WO2011093086A1 - Fluid machinery - Google Patents

Fluid machinery Download PDF

Info

Publication number
WO2011093086A1
WO2011093086A1 PCT/JP2011/000459 JP2011000459W WO2011093086A1 WO 2011093086 A1 WO2011093086 A1 WO 2011093086A1 JP 2011000459 W JP2011000459 W JP 2011000459W WO 2011093086 A1 WO2011093086 A1 WO 2011093086A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
lubricating oil
fluid machine
sealed container
shielding
Prior art date
Application number
PCT/JP2011/000459
Other languages
French (fr)
Japanese (ja)
Inventor
憲幸 小林
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to EP11736801.9A priority Critical patent/EP2514972A4/en
Priority to MX2012008748A priority patent/MX2012008748A/en
Priority to CA2787527A priority patent/CA2787527A1/en
Priority to US13/576,146 priority patent/US20120308410A1/en
Priority to BR112012018673A priority patent/BR112012018673A2/en
Priority to CN2011800074442A priority patent/CN102725527A/en
Publication of WO2011093086A1 publication Critical patent/WO2011093086A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • F04B39/0253Hermetic compressors with oil distribution channels in the rotating shaft using centrifugal force for transporting the oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • the present invention relates to a fluid machine, and more particularly to a fluid machine suitable for a hermetic reciprocating compressor that compresses a carbon dioxide refrigerant.
  • This type of fluid machine includes an airtight container, an electric compression element that is housed in the airtight container and includes a compression element (driven unit) and an electric element (drive unit), and an oil reservoir provided in the compression element.
  • a hermetic compressor including a suction pipe having one end connected to a compression element and the other end opened near a lubricating oil reservoir (see, for example, Patent Document 1).
  • the crankshaft (rotary shaft) constituting the compression element is immersed in the lubricating oil stored in the inner bottom portion of the hermetic container and driven by the electric element so as to be provided in the crankshaft.
  • Lubricating oil is sucked up by the mechanism and lubricated to the sliding portion of the compression element.
  • the oil supply mechanism is rotationally driven by the electric element, the lubricating oil in the oil reservoir is scattered in a parabolic shape in the sealed container by the rotation of the oil supply mechanism when sucked up. Further, the lubricating oil is discharged from the rotating crankshaft into the sealed container, and the discharged lubricating oil scatters in a parabolic shape in the sealed container.
  • the lubricating oil thus scattered in the sealed container adheres to the inner wall of the sealed container and flows so as to circulate in the circumferential direction of the sealed container along the inner wall.
  • the time required for the lubricating oil to scatter and flow down to the oil reservoir and be stored becomes longer as the initial velocity at which the lubricating oil is scattered is larger and the viscosity force of the lubricating oil is larger.
  • the crankshaft and thus the oil pipe may rotate at about 3000 rpm, so the initial speed at which the lubricating oil is scattered increases in this case.
  • a hermetic compressor particularly a hermetic compressor using a carbon dioxide refrigerant as the working fluid
  • refrigeration oil having a higher viscous force than conventional products is often used. Tend to be longer.
  • the compressor is small and the maximum amount of lubricating oil stored in the oil reservoir is a small amount of about 200 cc, for example, if the required time is long, the amount of lubricating oil stored in the oil reservoir is reduced. It may decrease temporarily temporarily, and in the worst case, the amount of oil stored in the oil sump may temporarily become zero.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a fluid machine that can improve lubrication performance and improve reliability.
  • a fluid machine of the present invention is a fluid machine in which a drive unit and a driven unit to which the driving force of the drive unit is transmitted via a rotating shaft are accommodated in an airtight container. And an oil reservoir for storing the lubricating oil in the inner bottom portion of the sealed container, and an oil supply for supplying the lubricating oil in the oil reservoir to each sliding portion of the drive unit and the driven unit by rotating integrally with the rotating shaft.
  • the airtight container has a shielding portion that shields the flow of the lubricating oil in the circumferential direction on the inner side wall (Claim 1).
  • the shielding portion projects from the inner wall toward the oil sump portion (claim 2). Further, a frame that supports the drive unit and the driven unit is provided, and the frame is fixed to the shielding portion. Further, the sealed container is configured to include a bottom shell to be forged, the shielding portion is collectively formed when the bottom shell is forged (Claim 4), and the oil sump is formed when the bottom shell is forged. It is molded in a lump (claim 5).
  • the shielding part has a wave shape continuously bulging toward the oil sump part (Claim 6), and a plurality of shielding parts are provided (Claim 7). Furthermore, the pressure of the working fluid sucked into the driven unit and discharged from the driven unit acts in the sealed container, and the working fluid is a carbon dioxide refrigerant.
  • the lubricating oil scattered in the sealed container directly collides with the shielding part or directly collides with the shielding part. Even if it does not, it is greatly decelerated by exceeding the shielding part when it begins to circulate along the inner wall after adhering to the inner wall. The decelerated lubricating oil immediately flows down to the oil reservoir without continuing to circulate along the inner wall, greatly increasing the time required for the lubricating oil to flow down to the oil reservoir and be stored. Can be shortened.
  • the viscosity of the lubricating oil is large, and the maximum amount of oil stored in the oil reservoir is small, the circulation efficiency of the lubricating oil can be increased, and the lubrication of the fluid machine The performance can be improved.
  • a shielding part can be utilized as a base part for fixing a flame
  • the frame can be fixed to the sealed container without any problems, and the productivity of the fluid machine can be improved.
  • the shielding portion can be easily formed without requiring a separate member or a separate process by forming the shielding portion all together at the time of forging the bottom shell. The productivity of the machine can be improved.
  • the oil sump portion can be formed easily at the time of the forging molding of the bottom shell, so that the oil sump portion can be easily formed without requiring a separate member or separate processing.
  • the productivity of the fluid machine can be improved.
  • the shielding portion has a wave shape that continuously bulges toward the oil sump portion side, so that the scattered lubricating oil has one bulging of the shielding portion. Compared to the case, the probability of directly colliding with the shielding part is increased, or even when not directly colliding with the shielding part, it exceeds the shielding part when attached to the inner side wall and starts to circulate along the inner side wall. The number of times increases.
  • the lubricating oil can be decelerated more effectively, and the time required for the lubricating oil to flow down to the oil sump and be stored can be further shortened. Even when the viscosity of the lubricating oil is large and the maximum amount of oil stored in the oil reservoir is small, the circulation efficiency of the lubricating oil can be further increased and the lubricating performance of the fluid machine can be further improved. Can do.
  • the scattered lubricating oil has a higher probability of directly colliding with the shielding portion than when there is one shielding portion, Or even if it does not directly collide with the shielding part, the number of times exceeding the shielding part increases when it starts to circulate along the inner wall after adhering to the inner wall. Therefore, the lubricating oil can be decelerated more effectively, and the time required for the lubricating oil to flow down to the oil sump and be stored can be further shortened. Even when the viscosity of the lubricating oil is large and the maximum amount of oil stored in the oil reservoir is small, the circulation efficiency of the lubricating oil can be further increased and the lubricating performance of the fluid machine can be further improved. Can do.
  • the pressure of the working fluid discharged from the driven unit is increased to a supercritical state, and the temperature inside the fluid machine is high.
  • the temperature inside the fluid machine is low, the viscosity of the lubricating oil is large, and thus the scattered lubricating oil tends to hardly return.
  • the lubricating oil circulation efficiency can be increased and the lubrication performance of the fluid machine can be improved. It is preferable.
  • FIG. 5 is a plan view showing a lubricating oil flow path in the bottom shell of FIG. 4 from above.
  • the compressor 1 is a hermetic reciprocating compressor, and is categorized in detail as a positive displacement compressor called a reciprocating compressor or a piston compressor.
  • a configuration of a refrigeration cycle (not shown) incorporated in a vending machine. Used as equipment.
  • the refrigeration cycle includes a path through which a refrigerant as a working fluid of the compressor 1 circulates.
  • a carbon dioxide refrigerant that is a non-flammable natural refrigerant is used as the refrigerant.
  • the compressor 1 includes an airtight container 2, and an electric motor (drive unit) 4 and a compression mechanism (driven unit) to which the driving force of the electric motor 4 is transmitted are enclosed in the airtight container 2. 6) is housed.
  • the electric motor 4 includes a stator 8 that generates a magnetic field by power feeding and a rotor 10 that rotates by the magnetic field generated by the stator 8.
  • the rotor 10 is disposed coaxially inside the stator 8, and will be described later.
  • the main shaft portion 24 is fixed by shrinkage fitting. Electric power is supplied to the stator 8 from the outside of the compressor 1 through an electrical component 12 fixed to the sealed container 2 and a lead wire (not shown).
  • the compression mechanism 6 includes a crankshaft 14, a cylinder block 16, a piston 18, a connecting rod 20, and the like.
  • the crankshaft 14 includes an eccentric shaft portion 22 and a main shaft portion 24.
  • a cylinder bore 26 is formed integrally with the cylinder block 16, and a cylinder gasket 28, a later-described suction valve 50, and a valve plate 30 are sequentially arranged from the cylinder block 16 side so as to close the opening of the cylinder bore 26.
  • the head gasket 32 and the cylinder head 34 are pressed and fixed by bolts.
  • the stator 8 is bolted to the cylinder block 16 via a frame 36, and the frame 36 is fixed to the sealed container 2.
  • the electric motor 4 and the compression mechanism 6 are supported by a pedestal portion 38 below the frame 36, and the frame 36 is fixed to the sealed container 2 by the pedestal portion 38.
  • the bearing 42 of the main shaft portion 24 is disposed on the inner peripheral surface 40a, and the thrust trace (bearing) that receives the thrust load of the rotor 10 on the upper end surface 40b of the cylindrical portion 40.
  • a bearing 44 such as a thrust washer is disposed.
  • the valve plate 30 includes a refrigerant suction hole 46 and a discharge hole 48, both of which are opened and closed by a suction valve 50 and a discharge valve 52, which are reed valves, respectively.
  • the cylinder head 34 includes a refrigerant suction chamber 54 and a discharge chamber 56.
  • the discharge valve 52 When the discharge valve 52 is opened in the compression stroke of the piston 18, the discharge chamber 56 communicates with the cylinder bore 26 through the discharge hole 48.
  • the intake valve 50 is opened during the intake stroke of the piston 18, the intake chamber 54 communicates with the cylinder bore 26 via the intake hole 46.
  • a suction pipe 58 and a discharge pipe 60 are fixed to the sealed container 2, and one ends of the suction and discharge pipes 58 and 60 are connected to a suction chamber 54 and a discharge chamber 56 of the cylinder head 34, respectively.
  • the other ends of the suction and discharge pipes 58 and 60 are connected to a refrigeration cycle via a suction muffler and a discharge muffler (not shown), and these mufflers reduce the pulsation and noise of the refrigerant flowing between the compressor 1 and the refrigeration cycle. ing.
  • the connecting rod 20 is provided with a large end 62 to which the eccentric shaft portion 22 of the crankshaft 14 is rotatably connected at one end, and a small end 64 to which the piston 18 is reciprocally connected at the other end. It has been.
  • the small end portion 64 is connected to the piston 18 by a piston pin 66, and the piston pin 66 is secured to the piston 18 by a fixing pin 68.
  • the connecting rod 20 swings in conjunction with the eccentric rotation of the eccentric shaft portion 22 with the piston pin 66 as a fulcrum, and the piston 18 interlocks with the swinging motion of the connecting rod 20. It reciprocates in the cylinder bore 26.
  • the suction pressure of the refrigerant mainly acts in the sealed container 2, and a small amount of lubricating oil for lubricating the sliding portions of the electric motor 4 and the compression mechanism 6 such as the bearings 42 and 44 is present in the inner bottom portion 2 a of the sealed container 2.
  • an oil passage (oil supply mechanism) 70 is drilled from the substantially axial position of the lower end surface 22 a of the eccentric shaft portion 22 to the middle of the main shaft portion 24.
  • An upper portion of the oil passage 70 is opened from the outer peripheral surface 24 a of the main shaft portion 24, and an oil pipe (oil supply mechanism) 72 is connected to the lower portion of the oil passage 70.
  • the oil pipe 72 has an inclined portion 74 which is inclined from the substantially axial center of the eccentric shaft portion 22 toward the axial center of the main shaft portion 24 on the distal end side. It extends to the oil reservoir 76 having a concave shape in sectional view formed in the inner bottom 2a.
  • the oil sump portion 76 is formed to have a size and depth that allow a small amount of lubricating oil, for example, about 200 cc, to be stored so that the oil level is higher than the tip position of the oil pipe 74.
  • a centrifugal force acts on the lubricating oil in the inclined portion 74 in the oil pipe 72 in an obliquely upward outward direction. Is pumped from the oil reservoir 76 to the oil passage 74. Further, along with the eccentric rotation of the oil pipe 72, a part of the lubricating oil in the oil reservoir 76 is scattered in a parabolic shape in the sealed container 2.
  • the operation and action of the compressor 1 will be described.
  • the rotor 10 fixed to the main shaft portion 24 is rotated by supplying power to the stator 8, and consequently the crankshaft 14 is rotated, and the piston 18 reciprocates in the cylinder bore 26 via the connecting rod 20.
  • the reciprocating motion of the piston 18 causes the refrigerant to be sucked into the cylinder bore 26 from the refrigeration cycle, and the refrigerant is compressed by the cylinder bore 26 and further discharged to the refrigeration cycle.
  • the piston 18 operates in the direction of decreasing the volume of the cylinder bore 26 and the refrigerant in the cylinder bore 26 is compressed and the pressure in the cylinder bore 26 exceeds the discharge pressure of the refrigerant, the pressure in the cylinder bore 26 and the discharge chamber 56 are increased.
  • the discharge valve 52 opens due to the difference from the internal pressure. The compressed refrigerant is guided to the discharge chamber 56 via the discharge hole 48 and discharged to the refrigeration cycle via the discharge pipe 60.
  • the pressure in the cylinder bore 26 decreases.
  • the discharge valve 52 closes according to the difference between the pressure in the cylinder bore 26 and the pressure in the discharge chamber 56.
  • the suction valve 50 opens according to the difference between the pressure in the cylinder bore 26 and the pressure in the suction chamber 54. The refrigerant in the refrigeration cycle is guided to the suction chamber 54 through the suction pipe 58 and is sucked into the cylinder bore 26 through the suction hole 46.
  • the scattered lubricating oil flows down to the eccentric shaft portion 22 side and lubricates the vicinity of the large end portion 62. Further, the lubricating oil is scattered toward the piston 18 by the flange portion 22b formed on the eccentric shaft portion 22, and lubricates the vicinity of the skirt portion 18a of the piston 18.
  • a part of the lubricating oil flowing out from the oil passage 70 rises along an outer peripheral groove (not shown) formed in the crankshaft 14 by centrifugal force, and forms an oil film between the crankshaft 14 and the frame 36. Then, the bearing 42 is lubricated and moved to the upper end side of the crankshaft 14. The lubricating oil reaches the upper end surface 40b of the cylindrical portion 40 and lubricates the bearing 44, and then flows down to the oil sump portion 76 by gravity.
  • the lubricating oil that cannot pass through the bearing 44 rises as it is up the inner wall surface 10a of the rotor 10 to the upper end of the rotor 10, is scattered by the centrifugal force due to the rotation of the rotor 10, cools the stator 8, and then To flow down to the oil sump 76.
  • the sealed container 2 is composed of two shells, a top shell 78 covering the electric motor 4 side and a bottom shell 80 covering the compression mechanism 6 side. It has a structure. Since the crankshaft 14 and the connecting rod 20 are positioned so as to be substantially orthogonal within the sealed container 2, the longitudinal direction of the electric motor 4 is accommodated in the depth direction of the top shell 78, and the top shell 78 is the bottom shell 80. Compared to, it has a deep bottom shape. On the other hand, the compression mechanism 6 is accommodated in the radial direction of the bottom shell 80 in the longitudinal direction, and the bottom shell 80 has a shallow bottom shape as compared with the top shell 78.
  • Each of the shells 78 and 80 has root edges protruding from the respective open end portions 78a and 80a, and the groove portions 82 are formed by abutting each root edge with each other.
  • Each of the shells 78 and 80 is joined by forming a bead-shaped welded portion 84 continuous around the entire circumference of the groove portion 82 by a single welding operation, that is, a single butt formed by a single welding operation. Joined with welded joints.
  • the bottom shell 80 is formed by forging, and has a gripping portion 86 that is gripped during the forging molding.
  • the gripping portion 86 protrudes from the outer top portion 80c of the bottom shell 80 at the radial center side with respect to the side portion 80b of the bottom shell 80. Is done.
  • the oil sump portion 76 is recessed at the position of the inner bottom portion 2a on the back side of the gripping portion 86 so as to be substantially similar to the outer shape of the gripping portion 86. That is, the bottom shell 80 is formed from the side portion 80b to the outer top portion 80c with substantially the same thickness as the side portion 80b.
  • a base plate 88 for stably mounting the compressor 1 is attached around the gripping portion 86 of the outer top portion 80c.
  • anti-vibration rubber (not shown) to the lower surface of the base plate 88, the compressor 1 can be fixed while suppressing vibration during operation.
  • the inner wall 80 d near the opening end 80 a of the bottom shell 80 swells toward the radial center of the bottom shell 80, that is, toward the oil reservoir 76.
  • a shielding portion 90 for the lubricating oil that has been discharged is formed.
  • the shielding portion 90 has a wave shape that is continuously bulged twice toward the oil sump portion 76 side, and two shield portions 90 are provided facing the position where the oil sump portion 76 is sandwiched between the bottom shell 80 as viewed from above. It has been.
  • a frame 36 that supports the stator 8 and the cylinder block 16 shown in FIG. 1 is fixed to the upper surface 90 a of the shielding portion 90.
  • the shielding portion 90 also has a function as a pedestal portion for fixing the frame 36 to the sealed container 2. is doing.
  • the gripping portion 86, the oil sump portion 76, and the shielding portion 90 formed on the bottom shell 80 are all formed at the same time when the bottom shell 80 is forged.
  • the lubricating oil tends to flow so as to circulate in the circumferential direction of the bottom shell 80 along the inner wall 80d.
  • the required time T becomes longer as the initial velocity v at which the lubricating oil is scattered is larger and the viscous force of the lubricating oil is larger.
  • the compressor 1 is small and the maximum oil storage amount of the oil reservoir 76 is a small amount of about 200 cc as described above, if the required time T is long, the oil storage amount of the oil reservoir 76 is reduced.
  • the oil supply mechanism may be reduced to a temporary state and may be zero in the worst case, and the oil supply mechanism will not function as an idle operation, so that each sliding part of the electric motor 4 and the compression mechanism 6 is appropriately supplied with oil. This causes a problem that the lubrication performance of the compressor 1 is remarkably deteriorated.
  • the lubricating oil circulation efficiency is high.
  • the lubricating performance of the compressor 1 can be improved.
  • the shielding portion 90 can be used as a pedestal portion for fixing the frame 36 to the sealed container 2, so that the frame can be used without requiring a separate part or member. 36 can be fixed to the airtight container 2, and the productivity of the compressor 1 can be improved.
  • the shielding portion 90 and the oil sump portion 76 are formed at the same time when the bottom shell 80 is forged, thereby easily forming the shielding portion 90 and the oil sump portion 76 without requiring separate members or processing. And the productivity of the compressor 1 can be improved. Furthermore, the shielding portion 90 has a wave shape that is continuously swollen twice toward the oil sump portion 76 side. Further, by providing two shielding portions 90, the scattered lubricating oil Compared to the case where there is only one bulge and the case where there is only one shielding part 90, the probability of directly colliding with the shielding part 90 is increased, or directly to the shielding part 90.
  • the lubricating oil can be decelerated more effectively, and the required time T from when the lubricating oil is scattered until it flows down to the oil reservoir 76 and stored can be further shortened. Is operated at high speed, the viscosity of the lubricating oil is large, and even when the maximum oil storage amount of the oil reservoir 76 is small, the circulation efficiency of the lubricating oil can be further increased, and the lubricating performance of the compressor 1 can be improved. Can be further improved.
  • the shielding portion is not limited to a shape that protrudes toward the oil reservoir 76 on the inner wall 80d as in the shielding portion 90 of the present embodiment, and the circumferential portion of the inner wall 80d is not limited.
  • Various shapes and installation numbers are conceivable as long as the lubricating oil can be decelerated by blocking the smooth flow of the lubricating oil and guided to the oil reservoir 76.
  • a thing like a shielding plate may be provided on the inner wall 80d, or a part of the inner wall 80d may be recessed in a wave shape.
  • jagged irregularities may be provided in the circumferential direction of the inner wall 80d, or stepped irregularities may be provided in the circumferential direction of the inner wall 80d.
  • the working fluid of the compressor 1 of the present embodiment is a carbon dioxide refrigerant, it is not limited to this.
  • the working fluid is carbon dioxide refrigerant
  • the pressure of the working fluid discharged from the compression mechanism 6 becomes high to the supercritical state, and the temperature inside the compressor 1 becomes high, so that the viscosity is relatively high.
  • Lubricating oil is used to prevent oil film breakage due to low viscosity at high temperatures.
  • the temperature inside the compressor 1 is low, the viscosity of the lubricating oil is high, and therefore the scattered lubricating oil tends to be difficult to return.
  • the lubricating oil circulation efficiency can be increased and the lubricating performance of the compressor 1 can be improved even if the lubricating oil has a large viscosity and the scattered lubricating oil tends to hardly return. This is preferable.
  • the present Example demonstrates the positive displacement compressor 1, this invention is applicable to general sealed fluid machines, such as a scroll compressor and an expander, These fluid machines are other than a vending machine. Of course, it can be used as a component device of the refrigeration cycle incorporated in the.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Provided is fluid machinery with improved lubrication performance and reliability. Fluid machinery (1) has a drive unit (4) and a driven unit (6) to which the drive force of the drive unit is transmitted via a rotating shaft (14), both being housed within a sealed container (2). The fluid machinery is provided with: an oil reservoir (76) in which lubricant is stored, on the inner bottom surface (2a) of the sealed container; and lubricating mechanisms (70, 72) which feed lubricant in the oil reservoir to the sliding parts of the drive unit and the driven unit by rotating in an integrated manner with a rotating shaft. The sealed container has a blocking part (90) on the inner sidewall (80d) thereof, which blocks the flow of lubricant in the peripheral direction on the inner sidewall.

Description

流体機械Fluid machinery
 本発明は流体機械に関し、詳しくは二酸化炭素冷媒を圧縮する密閉型の往復動圧縮機に好適な流体機械に関する。 The present invention relates to a fluid machine, and more particularly to a fluid machine suitable for a hermetic reciprocating compressor that compresses a carbon dioxide refrigerant.
 この種の流体機械には、密閉容器と、密閉容器に収容され圧縮要素(被駆動ユニット)と電動要素(駆動ユニット)とにより構成される電動圧縮要素と、圧縮要素に設けた油溜め部と、一端が圧縮要素に連結し、他端が潤滑油溜め近傍に開口した吸入管とからなる密閉型圧縮機が知られている(例えば特許文献1参照)。 This type of fluid machine includes an airtight container, an electric compression element that is housed in the airtight container and includes a compression element (driven unit) and an electric element (drive unit), and an oil reservoir provided in the compression element. There is known a hermetic compressor including a suction pipe having one end connected to a compression element and the other end opened near a lubricating oil reservoir (see, for example, Patent Document 1).
特開平6-294380号公報JP-A-6-294380
 上記従来技術では、圧縮要素を構成するクランク軸(回転軸)は、一端を密閉容器の内底部に貯留される潤滑油に浸漬され、電動要素によって駆動されることでクランク軸内に設けた給油機構により潤滑油を吸い上げて圧縮要素の摺動部に給油を行う。
 ここで、給油機構は電動要素で回転駆動されるため、油溜め部の潤滑油は吸い上げられる際に給油機構の回転によって密閉容器内に放物線状に飛散する。また、潤滑油は回転されるクランク軸から密閉容器内に放出され、放出された潤滑油は密閉容器内に放物線状に飛散する。
In the above prior art, the crankshaft (rotary shaft) constituting the compression element is immersed in the lubricating oil stored in the inner bottom portion of the hermetic container and driven by the electric element so as to be provided in the crankshaft. Lubricating oil is sucked up by the mechanism and lubricated to the sliding portion of the compression element.
Here, since the oil supply mechanism is rotationally driven by the electric element, the lubricating oil in the oil reservoir is scattered in a parabolic shape in the sealed container by the rotation of the oil supply mechanism when sucked up. Further, the lubricating oil is discharged from the rotating crankshaft into the sealed container, and the discharged lubricating oil scatters in a parabolic shape in the sealed container.
 このようにして密閉容器内に飛散した潤滑油は、密閉容器の内側壁に付着し、内側壁に沿って密閉容器の周方向に周回するようにして流れる。潤滑油が飛散してから油溜め部まで流下して貯留されるまでの所要時間は、潤滑油の飛散される初期速度が大きく、潤滑油の粘性力が大きいほど長くなる。
 具体的には、圧縮機1の仕様によっては、クランクシャフト、ひいてはオイルパイプが3000rpm程度で回転することもあるため、この場合の潤滑油の飛散される初期速度は大きくなる。
The lubricating oil thus scattered in the sealed container adheres to the inner wall of the sealed container and flows so as to circulate in the circumferential direction of the sealed container along the inner wall. The time required for the lubricating oil to scatter and flow down to the oil reservoir and be stored becomes longer as the initial velocity at which the lubricating oil is scattered is larger and the viscosity force of the lubricating oil is larger.
Specifically, depending on the specifications of the compressor 1, the crankshaft and thus the oil pipe may rotate at about 3000 rpm, so the initial speed at which the lubricating oil is scattered increases in this case.
 また、密閉型圧縮機、特にその作動流体に二酸化炭素冷媒を使用した密閉型圧縮機の場合には、従来品に比して粘性力が大きい冷凍機油を使用することが多いため、上記所要時間が長くなる傾向がある。更に圧縮機が小型であって、油溜め部に貯留される最大潤滑油量が例えば200cc程度の少量である場合には、上記所要時間が長いと油溜め部に貯留されている潤滑油量が一時的に大幅に減少し、最悪の場合には油溜め部の貯油量が一時的にゼロとなる状態を招きかねない。 In the case of a hermetic compressor, particularly a hermetic compressor using a carbon dioxide refrigerant as the working fluid, refrigeration oil having a higher viscous force than conventional products is often used. Tend to be longer. Further, when the compressor is small and the maximum amount of lubricating oil stored in the oil reservoir is a small amount of about 200 cc, for example, if the required time is long, the amount of lubricating oil stored in the oil reservoir is reduced. It may decrease temporarily temporarily, and in the worst case, the amount of oil stored in the oil sump may temporarily become zero.
 このような状態においては、給油機構が空運転となって機能せず、駆動ユニット及び被駆動ユニットの各摺動部に適切に給油することができず、圧縮機の潤滑性能が著しく低下するとの問題が生じる。
 本発明は上述の事情に基づいてなされたもので、その目的とするところは、潤滑性能を高め、信頼性を向上することができる流体機械を提供することにある。
In such a state, the oil supply mechanism does not function as an idle operation, and it is not possible to properly supply oil to each sliding part of the drive unit and the driven unit, and the lubrication performance of the compressor is significantly reduced. Problems arise.
The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a fluid machine that can improve lubrication performance and improve reliability.
 上記の目的を達成するため、本発明の流体機械は、密閉容器内に、駆動ユニットと、駆動ユニットの駆動力が回転軸を介して伝達される被駆動ユニットとが収容される流体機械であって、密閉容器の内底部において潤滑油が貯留される油溜め部と、回転軸と一体に回転することにより油溜め部の潤滑油を駆動ユニット及び被駆動ユニットの各摺動部に供給する給油機構とを備え、密閉容器は、その内側壁に、内側壁における周方向の潤滑油の流れを遮蔽する遮蔽部を有することを特徴としている(請求項1)。 In order to achieve the above object, a fluid machine of the present invention is a fluid machine in which a drive unit and a driven unit to which the driving force of the drive unit is transmitted via a rotating shaft are accommodated in an airtight container. And an oil reservoir for storing the lubricating oil in the inner bottom portion of the sealed container, and an oil supply for supplying the lubricating oil in the oil reservoir to each sliding portion of the drive unit and the driven unit by rotating integrally with the rotating shaft. The airtight container has a shielding portion that shields the flow of the lubricating oil in the circumferential direction on the inner side wall (Claim 1).
 具体的には、遮蔽部は内側壁において油溜め部側に向けて突設される(請求項2)。
 また、駆動ユニット及び被駆動ユニットを支持するフレームを備え、フレームは遮蔽部に固定される(請求項3)。
 更に、密閉容器は鍛造成型されるボトムシェルを含んで構成され、遮蔽部はボトムシェルの鍛造成型に際し一括して成型され(請求項4)、更にまた、油溜め部はボトムシェルの鍛造成型に際し一括して成型される(請求項5)。
Specifically, the shielding portion projects from the inner wall toward the oil sump portion (claim 2).
Further, a frame that supports the drive unit and the driven unit is provided, and the frame is fixed to the shielding portion.
Further, the sealed container is configured to include a bottom shell to be forged, the shielding portion is collectively formed when the bottom shell is forged (Claim 4), and the oil sump is formed when the bottom shell is forged. It is molded in a lump (claim 5).
 また、遮蔽部は油溜め部側に向けて連続して膨出された波形状をなし(請求項6)、更に、遮蔽部は複数設けられる(請求項7)。
 更にまた、密閉容器内には、被駆動ユニットに吸入され、被駆動ユニットから吐出される作動流体の圧力が作用し、作動流体は二酸化炭素冷媒である(請求項8)。
Further, the shielding part has a wave shape continuously bulging toward the oil sump part (Claim 6), and a plurality of shielding parts are provided (Claim 7).
Furthermore, the pressure of the working fluid sucked into the driven unit and discharged from the driven unit acts in the sealed container, and the working fluid is a carbon dioxide refrigerant.
 請求項1及び2記載の本発明の流体機械によれば、遮蔽部を有することにより、密閉容器内に飛散した潤滑油は、遮蔽部に直接に衝突するか、或いは、遮蔽部に直接に衝突しない場合でも、内側壁に付着し内側壁に沿って周回し始めたときに遮蔽部を超えることにより、大幅に減速される。減速した潤滑油は、内側壁に沿って周回を続けることなく油溜め部に即座に流下されるため、潤滑油が飛散してから油溜め部まで流下して貯留されるまでの所要時間を大幅に短くすることができる。従って、流体機械が高速回転で運転され、潤滑油の粘性力が大きく、油溜め部の最大貯油量が少量の場合であっても、潤滑油の循環効率を高めることができ、流体機械の潤滑性能を向上することができる。 According to the fluid machine of the first and second aspects of the present invention, by having the shielding part, the lubricating oil scattered in the sealed container directly collides with the shielding part or directly collides with the shielding part. Even if it does not, it is greatly decelerated by exceeding the shielding part when it begins to circulate along the inner wall after adhering to the inner wall. The decelerated lubricating oil immediately flows down to the oil reservoir without continuing to circulate along the inner wall, greatly increasing the time required for the lubricating oil to flow down to the oil reservoir and be stored. Can be shortened. Therefore, even when the fluid machine is operated at high speed, the viscosity of the lubricating oil is large, and the maximum amount of oil stored in the oil reservoir is small, the circulation efficiency of the lubricating oil can be increased, and the lubrication of the fluid machine The performance can be improved.
 請求項3記載の発明によれば、フレームが遮蔽部に固定されることにより、フレームを密閉容器に固定するための台座部として遮蔽部を利用することができるため、別部位や別部材を要することなくフレームを密閉容器に固定することができ、流体機械の生産性を向上することができる。
 請求項4記載の発明によれば、遮蔽部はボトムシェルの鍛造成型に際し一括して成型されることにより、別部材や別途加工を要することなく容易にして遮蔽部を形成することができ、流体機械の生産性を向上することができる。
According to invention of Claim 3, since a shielding part can be utilized as a base part for fixing a flame | frame to an airtight container by fixing a flame | frame to a shielding part, another site | part and another member are required. The frame can be fixed to the sealed container without any problems, and the productivity of the fluid machine can be improved.
According to the fourth aspect of the present invention, the shielding portion can be easily formed without requiring a separate member or a separate process by forming the shielding portion all together at the time of forging the bottom shell. The productivity of the machine can be improved.
 請求項5記載の発明によれば、油溜め部はボトムシェルの鍛造成型に際し一括して成型されることにより、別部材や別途加工を要することなく容易にして油溜め部を形成することができ、流体機械の生産性を向上することができる。
 請求項6記載の発明によれば、遮蔽部は油溜め部側に向けて連続して膨出された波形状をなすことにより、飛散した潤滑油は、遮蔽部の膨出が1つである場合に比して、遮蔽部に直接に衝突する確率が大きくなり、或いは、遮蔽部に直接に衝突しない場合でも、内側壁に付着し内側壁に沿って周回し始めたときに遮蔽部を超える回数が増える。従って、潤滑油を更に効果的に減速することができ、潤滑油が飛散してから油溜め部まで流下して貯留されるまでの所要時間を更に短くすることができるため、流体機械が高速回転で運転され、潤滑油の粘性力が大きく、油溜め部の最大貯油量が少量の場合であっても、潤滑油の循環効率を更に高めることができ、流体機械の潤滑性能を更に向上することができる。
According to the fifth aspect of the present invention, the oil sump portion can be formed easily at the time of the forging molding of the bottom shell, so that the oil sump portion can be easily formed without requiring a separate member or separate processing. The productivity of the fluid machine can be improved.
According to the sixth aspect of the invention, the shielding portion has a wave shape that continuously bulges toward the oil sump portion side, so that the scattered lubricating oil has one bulging of the shielding portion. Compared to the case, the probability of directly colliding with the shielding part is increased, or even when not directly colliding with the shielding part, it exceeds the shielding part when attached to the inner side wall and starts to circulate along the inner side wall. The number of times increases. Therefore, the lubricating oil can be decelerated more effectively, and the time required for the lubricating oil to flow down to the oil sump and be stored can be further shortened. Even when the viscosity of the lubricating oil is large and the maximum amount of oil stored in the oil reservoir is small, the circulation efficiency of the lubricating oil can be further increased and the lubricating performance of the fluid machine can be further improved. Can do.
 請求項7記載の発明によれば、遮蔽部は複数設けられることにより、飛散した潤滑油は、遮蔽部が1つである場合に比して、遮蔽部に直接に衝突する確率が大きくなり、或いは、遮蔽部に直接に衝突しない場合でも、内側壁に付着し内側壁に沿って周回し始めたときに遮蔽部を超える回数が増える。従って、潤滑油を更に効果的に減速することができ、潤滑油が飛散してから油溜め部まで流下して貯留されるまでの所要時間を更に短くすることができるため、流体機械が高速回転で運転され、潤滑油の粘性力が大きく、油溜め部の最大貯油量が少量の場合であっても、潤滑油の循環効率を更に高めることができ、流体機械の潤滑性能を更に向上することができる。 According to the invention of claim 7, by providing a plurality of shielding portions, the scattered lubricating oil has a higher probability of directly colliding with the shielding portion than when there is one shielding portion, Or even if it does not directly collide with the shielding part, the number of times exceeding the shielding part increases when it starts to circulate along the inner wall after adhering to the inner wall. Therefore, the lubricating oil can be decelerated more effectively, and the time required for the lubricating oil to flow down to the oil sump and be stored can be further shortened. Even when the viscosity of the lubricating oil is large and the maximum amount of oil stored in the oil reservoir is small, the circulation efficiency of the lubricating oil can be further increased and the lubricating performance of the fluid machine can be further improved. Can do.
 請求項8記載の発明によれば、作動流体を二酸化炭素冷媒とすると、被駆動ユニットから吐出される作動流体の圧力は超臨界状態まで高圧となり、流体機械内部の温度が高温となるため、比較的粘性の高い潤滑油を使用し、高温時の粘性低下による油膜切れを防止している。しかしながら、流体機械内部の温度が低温の場合には、潤滑油の粘性が大きいため、飛散した潤滑油が戻りにくい傾向にある。しかし、上記構成によれば、潤滑油の粘性が大きく、飛散した潤滑油が戻りにくい傾向にあっても、潤滑油の循環効率を高めることができ、流体機械の潤滑性能を向上することができて好ましい。 According to the eighth aspect of the present invention, when the working fluid is carbon dioxide refrigerant, the pressure of the working fluid discharged from the driven unit is increased to a supercritical state, and the temperature inside the fluid machine is high. Uses high-viscosity lubricating oil to prevent oil film breakage due to viscosity drop at high temperatures. However, when the temperature inside the fluid machine is low, the viscosity of the lubricating oil is large, and thus the scattered lubricating oil tends to hardly return. However, according to the above configuration, even when the lubricating oil has a high viscosity and the scattered lubricating oil tends to hardly return, the lubricating oil circulation efficiency can be increased and the lubrication performance of the fluid machine can be improved. It is preferable.
第1実施例の圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor of 1st Example. 図1の圧縮機構の要部拡大図である。It is a principal part enlarged view of the compression mechanism of FIG. 図1の圧縮機の密閉容器を示した外形図である。It is the external view which showed the airtight container of the compressor of FIG. 図3のボトムシェルを上方からみた斜視図である。It is the perspective view which looked at the bottom shell of FIG. 3 from upper direction. 図4のボトムシェルにおける潤滑油の流路を上方から示した平面図である。FIG. 5 is a plan view showing a lubricating oil flow path in the bottom shell of FIG. 4 from above.
 図1~図5は第1実施例の流体機械としての圧縮機1を示す。
 圧縮機1は、密閉型の往復動圧縮機であり、詳しくはレシプロ圧縮機やピストン圧縮機と称される容積式圧縮機に分類され、例えば自動販売機に組み込まれた図示しない冷凍サイクルの構成機器として使用される。
 冷凍サイクルは、圧縮機1の作動流体としての冷媒が循環する経路を備え、冷媒には例えば非可燃性の自然冷媒である二酸化炭素冷媒が用いられる。
1 to 5 show a compressor 1 as a fluid machine of a first embodiment.
The compressor 1 is a hermetic reciprocating compressor, and is categorized in detail as a positive displacement compressor called a reciprocating compressor or a piston compressor. For example, a configuration of a refrigeration cycle (not shown) incorporated in a vending machine. Used as equipment.
The refrigeration cycle includes a path through which a refrigerant as a working fluid of the compressor 1 circulates. For example, a carbon dioxide refrigerant that is a non-flammable natural refrigerant is used as the refrigerant.
 図1に示されるように、圧縮機1は密閉容器2を備え、密閉容器2内には、電動モータ(駆動ユニット)4と、電動モータ4の駆動力が伝達される圧縮機構(被駆動ユニット)6とが収容されている。
 電動モータ4は、給電により磁界を発生するステータ8と、ステータ8で発生した磁界により回転するロータ10とから構成され、ロータ10はステータ8の内側の同軸上に配置され、後述するクランクシャフト14の主軸部24に焼き嵌め固定されている。ステータ8には密閉容器2に固定された電装部12、及び図示しないリード線を介して圧縮機1外から給電される。
As shown in FIG. 1, the compressor 1 includes an airtight container 2, and an electric motor (drive unit) 4 and a compression mechanism (driven unit) to which the driving force of the electric motor 4 is transmitted are enclosed in the airtight container 2. 6) is housed.
The electric motor 4 includes a stator 8 that generates a magnetic field by power feeding and a rotor 10 that rotates by the magnetic field generated by the stator 8. The rotor 10 is disposed coaxially inside the stator 8, and will be described later. The main shaft portion 24 is fixed by shrinkage fitting. Electric power is supplied to the stator 8 from the outside of the compressor 1 through an electrical component 12 fixed to the sealed container 2 and a lead wire (not shown).
 圧縮機構6は、クランクシャフト14、シリンダブロック16、ピストン18、コネクティングロッド20などから構成され、クランクシャフト14は偏心軸部22と主軸部24とから構成される。
 図2に示されるように、シリンダブロック16には、シリンダボア26が一体に形成され、シリンダボア26の開口を閉じるように、シリンダブロック16側から順にシリンダガスケット28、後述する吸入バルブ50、バルブプレート30、ヘッドガスケット32、シリンダヘッド34がボルトによって押圧固定されている。
The compression mechanism 6 includes a crankshaft 14, a cylinder block 16, a piston 18, a connecting rod 20, and the like. The crankshaft 14 includes an eccentric shaft portion 22 and a main shaft portion 24.
As shown in FIG. 2, a cylinder bore 26 is formed integrally with the cylinder block 16, and a cylinder gasket 28, a later-described suction valve 50, and a valve plate 30 are sequentially arranged from the cylinder block 16 side so as to close the opening of the cylinder bore 26. The head gasket 32 and the cylinder head 34 are pressed and fixed by bolts.
 図1に示されるように、シリンダブロック16にはステータ8がフレーム36を介してボルト固定され、フレーム36は密閉容器2に固定されている。
 詳しくは、電動モータ4及び圧縮機構6はフレーム36の下部の台座部38にて支持され、フレーム36は台座部38にて密閉容器2に固定されている。一方、フレーム36の上部の円筒部40においては、その内周面40aに主軸部24の軸受42が配置され、円筒部40の上端面40bにはロータ10のスラスト荷重を受けるスラストレース(ベアリング)またはスラストワッシャなどの軸受44が配置されている。
As shown in FIG. 1, the stator 8 is bolted to the cylinder block 16 via a frame 36, and the frame 36 is fixed to the sealed container 2.
Specifically, the electric motor 4 and the compression mechanism 6 are supported by a pedestal portion 38 below the frame 36, and the frame 36 is fixed to the sealed container 2 by the pedestal portion 38. On the other hand, in the upper cylindrical portion 40 of the frame 36, the bearing 42 of the main shaft portion 24 is disposed on the inner peripheral surface 40a, and the thrust trace (bearing) that receives the thrust load of the rotor 10 on the upper end surface 40b of the cylindrical portion 40. Alternatively, a bearing 44 such as a thrust washer is disposed.
 図2に示されるように、バルブプレート30は冷媒の吸入孔46と吐出孔48とを備え、吸入孔46、吐出孔48は何れもリードバルブである吸入バルブ50、吐出バルブ52によってそれぞれ開閉される。
 シリンダヘッド34は冷媒の吸入室54、吐出室56を備え、ピストン18の圧縮行程において吐出バルブ52が開くことにより、吐出室56は吐出孔48を介してシリンダボア26と連通する。一方、ピストン18の吸入行程において吸入バルブ50が開くことにより、吸入室54は吸入孔46を介してシリンダボア26と連通する。
As shown in FIG. 2, the valve plate 30 includes a refrigerant suction hole 46 and a discharge hole 48, both of which are opened and closed by a suction valve 50 and a discharge valve 52, which are reed valves, respectively. The
The cylinder head 34 includes a refrigerant suction chamber 54 and a discharge chamber 56. When the discharge valve 52 is opened in the compression stroke of the piston 18, the discharge chamber 56 communicates with the cylinder bore 26 through the discharge hole 48. On the other hand, when the intake valve 50 is opened during the intake stroke of the piston 18, the intake chamber 54 communicates with the cylinder bore 26 via the intake hole 46.
 密閉容器2には、吸入パイプ58と吐出パイプ60とが固定され、吸入及び吐出パイプ58,60の一端はシリンダヘッド34の吸入室54と吐出室56とにそれぞれ接続されている。吸入及び吐出パイプ58,60の他端は、図示しない吸入マフラ、吐出マフラを介して冷凍サイクルに接続され、これらマフラは圧縮機1と冷凍サイクルとの間を流れる冷媒の脈動及び騒音を低減している。 A suction pipe 58 and a discharge pipe 60 are fixed to the sealed container 2, and one ends of the suction and discharge pipes 58 and 60 are connected to a suction chamber 54 and a discharge chamber 56 of the cylinder head 34, respectively. The other ends of the suction and discharge pipes 58 and 60 are connected to a refrigeration cycle via a suction muffler and a discharge muffler (not shown), and these mufflers reduce the pulsation and noise of the refrigerant flowing between the compressor 1 and the refrigeration cycle. ing.
 コネクティングロッド20には、一端にクランクシャフト14の偏心軸部22が回転自在に連結される大端部62が設けられ、他端にピストン18が往復動自在に連結される小端部64が設けられている。小端部64はピストン18にピストンピン66にて連結され、ピストンピン66は固定ピン68によってピストン18からの抜け止め措置が施されている。 The connecting rod 20 is provided with a large end 62 to which the eccentric shaft portion 22 of the crankshaft 14 is rotatably connected at one end, and a small end 64 to which the piston 18 is reciprocally connected at the other end. It has been. The small end portion 64 is connected to the piston 18 by a piston pin 66, and the piston pin 66 is secured to the piston 18 by a fixing pin 68.
 この状態においてクランクシャフト14が回転すると、コネクティングロッド20がピストンピン66を支点とし偏心軸部22の偏心回転と連動して揺動運動し、コネクティングロッド20の揺動運動に連動してピストン18がシリンダボア26内を往復運動する。
 密閉容器2内には冷媒の主として吸入圧力が作用し、密閉容器2の内底部2aには、軸受42,44といった、電動モータ4及び圧縮機構6の各摺動部を潤滑する潤滑油が少量貯留される。
When the crankshaft 14 rotates in this state, the connecting rod 20 swings in conjunction with the eccentric rotation of the eccentric shaft portion 22 with the piston pin 66 as a fulcrum, and the piston 18 interlocks with the swinging motion of the connecting rod 20. It reciprocates in the cylinder bore 26.
The suction pressure of the refrigerant mainly acts in the sealed container 2, and a small amount of lubricating oil for lubricating the sliding portions of the electric motor 4 and the compression mechanism 6 such as the bearings 42 and 44 is present in the inner bottom portion 2 a of the sealed container 2. Stored.
 クランクシャフト14内には偏心軸部22の下端面22aの略軸心位置から主軸部24の中途にかけて油路(給油機構)70が穿孔されている。油路70の上部は主軸部24の外周面24aから開口され、油路70の下部にはオイルパイプ(給油機構)72が接続されている。オイルパイプ72はその先端側に偏心軸部22の略軸心から主軸部24の軸心に近づく方向に傾斜した傾斜部74を有し、オイルパイプ72の傾斜部74の先端は密閉容器2内の内底部2aに形成された断面視凹状の油溜め部76まで延設されている。 In the crankshaft 14, an oil passage (oil supply mechanism) 70 is drilled from the substantially axial position of the lower end surface 22 a of the eccentric shaft portion 22 to the middle of the main shaft portion 24. An upper portion of the oil passage 70 is opened from the outer peripheral surface 24 a of the main shaft portion 24, and an oil pipe (oil supply mechanism) 72 is connected to the lower portion of the oil passage 70. The oil pipe 72 has an inclined portion 74 which is inclined from the substantially axial center of the eccentric shaft portion 22 toward the axial center of the main shaft portion 24 on the distal end side. It extends to the oil reservoir 76 having a concave shape in sectional view formed in the inner bottom 2a.
 油溜め部76は、例えば200cc程度の少量の潤滑油がオイルパイプ74の先端位置以上の油面高さとなるように貯留可能な大きさ及び深さを有して形成される。クランクシャフト14の回転に伴って偏心軸部22とともにオイルパイプ72が偏心回転すると、オイルパイプ72内の傾斜部74における潤滑油に外側斜め上方向に遠心力が作用し、この遠心力によって潤滑油は油溜め部76から油路74に汲み上げられる。また、オイルパイプ72の偏心回転に伴い、油溜め部76の潤滑油の一部は密閉容器2内に放物線状に飛散することになる。 The oil sump portion 76 is formed to have a size and depth that allow a small amount of lubricating oil, for example, about 200 cc, to be stored so that the oil level is higher than the tip position of the oil pipe 74. When the oil pipe 72 rotates eccentrically together with the eccentric shaft portion 22 as the crankshaft 14 rotates, a centrifugal force acts on the lubricating oil in the inclined portion 74 in the oil pipe 72 in an obliquely upward outward direction. Is pumped from the oil reservoir 76 to the oil passage 74. Further, along with the eccentric rotation of the oil pipe 72, a part of the lubricating oil in the oil reservoir 76 is scattered in a parabolic shape in the sealed container 2.
 以下、圧縮機1の動作及び作用について説明する。
 圧縮機1では、ステータ8に給電することによって主軸部24に固定されたロータ10が回転され、ひいてはクランクシャフト14が回転され、コネクティングロッド20を介しピストン18がシリンダボア26内で往復運動する。そして、このピストン18の往復運動により、冷凍サイクルからシリンダボア26へ冷媒が吸入され、この冷媒はシリンダボア26で圧縮され、更に冷凍サイクルへ吐出される。
Hereinafter, the operation and action of the compressor 1 will be described.
In the compressor 1, the rotor 10 fixed to the main shaft portion 24 is rotated by supplying power to the stator 8, and consequently the crankshaft 14 is rotated, and the piston 18 reciprocates in the cylinder bore 26 via the connecting rod 20. The reciprocating motion of the piston 18 causes the refrigerant to be sucked into the cylinder bore 26 from the refrigeration cycle, and the refrigerant is compressed by the cylinder bore 26 and further discharged to the refrigeration cycle.
 詳しくは、ピストン18がシリンダボア26の容積を減少する方向に動作し、シリンダボア26内の冷媒が圧縮され、シリンダボア26内の圧力が冷媒の吐出圧力を超えると、シリンダボア26内の圧力と吐出室56内の圧力との差により吐出バルブ52が開く。そして、圧縮された冷媒は、吐出孔48を経て吐出室56に導かれ、吐出パイプ60を経て冷凍サイクルに吐出される。 Specifically, when the piston 18 operates in the direction of decreasing the volume of the cylinder bore 26 and the refrigerant in the cylinder bore 26 is compressed and the pressure in the cylinder bore 26 exceeds the discharge pressure of the refrigerant, the pressure in the cylinder bore 26 and the discharge chamber 56 are increased. The discharge valve 52 opens due to the difference from the internal pressure. The compressed refrigerant is guided to the discharge chamber 56 via the discharge hole 48 and discharged to the refrigeration cycle via the discharge pipe 60.
 次に、ピストン18の動作が上死点からシリンダボア26内の容積が増加する方向に転じると、シリンダボア26内の圧力は低下する。シリンダボア26内の圧力が低下すると、シリンダボア26内の圧力と吐出室56内の圧力との差に応じて吐出バルブ52は閉じる。
 シリンダボア26内の圧力が冷媒の吸入圧力以下になると、シリンダボア26内の圧力と吸入室54内の圧力との差に応じて吸入バルブ50が開く。そして、冷凍サイクルの冷媒は、吸入パイプ58を経て吸入室54に導かれ、吸入孔46を経てシリンダボア26内に吸入される。
Next, when the operation of the piston 18 changes from the top dead center in a direction in which the volume in the cylinder bore 26 increases, the pressure in the cylinder bore 26 decreases. When the pressure in the cylinder bore 26 decreases, the discharge valve 52 closes according to the difference between the pressure in the cylinder bore 26 and the pressure in the discharge chamber 56.
When the pressure in the cylinder bore 26 becomes equal to or lower than the suction pressure of the refrigerant, the suction valve 50 opens according to the difference between the pressure in the cylinder bore 26 and the pressure in the suction chamber 54. The refrigerant in the refrigeration cycle is guided to the suction chamber 54 through the suction pipe 58 and is sucked into the cylinder bore 26 through the suction hole 46.
 次に、ピストン18の動作が下死点からシリンダボア26内の容積が減少する方向に転じると、シリンダボア26内の冷媒が再び圧縮される。このようにして、冷凍サイクルからのシリンダボア26への冷媒の吸入、シリンダボア26での冷媒の圧縮、冷凍サイクルへの冷媒の吐出という一連のプロセスが繰り返される。 Next, when the operation of the piston 18 changes from the bottom dead center in a direction in which the volume in the cylinder bore 26 decreases, the refrigerant in the cylinder bore 26 is compressed again. In this way, a series of processes of sucking the refrigerant from the refrigeration cycle into the cylinder bore 26, compressing the refrigerant in the cylinder bore 26, and discharging the refrigerant to the refrigeration cycle is repeated.
 上述した圧縮機1の動作に伴って油溜め部76から油路70に汲み上げられた潤滑油は、油路70から流出され、流出された潤滑油は密閉容器2内に放物線状に飛散される。飛散した潤滑油は偏心軸部22側に流下し、大端部62近傍を潤滑する。更に潤滑油は偏心軸部22に形成された鍔部22bによりピストン18に向けて飛散され、ピストン18のスカート部18a近傍を潤滑する。 The lubricating oil pumped up from the oil reservoir 76 to the oil passage 70 in accordance with the operation of the compressor 1 described above flows out of the oil passage 70, and the discharged lubricating oil is scattered in a parabolic shape in the sealed container 2. . The scattered lubricating oil flows down to the eccentric shaft portion 22 side and lubricates the vicinity of the large end portion 62. Further, the lubricating oil is scattered toward the piston 18 by the flange portion 22b formed on the eccentric shaft portion 22, and lubricates the vicinity of the skirt portion 18a of the piston 18.
 一方、油路70から流出された潤滑油の一部は、遠心力によってクランクシャフト14に形成された図示しない外周溝に沿って上昇しながら、クランクシャフト14とフレーム36との間に油膜を形成し、軸受42を潤滑し、クランクシャフト14の上端側へ移動する。そして、潤滑油は、円筒部40の上端面40bに達して軸受44を潤滑した後、重力によって油溜め部76まで流下する。これに対し、軸受44を通過し切れない潤滑油は、そのままロータ10の内壁面10aをロータ10の上端まで上昇し、ロータ10の回転による遠心力で飛散されてステータ8を冷却した後、重力によって油溜め部76まで流下する。 On the other hand, a part of the lubricating oil flowing out from the oil passage 70 rises along an outer peripheral groove (not shown) formed in the crankshaft 14 by centrifugal force, and forms an oil film between the crankshaft 14 and the frame 36. Then, the bearing 42 is lubricated and moved to the upper end side of the crankshaft 14. The lubricating oil reaches the upper end surface 40b of the cylindrical portion 40 and lubricates the bearing 44, and then flows down to the oil sump portion 76 by gravity. On the other hand, the lubricating oil that cannot pass through the bearing 44 rises as it is up the inner wall surface 10a of the rotor 10 to the upper end of the rotor 10, is scattered by the centrifugal force due to the rotation of the rotor 10, cools the stator 8, and then To flow down to the oil sump 76.
 ピストン18のスカート部18a近傍を潤滑する際にシリンダボア26内に吸入されたオイルミストは、ピストン18とシリンダブロック16との間隙に、シリンダボア26から漏出した冷媒ガスとともに入り込んでピストン18のシールと潤滑を行う。この際に吸入室54の壁面54aに付着した潤滑油は重力によって油溜め部76まで流下する。このようにして油溜め部76まで流下した潤滑油は、オイルパイプ72から再び汲み上げられ、上述したように電動モータ4及び圧縮機構6の各摺動部の潤滑やシールに寄与しながら密閉容器2内を循環する。 The oil mist sucked into the cylinder bore 26 when lubricating the vicinity of the skirt portion 18a of the piston 18 enters the gap between the piston 18 and the cylinder block 16 together with the refrigerant gas leaked from the cylinder bore 26, and seals and lubricates the piston 18. I do. At this time, the lubricating oil adhering to the wall surface 54a of the suction chamber 54 flows down to the oil reservoir 76 due to gravity. The lubricating oil that has flowed down to the oil reservoir 76 in this manner is pumped up again from the oil pipe 72 and contributes to the lubrication and sealing of the sliding portions of the electric motor 4 and the compression mechanism 6 as described above, and the sealed container 2. Circulate inside.
 ところで、本実施例では、図3にも示されるように、密閉容器2は電動モータ4側を覆うトップシェル78と、圧縮機構6側を覆うボトムシェル80との2つのシェルから構成されたシェル構造をなしている。クランクシャフト14とコネクティングロッド20とは密閉容器2内において略直交する位置関係にあるため、電動モータ4は、その長手方向がトップシェル78の深さ方向に収容され、トップシェル78はボトムシェル80に比して深底形状をなしている。一方、圧縮機構6は、その長手方向がボトムシェル80の径方向に収容され、ボトムシェル80はトップシェル78に比して浅底形状をなしている。 By the way, in this embodiment, as shown in FIG. 3, the sealed container 2 is composed of two shells, a top shell 78 covering the electric motor 4 side and a bottom shell 80 covering the compression mechanism 6 side. It has a structure. Since the crankshaft 14 and the connecting rod 20 are positioned so as to be substantially orthogonal within the sealed container 2, the longitudinal direction of the electric motor 4 is accommodated in the depth direction of the top shell 78, and the top shell 78 is the bottom shell 80. Compared to, it has a deep bottom shape. On the other hand, the compression mechanism 6 is accommodated in the radial direction of the bottom shell 80 in the longitudinal direction, and the bottom shell 80 has a shallow bottom shape as compared with the top shell 78.
 各シェル78、80は、それぞれの開口端部78a,80aに突出したルートエッジを有し、各ルートエッジを互いに突き合わせることにより開先部82を形成する。各シェル78、80は、開先部82の全周に連続したビード形状の溶接部84を1回の溶接作業で形成して接合され、即ち1回の溶接作業で形成された1箇所の突き合わせ溶接継ぎ手で接合される。 Each of the shells 78 and 80 has root edges protruding from the respective open end portions 78a and 80a, and the groove portions 82 are formed by abutting each root edge with each other. Each of the shells 78 and 80 is joined by forming a bead-shaped welded portion 84 continuous around the entire circumference of the groove portion 82 by a single welding operation, that is, a single butt formed by a single welding operation. Joined with welded joints.
 ボトムシェル80は鍛造成型され、その鍛造成型に際して把持される把持部86を有し、把持部86はボトムシェル80の側部80bよりも径方向中心側のボトムシェル80の外頂部80cに凸設される。油溜め部76は、この把持部86の背面側の内底部2aの位置に、把持部86の外形と略相似形をなして凹設される。即ち、ボトムシェル80は側部80bから外頂部80cにかけて側部80bと略同一の肉厚で形成されている。 The bottom shell 80 is formed by forging, and has a gripping portion 86 that is gripped during the forging molding. The gripping portion 86 protrudes from the outer top portion 80c of the bottom shell 80 at the radial center side with respect to the side portion 80b of the bottom shell 80. Is done. The oil sump portion 76 is recessed at the position of the inner bottom portion 2a on the back side of the gripping portion 86 so as to be substantially similar to the outer shape of the gripping portion 86. That is, the bottom shell 80 is formed from the side portion 80b to the outer top portion 80c with substantially the same thickness as the side portion 80b.
 外頂部80cの把持部86の周囲には、圧縮機1を安定して載置するためのベースプレート88が取り付けられている。ベースプレート88の下面に図示しない防振ゴムなどを取り付けることにより、動作中の振動を抑制しつつ圧縮機1を固定可能である。
 ここで、図4に示されるように、本実施例では、ボトムシェル80の開口端部80a近傍の内側壁80dに、ボトムシェル80の径方向中心側、即ち油溜め部76側に向けて膨出された潤滑油の遮蔽部90が形成されている。遮蔽部90は、油溜め部76側に向けて2回連続して膨出された波形状をなし、ボトムシェル80を上方からみて油溜め部76を間に挟む位置に対向して2つ設けられている。
A base plate 88 for stably mounting the compressor 1 is attached around the gripping portion 86 of the outer top portion 80c. By attaching anti-vibration rubber (not shown) to the lower surface of the base plate 88, the compressor 1 can be fixed while suppressing vibration during operation.
Here, as shown in FIG. 4, in this embodiment, the inner wall 80 d near the opening end 80 a of the bottom shell 80 swells toward the radial center of the bottom shell 80, that is, toward the oil reservoir 76. A shielding portion 90 for the lubricating oil that has been discharged is formed. The shielding portion 90 has a wave shape that is continuously bulged twice toward the oil sump portion 76 side, and two shield portions 90 are provided facing the position where the oil sump portion 76 is sandwiched between the bottom shell 80 as viewed from above. It has been.
 遮蔽部90の上面90aには、図1に示すステータ8及びシリンダブロック16を支持するフレーム36が固定され、遮蔽部90はフレーム36を密閉容器2に固定するための台座部としての機能も有している。
 このようにボトムシェル80に形成される把持部86、油溜め部76、及び遮蔽部90は、何れもボトムシェル80の鍛造成型に際し一括して形成される。
A frame 36 that supports the stator 8 and the cylinder block 16 shown in FIG. 1 is fixed to the upper surface 90 a of the shielding portion 90. The shielding portion 90 also has a function as a pedestal portion for fixing the frame 36 to the sealed container 2. is doing.
As described above, the gripping portion 86, the oil sump portion 76, and the shielding portion 90 formed on the bottom shell 80 are all formed at the same time when the bottom shell 80 is forged.
 上述した第1実施例の圧縮機1では、密閉容器2内、特にボトムシェル80内にて、上方からみて例えば時計回転方向に回転されるオイルパイプ72の回転によって飛散した潤滑油や、その他、油路70からの放出や鍔部22bへの衝突によって飛散した潤滑油がボトムシェル80の内側壁80dに付着する。そして、この潤滑油は、内側壁80dに沿ってボトムシェル80の周方向に周回するようにして流れようとする。 In the compressor 1 of the first embodiment described above, the lubricating oil scattered by the rotation of the oil pipe 72 rotated in the clockwise direction when viewed from above, for example, in the closed shell 2, particularly in the bottom shell 80, Lubricating oil scattered by the release from the oil passage 70 or the collision with the flange 22 b adheres to the inner wall 80 d of the bottom shell 80. The lubricating oil tends to flow so as to circulate in the circumferential direction of the bottom shell 80 along the inner wall 80d.
 しかし、図5に矢印で示されるように、遮蔽部90の存在により、(a)飛散した潤滑油は、(b)遮蔽部90に直接に衝突するか、或いは、遮蔽部90に直接に衝突しない場合でも、(c)内側壁80dに付着し内側壁80dに沿って周回し始めたときに遮蔽部90を超えることにより、大幅にその移動速度が減速される。減速した潤滑油は、内側壁80dに沿って周回を続けることなく、(d)油溜め部76に即座に流下される。これにより、潤滑油が飛散してから油溜め部76まで流下して貯留されるまでの所要時間Tを大幅に短くすることができる。 However, as indicated by an arrow in FIG. 5, due to the presence of the shielding portion 90, (a) the scattered lubricating oil collides directly with the (b) shielding portion 90 or directly with the shielding portion 90. Even if not, (c) when moving on the inner wall 80d and starting to circulate along the inner wall 80d, the moving speed is greatly reduced by exceeding the shielding portion 90. The decelerated lubricating oil immediately flows down to (d) the oil reservoir 76 without continuing to circulate along the inner wall 80d. As a result, the required time T from when the lubricating oil is scattered until it flows down to the oil reservoir 76 and is stored can be significantly reduced.
 特に、この所要時間Tは潤滑油の飛散される初期速度vが大きく、潤滑油の粘性力が大きいほど長くなる。更に、圧縮機1が小型であって、上述したように、油溜め部76の最大貯油量が例えば200cc程度の少量である場合には、所要時間Tが長いと油溜め部76の貯油量が一時的に大幅に減少し、最悪の場合にはゼロとなる状態を招きかねず、給油機構が空運転となって機能せず、電動モータ4及び圧縮機構6の各摺動部に適切に給油することができず、圧縮機1の潤滑性能が著しく低下するとの問題が生じる。 In particular, the required time T becomes longer as the initial velocity v at which the lubricating oil is scattered is larger and the viscous force of the lubricating oil is larger. Furthermore, when the compressor 1 is small and the maximum oil storage amount of the oil reservoir 76 is a small amount of about 200 cc as described above, if the required time T is long, the oil storage amount of the oil reservoir 76 is reduced. The oil supply mechanism may be reduced to a temporary state and may be zero in the worst case, and the oil supply mechanism will not function as an idle operation, so that each sliding part of the electric motor 4 and the compression mechanism 6 is appropriately supplied with oil. This causes a problem that the lubrication performance of the compressor 1 is remarkably deteriorated.
 しかしながら、本実施例では、このように圧縮機1が高速回転で運転され、潤滑油の粘性力が大きく、油溜め部76の最大貯油量が少量の場合であっても、潤滑油の循環効率を高めることができ、圧縮機1の潤滑性能を向上することができる。
 また、フレーム36が遮蔽部90に固定されることにより、フレーム36を密閉容器2に固定するための台座部として遮蔽部90を利用することができるため、別部位や別部材を要することなくフレーム36を密閉容器2に固定することができ、圧縮機1の生産性を向上することができる。
However, in this embodiment, even when the compressor 1 is operated at a high speed in this way, the viscosity of the lubricating oil is large, and the maximum oil storage amount of the oil reservoir 76 is small, the lubricating oil circulation efficiency is high. The lubricating performance of the compressor 1 can be improved.
Further, since the frame 36 is fixed to the shielding portion 90, the shielding portion 90 can be used as a pedestal portion for fixing the frame 36 to the sealed container 2, so that the frame can be used without requiring a separate part or member. 36 can be fixed to the airtight container 2, and the productivity of the compressor 1 can be improved.
 更に、遮蔽部90及び油溜め部76はボトムシェル80の鍛造成型に際し一括して成型されることにより、別部材や別途加工を要することなく容易にして遮蔽部90及び油溜め部76を形成することができ、圧縮機1の生産性を向上することができる。
 更にまた、遮蔽部90は油溜め部76側に向けて2回連続して膨出された波形状をなし、更に遮蔽部90を2つ設けることにより、飛散した潤滑油は、遮蔽部90の膨出が1つである場合に比して、また、遮蔽部90が1つしかない場合に比して、遮蔽部90に直接に衝突する確率が大きくなり、或いは、遮蔽部90に直接に衝突しない場合でも、内側壁80dに付着し内側壁80dに沿って周回し始めたときに遮蔽部90を超える回数が増える。従って、潤滑油を更に効果的に減速することができ、潤滑油が飛散してから油溜め部76まで流下して貯留されるまでの所要時間Tを更に短くすることができるため、圧縮機1が高速回転で運転され、潤滑油の粘性力が大きく、油溜め部76の最大貯油量が少量の場合であっても、潤滑油の循環効率を更に高めることができ、圧縮機1の潤滑性能を更に向上することができる。
Further, the shielding portion 90 and the oil sump portion 76 are formed at the same time when the bottom shell 80 is forged, thereby easily forming the shielding portion 90 and the oil sump portion 76 without requiring separate members or processing. And the productivity of the compressor 1 can be improved.
Furthermore, the shielding portion 90 has a wave shape that is continuously swollen twice toward the oil sump portion 76 side. Further, by providing two shielding portions 90, the scattered lubricating oil Compared to the case where there is only one bulge and the case where there is only one shielding part 90, the probability of directly colliding with the shielding part 90 is increased, or directly to the shielding part 90. Even when the collision does not occur, the number of times exceeding the shielding portion 90 increases when it adheres to the inner wall 80d and starts to circulate along the inner wall 80d. Accordingly, the lubricating oil can be decelerated more effectively, and the required time T from when the lubricating oil is scattered until it flows down to the oil reservoir 76 and stored can be further shortened. Is operated at high speed, the viscosity of the lubricating oil is large, and even when the maximum oil storage amount of the oil reservoir 76 is small, the circulation efficiency of the lubricating oil can be further increased, and the lubricating performance of the compressor 1 can be improved. Can be further improved.
 本発明は上述の実施例に制約されるものではなく、更に種々の変形が可能である。
 具体的には、遮蔽部は、本実施例の遮蔽部90のように内側壁80dにおいて油溜め部76側に向けて突設されるような形状に限定されず、内側壁80dにおける周方向の潤滑油の円滑な流れを遮蔽して潤滑油を減速し、油溜め部76に誘導可能であれば種々の形状や設置数が考えられる。具体的には、内側壁80dに遮蔽板のようなものを設けても良いし、内側壁80dの一部を波形状に凹ませても良い。また、内側壁80dの周方向にギザギザ形状の凹凸を設けても良いし、内側壁80dの周方向に段差形状の凹凸を設けても良い。
The present invention is not limited to the above-described embodiments, and various modifications can be made.
Specifically, the shielding portion is not limited to a shape that protrudes toward the oil reservoir 76 on the inner wall 80d as in the shielding portion 90 of the present embodiment, and the circumferential portion of the inner wall 80d is not limited. Various shapes and installation numbers are conceivable as long as the lubricating oil can be decelerated by blocking the smooth flow of the lubricating oil and guided to the oil reservoir 76. Specifically, a thing like a shielding plate may be provided on the inner wall 80d, or a part of the inner wall 80d may be recessed in a wave shape. Also, jagged irregularities may be provided in the circumferential direction of the inner wall 80d, or stepped irregularities may be provided in the circumferential direction of the inner wall 80d.
 また、本実施例の圧縮機1の作動流体は二酸化炭素冷媒としているが、これに限定されない。しかし、作動流体を二酸化炭素冷媒とした場合には、圧縮機構6から吐出される作動流体の圧力は超臨界状態まで高圧となり、圧縮機1内部の温度が高温となるため、比較的粘性の高い潤滑油を使用し、高温時の粘性低下による油膜切れを防止している。しかしながら、圧縮機1内部の温度が低温の場合には、潤滑油の粘性が大きいため、飛散した潤滑油が戻りにくい傾向にある。しかし、上記構成によれば、潤滑油の粘性が大きく、飛散した潤滑油が戻りにくい傾向にあっても、潤滑油の循環効率を高めることができ、圧縮機1の潤滑性能を向上することができて好ましい。 Further, although the working fluid of the compressor 1 of the present embodiment is a carbon dioxide refrigerant, it is not limited to this. However, when the working fluid is carbon dioxide refrigerant, the pressure of the working fluid discharged from the compression mechanism 6 becomes high to the supercritical state, and the temperature inside the compressor 1 becomes high, so that the viscosity is relatively high. Lubricating oil is used to prevent oil film breakage due to low viscosity at high temperatures. However, when the temperature inside the compressor 1 is low, the viscosity of the lubricating oil is high, and therefore the scattered lubricating oil tends to be difficult to return. However, according to the above configuration, the lubricating oil circulation efficiency can be increased and the lubricating performance of the compressor 1 can be improved even if the lubricating oil has a large viscosity and the scattered lubricating oil tends to hardly return. This is preferable.
 更に、本実施例は容積式の圧縮機1について説明しているが、本発明はスクロール圧縮機や膨張機などの密閉型流体機械全般に適用可能であり、これらの流体機械を自動販売機以外に組み込まれた冷凍サイクルの構成機器として使用できることは勿論である。 Furthermore, although the present Example demonstrates the positive displacement compressor 1, this invention is applicable to general sealed fluid machines, such as a scroll compressor and an expander, These fluid machines are other than a vending machine. Of course, it can be used as a component device of the refrigeration cycle incorporated in the.
  1  圧縮機(流体機械)
  2  密閉容器
 2a  内底部
  4  電動モータ(駆動ユニット)
  6  圧縮機構(被駆動ユニット)
 14  クランクシャフト(回転軸)
 36  フレーム
 70  油路(給油機構)
 72  オイルパイプ(給油機構)
 76  油溜め部
 80  ボトムシェル
80d  内側壁
 90  遮蔽部
1 Compressor (fluid machine)
2 Sealed container 2a Inner bottom 4 Electric motor (drive unit)
6 Compression mechanism (driven unit)
14 Crankshaft (Rotating shaft)
36 frame 70 oil passage (oil supply mechanism)
72 Oil pipe (oil supply mechanism)
76 Oil sump 80 Bottom shell 80d Inner wall 90 Shield

Claims (8)

  1.  密閉容器内に、駆動ユニットと、前記駆動ユニットの駆動力が回転軸を介して伝達される被駆動ユニットとが収容される流体機械であって、
     前記密閉容器の内底部において潤滑油が貯留される油溜め部と、
     前記回転軸と一体に回転することにより前記油溜め部の潤滑油を前記駆動ユニット及び前記被駆動ユニットの各摺動部に供給する給油機構とを備え、
     前記密閉容器は、その内側壁に、前記内側壁における周方向の潤滑油の流れを遮蔽する遮蔽部を有することを特徴とする流体機械。
    A fluid machine in which a driving unit and a driven unit to which the driving force of the driving unit is transmitted via a rotating shaft are housed in an airtight container,
    An oil sump for storing lubricating oil in the inner bottom of the sealed container;
    An oil supply mechanism that supplies the lubricating oil in the oil reservoir to each sliding part of the drive unit and the driven unit by rotating integrally with the rotary shaft;
    The fluid container according to claim 1, wherein the sealed container has a shielding portion that shields a flow of lubricating oil in a circumferential direction on the inner wall on the inner wall.
  2.  前記遮蔽部は前記内側壁において前記油溜め部側に向けて突設されることを特徴とする請求項1に記載の流体機械。 2. The fluid machine according to claim 1, wherein the shielding portion protrudes toward the oil reservoir portion on the inner wall.
  3.  前記駆動ユニット及び前記被駆動ユニットを支持するフレームを備え、
     前記フレームは前記遮蔽部に固定されることを特徴とする請求項2に記載の流体機械。
    A frame for supporting the drive unit and the driven unit;
    The fluid machine according to claim 2, wherein the frame is fixed to the shielding part.
  4.  前記密閉容器は鍛造成型されるボトムシェルを含んで構成され、
     前記遮蔽部は前記ボトムシェルの鍛造成型に際し一括して成型されることを特徴とする請求項3に記載の流体機械。
    The sealed container includes a bottom shell to be forged,
    The fluid machine according to claim 3, wherein the shielding portion is formed in a lump when the bottom shell is forged.
  5.  前記油溜め部は前記ボトムシェルの鍛造成型に際し一括して成型されることを特徴とする請求項4に記載の流体機械。 5. The fluid machine according to claim 4, wherein the oil sump portion is formed in a lump when the bottom shell is forged.
  6.  前記遮蔽部は前記油溜め部側に向けて連続して膨出された波形状をなすことを特徴とする請求項5に記載の流体機械。 6. The fluid machine according to claim 5, wherein the shielding part has a wave shape continuously bulging toward the oil sump part side.
  7.  前記遮蔽部は複数設けられることを特徴とする請求項1乃至6の何れかに記載の流体機械。 The fluid machine according to any one of claims 1 to 6, wherein a plurality of the shielding portions are provided.
  8.  前記密閉容器内には、前記被駆動ユニットに吸入され、前記被駆動ユニットから吐出される作動流体の圧力が作用し、前記作動流体は二酸化炭素冷媒であることを特徴とする請求項1乃至7の何れかに記載の流体機械。 8. The working fluid is sucked into the driven unit and discharged from the driven unit in the sealed container, and the working fluid is a carbon dioxide refrigerant. The fluid machine according to any one of the above.
PCT/JP2011/000459 2010-01-29 2011-01-27 Fluid machinery WO2011093086A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11736801.9A EP2514972A4 (en) 2010-01-29 2011-01-27 Fluid machinery
MX2012008748A MX2012008748A (en) 2010-01-29 2011-01-27 Fluid machinery.
CA2787527A CA2787527A1 (en) 2010-01-29 2011-01-27 Fluid machine
US13/576,146 US20120308410A1 (en) 2010-01-29 2011-01-27 Fluid Machine
BR112012018673A BR112012018673A2 (en) 2010-01-29 2011-01-27 fluid machine
CN2011800074442A CN102725527A (en) 2010-01-29 2011-01-27 Fluid machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-018425 2010-01-29
JP2010018425A JP2011157831A (en) 2010-01-29 2010-01-29 Fluid machinery

Publications (1)

Publication Number Publication Date
WO2011093086A1 true WO2011093086A1 (en) 2011-08-04

Family

ID=44319080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000459 WO2011093086A1 (en) 2010-01-29 2011-01-27 Fluid machinery

Country Status (9)

Country Link
US (1) US20120308410A1 (en)
EP (1) EP2514972A4 (en)
JP (1) JP2011157831A (en)
KR (1) KR20120103744A (en)
CN (1) CN102725527A (en)
BR (1) BR112012018673A2 (en)
CA (1) CA2787527A1 (en)
MX (1) MX2012008748A (en)
WO (1) WO2011093086A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421804B1 (en) * 2017-06-26 2021-04-21 BSH Hausgeräte GmbH Laundry dryer comprising a heat pump
CN109296540A (en) * 2018-09-25 2019-02-01 珠海凌达压缩机有限公司 Liquid level regulation device, compressor housing and compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129595A (en) * 1985-11-29 1987-06-11 Hitachi Ltd Closed type scroll compressor
JPS62197675A (en) * 1986-02-25 1987-09-01 Matsushita Refrig Co Compressor for refrigerant
JPS62258182A (en) * 1986-05-02 1987-11-10 Hitachi Ltd Closed type scroll compressor
JPH0211888A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Closed scroll compressor
JPH06294380A (en) 1993-04-12 1994-10-21 Matsushita Refrig Co Ltd Closed-type compressor
JP2000073951A (en) * 1998-08-31 2000-03-07 Mitsubishi Electric Corp Refrigerant compressor and refrigerating cycle using this refrigerant compressor
JP2004308623A (en) * 2003-04-10 2004-11-04 Matsushita Electric Ind Co Ltd Hermetic compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792288A (en) * 1986-11-28 1988-12-20 Siemens Aktiengesellschaft Encapsulated compressor
US5322419A (en) * 1989-10-06 1994-06-21 Arctic S.A. Compressor for domestic refrigerators
KR100422367B1 (en) * 2001-07-14 2004-03-12 삼성광주전자 주식회사 Oil pickup apparatus for Hermetic compressor
US7044717B2 (en) * 2002-06-11 2006-05-16 Tecumseh Products Company Lubrication of a hermetic carbon dioxide compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129595A (en) * 1985-11-29 1987-06-11 Hitachi Ltd Closed type scroll compressor
JPS62197675A (en) * 1986-02-25 1987-09-01 Matsushita Refrig Co Compressor for refrigerant
JPS62258182A (en) * 1986-05-02 1987-11-10 Hitachi Ltd Closed type scroll compressor
JPH0211888A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Closed scroll compressor
JPH06294380A (en) 1993-04-12 1994-10-21 Matsushita Refrig Co Ltd Closed-type compressor
JP2000073951A (en) * 1998-08-31 2000-03-07 Mitsubishi Electric Corp Refrigerant compressor and refrigerating cycle using this refrigerant compressor
JP2004308623A (en) * 2003-04-10 2004-11-04 Matsushita Electric Ind Co Ltd Hermetic compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514972A4

Also Published As

Publication number Publication date
BR112012018673A2 (en) 2016-05-03
MX2012008748A (en) 2012-11-23
JP2011157831A (en) 2011-08-18
CA2787527A1 (en) 2011-08-04
EP2514972A1 (en) 2012-10-24
KR20120103744A (en) 2012-09-19
CN102725527A (en) 2012-10-10
US20120308410A1 (en) 2012-12-06
EP2514972A4 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
CN1740571B (en) Motor compressor lubrication
JP5520063B2 (en) Fluid machinery
WO2011093086A1 (en) Fluid machinery
WO2011089924A1 (en) Fluid machine
JP2009197684A (en) Hermetic compressor and refrigerating cycle device
JP2002089450A (en) Refrigerant compressor
KR102579202B1 (en) Reciprocating compressor
WO2011093085A1 (en) Fluid machine
JP2013057283A (en) Hermetic compressor
KR101454244B1 (en) Reciprocating compressor and refrigerating machine having the same
JP2009062954A (en) Hermetic compressor
JP2003293953A (en) Reciprocating hermetic motor compressor
JP2013100797A (en) Hermetic compressor
KR102096139B1 (en) Open-type compressor
JP2018048620A (en) Sealing reciprocal compressor
WO2011096226A1 (en) Reciprocating compressor
JP2011058395A (en) Hermetic compressor
JP2010053727A (en) Sealed compressor and refrigerating cycle device
KR0125922Y1 (en) Pipe fixing apparatus for closed electric compressor
KR20110101496A (en) Reciprocating compressor and refrigerating machine having the same
JP2018013102A (en) Compressor
JP2009203810A (en) Hermetic compressor and refrigeration cycle device
JP2012057594A (en) Hermetic compressor
JP2012159073A (en) Hermetic compressor
JP2005264876A (en) Reciprocating compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007444.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2787527

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011736801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6509/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/008748

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13576146

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127020920

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201003849

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018673

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018673

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120726