセンス素子の作製方法〕
 本発明の有機エレクトロルミネッセンス素子は、透明基材上に複合材料層、透明導電層、有機エレクトロルミネッセンス層、対向電極を順次形成することにより作製できる。
[Method for manufacturing organic electroluminescence element]
The organic electroluminescence element of the present invention can be produced by sequentially forming a composite material layer, a transparent conductive layer, an organic electroluminescence layer, and a counter electrode on a transparent substrate.
 《透明導電層の形成》
 本発明においては、光散乱層を形成した透明基材上に、所望の電極物質を用いて透明導電層を形成することができる。例えば、電極物質としてITO(すずを添加した酸化インジウム)を用いる場合には、蒸着やスパッタリング等の方法により透明導電層を形成することができる。また、金属ナノワイヤや導電性ポリマーあるいは透明導電性金属酸化物を含む材料を、塗布法や印刷法などの液相成膜法を用いて透明導電層を形成することもできる。
<< Formation of transparent conductive layer >>
In the present invention, a transparent conductive layer can be formed using a desired electrode substance on a transparent substrate on which a light scattering layer is formed. For example, when ITO (indium oxide added with tin) is used as the electrode material, the transparent conductive layer can be formed by a method such as vapor deposition or sputtering. In addition, a transparent conductive layer can be formed from a material containing metal nanowires, a conductive polymer, or a transparent conductive metal oxide by a liquid phase film forming method such as a coating method or a printing method.
 本発明においては、生産性の改善、平滑性や均一性などの電極品質の向上、環境負荷軽減の観点から、金属ナノワイヤを含有する透明導電層を塗布法や印刷法などの液相成膜法により形成することが好ましい。塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法などを用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法などを用いることができる。なお、必要に応じて、密着性・塗工性を向上させるための予備処理として、離型性基材表面にコロナ放電処理、プラズマ放電処理などの物理的表面処理を施すことができる。 In the present invention, from the viewpoint of improving productivity, improving electrode quality such as smoothness and uniformity, and reducing environmental burden, a liquid conductive film forming method such as a coating method or a printing method is applied to a transparent conductive layer containing metal nanowires. It is preferable to form by. As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used. As the printing method, a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used. In addition, as necessary, physical surface treatment such as corona discharge treatment or plasma discharge treatment can be applied to the surface of the releasable substrate as a preliminary treatment for improving the adhesion and coating properties.
 《有機エレクトロルミネッセンス層の形成》
 本発明においては、陽極バッファー層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層の全部または一部からなる、透明導電層と陰極の間に形成された層を有機エレクトロルミネッセンス層という。この有機エレクトロルミネッセンス層の作製方法の一例として、正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層からなる有機エレクトロルミネッセンス層の作製法について説明する。
<< Formation of organic electroluminescence layer >>
In the present invention, an anode buffer layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, a layer formed between all or part of the cathode buffer layer and formed between the transparent conductive layer and the cathode. It is called an organic electroluminescence layer. As an example of a method for producing this organic electroluminescence layer, a method for producing an organic electroluminescence layer comprising a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer will be described.
 透明導電層を形成した透明基板上に、有機エレクトロルミネッセンス素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。 An organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic electroluminescence element materials, is formed on a transparent substrate on which a transparent conductive layer is formed.
 この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。 As a method for thinning the organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an ink jet method, and a printing method are particularly preferable. Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.
 《陰極の形成》
 上記の有機エレクトロルミネッセンス層を形成後、その上に陰極用物質からなる薄膜を1μm以下好ましくは50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設ける。
<Formation of cathode>
After forming the above organic electroluminescence layer, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm. Is provided.
 以上の工程により所望の有機エレクトロルミネッセンス素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 The desired organic electroluminescence element is obtained by the above steps. The organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の液晶表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 It is also possible to reverse the production order to produce a cathode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode in this order. When a DC voltage is applied to the multicolor liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 〔用途〕
 本発明に係る面発光体、及び発光パネルは、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
[Use]
The surface light emitter and the light emitting panel according to the present invention can be used as a display device, a display, and various light emitting sources. Examples of light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for a backlight of a liquid crystal display device combined with a color filter and a light source for illumination.
 〔照明装置〕
 本発明に係る有機エレクトロルミネッセンス材料は、また、照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
[Lighting device]
The organic electroluminescent material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing. The combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光を発光する材料(発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを組み合わせたもののいずれでもよいが、本発明に係わる白色有機EL素子においては、発光ドーパントを複数組み合わせる方式が好ましい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a light emitting material that emits fluorescent or phosphorescent light, and the light emission. Any combination of a dye material that emits light from the material as excitation light may be used, but in the white organic EL device according to the present invention, a method of combining a plurality of light-emitting dopants is preferable.
 複数の発光色を得るための有機EL素子の層構成としては、複数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。 As a layer structure of the organic EL element for obtaining a plurality of emission colors, a method of having a plurality of emission dopants in one emission layer, a plurality of emission layers, and an emission wavelength of each emission layer. Examples thereof include a method in which different dopants are present, and a method in which minute pixels emitting light of different wavelengths are formed in a matrix.
 本発明に係わる白色有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもいいし、電極と発光層をパターニングしてもいいし、素子全層をパターニングしてもいい。 In the white organic EL device according to the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
 発光層に用いる発光材料としては特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 The light emitting material used for the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the platinum complex according to the present invention is known so as to be suitable for the wavelength range corresponding to the CF (color filter) characteristics. Any one of the light emitting materials may be selected and combined to be whitened.
 このように、白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような1種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。 Thus, in addition to the display device and the display, the white light-emitting organic EL element is used as a liquid crystal display as a kind of lamp such as various light-emitting light sources and lighting devices, home lighting, interior lighting, and exposure light source. It is also useful for display devices such as device backlights.
 その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。 In addition, backlights such as clocks, signboard advertisements, traffic lights, light sources such as optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processing machines, light sources for optical sensors, etc. There are a wide range of uses such as household appliances.
 以下、実施例を挙げて本発明を説明するが、本発明はこれに限定されない。 Hereinafter, although an example is given and the present invention is explained, the present invention is not limited to this.
 実施例1
 《複合材料(有機無機複合材料)1の作製》
 (ジルコニア粒子の調製)
 オキシ塩化ジルコニウム8水塩の2600gを純水40l(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水を340g、純水を20l溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調製した。
Example 1
<< Production of Composite Material (Organic / Inorganic Composite Material) 1 >>
(Preparation of zirconia particles)
To a zirconium salt solution in which 2600 g of zirconium oxychloride octahydrate is dissolved in 40 l (liter) of pure water, 340 g of 28% ammonia water and 20 l of dilute ammonia water in pure water are added with stirring to obtain a zirconia precursor. A slurry was prepared.
 次いで、このジルコニア前駆体スラリーに、硫酸ナトリウム400gを5lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。 Next, an aqueous sodium sulfate solution in which 400 g of sodium sulfate was dissolved in 5 l of pure water was added to the zirconia precursor slurry while stirring.
 次いで、この混合物を、乾燥器を用いて、大気中、120℃にて24時間、乾燥させて固形物を得た。 Next, this mixture was dried in the atmosphere at 120 ° C. for 24 hours using a dryer to obtain a solid.
 次いで、この固形物を自動乳鉢等により粉砕した後、電気炉を用いて、大気中、500℃にて1時間焼成した。この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、ジルコニア粒子1を調製した。TEM観察の結果、平均粒子径は5nmであった。XRDから粒子がZrO結晶であることが確認された。 Next, the solid was pulverized with an automatic mortar or the like and then baked at 500 ° C. for 1 hour in the air using an electric furnace. This fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, sufficiently removed the added sodium sulfate, dried in a drier, and zirconia particles 1 was prepared. As a result of TEM observation, the average particle size was 5 nm. XRD confirmed that the particles were ZrO 2 crystals.
 (ジルコニア粒子に対する表面処理)
 上記のジルコニア粒子10gを、フェニルトリメトキシシラン(信越化学製)2gと、メタクリロキシプロピルトリメトキシシラン0.1gを含むトルエン100mlに加え、窒素下で0.03mmのジルコニアビーズを用いて分散しながら100℃まで加熱し、均一分散液を得た後、そのまま窒素下で5時間加熱還流して表面処理済ジルコニア粒子のトルエン分散液を得た。
(Surface treatment for zirconia particles)
While adding 10 g of the above-mentioned zirconia particles to 100 ml of toluene containing 2 g of phenyltrimethoxysilane (manufactured by Shin-Etsu Chemical) and 0.1 g of methacryloxypropyltrimethoxysilane, while dispersing using 0.03 mm zirconia beads under nitrogen After heating to 100 ° C. to obtain a uniform dispersion, it was heated to reflux for 5 hours under nitrogen as it was to obtain a toluene dispersion of surface-treated zirconia particles.
 (樹脂中への粒子分散)
 硬化性樹脂モノマー(フルオレンアクリレート)70mlと、上記表面処理済ジルコニア分散液(所望の屈折率となる量)30mlを混合し、重合開始剤としてIrgacure184を0.4g添加して溶解し複合材料1を得た。
(Particle dispersion in resin)
70 ml of curable resin monomer (fluorene acrylate) and 30 ml of the above surface-treated zirconia dispersion (amount that gives a desired refractive index) are mixed, 0.4 g of Irgacure 184 is added as a polymerization initiator and dissolved, and composite material 1 is dissolved. Obtained.
 (複合材料の評価)
 得られた複合材料1を、平滑なガラス基板上に乾燥膜厚1μmになるように塗布し、紫外線を照射して硬化させ、薄膜層を形成した試料を作製した。この試料を分光光度計(日立製作所製U-4000型等)により測定した結果、屈折率は1.75であった。
(Composite material evaluation)
The obtained composite material 1 was applied onto a smooth glass substrate so as to have a dry film thickness of 1 μm, and cured by irradiating with ultraviolet rays to prepare a sample in which a thin film layer was formed. As a result of measuring this sample with a spectrophotometer (such as U-4000 type manufactured by Hitachi, Ltd.), the refractive index was 1.75.
 また、この薄膜層について、走査型電子顕微鏡による観察を行い、ジルコニアナノ粒子200個の粒子の投影面積から各粒子の球換算粒径を求め、その平均値を得た。その結果、薄膜中に分散されたジルコニアナノ粒子の平均粒径は、6nmであった。 Further, the thin film layer was observed with a scanning electron microscope, and the spherical equivalent particle diameter of each particle was obtained from the projected area of 200 particles of zirconia nanoparticles, and the average value was obtained. As a result, the average particle diameter of the zirconia nanoparticles dispersed in the thin film was 6 nm.
 《複合材料2の作製、評価》
 複合材料1の作製と同様の方法で、ジルコニア粒子1の分散液の添加量を、10容量%に変化させることで、複合材料2を作製した。屈折率およびジルコニアナノ粒子の平均粒径を複合材料1と同様の方法で測定した。その結果、屈折率は1.65であり、ジルコニアナノ粒子の平均粒径は、6nmであった。
<< Production and Evaluation of Composite Material 2 >>
The composite material 2 was produced by changing the addition amount of the dispersion liquid of the zirconia particles 1 to 10% by volume in the same manner as the production of the composite material 1. The refractive index and the average particle diameter of the zirconia nanoparticles were measured by the same method as for the composite material 1. As a result, the refractive index was 1.65, and the average particle diameter of the zirconia nanoparticles was 6 nm.
 《複合材料3の作製、評価》
 前述のジルコニア粒子1の作製と同様の方法で、粒子形成時の硫酸ナトリウム水溶液濃度を調整して平均粒子径は25nmのジルコニア粒子2を作製した。その後、複合材料1の作製と同様の方法で、ジルコニア粒子2の分散液を30容量%混合した複合材料3を作製した。屈折率およびジルコニアナノ粒子の平均粒径を複合材料1と同様の方法で測定した。その結果、屈折率は1.72であり、分散されたジルコニアナノ粒子の平均粒径は、28nmであった。
<< Production and Evaluation of Composite Material 3 >>
In the same manner as the preparation of the zirconia particles 1 described above, the concentration of the sodium sulfate aqueous solution during particle formation was adjusted to prepare zirconia particles 2 having an average particle diameter of 25 nm. Then, the composite material 3 which mixed 30 volume% of dispersion liquids of the zirconia particle 2 with the method similar to preparation of the composite material 1 was produced. The refractive index and the average particle diameter of the zirconia nanoparticles were measured by the same method as for the composite material 1. As a result, the refractive index was 1.72, and the average particle diameter of the dispersed zirconia nanoparticles was 28 nm.
 《複合材料4の作製、評価》
 複合材料1の作製方法と同様にして、チタニアナノ粒子が分散された複合材料4を作製した。得られたチタニアナノ粒子が分散された樹脂モノマー溶液を平滑なガラス基板上に乾燥膜厚1μmになるように塗布し、紫外線を照射して硬化させ、複合材料1と同様の方法で評価を行った。その結果、屈折率は1.74であり、分散されたチタニアナノ粒子の平均粒径は、18nmであった。
<< Production and Evaluation of Composite Material 4 >>
A composite material 4 in which titania nanoparticles were dispersed was produced in the same manner as the production method of the composite material 1. The obtained resin monomer solution in which titania nanoparticles were dispersed was applied on a smooth glass substrate so as to have a dry film thickness of 1 μm, cured by irradiation with ultraviolet rays, and evaluated in the same manner as in the composite material 1. . As a result, the refractive index was 1.74, and the average particle diameter of the dispersed titania nanoparticles was 18 nm.
 《複合材料5の作製、評価》
 複合材料4の作製方法において、チタニアナノ粒子の添加量を調整し、複合材料5を作製した。得られたチタニアナノ粒子が分散された樹脂モノマー溶液を平滑なガラス基板上に乾燥膜厚1μmになるように塗布し、紫外線を照射して硬化させ、複合材料1と同様の方法で評価を行った。その結果、屈折率は1.80であり、分散されたチタニアナノ粒子の平均粒径は、18nmであった。
<< Production and Evaluation of Composite Material 5 >>
In the method for producing the composite material 4, the amount of titania nanoparticles added was adjusted, and the composite material 5 was produced. The obtained resin monomer solution in which titania nanoparticles were dispersed was applied on a smooth glass substrate so as to have a dry film thickness of 1 μm, cured by irradiation with ultraviolet rays, and evaluated in the same manner as in the composite material 1. . As a result, the refractive index was 1.80, and the average particle diameter of the dispersed titania nanoparticles was 18 nm.
 《比較用樹脂Aの評価》
 硬化性樹脂モノマー(フルオレンアクリレート)に重合開始剤を溶解した樹脂モノマー溶液を、平滑なガラス基板上に乾燥膜厚1μmになるように塗布し、紫外線を照射して硬化させ、比較用樹脂Aの薄膜層を形成した試料を作製した。得られた試料を同様の方法で評価を行った結果、屈折率が1.61である無機ナノ粒子を含有しない樹脂であった。
<< Evaluation of Comparative Resin A >>
A resin monomer solution in which a polymerization initiator is dissolved in a curable resin monomer (fluorene acrylate) is applied on a smooth glass substrate so as to have a dry film thickness of 1 μm, and cured by irradiation with ultraviolet rays. A sample on which a thin film layer was formed was prepared. As a result of evaluating the obtained sample by the same method, it was resin which does not contain the inorganic nanoparticle whose refractive index is 1.61.
 以上の各薄膜層の評価結果を表1に示す。 Table 1 shows the evaluation results of the above thin film layers.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《透明基板1の作製》
 厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の両面に、前述の複合材料1を、乾燥膜厚がそれぞれ3μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 1 >>
The composite material 1 described above was applied to both sides of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index: 1.75) so that the dry film thickness would be 3 μm, respectively, and then irradiated with ultraviolet rays. Cured.
 《透明基板2の作製》
 厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に、前述の複合材料1を、乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させ、こちら側を表面とした。さらに、複合材料1に日本触媒(株)製のシリカ粒子KE-P30(平均粒径0.3μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液1Aを作製し、これをPENフィルムの裏面に乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 2 >>
The composite material 1 is applied to one side of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so that the dry film thickness is 3 μm and cured by irradiating with ultraviolet rays. Let this side be the surface. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size 0.3 μm) manufactured by Nippon Shokubai Co., Ltd. to the composite material 1, ultrasonic dispersion is performed to obtain a resin solution 1A containing a light scattering filler. It was prepared, applied to the back surface of the PEN film so that the dry film thickness was 3 μm, and cured by irradiation with ultraviolet rays.
 《透明基板3の作製》
 厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に、前述の複合材料2を、乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させ、こちら側を表面とした。さらに、複合材料2に日本触媒(株)製のシリカ粒子KE-P30(平均粒径0.3μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液2Aを作製し、これをPENフィルムの裏面に乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 3 >>
The above-mentioned composite material 2 is applied to one side of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index: 1.75) so as to have a dry film thickness of 3 μm and cured by irradiating with ultraviolet rays. Let this side be the surface. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size 0.3 μm) manufactured by Nippon Shokubai Co., Ltd. to the composite material 2, ultrasonic dispersion is performed to obtain a resin solution 2A containing a light scattering filler. It was prepared, applied to the back surface of the PEN film so that the dry film thickness was 3 μm, and cured by irradiation with ultraviolet rays.
 《透明基板4の作製》
 厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に、前述の複合材料3を、乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させ、こちら側を表面とした。さらに、複合材料3に日本触媒(株)製のシリカ粒子KE-P30(平均粒径0.3μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液3Aを作製し、これをPENフィルムの裏面に乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 4 >>
The composite material 3 described above is applied to one side of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so that the dry film thickness is 3 μm and cured by irradiating with ultraviolet rays. Let this side be the surface. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size 0.3 μm) manufactured by Nippon Shokubai Co., Ltd. to the composite material 3, ultrasonic dispersion is performed to obtain a resin solution 3A containing a light scattering filler. It was prepared, applied to the back surface of the PEN film so that the dry film thickness was 3 μm, and cured by irradiation with ultraviolet rays.
 《透明基板5の作製》
 厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に、前述の比較用樹脂Aを、乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させた。さらに、比較用樹脂Aに日本触媒(株)製のシリカ粒子KE-P30(平均粒径0.3μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液AAを作製し、これをPENフィルムの比較用樹脂Aを塗布したのと反対側の面に乾燥膜厚が3μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 5 >>
On one side of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75), the above-mentioned comparative resin A is applied so as to have a dry film thickness of 3 μm and irradiated with ultraviolet rays. Cured. Furthermore, after adding 20% by mass of silica particles KE-P30 (average particle size: 0.3 μm) manufactured by Nippon Shokubai Co., Ltd. to Comparative Resin A, ultrasonic dispersion is performed to obtain a resin solution AA containing a light scattering filler. Was applied to the surface opposite to the side where the comparative resin A for PEN film was applied so that the dry film thickness was 3 μm, and cured by irradiating with ultraviolet rays.
 《透明基板6の作製》
 複合材料4に日本触媒(株)製のシリカ粒子KE-P30(平均粒径0.3μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液4Aを作製し、これを厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させた。その上に、さらに複合材料4を平滑化層として乾燥膜厚が4μmになるように塗布し、紫外線を照射して硬化させた。その後、PENフィルムの反対側の面に、複合材料4を乾燥膜厚が4μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 6 >>
After adding 20% by mass of silica particles KE-P30 (average particle size 0.3 μm) manufactured by Nippon Shokubai Co., Ltd. to the composite material 4, ultrasonic dispersion is performed to prepare a resin solution 4A containing a light scattering filler. This was applied to one side of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 5 μm, and cured by irradiating with ultraviolet rays. Further, the composite material 4 was further applied as a smoothing layer so that the dry film thickness was 4 μm, and cured by irradiating with ultraviolet rays. Thereafter, the composite material 4 was applied to the opposite surface of the PEN film so as to have a dry film thickness of 4 μm, and cured by irradiation with ultraviolet rays.
 《透明基板7の作製》
 複合材料4にアドマテックス(株)製のシリカ粒子SO-E2(平均粒径0.5μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液4Bを作製し、透明基板6の作製において、樹脂溶液4Aを樹脂溶液4Bに変更した以外はすべて同様にして透明基板7を作製した。
<< Preparation of transparent substrate 7 >>
After adding 20% by mass of silica particles SO-E2 (average particle size 0.5 μm) manufactured by Admatechs Co., Ltd. to the composite material 4, ultrasonic dispersion is performed to prepare a resin solution 4B containing a light scattering filler. In the production of the transparent substrate 6, the transparent substrate 7 was produced in the same manner except that the resin solution 4A was changed to the resin solution 4B.
 《透明基板8の作製》
 複合材料4に積水化成(株)製のPMMA粒子XX-1973Z(平均粒径0.1μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液4Cを作製し、透明基板6の作製において、樹脂溶液4Aを樹脂溶液4Cに変更した以外はすべて同様にして透明基板8を作製した。
<< Preparation of transparent substrate 8 >>
After adding 20% by mass of PMMA particles XX-1973Z (average particle size 0.1 μm) manufactured by Sekisui Chemical Co., Ltd. to the composite material 4, ultrasonic dispersion is performed to prepare a resin solution 4C containing a light scattering filler. In the production of the transparent substrate 6, the transparent substrate 8 was produced in the same manner except that the resin solution 4A was changed to the resin solution 4C.
 《透明基板9の作製》
 複合材料4にアドマテックス(株)製のシリカ粒子SO-E3(平均粒径1.0μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液4Dを作製し、透明基板6の作製において、樹脂溶液4Aを樹脂溶液4Dに変更した以外はすべて同様にして透明基板9を作製した。
<< Preparation of transparent substrate 9 >>
After adding 20% by mass of silica particles SO-E3 (average particle size: 1.0 μm) manufactured by Admatex Co., Ltd. to the composite material 4, ultrasonic dispersion is performed to prepare a resin solution 4D containing a light scattering filler. In the production of the transparent substrate 6, the transparent substrate 9 was produced in the same manner except that the resin solution 4A was changed to the resin solution 4D.
 《透明基板10の作製》
 複合材料4に日本アエロジル(株)製のシリカ粒子RX-50(平均粒径0.04μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液4Eを作製し、透明基板6の作製において、樹脂溶液4Aを樹脂溶液4Eに変更した以外はすべて同様にして透明基板10を作製した。
<< Preparation of transparent substrate 10 >>
After adding 20% by mass of silica particles RX-50 (average particle size 0.04 μm) manufactured by Nippon Aerosil Co., Ltd. to composite material 4, ultrasonic dispersion was performed to prepare resin solution 4E containing a light scattering filler. In the production of the transparent substrate 6, the transparent substrate 10 was produced in the same manner except that the resin solution 4A was changed to the resin solution 4E.
 《透明基板11の作製》
 複合材料2にアドマテックス(株)製のアルミナ粒子AO-802(平均粒径0.7μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液2Bを作製し、これを厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させた。その上に、さらに複合材料2を平滑化層として乾燥膜厚が4μmになるように塗布し、紫外線を照射して硬化させた。その後、PENフィルムの反対側の面に、複合材料2を乾燥膜厚が4μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 11 >>
After adding 20% by mass of alumina particles AO-802 (average particle size 0.7 μm) manufactured by Admatechs Co., Ltd. to composite material 2, ultrasonic dispersion is performed to prepare resin solution 2B containing a light scattering filler. This was applied to one side of a 125 μm thick biaxially stretched PEN film (manufactured by Teijin DuPont; refractive index 1.75) so as to have a dry film thickness of 5 μm, and cured by irradiating with ultraviolet rays. Further, the composite material 2 was further applied as a smoothing layer so that the dry film thickness was 4 μm, and cured by irradiating with ultraviolet rays. Thereafter, the composite material 2 was applied to the opposite surface of the PEN film so as to have a dry film thickness of 4 μm, and cured by irradiation with ultraviolet rays.
 《透明基板12の作製》
 複合材料5にシリカ粒子KE-P30(平均粒径0.3μm)を20質量%添加後、超音波分散を行い、光散乱性フィラーを含有した樹脂溶液5Aを作製し、これを厚さ125μmの二軸延伸PENフィルム(帝人デュポン社製;屈折率1.75)の片面に乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させた。その上に、さらに複合材料5を平滑化層として乾燥膜厚が4μmになるように塗布し、紫外線を照射して硬化させた。その後、PENフィルムの反対側の面に、複合材料5を乾燥膜厚が4μmになるように塗布し、紫外線を照射して硬化させた。
<< Preparation of transparent substrate 12 >>
After adding 20% by mass of silica particles KE-P30 (average particle size 0.3 μm) to the composite material 5, ultrasonic dispersion is performed to prepare a resin solution 5A containing a light-scattering filler, which has a thickness of 125 μm. A biaxially stretched PEN film (manufactured by Teijin DuPont Co., Ltd .; refractive index 1.75) was applied to a dry film thickness of 5 μm and cured by irradiating with ultraviolet rays. Further, the composite material 5 was further applied as a smoothing layer so that the dry film thickness was 4 μm, and cured by irradiating with ultraviolet rays. Thereafter, the composite material 5 was applied to the opposite surface of the PEN film so as to have a dry film thickness of 4 μm, and was cured by irradiation with ultraviolet rays.
 《有機EL素子1の作製》
 透明基板1の片面にITO(インジウムチンオキシド;屈折率1.85)を100nm製膜し、パターニングを行った。このITO透明電極を設けた透明基板1をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、基板表面温度200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
<< Production of Organic EL Element 1 >>
100 nm of ITO (indium tin oxide; refractive index 1.85) was formed on one surface of the transparent substrate 1 and patterned. The transparent substrate 1 provided with the ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes. On top of this, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water is spun at 3000 rpm for 30 seconds. Then, the substrate was dried at a substrate surface temperature of 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
 この基板を、窒素雰囲気下、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。グローブボックス中にて正孔輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。この基板を、基板表面温度150℃で30分間加熱乾燥し正孔輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は20nmであった。 This substrate was transferred to a glove box in accordance with JIS B 9920 under a nitrogen atmosphere, with a measured cleanliness of class 100, a dew point temperature of −80 ° C. or lower, and an oxygen concentration of 0.8 ppm. A coating solution for a hole transport layer was prepared as follows in a glove box, and applied with a spin coater under conditions of 1500 rpm and 30 seconds. This substrate was dried by heating at a substrate surface temperature of 150 ° C. for 30 minutes to provide a hole transport layer. The film thickness was 20 nm when it apply | coated and measured on the conditions with the board | substrate prepared separately.
 (正孔輸送層用塗布液)
 モノクロロベンゼン                    100g
 ポリ-N,N′-ビス(4-ブチルフェニル)-N,N′-ビス(フェニル)ベンジジン(ADS254BE:アメリカン・ダイ・ソース社製)
                              0.5g
 次いで、発光層塗布液を下記のように調製し、スピンコーターにて、2000rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し発光層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は40nmであった。尚、下記発光層組成物のうち、最も低いTgを示したのはH-Aであり、132℃であった。
(Coating liquid for hole transport layer)
Monochlorobenzene 100g
Poly-N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine (ADS254BE: manufactured by American Die Source)
0.5g
Subsequently, the light emitting layer coating liquid was prepared as follows, and it apply | coated on 2000 rpm and the conditions for 30 seconds with the spin coater. Furthermore, it heated at the substrate surface temperature of 120 degreeC for 30 minutes, and provided the light emitting layer. When the coating was performed under the same conditions on a separately prepared substrate and measured, the film thickness was 40 nm. Of the following light emitting layer compositions, HA showed the lowest Tg, which was 132 ° C.
 (発光層用塗布液)
 酢酸ブチル                        100g
 H-A                            1g
 D-A                         0.11g
 D-B                        0.002g
 D-C                        0.002g
 次いで、電子輸送層用塗布液を下記のように調製し、スピンコーターにて、1500rpm、30秒の条件で塗布した。さらに基板表面温度120℃で30分加熱し電子輸送層を設けた。別途用意した基板にて、同条件にて塗布を行い測定したところ、膜厚は30nmであった。
(Light emitting layer coating solution)
Butyl acetate 100g
HA 1g
DA 0.11g
DB 0.002g
DC 0.002g
Subsequently, the coating liquid for electron carrying layers was prepared as follows, and it apply | coated on the conditions of 1500 rpm and 30 seconds with a spin coater. Furthermore, it heated for 30 minutes at the substrate surface temperature of 120 degreeC, and provided the electron carrying layer. The film thickness was 30 nm when it applied and measured on the conditions prepared with the board | substrate prepared separately.
 (電子輸送層用塗布液)
 2,2,3,3-テトラフルオロ-1-プロパノール     100g
 ET-A                        0.75g
 次いで、電子輸送層まで設けた基板を、大気曝露せずに、蒸着機に移動し、4×10-4Paまで減圧した。尚、フッ化カリウムおよびアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
(Coating liquid for electron transport layer)
2,2,3,3-tetrafluoro-1-propanol 100g
ET-A 0.75g
Next, the substrate provided up to the electron transport layer was moved to a vapor deposition machine without being exposed to the atmosphere, and the pressure was reduced to 4 × 10 −4 Pa. Note that potassium fluoride and aluminum were each placed in a tantalum resistance heating boat and attached to a vapor deposition machine.
 先ず、フッ化カリウムの入った抵抗加熱ボートに通電し加熱し、基板上にフッ化カリウムからなる電子注入層を3nm設けた。続いて、アルミニウムの入った抵抗加熱ボートに通電加熱し、蒸着速度1~2nm/秒でアルミニウムからなる膜厚100nmの陰極を設けた。 First, a resistance heating boat containing potassium fluoride was energized and heated to provide a 3 nm electron injection layer made of potassium fluoride on the substrate. Subsequently, a resistance heating boat containing aluminum was energized and heated, and a cathode having a thickness of 100 nm made of aluminum was provided at a deposition rate of 1 to 2 nm / second.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 得られた有機EL素子1について、その断面を走査型電子顕微鏡で観察したところ、有機エレクトロルミネッセンス層の膜厚は0.12μm、透明導電層の膜厚は0.1μmであった。 When the cross section of the obtained organic EL element 1 was observed with a scanning electron microscope, the thickness of the organic electroluminescence layer was 0.12 μm, and the thickness of the transparent conductive layer was 0.1 μm.
 《有機EL素子2の作製》
 有機EL素子1の作製と同様の方法により、ITO透明導電層、有機エレクトロルミネッセンス層、陰極を形成した。その際に電子輸送層の塗布条件のみを変化させ、電子輸送層の膜厚が70nmになるように調整し、これを有機EL素子2とした。
<< Production of Organic EL Element 2 >>
An ITO transparent conductive layer, an organic electroluminescence layer, and a cathode were formed by the same method as the production of the organic EL element 1. At that time, only the coating condition of the electron transport layer was changed, and the film thickness of the electron transport layer was adjusted to 70 nm.
 《有機EL素子3の作製》
 透明基板2の表面に、有機EL素子1の作製と同様の方法により、ITO透明導電層、有機エレクトロルミネッセンス層、陰極、光取出し部材を形成し、有機エレクトロルミネッセンス層が発光波長によりほぼ同等の配光輝度特性である有機EL素子3を作製した。
<< Production of Organic EL Element 3 >>
An ITO transparent conductive layer, an organic electroluminescence layer, a cathode, and a light extraction member are formed on the surface of the transparent substrate 2 in the same manner as in the production of the organic EL element 1, and the organic electroluminescence layer is arranged in an almost equivalent manner according to the emission wavelength. An organic EL element 3 having light luminance characteristics was produced.
 《有機EL素子4の作製》
 透明基板2の表面に、有機EL素子2の作製と同様の方法により、ITO透明導電層、有機エレクトロルミネッセンス層、陰極、光取出し部材を形成し、有機エレクトロルミネッセンス層が発光波長によって異なる配光輝度特性である有機EL素子4を作製した。
<< Production of Organic EL Element 4 >>
An ITO transparent conductive layer, an organic electroluminescence layer, a cathode, and a light extraction member are formed on the surface of the transparent substrate 2 in the same manner as the production of the organic EL element 2, and the light distribution luminance of the organic electroluminescence layer varies depending on the emission wavelength. An organic EL element 4 having characteristics was produced.
 《有機EL素子5~14の作製》
 透明基板3~12の表面に、有機EL素子2の作製と同様の方法により、ITO透明導電層、有機エレクトロルミネッセンス層、陰極、光取出し部材を形成し、有機EL素子5~14を作製した。
<< Preparation of organic EL elements 5-14 >>
An ITO transparent conductive layer, an organic electroluminescence layer, a cathode, and a light extraction member were formed on the surfaces of the transparent substrates 3 to 12 in the same manner as in the production of the organic EL element 2, and organic EL elements 5 to 14 were produced.
 《有機EL素子15~17の作製》
 透明基板6の表面に、有機EL素子2の作製と同様の方法により、ITO透明導電層、有機エレクトロルミネッセンス層、陰極を形成した。その際に電子輸送層の塗布条件のみを変化させ、電子輸送層の膜厚が表2に記載の値になるように調整し、有機EL素子15~17とした。
<< Preparation of organic EL elements 15-17 >>
An ITO transparent conductive layer, an organic electroluminescence layer, and a cathode were formed on the surface of the transparent substrate 6 by the same method as the production of the organic EL element 2. At that time, only the coating conditions of the electron transport layer were changed, and the film thickness of the electron transport layer was adjusted to the value shown in Table 2, to obtain organic EL elements 15 to 17.
 《有機EL素子の評価》
 〔外部取り出し量子効率〕
 作製した有機EL素子に対し、2.5mA/cm定電流を流したときの外部取り出し量子効率(%)を不活性ガス雰囲気下で測定した。なお、測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。得られた結果を有機EL素子1の測定値を100としたときの相対値で表2に表した。
<< Evaluation of organic EL elements >>
[External extraction quantum efficiency]
With respect to the produced organic EL element, the external extraction quantum efficiency (%) when a constant current of 2.5 mA / cm 2 was passed was measured under an inert gas atmosphere. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used. The obtained results are shown in Table 2 as relative values when the measured value of the organic EL element 1 is 100.
 〔配光輝度特性〕
 作製した有機EL素子を、分光放射輝度計CS-1000(コニカミノルタセンシング製)にセットして、有機EL素子を発光させて法線方向に対する角度を変化させながら、各傾斜角度における輝度と分光スペクトルを測定し、波長620nmの赤色、波長525nmの緑色、波長458nmの青色における配光輝度特性を求めた。法線方向における赤色、緑色、青色の正面輝度をそれぞれ1にした場合において、上記の法線方向に対して30度、45度、60度傾斜した方向における赤色、緑色、青色のそれぞれの相対輝度を求め、表2に表した。相対輝度値が0.95~1.05の範囲であれば、目視により輝度および色度の変化が認識されず、白色照明として良好である。
[Light distribution luminance characteristics]
The produced organic EL device is set in a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing), and the organic EL device emits light and changes the angle with respect to the normal direction, and the luminance and spectral spectrum at each tilt angle. Were measured, and light distribution luminance characteristics in red of wavelength 620 nm, green of wavelength 525 nm, and blue of wavelength 458 nm were obtained. When the front luminances of red, green, and blue in the normal direction are each 1, the relative luminances of red, green, and blue in directions inclined by 30 degrees, 45 degrees, and 60 degrees with respect to the normal direction And is shown in Table 2. When the relative luminance value is in the range of 0.95 to 1.05, changes in luminance and chromaticity are not visually recognized, and it is favorable as white illumination.
 得られた結果を表2に表した。 The obtained results are shown in Table 2.
 なお、表2において、マトリックス樹脂の屈折率とは、各光散乱層に使用した、光散乱層フィラーを添加してない複合材料の硬化膜の屈折率である。また、使用したシリカ、PMMA及びアルミナの屈折率はそれぞれ、1.45,1.49及び1.76である。 In Table 2, the refractive index of the matrix resin is the refractive index of the cured film of the composite material used for each light scattering layer, to which no light scattering layer filler is added. Moreover, the refractive indexes of the used silica, PMMA, and alumina are 1.45, 1.49, and 1.76, respectively.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2より、本発明の構成である有機エレクトロルミネッセンス素子は、外部取り出し量子効率が高く、しかも観察角度による輝度および色変化が小さく、白色照明として優れていることが分かる。 From Table 2, it can be seen that the organic electroluminescence device having the configuration of the present invention has a high external extraction quantum efficiency, a small luminance and color change depending on the observation angle, and is excellent as white illumination.
 実施例2
 実施例1で作製した本発明の有機EL素子8をガラスケースで覆い、照明装置とした。ガラスカバー内には窒素ガスが充填され、光出射面と反対側のガラスカバー内に捕水剤を設けた。
Example 2
The organic EL element 8 of the present invention produced in Example 1 was covered with a glass case to obtain a lighting device. The glass cover was filled with nitrogen gas, and a water capturing agent was provided in the glass cover on the side opposite to the light emitting surface.
 本発明に係る照明装置は発光効率が高く、発光寿命の長い白色光を発する薄型の照明装置として使用することが出来た。 The lighting device according to the present invention has high luminous efficiency and can be used as a thin lighting device that emits white light with a long light emission lifetime.
 実施例3
 実施例1で作製した本発明の有機EL素子8を透明バリヤフィルム(二酸化ケイ素膜で被覆された透明樹脂フィルム)で覆い、フレキシブルな照明装置とした。本発明に係る照明装置は多少の屈曲動作に対しても高い発光効率を維持し、発光寿命の長い白色光を発する薄型の照明装置として使用することが出来た。
Example 3
The organic EL element 8 of the present invention produced in Example 1 was covered with a transparent barrier film (transparent resin film coated with a silicon dioxide film) to obtain a flexible lighting device. The illuminating device according to the present invention can be used as a thin illuminating device that emits white light having a long emission life while maintaining high luminous efficiency even with some bending motion.

Claims (3)

  1.  透明基板上に透明導電層、電子輸送層を有する有機エレクトロルミネッセンス層および対向電極が順次積層された有機エレクトロルミネッセンス素子において、該透明基板は少なくとも片側の面に、平均粒径1nm~20nmの酸化物ナノ粒子と樹脂材料前駆体からなる有機無機複合材料であって、かつ、硬化後の屈折率が1.65以上1.80以下になる該有機無機複合材料に、平均粒径0.1μm~0.7μmの光散乱性フィラーを添加した塗布液を塗布・乾燥・硬化した光散乱層を有し、かつ、該電子輸送層の膜厚が、40~200nmであることすることを特徴とする有機エレクトロルミネッセンス素子。 In an organic electroluminescence device in which a transparent conductive layer, an organic electroluminescence layer having an electron transport layer, and a counter electrode are sequentially laminated on a transparent substrate, the transparent substrate is an oxide having an average particle diameter of 1 nm to 20 nm on at least one surface. An organic-inorganic composite material composed of nanoparticles and a resin material precursor, and having a refractive index of 1.65 to 1.80 after curing, has an average particle size of 0.1 μm to 0 μm. An organic layer characterized in that it has a light scattering layer obtained by coating, drying and curing a coating solution to which a light-scattering filler of 7 μm is added, and the thickness of the electron transport layer is 40 to 200 nm Electroluminescence element.
  2.  前記光散乱層の複合材料と光散乱性フィラーの屈折率差が、0.2~0.3であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the refractive index difference between the composite material of the light scattering layer and the light scattering filler is 0.2 to 0.3.
  3.  請求項1又は2に記載の有機エレクトロルミネッセンス素子を用いることを特徴とする照明装置。 An illuminating device using the organic electroluminescence element according to claim 1 or 2.
PCT/JP2011/050251 2010-01-26 2011-01-11 Organic electroluminescene element and lighting device WO2011093120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551788A JP5655795B2 (en) 2010-01-26 2011-01-11 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010013912 2010-01-26
JP2010-013912 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011093120A1 true WO2011093120A1 (en) 2011-08-04

Family

ID=44319111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050251 WO2011093120A1 (en) 2010-01-26 2011-01-11 Organic electroluminescene element and lighting device

Country Status (2)

Country Link
JP (1) JP5655795B2 (en)
WO (1) WO2011093120A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080799A1 (en) * 2011-11-29 2013-06-06 富士フイルム株式会社 Laminate and organic electroluminescent device
WO2013088997A1 (en) * 2011-12-15 2013-06-20 東レ株式会社 Surface light-emitting body and front surface film
CN103207523A (en) * 2012-01-16 2013-07-17 东洋油墨Sc控股株式会社 Resin compositions for light-scattering layer, light-scattering layer and organic electro luminescence device
JP2013145695A (en) * 2012-01-16 2013-07-25 Toyo Ink Sc Holdings Co Ltd Resin composition for light scattering, light scattering layer formed of resin composition for light scattering, and organic el display device or organic el lighting device including light scattering layer
JP2013232410A (en) * 2012-04-27 2013-11-14 Universal Display Corp Light extraction layer including particle polymer composite material
EP2674442A3 (en) * 2012-06-12 2014-01-22 Toyo Ink SC Holdings Co., Ltd. Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device
JP2014089860A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Cured product, substrate for organic el element, and method for manufacturing them
JP2015022794A (en) * 2013-07-16 2015-02-02 東洋インキScホールディングス株式会社 Resin composition for light scattering layer, light scattering layer, and organic electroluminescent device
JP2015514293A (en) * 2012-03-23 2015-05-18 エルジー・ケム・リミテッド Organic light emitting device
WO2015083660A1 (en) * 2013-12-06 2015-06-11 コニカミノルタ株式会社 Organic electroluminescence element
WO2015166764A1 (en) * 2014-04-28 2015-11-05 コニカミノルタ株式会社 Light extraction layered body, organic electroluminescence element, and method for manufacturing same
WO2016002310A1 (en) * 2014-07-04 2016-01-07 Necライティング株式会社 Organic el panel-use transparent resin layer, organic el panel, organic el illumination device, and organic el display
JP2016518018A (en) * 2013-05-16 2016-06-20 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2017516265A (en) * 2014-05-15 2017-06-15 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026357A1 (en) * 2001-09-13 2003-03-27 Nissan Chemical Industries, Ltd. Organic electroluminescence element-use transparent substrate and organic electroluminescence element
WO2008150424A1 (en) * 2007-05-31 2008-12-11 Eastman Kodak Company Electroluminescent device having improved light output
JP2009259802A (en) * 2008-03-26 2009-11-05 Fujifilm Corp Light scattering layer transfer material, and organic el display device and method of manufacturing the same
JP2010049210A (en) * 2008-08-25 2010-03-04 Fujifilm Corp Coating composition, method for producing the same, translucent light-scattering film, organic electroluminescence display element and planar light source
JP2010205650A (en) * 2009-03-05 2010-09-16 Fujifilm Corp Organic el display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120127515A (en) * 2004-05-26 2012-11-21 닛산 가가쿠 고교 가부시키 가이샤 Planar luminous body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026357A1 (en) * 2001-09-13 2003-03-27 Nissan Chemical Industries, Ltd. Organic electroluminescence element-use transparent substrate and organic electroluminescence element
WO2008150424A1 (en) * 2007-05-31 2008-12-11 Eastman Kodak Company Electroluminescent device having improved light output
JP2009259802A (en) * 2008-03-26 2009-11-05 Fujifilm Corp Light scattering layer transfer material, and organic el display device and method of manufacturing the same
JP2010049210A (en) * 2008-08-25 2010-03-04 Fujifilm Corp Coating composition, method for producing the same, translucent light-scattering film, organic electroluminescence display element and planar light source
JP2010205650A (en) * 2009-03-05 2010-09-16 Fujifilm Corp Organic el display device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114938A (en) * 2011-11-29 2013-06-10 Fujifilm Corp Laminate and organic electroluminescent device
WO2013080799A1 (en) * 2011-11-29 2013-06-06 富士フイルム株式会社 Laminate and organic electroluminescent device
WO2013088997A1 (en) * 2011-12-15 2013-06-20 東レ株式会社 Surface light-emitting body and front surface film
US9237630B2 (en) 2011-12-15 2016-01-12 Toray Industries, Inc. Planar light emitting device and front film
CN103207523A (en) * 2012-01-16 2013-07-17 东洋油墨Sc控股株式会社 Resin compositions for light-scattering layer, light-scattering layer and organic electro luminescence device
JP2013145695A (en) * 2012-01-16 2013-07-25 Toyo Ink Sc Holdings Co Ltd Resin composition for light scattering, light scattering layer formed of resin composition for light scattering, and organic el display device or organic el lighting device including light scattering layer
TWI512066B (en) * 2012-01-16 2015-12-11 Toyo Ink Sc Holdings Co Ltd Resin composition for light scattering layer, light scattering layer and organic electroluminescence device
JP2015514293A (en) * 2012-03-23 2015-05-18 エルジー・ケム・リミテッド Organic light emitting device
JP2013232410A (en) * 2012-04-27 2013-11-14 Universal Display Corp Light extraction layer including particle polymer composite material
EP2674442A3 (en) * 2012-06-12 2014-01-22 Toyo Ink SC Holdings Co., Ltd. Resin composition for light scattering layer, light scattering layer, and organic electroluminescence device
JP2014089860A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Cured product, substrate for organic el element, and method for manufacturing them
JP2016518018A (en) * 2013-05-16 2016-06-20 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2015022794A (en) * 2013-07-16 2015-02-02 東洋インキScホールディングス株式会社 Resin composition for light scattering layer, light scattering layer, and organic electroluminescent device
JPWO2015083660A1 (en) * 2013-12-06 2017-03-16 コニカミノルタ株式会社 Organic electroluminescence device
US9871225B2 (en) 2013-12-06 2018-01-16 Konica Minolta, Inc. Organic electroluminescence element
WO2015083660A1 (en) * 2013-12-06 2015-06-11 コニカミノルタ株式会社 Organic electroluminescence element
US20160315286A1 (en) * 2013-12-06 2016-10-27 Konica Minolta, Inc Organic electroluminescence element
JPWO2015166764A1 (en) * 2014-04-28 2017-04-20 コニカミノルタ株式会社 Light extraction laminate, organic electroluminescence device and method for producing the same
WO2015166764A1 (en) * 2014-04-28 2015-11-05 コニカミノルタ株式会社 Light extraction layered body, organic electroluminescence element, and method for manufacturing same
JP2017516265A (en) * 2014-05-15 2017-06-15 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device
US10158096B2 (en) 2014-05-15 2018-12-18 Lg Display Co., Ltd. Organic light emitting device
WO2016002310A1 (en) * 2014-07-04 2016-01-07 Necライティング株式会社 Organic el panel-use transparent resin layer, organic el panel, organic el illumination device, and organic el display
JPWO2016002310A1 (en) * 2014-07-04 2017-04-27 Necライティング株式会社 Transparent resin layer for organic EL panel, organic EL panel, organic EL lighting device, and organic EL display
US10205127B2 (en) 2014-07-04 2019-02-12 Nec Lighting, Ltd. Organic EL panel-use transparent resin layer, organic EL panel, organic EL lighting device, and organic EL display
JP2020047611A (en) * 2014-07-04 2020-03-26 株式会社ホタルクス Organic el panel-use transparent resin layer, organic el panel, organic el lighting device, and organic el display
US11081674B2 (en) 2014-07-04 2021-08-03 HotaluX, Ltd. Organic EL panel-use transparent resin layer, organic EL panel, organic EL lighting device, and organic EL display

Also Published As

Publication number Publication date
JP5655795B2 (en) 2015-01-21
JPWO2011093120A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5655795B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP5835216B2 (en) Light extraction sheet, organic electroluminescence element and lighting device
JP5434931B2 (en) Organic electroluminescence element and lighting device using the same
US8987711B2 (en) Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
JP5994884B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
KR101876659B1 (en) Display device
JP2007180277A (en) Organic electroluminescent device, display and illuminator
JP2011108392A (en) Light diffusion sheet, method of manufacturing the same, and organic electroluminescent element
JP5664715B2 (en) Organic electroluminescence device
JP5708677B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP2011150803A (en) Organic electroluminescence element and lighting system
JP5126162B2 (en) Surface light emitter substrate and organic electroluminescence device using the same
JP4978034B2 (en) Organic electroluminescence device
JP5056827B2 (en) Organic electroluminescence element and lighting device using the same
JP2011039375A (en) Light-scattering substrate and method of manufacturing the same, and organic electroluminescent element
WO2013042532A1 (en) Organic electroluminescent panel and method of manufacturing organic electroluminescent panel
WO2012014740A1 (en) Organic electroluminescent element
WO2010134419A1 (en) Organic electroluminescent element and illuminating device using same
JP2007221028A (en) Organic electroluminescence element, display, and illumination device
JP2011171093A (en) Surface light-emitting body
JP5353852B2 (en) Surface light emitter and method for manufacturing surface light emitter
WO2015001922A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence element, and organic electroluminescence module
JP2012190742A (en) Organic electroluminescent element and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736835

Country of ref document: EP

Kind code of ref document: A1