WO2011092817A1 - Power transmission device controller - Google Patents

Power transmission device controller Download PDF

Info

Publication number
WO2011092817A1
WO2011092817A1 PCT/JP2010/051132 JP2010051132W WO2011092817A1 WO 2011092817 A1 WO2011092817 A1 WO 2011092817A1 JP 2010051132 W JP2010051132 W JP 2010051132W WO 2011092817 A1 WO2011092817 A1 WO 2011092817A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
power transmission
exhaust gas
transmission device
chamber
Prior art date
Application number
PCT/JP2010/051132
Other languages
French (fr)
Japanese (ja)
Inventor
倫生 吉田
佐野 敏成
齋藤 達也
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011501450A priority Critical patent/JP5177279B2/en
Priority to CN2010800022053A priority patent/CN102216652B/en
Priority to PCT/JP2010/051132 priority patent/WO2011092817A1/en
Publication of WO2011092817A1 publication Critical patent/WO2011092817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a device for controlling a power transmission state in a device for transmitting power, and particularly to a control device for controlling a power transmission state by changing a pressure to be applied.
  • Japanese Patent Application Laid-Open No. 11-2316 An example of a vehicle configured to control the power transmission state of the power transmission device by controlling the operation of the movable member by the pressure of the fluid is described in Japanese Patent Application Laid-Open No. 11-2316.
  • the vehicle described in Japanese Patent Application Laid-Open No. 11-2316 is configured to increase or decrease the torque output from the engine and output it to the drive wheels by a transmission.
  • the engine has the same configuration as a conventionally known internal combustion engine for a vehicle, and generates mechanical power by burning a mixture of intake air and fuel adjusted by a throttle valve inside the cylinder. It is a heat engine. Therefore, exhaust gas with high pressure is generated by the combustion of the fuel, and the exhaust gas is discharged outside the vehicle through the exhaust pipe.
  • the transmission described in JP-A-11-2316 has a drive shaft and a driven shaft, and is provided with a drive pulley that rotates integrally with the drive shaft.
  • the drive pulley includes a first movable disk that can move in the axial direction and a first fixed disk that does not move in the axial direction.
  • a first engagement groove is formed between the first movable disk and the first fixed disk.
  • a backup disk is fixed to the drive shaft, and a spherical weight is disposed between the first movable disk and the backup disk. The weight is configured to be movable in the radial direction of the drive shaft, and the weight moves outward in the radial direction by centrifugal force.
  • a driven pulley that rotates integrally with the driven shaft
  • the driven pulley includes a second movable disk that is movable in the axial direction and a second fixed disk that is not movable in the axial direction.
  • a second engagement groove is formed between the second movable disk and the second fixed disk.
  • a spring that pushes the second movable disk toward the second fixed disk is provided.
  • a negative pressure introduction chamber is formed in the drive pulley, and the negative pressure introduction chamber is connected downstream of the throttle valve in the intake pipe of the engine, so that the negative pressure in the intake pipe acts on the negative pressure introduction chamber. Is configured to do.
  • a V-belt is wound around the drive pulley and the driven pulley configured as described above.
  • the force by which the spring pushes the second movable disk becomes larger than the force by which the weight pushes the first movable disk, the width of the second engagement groove in the driven pulley is narrowed, and the first engagement in the drive pulley is reduced.
  • the width of the groove is enlarged. In this way, the V-belt wrapping radius in the drive pulley is relatively small, and the transmission gear ratio is relatively large. As a result, the engine braking force is increased.
  • Japanese Patent Laid-Open No. 61-228149 a control device for a belt-type continuously variable transmission is described in Japanese Patent Laid-Open No. 62-127550, and a hydraulic piston device is described.
  • Japanese Patent Application Laid-Open No. 8-284905 describes a gas energy conversion device that converts the energy of exhaust gas into the energy of another medium.
  • Japanese Patent Application Laid-Open No. 2005-9504 discloses a vending machine that uses exhaust heat. 6-162339.
  • the gear ratio of the transmission is increased by guiding the intake pipe negative pressure of the internal combustion engine to the negative pressure introduction chamber of the transmission when the vehicle is decelerated. Shifting. That is, the intake pipe negative pressure of the internal combustion engine is used for control for increasing the engine braking force when the vehicle is decelerated.
  • exhaust gas generated during fuel combustion is released into the atmosphere via an exhaust pipe. Conventionally, no consideration has been given to using the energy of the exhaust gas, particularly the pressure of the exhaust gas, and there is still room for improvement in effectively using the energy of the exhaust gas.
  • the present invention has been made paying attention to the above technical problem, and is a power transmission device capable of improving energy efficiency by effectively using the pressure of exhaust gas generated when fuel is burned in an internal combustion engine.
  • An object of the present invention is to provide a control device.
  • the present invention transmits a power to a power transmission device to which power is input, a movable member movably provided to control the power transmission state of the power transmission device, and pressure to be transmitted.
  • An internal combustion engine for converting the thermal energy generated when the fuel is burned into kinetic energy and outputting the kinetic energy, in the control device of the power transmission device including a pressure chamber that generates a force applied to the movable member
  • a pressure transmission mechanism that transmits the pressure of exhaust gas generated when fuel is burned in the engine to the pressure chamber, and the power transmission from the exhaust gas when the pressure of the exhaust gas is transmitted to the pressure chamber by the pressure transmission mechanism.
  • a heat transfer control mechanism for controlling the amount of heat transferred to the apparatus.
  • the present invention is provided with a pressure conversion mechanism that converts the pressure of the exhaust gas transmitted from the pressure transmission mechanism into the pressure of another fluid and transmits the pressure to the pressure chamber.
  • the pressure conversion mechanism is formed in a hollow internal casing, a first fluid chamber formed in the casing, to which the pressure of the exhaust gas is transmitted from the pressure transmission mechanism, and formed in the casing.
  • the present invention further includes a cooling chamber in which the heat transfer control mechanism is provided in the casing and supplied with a refrigerant that exchanges heat with the piston mechanism. And when the heat of the exhaust gas is transmitted from the first fluid chamber to the piston mechanism, the heat of the piston mechanism is transmitted to the refrigerant. It is a control device.
  • the present invention provides a control device for a power transmission device, wherein, in addition to the above configuration, the piston mechanism is configured to be hollow, and the cooling chamber is provided inside the piston mechanism. is there.
  • the present invention is provided with a passage for supplying a coolant to the cooling chamber, and the heat transfer control mechanism includes a valve for opening and closing the passage. It is a control apparatus of a power transmission device.
  • the present invention further includes an oil sump in which oil for lubricating the power transmission device is stored, and the valve includes a temperature of the power transmission device or an oil temperature of the oil sump.
  • the passage is opened when the temperature is equal to or higher than a predetermined temperature, and the passage is closed when the temperature of the power transmission device or the temperature of the oil reservoir is lower than a predetermined temperature. It is the control apparatus of the power transmission device characterized by being comprised.
  • the pressure of the exhaust gas generated when the fuel is burned in the internal combustion engine is transmitted to the pressure chamber by the pressure transmission mechanism.
  • the power transmission state of the power transmission device can be controlled. Therefore, the pressure of the exhaust gas discharged from the internal combustion engine can be used effectively. Further, when the pressure of the exhaust gas is transmitted to the pressure chamber by the pressure conversion mechanism, the amount of heat transmitted from the exhaust gas to the power transmission device can be controlled.
  • the pressure of the exhaust gas transmitted from the pressure transmission mechanism when the pressure of the exhaust gas transmitted from the pressure transmission mechanism is transmitted to the first fluid chamber, the pressure of the first fluid chamber passes through the piston mechanism. Thus, the pressure is transmitted to the other fluid in the second fluid chamber, and the pressure of the other fluid is transmitted to the pressure chamber.
  • the amount of heat transferred from the exhaust gas to the power transmission device can be controlled by opening and closing the passage for supplying the refrigerant to the cooling chamber by the valve.
  • the passage is opened by the valve, The temperature rise of the transmission device can be suppressed.
  • the passage is closed by a valve, and the heat of the exhaust gas is transmitted to the power transmission device to warm up. .
  • the control device of the power transmission device according to the present invention is a device for controlling the pressure in the pressure chamber, and in particular, the control device capable of controlling the power transmission state by transmitting the pressure of the exhaust gas of the internal combustion engine to the pressure chamber. It is.
  • the gear ratio between the rotating members constituting the power transmission device, the torque capacity between the rotating members constituting the power transmission device, and the one constituting the power transmission device The rotation direction of the other rotation member with respect to the other rotation member is included. Specific examples of the present invention will be described below with reference to the drawings.
  • the vehicle 1 shown in FIG. 1 has an engine 2.
  • This engine 2 is configured in the same manner as a conventionally known engine, and is a prime mover that converts thermal energy generated when fuel is burned into kinetic energy and outputs it, and a mixture of fuel and air is a combustion chamber.
  • the exhaust gas that is combusted (not shown) and generated during combustion of the air-fuel mixture is discharged to the exhaust pipe 9 via the exhaust valve.
  • a cooling device for cooling the engine 2 with a refrigerant is provided.
  • the cooling device is a device that cools the engine 2 by discharging the refrigerant from the water pump and supplying the refrigerant to a water jacket and a refrigerant flow passage formed in the engine 2 to remove heat from the refrigerant.
  • the exhaust pipe is connected to the exhaust purification catalyst 11.
  • the exhaust purification catalyst 11 is the same as a conventionally known catalyst, and includes contaminants such as carbon monoxide (CO), hydrocarbons (HC) contained in the exhaust gas discharged from the engine 2 to the exhaust pipe 9. ), Nitrogen oxide (NOx) and the like are reduced to purify the exhaust gas.
  • the vehicle 1 has driving wheels (not shown), and is configured such that torque is transmitted to the driving wheels to generate driving force.
  • the motive power of the engine 2 is configured to be transmitted to driving wheels, and a continuously variable transmission 12 that forms part of a power transmission path from the engine 2 to the driving wheels is provided.
  • the continuously variable transmission 12 includes a primary pulley (drive pulley) 13 and a secondary pulley (driven pulley) 14, and a belt type continuously variable transmission configured by winding a belt 15 around the primary pulley 13 and the secondary pulley 14. This is a transmission that can change the ratio between the rotation speed of the primary pulley 13 and the rotation speed of the secondary pulley 14, that is, the gear ratio steplessly (continuously).
  • the primary pulley 13 is provided so as to be rotatable about a rotation center axis, and the primary pulley 13 is provided with a fixed piece 16 that cannot move in a direction along the rotation center axis, and a rotation center axis.
  • a movable piece 17 configured to be movable in the direction is provided, and a belt 15 is wound between the fixed piece 16 and the movable piece 17.
  • a primary pressure chamber 18 is formed that generates a thrust (pressing force) in a direction in which the movable piece 17 approaches the fixed piece 16 along the rotation center axis.
  • the primary pressure chamber 18 is constituted by a cylindrical cylinder.
  • the pressure in the primary pressure chamber 18 may be directly transmitted to the movable piece 17, or the pressure in the primary pressure chamber 18 is transmitted to the movable piece 17 via a piston (not shown). You may be comprised so that.
  • the secondary pulley 14 is provided so as to be rotatable about the rotation center axis, and the secondary pulley 14 is arranged along the rotation center axis and a fixed piece 19 that cannot move in the direction along the rotation center axis.
  • the movable piece 20 is configured to be movable in a predetermined direction, and the belt 15 is wound between the fixed piece 19 and the movable piece 20.
  • a secondary pressure chamber 21 is provided that generates a force that moves the movable piece 20 closer to the fixed piece 19 along the rotation center axis.
  • the secondary pressure chamber 21 is provided with a spring that applies a preload to the movable piece 20.
  • a pressurizing mechanism capable of changing the force applied to the movable piece 20, for example, a torque cam (not shown) is provided.
  • the torque cam is configured so that the torque of the electric motor can be converted into a linear pressing force and applied to the movable piece 20.
  • a pressure transmission mechanism for transmitting the pressure of the exhaust gas discharged from the engine 2 to the exhaust pipe 9 to the primary pressure chamber 18 is provided, an example of which is based on FIG. I will explain.
  • the pressure transmission mechanism 22A is provided in an exhaust gas passage route from the exhaust pipe 9 to the exhaust purification catalyst 11.
  • the pressure transmission mechanism 22 ⁇ / b> A has a first conduit 24 having one end connected to the exhaust pipe 9 and the other end connected to the inlet side (primary side) of the decompression mechanism 23.
  • the pressure reducing mechanism 23 includes a known pressure reducing valve that makes the pressure on the outlet side lower than the pressure on the inlet side.
  • a second conduit 25 having one end connected to the outlet side (secondary side) of the decompression mechanism 23 and the other end connected to the exhaust purification catalyst 11 is provided.
  • a branch pipe 26 branched from the first pipe 24 is provided.
  • the branch line 26 is provided with an orifice 27.
  • the orifice 27 is a mechanism for reducing the flow velocity of the exhaust gas flowing from the first pipeline 24 into the branch pipeline 26.
  • the orifice 27 is configured to have a smaller cross-sectional area than other portions in the branch pipeline 26.
  • a bypass pipe 28 is provided for connecting the second pipe 25 with the downstream of the orifice 27 in the branch pipe 26.
  • downstream means downstream in the flow direction of exhaust gas.
  • the bypass pipe 28 constitutes a path for releasing the pressure of the branch pipe 26 to the second pipe 25.
  • a throttle valve 29 is provided in the bypass line 28.
  • the throttle valve 29 is a pressure control valve that controls the pressure of the branch pipe 26 by adjusting the cross-sectional area of the bypass pipe 28, and can be configured by, for example, a butterfly valve.
  • the opening of the throttle valve 29 is controlled, the pressure in the branch line 26 is released to the second line 25 due to the pressure difference between the pressure in the first line 24 and the second line 25. Since the exhaust gas passes through the first conduit 24, the second conduit 25, the branch conduit 26, and the bypass conduit 28, these conduits are formed using metal tubes having excellent heat resistance and durability. ing.
  • a pressure conversion mechanism 37 that converts the pressure of the exhaust gas into the pressure of another pressure medium and transmits it to the primary pressure chamber 18 in the path from the pressure transmission mechanism 22A to the primary pressure chamber 18 is provided. Is provided.
  • the pressure conversion mechanism 37 has cylindrical cylinders 38 and 39.
  • the cylinders 38 and 39 are arranged on the same axis, and the cylinder 38 and the Linda 39 are not in contact with each other.
  • a piston 40 is provided in the cylinder 38 so as to be movable in the direction along the axis of the cylinder 38 while being in contact with the inner peripheral surface thereof.
  • the first fluid chamber 42 partitioned by the piston 40 is provided in the cylinder 38. Is formed.
  • the first fluid chamber 42 is connected to the branch pipe 26 of the pressure transmission mechanism 22A. That is, the exhaust gas pressure in the branch pipe 26 is configured to be transmitted to the first fluid chamber 42. Further, since high temperature exhaust gas flows into the first fluid chamber 42, the cylinder 38 is made of a metal material having excellent heat resistance. On the other hand, a piston 41 that is movable in a direction along the axis of the cylinder 39 while being in contact with the inner peripheral surface thereof is provided in the cylinder 39. Further, the piston 40 and the piston 41 are connected by a shaft 44, and the piston 40 and the piston 41 are configured to reciprocate integrally.
  • the piston 40, the piston 44, and the shaft 44 are made of a metal material that conducts heat, for example, iron.
  • a second fluid chamber 43 partitioned by a piston 41 is formed in the cylinder 39, and this second fluid chamber 43 is connected to the primary pressure chamber 18.
  • a pressure medium is sealed from the second fluid chamber 43 to the entire primary pressure chamber 18.
  • this pressure medium oil, air, etc. can be used, for example.
  • the pressure of the exhaust gas in the first fluid chamber 42 is transmitted to the pressure medium in the second fluid chamber 43 via the piston 40 and the piston 41, and the second fluid chamber. 43 pressure is transmitted to the primary pressure chamber 18.
  • a heat transfer control mechanism for controlling the amount of heat transferred from the exhaust gas in the first fluid chamber 42 to the continuously variable transmission 12 is provided, and the configuration will be described.
  • a cooling chamber A1 is formed between the piston 40 and the piston 41 inside the cylinder 38 and the cylinder 39, and the shaft 44 is disposed in the cooling chamber A1.
  • a passage 52 that connects the cooling chamber A1 and the outside of the cylinders 38 and 39 is formed between the opening end of the cylinder 38 and the opening end of the cylinder 39. That is, the passage 52 is formed over the entire circumference of the cylinders 38 and 39.
  • the refrigerant is supplied from the outside of the cylinders 38 and 39 to the cooling chamber A1 via the passage 52, and is also discharged to the outside of the cylinders 38 and 39 via the passage 52.
  • the refrigerant supplied to the cooling chamber A1 includes air, oil, water, and alcohol.
  • the air flow when the vehicle 1 travels can be configured to pass through the cooling chamber A1.
  • it can also comprise so that the cooling water which cools the engine 2 may be supplied to cooling chamber A1.
  • a shutter 45 that opens and closes the passage 52 is provided outside the cylinders 38 and 39.
  • the shutter 45 is formed in a cylindrical shape, and the shutter 45 is attached to the outer periphery of the cylinders 38 and 39.
  • the shutter 45 is movable in a direction along the axis of the cylinders 38 and 39.
  • an actuator 46 that reciprocates the shutter 45 in the direction along the axis of the cylinders 38 and 39 and stops the shutter 45 is provided.
  • an actuator configured to convert the torque of the electric motor into a reciprocating motion of the plunger, or an actuator configured to reciprocate the plunger by controlling energization to the electromagnetic solenoid can be used.
  • a shutter 45 is connected to the plungers of these actuators. When the shutter 45 moves to open the passage 52, the cooling chamber A1 communicates with the outside of the cylinders 38 and 39, and the refrigerant can pass through the cooling chamber A1. On the other hand, when the shutter 45 moves and closes the passage 52, the cooling chamber A1 formed between the cylinder 38 and the cylinder 39 is blocked from the outside of the cylinders 38 and 39. That is, the shutter 45 and the actuator 46 function as valves that open and close the passage 52.
  • the cooling chamber A1, the shutter 45, and the actuator 46 constitute a heat transfer control mechanism 47.
  • the continuously variable transmission 12 is provided in a hollow casing (not shown), and an oil reservoir is formed at the bottom of the casing.
  • the casing is provided with a gear that is rotated by the power of the engine 2 being transmitted, and the rotation of the gear causes the oil in the oil reservoir to be scraped up and supplied to the lubricated part.
  • the lubricated part is lubricated.
  • These parts to be lubricated include bearings for rotatably supporting the primary pulley 13 and the secondary pulley 14, meshing portions of the planetary gear mechanisms constituting the forward / reverse switching device, the belt 15 of the continuously variable transmission 12 and the primary A contact portion with the pulley 13 or the secondary pulley 14 is included.
  • a control unit (electronic control device) 30 for controlling the engine 2, the continuously variable transmission 12, the pressure transmission mechanism 22A, and the actuator 46 is provided.
  • the control unit 30 includes various information on the vehicle 1 such as accelerator opening, vehicle speed, engine speed, input speed and output speed of the continuously variable transmission 12, pressure in the primary pressure chamber 18, and secondary pressure chamber 21.
  • the sensor and switch signals for detecting the pressure, the temperature of the continuously variable transmission 12, the oil temperature information of the oil reservoir, and the like are input.
  • the control unit 30 outputs a signal for controlling the engine torque and a signal for controlling the gear ratio and torque capacity of the continuously variable transmission 12.
  • the heat energy when the air-fuel mixture burns in the combustion chamber is converted into kinetic energy, and torque is output from the crankshaft.
  • This engine torque is transmitted to the drive wheels via the continuously variable transmission 12.
  • the required driving force of the vehicle 1 is obtained based on the vehicle speed and the accelerator opening, and the target engine output is obtained based on the required driving force.
  • the optimal fuel consumption line used for controlling the actual engine output is stored in the control unit 30 in advance.
  • the target engine speed and the target engine torque are obtained so that the actual engine output is along the optimum fuel consumption line.
  • the gear ratio of the continuously variable transmission 12 is controlled in order to bring the actual engine speed close to the target engine speed.
  • the opening degree of the electronic throttle valve, the fuel injection amount, and the like are controlled in order to bring the actual engine torque close to the target engine torque.
  • the exhaust gas generated in the combustion chamber of the engine 2 reaches the first conduit 24 of the pressure transmission mechanism 22A via the exhaust pipe 9.
  • the pressure p2 of the second pipeline 25 becomes lower than the pressure p1 of the first pipeline 24.
  • the exhaust gas flowing into the second pipe 25 is purified by the exhaust purification catalyst 11 and discharged into the atmosphere.
  • a downshift occurs in which the gear ratio of the continuously variable transmission 12 becomes relatively large.
  • the opening degree of the throttle valve 29 can be controlled, the pressure of the primary pressure chamber 18 can be maintained constant, and the transmission ratio of the continuously variable transmission 12 can be controlled constant.
  • the energy of the exhaust gas generated by the combustion of fuel is transmitted to the primary pressure chamber 18, and the pressure of the primary pressure chamber 18 is controlled,
  • the transmission gear ratio of the continuously variable transmission 12 can be controlled. For this reason, in order to generate the pressure transmitted to the primary pressure chamber 18, it is not necessary to provide a hydraulic source such as a hydraulic pump having a large leakage loss. In addition, since the power of the engine 2 can be prevented from being consumed for driving the hydraulic pump, fuel efficiency is improved. Further, since the pressure transmission mechanism 22A is not provided with a bearing that supports a rotating portion like a hydraulic pump, power loss of the engine 2 can be suppressed. Further, as in the case of using a hydraulic pump, it is not necessary to provide a valve body that forms an oil passage leading to the primary pressure chamber 18, and the continuously variable transmission 12 can be downsized.
  • the heat of the exhaust gas is transferred to the piston 40, the shaft 44, There is a possibility of being transmitted to the continuously variable transmission 12 via the piston 41 and the pressure medium. Therefore, in this specific example, the amount of heat transferred from the exhaust gas to the continuously variable transmission 12 can be controlled by controlling the heat transfer control mechanism 47.
  • the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature. In this case, the viscosity of the oil that lubricated the continuously variable transmission 12 is relatively high, and agitation loss occurs when the gear scoops up the oil in the oil reservoir. Further, when oil in the oil reservoir is supplied to the lubricated portion including the rotating element, there is a possibility that the power loss of the rotating element increases.
  • the shutter 45 is controlled to be closed.
  • the cooling chamber A1 is closed, and the temperature of the shaft 44 is less likely to decrease.
  • the heat of the shaft 44 is transmitted to the continuously variable transmission 12 via the piston 41 and the pressure medium, and warming up of the continuously variable transmission 12 is promoted.
  • the warming-up of the continuously variable transmission 12 is promoted, the temperature of the oil that has lubricated the continuously variable transmission 12 rises, and the viscosity of the oil relatively increases, and the stirring loss and Power loss can be suppressed.
  • the continuously variable transmission 12 or the temperature of the oil reservoir is equal to or higher than a predetermined temperature, that is, when the continuously variable transmission 12 is warmed up, the continuously variable transmission is performed. There is no need to warm the machine 12 any further. Therefore, the shutter 45 is opened to allow the refrigerant to pass through the cooling chamber A1. Then, even if the heat of the exhaust gas is transmitted from the piston 40 to the shaft 44 and the temperature of the shaft 44 rises, heat transfer by forced convection occurs between the shaft 44 and the refrigerant, and the temperature of the shaft 44 decreases. The temperature rise of the continuously variable transmission 12 can be suppressed.
  • the amount of heat transferred from the exhaust gas to the continuously variable transmission 12 is controlled by opening and closing the shutter 45 based on the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir. can do.
  • the heat transfer control mechanism 48 in the third specific example includes an actuator 49 that controls opening and closing of the shutter 45 in addition to the cooling chamber A1 and the shutter 45.
  • the actuator 49 has a cylindrical cylinder 50 formed continuously with the shutter 45.
  • the cylinder 50 is provided so as to surround the outside of the cylinder 39, and the cylinder 39 and the cylinder 50 are arranged coaxially.
  • the cylinder 50 has an L-shaped cross section in a plane in the direction along the axis.
  • the cylinder 39 also has a portion whose cross-sectional shape in the plane in the direction along the axis is L-shaped, and a gas chamber 51 is formed between the cylinder 39 and the cylinder 50. Further, the cylinder 50 is attached to the cylinder 39 so as to be movable in the direction along the axis, and a stopper (not shown) for restricting the movement range of the cylinder 50 is provided.
  • a sealing device (not shown) is provided between the cylinder 39 and the cylinder 50, so that the gas chamber 51 is kept airtight.
  • the gas chamber 51 contracts when the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir is lower than a predetermined temperature, while the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir is reduced. Is filled with an inert gas having a characteristic of expanding.
  • a heat transfer member (not shown) for transmitting the heat of the oil reservoir or the heat of the continuously variable transmission 12 to the gas chamber 51 can be provided.
  • the heat transfer member aluminum, an aluminum alloy, or the like can be used. In addition, you may comprise so that the heat
  • the inert gas expands and the pressure in the gas chamber 51 is higher than the atmospheric pressure. become. Then, the shutter 45 is pushed by the pressure of the inert gas, the passage 52 is opened, and the refrigerant enters and exits the cooling chamber A1 through the passage 52. Therefore, as in the first specific example, the heat of the shaft 44 is transmitted to the refrigerant, the shaft 44 is cooled, and the temperature increase of the continuously variable transmission 12 is suppressed.
  • the shutter 45 and the actuator 49 function as a valve that opens and closes the passage 52, whereby the amount of heat transmitted from the exhaust gas to the continuously variable transmission 12 can be controlled.
  • the pressure transmission mechanism 22A shown in the third specific example is configured like the pressure transmission mechanism 22A shown in FIG.
  • the heat transfer control mechanism 53 in the third specific example includes the shutter 45 described in the first specific example, and a movable piece 54 provided continuously to the shutter 45 and movable in a direction along the axis of the cylinder 39.
  • the movable piece 54 and the cylinder 39 are connected by a shape memory member 55.
  • the shape memory member 55 has a relatively long length in the direction along the axis of the cylinder 39 when the temperature is equal to or higher than a predetermined temperature (transformation temperature), and the axis of the cylinder 39 when the temperature is lower than the predetermined temperature. It has shape memory characteristics such that the length along the direction is relatively short.
  • a shape memory alloy or a shape memory resin can be used as the shape memory member 55.
  • This shape memory alloy includes a Ni—Ti alloy and a Cu—Zn—Al alloy.
  • Shape memory resins include polyisoprene and styrene / butadiene copolymers.
  • the heat of the oil reservoir or the heat of the continuously variable transmission 12 is transmitted to the shape memory member 55.
  • a bimetal may be used in place of the shape memory member 55. This bimetal is obtained by joining two metal plates having different thermal expansion coefficients.
  • the same operational effects as those of the first specific example can be obtained with respect to the same components as the first specific example.
  • the opening / closing action of the shutter 45 is different from that of the first specific example.
  • the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature as described above, the length of the shape memory member 55 is relatively long. Since the length is shorter, the passage 52 is closed by the shutter 45. Then, the refrigerant is confined in the cooling chamber A1, the temperature of the shaft 44 rises, and the heat of the exhaust gas is transmitted to the continuously variable transmission 12 and warmed up by the same action as in the first specific example.
  • the heat transfer control mechanism 53 functions as a valve that opens and closes the passage 52, whereby the amount of heat transferred from the exhaust gas to the continuously variable transmission 12 can be controlled.
  • the pressure transmission mechanism 22A shown in the fourth specific example is configured like the pressure transmission mechanism 22A shown in FIG.
  • the pressure conversion mechanism 37 shown in FIG. 5 is basically configured in the same manner as the first specific example.
  • the heat transfer control mechanism 56 in the fourth specific example has a cooling chamber 57 formed with the shaft 44 hollow, and an inlet 58 and an outlet 59 formed on the shaft 44 and connected to the cooling chamber 57. is doing.
  • a passage 60 is connected to the inlet 58.
  • the passage 60 is a passage for introducing the refrigerant into the cooling chamber 57, and a valve 61 for opening and closing the passage 60 is provided.
  • the valve 61 is configured to be opened and closed based on the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir.
  • the valve 61 when the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature, the valve 61 is closed, while the temperature of the second fluid chamber 43 or the oil
  • the valve 61 is configured to be opened when the oil temperature in the pool is equal to or higher than a predetermined temperature.
  • the shape memory member While the shape memory member is connected to the valve body of the valve 61, the heat of the continuously variable transmission 12 or the heat of the oil sump is transmitted to the shape memory member, and the shape of the shape memory member changes, What is necessary is just to comprise so that a valve body may operate
  • the shape memory member those mentioned in the third specific example can be used.
  • valve 61 a solenoid valve is used as the valve 61, and the heat of the continuously variable transmission 12 or the heat of the oil reservoir is detected by a sensor, and the control unit 30 controls the opening / closing of the valve 61 based on the detection result.
  • a pipe line 62 is connected to the outlet 59 so that the refrigerant in the cooling chamber 57 goes out of the cylinders 38 and 39 via the pipe line 62. Since the shaft 44 moves in the direction along the axis of the cylinders 38 and 39 together with the pistons 40 and 41, the pipes forming the passages 60 and 62 are constituted by flexible hoses having flexibility. Further, the refrigerant for cooling the engine 2 is configured to be supplied to the passage 60.
  • the shaft 44, the cooling chamber 57, the passages 60 and 62, and the valve 61 constitute a heat transfer control mechanism 56.
  • the exhaust gas generated in the engine 2 passes through the pressure transmission mechanism 22A, and the pressure and the exhaust gas pressure passes through the pressure transmission mechanism 22A by the same operation and control as in the first specific example. It is transmitted to the fluid chamber 42.
  • the pressure in the first fluid chamber 42 is transmitted to the second fluid chamber 43 via the piston 40, the shaft 44, and the piston 41, and the pressure in the second fluid chamber 43 is transmitted to the primary pressure chamber 18. That is, also in the fourth specific example, the speed of the continuously variable transmission 12 can be controlled by converting the pressure of the exhaust gas into the pressure of another fluid.
  • the amount of heat transferred from the first fluid chamber 42 to the continuously variable transmission 12 can be controlled by controlling the heat transfer control mechanism 56.
  • the valve 61 is closed when the temperature of the second fluid chamber 43 or the oil temperature of the oil reservoir is lower than a predetermined temperature. Then, since the refrigerant is not supplied to the cooling chamber 57, the temperature drop of the shaft 44 is suppressed, and the heat of the shaft 44 is transmitted to the pressure medium in the second fluid chamber 43 via the piston 41. The heat of the pressure medium in the second fluid chamber 43 is transmitted to the continuously variable transmission 12. In this way, warming up of the continuously variable transmission 12 is promoted, it is possible to suppress a decrease in power transmission efficiency of the continuously variable transmission 12, and it is possible to suppress a decrease in fuel consumption of the engine 2.
  • the valve 61 is opened. Then, the refrigerant is supplied to the cooling chamber 57 via the passage 60 and the inlet 58, and the refrigerant in the cooling chamber 57 is discharged to the pipe line 62 via the outlet 59. For this reason, the heat of the shaft 44 is taken away by the refrigerant, the shaft 44 is cooled, and the temperature rise of the shaft 44 is suppressed. Therefore, the temperature rise of the continuously variable transmission 12 is suppressed.
  • the pressure control mechanism 22B shown in FIG. 6 includes a first pipe 63 connected to the exhaust pipe 9, a second pipe 64 connected to the first pipe 63, and the second pipe 64. And a third pipe 65 connected to the exhaust purification catalyst 11. That is, the first pipe 63 is provided at the most upstream in the exhaust gas flow direction, the second pipe 64 is provided at the downstream of the first pipe 63, and the third pipe at the downstream of the second pipe 64. 65 is provided.
  • the first pipe line 63, the second pipe line 64, and the third pipe line 65 have a circular cross section in a plane perpendicular to the flow direction of the exhaust gas.
  • the inner diameter of the first pipe 63 is configured to be constant in the flowing direction of the exhaust gas
  • the inner diameter of the third pipe 65 is configured to be constant in the flowing direction of the exhaust gas.
  • the inner diameter of the first pipeline 63 is configured to be larger than the inner diameter of the third pipeline 65.
  • the cross-sectional area A1 of the first pipe line 63 is larger than the cross-sectional area A2 of the third pipe line 65 in a plane perpendicular to the flow direction of the exhaust gas.
  • the second pipe 64 is tapered such that the inner diameter becomes smaller as the second pipe 64 approaches the third pipe 65 from the first pipe 63. That is, the inner diameter of the second pipe 64 is narrowed along the exhaust gas flow direction.
  • the cross-sectional area A1 of the first pipe 63 is larger than the cross-sectional area A2 of the third pipe 65.
  • a branch pipe 66 is provided, one end of which is connected to the first pipe 63 and the other end of which is connected to the primary pressure chamber 18.
  • the branch pipe 66 is a path for supplying the pressure of the exhaust gas discharged from the engine 2 to the primary pressure chamber 18.
  • the branch pipe 66 is provided with an orifice 67.
  • the orifice 67 is a mechanism for reducing the flow rate of the exhaust gas flowing from the first pipe 63 into the branch pipe 66.
  • the orifice 67 is configured to have a smaller cross-sectional area than other portions in the branch pipe 66.
  • a return pipe 68 is provided between the orifice 67 and the primary pressure chamber 18 in the branch pipe 66 and connecting the third pipe 65.
  • the return pipe 68 constitutes a path for returning the exhaust gas flowing into the branch pipe 66 from the first pipe 63 to the third pipe 65.
  • a throttle valve 69 is provided in the return pipe 68.
  • the throttle valve 69 is a pressure control valve that controls the pressure of the branch pipe 66 by adjusting the cross-sectional area through which exhaust gas flows in the return pipe 68.
  • the throttle valve 69 can be constituted by, for example, a butterfly valve whose opening degree is adjusted by a solenoid.
  • the energizing current value for the solenoid is controlled by the control unit 30. Therefore, when the energization current value for the solenoid is controlled, the opening degree of the throttle valve 69 is controlled. Since the exhaust gas passes through the first pipe 63, the third pipe 65, the branch pipe 66, and the return pipe 68, these pipes are formed using metal pipes having excellent heat resistance and durability. be able to.
  • v is the flow velocity of the exhaust gas
  • g is the acceleration of gravity
  • z is the height
  • p is the pressure
  • is the density of the exhaust gas.
  • the pressure transmission mechanism 22B shown in FIG. 6 when the pressure transmission mechanism 22B shown in FIG. 6 is used, a pressure difference is generated between the first pipeline 63 and the third pipeline 65, and a part of the exhaust gas in the first pipeline 63 is converted into the orifice 67. Flows into the branch line 66. Then, by controlling the opening degree of the throttle valve 69, in the pressure control mechanism 22B as well as the pressure control mechanism 22A shown in FIG. 2, the exhaust gas transmitted from the branch line 66 to the primary pressure chamber 18 is controlled. The pressure can be controlled. That is, when the opening degree of the throttle valve 69 is relatively wide, the pressure transmitted to the primary pressure chamber 18 is reduced, and the gear ratio of the continuously variable transmission 12 is relatively increased. On the other hand, when the opening degree of the throttle valve 69 is relatively narrowed, the pressure transmitted to the primary pressure chamber 18 increases, and the gear ratio of the continuously variable transmission 12 becomes relatively small.
  • a configuration is described in which a spring that provides preload to the movable piece 20 of the secondary pressure chamber 21 is provided and a pressurizing mechanism that can change the force applied to the movable piece 20 is provided.
  • the pressure control mechanism and the heat transfer control mechanism may be used instead of the pressurizing mechanism.
  • the pressure of the exhaust gas can be controlled by the pressure control mechanism, and the pressure can be transmitted to the secondary pressure chamber 21 via the heat transfer control mechanism.
  • the power of the engine 2 is configured to be transmitted to the continuously variable transmission 12, but the power of any one of an electric motor, a flywheel, or a hydraulic motor is transmitted to the continuously variable transmission.
  • the present invention can also be applied to a vehicle that is configured to be input to. In this case, the engine 2 and the continuously variable transmission are not connected to transmit power.
  • the pressure transmission mechanism and the heat transmission control mechanism described in the above specific examples are controls that control the gear ratio and torque capacity of a continuously variable transmission other than a belt type continuously variable transmission, for example, a toroidal continuously variable transmission. It can also be used in an apparatus.
  • the toroidal-type continuously variable transmission includes an input disk and an output disk, a power roller interposed between the input disk and the output disk, a trunnion for controlling a gear ratio by controlling a tilt angle of the power roller, an input And a pressurizing device that applies a clamping pressure to the disk and the output disk to control the torque capacity.
  • a pressure chamber that reciprocates the trunnion linearly is provided, and the pressure chamber can be connected to the second fluid chamber of the heat transfer control mechanism. Further, the pressure chamber of the pressurizing device can be connected to the second fluid chamber of the heat transfer control mechanism.
  • the pressure transmission mechanism and the heat transmission control mechanism described in each specific example can also be used in a power transmission device other than a continuously variable transmission, for example, a control device that controls a forward / reverse switching device.
  • the forward / reverse switching device is used in a vehicle having a continuously variable transmission, and the continuously variable transmission and the forward / reverse switching device are arranged in series on a path from a power source to a drive wheel.
  • the forward / reverse switching device includes, for example, a planetary gear mechanism, a clutch that connects the rotating elements of the planetary gear mechanism, and a brake that controls the fixing or rotation of the rotating element.
  • a switching device can be used.
  • This planetary gear mechanism type forward / reverse switching device includes a clutch pressure chamber that controls engagement and disengagement of a clutch, and a brake pressure chamber that controls engagement and disengagement of a brake.
  • This planetary gear mechanism type forward / reverse switching device is configured to be able to switch the rotation direction of the output member relative to the input member in the forward and reverse directions by controlling the engagement and release of the clutch and brake.
  • the rotation direction of the output member relative to the input member of the forward / reverse switching device corresponds to the power transmission state of the power transmission device of the present invention.
  • the heat transfer mechanism described in each specific example is connected to at least one pressure chamber of the clutch pressure chamber or the brake pressure chamber to control the pressure of the clutch pressure chamber or the brake pressure chamber. can do.
  • the pressure transmission mechanism and the heat transmission control mechanism described in each specific example can also be used in a power transmission device other than a continuously variable transmission, for example, a control device that controls a stepped transmission.
  • the stepped transmission is provided, for example, on a path from the power source of the vehicle to the drive wheels, and the stepped transmission includes a planetary gear mechanism type stepped transmission.
  • This planetary gear mechanism type stepped transmission has a planetary gear mechanism, a clutch for connecting or releasing the rotating elements of the planetary gear mechanism, and a brake for fixing or releasing the rotating element of the planetary gear mechanism. .
  • the gear ratio of the planetary gear mechanism stepped transmission is changed stepwise (discontinuously) by controlling engagement and release of the clutch and brake.
  • the planetary gear mechanism type stepped transmission includes a clutch pressure chamber that controls engagement and release of the clutch, and a brake pressure chamber that controls engagement and release of the brake. Then, the pressure transmission mechanism and the heat transmission control mechanism described in the specific example are connected to at least one of the pressure chamber for the clutch and the pressure chamber for the brake to control the pressure of the pressure chamber for the clutch or the pressure chamber for the brake Can be configured to.
  • the present invention is applied to a vehicle. However, the present invention can also be used for a machine tool, a construction machine, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Transmission Device (AREA)
  • General Details Of Gearings (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

Provided is a power transmission device controller capable of effectively utilizing the pressure of exhaust gas generated in an internal combustion engine. Specifically provided is a power transmission device controller provided with a power transmission device (12) to which power is inputted, a movable member (17) which is provided to be movable in order to control the power transmission state of the power transmission device (12), and a pressure chamber (18) to which pressure is transmitted to generate force to be applied to the movable member (17), said controller being provided with an internal combustion engine (2) which converts thermal energy generated when fuel is burned to kinetic energy and outputs the kinetic energy, a pressure transmission mechanism (22A) which transmits the pressure of exhaust gas generated when the fuel is burned in the internal combustion engine (2) to the pressure chamber (18), and a heat transfer control mechanism (47) which controls the amount of heat to be transferred from the exhaust gas to the pressure chamber when the pressure of the exhaust gas is transmitted to the pressure chamber (18) by the pressure transmission mechanism (22A).

Description

動力伝達装置の制御装置Power transmission control device
 この発明は、動力を伝達する装置における動力伝達状態を制御する装置に関し、特に作用させる圧力を変化させることにより動力の伝達状態を制御する制御装置に関するものである。 The present invention relates to a device for controlling a power transmission state in a device for transmitting power, and particularly to a control device for controlling a power transmission state by changing a pressure to be applied.
 流体の圧力によって可動部材の動作を制御することにより、動力伝達装置の動力伝達状態を制御するように構成された車両の一例が、特開平11-2316号公報に記載されている。この特開平11-2316号公報に記載された車両は、エンジンが出力したトルクを変速装置によって増大もしくは低減させて駆動輪に出力するように構成されている。そのエンジンは、従来知られている車両用の内燃機関と同様の構成であって、スロットルバルブによって調整された吸気と燃料との混合気をシリンダの内部で燃焼させて機械的な動力を発生する熱機関である。したがって、燃料の燃焼によって圧力の高い排ガスが生じ、その排ガスは排気管を通って車外に排出される。 An example of a vehicle configured to control the power transmission state of the power transmission device by controlling the operation of the movable member by the pressure of the fluid is described in Japanese Patent Application Laid-Open No. 11-2316. The vehicle described in Japanese Patent Application Laid-Open No. 11-2316 is configured to increase or decrease the torque output from the engine and output it to the drive wheels by a transmission. The engine has the same configuration as a conventionally known internal combustion engine for a vehicle, and generates mechanical power by burning a mixture of intake air and fuel adjusted by a throttle valve inside the cylinder. It is a heat engine. Therefore, exhaust gas with high pressure is generated by the combustion of the fuel, and the exhaust gas is discharged outside the vehicle through the exhaust pipe.
 一方、特開平11-2316号公報に記載された変速装置は、駆動軸および従動軸を有しており、駆動軸と一体回転する駆動プーリが設けられている。この駆動プーリは、軸方向に移動可能な第1可動円板と、軸方向には移動しない第1固定円板とを備えている。この第1可動円板と第1固定円板との間に第1係合溝が形成されている。さらに、駆動軸にはバックアップ円板が固定されており、第1可動円板とバックアップ円板との間に球状の重りが配置されている。この重りは駆動軸の半径方向に移動自在に構成されており、重りは遠心力により半径方向で外側に移動する。 On the other hand, the transmission described in JP-A-11-2316 has a drive shaft and a driven shaft, and is provided with a drive pulley that rotates integrally with the drive shaft. The drive pulley includes a first movable disk that can move in the axial direction and a first fixed disk that does not move in the axial direction. A first engagement groove is formed between the first movable disk and the first fixed disk. Further, a backup disk is fixed to the drive shaft, and a spherical weight is disposed between the first movable disk and the backup disk. The weight is configured to be movable in the radial direction of the drive shaft, and the weight moves outward in the radial direction by centrifugal force.
 さらに、前記従動軸と一体回転する従動プーリが設けられており、この従動プーリは、軸方向に移動可能な第2可動円板と、軸方向には移動しない第2固定円板とを備えている。この第2可動円板と第2固定円板との間に第2係合溝が形成されている。また、第2可動円板を第2固定円板に向かって押すバネが設けられている。さらに、駆動プーリには負圧導入室が形成されており、その負圧導入室は、エンジンの吸気管におけるスロットルバルブよりも下流に接続され、したがって吸気管における負圧が負圧導入室に作用するように構成されている。上記のように構成された駆動プーリおよび従動プーリに、Vベルトが巻き掛けられている。 Furthermore, a driven pulley that rotates integrally with the driven shaft is provided, and the driven pulley includes a second movable disk that is movable in the axial direction and a second fixed disk that is not movable in the axial direction. Yes. A second engagement groove is formed between the second movable disk and the second fixed disk. In addition, a spring that pushes the second movable disk toward the second fixed disk is provided. Further, a negative pressure introduction chamber is formed in the drive pulley, and the negative pressure introduction chamber is connected downstream of the throttle valve in the intake pipe of the engine, so that the negative pressure in the intake pipe acts on the negative pressure introduction chamber. Is configured to do. A V-belt is wound around the drive pulley and the driven pulley configured as described above.
 この特開平11-2316号公報に記載された変速装置においては、駆動軸が相対的に低速で回転するときには、バネが第2可動円板を押す力が、遠心力で外側に移動しようとする重りが、第1可動円板を押す力よりも大きい。このため、従動プーリにおける第2係合溝の幅が狭められ、駆動プーリにおける第1係合溝の幅が拡大され、変速装置の変速比が相対的に大きくなる。これに対して、駆動軸が相対的に高速で回転するときには、バネが第2可動円板を押す力よりも、遠心力で外側に移動しようとする重りが、第1可動円板を押す力が大きくなる。すると、駆動プーリにおける第1係合溝の幅が狭められ、かつ、従動プーリにおける第2係合溝の幅が拡大される。このようにして、変速装置の変速比が相対的に小さくなる。 In the transmission described in Japanese Patent Application Laid-Open No. 11-2316, when the drive shaft rotates at a relatively low speed, the force by which the spring pushes the second movable disk tends to move outward by centrifugal force. The weight is greater than the force pushing the first movable disk. For this reason, the width of the second engagement groove in the driven pulley is reduced, the width of the first engagement groove in the drive pulley is increased, and the transmission gear ratio is relatively increased. On the other hand, when the drive shaft rotates at a relatively high speed, the weight by which the spring tries to move outward by centrifugal force pushes the first movable disk rather than the force by which the spring pushes the second movable disk. Becomes larger. Then, the width of the first engagement groove in the drive pulley is narrowed, and the width of the second engagement groove in the driven pulley is increased. In this way, the gear ratio of the transmission becomes relatively small.
 さらに、特開平11-2316号公報に記載された車両においては、車両の走行中にライダーが車両を減速させようとして、エンジンのスロットル弁を全閉にさせると、エンジンブレーキ力が生じる。この作用と並行して、吸気管の負圧が負圧導入室に導入される。すると、この負圧により、重りが遠心力に抗して半径方向で内側に移動するとともに、駆動プーリの第1可動円板を第1固定円板に向けて押す力が低下する。そして、バネが第2可動円板を押す力が、重りが第1可動円板を押す力よりも大きくなり、従動プーリにおける第2係合溝の幅が狭められ、駆動プーリにおける第1係合溝の幅が拡大される。このようにして、駆動プーリにおけるVベルト巻き掛け半径が相対的に小さくなり、変速装置の変速比が相対的に大きくなる。その結果、エンジンブレーキ力が強められる。 Furthermore, in the vehicle described in Japanese Patent Application Laid-Open No. 11-2316, when the rider tries to decelerate the vehicle while the vehicle is running and the throttle valve of the engine is fully closed, an engine braking force is generated. In parallel with this action, the negative pressure of the intake pipe is introduced into the negative pressure introduction chamber. Then, this negative pressure causes the weight to move inward in the radial direction against the centrifugal force, and the force for pushing the first movable disc of the drive pulley toward the first fixed disc is reduced. The force by which the spring pushes the second movable disk becomes larger than the force by which the weight pushes the first movable disk, the width of the second engagement groove in the driven pulley is narrowed, and the first engagement in the drive pulley is reduced. The width of the groove is enlarged. In this way, the V-belt wrapping radius in the drive pulley is relatively small, and the transmission gear ratio is relatively large. As a result, the engine braking force is increased.
 なお、車両における変速機の油圧制御装置が特開昭61-228149号公報に記載され、ベルト型無段変速機の制御装置が特開昭62-127550号公報に記載され、液圧ピストン装置が特開平8-284905号公報に記載され、排ガスのエネルギーを他の媒体のエネルギーに変換するガスエネルギー変換装置が特開2005-9504号公報に記載され、排熱を利用する自動販売機が特開平6-162339号公報に記載されている。 Note that a hydraulic control device for a transmission in a vehicle is described in Japanese Patent Laid-Open No. 61-228149, a control device for a belt-type continuously variable transmission is described in Japanese Patent Laid-Open No. 62-127550, and a hydraulic piston device is described. Japanese Patent Application Laid-Open No. 8-284905 describes a gas energy conversion device that converts the energy of exhaust gas into the energy of another medium. Japanese Patent Application Laid-Open No. 2005-9504 discloses a vending machine that uses exhaust heat. 6-162339.
 前記特開平11-2316号公報に記載されている車両においては、車両の減速時に、内燃機関の吸気管負圧を変速装置の負圧導入室に導くことで、変速装置の変速比を大きくする変速をおこなっている。つまり、内燃機関の吸気管負圧が、車両の減速時におけるエンジンブレーキ力を強める制御に利用されている。しかしながら、特開平11-2316号公報に記載された車両においては、燃料の燃焼時に発生する排ガスが排気管を経由して大気中に放出されている。従来、その排ガスのエネルギー、特に排ガスの圧力を利用することについての考慮がなされておらず、排ガスのエネルギーを有効に利用する上では、未だ改善の余地が残されていた。 In the vehicle described in JP-A-11-2316, the gear ratio of the transmission is increased by guiding the intake pipe negative pressure of the internal combustion engine to the negative pressure introduction chamber of the transmission when the vehicle is decelerated. Shifting. That is, the intake pipe negative pressure of the internal combustion engine is used for control for increasing the engine braking force when the vehicle is decelerated. However, in the vehicle described in Japanese Patent Application Laid-Open No. 11-2316, exhaust gas generated during fuel combustion is released into the atmosphere via an exhaust pipe. Conventionally, no consideration has been given to using the energy of the exhaust gas, particularly the pressure of the exhaust gas, and there is still room for improvement in effectively using the energy of the exhaust gas.
 この発明は上記の技術的課題に着目してなされたものであり、内燃機関において燃料を燃焼させたときに発生する排ガスの圧力を有効に利用してエネルギー効率を向上させることのできる動力伝達装置の制御装置を提供することを目的とするものである。 The present invention has been made paying attention to the above technical problem, and is a power transmission device capable of improving energy efficiency by effectively using the pressure of exhaust gas generated when fuel is burned in an internal combustion engine. An object of the present invention is to provide a control device.
 上記の目的を達成するために、この発明は、動力が入力される動力伝達装置と、この動力伝達装置の動力伝達状態を制御するために移動可能に設けられた可動部材と、圧力が伝達されて前記可動部材に与える力を発生する圧力室とを備えた動力伝達装置の制御装置において、燃料を燃焼させたときに発生する熱エネルギーを運動エネルギーに変換して出力する内燃機関と、この内燃機関で燃料を燃焼させたときに発生した排ガスの圧力を前記圧力室に伝達する圧力伝達機構と、この圧力伝達機構により排ガスの圧力を前記圧力室に伝達するときに、前記排ガスから前記動力伝達装置に伝達される熱量を制御する熱伝達制御機構とを備えていることを特徴とするものである。 In order to achieve the above object, the present invention transmits a power to a power transmission device to which power is input, a movable member movably provided to control the power transmission state of the power transmission device, and pressure to be transmitted. An internal combustion engine for converting the thermal energy generated when the fuel is burned into kinetic energy and outputting the kinetic energy, in the control device of the power transmission device including a pressure chamber that generates a force applied to the movable member A pressure transmission mechanism that transmits the pressure of exhaust gas generated when fuel is burned in the engine to the pressure chamber, and the power transmission from the exhaust gas when the pressure of the exhaust gas is transmitted to the pressure chamber by the pressure transmission mechanism. And a heat transfer control mechanism for controlling the amount of heat transferred to the apparatus.
 また、この発明は、上記の構成に加えて、前記圧力伝達機構から伝達された排ガスの圧力を他の流体の圧力に変換して前記圧力室に伝達する圧力変換機構が設けられており、この圧力変換機構は、内部中空に構成されたケーシングと、このケーシング内に形成され、かつ、前記圧力伝達機構から排ガスの圧力が伝達される第1流体室と、前記ケーシング内に形成され、かつ、他の流体が封入された第2流体室と、前記ケーシング内に設けられ、かつ、前記第1流体室と前記第2流体室との間で圧力伝達をおこなうように移動するピストン機構とを有していることを特徴とする動力伝達装置の制御装置である。 In addition to the above configuration, the present invention is provided with a pressure conversion mechanism that converts the pressure of the exhaust gas transmitted from the pressure transmission mechanism into the pressure of another fluid and transmits the pressure to the pressure chamber. The pressure conversion mechanism is formed in a hollow internal casing, a first fluid chamber formed in the casing, to which the pressure of the exhaust gas is transmitted from the pressure transmission mechanism, and formed in the casing. A second fluid chamber in which another fluid is sealed, and a piston mechanism that is provided in the casing and moves so as to transmit pressure between the first fluid chamber and the second fluid chamber. It is the control apparatus of the power transmission device.
 さらに、この発明は、上記の構成に加えて、前記熱伝達制御機構は、前記ケーシング内に設けられ、かつ、前記ピストン機構との間で熱交換をおこなう冷媒が供給される冷却室を有しており、前記排ガスの熱が前記第1流体室から前記ピストン機構に伝達されたときに、そのピストン機構の熱が前記冷媒に伝達されるように構成されていることを特徴とする動力伝達装置の制御装置である。 In addition to the above configuration, the present invention further includes a cooling chamber in which the heat transfer control mechanism is provided in the casing and supplied with a refrigerant that exchanges heat with the piston mechanism. And when the heat of the exhaust gas is transmitted from the first fluid chamber to the piston mechanism, the heat of the piston mechanism is transmitted to the refrigerant. It is a control device.
 さらに、この発明は、上記の構成に加えて、前記ピストン機構は中空に構成されており、そのピストン機構の内部に前記冷却室が設けられていることを特徴とする動力伝達装置の制御装置である。 Further, the present invention provides a control device for a power transmission device, wherein, in addition to the above configuration, the piston mechanism is configured to be hollow, and the cooling chamber is provided inside the piston mechanism. is there.
 さらに、この発明は、上記の構成に加えて、前記冷却室に冷媒を供給する通路が設けられており、前記熱伝達制御機構は、前記通路を開閉するバルブを備えていることを特徴とする動力伝達装置の制御装置である。 Furthermore, in addition to the above-described configuration, the present invention is provided with a passage for supplying a coolant to the cooling chamber, and the heat transfer control mechanism includes a valve for opening and closing the passage. It is a control apparatus of a power transmission device.
 さらに、この発明は、上記の構成に加えて、前記動力伝達装置を潤滑するオイルが溜められたオイル溜まりを備えており、前記バルブは、前記動力伝達装置の温度、または前記オイル溜まりの油温が予め定められた所定温度以上である場合に前記通路を開く一方、前記動力伝達装置の温度、または前記オイル溜まりの油温が予め定められた所定温度未満である場合に前記通路を閉じるように構成されていることを特徴とする動力伝達装置の制御装置である。 In addition to the above-described configuration, the present invention further includes an oil sump in which oil for lubricating the power transmission device is stored, and the valve includes a temperature of the power transmission device or an oil temperature of the oil sump. The passage is opened when the temperature is equal to or higher than a predetermined temperature, and the passage is closed when the temperature of the power transmission device or the temperature of the oil reservoir is lower than a predetermined temperature. It is the control apparatus of the power transmission device characterized by being comprised.
 この発明によれば、内燃機関で燃料を燃焼させたときに発生する排ガスの圧力が、圧力伝達機構により圧力室に伝達される。この圧力室の圧力で可動部材を移動させることにより、動力伝達装置の動力伝達状態を制御することができる。したがって、内燃機関から排出される排ガスの圧力を有効に利用することができる。また、圧力変換機構により排ガスの圧力を圧力室に伝達するときに、排ガスから動力伝達装置に伝達される熱量を制御することができる。 According to the present invention, the pressure of the exhaust gas generated when the fuel is burned in the internal combustion engine is transmitted to the pressure chamber by the pressure transmission mechanism. By moving the movable member with the pressure in the pressure chamber, the power transmission state of the power transmission device can be controlled. Therefore, the pressure of the exhaust gas discharged from the internal combustion engine can be used effectively. Further, when the pressure of the exhaust gas is transmitted to the pressure chamber by the pressure conversion mechanism, the amount of heat transmitted from the exhaust gas to the power transmission device can be controlled.
 また、この発明によれば、上記の効果を得られる他に、圧力伝達機構から伝達された排ガスの圧力が第1流体室に伝達されると、第1流体室の圧力がピストン機構を経由して第2流体室の他の流体に伝達され、その他の流体の圧力が圧力室に伝達される。 According to the present invention, in addition to obtaining the above effect, when the pressure of the exhaust gas transmitted from the pressure transmission mechanism is transmitted to the first fluid chamber, the pressure of the first fluid chamber passes through the piston mechanism. Thus, the pressure is transmitted to the other fluid in the second fluid chamber, and the pressure of the other fluid is transmitted to the pressure chamber.
 さらに、この発明によれば、上記の効果を得られる他に、第1流体室の排ガスの熱がピストン機構に伝達されると、そのピストン機構と冷媒との間で熱交換がおこなわれて、ピストン機構が冷却される。 Furthermore, according to the present invention, in addition to obtaining the above effect, when the heat of the exhaust gas in the first fluid chamber is transmitted to the piston mechanism, heat exchange is performed between the piston mechanism and the refrigerant, The piston mechanism is cooled.
 さらに、この発明によれば、上記の効果を得られる他に、冷却室に冷媒を供給する通路をバルブにより開閉することにより、排ガスから動力伝達装置に伝達される熱量を制御することができる。 Furthermore, according to the present invention, in addition to obtaining the above effect, the amount of heat transferred from the exhaust gas to the power transmission device can be controlled by opening and closing the passage for supplying the refrigerant to the cooling chamber by the valve.
 さらに、この発明によれば、上記の効果を得られる他に、動力伝達装置の温度、またはオイル溜まりの油温が予め定められた所定温度以上である場合は、バルブにより通路が開かれ、動力伝達装置の温度上昇を抑制できる。一方、動力伝達装置の温度、またはオイル溜まりの油温が予め定められた所定温度未満である場合は、バルブにより通路が閉じられて、排ガスの熱が動力伝達装置に伝達されて暖機される。 Further, according to the present invention, in addition to obtaining the above effect, when the temperature of the power transmission device or the oil temperature of the oil sump is equal to or higher than a predetermined temperature, the passage is opened by the valve, The temperature rise of the transmission device can be suppressed. On the other hand, when the temperature of the power transmission device or the oil temperature of the oil reservoir is lower than a predetermined temperature, the passage is closed by a valve, and the heat of the exhaust gas is transmitted to the power transmission device to warm up. .
この発明における動力伝達装置の制御装置を、車両の無段変速機の制御に用いた第1具体例を示す模式図である。It is a schematic diagram which shows the 1st specific example which used the control apparatus of the power transmission device in this invention for control of the continuously variable transmission of a vehicle. この発明の具体例で用いられる圧力伝達機構の一例を示す模式図である。It is a schematic diagram which shows an example of the pressure transmission mechanism used in the specific example of this invention. この発明における動力伝達装置の制御装置を、車両の無段変速機の制御に用いた第2具体例を示す模式図である。It is a schematic diagram which shows the 2nd specific example which used the control apparatus of the power transmission device in this invention for control of the continuously variable transmission of a vehicle. この発明における動力伝達装置の制御装置を、車両の無段変速機の制御に用いた第3具体例を示す模式図である。It is a schematic diagram which shows the 3rd example which used the control apparatus of the power transmission device in this invention for control of the continuously variable transmission of a vehicle. この発明における動力伝達装置の制御装置を、車両の無段変速機の制御に用いた第4具体例を示す模式図である。It is a schematic diagram which shows the 4th example which used the control apparatus of the power transmission device in this invention for control of the continuously variable transmission of a vehicle. この発明の具体例で用いられる圧力伝達機構の他の例を示す模式図である。It is a schematic diagram which shows the other example of the pressure transmission mechanism used with the specific example of this invention.
 この発明における動力伝達装置の制御装置は、圧力室の圧力を制御する装置であり、特に、内燃機関の排ガスの圧力を圧力室に伝達することにより、動力伝達状態を制御することのできる制御装置である。この発明における動力伝達装置の動力伝達状態には、動力伝達装置を構成する回転部材同士の間の変速比、動力伝達装置を構成する回転部材同士の間におけるトルク容量、動力伝達装置を構成する一方の回転部材に対する他方の回転部材の回転方向などが含まれる。以下、この発明の具体例を図面に基づいて説明する。 The control device of the power transmission device according to the present invention is a device for controlling the pressure in the pressure chamber, and in particular, the control device capable of controlling the power transmission state by transmitting the pressure of the exhaust gas of the internal combustion engine to the pressure chamber. It is. In the power transmission state of the power transmission device according to the present invention, the gear ratio between the rotating members constituting the power transmission device, the torque capacity between the rotating members constituting the power transmission device, and the one constituting the power transmission device The rotation direction of the other rotation member with respect to the other rotation member is included. Specific examples of the present invention will be described below with reference to the drawings.
 (第1具体例)
 この発明を車両の無段変速機の制御装置として用いた第1具体例を図1に基づいて説明する。この図1に示された車両1はエンジン2を有している。このエンジン2は従来知られているエンジンと同様に構成されており、燃料を燃焼させた時に生じる熱エネルギーを運動エネルギーに変換して出力する原動機であり、燃料と空気との混合気が燃焼室(図示せず)で燃焼され、その混合気の燃焼時に発生した排ガスが、排気バルブを経由して排気管9に排出されるように構成されている。また、エンジン2を冷媒により冷却する冷却装置が設けられている。この冷却装置は、ウォーターポンプから冷媒を吐出するとともに、その冷媒をエンジン2に形成されたウォータージャケット、冷媒流通路に供給することにより、熱を冷媒により奪いエンジン2を冷却する装置である。さらに、排気管は排気浄化触媒11に接続されている。この排気浄化触媒11は、従来知られているものと同様のものであり、エンジン2から排気管9に排出された排ガスに含まれる汚染物質、例えば、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)などを低減して、前記排ガスを浄化する装置である。
(First example)
A first specific example using the present invention as a control device for a continuously variable transmission of a vehicle will be described with reference to FIG. The vehicle 1 shown in FIG. 1 has an engine 2. This engine 2 is configured in the same manner as a conventionally known engine, and is a prime mover that converts thermal energy generated when fuel is burned into kinetic energy and outputs it, and a mixture of fuel and air is a combustion chamber. The exhaust gas that is combusted (not shown) and generated during combustion of the air-fuel mixture is discharged to the exhaust pipe 9 via the exhaust valve. Further, a cooling device for cooling the engine 2 with a refrigerant is provided. The cooling device is a device that cools the engine 2 by discharging the refrigerant from the water pump and supplying the refrigerant to a water jacket and a refrigerant flow passage formed in the engine 2 to remove heat from the refrigerant. Further, the exhaust pipe is connected to the exhaust purification catalyst 11. The exhaust purification catalyst 11 is the same as a conventionally known catalyst, and includes contaminants such as carbon monoxide (CO), hydrocarbons (HC) contained in the exhaust gas discharged from the engine 2 to the exhaust pipe 9. ), Nitrogen oxide (NOx) and the like are reduced to purify the exhaust gas.
 一方、車両1は駆動輪(図示せず)を有しており、その駆動輪にトルクが伝達されて駆動力が発生するように構成されている。この具体例においては、前記エンジン2の動力が駆動輪に伝達されるように構成されており、そのエンジン2から駆動輪に至る動力伝達経路の一部を形成する無段変速機12が設けられている。前記無段変速機12は、プライマリプーリ(駆動プーリ)13とセカンダリプーリ(従動プーリ)14とを備え、そのプライマリプーリ13およびセカンダリプーリ14にベルト15を巻き掛けて構成されたベルト型無段変速機であり、プライマリプーリ13の回転数とセカンダリプーリ14の回転数との比、つまり変速比を無段階に(連続的に)変更することの可能な変速機である。 On the other hand, the vehicle 1 has driving wheels (not shown), and is configured such that torque is transmitted to the driving wheels to generate driving force. In this specific example, the motive power of the engine 2 is configured to be transmitted to driving wheels, and a continuously variable transmission 12 that forms part of a power transmission path from the engine 2 to the driving wheels is provided. ing. The continuously variable transmission 12 includes a primary pulley (drive pulley) 13 and a secondary pulley (driven pulley) 14, and a belt type continuously variable transmission configured by winding a belt 15 around the primary pulley 13 and the secondary pulley 14. This is a transmission that can change the ratio between the rotation speed of the primary pulley 13 and the rotation speed of the secondary pulley 14, that is, the gear ratio steplessly (continuously).
 前記プライマリプーリ13は、回転中心軸線を中心として回転可能に設けられており、そのプライマリプーリ13は、回転中心軸線に沿った方向には移動不可能な固定片16と、回転中心軸線に沿った方向に移動可能に構成された可動片17とを備えており、その固定片16と可動片17との間にベルト15が巻き掛けられている。また、回転中心軸線に沿って可動片17を固定片16に近づける向きの推力(押圧力)を発生させるプライマリ圧力室18が形成されている。このプライマリ圧力室18は、円筒形状のシリンダにより構成されている。そのプライマリ圧力室18の圧力が直接可動片17に伝達されるように構成されていてもよいし、そのプライマリ圧力室18の圧力がピストン(図示せず)を経由して可動片17に伝達されるように構成されていてもよい。 The primary pulley 13 is provided so as to be rotatable about a rotation center axis, and the primary pulley 13 is provided with a fixed piece 16 that cannot move in a direction along the rotation center axis, and a rotation center axis. A movable piece 17 configured to be movable in the direction is provided, and a belt 15 is wound between the fixed piece 16 and the movable piece 17. In addition, a primary pressure chamber 18 is formed that generates a thrust (pressing force) in a direction in which the movable piece 17 approaches the fixed piece 16 along the rotation center axis. The primary pressure chamber 18 is constituted by a cylindrical cylinder. The pressure in the primary pressure chamber 18 may be directly transmitted to the movable piece 17, or the pressure in the primary pressure chamber 18 is transmitted to the movable piece 17 via a piston (not shown). You may be comprised so that.
 一方、セカンダリプーリ14は、回転中心軸線を中心として回転可能に設けられており、そのセカンダリプーリ14は、回転中心軸線に沿った方向には移動不可能な固定片19と、回転中心軸線に沿った方向に移動可能に構成された可動片20とを備えており、その固定片19と可動片20との間にベルト15が巻き掛けられている。また、回転中心軸線に沿って可動片20を固定片19に近づける向きの力を発生するセカンダリ圧力室21が設けられている。このセカンダリ圧力室21には、可動片20に予圧を与えるバネが設けられている。また、可動片20に加える力を変更できる加圧機構、例えば、トルクカム(図示せず)が設けられている。このトルクカムは、電動モータのトルクを直線方向の押圧力に変換して可動片20に加えることができるように構成されている。 On the other hand, the secondary pulley 14 is provided so as to be rotatable about the rotation center axis, and the secondary pulley 14 is arranged along the rotation center axis and a fixed piece 19 that cannot move in the direction along the rotation center axis. The movable piece 20 is configured to be movable in a predetermined direction, and the belt 15 is wound between the fixed piece 19 and the movable piece 20. In addition, a secondary pressure chamber 21 is provided that generates a force that moves the movable piece 20 closer to the fixed piece 19 along the rotation center axis. The secondary pressure chamber 21 is provided with a spring that applies a preload to the movable piece 20. Further, a pressurizing mechanism capable of changing the force applied to the movable piece 20, for example, a torque cam (not shown) is provided. The torque cam is configured so that the torque of the electric motor can be converted into a linear pressing force and applied to the movable piece 20.
 この第1具体例においては、エンジン2から排気管9に排出された排ガスの圧力を、プライマリ圧力室18に圧力を伝達するための圧力伝達機構が設けられており、その一例を図2に基づいて説明する。この圧力伝達機構22Aは、前記排気管9から排気浄化触媒11に至る排ガスの通過経路に設けられている。その圧力伝達機構22Aは、排気管9に一端が接続され、かつ、他端が減圧機構23の入口側(一次側)に接続された第1管路24を有している。この減圧機構23は、入口側の圧力よりも出口側の圧力を低圧とする公知の減圧弁を備えている。また、減圧機構23の出口側(二次側)に一端が接続され、かつ、他端が排気浄化触媒11に接続された第2管路25が設けられている。さらに、前記第1管路24から分岐された分岐管路26が設けられている。 In the first specific example, a pressure transmission mechanism for transmitting the pressure of the exhaust gas discharged from the engine 2 to the exhaust pipe 9 to the primary pressure chamber 18 is provided, an example of which is based on FIG. I will explain. The pressure transmission mechanism 22A is provided in an exhaust gas passage route from the exhaust pipe 9 to the exhaust purification catalyst 11. The pressure transmission mechanism 22 </ b> A has a first conduit 24 having one end connected to the exhaust pipe 9 and the other end connected to the inlet side (primary side) of the decompression mechanism 23. The pressure reducing mechanism 23 includes a known pressure reducing valve that makes the pressure on the outlet side lower than the pressure on the inlet side. Further, a second conduit 25 having one end connected to the outlet side (secondary side) of the decompression mechanism 23 and the other end connected to the exhaust purification catalyst 11 is provided. Further, a branch pipe 26 branched from the first pipe 24 is provided.
 そして、分岐管路26にはオリフィス27が設けられている。このオリフィス27は、第1管路24から分岐管路26に流れ込む排ガスの流速を低下させるための機構であり、このオリフィス27は、分岐管路26における他の部位よりも断面積が狭く構成されている。さらに、分岐管路26におけるオリフィス27よりも下流と、前記第2管路25とを接続するバイパス管路28が設けられている。ここで、下流とは排ガスの流れ方向で下流を意味する。このバイパス管路28は、分岐管路26の圧力を第2管路25に放出する経路を構成するものである。さらにバイパス管路28には絞り弁29が設けられている。この絞り弁29は、バイパス管路28の断面積を調整して分岐管路26の圧力を制御する圧力制御弁であり、例えば、バタフライバルブにより構成することができる。この絞り弁29の開度を制御すると、第1管路24の圧力と第2管路25との圧力差により、分岐管路26の圧力が第2管路25に放出される。上記した第1管路24、第2管路25、分岐管路26、バイパス管路28内を排ガスが通るため、耐熱性、耐久性に優れた金属管を用いてこれらの管路が形成されている。 Further, the branch line 26 is provided with an orifice 27. The orifice 27 is a mechanism for reducing the flow velocity of the exhaust gas flowing from the first pipeline 24 into the branch pipeline 26. The orifice 27 is configured to have a smaller cross-sectional area than other portions in the branch pipeline 26. ing. Further, a bypass pipe 28 is provided for connecting the second pipe 25 with the downstream of the orifice 27 in the branch pipe 26. Here, downstream means downstream in the flow direction of exhaust gas. The bypass pipe 28 constitutes a path for releasing the pressure of the branch pipe 26 to the second pipe 25. Furthermore, a throttle valve 29 is provided in the bypass line 28. The throttle valve 29 is a pressure control valve that controls the pressure of the branch pipe 26 by adjusting the cross-sectional area of the bypass pipe 28, and can be configured by, for example, a butterfly valve. When the opening of the throttle valve 29 is controlled, the pressure in the branch line 26 is released to the second line 25 due to the pressure difference between the pressure in the first line 24 and the second line 25. Since the exhaust gas passes through the first conduit 24, the second conduit 25, the branch conduit 26, and the bypass conduit 28, these conduits are formed using metal tubes having excellent heat resistance and durability. ing.
 さらに、この第1具体例においては、圧力伝達機構22Aからプライマリ圧力室18に至る経路に、排ガスの圧力を他の圧力媒体の圧力に変換してプライマリ圧力室18に伝達する圧力変換機構37が設けられている。この圧力変換機構37は、円筒形状のシリンダ38,39を有している。このシリンダ38,39は同軸上に配置されており、シリンダ38とリンダ39とは接触していない。また、シリンダ38内には、その内周面に接触した状態でシリンダ38の軸線に沿った方向に移動可能なピストン40が設けられており、そのピストン40により仕切られた第1流体室42が形成されている。この第1流体室42は、圧力伝達機構22Aの分岐管路26に接続されている。つまり、分岐管路26内の排ガスの圧力が第1流体室42に伝達されるように構成されている。また、第1流体室42内には高温の排ガスが流入するため、シリンダ38が耐熱性に優れた金属材料により構成されている。一方、シリンダ39内には、その内周面に接触した状態でシリンダ39の軸線に沿った方向に移動可能なピストン41が設けられている。また、ピストン40とピストン41とが軸44により連結されて、ピストン40とピストン41とが一体的に往復動するように構成されている。前記ピストン40およびピストン44ならびに軸44は、熱伝導する金属材料、例えば、鉄により構成されている。 Further, in the first specific example, a pressure conversion mechanism 37 that converts the pressure of the exhaust gas into the pressure of another pressure medium and transmits it to the primary pressure chamber 18 in the path from the pressure transmission mechanism 22A to the primary pressure chamber 18 is provided. Is provided. The pressure conversion mechanism 37 has cylindrical cylinders 38 and 39. The cylinders 38 and 39 are arranged on the same axis, and the cylinder 38 and the Linda 39 are not in contact with each other. A piston 40 is provided in the cylinder 38 so as to be movable in the direction along the axis of the cylinder 38 while being in contact with the inner peripheral surface thereof. The first fluid chamber 42 partitioned by the piston 40 is provided in the cylinder 38. Is formed. The first fluid chamber 42 is connected to the branch pipe 26 of the pressure transmission mechanism 22A. That is, the exhaust gas pressure in the branch pipe 26 is configured to be transmitted to the first fluid chamber 42. Further, since high temperature exhaust gas flows into the first fluid chamber 42, the cylinder 38 is made of a metal material having excellent heat resistance. On the other hand, a piston 41 that is movable in a direction along the axis of the cylinder 39 while being in contact with the inner peripheral surface thereof is provided in the cylinder 39. Further, the piston 40 and the piston 41 are connected by a shaft 44, and the piston 40 and the piston 41 are configured to reciprocate integrally. The piston 40, the piston 44, and the shaft 44 are made of a metal material that conducts heat, for example, iron.
 また、シリンダ39内にはピストン41により仕切られた第2流体室43が形成されており、この第2流体室43がプライマリ圧力室18に接続されている。そして、第2流体室43からプライマリ圧力室18の全域に亘って、圧力媒体が封入されている。この圧力媒体としては、例えば油、空気などを用いることができる。このように構成された圧力変換機構37においては、第1流体室42の排ガスの圧力が、ピストン40およびピストン41を経由して第2流体室43の圧力媒体に伝達され、その第2流体室43の圧力がプライマリ圧力室18に伝達される。 Also, a second fluid chamber 43 partitioned by a piston 41 is formed in the cylinder 39, and this second fluid chamber 43 is connected to the primary pressure chamber 18. A pressure medium is sealed from the second fluid chamber 43 to the entire primary pressure chamber 18. As this pressure medium, oil, air, etc. can be used, for example. In the pressure conversion mechanism 37 configured as described above, the pressure of the exhaust gas in the first fluid chamber 42 is transmitted to the pressure medium in the second fluid chamber 43 via the piston 40 and the piston 41, and the second fluid chamber. 43 pressure is transmitted to the primary pressure chamber 18.
 さらに、この具体例においては、第1流体室42の排ガスから無段変速機12に伝達される熱量を制御する熱伝達制御機構が設けられており、その構成を説明する。前記シリンダ38およびシリンダ39の内部におけるピストン40とピストン41との間に冷却室A1が形成されており、その冷却室A1に前記軸44が配置されている。また、シリンダ38の開口端とシリンダ39の開口端との間に、冷却室A1と、シリンダ38,39の外部とを接続する通路52が形成されている。つまり、この通路52はシリンダ38,39の全周に亘って形成されている。そして、シリンダ38,39の外部から通路52を経由して冷却室A1に冷媒が供給されるとともに、通路52を経由して冷媒がシリンダ38,39の外部に排出されるように構成されている。冷却室A1に供給される冷媒には、空気、油、水、アルコールが含まれる。例えば、車両1が走行したときの空気の流れが、冷却室A1を通るように構成することができる。あるいは、エンジン2を冷却する冷却水が冷却室A1に供給されるように構成することもできる。 Furthermore, in this specific example, a heat transfer control mechanism for controlling the amount of heat transferred from the exhaust gas in the first fluid chamber 42 to the continuously variable transmission 12 is provided, and the configuration will be described. A cooling chamber A1 is formed between the piston 40 and the piston 41 inside the cylinder 38 and the cylinder 39, and the shaft 44 is disposed in the cooling chamber A1. A passage 52 that connects the cooling chamber A1 and the outside of the cylinders 38 and 39 is formed between the opening end of the cylinder 38 and the opening end of the cylinder 39. That is, the passage 52 is formed over the entire circumference of the cylinders 38 and 39. The refrigerant is supplied from the outside of the cylinders 38 and 39 to the cooling chamber A1 via the passage 52, and is also discharged to the outside of the cylinders 38 and 39 via the passage 52. . The refrigerant supplied to the cooling chamber A1 includes air, oil, water, and alcohol. For example, the air flow when the vehicle 1 travels can be configured to pass through the cooling chamber A1. Or it can also comprise so that the cooling water which cools the engine 2 may be supplied to cooling chamber A1.
 さらに、シリンダ38,39の外部には、通路52を開閉するシャッタ45が設けられている。この具体例においては、シャッタ45は円筒形状に構成されているとともに、このシャッタ45がシリンダ38,39の外周に取り付けられている。このシャッタ45は、シリンダ38,39の軸線に沿った方向に移動可能である。また、シャッタ45をシリンダ38,39の軸線に沿った方向に往復移動させるとともに、シャッタ45を停止させるアクチュエータ46が設けられている。 Furthermore, a shutter 45 that opens and closes the passage 52 is provided outside the cylinders 38 and 39. In this specific example, the shutter 45 is formed in a cylindrical shape, and the shutter 45 is attached to the outer periphery of the cylinders 38 and 39. The shutter 45 is movable in a direction along the axis of the cylinders 38 and 39. In addition, an actuator 46 that reciprocates the shutter 45 in the direction along the axis of the cylinders 38 and 39 and stops the shutter 45 is provided.
 このアクチュエータ46としては、電動モータのトルクをプランジャの往復運動に変換する構成のアクチュエータ、または電磁ソレノイドへの通電を制御することによりプランジャを往復動させる構成のアクチュエータを用いることができる。これらのアクチュエータのプランジャにシャッタ45が接続されている。そして、シャッタ45が移動して通路52を開くと、冷却室A1が、シリンダ38,39の外部と連通して、冷却室A1を冷媒が通ることができる。これに対して、シャッタ45が移動して通路52を閉じると、シリンダ38とシリンダ39との間に形成された冷却室A1が、シリンダ38,39の外部から遮断される。つまり、シャッタ45およびアクチュエータ46は、通路52を開閉するバルブとして機能する。上記の冷却室A1、シャッタ45、アクチュエータ46により、熱伝達制御機構47が構成されている。 As the actuator 46, an actuator configured to convert the torque of the electric motor into a reciprocating motion of the plunger, or an actuator configured to reciprocate the plunger by controlling energization to the electromagnetic solenoid can be used. A shutter 45 is connected to the plungers of these actuators. When the shutter 45 moves to open the passage 52, the cooling chamber A1 communicates with the outside of the cylinders 38 and 39, and the refrigerant can pass through the cooling chamber A1. On the other hand, when the shutter 45 moves and closes the passage 52, the cooling chamber A1 formed between the cylinder 38 and the cylinder 39 is blocked from the outside of the cylinders 38 and 39. That is, the shutter 45 and the actuator 46 function as valves that open and close the passage 52. The cooling chamber A1, the shutter 45, and the actuator 46 constitute a heat transfer control mechanism 47.
 一方、無段変速機12は中空のケーシング(図示せず)内に設けられており、そのケーシング内の底部にはオイル溜まりが形成されている。また、ケーシング内には、エンジン2の動力が伝達されて回転するギヤが設けられており、そのギヤの回転によりオイル溜まりのオイルが掻き上げられ、掻き上げられたオイルが被潤滑部に供給されて、被潤滑部が潤滑される。これらの被潤滑部には、プライマリプーリ13およびセカンダリプーリ14を回転可能に支持する軸受、前後進切換装置を構成する遊星歯車機構の歯車同士の噛み合い部分、無段変速機12のベルト15とプライマリプーリ13またはセカンダリプーリ14との接触部分が含まれる。 On the other hand, the continuously variable transmission 12 is provided in a hollow casing (not shown), and an oil reservoir is formed at the bottom of the casing. The casing is provided with a gear that is rotated by the power of the engine 2 being transmitted, and the rotation of the gear causes the oil in the oil reservoir to be scraped up and supplied to the lubricated part. Thus, the lubricated part is lubricated. These parts to be lubricated include bearings for rotatably supporting the primary pulley 13 and the secondary pulley 14, meshing portions of the planetary gear mechanisms constituting the forward / reverse switching device, the belt 15 of the continuously variable transmission 12 and the primary A contact portion with the pulley 13 or the secondary pulley 14 is included.
 上記のエンジン2、無段変速機12、圧力伝達機構22A、アクチュエータ46を制御するコントロールユニット(電子制御装置)30が設けられている。このコントロールユニット30には、車両1における各種情報、例えば、アクセル開度、車速、エンジン回転数、無段変速機12の入力回転数および出力回転数、プライマリ圧力室18の圧力、セカンダリ圧力室21の圧力、無段変速機12の温度、オイル溜まりの油温情報などを検知するセンサやスイッチの信号が入力される。このコントロールユニット30からは、エンジントルクを制御する信号、無段変速機12の変速比およびトルク容量を制御する信号が出力される。 A control unit (electronic control device) 30 for controlling the engine 2, the continuously variable transmission 12, the pressure transmission mechanism 22A, and the actuator 46 is provided. The control unit 30 includes various information on the vehicle 1 such as accelerator opening, vehicle speed, engine speed, input speed and output speed of the continuously variable transmission 12, pressure in the primary pressure chamber 18, and secondary pressure chamber 21. The sensor and switch signals for detecting the pressure, the temperature of the continuously variable transmission 12, the oil temperature information of the oil reservoir, and the like are input. The control unit 30 outputs a signal for controlling the engine torque and a signal for controlling the gear ratio and torque capacity of the continuously variable transmission 12.
 前記エンジン1の動作および制御について説明すると、燃焼室で混合気が燃焼するときの熱エネルギーが運動エネルギーに変換されて、クランク軸からトルクが出力される。このエンジントルクは無段変速機12を経由して駆動輪に伝達される。前記コントロールユニット30においては、車速およびアクセル開度に基づいて車両1の要求駆動力が求められ、その要求駆動力に基づいて目標エンジン出力が求められる。その目標エンジン出力に基づいて、実際のエンジン出力を制御するために用いる最適燃費線が、予めコントロールユニット30に記憶されている。そして、実際のエンジン出力を最適燃費線に沿ったものとするように、目標エンジン回転数および目標エンジントルクが求められる。そして、実際のエンジン回転数を目標エンジン回転数に近づけるために、無段変速機12の変速比が制御される。また、実際のエンジントルクを目標エンジントルクに近づけるために、電子スロットルバルブの開度および燃料噴射量などが制御される。 Describing the operation and control of the engine 1, the heat energy when the air-fuel mixture burns in the combustion chamber is converted into kinetic energy, and torque is output from the crankshaft. This engine torque is transmitted to the drive wheels via the continuously variable transmission 12. In the control unit 30, the required driving force of the vehicle 1 is obtained based on the vehicle speed and the accelerator opening, and the target engine output is obtained based on the required driving force. Based on the target engine output, the optimal fuel consumption line used for controlling the actual engine output is stored in the control unit 30 in advance. Then, the target engine speed and the target engine torque are obtained so that the actual engine output is along the optimum fuel consumption line. Then, the gear ratio of the continuously variable transmission 12 is controlled in order to bring the actual engine speed close to the target engine speed. Further, the opening degree of the electronic throttle valve, the fuel injection amount, and the like are controlled in order to bring the actual engine torque close to the target engine torque.
 上記の制御のうち、無段変速機12の変速比の制御をより具体的に説明する。前記エンジン2の燃焼室で発生した排ガスは、排気管9を経由して圧力伝達機構22Aの第1管路24に至る。排ガスが第1管路24から減圧機構23を経由して第2管路25に至る過程で、第1管路24の圧力p1よりも第2管路25の圧力p2が低くなる。そして、第2管路25に流れ込んだ排ガスは排気浄化触媒11により浄化されて大気中に排出される。また、第1管路24の圧力p1と第2管路25の圧力p2との圧力差により、第1管路24を通る排ガスの一部がオリフィス27を通り分岐管路26に流れ込む。オリフィス27を通る際に排ガスの流速は低下し、分岐管路26の静圧がプライマリ圧力室18に伝達される。ここで、絞り弁29の開度を制御することにより、分岐管路26からプライマリ圧力室18に伝達される排ガスの圧力を制御することができる。 Among the above controls, the control of the gear ratio of the continuously variable transmission 12 will be described more specifically. The exhaust gas generated in the combustion chamber of the engine 2 reaches the first conduit 24 of the pressure transmission mechanism 22A via the exhaust pipe 9. In the process where the exhaust gas reaches the second pipeline 25 from the first pipeline 24 via the pressure reducing mechanism 23, the pressure p2 of the second pipeline 25 becomes lower than the pressure p1 of the first pipeline 24. Then, the exhaust gas flowing into the second pipe 25 is purified by the exhaust purification catalyst 11 and discharged into the atmosphere. Further, due to the pressure difference between the pressure p <b> 1 of the first pipe 24 and the pressure p <b> 2 of the second pipe 25, a part of the exhaust gas passing through the first pipe 24 flows into the branch pipe 26 through the orifice 27. When passing through the orifice 27, the flow rate of the exhaust gas decreases, and the static pressure in the branch pipe 26 is transmitted to the primary pressure chamber 18. Here, by controlling the opening degree of the throttle valve 29, the pressure of the exhaust gas transmitted from the branch pipe 26 to the primary pressure chamber 18 can be controlled.
 具体的には、絞り弁29の開度を相対的に狭くすると、分岐管路26の圧力および第1流体室42の圧力が上昇し、その圧力がピストン40および軸44ならびにピストン41を経由して第2流体室43に伝達される。この第2流体室43の圧力がプライマリ圧力室18に伝達されて、そのプライマリ圧力室18の圧力が上昇する。すると、プライマリプーリ13における溝幅が狭くなるとともに、そのプライマリプーリ13におけるベルト15の巻き掛け半径が相対的に大きくなる。このようにして、無段変速機12の変速比が相対的に小さくなるアップシフトが生じる。 Specifically, when the opening degree of the throttle valve 29 is relatively narrowed, the pressure in the branch pipe 26 and the pressure in the first fluid chamber 42 increase, and the pressure passes through the piston 40, the shaft 44 and the piston 41. Is transmitted to the second fluid chamber 43. The pressure in the second fluid chamber 43 is transmitted to the primary pressure chamber 18 and the pressure in the primary pressure chamber 18 increases. Then, the groove width in the primary pulley 13 is narrowed, and the winding radius of the belt 15 in the primary pulley 13 is relatively increased. In this way, an upshift occurs in which the gear ratio of the continuously variable transmission 12 becomes relatively small.
 これに対して、絞り弁29の開度を相対的に広くすると、分岐管路26の圧力が低下する。すると、ピストン40および軸44ならびにピストン41を経由してプライマリ圧力室18に伝達される圧力が低下する。このため、セカンダリプーリ14ではバネの力で可動片20が固定片19に向けて移動し、セカンダリプーリ14におけるベルト15の巻き掛け半径が相対的に大きくなるとともに、プライマリプーリ13におけるベルト15の巻き掛け半径が小さくなる。また、可動片17が固定片16から離れる向きに移動するためプライマリ圧力室18の圧力が上昇し、その圧力が第2流体室43に伝達されて、ピストン40,41が図1で左側に向けて移動する。このようにして、無段変速機12の変速比が相対的に大きくなるダウンシフトが生じる。なお、絞り弁29の開度を制御して、プライマリ圧力室18の圧力を一定に維持し、無段変速機12の変速比を一定に制御することができる。 On the other hand, when the opening of the throttle valve 29 is relatively wide, the pressure in the branch pipe 26 is reduced. Then, the pressure transmitted to the primary pressure chamber 18 via the piston 40, the shaft 44, and the piston 41 decreases. Therefore, in the secondary pulley 14, the movable piece 20 moves toward the fixed piece 19 by the force of the spring, the winding radius of the belt 15 in the secondary pulley 14 becomes relatively large, and the winding of the belt 15 in the primary pulley 13 is increased. The hanging radius becomes smaller. Further, since the movable piece 17 moves away from the fixed piece 16, the pressure in the primary pressure chamber 18 rises, the pressure is transmitted to the second fluid chamber 43, and the pistons 40 and 41 face the left side in FIG. Move. In this way, a downshift occurs in which the gear ratio of the continuously variable transmission 12 becomes relatively large. In addition, the opening degree of the throttle valve 29 can be controlled, the pressure of the primary pressure chamber 18 can be maintained constant, and the transmission ratio of the continuously variable transmission 12 can be controlled constant.
 さらに、無段変速機12のトルク容量の制御について説明する。前記加圧機構から可動片20に加えられる力を上昇させると、セカンダリプーリ14からベルト15に加えられる挟圧力が増加し、無段変速機12のトルク容量が増加する。これに対して、前記加圧機構から可動片20に加えられる力を低下させると、無段変速機12のトルク容量が低下する。なお、前記加圧機構から可動片20に加えられる力を一定に維持し、無段変速機12のトルク容量を一定に制御することもできる。 Further, control of the torque capacity of the continuously variable transmission 12 will be described. When the force applied to the movable piece 20 from the pressurizing mechanism is increased, the clamping force applied from the secondary pulley 14 to the belt 15 increases, and the torque capacity of the continuously variable transmission 12 increases. On the other hand, when the force applied to the movable piece 20 from the pressurizing mechanism is reduced, the torque capacity of the continuously variable transmission 12 is reduced. The force applied to the movable piece 20 from the pressurizing mechanism can be kept constant, and the torque capacity of the continuously variable transmission 12 can be controlled to be constant.
 以上のように、この具体例においては、燃料の燃焼によって発生する排ガスのエネルギー、具体的には圧力を、プライマリ圧力室18に伝達し、その、プライマリ圧力室18の圧力を制御することにより、無段変速機12の変速比を制御することができるように構成されている。このため、プライマリ圧力室18に伝達する圧力を発生させるために、漏れ損失が大きい油圧ポンプなどの油圧源を専用に設けなくてよい。また、エンジン2の動力が油圧ポンプの駆動に消費されることを防止できるので、燃費が向上する。また、圧力伝達機構22Aには、油圧ポンプのように回転部分を支持する軸受が設けられていないから、エンジン2の動力損失を抑制することができる。さらに、油圧ポンプを用いる場合のように、プライマリ圧力室18に至る油路を形成するバルブボデーを設けなくてよく、無段変速機12を小型化できる。 As described above, in this specific example, the energy of the exhaust gas generated by the combustion of fuel, specifically, the pressure is transmitted to the primary pressure chamber 18, and the pressure of the primary pressure chamber 18 is controlled, The transmission gear ratio of the continuously variable transmission 12 can be controlled. For this reason, in order to generate the pressure transmitted to the primary pressure chamber 18, it is not necessary to provide a hydraulic source such as a hydraulic pump having a large leakage loss. In addition, since the power of the engine 2 can be prevented from being consumed for driving the hydraulic pump, fuel efficiency is improved. Further, since the pressure transmission mechanism 22A is not provided with a bearing that supports a rotating portion like a hydraulic pump, power loss of the engine 2 can be suppressed. Further, as in the case of using a hydraulic pump, it is not necessary to provide a valve body that forms an oil passage leading to the primary pressure chamber 18, and the continuously variable transmission 12 can be downsized.
 ところで、排気管9を通る排ガスの一部が、圧力伝達機構22Aを経由して第1流体室42に供給されるように構成されているため、その排ガスの熱が、ピストン40、軸44、ピストン41、圧力媒体を経由して無段変速機12に伝達される可能性がある。そこで、この具体例においては、熱伝達制御機構47を制御することにより、排ガスから無段変速機12に伝達される熱量を制御することができる。まず、無段変速機12の温度、またはオイル溜まりの油温が、予め定められた温度未満である場合について説明する。この場合は、無段変速機12を潤滑したオイルの粘度が相対的に高く、オイル溜まりのオイルをギヤが掻き上げるときに撹拌損失が生じる。また、オイル溜まりのオイルが回転要素を含む被潤滑部に供給されると、その回転要素の動力損失が増加する可能性がある。 By the way, since a part of the exhaust gas passing through the exhaust pipe 9 is configured to be supplied to the first fluid chamber 42 via the pressure transmission mechanism 22A, the heat of the exhaust gas is transferred to the piston 40, the shaft 44, There is a possibility of being transmitted to the continuously variable transmission 12 via the piston 41 and the pressure medium. Therefore, in this specific example, the amount of heat transferred from the exhaust gas to the continuously variable transmission 12 can be controlled by controlling the heat transfer control mechanism 47. First, the case where the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature will be described. In this case, the viscosity of the oil that lubricated the continuously variable transmission 12 is relatively high, and agitation loss occurs when the gear scoops up the oil in the oil reservoir. Further, when oil in the oil reservoir is supplied to the lubricated portion including the rotating element, there is a possibility that the power loss of the rotating element increases.
 このため、無段変速機12の温度、またはオイル溜まりの油温が、予め定められた温度未満であるときは、前記シャッタ45を閉じる制御をおこなう。このように、シャッタ45が閉じられると冷却室A1内が閉じられた空間となり、軸44の温度が低下しにくくなる。すると、軸44の熱がピストン41および圧力媒体を経由して無段変速機12に伝達され、無段変速機12の暖機が促進される。このようにして、無段変速機12の暖機が促進されると、無段変速機12を潤滑したオイルの温度が上昇して、そのオイルの粘度が相対的に高まり、前記の撹拌損失および動力損失を抑制できる。 For this reason, when the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature, the shutter 45 is controlled to be closed. Thus, when the shutter 45 is closed, the cooling chamber A1 is closed, and the temperature of the shaft 44 is less likely to decrease. Then, the heat of the shaft 44 is transmitted to the continuously variable transmission 12 via the piston 41 and the pressure medium, and warming up of the continuously variable transmission 12 is promoted. Thus, when the warming-up of the continuously variable transmission 12 is promoted, the temperature of the oil that has lubricated the continuously variable transmission 12 rises, and the viscosity of the oil relatively increases, and the stirring loss and Power loss can be suppressed.
 これに対して、無段変速機12の温度、またはオイル溜まりの油温が、予め定められた温度以上であるとき、つまり、無段変速機12が暖機されている場合は、無段変速機12をそれ以上に暖機する必要がない。そこで、前記シャッタ45を開放して、冷媒を冷却室A1に通過させる。すると、排ガスの熱がピストン40から軸44に伝達されて軸44の温度が上昇しても、軸44と冷媒との間で強制対流による熱伝達がおこなわれて軸44の温度が低下し、無段変速機12の温度上昇を抑制できる。このように、第1具体例においては、無段変速機12の温度、またはオイル溜まりの油温に基づいてシャッタ45を開閉することにより、排ガスから無段変速機12に伝達される熱量を制御することができる。 On the other hand, when the temperature of the continuously variable transmission 12 or the temperature of the oil reservoir is equal to or higher than a predetermined temperature, that is, when the continuously variable transmission 12 is warmed up, the continuously variable transmission is performed. There is no need to warm the machine 12 any further. Therefore, the shutter 45 is opened to allow the refrigerant to pass through the cooling chamber A1. Then, even if the heat of the exhaust gas is transmitted from the piston 40 to the shaft 44 and the temperature of the shaft 44 rises, heat transfer by forced convection occurs between the shaft 44 and the refrigerant, and the temperature of the shaft 44 decreases. The temperature rise of the continuously variable transmission 12 can be suppressed. Thus, in the first specific example, the amount of heat transferred from the exhaust gas to the continuously variable transmission 12 is controlled by opening and closing the shutter 45 based on the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir. can do.
 (第2具体例)
 つぎに、この発明の動力伝達装置の制御装置の第2具体例を図3に基づいて説明する。この第2具体例と第1具体例とを比べると熱伝達制御機構の構成が異なる。この第3具体例における熱伝達制御機構48は、前記冷却室A1およびシャッタ45に加えて、そのシャッタ45の開閉を制御するアクチュエータ49とを有している。このアクチュエータ49は、シャッタ45に連続して形成された円筒形状のシリンダ50を有している。このシリンダ50は前記シリンダ39の外側を取り囲むように設けられており、シリンダ39とシリンダ50とが同軸上に配置されている。このシリンダ50は、軸線に沿った方向の平面内における断面形状がL字形に構成されている。また、シリンダ39にも、軸線に沿った方向の平面内における断面形状がL字形に構成された部分があり、そのシリンダ39とシリンダ50との間にガス室51が形成されている。さらに、シリンダ39に対してシリンダ50が軸線に沿った方向に移動可能に取り付けられているとともに、そのシリンダ50の移動範囲を規制するストッパ(図示せず)が設けられている。
(Second specific example)
Next, a second specific example of the control device for the power transmission device of the present invention will be described with reference to FIG. When the second specific example is compared with the first specific example, the configuration of the heat transfer control mechanism is different. The heat transfer control mechanism 48 in the third specific example includes an actuator 49 that controls opening and closing of the shutter 45 in addition to the cooling chamber A1 and the shutter 45. The actuator 49 has a cylindrical cylinder 50 formed continuously with the shutter 45. The cylinder 50 is provided so as to surround the outside of the cylinder 39, and the cylinder 39 and the cylinder 50 are arranged coaxially. The cylinder 50 has an L-shaped cross section in a plane in the direction along the axis. The cylinder 39 also has a portion whose cross-sectional shape in the plane in the direction along the axis is L-shaped, and a gas chamber 51 is formed between the cylinder 39 and the cylinder 50. Further, the cylinder 50 is attached to the cylinder 39 so as to be movable in the direction along the axis, and a stopper (not shown) for restricting the movement range of the cylinder 50 is provided.
 また、シリンダ39とシリンダ50との間に密封装置(図示せず)が設けられており、ガス室51の気密性が保たれている。ガス室51には、無段変速機12の温度、またはオイル溜まりの油温が予め定められた所定温度未満である場合は収縮する一方、無段変速機12の温度、またはオイル溜まりの油温が予め定められた所定温度以上である場合は膨張する特性の不活性ガスが封入されている。さらに、オイル溜まりの熱または無段変速機12の熱をガス室51に伝達する伝熱部材(図示せず)を設けておくことができる。この伝熱部材は、アルミニウム、アルミニウム合金などを用いることができる。なお、このような伝熱部材を設けることなく、オイル溜まりの熱または無段変速機12の熱が、空気を経由してガス室51に伝達されるように構成してもよい。 Further, a sealing device (not shown) is provided between the cylinder 39 and the cylinder 50, so that the gas chamber 51 is kept airtight. The gas chamber 51 contracts when the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir is lower than a predetermined temperature, while the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir is reduced. Is filled with an inert gas having a characteristic of expanding. Furthermore, a heat transfer member (not shown) for transmitting the heat of the oil reservoir or the heat of the continuously variable transmission 12 to the gas chamber 51 can be provided. As the heat transfer member, aluminum, an aluminum alloy, or the like can be used. In addition, you may comprise so that the heat | fever of an oil reservoir or the heat | fever of the continuously variable transmission 12 may be transmitted to the gas chamber 51 via air, without providing such a heat transfer member.
 この第2具体例において、無段変速機12の温度またはオイル溜まりの油温が予め定められた所定温度未満である場合は、不活性ガスが収縮する。このとき、ガス室51内よりも大気圧の方が高圧であり、大気圧によりシャッタ45が押されてシリンダ39の軸線に沿った方向に移動し、通路52が閉じられる。すると、冷却室A1に冷媒が閉じ込められて軸44の温度が上昇し、第1具体例と同様の作用により排ガスの熱が無段変速機12に伝達されて暖機される。これに対して、無段変速機12の温度またはオイル溜まりの油温が、予め定められた所定温度以上である場合は、不活性ガスが膨張してガス室51の圧力が大気圧よりも高圧になる。すると、不活性ガスの圧力でシャッタ45が押されて通路52が開き、通路52を経由して冷却室A1を冷媒が出入りする。したがって、第1具体例と同様に軸44の熱が冷媒に伝達されて軸44が冷却され、無段変速機12の温度上昇が抑制される。このように、第2具体例においては、シャッタ45およびアクチュエータ49が、通路52を開閉するバルブとして機能することにより、排ガスから無段変速機12に伝達される熱量を制御することができる。 In this second specific example, when the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature, the inert gas contracts. At this time, the atmospheric pressure is higher than in the gas chamber 51, and the shutter 45 is pushed by the atmospheric pressure to move in the direction along the axis of the cylinder 39, and the passage 52 is closed. Then, the refrigerant is confined in the cooling chamber A1, the temperature of the shaft 44 rises, and the heat of the exhaust gas is transmitted to the continuously variable transmission 12 and warmed up by the same action as in the first specific example. On the other hand, when the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is equal to or higher than a predetermined temperature, the inert gas expands and the pressure in the gas chamber 51 is higher than the atmospheric pressure. become. Then, the shutter 45 is pushed by the pressure of the inert gas, the passage 52 is opened, and the refrigerant enters and exits the cooling chamber A1 through the passage 52. Therefore, as in the first specific example, the heat of the shaft 44 is transmitted to the refrigerant, the shaft 44 is cooled, and the temperature increase of the continuously variable transmission 12 is suppressed. Thus, in the second specific example, the shutter 45 and the actuator 49 function as a valve that opens and closes the passage 52, whereby the amount of heat transmitted from the exhaust gas to the continuously variable transmission 12 can be controlled.
 (第3具体例)
 つぎに、この発明の動力伝達装置の制御装置の第3具体例を図4に基づいて説明する。この第3具体例に示された圧力伝達機構22Aは、図2に示された圧力伝達機構22Aのように構成されている。この第3具体例と第1具体例とを比べると熱伝達制御機構の構成が異なる。この第3具体例における熱伝達制御機構53は、第1具体例で説明したシャッタ45と、そのシャッタ45に連続して設けられ、シリンダ39の軸線に沿った方向に移動可能な可動片54と、この可動片54とシリンダ39とが形状記憶部材55により接続されている。この形状記憶部材55は、温度が所定温度(変態温度)以上では、前記シリンダ39の軸線に沿った方向の長さが相対的に長くなり、温度が所定温度未満では、前記シリンダ39の軸線に沿った方向の長さが相対的に短くなるような形状記憶特性を備えている。前記形状記憶部材55としては、例えば、形状記憶合金または形状記憶樹脂を用いることができる。この形状記憶合金には、Ni-Ti合金、Cu-Zn-Al合金が含まれる。また形状記憶樹脂には、ポリイソプレン系、スチレン・ブタジェン共重合体が含まれる。そして、前記オイル溜まりの熱、または無段変速機12の熱が、形状記憶部材55に伝達されるように構成されている。なお形状記憶部材55に代えてバイメタルを用いることもできる。このバイメタルは、熱膨張率が異なる2枚の金属板を接合したものである。
(Third example)
Next, a third specific example of the control device for the power transmission device of the present invention will be described with reference to FIG. The pressure transmission mechanism 22A shown in the third specific example is configured like the pressure transmission mechanism 22A shown in FIG. When the third specific example and the first specific example are compared, the configuration of the heat transfer control mechanism is different. The heat transfer control mechanism 53 in the third specific example includes the shutter 45 described in the first specific example, and a movable piece 54 provided continuously to the shutter 45 and movable in a direction along the axis of the cylinder 39. The movable piece 54 and the cylinder 39 are connected by a shape memory member 55. The shape memory member 55 has a relatively long length in the direction along the axis of the cylinder 39 when the temperature is equal to or higher than a predetermined temperature (transformation temperature), and the axis of the cylinder 39 when the temperature is lower than the predetermined temperature. It has shape memory characteristics such that the length along the direction is relatively short. As the shape memory member 55, for example, a shape memory alloy or a shape memory resin can be used. This shape memory alloy includes a Ni—Ti alloy and a Cu—Zn—Al alloy. Shape memory resins include polyisoprene and styrene / butadiene copolymers. The heat of the oil reservoir or the heat of the continuously variable transmission 12 is transmitted to the shape memory member 55. Note that a bimetal may be used in place of the shape memory member 55. This bimetal is obtained by joining two metal plates having different thermal expansion coefficients.
 この第3具体例において、第1具体例と同じ構成部分については、第1具体例と同じ作用効果を得られる。この第3具体例においては、シャッタ45の開閉作用が第1具体例とは異なる。この第3具体例においては、前記のように無段変速機12の温度、またはオイル溜まりの油温が予め定められた所定温度未満である場合は、形状記憶部材55の長さが相対的に短くなるため、シャッタ45により通路52が閉じられている。すると、冷却室A1内に冷媒が閉じ込められて軸44の温度が上昇し、第1具体例と同様の作用により排ガスの熱が無段変速機12に伝達されて暖機される。これに対して、前記のように無段変速機12の温度が予め定められた所定温度以上になると、形状記憶部材55が膨張して、シリンダ39の軸線に沿った方向の長さが相対的に長くなる。すると、形状記憶部材55に連結されているシャッタ45が移動して通路52が開き、冷却室A1を冷媒が通る。したがって、第1具体例と同様に軸44の熱が冷媒に伝達され、無段変速機12の温度上昇が抑制される。このように、第3具体例においては、熱伝達制御機構53が、通路52を開閉するバルブとして機能することにより、排ガスから無段変速機12に伝達される熱量を制御することができる。 In the third specific example, the same operational effects as those of the first specific example can be obtained with respect to the same components as the first specific example. In the third specific example, the opening / closing action of the shutter 45 is different from that of the first specific example. In the third specific example, when the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature as described above, the length of the shape memory member 55 is relatively long. Since the length is shorter, the passage 52 is closed by the shutter 45. Then, the refrigerant is confined in the cooling chamber A1, the temperature of the shaft 44 rises, and the heat of the exhaust gas is transmitted to the continuously variable transmission 12 and warmed up by the same action as in the first specific example. On the other hand, when the temperature of the continuously variable transmission 12 becomes equal to or higher than a predetermined temperature as described above, the shape memory member 55 expands and the length in the direction along the axis of the cylinder 39 is relatively long. It becomes long. Then, the shutter 45 connected to the shape memory member 55 moves to open the passage 52, and the refrigerant passes through the cooling chamber A1. Therefore, the heat of the shaft 44 is transmitted to the refrigerant as in the first specific example, and the temperature increase of the continuously variable transmission 12 is suppressed. Thus, in the third specific example, the heat transfer control mechanism 53 functions as a valve that opens and closes the passage 52, whereby the amount of heat transferred from the exhaust gas to the continuously variable transmission 12 can be controlled.
 (第4具体例)
 つぎに、この発明の動力伝達装置の制御装置の第4具体例を図5に基づいて説明する。この第4具体例に示された圧力伝達機構22Aは、図2に示された圧力伝達機構22Aのように構成されている。また、図5に示された圧力変換機構37は第1具体例と基本的には同様に構成されている。この第4具体例と第1具体例とを比べると熱伝達制御機構の構成が異なる。この第4具体例における熱伝達制御機構56は、軸44を中空にして形成された冷却室57と、軸44に形成され、かつ、冷却室57に接続された入口58および出口59とを有している。また、入口58には通路60が接続されている。この通路60は、冷媒を冷却室57に導入する経路であり、この通路60を開閉するバルブ61が設けられている。そして、バルブ61は、無段変速機12の温度、またはオイル溜まりの油温に基づいて開閉されるように構成されている。
(Fourth specific example)
Next, a fourth specific example of the control device for the power transmission device of the present invention will be described with reference to FIG. The pressure transmission mechanism 22A shown in the fourth specific example is configured like the pressure transmission mechanism 22A shown in FIG. The pressure conversion mechanism 37 shown in FIG. 5 is basically configured in the same manner as the first specific example. When the fourth specific example and the first specific example are compared, the configuration of the heat transfer control mechanism is different. The heat transfer control mechanism 56 in the fourth specific example has a cooling chamber 57 formed with the shaft 44 hollow, and an inlet 58 and an outlet 59 formed on the shaft 44 and connected to the cooling chamber 57. is doing. A passage 60 is connected to the inlet 58. The passage 60 is a passage for introducing the refrigerant into the cooling chamber 57, and a valve 61 for opening and closing the passage 60 is provided. The valve 61 is configured to be opened and closed based on the temperature of the continuously variable transmission 12 or the oil temperature of the oil reservoir.
 より具体的には、無段変速機12の温度、またはオイル溜まりの油温が、予め定められた所定温度未満である場合はバルブ61が閉じられる一方、第2流体室43の温度、またはオイル溜まりの油温が、予め定められた所定温度以上である場合はバルブ61が開かれるように構成されている。例えば、バルブ61の弁体に形状記憶部材を接続しておくとともに、無段変速機12の熱、またはオイル溜まりの熱が、その形状記憶部材に伝達されて形状記憶部材の形状が変化し、弁体が動作するように構成しておけばよい。ここで、形状記憶部材としては、第3具体例で挙げたものを用いることができる。あるいは、バルブ61としてソレノイドバルブを用いるとともに、無段変速機12の熱、またはオイル溜まりの熱をセンサにより検知し、その検知結果に基づいてコントロールユニット30がバルブ61の開閉を制御するように構成することもできる。 More specifically, when the temperature of the continuously variable transmission 12 or the oil temperature in the oil reservoir is lower than a predetermined temperature, the valve 61 is closed, while the temperature of the second fluid chamber 43 or the oil The valve 61 is configured to be opened when the oil temperature in the pool is equal to or higher than a predetermined temperature. For example, while the shape memory member is connected to the valve body of the valve 61, the heat of the continuously variable transmission 12 or the heat of the oil sump is transmitted to the shape memory member, and the shape of the shape memory member changes, What is necessary is just to comprise so that a valve body may operate | move. Here, as the shape memory member, those mentioned in the third specific example can be used. Alternatively, a solenoid valve is used as the valve 61, and the heat of the continuously variable transmission 12 or the heat of the oil reservoir is detected by a sensor, and the control unit 30 controls the opening / closing of the valve 61 based on the detection result. You can also
 一方、前記出口59には管路62が接続されており、冷却室57の冷媒が管路62を経由してシリンダ38,39の外部に出るように構成されている。なお、前記軸44はピストン40,41と共にシリンダ38,39の軸線に沿った方向に移動するため、通路60,62を形成する配管は、可撓性を備えたフレキシブルホースにより構成されている。さらに、前記エンジン2を冷却する冷媒が、前記通路60に供給されるように構成されている。上記の軸44、冷却室57、通路60,62、バルブ61により、熱伝達制御機構56が構成されている。 On the other hand, a pipe line 62 is connected to the outlet 59 so that the refrigerant in the cooling chamber 57 goes out of the cylinders 38 and 39 via the pipe line 62. Since the shaft 44 moves in the direction along the axis of the cylinders 38 and 39 together with the pistons 40 and 41, the pipes forming the passages 60 and 62 are constituted by flexible hoses having flexibility. Further, the refrigerant for cooling the engine 2 is configured to be supplied to the passage 60. The shaft 44, the cooling chamber 57, the passages 60 and 62, and the valve 61 constitute a heat transfer control mechanism 56.
 この第4具体例における他の構成部分は第1具体例と同様であり、第4具体例において第1具体例と同じ構成部分については、第1具体例と同様の作用効果を得られる。すなわち、第4具体例においても、エンジン2で生じた排ガスが圧力伝達機構22Aを通るとともに、第1具体例と同様の作用および制御により、排ガスの圧力が圧力伝達機構22Aを経由して第1流体室42に伝達される。この第1流体室42の圧力は、ピストン40、軸44、ピストン41を経由して第2流体室43に伝達され、その第2流体室43の圧力がプライマリ圧力室18に伝達される。つまり、この第4具体例においても、排ガスの圧力を他の流体の圧力に変換して、無段変速機12の変速比を制御することができる。 Other components in the fourth specific example are the same as those in the first specific example, and the same operational effects as those in the first specific example can be obtained for the same components in the fourth specific example as in the first specific example. That is, also in the fourth specific example, the exhaust gas generated in the engine 2 passes through the pressure transmission mechanism 22A, and the pressure and the exhaust gas pressure passes through the pressure transmission mechanism 22A by the same operation and control as in the first specific example. It is transmitted to the fluid chamber 42. The pressure in the first fluid chamber 42 is transmitted to the second fluid chamber 43 via the piston 40, the shaft 44, and the piston 41, and the pressure in the second fluid chamber 43 is transmitted to the primary pressure chamber 18. That is, also in the fourth specific example, the speed of the continuously variable transmission 12 can be controlled by converting the pressure of the exhaust gas into the pressure of another fluid.
 この第4具体例においては、熱伝達制御機構56を制御することにより、第1流体室42から無段変速機12に伝達される熱量を制御することができる。例えば、第2流体室43の温度、またはオイル溜まりの油温が、予め定められた所定温度未満である場合は、バルブ61が閉じられる。すると、冷媒は冷却室57には供給されないため、軸44の温度の低下が抑制され、その軸44の熱がピストン41を経由して第2流体室43の圧力媒体に伝達される。この第2流体室43の圧力媒体の熱は無段変速機12に伝達される。このようにして、無段変速機12の暖機が促進され、無段変速機12の動力伝達効率が低下することを抑制でき、かつ、エンジン2の燃費が低下することを抑制できる。 In the fourth specific example, the amount of heat transferred from the first fluid chamber 42 to the continuously variable transmission 12 can be controlled by controlling the heat transfer control mechanism 56. For example, the valve 61 is closed when the temperature of the second fluid chamber 43 or the oil temperature of the oil reservoir is lower than a predetermined temperature. Then, since the refrigerant is not supplied to the cooling chamber 57, the temperature drop of the shaft 44 is suppressed, and the heat of the shaft 44 is transmitted to the pressure medium in the second fluid chamber 43 via the piston 41. The heat of the pressure medium in the second fluid chamber 43 is transmitted to the continuously variable transmission 12. In this way, warming up of the continuously variable transmission 12 is promoted, it is possible to suppress a decrease in power transmission efficiency of the continuously variable transmission 12, and it is possible to suppress a decrease in fuel consumption of the engine 2.
 これに対して、第2流体室43の温度、またはオイル溜まりの油温が、予め定められた所定温度未満である場合は、バルブ61が開かれる。すると、冷媒が通路60および入口58を経由して冷却室57に供給されるとともに、冷却室57の冷媒は出口59を経由して管路62に排出される。このため、軸44の熱が冷媒に奪われて軸44が冷却され、軸44の温度上昇が抑制される。したがって、無段変速機12の温度上昇が抑制される。 On the other hand, when the temperature of the second fluid chamber 43 or the oil temperature of the oil reservoir is lower than a predetermined temperature, the valve 61 is opened. Then, the refrigerant is supplied to the cooling chamber 57 via the passage 60 and the inlet 58, and the refrigerant in the cooling chamber 57 is discharged to the pipe line 62 via the outlet 59. For this reason, the heat of the shaft 44 is taken away by the refrigerant, the shaft 44 is cooled, and the temperature rise of the shaft 44 is suppressed. Therefore, the temperature rise of the continuously variable transmission 12 is suppressed.
 つぎに、各具体例に用いることのできる圧力伝達機構の他の例を、図6に基づいて説明する。この図6に示された圧力制御機構22Bは、排気管9に接続された第1管路63と、この第1管路63に接続された第2管路64と、この第2管路64および排気浄化触媒11に接続された第3管路65とを有している。つまり、排ガスの流れ方向で最も上流に第1管路63が設けられ、その第1管路63の下流に第2管路64が設けられ、その第2管路64の下流に第3管路65が設けられている。これら第1管路63および第2管路64ならびに第3管路65は、排ガスの流れ方向に対して垂直な平面内における断面形状が円形に構成されている。前記第1管路63の内径は排ガスの流通方向で一定に構成されており、第3管路65の内径は排ガスの流通方向で一定に構成されている。 Next, another example of the pressure transmission mechanism that can be used in each specific example will be described with reference to FIG. The pressure control mechanism 22B shown in FIG. 6 includes a first pipe 63 connected to the exhaust pipe 9, a second pipe 64 connected to the first pipe 63, and the second pipe 64. And a third pipe 65 connected to the exhaust purification catalyst 11. That is, the first pipe 63 is provided at the most upstream in the exhaust gas flow direction, the second pipe 64 is provided at the downstream of the first pipe 63, and the third pipe at the downstream of the second pipe 64. 65 is provided. The first pipe line 63, the second pipe line 64, and the third pipe line 65 have a circular cross section in a plane perpendicular to the flow direction of the exhaust gas. The inner diameter of the first pipe 63 is configured to be constant in the flowing direction of the exhaust gas, and the inner diameter of the third pipe 65 is configured to be constant in the flowing direction of the exhaust gas.
 また、第1管路63の内径は、第3管路65の内径よりも大きく構成されている。このため、排ガスの流通方向に対して垂直な平面内において、第1管路63の断面積A1は第3管路65の断面積A2よりも広い。また、排ガスの流れ方向に沿った平面断面において、第2管路64は第1管路63から第3管路65に近づくことに伴い内径が小さくなるようなテーパが施されている。すなわち、排ガスの流れ方向に沿って、第2管路64の内径が狭くなるように絞られている。このように、第1管路63の断面積A1は第3管路65の断面積A2よりも広い。 Further, the inner diameter of the first pipeline 63 is configured to be larger than the inner diameter of the third pipeline 65. For this reason, the cross-sectional area A1 of the first pipe line 63 is larger than the cross-sectional area A2 of the third pipe line 65 in a plane perpendicular to the flow direction of the exhaust gas. Further, in the plane cross section along the flow direction of the exhaust gas, the second pipe 64 is tapered such that the inner diameter becomes smaller as the second pipe 64 approaches the third pipe 65 from the first pipe 63. That is, the inner diameter of the second pipe 64 is narrowed along the exhaust gas flow direction. Thus, the cross-sectional area A1 of the first pipe 63 is larger than the cross-sectional area A2 of the third pipe 65.
 さらに、前記第1管路63に一端が接続され、かつ、他端が前記プライマリ圧力室18に接続された分岐管路66が設けられている。この分岐管路66は、エンジン2から排出された排ガスの圧力をプライマリ圧力室18に供給する経路である。この分岐管路66にはオリフィス67が設けられている。このオリフィス67は、第1管路63から分岐管路66に流れ込む排ガスの流速を低下させるための機構であり、このオリフィス67は、分岐管路66における他の部位よりも断面積が狭く構成されている。さらに、分岐管路66におけるオリフィス67とプライマリ圧力室18との間と、前記第3管路65とを接続する戻し管路68が設けられている。この戻し管路68は、第1管路63から分岐管路66に流れ込んだ排ガスを第3管路65に戻す経路を構成するものである。 Furthermore, a branch pipe 66 is provided, one end of which is connected to the first pipe 63 and the other end of which is connected to the primary pressure chamber 18. The branch pipe 66 is a path for supplying the pressure of the exhaust gas discharged from the engine 2 to the primary pressure chamber 18. The branch pipe 66 is provided with an orifice 67. The orifice 67 is a mechanism for reducing the flow rate of the exhaust gas flowing from the first pipe 63 into the branch pipe 66. The orifice 67 is configured to have a smaller cross-sectional area than other portions in the branch pipe 66. ing. Further, a return pipe 68 is provided between the orifice 67 and the primary pressure chamber 18 in the branch pipe 66 and connecting the third pipe 65. The return pipe 68 constitutes a path for returning the exhaust gas flowing into the branch pipe 66 from the first pipe 63 to the third pipe 65.
 さらに、戻し管路68には絞り弁69が設けられている。この絞り弁69は、戻し管路68における排ガスの流通する断面積を調整して分岐管路66の圧力を制御する圧力制御弁である。この絞り弁69は、例えばソレノイドにより開度が調整されるバタフライバルブにより構成することができる。そして、ソレノイドに対する通電電流値がコントロールユニット30により制御されるように構成されている。したがって、このソレノイドに対する通電電流値が制御されると絞り弁69の開度が制御される。上記した第1管路63、第3管路65、分岐管路66、戻し管路68内を排ガスが通るため、耐熱性や耐久性に優れた金属管を用いてこれらの管路を形成することができる。 Furthermore, a throttle valve 69 is provided in the return pipe 68. The throttle valve 69 is a pressure control valve that controls the pressure of the branch pipe 66 by adjusting the cross-sectional area through which exhaust gas flows in the return pipe 68. The throttle valve 69 can be constituted by, for example, a butterfly valve whose opening degree is adjusted by a solenoid. The energizing current value for the solenoid is controlled by the control unit 30. Therefore, when the energization current value for the solenoid is controlled, the opening degree of the throttle valve 69 is controlled. Since the exhaust gas passes through the first pipe 63, the third pipe 65, the branch pipe 66, and the return pipe 68, these pipes are formed using metal pipes having excellent heat resistance and durability. be able to.
 この図6に示された圧力制御機構22Bを用いたときの制御および作用を説明する。エンジン2の燃焼室で発生した排ガスが、排気管9を経由して圧力伝達機構22Bの第1管路63に至る。そして、排ガスが第1管路63から第2管路64を経由して第3管路65に流れるとき、第1管路63における排ガスの流速よりも、第3管路65における排ガスの流速が速くなり、第1管路63の圧力p1よりも第3管路65の圧力が低くなる。このことは、ベルヌーイの定理により明らかである。このベルヌーイの定理は、流体の流れに沿って成り立つエネルギー保存の法則であり、流体の挙動を次式で表すことができる。
(1/2)・ρv+ρgz+p=一定
上記式において、vは排ガスの流速、gは重力加速度、zは高さ、pは圧力、ρは排ガスの密度である。なお、第3管路65に流れ込んだ排ガスは、排気浄化触媒11により浄化されて大気中に排出される。
Control and operation when the pressure control mechanism 22B shown in FIG. 6 is used will be described. The exhaust gas generated in the combustion chamber of the engine 2 reaches the first pipe 63 of the pressure transmission mechanism 22B via the exhaust pipe 9. When the exhaust gas flows from the first pipe 63 to the third pipe 65 via the second pipe 64, the flow rate of the exhaust gas in the third pipe 65 is higher than the flow speed of the exhaust gas in the first pipe 63. As a result, the pressure in the third pipe 65 becomes lower than the pressure p1 in the first pipe 63. This is clear from Bernoulli's theorem. This Bernoulli's theorem is a law of conservation of energy that holds along the flow of fluid, and the behavior of the fluid can be expressed by the following equation.
(1/2) · ρv 2 + ρgz + p = constant In the above equation, v is the flow velocity of the exhaust gas, g is the acceleration of gravity, z is the height, p is the pressure, and ρ is the density of the exhaust gas. The exhaust gas flowing into the third pipe 65 is purified by the exhaust purification catalyst 11 and discharged into the atmosphere.
 このように、図6に示された圧力伝達機構22Bを用いると、第1管路63と第3管路65とに圧力差が生じて、第1管路63の排ガスの一部がオリフィス67を経由して分岐管路66に流れ込む。そして、絞り弁69の開度を制御することにより、図2に示された圧力制御機構22Aと同様に、圧力制御機構22Bにおいても、分岐管路66からプライマリ圧力室18に伝達される排ガスの圧力を制御することができる。すなわち、絞り弁69の開度を相対的に広くすると、プライマリ圧力室18に伝達される圧力が低下し、無段変速機12の変速比が相対的に大きくなる。これに対して、絞り弁69の開度を相対的に狭くすると、プライマリ圧力室18に伝達される圧力が上昇し、無段変速機12の変速比が相対的に小さくなる。 As described above, when the pressure transmission mechanism 22B shown in FIG. 6 is used, a pressure difference is generated between the first pipeline 63 and the third pipeline 65, and a part of the exhaust gas in the first pipeline 63 is converted into the orifice 67. Flows into the branch line 66. Then, by controlling the opening degree of the throttle valve 69, in the pressure control mechanism 22B as well as the pressure control mechanism 22A shown in FIG. 2, the exhaust gas transmitted from the branch line 66 to the primary pressure chamber 18 is controlled. The pressure can be controlled. That is, when the opening degree of the throttle valve 69 is relatively wide, the pressure transmitted to the primary pressure chamber 18 is reduced, and the gear ratio of the continuously variable transmission 12 is relatively increased. On the other hand, when the opening degree of the throttle valve 69 is relatively narrowed, the pressure transmitted to the primary pressure chamber 18 increases, and the gear ratio of the continuously variable transmission 12 becomes relatively small.
 なお、各具体例においては、セカンダリ圧力室21の可動片20に予圧を与えるバネが設けられているとともに、可動片20に加える力を変更できる加圧機構が設けられている構成を説明しているが、この加圧機構に代えて、前記圧力制御機構および熱伝達制御機構を用いることもできる。このようにすると、排ガスの圧力を圧力制御機構により制御して、その圧力を熱伝達制御機構を経由させてセカンダリ圧力室21に伝達するように構成することができる。また、各具体例においては、エンジン2の動力が無段変速機12に伝達されるように構成されているが、電動モータまたはフライホイールまたは油圧モータのうちのいずれかの動力が無段変速機に入力されるように構成された車両にも、この発明を適用できる。この場合は、エンジン2と無段変速機とは動力伝達可能に接続されない。 In each specific example, a configuration is described in which a spring that provides preload to the movable piece 20 of the secondary pressure chamber 21 is provided and a pressurizing mechanism that can change the force applied to the movable piece 20 is provided. However, the pressure control mechanism and the heat transfer control mechanism may be used instead of the pressurizing mechanism. In this way, the pressure of the exhaust gas can be controlled by the pressure control mechanism, and the pressure can be transmitted to the secondary pressure chamber 21 via the heat transfer control mechanism. In each specific example, the power of the engine 2 is configured to be transmitted to the continuously variable transmission 12, but the power of any one of an electric motor, a flywheel, or a hydraulic motor is transmitted to the continuously variable transmission. The present invention can also be applied to a vehicle that is configured to be input to. In this case, the engine 2 and the continuously variable transmission are not connected to transmit power.
 なお、上記の具体例で説明した圧力伝達機構および熱伝達制御機構は、ベルト型無段変速機以外の無段変速機、例えば、トロイダル型無段変速機の変速比およびトルク容量を制御する制御装置に用いることもできる。トロイダル型無段変速機は、入力ディスクおよび出力ディスクと、入力ディスクおよび出力ディスクの間に介在されるパワーローラと、このパワーローラの傾転角度を制御して変速比を制御するトラニオンと、入力ディスクおよび出力ディスクに挟圧力を与えてトルク容量を制御する加圧装置とを備えている。そして、トラニオンを直線状に往復動させる圧力室が設けられており、その圧力室を、熱伝達制御機構の第2流体室に接続することができる。また、加圧装置の圧力室に、熱伝達制御機構の第2流体室に接続することもできる。 The pressure transmission mechanism and the heat transmission control mechanism described in the above specific examples are controls that control the gear ratio and torque capacity of a continuously variable transmission other than a belt type continuously variable transmission, for example, a toroidal continuously variable transmission. It can also be used in an apparatus. The toroidal-type continuously variable transmission includes an input disk and an output disk, a power roller interposed between the input disk and the output disk, a trunnion for controlling a gear ratio by controlling a tilt angle of the power roller, an input And a pressurizing device that applies a clamping pressure to the disk and the output disk to control the torque capacity. A pressure chamber that reciprocates the trunnion linearly is provided, and the pressure chamber can be connected to the second fluid chamber of the heat transfer control mechanism. Further, the pressure chamber of the pressurizing device can be connected to the second fluid chamber of the heat transfer control mechanism.
 さらに、各具体例で説明した圧力伝達機構および熱伝達制御機構は、無段変速機以外の動力伝達装置、例えば、前後進切換装置を制御する制御装置に用いることもできる。前後進切換装置は無段変速機を有する車両に用いられるものであり、動力源から駆動輪に至る経路に無段変速機と前後進切換装置とが直列に配置される。この前後進切換装置としては、例えば、遊星歯車機構と、遊星歯車機構の回転要素同士を接続するクラッチと、回転要素の固定または回転を制御するブレーキとを備えた、遊星歯車機構式の前後進切換装置を用いることができる。この遊星歯車機構式の前後進切換装置は、クラッチの係合および解放を制御するクラッチ用圧力室と、ブレーキの係合および解放を制御するブレーキ用圧力室とを備えている。この遊星歯車機構式の前後進切換装置は、クラッチおよびブレーキの係合および解放を制御することにより、入力部材に対する出力部材の回転方向を正逆に切り替えることができるように構成されている。この前後進切換装置の入力部材に対する出力部材の回転方向が、この発明の動力伝達装置の動力伝達状態に相当する。そして、クラッチ用圧力室またはブレーキ用圧力室の少なくとも一方の圧力室に、各具体例で説明した熱伝達機構を接続して、クラッチ用圧力室またはブレーキ用圧力室の圧力を制御するように構成することができる。 Furthermore, the pressure transmission mechanism and the heat transmission control mechanism described in each specific example can also be used in a power transmission device other than a continuously variable transmission, for example, a control device that controls a forward / reverse switching device. The forward / reverse switching device is used in a vehicle having a continuously variable transmission, and the continuously variable transmission and the forward / reverse switching device are arranged in series on a path from a power source to a drive wheel. The forward / reverse switching device includes, for example, a planetary gear mechanism, a clutch that connects the rotating elements of the planetary gear mechanism, and a brake that controls the fixing or rotation of the rotating element. A switching device can be used. This planetary gear mechanism type forward / reverse switching device includes a clutch pressure chamber that controls engagement and disengagement of a clutch, and a brake pressure chamber that controls engagement and disengagement of a brake. This planetary gear mechanism type forward / reverse switching device is configured to be able to switch the rotation direction of the output member relative to the input member in the forward and reverse directions by controlling the engagement and release of the clutch and brake. The rotation direction of the output member relative to the input member of the forward / reverse switching device corresponds to the power transmission state of the power transmission device of the present invention. The heat transfer mechanism described in each specific example is connected to at least one pressure chamber of the clutch pressure chamber or the brake pressure chamber to control the pressure of the clutch pressure chamber or the brake pressure chamber. can do.
 さらに、各具体例で説明した圧力伝達機構および熱伝達制御機構は、無段変速機以外の動力伝達装置、例えば、有段変速機を制御する制御装置に用いることもできる。この有段変速機は、例えば、車両の動力源から駆動輪に至る経路に設けられるものであり、この有段変速機には遊星歯車機構式の有段変速機が含まれる。この遊星歯車機構式の有段変速機は、遊星歯車機構と、遊星歯車機構の回転要素同士を接続または解放するクラッチと、遊星歯車機構の回転要素を固定または解放するブレーキとを有している。そして、クラッチおよびブレーキの係合および解放を制御することにより、遊星歯車機構式有段変速機の変速比が段階的(不連続)に変更されるように構成されている。また、遊星歯車機構式有段変速機は、クラッチの係合および解放を制御するクラッチ用圧力室と、ブレーキの係合および解放を制御するブレーキ用圧力室とを備えている。そして、クラッチ用圧力室またはブレーキ用圧力室の少なくとも一方の圧力室に、具体例で説明した圧力伝達機構および熱伝達制御機構を接続して、クラッチ用圧力室またはブレーキ用圧力室の圧力を制御するように構成することができる。なお、上記の具体例においては、この発明を車両に用いる場合が挙げられているが、この発明は工作機械、建設機械などに用いることもできる。 Furthermore, the pressure transmission mechanism and the heat transmission control mechanism described in each specific example can also be used in a power transmission device other than a continuously variable transmission, for example, a control device that controls a stepped transmission. The stepped transmission is provided, for example, on a path from the power source of the vehicle to the drive wheels, and the stepped transmission includes a planetary gear mechanism type stepped transmission. This planetary gear mechanism type stepped transmission has a planetary gear mechanism, a clutch for connecting or releasing the rotating elements of the planetary gear mechanism, and a brake for fixing or releasing the rotating element of the planetary gear mechanism. . The gear ratio of the planetary gear mechanism stepped transmission is changed stepwise (discontinuously) by controlling engagement and release of the clutch and brake. The planetary gear mechanism type stepped transmission includes a clutch pressure chamber that controls engagement and release of the clutch, and a brake pressure chamber that controls engagement and release of the brake. Then, the pressure transmission mechanism and the heat transmission control mechanism described in the specific example are connected to at least one of the pressure chamber for the clutch and the pressure chamber for the brake to control the pressure of the pressure chamber for the clutch or the pressure chamber for the brake Can be configured to. In the above specific example, the present invention is applied to a vehicle. However, the present invention can also be used for a machine tool, a construction machine, or the like.

Claims (6)

  1.  動力が入力される動力伝達装置と、この動力伝達装置の動力伝達状態を制御するために移動可能に設けられた可動部材と、圧力が伝達されて前記可動部材に与える力を発生する圧力室とを備えた動力伝達装置の制御装置において、
     燃料を燃焼させたときに発生する熱エネルギーを運動エネルギーに変換して出力する内燃機関と、
     この内燃機関で燃料を燃焼させたときに発生した排ガスの圧力を前記圧力室に伝達する圧力伝達機構と、
     この圧力伝達機構により排ガスの圧力を前記圧力室に伝達するときに、前記排ガスから前記動力伝達装置に伝達される熱量を制御する熱伝達制御機構と
    を備えていることを特徴とする動力伝達装置の制御装置。
    A power transmission device to which power is input; a movable member movably provided to control a power transmission state of the power transmission device; and a pressure chamber for generating a force to which the pressure is transmitted to the movable member In the control device of the power transmission device comprising:
    An internal combustion engine that converts the thermal energy generated when the fuel is burned into kinetic energy and outputs it,
    A pressure transmission mechanism for transmitting the pressure of exhaust gas generated when fuel is burned in the internal combustion engine to the pressure chamber;
    A power transmission device comprising: a heat transmission control mechanism for controlling an amount of heat transmitted from the exhaust gas to the power transmission device when the pressure of the exhaust gas is transmitted to the pressure chamber by the pressure transmission mechanism. Control device.
  2. 前記圧力伝達機構から伝達された排ガスの圧力を他の流体の圧力に変換して前記圧力室に伝達する圧力変換機構が設けられており、
     この圧力変換機構は、内部中空に構成されたケーシングと、このケーシング内に形成され、かつ、前記圧力伝達機構から排ガスの圧力が伝達される第1流体室と、前記ケーシング内に形成され、かつ、他の流体が封入された第2流体室と、前記ケーシング内に設けられ、かつ、前記第1流体室と前記第2流体室との間で圧力伝達をおこなうように移動するピストン機構とを有していることを特徴とする請求項1に記載の動力伝達装置の制御装置。
    A pressure conversion mechanism is provided for converting the pressure of the exhaust gas transmitted from the pressure transmission mechanism into the pressure of another fluid and transmitting the pressure to the pressure chamber;
    The pressure conversion mechanism is formed in the casing having a hollow interior, a first fluid chamber formed in the casing, to which the pressure of the exhaust gas is transmitted from the pressure transmission mechanism, and formed in the casing. A second fluid chamber in which other fluid is sealed, and a piston mechanism that is provided in the casing and moves so as to transmit pressure between the first fluid chamber and the second fluid chamber. The control device for a power transmission device according to claim 1, wherein the control device is a power transmission device.
  3.  前記熱伝達制御機構は、前記ケーシング内に設けられ、かつ、前記ピストン機構との間で熱交換をおこなう冷媒が供給される冷却室を有しており、
     前記排ガスの熱が前記第1流体室から前記ピストン機構に伝達されたときに、そのピストン機構の熱が前記冷媒に伝達されるように構成されていることを特徴とする請求項2に記載の動力伝達装置の制御装置。
    The heat transfer control mechanism has a cooling chamber that is provided in the casing and is supplied with a refrigerant that exchanges heat with the piston mechanism.
    3. The structure according to claim 2, wherein when the heat of the exhaust gas is transmitted from the first fluid chamber to the piston mechanism, the heat of the piston mechanism is transmitted to the refrigerant. Control device for power transmission device.
  4.  前記ピストン機構は中空に構成されており、そのピストン機構の内部に前記冷却室が設けられていることを特徴とする請求項3に記載の動力伝達装置の制御装置。 4. The control device for a power transmission device according to claim 3, wherein the piston mechanism is hollow, and the cooling chamber is provided in the piston mechanism.
  5.  前記冷却室に冷媒を供給する通路が設けられており、
     前記熱伝達制御機構は、前記通路を開閉するバルブを備えていることを特徴とする請求項3または4に記載の動力伝達装置の制御装置。
    A passage for supplying a coolant to the cooling chamber is provided;
    The power transmission device control device according to claim 3 or 4, wherein the heat transfer control mechanism includes a valve for opening and closing the passage.
  6.  前記動力伝達装置を潤滑するオイルが溜められたオイル溜まりを備えており、
     前記バルブは、前記動力伝達装置の温度、または前記オイル溜まりの油温が予め定められた所定温度以上である場合に前記通路を開く一方、前記動力伝達装置の温度、または前記オイル溜まりの油温が予め定められた所定温度未満である場合に前記通路を閉じるように構成されていることを特徴とする請求項5記載の動力伝達装置の制御装置。
    An oil sump in which oil for lubricating the power transmission device is stored;
    The valve opens the passage when the temperature of the power transmission device or the oil temperature of the oil sump is equal to or higher than a predetermined temperature, while the temperature of the power transmission device or the oil temperature of the oil sump. 6. The control device for a power transmission device according to claim 5, wherein the passage is closed when the temperature is lower than a predetermined temperature.
PCT/JP2010/051132 2010-01-28 2010-01-28 Power transmission device controller WO2011092817A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011501450A JP5177279B2 (en) 2010-01-28 2010-01-28 Power transmission control device
CN2010800022053A CN102216652B (en) 2010-01-28 2010-01-28 Power transmission device controller
PCT/JP2010/051132 WO2011092817A1 (en) 2010-01-28 2010-01-28 Power transmission device controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051132 WO2011092817A1 (en) 2010-01-28 2010-01-28 Power transmission device controller

Publications (1)

Publication Number Publication Date
WO2011092817A1 true WO2011092817A1 (en) 2011-08-04

Family

ID=44318827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051132 WO2011092817A1 (en) 2010-01-28 2010-01-28 Power transmission device controller

Country Status (3)

Country Link
JP (1) JP5177279B2 (en)
CN (1) CN102216652B (en)
WO (1) WO2011092817A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942352U (en) * 1982-09-13 1984-03-19 株式会社酒井製作所 Continuously variable transmission gear change operation device
JPS59165919U (en) * 1983-04-25 1984-11-07 トヨタ自動車株式会社 Internal combustion engine cooling system
JPS6385513U (en) * 1986-11-25 1988-06-04
JPH01106377U (en) * 1988-01-11 1989-07-18
JPH0558844U (en) * 1992-01-14 1993-08-03 栃木富士産業株式会社 Belt type continuously variable transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1025512C (en) * 1992-01-18 1994-07-20 邹桂怀 Internal combustion engine tail-gas water cooling, filtering, heating and evaporating circulation system
CN100520004C (en) * 2005-05-21 2009-07-29 仇恒超 Power device using thermal energy of exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942352U (en) * 1982-09-13 1984-03-19 株式会社酒井製作所 Continuously variable transmission gear change operation device
JPS59165919U (en) * 1983-04-25 1984-11-07 トヨタ自動車株式会社 Internal combustion engine cooling system
JPS6385513U (en) * 1986-11-25 1988-06-04
JPH01106377U (en) * 1988-01-11 1989-07-18
JPH0558844U (en) * 1992-01-14 1993-08-03 栃木富士産業株式会社 Belt type continuously variable transmission

Also Published As

Publication number Publication date
JP5177279B2 (en) 2013-04-03
CN102216652A (en) 2011-10-12
JPWO2011092817A1 (en) 2013-05-30
CN102216652B (en) 2013-09-25

Similar Documents

Publication Publication Date Title
KR100849048B1 (en) Power transmission system
JP4811332B2 (en) Hydraulic control device
JP3622689B2 (en) Hydraulic oil temperature control device for power transmission
US20150285369A1 (en) Active thermal hydraulic fluid level control for an automatic transmission
JP5177279B2 (en) Power transmission control device
JP4935343B2 (en) Hydraulic control device for continuously variable transmission
JP5472325B2 (en) Power transmission control device
JP5177278B2 (en) Power transmission control device
JP4978185B2 (en) Hydraulic control device for continuously variable transmission
JP2013228052A (en) Hydraulic control device
JP2009019748A (en) Energy regeneration device
JP2007085485A (en) Hydraulic control device
JP2011153593A (en) Control device of power transmission
JP5299297B2 (en) Power transmission control device
JP5282770B2 (en) Hydraulic control device
JP4496855B2 (en) Power transmission device
JP4980827B2 (en) Temperature regulator for fluid transmission
Chen et al. Automatic Transmission
Ohashi et al. Development of high-efficiency CVT for luxury compact vehicle
JP2010007781A (en) Hydraulic control device
JP4853275B2 (en) Hydraulic control device for continuously variable transmission
JP2010210047A (en) Lubricating oil supply device
JP2003042271A (en) Oil feeder for power transmission device
JP2012067784A (en) Belt-type continuously variable transmission
JP2006349114A (en) Power transmission device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002205.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 9333/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011501450

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844580

Country of ref document: EP

Kind code of ref document: A1