WO2011092928A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2011092928A1
WO2011092928A1 PCT/JP2010/070852 JP2010070852W WO2011092928A1 WO 2011092928 A1 WO2011092928 A1 WO 2011092928A1 JP 2010070852 W JP2010070852 W JP 2010070852W WO 2011092928 A1 WO2011092928 A1 WO 2011092928A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator coil
coil
bracket
rotating electrical
Prior art date
Application number
PCT/JP2010/070852
Other languages
French (fr)
Japanese (ja)
Inventor
剛 野中
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2011551687A priority Critical patent/JPWO2011092928A1/en
Priority to CN2010800571756A priority patent/CN102668338A/en
Publication of WO2011092928A1 publication Critical patent/WO2011092928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to a rotating electrical machine such as an EV motor, and more particularly to cooling of a stator coil.
  • a conventional rotary electric machine having a substantially cylindrical rotor rotatably supported, a stator, a bracket for supporting the components, and a water cooling structure has an example in which a cooling water channel is provided in a frame ( For example, see Patent Document 1).
  • FIG. 1 A conventional rotary electric machine having a substantially cylindrical rotor rotatably supported, a stator, a bracket for supporting the components, and a water cooling structure has an example in which a cooling water channel is provided in a frame ( For example, see Patent Document 1).
  • the rotating electrical machine includes a substantially cylindrical rotor 7 that is rotatably supported, a stator core 2, a stator coil 3 mounted on the stator core, and a load side bracket that supports the components. 4a, an anti-load side bracket 4b, and a frame 1.
  • a cooling water channel 12 is provided in the frame. The heat generated by the loss generated in the stator coil is radiated to the outside by the cooling water through the insulator, the stator core, and the frame.
  • high thermal conductivity insulators 10a and 10b are filled between the load side coil end 3a and the anti-load side coil end 3b of the stator coil and the frame. With the high thermal conductive insulator, the amount of heat generated in the stator coil can be radiated more directly to the frame, and the rated output of the rotating electrical machine can be increased.
  • FIG. 15 is an axial sectional view of another conventional rotating electrical machine.
  • a load side coil end 21e of a stator coil 21 made of a plate-shaped conductor mounted on a stator core 22 is formed with an inner peripheral surface and an outer peripheral surface on one cylindrical surface, and an end surface on a single plane. And is in close contact with the groove 25e of the load side bracket 25 via an insulator 24.
  • the heat generated in the stator coil is directly radiated to the load side bracket and radiated from the load side bracket to the external device.
  • the coil end of the stator coil is more likely to be in close contact with the load side bracket than the frame, and the heat dissipation effect is greater than with a high thermal conductive insulator as shown in FIG.
  • the amount of heat reaching the load side bracket is dissipated to the external device to which the load side bracket is attached.
  • the conventional rotating electrical machine has been devised to dissipate the heat loss generated by the stator coil mounted on the stator core more effectively to the outside.
  • JP 2002-191149 A page 6, FIG. 1
  • JP 2006-050853 A page 7, FIG. 2
  • the amount of heat generated in the stator coil is improved by the heat dissipation because the amount of heat generated in the stator coil is dissipated to the outside by cooling water through the insulator, the stator core, and the frame.
  • the conductive insulator is used together with the effect of directly radiating the heat generated in the stator coil to the frame.
  • a high thermal conductivity insulator is generally superior in thermal conductivity as compared to an insulator, it is significantly inferior in thermal conductivity and has little improvement in heat dissipation effect compared to a metal such as a bracket.
  • Patent Document 2 Another conventional rotating electric machine shown in Patent Document 2 has a heat-dissipating effect up to the load-side bracket because the coil end of the stator coil is brought into close contact with the load-side bracket, but does not have a water cooling structure.
  • the heat dissipation from the load side bracket to the outside of the rotating electrical machine has a low limit.
  • An object of the present invention is to provide a rotating electrical machine having a compact water-cooling structure that enables larger energization and improves rated output.
  • the present invention is configured as follows.
  • the invention described in claim 1 In a rotating electrical machine having a substantially cylindrical rotor that is rotatably supported, a stator, a bracket that supports the stator, and a water cooling structure,
  • the bracket is a rotating electrical machine characterized by having a cooling water passage and a portion that is in close contact with the stator coil via an insulator.
  • the invention according to claim 2 2.
  • the rotating electrical machine according to claim 1, wherein the cooling water passage of the bracket has an opening portion on the motor outer side and does not have an opening portion on the motor inner side.
  • the invention according to claim 3 2.
  • the invention according to claim 4 2.
  • the invention according to claim 5 2.
  • the rotating electrical machine according to claim 1, wherein the insulator through the stator coil and the bracket is a ring-shaped molded product and is mounted between the coil end portion of the stator coil and the bracket. .
  • the invention according to claim 6 2.
  • the bracket Since the bracket has a cooling water channel and a part that is in close contact with the stator coil via an insulator, the heat loss generated in the stator coil is effectively radiated to the cooling water channel, and the temperature of the stator coil increases. It is possible to provide a rotating electrical machine having a compact water-cooling structure that can suppress energies, enable larger energization with respect to the allowable temperature, and improve the rated output.
  • the cooling water passage of the bracket does not have an opening portion on the inner side of the motor, the cooling water is not immersed on the inner side of the rotating electric machine of the bracket, and the insulation around the stator coil is not lowered.
  • stator coil Since the stator coil is fitted with an air-core coil whose outer shape is press-molded in the slot of the stator core, the coil end of the stator coil can be easily brought into close contact with the bracket, and the amount of heat generated by the stator coil It is easy to radiate heat to the bracket.
  • the stator coil is installed in a distributed winding in the slot portion of the stator core, and has a coil end portion whose outer shape is press-molded, so that the coil end portion of the stator coil can be easily adhered to the bracket, and the stator coil It is easy to dissipate the amount of heat generated in the bracket.
  • the insulator through the stator coil and the bracket is a ring-shaped product, it can be manufactured at low cost.
  • the insulator through the stator coil and bracket is a ceramic film treated on the surface of the bracket, it is a material that combines high insulation resistance and high thermal conductivity, and is generated in the stator coil while ensuring insulation. It is easy to dissipate heat to the bracket.
  • FIG. 1 is an axial sectional view of a rotating electrical machine showing a first embodiment of the present invention.
  • Radial sectional view of the rotating electrical machine Explanatory drawing which shows the pressure molding method of the load side coil end part Structure example of a rotating electrical machine with a conventional water cooling structure
  • FIG. 1 is an axial sectional view of a rotating electrical machine showing a first embodiment of the present invention for use in an EV motor.
  • a rotor core 33 of a rotor 31 of the motor is fixed to a shaft 34 by a load side plate 35 and an anti-load side plate 36, and is connected to a load side via a load-side bearing 37 and an anti-load side bearing 38.
  • the bracket 43 and the anti-load side bracket 44 are rotatably supported.
  • An encoder portion 41 for detecting the rotational position of the rotor is installed at the end on the side opposite to the load of the shaft.
  • the stator coil 46 is mounted so as to be in close contact with the load side bracket via the insulator 47.
  • the load-side bracket has a portion that is in close contact with the stator coil via an insulator, and has a cooling water channel 43c, so the amount of heat due to lost heat generated in the stator coil is Effectively dissipates heat to the cooling water channel, suppresses the temperature rise of the stator coil, enables larger energization with respect to the allowable temperature, and improves the rated output.
  • the cooling water channel is sealed by a cover 50 fastened to the load side bracket by a bolt 55, and the outer O-ring 53 and the inner O-ring 54 are sealed. Prevents the leakage of cooling water. The amount of heat is radiated to the outside through the outlet pipe 43b together with the cooling water.
  • the stator coil has an insulator 48 and is insulated from the stator core. Energization to the stator coil is supplied from the outside through a lead wire (not shown) from the connection portion 42 of the stator coil.
  • the anti-load side bracket is fastened to the load side bracket by a bolt (not shown) together with the frame 51.
  • FIG. 2 is a radial sectional view of the motor.
  • the rotor 31 of the motor has an embedded magnet type structure in which a permanent magnet 32 is installed in a rotor core 33 in a V-shape for each pole and constitutes a 10-pole magnetic pole.
  • the stator has a stator core 45 divided for each tooth and a stator coil 46 wound around concentrated winding and press-molded on the outer shape.
  • FIG. 3 is an explanatory view of the shape of the load side bracket.
  • the load-side bracket 43 has a portion that is in close contact with the stator coil via an insulator, and has a cooling water channel 43c.
  • the cooling water is introduced from the introduction pipe 43a, receives the heat amount of the load side bracket while passing through the cooling water passage 43c, and is led out from the lead-out pipe 43b.
  • the motor of this embodiment is cooled while repeating the circulation introduced into the load side bracket again.
  • the cooling fins 43d constitute a cooling water channel and are provided to promote heat exchange from the load side bracket to the cooling water.
  • the load-side bracket is provided with a bolt hole 43e for attachment to an external device, a fastening bolt hole 43f with a frame, and a screw hole 43g for cover attachment.
  • FIG. 4 is an explanatory diagram before mounting the stator coil.
  • a stator coil 46 is mounted so that 12 air-core coils whose outer shapes are pressure-molded are in close contact with the load-side bracket 43 via an insulator 47.
  • the insulator through the stator coil and the load-side bracket is a ceramic film treated on the surface of the load-side bracket, so it is a material that combines high insulation resistance and high thermal conductivity. It is easy to dissipate the heat generated in the coil to the bracket.
  • the ceramic coating is sealed to ensure insulation.
  • the stator coil 46 has an outer insulator 48a and an inner insulator 48b, and is insulated from the stator core by an insulating tape 48c attached in the circumferential direction. Insulated from adjacent stator coils.
  • the insulator is an injection-molded part made of a resin material having good fluidity that can be thinly molded, or a sheet processed part that is obtained by heating and pressure-molding a sheet-like resin.
  • the stator coil is formed by winding a round copper wire having an insulating film, and the slot portion of the stator core and the load side coil end portion 46c attached to the load side bracket are wound in completely aligned winding, All intersections of the round copper wires are performed at the anti-load side coil end portion 46d, and the winding start coil end 46a and the winding end coil end 46b of the stator coil are provided at the anti-load side coil end portion 46d.
  • the load side coil end portion 46c of the stator coil 46 has an inner peripheral surface and an outer peripheral surface formed on one cylindrical surface, and an end surface thereof. Since the air-core coil is pressure-molded on one conical surface, it is attached in close contact with the load-side bracket via the insulator 47 in a ring shape.
  • the insulator is a ceramic film processed on the surface of the load side bracket 43, and the load is reduced from the stator coil by setting the minimum thickness to ensure the necessary insulation resistance and withstand voltage between the stator coil and the load side bracket. The heat dissipation to the side bracket is improved.
  • the stator coil has a gap 46d inside the stator coil where the teeth 45a of the stator core are mounted, and the stator core 45 divided for each tooth is mounted in contact with the insulator 47 from the outside. .
  • the connection board 52 is connected and attached to the winding start coil end and winding end coil end of the anti-load side coil end of the stator coil shown in FIG.
  • FIG. 7 is an explanatory diagram of the mounting state of the frame.
  • the heated frame 51 is shrink-fitted and mounted on the stator core.
  • FIG. 8 is an operation explanatory view for press-molding the outer shape of the stator coil.
  • the press jig for press-molding the outer shape of the stator coil includes an upper punch 61, a lower punch 62, a die 63 and a core pin 64, and a copper wire is wound around the coil mounting space 63a.
  • the upper punch is pressed downward to press-mold the outer shape of the stator coil 46.
  • FIG. 9 is an explanatory view of the pressure molding of the outer shape of the stator coil as viewed from the circumferential direction.
  • the outer shape of the stator coil 46 is pressure-molded except for the end face of the coil end portion on the non-load side. Then, the insulation film is fused by heating to complete the air-core coil.
  • FIG. 10 is a comparative diagram showing the effect of the present embodiment.
  • the average temperature of the stator coil is 130 ° C. when the cooling water temperature of the frame is maintained at 60 ° C. in the rated output state.
  • the stator coil and the insulator are in contact at about 129 ° C.
  • the insulator and the stator core are in contact at about 102 ° C.
  • the stator core and the frame are in contact at about 72 ° C. Since the heat radiation path of heat is complicated, the average temperature of the stator coil is increased by 70 ° C. with respect to the cooling water temperature of 60 ° C.
  • stator coil temperature is reduced to 73 ° C., and the stator coil average temperature is 60 ° C. cooling water temperature. Decreases to 13 ° C rise. This is because the amount of heat moves more directly from the stator coil to the cooling water of the load side bracket. Also, as shown in (c), when the amount of heat at 130 ° C., which is the same as that of the stator coil of the conventional structure, is obtained, the generation of heat of 567% can be allowed for (a), and the output is about 2.4 times Can be increased.
  • the heat loss generated in the stator coil is effectively radiated to the cooling water channel, the temperature increase of the stator coil is suppressed, and the allowable temperature is larger. It is possible to provide a rotating electrical machine having a compact water-cooling structure that enables energization and improves the rated output.
  • the part in which the present invention is different from Patent Documents 1 and 2 is a part in which the bracket has a cooling water channel and a part in close contact with the stator coil via an insulator.
  • FIG. 11 is an axial cross-sectional view of a rotating electrical machine showing a second embodiment of the present invention.
  • the rotating electrical machine includes a frame 91, a counter load side bracket 84, a stator having a stator coil 86, and a load side bracket 83, and is rotatably supported by the load side bracket and the anti load side bracket.
  • the rotor is not shown.
  • the load-side coil end portion 86a of the stator coil has an inner peripheral surface 86aa and an outer peripheral surface 86ab formed on one cylindrical surface, and an end surface 86ac is pressure-formed on one flat surface.
  • the load-side bracket has a load-side coil end portion and a groove portion 83a of a recess that is in close contact with the inner peripheral surface, outer peripheral surface, and end surface of the load-side coil end portion, and the groove portion has a high heat conductive resin that is an insulator.
  • the load-side coil end part is fixed with a molding resin through the injection molded part. Having a cooling water channel outside the load side bracket is the same as in the first embodiment.
  • the load-side bracket has a portion that is in close contact with the stator coil via an insulator and has a cooling water channel, the heat amount due to heat loss generated in the stator coil is effectively dissipated to the cooling water channel, and the stator The rated output is improved by suppressing the temperature rise of the coil and enabling larger energization with respect to the allowable temperature.
  • Other structures are the same as in the first embodiment, such that the stator coil is energized from the outside to the stator coil via a lead wire (not shown).
  • FIG. 12 is a radial cross-sectional view of the rotating electrical machine.
  • a rotor 71 of a rotating electric machine has an embedded magnet type structure in which a permanent magnet 75 is installed in a rotor core 73 in a V shape for each pole and constitutes a magnetic pole of 10 poles.
  • the stator is insulated by attaching insulating paper to the teeth 85a of the stator core 85, winding a winding having an insulating coating with distributed winding, and then attaching to the teeth to form a stator coil 86.
  • the inner periphery of the frame 91 is held.
  • FIG. 13 is an explanatory view showing a pressure forming method of the load side coil end portion.
  • the stator 4 is formed by winding a winding having an insulating coating on the teeth portion of the stator core 84 in a distributed manner, and then mounting the teeth on the teeth portion to form a stator coil 86.
  • the load side coil end portion 86a is With the inner peripheral surface forming jig 92, the outer peripheral surface forming jig 93, and the end surface forming jig 94, the inner peripheral surface 86aa and the outer peripheral surface 86ab are each formed on one cylindrical surface, and the end surface 86ac is formed on one flat surface.
  • the rotating electrical machine of the present embodiment the heat loss generated in the stator coil is effectively radiated to the cooling water channel, the temperature increase of the stator coil is suppressed, and the allowable temperature is larger. It is the same as the rotating electrical machine of the first embodiment of the present invention that it is possible to provide a rotating electrical machine having a compact water-cooling structure that enables energization and improves the rated output.
  • the part in which the present invention is different from Patent Documents 1 and 2 is a part in which the bracket has a cooling water channel and a part in close contact with the stator coil via an insulator.
  • This embodiment is different from the first embodiment of the present invention in that the air core coil is not mounted, but the winding is mounted on the distributed winding in the slot portion of the stator core.
  • the rotating electrical machine of the present invention can be applied to a wide variety of industrial rotating electrical machines as well as EV motors because it can provide a rotating electrical machine that suppresses temperature rise and improves the rated output as compared to the conventional one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Provided is a rotating electric machine provided with a compact water-cooling structure in which lost heat generated in a stator coil is effectively released to a cooling water channel to thereby suppress the temperature increase of the stator coil and enable the passage of a larger electric current at an allowable temperature, thereby improving the rated output. Specifically provided is a rotating electric machine provided with an approximately cylindrical rotor which is supported to be rotatable, a stator, a bracket which supports the stator, and a water-cooling structure, said rotating electric machine being characterized in that the bracket comprises a cooling water channel and comprises a portion which is closely attached to a stator coil with an insulator therebetween.

Description

回転電機Rotating electric machine
本発明は、例えば、EVモータのような回転電機に関するもので、特に固定子コイルの冷却に関するものである。 The present invention relates to a rotating electrical machine such as an EV motor, and more particularly to cooling of a stator coil.
 回転電機は、負荷電流の通電による損失熱によって固定子コイルの温度が上昇する。より大きな出力を得るためには、負荷電流の増大が必要であり、固定子コイルの温度は更に上昇する。回転電機の定格出力は、多くの場合、固定子コイルの温度が耐熱限界温度に達しない範囲に限られるため、固定子コイルの冷却方法は、回転電機の出力向上に欠かせない重要な技術である。
従来の、回転自在に支持された概円筒形の回転子と、固定子と、前記部品を支持するブラケットと、水冷構造を備えた回転電機には、フレームに冷却水路を備えた例がある(例えば、特許文献1参照)。
図14は、従来の水冷構造を備えた回転電機の構造例である。
図において、前記回転電機は、回転自在に支持された概円筒形の回転子7と、固定子鉄心2と、固定子鉄心に装着された固定子コイル3と、前記部品を支持する負荷側ブラケット4a,反負荷側ブラケット4bと、フレーム1を有する。
フレームには、冷却水路12が設けられている。固定子コイルで発生した損失による熱量は、インシュレータ、固定子鉄心、フレームを経て、冷却水により外部へ放熱される。
フレームに至る熱伝導性を高めるために、固定子コイルの負荷側コイルエンド3a、反負荷側コイルエンド3bとフレームの間に、高熱伝導絶縁体10a,10bを充填している。
高熱伝導絶縁体により、固定子コイルで発生した熱量をより直接的にフレームへ放熱でき、回転電機の定格出力を増大することができる。
In the rotating electrical machine, the temperature of the stator coil rises due to heat loss due to energization of the load current. In order to obtain a larger output, it is necessary to increase the load current, and the temperature of the stator coil further increases. In many cases, the rated output of a rotating electrical machine is limited to a range where the temperature of the stator coil does not reach the heat-resistant limit temperature, so the cooling method of the stator coil is an important technology indispensable for improving the output of the rotating electrical machine. is there.
A conventional rotary electric machine having a substantially cylindrical rotor rotatably supported, a stator, a bracket for supporting the components, and a water cooling structure has an example in which a cooling water channel is provided in a frame ( For example, see Patent Document 1).
FIG. 14 is a structural example of a rotating electrical machine having a conventional water cooling structure.
In the figure, the rotating electrical machine includes a substantially cylindrical rotor 7 that is rotatably supported, a stator core 2, a stator coil 3 mounted on the stator core, and a load side bracket that supports the components. 4a, an anti-load side bracket 4b, and a frame 1.
A cooling water channel 12 is provided in the frame. The heat generated by the loss generated in the stator coil is radiated to the outside by the cooling water through the insulator, the stator core, and the frame.
In order to increase the thermal conductivity to reach the frame, high thermal conductivity insulators 10a and 10b are filled between the load side coil end 3a and the anti-load side coil end 3b of the stator coil and the frame.
With the high thermal conductive insulator, the amount of heat generated in the stator coil can be radiated more directly to the frame, and the rated output of the rotating electrical machine can be increased.
従来の回転電機には、固定子鉄心に装着された固定子コイルで発生した熱を、直接負荷側ブラケットへ放熱し、冷却効果を向上させるものもある(例えば、特許文献2参照)。
 図15は、従来の別の回転電機の軸方向断面図である。
図において、固定子鉄心22に装着された板状導体よりなる固定子コイル21の負荷側コイルエンド21eを、内周面と外周面を各々一円筒面上に形成するとともに、端面を一平面上に形成して、負荷側ブラケット25の溝部25eに、絶縁体24を介して密着させている。これにより、固定子コイルで発生した熱量を、直接負荷側ブラケットに放熱し、負荷側ブラケットより外部装置へと放熱させる。
固定子コイルのコイルエンドは、フレームより負荷側ブラケットへ密着させ易く、図14に示したような、高熱伝導絶縁体を介するより、放熱効果が大きい。負荷側ブラケットに至った熱量は、負荷側ブラケットが装着された外部装置へと放熱される。
Some conventional rotating electrical machines dissipate heat generated by a stator coil attached to a stator core directly to a load side bracket to improve the cooling effect (see, for example, Patent Document 2).
FIG. 15 is an axial sectional view of another conventional rotating electrical machine.
In the figure, a load side coil end 21e of a stator coil 21 made of a plate-shaped conductor mounted on a stator core 22 is formed with an inner peripheral surface and an outer peripheral surface on one cylindrical surface, and an end surface on a single plane. And is in close contact with the groove 25e of the load side bracket 25 via an insulator 24. As a result, the heat generated in the stator coil is directly radiated to the load side bracket and radiated from the load side bracket to the external device.
The coil end of the stator coil is more likely to be in close contact with the load side bracket than the frame, and the heat dissipation effect is greater than with a high thermal conductive insulator as shown in FIG. The amount of heat reaching the load side bracket is dissipated to the external device to which the load side bracket is attached.
このように、従来の回転電機は、固定子鉄心に装着された固定子コイルで発生した損失熱を、より効果的に、外部へと、放熱させる工夫がなされてきたのである。 Thus, the conventional rotating electrical machine has been devised to dissipate the heat loss generated by the stator coil mounted on the stator core more effectively to the outside.
特開2002-191149号公報(第6頁、図1)JP 2002-191149 A (page 6, FIG. 1) 特開2006-050853号公報(第7頁、図2)JP 2006-050853 A (page 7, FIG. 2)
 特許文献1に示した、従来の回転電機は、固定子コイルで発生した熱量が、インシュレータ、固定子鉄心、フレームを経て、冷却水により外部へ放熱される放熱性の悪さを改善するため、高熱伝導絶縁体を用い、固定子コイルで発生した熱量をより直接的にフレームへ放熱する効果を併用している。しかしながら、高熱伝導絶縁体は、通常絶縁体に比べて熱伝導性が優れているものの、ブラケット等の素材である金属に比較すれば、格段に熱伝導性が劣り、放熱効果の改善も小さい。 In the conventional rotating electrical machine shown in Patent Document 1, the amount of heat generated in the stator coil is improved by the heat dissipation because the amount of heat generated in the stator coil is dissipated to the outside by cooling water through the insulator, the stator core, and the frame. The conductive insulator is used together with the effect of directly radiating the heat generated in the stator coil to the frame. However, although a high thermal conductivity insulator is generally superior in thermal conductivity as compared to an insulator, it is significantly inferior in thermal conductivity and has little improvement in heat dissipation effect compared to a metal such as a bracket.
特許文献2に示した、従来の別の回転電機は、固定子コイルのコイルエンドを、負荷側ブラケットへ密着させるため、負荷側ブラケットに至るまでの放熱効果が大きいものの、水冷構造を有しないため、負荷側ブラケットから回転電機外部への放熱については限界が低い。 Another conventional rotating electric machine shown in Patent Document 2 has a heat-dissipating effect up to the load-side bracket because the coil end of the stator coil is brought into close contact with the load-side bracket, but does not have a water cooling structure. The heat dissipation from the load side bracket to the outside of the rotating electrical machine has a low limit.
本発明はこのような問題点に鑑みてなされたものであり、固定子コイルにおいて発生した損失熱を、効果的に冷却水路に放熱し、固定子コイルの温度上昇を抑え、許容温度に対してより大きな通電を可能にして、定格出力を向上するコンパクトな水冷構造を備えた回転電機を提供することを目的とする。 The present invention has been made in view of such problems, and the heat loss generated in the stator coil is effectively radiated to the cooling water channel, the temperature rise of the stator coil is suppressed, and the allowable temperature is exceeded. An object of the present invention is to provide a rotating electrical machine having a compact water-cooling structure that enables larger energization and improves rated output.
 上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、
回転自在に支持された概円筒形の回転子と、固定子と、固定子を支持するブラケットと、水冷構造を備えた回転電機において、
ブラケットは、冷却水路を有するとともに、絶縁体を介し、固定子コイルと密着する部分を有することを特徴とする回転電機とするものである。
 また、請求項2に記載の発明は、
ブラケットの冷却水路は、モータ外部側に開口部分を有し、モータ内部側に開口部分を有しないことを特徴とする請求項1記載の回転電機とするものである。
 また、請求項3に記載の発明は、
固定子コイルは、外形状を加圧成形された空芯コイルを、固定子鉄心のスロット部に装着したことを特徴とする請求項1記載の回転電機とするものである。
 また、請求項4に記載の発明は、
固定子コイルは、固定子鉄心のスロット部に分布巻に装着され、外形状を加圧成形されたコイルエンド部を有することを特徴とする請求項1記載の回転電機とするものである。
 また、請求項5に記載の発明は、
固定子コイルとブラケットを介する絶縁体は、リング状成形品であり、固定子コイルのコイルエンド部とブラケットの間に装着されたことを特徴とする請求項1記載の回転電機とするものである。
 また、請求項6に記載の発明は、
固定子コイルとブラケットを介する絶縁体は、ブラケットの表面に処理されたセラミック皮膜であることを特徴とする請求項1記載の回転電機とするものである。
In order to solve the above problem, the present invention is configured as follows.
The invention described in claim 1
In a rotating electrical machine having a substantially cylindrical rotor that is rotatably supported, a stator, a bracket that supports the stator, and a water cooling structure,
The bracket is a rotating electrical machine characterized by having a cooling water passage and a portion that is in close contact with the stator coil via an insulator.
The invention according to claim 2
2. The rotating electrical machine according to claim 1, wherein the cooling water passage of the bracket has an opening portion on the motor outer side and does not have an opening portion on the motor inner side.
The invention according to claim 3
2. The rotating electric machine according to claim 1, wherein the stator coil has an air-core coil whose outer shape is press-molded and mounted in a slot portion of the stator core.
The invention according to claim 4
2. The rotating electrical machine according to claim 1, wherein the stator coil has a coil end portion mounted in a distributed winding in a slot portion of the stator core and press-molded on an outer shape.
The invention according to claim 5
2. The rotating electrical machine according to claim 1, wherein the insulator through the stator coil and the bracket is a ring-shaped molded product and is mounted between the coil end portion of the stator coil and the bracket. .
The invention according to claim 6
2. The rotating electrical machine according to claim 1, wherein the insulator through the stator coil and the bracket is a ceramic film processed on the surface of the bracket.
請求項1に記載の発明によると、
ブラケットは、冷却水路を有するとともに、絶縁体を介し、固定子コイルと密着する部分を有するため、固定子コイルにおいて発生した損失熱を、効果的に冷却水路に放熱し、固定子コイルの温度上昇を抑え、許容温度に対してより大きな通電を可能にして、定格出力を向上するコンパクトな水冷構造を備えた回転電機を提供できる。
また、請求項2に記載の発明によると、
ブラケットの冷却水路は、モータ内部側に開口部分を有しないため、ブラケットの回転電機内部側に、冷却水が浸漬することがなく、固定子コイル周りの絶縁を低下させることがない。
 また、請求項3に記載の発明によると、
固定子コイルは、外形状を加圧成形された空芯コイルを、固定子鉄心のスロット部に装着するため、固定子コイルのコイルエンド部分をブラケットに密着させやすく、固定子コイルで発生した熱量をブラケットへ放熱し易い。
また、請求項4に記載の発明によると、
固定子コイルは、固定子鉄心のスロット部に分布巻に装着され、外形状を加圧成形されたコイルエンド部を有するため、固定子コイルのコイルエンド部分をブラケットに密着させやすく、固定子コイルで発生した熱量をブラケットへ放熱し易い。
また、請求項5に記載の発明によると、
固定子コイルとブラケットを介する絶縁体は、リング状成形品であるため、安価に製作できる。
また、請求項6に記載の発明によると、
固定子コイルとブラケットを介する絶縁体は、ブラケットの表面に処理されたセラミック皮膜であるため、高い絶縁抵抗と高熱伝導性を兼ね備えた材質であり、絶縁を確保しながら、固定子コイルで発生した熱量をブラケットへ放熱し易い。
According to the invention of claim 1,
Since the bracket has a cooling water channel and a part that is in close contact with the stator coil via an insulator, the heat loss generated in the stator coil is effectively radiated to the cooling water channel, and the temperature of the stator coil increases. It is possible to provide a rotating electrical machine having a compact water-cooling structure that can suppress energies, enable larger energization with respect to the allowable temperature, and improve the rated output.
According to the invention of claim 2,
Since the cooling water passage of the bracket does not have an opening portion on the inner side of the motor, the cooling water is not immersed on the inner side of the rotating electric machine of the bracket, and the insulation around the stator coil is not lowered.
According to the invention of claim 3,
Since the stator coil is fitted with an air-core coil whose outer shape is press-molded in the slot of the stator core, the coil end of the stator coil can be easily brought into close contact with the bracket, and the amount of heat generated by the stator coil It is easy to radiate heat to the bracket.
According to the invention of claim 4,
The stator coil is installed in a distributed winding in the slot portion of the stator core, and has a coil end portion whose outer shape is press-molded, so that the coil end portion of the stator coil can be easily adhered to the bracket, and the stator coil It is easy to dissipate the amount of heat generated in the bracket.
According to the invention of claim 5,
Since the insulator through the stator coil and the bracket is a ring-shaped product, it can be manufactured at low cost.
According to the invention of claim 6,
Since the insulator through the stator coil and bracket is a ceramic film treated on the surface of the bracket, it is a material that combines high insulation resistance and high thermal conductivity, and is generated in the stator coil while ensuring insulation. It is easy to dissipate heat to the bracket.
本発明の第1実施例を示す回転電機の軸方向断面図FIG. 1 is an axial sectional view of a rotating electrical machine showing a first embodiment of the present invention. 前記モータの径方向断面図Radial sectional view of the motor 負荷側ブラケットの形状説明図Illustration of shape of load side bracket 固定子コイルの装着前説明図Explanatory drawing before mounting the stator coil 固定子コイルの絶縁構造説明図Illustration of stator coil insulation structure 固定子コイルの装着後説明図Explanatory drawing after mounting the stator coil フレームの装着状態説明図Frame installation state explanatory diagram 固定子コイルの外形状を加圧成形する作業説明図Explanatory drawing of pressure forming of outer shape of stator coil 周方向より見た固定子コイル外形状の加圧成形説明図Explanatory drawing of press forming of outer shape of stator coil viewed from the circumferential direction 本実施例の効果を示す比較図Comparative diagram showing the effect of this example 本発明の第2実施例を示す回転電機の軸方向断面図Axial sectional view of a rotating electrical machine showing a second embodiment of the present invention. 前記回転電機の径方向断面図Radial sectional view of the rotating electrical machine 負荷側コイルエンド部の加圧成形方法を示す説明図Explanatory drawing which shows the pressure molding method of the load side coil end part 従来の水冷構造を備えた回転電機の構造例Structure example of a rotating electrical machine with a conventional water cooling structure 従来の別の回転電機の軸方向断面図Axial sectional view of another conventional rotating electrical machine
 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、EVモータに供する、本発明の第1実施例を示す回転電機の軸方向断面図である。
図において、前記モータの回転子31の回転子鉄心33は、負荷側側板35と反負荷側側板36とでシャフト34に固定され、負荷側軸受37と反負荷側軸受38を介して、負荷側ブラケット43と反負荷側ブラケット44に回転自在に支持されている。
シャフトの反負荷側端部には、回転子の回転位置を検出するためのエンコーダ部41が設置されている。
固定子コイル46は、絶縁体47を介し、負荷側ブラケットと密着するように装着されている。負荷側ブラケットは、絶縁体を介し、固定子コイルと密着する部分を有するとともに、冷却水路43cを有するため、固定子コイルにおいて発生した損失熱による熱量を、
効果的に冷却水路に放熱し、固定子コイルの温度上昇を抑え、許容温度に対してより大きな通電を可能にして、定格出力を向上させている。冷却水路は、ボルト55により負荷側ブラケットに締結されたカバー50により密閉され、外側Oリング53と内側Oリング54
は、冷却水の漏洩を防止している。熱量は、冷却水とともに、導出管43bより外部へ放熱される。
固定子コイルはインシュレータ48をもって、固定子鉄心と絶縁されている。
固定子コイルへの通電は、外部より、図示しないリード線を介して、固定子コイルの結線部42より供給される。
反負荷側ブラケットは、フレーム51とともに、図示しないボルトで、負荷側ブラケットに締結されている。
FIG. 1 is an axial sectional view of a rotating electrical machine showing a first embodiment of the present invention for use in an EV motor.
In the figure, a rotor core 33 of a rotor 31 of the motor is fixed to a shaft 34 by a load side plate 35 and an anti-load side plate 36, and is connected to a load side via a load-side bearing 37 and an anti-load side bearing 38. The bracket 43 and the anti-load side bracket 44 are rotatably supported.
An encoder portion 41 for detecting the rotational position of the rotor is installed at the end on the side opposite to the load of the shaft.
The stator coil 46 is mounted so as to be in close contact with the load side bracket via the insulator 47. The load-side bracket has a portion that is in close contact with the stator coil via an insulator, and has a cooling water channel 43c, so the amount of heat due to lost heat generated in the stator coil is
Effectively dissipates heat to the cooling water channel, suppresses the temperature rise of the stator coil, enables larger energization with respect to the allowable temperature, and improves the rated output. The cooling water channel is sealed by a cover 50 fastened to the load side bracket by a bolt 55, and the outer O-ring 53 and the inner O-ring 54 are sealed.
Prevents the leakage of cooling water. The amount of heat is radiated to the outside through the outlet pipe 43b together with the cooling water.
The stator coil has an insulator 48 and is insulated from the stator core.
Energization to the stator coil is supplied from the outside through a lead wire (not shown) from the connection portion 42 of the stator coil.
The anti-load side bracket is fastened to the load side bracket by a bolt (not shown) together with the frame 51.
図2は、前記モータの径方向断面図である。
図において、前記モータの回転子31は、永久磁石32が1極毎にV字状に回転子鉄心33に設置され、10極の磁極を構成した埋込磁石型構造である。
固定子は、ティース毎に分割された固定子鉄心45と、集中巻に巻回され、外形状を加圧成形された固定子コイル46を有する。
FIG. 2 is a radial sectional view of the motor.
In the figure, the rotor 31 of the motor has an embedded magnet type structure in which a permanent magnet 32 is installed in a rotor core 33 in a V-shape for each pole and constitutes a 10-pole magnetic pole.
The stator has a stator core 45 divided for each tooth and a stator coil 46 wound around concentrated winding and press-molded on the outer shape.
図3は、負荷側ブラケットの形状説明図である。
図において、負荷側ブラケット43は、絶縁体を介し、固定子コイルと密着する部分を有するとともに、冷却水路43cを有する。
冷却水は、導入管43aより導入され、冷却水路43cを通過しながら負荷側ブラケットの熱量を受け、導出管43bより導出される。図示しない外部装置で冷却された後、再び負荷側ブラケットに導入される循環を繰り返しながら、本実施例のモータを冷却する。
冷却フィン43dは、冷却水路を構成するとともに、負荷側ブラケットから冷却水への熱交換を促進するために設けられている。
また、負荷側ブラケットには、外部装置への取付け用ボルト孔43e,フレームとの締結ボルト孔43fおよびカバー取付け用ねじ穴43gが設けられている。
FIG. 3 is an explanatory view of the shape of the load side bracket.
In the figure, the load-side bracket 43 has a portion that is in close contact with the stator coil via an insulator, and has a cooling water channel 43c.
The cooling water is introduced from the introduction pipe 43a, receives the heat amount of the load side bracket while passing through the cooling water passage 43c, and is led out from the lead-out pipe 43b. After being cooled by an external device (not shown), the motor of this embodiment is cooled while repeating the circulation introduced into the load side bracket again.
The cooling fins 43d constitute a cooling water channel and are provided to promote heat exchange from the load side bracket to the cooling water.
The load-side bracket is provided with a bolt hole 43e for attachment to an external device, a fastening bolt hole 43f with a frame, and a screw hole 43g for cover attachment.
図4は、固定子コイルの装着前説明図である。
図において、固定子コイル46は、外形状を加圧成形された空芯コイル12個を、絶縁体47を介し、負荷側ブラケット43と密着するように装着される。
固定子コイルと負荷側ブラケットを介する絶縁体は、負荷側ブラケットの表面に処理されたセラミック皮膜であるため、高い絶縁抵抗と高熱伝導性を兼ね備えた材質であり、絶縁を確保しながら、固定子コイルで発生した熱量をブラケットへ放熱し易い。セラミック皮膜は絶縁性を確保するため、封孔処理がなされている。
FIG. 4 is an explanatory diagram before mounting the stator coil.
In the figure, a stator coil 46 is mounted so that 12 air-core coils whose outer shapes are pressure-molded are in close contact with the load-side bracket 43 via an insulator 47.
The insulator through the stator coil and the load-side bracket is a ceramic film treated on the surface of the load-side bracket, so it is a material that combines high insulation resistance and high thermal conductivity. It is easy to dissipate the heat generated in the coil to the bracket. The ceramic coating is sealed to ensure insulation.
また、図5の固定子コイルの絶縁構造説明図に示すように、固定子コイル46は、外側インシュレータ48aと内側インシュレータ48bをもって、固定子鉄心と絶縁され、周方向に貼付された絶縁テープ48cによって、隣りあう固定子コイルと絶縁されている。インシュレータは、薄い成形が可能な流動性の良い樹脂材による射出成形部品、またはシート状の樹脂を加熱し加圧成形したシート加工部品である。
固定子コイルは、絶縁皮膜を持つ丸銅線を巻回してなり、固定子鉄心のスロット部、および、負荷側ブラケットに装着される負荷側コイルエンド部46cは、完全整列巻きに巻回され、丸銅線の交差は全て、反負荷側コイルエンド部46dで行われ、固定子コイルの巻始めコイル端46aと巻終わりコイル端46bは、反負荷側コイルエンド部46dに設けらている。
5, the stator coil 46 has an outer insulator 48a and an inner insulator 48b, and is insulated from the stator core by an insulating tape 48c attached in the circumferential direction. Insulated from adjacent stator coils. The insulator is an injection-molded part made of a resin material having good fluidity that can be thinly molded, or a sheet processed part that is obtained by heating and pressure-molding a sheet-like resin.
The stator coil is formed by winding a round copper wire having an insulating film, and the slot portion of the stator core and the load side coil end portion 46c attached to the load side bracket are wound in completely aligned winding, All intersections of the round copper wires are performed at the anti-load side coil end portion 46d, and the winding start coil end 46a and the winding end coil end 46b of the stator coil are provided at the anti-load side coil end portion 46d.
また、図6の固定子コイルの装着後説明図に示すように、固定子コイル46の負荷側コイルエンド部46cは、内周面と外周面を各々一円筒面上に形成するとともに、端面を一円錐面上に加圧成形された空芯コイルであるため、絶縁体47を介し、リング状に負荷側ブラケットに密着して装着される。
絶縁体は、負荷側ブラケット43の表面に処理されたセラミック皮膜であり、固定子コイルと負荷側ブラケット間に必要な絶縁抵抗と耐圧を確保できる最小な厚みとすることで、固定子コイルから負荷側ブラケットへの放熱性を良好にしている。
固定子コイルには、固定子鉄心のティース部45aが装着される固定子コイルの内側の空隙46dがあり、ティース毎に分割された固定子鉄心45を、外側より絶縁体47に接して装着する。
 結線基板52は、図5に示した固定子コイルの反負荷側コイルエンドの巻始めコイル端と巻終わりコイル端に連結して装着する。
Further, as shown in the explanatory view after the stator coil is mounted in FIG. 6, the load side coil end portion 46c of the stator coil 46 has an inner peripheral surface and an outer peripheral surface formed on one cylindrical surface, and an end surface thereof. Since the air-core coil is pressure-molded on one conical surface, it is attached in close contact with the load-side bracket via the insulator 47 in a ring shape.
The insulator is a ceramic film processed on the surface of the load side bracket 43, and the load is reduced from the stator coil by setting the minimum thickness to ensure the necessary insulation resistance and withstand voltage between the stator coil and the load side bracket. The heat dissipation to the side bracket is improved.
The stator coil has a gap 46d inside the stator coil where the teeth 45a of the stator core are mounted, and the stator core 45 divided for each tooth is mounted in contact with the insulator 47 from the outside. .
The connection board 52 is connected and attached to the winding start coil end and winding end coil end of the anti-load side coil end of the stator coil shown in FIG.
図7は、フレームの装着状態説明図である。
図において、固定子鉄心45を装着した状態で、加熱したフレーム51を固定子鉄心に焼き嵌め装着する。
FIG. 7 is an explanatory diagram of the mounting state of the frame.
In the figure, with the stator core 45 mounted, the heated frame 51 is shrink-fitted and mounted on the stator core.
図8は、固定子コイルの外形状を加圧成形する作業説明図である。
図の( a )において、固定子コイルの外形状を加圧成形するプレス治具は、上パンチ61、下パンチ62、ダイ63とコアピン64よりなり、コイルの装着スペース63aに丸銅線を巻回し、( b )に示すように、上パンチを下方に加圧して固定子コイル46の外形状を加圧成形する。
FIG. 8 is an operation explanatory view for press-molding the outer shape of the stator coil.
In FIG. 2A, the press jig for press-molding the outer shape of the stator coil includes an upper punch 61, a lower punch 62, a die 63 and a core pin 64, and a copper wire is wound around the coil mounting space 63a. As shown in (b), the upper punch is pressed downward to press-mold the outer shape of the stator coil 46.
図9は、周方向より見た固定子コイル外形状の加圧成形説明図である
図において、固定子コイル46は、反負荷側コイルエンド部端面を除き、全ての外形状を加圧成形され、その後加熱して絶縁皮膜を融着し、空芯コイルが完成する。
FIG. 9 is an explanatory view of the pressure molding of the outer shape of the stator coil as viewed from the circumferential direction. In the stator coil 46, the outer shape of the stator coil 46 is pressure-molded except for the end face of the coil end portion on the non-load side. Then, the insulation film is fused by heating to complete the air-core coil.
図10は、本実施例の効果を示す比較図である。
図において、フレームに冷却水路を有する従来構造の回転電機(A)では、定格出力状態において、フレームの冷却水温度を60℃に保つとき、固定子コイルの平均温度は130℃である。固定子コイルとインシュレータは約129℃で接し、インシュレータと固定子鉄心は約102℃で接し、固定子鉄心とフレームは約72℃で接する。熱量の放熱経路が複雑であるため、60℃の冷却水温度に対し、固定子コイルの平均温度は70℃上昇している。
同じ出力と冷却水温度を同じまま、本実施例の構造(B)にすれば、固定子コイルの温度は73℃に低下し、60℃の冷却水温度に対し、固定子コイルの平均温度は13℃上昇に低下する。
固定子コイルから負荷側ブラケットの冷却水へ、より直接的に熱量が移動するからである。
また、もし、( c )に示すように、従来構造の固定子コイルと同じ130℃となる熱量を求めると、( a )に対し567%の熱量発生まで許容でき、出力を約2.4倍まで増大できる。
FIG. 10 is a comparative diagram showing the effect of the present embodiment.
In the figure, in the conventional rotating electrical machine (A) having a cooling water channel in the frame, the average temperature of the stator coil is 130 ° C. when the cooling water temperature of the frame is maintained at 60 ° C. in the rated output state. The stator coil and the insulator are in contact at about 129 ° C., the insulator and the stator core are in contact at about 102 ° C., and the stator core and the frame are in contact at about 72 ° C. Since the heat radiation path of heat is complicated, the average temperature of the stator coil is increased by 70 ° C. with respect to the cooling water temperature of 60 ° C.
If the structure (B) of this embodiment is maintained with the same output and cooling water temperature being the same, the stator coil temperature is reduced to 73 ° C., and the stator coil average temperature is 60 ° C. cooling water temperature. Decreases to 13 ° C rise.
This is because the amount of heat moves more directly from the stator coil to the cooling water of the load side bracket.
Also, as shown in (c), when the amount of heat at 130 ° C., which is the same as that of the stator coil of the conventional structure, is obtained, the generation of heat of 567% can be allowed for (a), and the output is about 2.4 times Can be increased.
以上のように、本実施例の回転電機によれば、固定子コイルにおいて発生した損失熱を、効果的に冷却水路に放熱し、固定子コイルの温度上昇を抑え、許容温度に対してより大きな通電を可能にして、定格出力を向上するコンパクトな水冷構造を備えた回転電機を提供できる。 As described above, according to the rotating electrical machine of the present embodiment, the heat loss generated in the stator coil is effectively radiated to the cooling water channel, the temperature increase of the stator coil is suppressed, and the allowable temperature is larger. It is possible to provide a rotating electrical machine having a compact water-cooling structure that enables energization and improves the rated output.
本発明が特許文献1、2と異なる部分は、ブラケットは、冷却水路を有するとともに、絶縁体を介し、固定子コイルと密着する部分を有する部分である。 The part in which the present invention is different from Patent Documents 1 and 2 is a part in which the bracket has a cooling water channel and a part in close contact with the stator coil via an insulator.
図11は、本発明の第2実施例を示す回転電機の軸方向断面図である。
図において、回転電機は、フレーム91や反負荷側ブラケット84、固定子コイル86を有する固定子と、負荷側ブラケット83を備えており、負荷側ブラケットと反負荷側ブラケットに回転自在に支持される回転子は図示していない。固定子コイルの負荷側コイルエンド部86aは内周面86aaと外周面86abが各々一円筒面上に形成され、端面86acが一平面上に加圧成形されている。負荷側ブラケットは、負荷側コイルエンド部と、負荷側コイルエンド部の内周面、外周面、および端面で密着する凹部の溝部83aを有し、溝部には、絶縁体である高熱伝導性樹脂の射出成形部品を介して、負荷側コイルエンド部が密着する状態でモールド樹脂にて固定されている。
 負荷側ブラケットの外側に冷却水路を有することは、第1実施例と同様である。
負荷側ブラケットは、絶縁体を介し、固定子コイルと密着する部分を有するとともに、冷却水路を有するため、固定子コイルにおいて発生した損失熱による熱量を、効果的に冷却水路に放熱し、固定子コイルの温度上昇を抑え、許容温度に対してより大きな通電を可能にして、定格出力を向上させている。
固定子コイルへの通電は、外部より、図示しないリード線を介して、固定子コイルへ供給される等、その他の構造は、第1実施例と同様である。
FIG. 11 is an axial cross-sectional view of a rotating electrical machine showing a second embodiment of the present invention.
In the figure, the rotating electrical machine includes a frame 91, a counter load side bracket 84, a stator having a stator coil 86, and a load side bracket 83, and is rotatably supported by the load side bracket and the anti load side bracket. The rotor is not shown. The load-side coil end portion 86a of the stator coil has an inner peripheral surface 86aa and an outer peripheral surface 86ab formed on one cylindrical surface, and an end surface 86ac is pressure-formed on one flat surface. The load-side bracket has a load-side coil end portion and a groove portion 83a of a recess that is in close contact with the inner peripheral surface, outer peripheral surface, and end surface of the load-side coil end portion, and the groove portion has a high heat conductive resin that is an insulator. The load-side coil end part is fixed with a molding resin through the injection molded part.
Having a cooling water channel outside the load side bracket is the same as in the first embodiment.
Since the load-side bracket has a portion that is in close contact with the stator coil via an insulator and has a cooling water channel, the heat amount due to heat loss generated in the stator coil is effectively dissipated to the cooling water channel, and the stator The rated output is improved by suppressing the temperature rise of the coil and enabling larger energization with respect to the allowable temperature.
Other structures are the same as in the first embodiment, such that the stator coil is energized from the outside to the stator coil via a lead wire (not shown).
図12は、前記回転電機の径方向断面図である。
図において、回転電機の回転子71は、永久磁石75が1極毎にV字状に回転子鉄心73に設置され、10極の磁極を構成した埋込磁石型構造である。
固定子は、固定子鉄心85のティース部85aに絶縁紙を装着して絶縁処理を行い、絶縁被膜を有する巻線を分布巻で巻回したのち、ティース部に装着して固定子コイル86とし、フレーム91の内周に保持されている。
FIG. 12 is a radial cross-sectional view of the rotating electrical machine.
In the figure, a rotor 71 of a rotating electric machine has an embedded magnet type structure in which a permanent magnet 75 is installed in a rotor core 73 in a V shape for each pole and constitutes a magnetic pole of 10 poles.
The stator is insulated by attaching insulating paper to the teeth 85a of the stator core 85, winding a winding having an insulating coating with distributed winding, and then attaching to the teeth to form a stator coil 86. The inner periphery of the frame 91 is held.
図13は、負荷側コイルエンド部の加圧成形方法を示す説明図である。
図において、( a )は、成形前の様子を示し、( b )は、成形後の様子を示す。
固定子4は、固定子鉄心84のティース部に絶縁被膜を有する巻線を分布巻で巻回したのち、ティース部に装着して固定子コイル86とし、その後、負荷側コイルエンド部86aは、内周面成形冶具92,外周面成形冶具93および端面成形冶具94をもって、内周面86aaと外周面86abが各々一円筒面上に形成され、端面86acが一平面上に形成される。
FIG. 13 is an explanatory view showing a pressure forming method of the load side coil end portion.
In the figure, (a) shows a state before molding, and (b) shows a state after molding.
The stator 4 is formed by winding a winding having an insulating coating on the teeth portion of the stator core 84 in a distributed manner, and then mounting the teeth on the teeth portion to form a stator coil 86. Thereafter, the load side coil end portion 86a is With the inner peripheral surface forming jig 92, the outer peripheral surface forming jig 93, and the end surface forming jig 94, the inner peripheral surface 86aa and the outer peripheral surface 86ab are each formed on one cylindrical surface, and the end surface 86ac is formed on one flat surface.
以上のように、本実施例の回転電機によれば、固定子コイルにおいて発生した損失熱を、効果的に冷却水路に放熱し、固定子コイルの温度上昇を抑え、許容温度に対してより大きな通電を可能にして、定格出力を向上するコンパクトな水冷構造を備えた回転電機を提供できることは、本発明の第1実施例の回転電機と同じである。 As described above, according to the rotating electrical machine of the present embodiment, the heat loss generated in the stator coil is effectively radiated to the cooling water channel, the temperature increase of the stator coil is suppressed, and the allowable temperature is larger. It is the same as the rotating electrical machine of the first embodiment of the present invention that it is possible to provide a rotating electrical machine having a compact water-cooling structure that enables energization and improves the rated output.
本発明が特許文献1、2と異なる部分は、ブラケットは、冷却水路を有するとともに、絶縁体を介し、固定子コイルと密着する部分を有する部分である。
本実施例が、本発明の第1実施例と異なる部分は、空芯コイルを装着するのではなく、巻線を固定子鉄心のスロット部に分布巻に装着する部分である。
The part in which the present invention is different from Patent Documents 1 and 2 is a part in which the bracket has a cooling water channel and a part in close contact with the stator coil via an insulator.
This embodiment is different from the first embodiment of the present invention in that the air core coil is not mounted, but the winding is mounted on the distributed winding in the slot portion of the stator core.
本発明の回転電機は、温度上昇を抑え、従来よりも定格出力を向上する回転電機を提供できるため、EVモータに限らず、広範囲な種類の産業用回転電機にも適用できる。 The rotating electrical machine of the present invention can be applied to a wide variety of industrial rotating electrical machines as well as EV motors because it can provide a rotating electrical machine that suppresses temperature rise and improves the rated output as compared to the conventional one.
1   フレーム
2   固定子鉄心
3   固定子コイル
3a  負荷側コイルエンド
3b  反負荷側コイルエンド
4a  負荷側ブラケット
4b  反負荷側ブラケット
5a  負荷側軸受
5b  反負荷側軸受
6   シャフト
7   回転子
10a 高熱伝導絶縁体
10b 高熱伝導絶縁体
12  冷却水路
21  固定子コイル
21e 負荷側コイルエンド
22  固定子鉄心
24  絶縁体
25  負荷側ブラケット
25e 負荷側ブラケットの溝部
26  反負荷側ブラケット
27  永久磁石
28  回転子鉄心
29  シャフト
31  回転子
32  永久磁石
33  回転子鉄心
34  シャフト
35  負荷側側板
36  反負荷側側板
37  負荷側軸受け
38  反負荷側軸受け
41  エンコーダ部
42  結線部
43  負荷側ブラケット
43a 導入管
43b 導出管
43c 冷却水路
43d 冷却フィン
43e 外部装置への取付け用ボルト孔
43f フレームとの締結ボルト孔
43g カバー取付け用ねじ穴
44  反負荷側ブラケット
45  固定子鉄心
45 ティース部
46  固定子コイル
46a 巻始めコイル端
46b 巻終わりコイル端
46c 負荷側コイルエンド部
46d 反負荷側コイルエンド部
47  絶縁体
48  インシュレータ
48a 外側インシュレータ
48b 内側インシュレータ
48c 絶縁テープ
49  ダストシール
50  カバー
51  フレーム
52  結線基板
53  外側Oリング
54  内側Oリング
55  ボルト
61  上パンチ
62  下パンチ
63  ダイ
63a コイルの装着スペース
64  コアピン
71  回転子
73  回転子鉄心
74  シャフト
75  永久磁石
82  結線部
83  負荷側ブラケット
83a 溝部
84  反負荷側ブラケット
85  固定子鉄心
85a ティース部
86  固定子コイル
86a 負荷側コイルエンド部
86aa 負荷側コイルエンド部の内周面
86ab 負荷側コイルエンド部の外周面
86ac 負荷側コイルエンド部の端面
87  絶縁体
88  絶縁紙
91  フレーム
92  内周面成形冶具
93  外周面成形冶具
94  端面成形冶具
F   荷重
1 Frame 2 Stator Core 3 Stator Coil 3a Load Side Coil End 3b Anti Load Side Coil End 4a Load Side Bracket 4b Anti Load Side Bracket 5a Load Side Bearing 5b Anti Load Side Bearing 6 Shaft 7 Rotor 10a High Thermal Conductive Insulator 10b High heat conduction insulator 12 Cooling channel 21 Stator coil 21e Load side coil end 22 Stator core 24 Insulator 25 Load side bracket 25e Load side bracket groove 26 Anti-load side bracket 27 Permanent magnet 28 Rotor core 29 Shaft 31 Rotor 32 Permanent magnet 33 Rotor core 34 Shaft 35 Load side plate 36 Anti load side plate 37 Load side bearing 38 Anti load side bearing 41 Encoder portion 42 Connection portion 43 Load side bracket 43a Inlet tube 43b Lead tube 43c Cooling channel 43d Cooling fin 43e Outside Bolt hole 43f for attachment to the part device Fastening bolt hole 43g with the frame Screw hole 44 for cover attachment Anti-load side bracket 45 Stator core 45 Teeth part 46 Stator coil 46a Winding start coil end 46b Winding end coil end 46c Load side Coil end portion 46d Anti-load side coil end portion 47 Insulator 48 Insulator 48a Outer insulator 48b Inner insulator 48c Insulating tape 49 Dust seal 50 Cover 51 Frame 52 Connection board 53 Outer O-ring 54 Inner O-ring 55 Bolt 61 Upper punch 62 Lower punch 63 Die 63a Coil mounting space 64 Core pin 71 Rotor 73 Rotor core 74 Shaft 75 Permanent magnet 82 Connection portion 83 Load side bracket 83a Groove portion 84 Anti-load side bracket 85 Stator core 85a Ys portion 86 Stator coil 86a Load side coil end portion 86aa Load side coil end portion inner circumferential surface 86ab Load side coil end portion outer circumferential surface 86ac Load side coil end portion end surface 87 Insulator 88 Insulating paper 91 Frame 92 Inner circumference Surface forming jig 93 Peripheral surface forming jig 94 End surface forming jig F Load

Claims (6)

  1. 回転自在に支持された概円筒形の回転子と、固定子と、前記固定子を支持するブラケットと、水冷構造を備えた回転電機において、
    前記ブラケットは、冷却水路を有するとともに、絶縁体を介し、固定子コイルと密着する部分を有することを特徴とする回転電機。
    In a rotating electrical machine having a substantially cylindrical rotor that is rotatably supported, a stator, a bracket that supports the stator, and a water cooling structure,
    The rotating electrical machine according to claim 1, wherein the bracket includes a cooling water channel and a portion that is in close contact with the stator coil via an insulator.
  2. 前記冷却水路は、モータ外部側に開口部分を有し、モータ内部側に開口部分を有しないことを特徴とする請求項1記載の回転電機。 The rotating electrical machine according to claim 1, wherein the cooling water passage has an opening portion on an outer side of the motor and does not have an opening portion on an inner side of the motor.
  3. 前記固定子コイルは、外形状を加圧成形された空芯コイルを、固定子鉄心のスロット部に装着したことを特徴とする請求項1記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein the stator coil includes an air-core coil whose outer shape is press-molded and mounted in a slot portion of the stator core.
  4. 前記固定子コイルは、固定子鉄心のスロット部に分布巻に装着され、外形状を加圧成形されたコイルエンド部を有することを特徴とする請求項1記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein the stator coil has a coil end portion that is mounted in a distributed winding in a slot portion of a stator iron core and whose outer shape is press-molded.
  5. 前記絶縁体は、リング状成形品であり、前記コイルエンド部と前記ブラケットの間に装着されたことを特徴とする請求項1記載の回転電機。 The rotating electrical machine according to claim 1, wherein the insulator is a ring-shaped molded product and is mounted between the coil end portion and the bracket.
  6. 前記絶縁体は、前記ブラケットの表面に処理されたセラミック皮膜であることを特徴とする請求項1記載の回転電機。 The rotating electrical machine according to claim 1, wherein the insulator is a ceramic film processed on a surface of the bracket.
PCT/JP2010/070852 2010-01-28 2010-11-24 Rotating electric machine WO2011092928A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011551687A JPWO2011092928A1 (en) 2010-01-28 2010-11-24 Rotating electric machine
CN2010800571756A CN102668338A (en) 2010-01-28 2010-11-24 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010016484 2010-01-28
JP2010-016484 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011092928A1 true WO2011092928A1 (en) 2011-08-04

Family

ID=44318929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070852 WO2011092928A1 (en) 2010-01-28 2010-11-24 Rotating electric machine

Country Status (3)

Country Link
JP (1) JPWO2011092928A1 (en)
CN (1) CN102668338A (en)
WO (1) WO2011092928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587641A3 (en) * 2011-10-27 2016-08-24 Kobelco Construction Machinery Co., Ltd. Motor having heat transfer sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526722B (en) * 2023-03-10 2023-12-19 广东白云学院 Axial magnetic flux magnetic-yoke-free hub motor with ceramic air cooling structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158200A (en) * 2006-03-20 2006-06-15 Hitachi Ltd Ac generator for vehicle
JP2007165140A (en) * 2005-12-14 2007-06-28 Nec Tokin Corp Electromagnetic relay
WO2008149649A1 (en) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki Revolving electric device, and its manufacturing method
JP2009545861A (en) * 2006-04-04 2009-12-24 カオ グループ、インク. Semiconductor light source with 3D lead frame for illuminating physical space

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197311A (en) * 1998-12-25 2000-07-14 Toyota Motor Corp Coil-cooling structure of a rotary electric machine
JP3877894B2 (en) * 1999-01-13 2007-02-07 三菱電機株式会社 Brushless AC generator for vehicles
JP3877898B2 (en) * 1999-02-23 2007-02-07 三菱電機株式会社 AC generator for vehicles
US6633098B2 (en) * 2001-08-29 2003-10-14 Hitachi, Ltd. Alternator for use in a vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165140A (en) * 2005-12-14 2007-06-28 Nec Tokin Corp Electromagnetic relay
JP2006158200A (en) * 2006-03-20 2006-06-15 Hitachi Ltd Ac generator for vehicle
JP2009545861A (en) * 2006-04-04 2009-12-24 カオ グループ、インク. Semiconductor light source with 3D lead frame for illuminating physical space
WO2008149649A1 (en) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki Revolving electric device, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587641A3 (en) * 2011-10-27 2016-08-24 Kobelco Construction Machinery Co., Ltd. Motor having heat transfer sheet

Also Published As

Publication number Publication date
JPWO2011092928A1 (en) 2013-05-30
CN102668338A (en) 2012-09-12

Similar Documents

Publication Publication Date Title
US10566876B2 (en) Axial gap rotary electric machine
JP5365476B2 (en) Rotating electric machine
JP5600938B2 (en) Rotating electric machine and manufacturing method thereof
EP2463990B1 (en) Rotary electric machine
WO2013099343A1 (en) Axial gap rotating electrical machine
JP6243208B2 (en) Motor and motor manufacturing method
US9954407B2 (en) Tooth for an electric motor or generator
JP5470768B2 (en) Rotating electric machine and manufacturing method thereof
JP6445386B2 (en) Electric machine, coil assembly for electric machine, and method for manufacturing the coil assembly
JP2010136571A (en) Stator for rotating electrical machine
JP5292973B2 (en) Rotating electric machine stator and rotating electric machine
JP2013135611A (en) Electric machine with encapsulated end turns
JP6768142B2 (en) Axial gap type rotary electric machine
JP2006042500A (en) Rotary electric machine
JP6331219B2 (en) Movable electric machine, coil manufacturing method
WO2011092928A1 (en) Rotating electric machine
JP2011193629A (en) Rotary electric machine
JP2004112961A (en) Plastic molded motor
JP2009130958A (en) Rotating electric machine
JP2011024365A (en) Slotless motor
JP2015042113A (en) Stator and motor
JP3470673B2 (en) Rotating electric machine
JP2006014471A (en) Motor
JP6197497B2 (en) Stator of rotating electric machine and electric motor using this stator
JP5434316B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057175.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551687

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844682

Country of ref document: EP

Kind code of ref document: A1