WO2011092807A1 - Projection type display device and method of controlling projection type display device - Google Patents

Projection type display device and method of controlling projection type display device Download PDF

Info

Publication number
WO2011092807A1
WO2011092807A1 PCT/JP2010/051032 JP2010051032W WO2011092807A1 WO 2011092807 A1 WO2011092807 A1 WO 2011092807A1 JP 2010051032 W JP2010051032 W JP 2010051032W WO 2011092807 A1 WO2011092807 A1 WO 2011092807A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reference value
brightness
frame
luminance
Prior art date
Application number
PCT/JP2010/051032
Other languages
French (fr)
Japanese (ja)
Inventor
タン テイ ミョー
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2010/051032 priority Critical patent/WO2011092807A1/en
Publication of WO2011092807A1 publication Critical patent/WO2011092807A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the present invention relates to a projection display device and a method for controlling the projection display device.
  • FIG. 1 is a block diagram showing a configuration example of a related projection display apparatus.
  • the projection display apparatus includes an optical engine 100 and a control unit 200.
  • the optical engine 100 includes a lamp 110 serving as a light source, a lens 120 that collects light from the lamp 110, a color wheel 140, a rod integrator 150, a reflective image forming element 130, and a reflective image forming element 130.
  • a projection lens 160 that projects the reflected light onto the screen and an absorber (absorber) 170 that absorbs the light that is not projected onto the screen are included.
  • the control unit 200 includes an image signal input unit 230, an image signal processing unit 210, and a color wheel driving circuit 250.
  • the image signal processing unit 210 includes a frame memory 211 and a scaling / gamma correction unit 215.
  • DMD digital micromirror device
  • the DMD element has a configuration in which hundreds of thousands or more of micromirrors are arranged in a matrix on a rectangular plane.
  • One pixel in one frame image corresponds to one micromirror.
  • the micromirror operates in either ON or OFF according to a video signal including an ON / OFF signal that is a signal for instructing ON or OFF, and changes the direction of the mirror depending on whether it is ON or OFF.
  • the light incident on the micro mirror that is turned on is reflected by the micro mirror and sent to the projection lens 160.
  • the light reflected by the ON-operation micromirror is collectively referred to as ON light.
  • the light incident on the micro mirror that is turned off is reflected by the micro mirror and sent to the absorber 170.
  • the light reflected by the micromirror that is turned off is collectively referred to as OFF light.
  • ON / OFF of the micromirror is modulated by a pulse width modulation method based on the ON / OFF signal of the video signal.
  • the color wheel 140 an area sandwiched between the outer periphery of the disk and a concentric circle on the center side of the disk is divided into three parts by a line passing through the central axis so that the center angle of the disk is equal. Each of the three divided parts is provided with a color filter for each of the three primary colors consisting of red (R), green (G), and blue (B).
  • the color wheel 140 rotates in accordance with the control of the color wheel driving circuit 250 and irradiates the rod integrator 150 with the white light from the lamp 110 divided into the three primary colors in terms of time.
  • the color of the filter provided on the color wheel 140 is three primary colors.
  • the color is not limited to the three primary colors, and may be four colors obtained by adding white to the three primary colors.
  • the rod integrator 150 is an optical element that irradiates the reflective image forming element 130 with light incident from the color wheel 140 in a uniform illuminance distribution.
  • the image signal input unit 230 is continuously input with a video signal that is a signal related to one frame of video, and a vertical synchronizing signal (Vsync) / horizontal synchronizing signal (Hsync) (in the figure, “ When a synchronization signal composed of “V / Hsync” is input, the input signal is decoded, converted from an analog signal to a digital signal, and the digitized signal is transmitted to the image signal processing unit 210.
  • Vsync vertical synchronizing signal
  • Hsync horizontal synchronizing signal
  • the scaling / gamma correction unit 215 is configured to correct an error in scaling and video brightness for matching the video size of the video signal to the size of the DMD element with respect to the video signal received from the image signal input unit 230.
  • a video signal that has been subjected to gamma correction is generated.
  • the video signal includes an ON / OFF signal corresponding to each of the three primary colors, and the pulse width of the ON / OFF signal corresponds to color information indicating the gradation information.
  • the scaling / gamma correction unit 215 transmits the generated video signal to the frame memory 211 one video at a time in synchronization with the synchronization signal.
  • the scaling / gamma correction unit 215 transmits a color filter synchronization signal indicating the color field switching timing of the color wheel 140 to the color wheel driving circuit 250 based on the vertical synchronization signal received from the image signal input unit 230.
  • the color field is a period in which the color wheel 140 is irradiated with light from one of the three primary colors in one frame period.
  • the color wheel driving circuit 250 rotates the color wheel 140 in accordance with the color filter synchronization signal received from the image signal processing unit 210.
  • the frame memory 211 temporarily stores a video signal of one frame received from the scaling / gamma correction unit 215, and turns on / off each micromirror according to the color information of the video signal, the vertical synchronization signal, and the horizontal synchronization signal. An OFF signal is transmitted to the reflective image forming element 130.
  • the image signal processing unit 210 converts the video signal into a video signal that matches the size and color of the image to be projected.
  • the micromirror ON / OFF signal corresponding to the signal is transmitted to the reflective image forming element 130 in accordance with the synchronization signal via the frame memory 211 for each frame.
  • the image signal processing unit 210 supplies a color filter synchronization signal to the color wheel driving circuit 250.
  • the color wheel driving circuit 250 controls the rotation of the color wheel 140 according to the color filter synchronization signal, so that the light of the white light source is temporally divided into three primary colors, and the reflective image forming element 130 is passed through the rod integrator 150. Is irradiated.
  • each micromirror When an ON / OFF signal is input from the image signal processing unit 210 to the reflective image forming element 130, each micromirror operates ON or OFF according to the ON / OFF signal.
  • the light irradiated to the reflective image forming element 130 the light reflected by the micromirror that is turned on is sent to the projection lens 160, and the light reflected by the micromirror that is turned off is absorbed by the absorber 170.
  • the light sent to the projection lens 160 is projected on the screen, and an image corresponding to the video signal is displayed on the screen.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-163876
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-292953
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2007-127856
  • Patent Document 4 An example of a projection television that can use the OFF light is disclosed in Japanese Patent Laid-Open No. 2002-287250 ( Hereinafter, it is disclosed in Patent Document 4).
  • Patent Document 4 defines an average ON rate that indicates an average ratio of ON light in one frame, and discloses a graph that indicates the relationship between the intensity of light irradiated on the light receiving plane 3 and the average ON rate. . From this graph, it can be seen that the smaller the average ON rate, the greater the intensity of the light that reciprocates the OFF light and joins the light of the light source.
  • Patent Document 4 adopts a CRT television technology that limits the luminance of a high average luminance image exceeding the normal luminance level, determines a predetermined value Q corresponding to the normal average luminance level, and determines the average ON rate. Is less than Q, the light intensity applied to the light receiving plane 3 is controlled to be constant, and when the average ON rate is greater than Q, the intensity of the light obtained by reciprocating the OFF light along the propagation path. Control to maximize
  • the OFF light that is not used in the projected image depends on the content of the projected image, and the luminance changes from frame to frame. Therefore, if the luminance difference between frames is large, the blinking (flickering) phenomenon becomes noticeable. . When the flickering phenomenon becomes prominent, flicker is perceived by a person viewing the image, and it is difficult to reuse OFF light as a light source.
  • the flickering phenomenon is not taken into consideration, and when the average ON rate is less than Q, even if the flickering phenomenon is suppressed, the average ON rate is larger than Q. May cause a noticeable flickering phenomenon, in which case the person viewing the image will perceive the flicker.
  • One of the objects of the present invention is to provide a projection display apparatus that suppresses the occurrence of flicker and can use OFF light that is not used for projection as light of a light source.
  • a projection display device includes a plurality of micromirrors arranged in a matrix that operates either on or off in response to a video signal indicating one frame of video, and illuminates the micromirror.
  • Reflective image forming element that forms a projected image by the reflected light reflected by the ON-operation micromirror, and the transmittance can be changed, and the OFF light that is reflected from the OFF-operation micromirror is transmitted.
  • Optics that illuminates the reflective image forming element as illumination light with uniform illuminance distribution, by making the transmission panel that emits the feedback light, the light source, and the light collected from the feedback light and the light from the light source.
  • the device includes a memory that stores a predetermined reference value as an initial value, and compares the absolute value of the difference in brightness of the OFF light between the current frame and the next frame with the reference value. Is larger than the reference value, the brightness of the OFF light of the next frame is obtained, and the transmittance of the transmissive panel is switched to obtain the feedback light of the obtained brightness, and in the next frame, the absolute value is smaller than the reference value.
  • a control unit that calculates a new reference value based on the feedback light and stores the new reference value in a memory.
  • a control method for a projection display apparatus includes a plurality of micromirrors arranged in a matrix that operates either ON or OFF in response to a video signal indicating one frame of video.
  • Reflective image forming element that forms a projection image with reflected light reflected by the micromirrors that are turned on for illumination light that illuminates the micromirrors, and the reflected light of the micromirrors that are turned off and configured to change the transmittance.
  • Reflection-type image formation as illumination light by making the transmissive panel that transmits OFF light and emitting it as feedback light, the light source, and the light collected from the feedback light and light from the light source, making the illuminance distribution uniform
  • a method for controlling a projection display apparatus having an optical element for irradiating an element and a memory for storing a reference value set in advance as an initial value, wherein the current frame and the next frame are turned off.
  • the transmittance of the transmissive panel is switched, a new reference value is calculated based on the feedback light in the next frame, and the new reference value is stored in the memory.
  • FIG. 1 is a block diagram showing a configuration example of a related projection display apparatus.
  • FIG. 2 is a block diagram illustrating a configuration example of the projection display apparatus according to the first embodiment.
  • FIG. 3 is a view for explaining the operation of the optical engine shown in FIG.
  • FIG. 4 is a diagram for explaining a method of combining the light from the lamp and the OFF light.
  • FIG. 5 is a block diagram for explaining the configuration of the control unit shown in FIG.
  • FIG. 6 is a flowchart showing the procedure of the OFF light adjustment method for suppressing flicker.
  • FIG. 7 is a graph showing the utilization ratio of the primary light quantity.
  • FIG. 8 is a block diagram illustrating a configuration example of the projection display apparatus according to the second embodiment.
  • FIG. 9 is a diagram for explaining the configuration of the control unit shown in FIG.
  • FIG. 2 is a block diagram showing an example of the configuration of the projection display device of the present embodiment.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the projection display device of the present embodiment includes an optical engine 10 and a control unit 20.
  • the optical engine 10 includes a configuration obtained by removing the absorber 170 from the optical engine 100 illustrated in FIG. 1, an OFF light feedback unit 11, and a light merging unit 30.
  • the optical confluence unit 30 includes reflection mirrors 31 and 32 and a condensing lens 35.
  • the OFF light feedback unit 11 includes a condenser lens 12 that condenses the OFF light, a transmissive liquid crystal panel 14, and an optical fiber 13 that guides the light focused by the condenser lens 12 to the liquid crystal panel 14.
  • the optical path until the OFF light reflected by the reflective image forming element 130 reaches the light combining unit 30 via the OFF light feedback unit 11 corresponds to a feedback path for returning the OFF light to the light source side.
  • a cooling mechanism for absorbing heat may be provided in the optical fiber 13 and the liquid crystal panel 14 when heat is released when the intensity of OFF light attenuates in the return path.
  • the cooling mechanism is not shown in the drawing.
  • the control unit 20 includes an image signal input unit 230, an image signal processing unit 21, a color wheel drive circuit 25, and a liquid crystal panel control unit 27.
  • the image signal processing unit 21 includes a current image frame memory 212, a next image frame memory 213, and a scaling / gamma correction unit 215.
  • the image signal input unit 230 is connected to the scaling / gamma correction unit 215 of the image signal processing unit 21 through a signal line.
  • the scaling / gamma correction unit 215 is connected to the color wheel driving circuit 25 through a signal line.
  • the liquid crystal panel control unit 27 is connected to each of the liquid crystal panel 14, the current image frame memory 212 and the next image frame memory 213 of the image signal processing unit 21, and the color wheel driving circuit 25 via signal lines.
  • the color wheel drive circuit 25 controls the rotation of the color wheel 140 according to the color filter synchronization signal received from the scaling / gamma correction unit 215 and transfers the color filter synchronization signal to the liquid crystal panel control unit 27.
  • a power supply circuit (not shown) for supplying power to the lamp 110 and the control unit 20 is not directly related to the features of the present invention, and thus description thereof is omitted.
  • the OFF light is used as the light of the secondary light source.
  • FIG. 3 is a block diagram for explaining the operation of the optical engine shown in FIG. 2, and FIG. 4 is a diagram for explaining a method of joining the light from the lamp and the OFF light.
  • the reflection mirror 31 is disposed at a position where the OFF light transmitted through the liquid crystal panel 14 of the optical engine 10 is incident.
  • the light after the OFF light has transmitted through the liquid crystal panel 14 is referred to as feedback light.
  • the mirror surface of the reflection mirror 31 is inclined by about 45 degrees with respect to the optical axis of the return light, reflects the return light and irradiates the condenser lens 35.
  • the reflection mirror 32 is disposed at a position where light emitted from the lamp 110 and focused by the lens 120 is incident.
  • the mirror surface of the reflection mirror 32 is inclined about 45 degrees with respect to the optical axis of the light from the lens 120, and reflects incident light to irradiate the condenser lens 35.
  • the condenser lens 35 is disposed between the reflection mirror 31 and the reflection mirror 32 and the color wheel 140, and collects the light reflected by the reflection mirror 31 and the light reflected by the reflection mirror 32 to the color wheel 140. Irradiate.
  • the return light reaches the reflection mirror 31 via the condenser lens 12, the optical fiber 13 and the liquid crystal panel 14.
  • the light emitted from the lamp 110 and collected by the lens 120 reaches the reflection mirror 32.
  • the optical axes of the light from the lamp 110 and the feedback light are adjusted in parallel by the reflecting mirror 31 and the reflecting mirror 32, and these lights are converged by being joined by the condenser lens 35.
  • the color wheel 140 is irradiated as light from one light source.
  • the condensing lens 12 is provided instead of the absorber 170 shown in FIG. 1, and the OFF light focused by the condensing lens 12 is guided to the liquid crystal panel 14 by the optical fiber 13.
  • the feedback light after passing through 14 is combined with the light from the lamp 110 via the reflection mirror 31 and the condenser lens 35 and irradiated to the color wheel 140.
  • the luminance of the OFF light is the content of the image to be projected or It varies greatly depending on the ON / OFF status of the micromirror. For example, when the brightest all-white screen is projected, there is no OFF light. Conversely, when the all-black screen is projected, all the light supplied from the lamp 110 is OFF light. Since the brightness of the OFF light varies greatly depending on the projected image, it is necessary to appropriately adjust the amount of OFF light to be returned.
  • the control unit 20 adjusts the amount of the return light in accordance with the timing of the color filter synchronization signal based on the brightness of the OFF light of two consecutive frames.
  • the configuration of the control unit 20 for using OFF light having different luminance for each frame as stable light will be described in detail.
  • the same control is performed for each of the three primary colors.
  • the case of one color will be described.
  • FIG. 5 is a block diagram for explaining the configuration of the control unit shown in FIG.
  • the current image frame memory 212 shown in FIG. 5 corresponds to the frame memory 211 shown in FIG. 1, and the image signal processing unit 21 has a configuration in which a next image frame memory 213 is added to the image signal processing unit 210 shown in FIG. It is.
  • the video signal of the current frame image that is the image of the frame to be projected is stored in the current image frame memory 212, and the video signal of the next frame image that is the image of the frame to be projected next is the next image frame memory 213.
  • the ON / OFF signal based on the video signal of the current frame image is transmitted to the reflective image forming element 130, the video signal of the next frame image is overwritten in the current image frame memory 212, and the video signal of the next frame is further transferred to the next frame.
  • the image frame memory 213 is overwritten.
  • the liquid crystal panel control unit 27 includes a luminance comparison unit 271 that compares the OFF light luminances of two consecutive frames, and a synchronization / adjustment circuit 272 that controls luminance adjustment and luminance adjustment timing.
  • a memory 273 that stores a reference value for determining whether or not to perform brightness adjustment, a decoder 274 that supplies a synchronization signal to the synchronization / adjustment circuit 272, and a liquid crystal drive circuit 275 that controls the transmittance of the liquid crystal panel 14.
  • the memory 273 is a nonvolatile memory.
  • the memory 273 calculates the luminance for determining the luminance of the feedback light based on the reference value as a criterion for determining whether or not to adjust the luminance of the OFF light to be fed back, and the luminance difference between the OFF lights of two consecutive frames.
  • the formula, the transmittance calculation formula indicating the relationship between the brightness of the feedback light and the transmittance of the liquid crystal panel 14, and the reference value calculation formula for obtaining the reference value corresponding to the brightness of the feedback light are registered in advance. .
  • the reference value serving as a criterion for determining whether or not to adjust the brightness of the OFF light is a limit brightness difference that humans can recognize as flicker, and a brightness difference smaller than the reference value is not recognized as flicker by humans.
  • This reference value is a limit value at which the human eye starts to perceive blinking due to a luminance difference that occurs every frame period (for example, 16.67 ms when the frame frequency is 60 Hz) as “flickering”. According to the Ferry-Porter law, it varies depending on the luminance of the target.
  • the visual target is a projected image.
  • the critical fusion frequency (CFF) which is the limit frequency at which a person can detect flicker
  • the CFF increases as the luminance increases, and the CFF decreases as the luminance decreases. From this, the relationship between the luminance and the reference value is as follows. As the luminance increases, the flicker becomes conspicuous and the reference value decreases. On the other hand, when the luminance is reduced, the flicker is less noticeable and the reference value is increased.
  • the reference value calculation formula described above is a formula for obtaining the reference value from the brightness of the feedback light based on the relationship between the brightness and the reference value.
  • the luminance calculation formula registered in advance in the memory 273 will be described later.
  • the luminance comparison unit 271 shown in FIG. 5 includes a decoder (not shown) and a comparator (not shown).
  • the decoder converts the video signal stored in each of the current image frame memory 212 and the next image frame memory 213 into a value indicating the brightness of the OFF light as follows. Based on the relationship that the brightness of the OFF light is proportional to the number of micromirrors that are turned off during one frame period, an equation for obtaining the brightness of the OFF light from the number of micromirrors that are turned off is stored in advance in the decoder circuit.
  • the decoder reads out the number of micromirrors operating OFF from the video signal for one frame, and calculates the brightness of the OFF light based on the number.
  • a comparator (not shown) of the luminance comparison unit 271 compares the luminances of the two OFF lights calculated by the decoder, and calculates the absolute value of the luminance difference between the two OFF lights. Then, the comparator transmits luminance information including information on the luminance of OFF light of each of the two consecutive frames and information on the absolute value of the luminance difference between the two OFF lights to the synchronization / adjustment circuit 272.
  • the decoder 274 When the decoder 274 receives the color filter synchronization signal from the color wheel driving circuit 25, the decoder 274 transmits a color filter synchronization signal for notifying the timing of the color field of the color to be adjusted to the synchronization / adjustment circuit 272.
  • the control signal including the transmittance information in accordance with the color filter synchronization signal is transmitted to the liquid crystal panel 14 to switch the transmittance of the liquid crystal panel 14.
  • the color filter synchronization signal is information indicating the timing of changing to the transmittance included in the adjustment signal.
  • FIG. 6 is a flowchart showing a procedure of an OFF light adjustment method for suppressing flicker.
  • the procedure described here is also performed for each of the three primary colors. However, since the description is redundant, the description will be given for the case of one color.
  • a reference value serving as a criterion for determining whether or not to adjust the OFF light luminance is T, the OFF light luminance of the current frame is P, and the OFF light luminance of the next frame is N.
  • the luminance information includes information of
  • the synchronization / adjustment circuit 272 When the synchronization / adjustment circuit 272 receives the brightness information from the brightness comparison unit 271, the synchronization / adjustment circuit 272 reads T from the memory 273 and compares
  • step 1001 if the absolute value of the difference between P and N is equal to or greater than the T value, the synchronization / adjustment circuit 272 compares the magnitudes of P and N (step 1003).
  • P is smaller than N, it is necessary to reduce the transmittance of OFF light in the liquid crystal panel 14 in order to make the absolute value of the difference between P and N smaller than the reference value.
  • the synchronization / adjustment circuit 272 refers to the luminance calculation formula registered in the memory 273 in order to make the absolute value of the difference between P and N smaller than the reference value, and the absolute value of the difference between P and N is the reference value.
  • the synchronization / adjustment circuit 272 obtains the transmittance of the liquid crystal panel 14 corresponding to the obtained luminance based on the transmittance calculation formula registered in the memory 273 and an adjustment signal including information on the obtained transmittance. Is transmitted to the liquid crystal driving circuit 275 (step 1004).
  • the synchronization / adjustment circuit 272 obtains a reference value for the luminance of the feedback light of the next frame from the reference value calculation formula, and registers the new reference value in the memory 273 to update the reference value.
  • the reference value is updated because the brightness of the feedback light changes as the transmittance of the liquid crystal panel 14 changes. Therefore, the reference value calculation formula based on the Ferry-Porter law based on the brightness after the change of the feedback light This is because it is necessary to re-determine a reference value that satisfies the above.
  • the reference value is changed according to the brightness after the change of the feedback light, so that the OFF light is maximized against the change in the brightness of the feedback light of the images projected one after another. And the occurrence of flicker can be suppressed.
  • the synchronization / adjustment circuit 272 refers to the luminance calculation formula registered in the memory 273 in order to make the absolute value of the difference between P and N smaller than the reference value, and the absolute value of the difference between P and N is the reference value. The minimum brightness of N that is less than. Subsequently, the synchronization / adjustment circuit 272 obtains the transmittance of the liquid crystal panel 14 corresponding to the obtained luminance based on the transmittance calculation formula registered in the memory 273 and an adjustment signal including information on the obtained transmittance. Is transmitted to the liquid crystal driving circuit 275 (step 1005).
  • the synchronization / adjustment circuit 272 obtains a reference value for the luminance of the feedback light of the next frame from the reference value calculation formula, and registers the new reference value in the memory 273 to update the reference value.
  • the synchronization / adjustment circuit 272 transmits the color filter synchronization signal received from the decoder 274 to the liquid crystal drive circuit 275.
  • the color filter synchronization signal as a switching timing for changing the transmittance of the liquid crystal panel 14, the transmittance of each color is adjusted to correspond to the period of the color field of each color.
  • L is an amount corresponding to the invariable loss in the return path including the optical fiber 13, the liquid crystal panel 14, and the reflection mirror 31.
  • the constant loss of the return path can be suppressed to 20% or less.
  • a (t) is the amount corresponding to the variable loss due to the luminance adjustment of the synchronization / adjustment circuit 272, and is the amount of light shielded by the liquid crystal panel 14.
  • a (t) is a parameter that is determined by the reference value calculation formula and changes for each frame.
  • a (t) is expressed as a function of time t because the frame changes at a constant period.
  • the amount of OFF light in one frame is (1-S), and the value obtained by subtracting the amount lost in the feedback path from that value is ⁇ (1-S) -L ⁇ . If the light quantity of ⁇ (1-S) -L ⁇ is used as it is as the secondary light source, flicker may occur. Therefore, by subtracting A (t) from ⁇ (1-S) -L ⁇ so that flicker does not occur, the amount of light F transmitted through the liquid crystal panel 14 becomes ⁇ (1-S) -LA (t). ⁇ .
  • a luminance calculation formula obtained by replacing the light quantity of the formula (2) with the luminance is registered in the memory 273 in advance.
  • the synchronization / adjustment circuit 272 obtains the transmittance of the liquid crystal panel 14 corresponding to the brightness obtained from the brightness calculation formula from the transmittance calculation formula, and information on the transmittance Is sent to the liquid crystal drive circuit 275.
  • FIG. 7 is a graph showing the utilization ratio of the primary light quantity, and is a graph visually representing the expression (2).
  • the initial reference value T may be an arbitrary value, but when the brightness of the feedback light and the brightness of the ON light coincide with each other, the value obtained from the reference value calculation formula is set as the initial T value. It is written as a point.
  • the primary light quantity is classified into four types: ON light, feedback light, variable loss due to brightness adjustment, and invariant loss due to the feedback path.
  • FIG. 7 shows that A (t) increases so that the brightness difference does not become larger than the reference value because the brightness due to the OFF light increases as the amount of OFF light increases.
  • the transmittance of the liquid crystal panel 14 in accordance with the increase or decrease in the brightness difference of the OFF light between two consecutive frames, the amount of the OFF light that is used as the light source.
  • the luminance change is maintained within the reference value.
  • the reference value is updated to a value corresponding to the brightness of the feedback light of the next frame.
  • the initial reference value registered in advance in the memory 273 is a value obtained from the reference value calculation formula when the luminances of the ON light and the feedback light match. Further, the case of one color among the three primary colors will be described.
  • the user connects an information processing apparatus (not shown) storing image data to be projected onto the screen to the projection display apparatus of the present embodiment with a cable. Subsequently, when the user activates the information processing apparatus and the projection display apparatus and turns on the power of the lamp 110, the light from the lamp 110 enters the condenser lens 35 via the lens 120 and the reflection mirror 32. The light condensed by the condenser lens 35 enters the reflective image forming element 130 via the color wheel 140 and the rod integrator 150.
  • a synchronization signal and a video signal of the image data are transmitted from the information processing apparatus to the image of the projection display apparatus.
  • the signal is input to the signal input unit 230.
  • the image signal processing unit 21 receives the first frame (hereinafter referred to as the current frame) and the next frame (hereinafter referred to as the next frame). ) Are stored in the current image frame memory 212 and the next image frame memory 213, respectively.
  • the image signal processing unit 21 transmits an ON / OFF signal based on the video signal stored in the current image frame memory 212 to the reflective image forming element 130 in accordance with the synchronization signal, so that the reflective image forming element 130 is transmitted.
  • An image based on the video signal of the current frame by the ON light from is projected onto the screen, and the OFF light is projected onto the condenser lens 12.
  • the liquid crystal panel control unit 27 adjusts the brightness of the OFF light from the respective video signals of the current image frame memory 212 and the next image frame memory 213 while an image based on the video signal stored in the current image frame memory 212 is being projected. calculate. Further, the liquid crystal panel control unit 27 calculates the absolute value of the difference in luminance of OFF light between two successive frames of the current frame and the next frame. Subsequently, the liquid crystal panel control unit 27 determines whether it is necessary to adjust the brightness of the OFF light of the next frame in accordance with the procedure shown in FIG.
  • the liquid crystal panel control unit 27 determines that the brightness of the OFF light of the next frame needs to be adjusted, the absolute value of the difference in the brightness of the OFF light of the two consecutive frames is smaller than the reference value, and the next frame is turned off. The luminance of light is obtained, and the transmittance of the liquid crystal panel 14 for obtaining feedback light of that luminance is obtained. Subsequently, the liquid crystal panel control unit 27 uses the color filter synchronization signal to match the start timing of the color field of the color filter of the color wheel 140 corresponding to the color information of the video signal of the next frame image. Is switched to the obtained transmittance. Thereafter, the liquid crystal panel control unit 27 obtains a reference value corresponding to the feedback light of the next frame and registers it in the memory 273.
  • the light obtained by combining the return light and the light from the lamp 110 enters the reflective image forming element 130 via the color wheel 140 and the rod integrator 150, and is used for projection of the next frame image switched from the current frame image.
  • the pulse time of the ON operation of the micromirror is about several tens of ⁇ s in the case of 256 gradations. Further, the time required for the OFF light reflected by the reflective image forming element 130 to return to the reflective image forming element 130 again through the return path is several considering the general size and speed of light of the projection display device. It is about ns.
  • OFF light generated in the time of several tens of ⁇ s from the start of projection of the next frame image is irradiated to the reflective image forming element 130 via the feedback path in several ns, for example, one frame period of 16.67 ms is This is a sufficient time to use the OFF light as a secondary light source for projecting an image using a video signal of the same frame as the frame that generates the OFF light.
  • step 1004 and step 1005 of the flowchart shown in FIG. 6 will be described in detail.
  • step 1003 when the brightness of the OFF light of the current frame is smaller than the OFF light of the next frame, the next frame image projected on the screen becomes an image darker than the current frame image.
  • the next frame image When the next frame image is projected, the brightness of the OFF light becomes larger than that in the case of the current frame image.
  • the liquid crystal panel control unit 27 reduces the transmittance of the liquid crystal panel 14 (step 1004), so that the second order The brightness of the light source is suppressed, and the person viewing the projected image on the screen does not feel flicker.
  • the next frame image projected on the screen becomes an image brighter than the current frame image.
  • the liquid crystal panel control unit 27 increases the transmittance of the liquid crystal panel 14 (step 1005), so that the second order The brightness of the light source increases, and the person viewing the projected image on the screen does not feel flicker.
  • the luminance comparison unit 271, the synchronization / adjustment circuit 272, and the liquid crystal driving circuit 275 perform the color filter synchronization signal based on the color information of the video signal.
  • the transmittance of the liquid crystal panel 14 is adjusted at the timing of the color field of the color to be adjusted.
  • the projection display apparatus effectively reuses the OFF light that is not used when the image is modulated by the DMD element as the secondary light source, compared with the case where the OFF light is not used.
  • the light use efficiency of the projector can be improved and a bright image can be provided.
  • the light obtained by returning the OFF light as a secondary light source has an effect of improving the brightness of the projected image. If the brightness of the primary light source is lowered by that amount, the life of the primary light source is further increased. The length can be increased, and the power consumption can be substantially reduced. For this reason, it is possible to increase the brightness of the projected image and to save energy in the power supplied to the projection display device.
  • the DLP projection display apparatus it has been considered extremely difficult to use OFF light whose luminance changes from frame to frame.
  • the OFF light is turned off. It is expected that the light use efficiency will be about 1.5 times that in the case where light is not used.
  • the light usage efficiency is expected to be about 1.5 times. Assuming that the light incident on the DMD element is 100%, when the OFF light is not used, the light that is effectively used is only 50%, and the remaining 50% is lost as the OFF light. In this embodiment, if the remaining 80% obtained by subtracting 20% of the constant loss from 100% is used to the maximum, the light utilization efficiency is about 1.6 times from the calculation result of 0.5 ⁇ 0.8. Can be estimated. In consideration of the variable loss at the time of adjustment for suppressing the flickering phenomenon in this estimated value, the light use efficiency is expected to be about 1.5 times.
  • the power of the lamp is controlled in accordance with the change in the brightness of the OFF light.
  • FIG. 8 is a block diagram showing an example of the configuration of the projection display device of the present embodiment.
  • symbol is attached
  • the control unit 20a of the projection display device according to the present embodiment is provided with a panel / lamp control unit 51 instead of the liquid crystal panel control unit 27 of the projection display device according to the first embodiment.
  • the lamp driving circuit 52 is further added.
  • the panel / lamp controller 51 is connected to the lamp driving circuit 52 through a signal line.
  • FIG. 9 is a diagram for explaining the configuration of the control unit shown in FIG.
  • each lamp type corresponds to the brightness difference of OFF light of two consecutive frames.
  • a power calculation formula for determining supply power is registered in the memory 273 in advance.
  • the synchronization / adjustment circuit 272 operates in the same manner as in the first embodiment, obtains power supplied to the lamp based on a preset lamp power calculation formula, and includes power information including information on power supplied to the lamp.
  • the color filter synchronization signal is transmitted to the lamp driving circuit 52.
  • the lamp driving circuit 52 When the lamp driving circuit 52 receives the color filter synchronization signal and the power information from the panel / lamp control unit 51, the lamp driving circuit 52 determines the power to the lamp 110 according to the power information, and matches the determined power with the color field of the color filter synchronization signal. Supplied to the lamp 110.
  • the power supplied to the lamp is controlled according to the type of the lamp as the brightness of the OFF light changes, so that the life of the primary light source is further improved and the power is saved. Promoted.
  • the projection display apparatus provided with the reflective image forming elements 130 corresponding to the three primary colors.
  • the present invention may be applied.
  • filters corresponding to the three primary colors may be provided in the respective reflective image forming elements 130. Since an example of an apparatus similar to a projection display apparatus provided with reflective image forming elements corresponding to the three primary colors is disclosed in Patent Document 4, detailed description thereof is omitted here.
  • the method using the OFF light feedback unit 11 and the light confluence unit 30 has been described.
  • the OFF light feedback unit 11 and the optical merging unit 30 are an example of the method, and other methods may be used.
  • the video signal input from the outside is an analog signal
  • it may be a digital signal.
  • the image signal input unit 230 may not be provided with a function for converting an analog signal into a digital signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Disclosed is a projection type display device comprising a reflection type image forming element (130), provided with a plurality of micro-mirrors actuated either ON or OFF in accordance with the video signal in one frame, which reflects the illumination from the ON actuated micro-mirrors and forms a projection image; a transmission type panel (14), configured to have variable transmissivity, which transmits OFF light from the OFF actuated micro-mirrors and outputs said OFF light as return light; a light source (110); an optical element (150) which irradiates onto the reflection type image forming element (130) a uniform distribution of the light that results from focusing the return light and the light from the light source; and a control unit (20) which stores a predetermined standard value as an initial value, compares the standard value and the absolute value of the difference in the luminance of the OFF light between the current frame and the next frame, determines the luminance of the OFF light in the next frame in order for the absolute value to become smaller than the standard value if the absolute value is larger than the standard value, and in order to obtain return light of the determined luminance, changes the transmissivity of the transmission type panel (14) and updates the standard value to a value based on the return light in the next frame.

Description

投写型表示装置、および投写型表示装置の制御方法Projection display device and control method of projection display device
 本発明は、投写型表示装置、および投写型表示装置の制御方法に関するものである。 The present invention relates to a projection display device and a method for controlling the projection display device.
 投写型表示装置の1つとして、ディジタル・ライト・プロセッシング(DLP:登録商標)方式の投写型表示装置が知られている。DLP方式の投写型表示装置の構成を説明する。図1は関連する投写型表示装置の一構成例を示すブロック図である。 As one of the projection display devices, a digital light processing (DLP: registered trademark) projection display device is known. A configuration of a DLP projection display apparatus will be described. FIG. 1 is a block diagram showing a configuration example of a related projection display apparatus.
 図1に示すように、投写型表示装置は、光学エンジン100と、制御部200とを有する。光学エンジン100は、光源となるランプ110と、ランプ110からの光を集光するレンズ120と、カラーホイール140と、ロッドインテグレータ150と、反射型画像形成素子130と、反射型画像形成素子130で反射された光をスクリーンに投写する投射レンズ160と、スクリーンに投写されない光を吸収する吸収体(アブソーバ)170とを有する。 As shown in FIG. 1, the projection display apparatus includes an optical engine 100 and a control unit 200. The optical engine 100 includes a lamp 110 serving as a light source, a lens 120 that collects light from the lamp 110, a color wheel 140, a rod integrator 150, a reflective image forming element 130, and a reflective image forming element 130. A projection lens 160 that projects the reflected light onto the screen and an absorber (absorber) 170 that absorbs the light that is not projected onto the screen are included.
 制御部200は、画像信号入力部230と、画像信号処理部210と、カラーホイール駆動回路250とを有する。画像信号処理部210は、フレームメモリ211と、スケーリング/ガンマ補正部215とを有する。 The control unit 200 includes an image signal input unit 230, an image signal processing unit 210, and a color wheel driving circuit 250. The image signal processing unit 210 includes a frame memory 211 and a scaling / gamma correction unit 215.
 図1に示す反射型画像形成素子130には、画像形成素子の一種であるデジタルマイクロミラーデバイス(DMD:登録商標)素子が設けられている。 1 is provided with a digital micromirror device (DMD: registered trademark) element which is a kind of image forming element.
 DMD素子は、数十万個以上のマイクロミラーが四角形状の平面にマトリクス状に配置された構成である。1フレームの映像における1つの画素が1つのマイクロミラーに対応している。マイクロミラーは、ONまたはOFFを指示する信号であるON/OFF信号を含む映像信号にしたがってONとOFFのいずれかに動作し、ONの場合とOFFの場合とでミラーの向きを変える。 The DMD element has a configuration in which hundreds of thousands or more of micromirrors are arranged in a matrix on a rectangular plane. One pixel in one frame image corresponds to one micromirror. The micromirror operates in either ON or OFF according to a video signal including an ON / OFF signal that is a signal for instructing ON or OFF, and changes the direction of the mirror depending on whether it is ON or OFF.
 ON動作のマイクロミラーに入射した光は、マイクロミラーで反射して投射レンズ160に送られる。以下では、ON動作のマイクロミラーで反射した光を、ON光と総称する。OFF動作のマイクロミラーに入射した光は、マイクロミラーで反射してアブソーバ170に送られる。以下では、OFF動作のマイクロミラーで反射した光を、OFF光と総称する。マイクロミラーのONおよびOFFは、映像信号のON/OFF信号に基づいてパルス幅変調(Pulse Width Modulation)方式によって変調される。 The light incident on the micro mirror that is turned on is reflected by the micro mirror and sent to the projection lens 160. Hereinafter, the light reflected by the ON-operation micromirror is collectively referred to as ON light. The light incident on the micro mirror that is turned off is reflected by the micro mirror and sent to the absorber 170. Hereinafter, the light reflected by the micromirror that is turned off is collectively referred to as OFF light. ON / OFF of the micromirror is modulated by a pulse width modulation method based on the ON / OFF signal of the video signal.
 カラーホイール140は、円板の外周とそれよりも中心側の同心円との間に挟まれた領域が、円板の中心角が均等になるように中心軸を通る線で3つの部位に分割され、分割された3つの部位のそれぞれに赤(R)、緑(G)および青(B)からなる3原色のそれぞれの色フィルタが設けられた構成である。カラーホイール140は、カラーホイール駆動回路250の制御にしたがって回転し、ランプ110による白色の光を3原色のそれぞれの色に時間的に分割してロッドインテグレータ150に照射する。 In the color wheel 140, an area sandwiched between the outer periphery of the disk and a concentric circle on the center side of the disk is divided into three parts by a line passing through the central axis so that the center angle of the disk is equal. Each of the three divided parts is provided with a color filter for each of the three primary colors consisting of red (R), green (G), and blue (B). The color wheel 140 rotates in accordance with the control of the color wheel driving circuit 250 and irradiates the rod integrator 150 with the white light from the lamp 110 divided into the three primary colors in terms of time.
 以下では、カラーホイール140に設けられたフィルタの色が3原色の場合で説明するが、3原色に限らず、3原色に白色を加えた4色でもよい。 In the following, the case where the color of the filter provided on the color wheel 140 is three primary colors will be described. However, the color is not limited to the three primary colors, and may be four colors obtained by adding white to the three primary colors.
 ロッドインテグレータ150は、カラーホイール140から入射される光を照度分布が均一な光にして反射型画像形成素子130に照射する光学素子である。 The rod integrator 150 is an optical element that irradiates the reflective image forming element 130 with light incident from the color wheel 140 in a uniform illuminance distribution.
 画像信号入力部230は、1フレームの映像に関する信号であるビデオ信号が連続して入力され、ビデオ信号のフレームに対応して垂直同期信号(Vsync)/水平同期信号(Hsync)(図中では「V/Hsync」と表記)からなる同期信号が入力されると、入力された信号をデコードするとともにアナログ信号からデジタル信号に変換し、デジタル化した信号を画像信号処理部210に送信する。 The image signal input unit 230 is continuously input with a video signal that is a signal related to one frame of video, and a vertical synchronizing signal (Vsync) / horizontal synchronizing signal (Hsync) (in the figure, “ When a synchronization signal composed of “V / Hsync” is input, the input signal is decoded, converted from an analog signal to a digital signal, and the digitized signal is transmitted to the image signal processing unit 210.
 スケーリング/ガンマ補正部215は、画像信号入力部230から受け取ったビデオ信号に対して、ビデオ信号による映像のサイズをDMD素子のサイズに合わせるためのスケーリングと映像の明るさの誤差を補正するためのガンマ補正とを行った映像信号を生成する。映像信号には、3原色のそれぞれに対応するON/OFF信号が含まれており、ON/OFF信号のパルス幅がその階調の情報を示す色情報に対応している。スケーリング/ガンマ補正部215は、生成した映像信号を同期信号に同期させて1映像分ずつフレームメモリ211に送信する。 The scaling / gamma correction unit 215 is configured to correct an error in scaling and video brightness for matching the video size of the video signal to the size of the DMD element with respect to the video signal received from the image signal input unit 230. A video signal that has been subjected to gamma correction is generated. The video signal includes an ON / OFF signal corresponding to each of the three primary colors, and the pulse width of the ON / OFF signal corresponds to color information indicating the gradation information. The scaling / gamma correction unit 215 transmits the generated video signal to the frame memory 211 one video at a time in synchronization with the synchronization signal.
 また、スケーリング/ガンマ補正部215は、画像信号入力部230から受け取る垂直同期信号に基づいて、カラーホイール140の色フィールドの切り替えのタイミングを示すカラーフィルター同期信号をカラーホイール駆動回路250に送信する。色フィールドは、カラーホイール140が1フレーム期間に、3原色のうち、1つの色フィルタに光が照射されている期間である。 The scaling / gamma correction unit 215 transmits a color filter synchronization signal indicating the color field switching timing of the color wheel 140 to the color wheel driving circuit 250 based on the vertical synchronization signal received from the image signal input unit 230. The color field is a period in which the color wheel 140 is irradiated with light from one of the three primary colors in one frame period.
 カラーホイール駆動回路250は、画像信号処理部210から受信するカラーフィルター同期信号にしたがって、カラーホイール140を回転させる。 The color wheel driving circuit 250 rotates the color wheel 140 in accordance with the color filter synchronization signal received from the image signal processing unit 210.
 フレームメモリ211は、スケーリング/ガンマ補正部215から受け取る1フレーム分の映像の映像信号を一時的に保存し、映像信号の色情報、垂直同期信号および水平同期信号にしたがって、各マイクロミラーのON/OFF信号を反射型画像形成素子130に送信する。 The frame memory 211 temporarily stores a video signal of one frame received from the scaling / gamma correction unit 215, and turns on / off each micromirror according to the color information of the video signal, the vertical synchronization signal, and the horizontal synchronization signal. An OFF signal is transmitted to the reflective image forming element 130.
 上述した投写型表示装置の動作を説明する。 The operation of the projection display device described above will be described.
 画像信号処理部210は、外部からビデオ信号および同期信号が画像信号入力部230を介して入力されると、ビデオ信号を、投写される画像のサイズおよび色に合わせた映像信号に変換し、映像信号に対応する、マイクロミラーのON/OFF信号を1フレーム毎にフレームメモリ211を介して同期信号に合わせて反射型画像形成素子130に送信する。また、画像信号処理部210は、カラーフィルター同期信号をカラーホイール駆動回路250に供給する。 When the video signal and the synchronization signal are input from the outside via the image signal input unit 230, the image signal processing unit 210 converts the video signal into a video signal that matches the size and color of the image to be projected. The micromirror ON / OFF signal corresponding to the signal is transmitted to the reflective image forming element 130 in accordance with the synchronization signal via the frame memory 211 for each frame. In addition, the image signal processing unit 210 supplies a color filter synchronization signal to the color wheel driving circuit 250.
 カラーホイール駆動回路250がカラーフィルター同期信号にしたがってカラーホイール140の回転を制御することで、白色光源の光が3原色に時間的に分割され、ロッドインテグレータ150を介して、反射型画像形成素子130に照射される。 The color wheel driving circuit 250 controls the rotation of the color wheel 140 according to the color filter synchronization signal, so that the light of the white light source is temporally divided into three primary colors, and the reflective image forming element 130 is passed through the rod integrator 150. Is irradiated.
 画像信号処理部210から反射型画像形成素子130にON/OFF信号が入力されると、ON/OFF信号にしたがって各マイクロミラーがONまたはOFFに動作する。反射型画像形成素子130に照射された光のうち、ON動作のマイクロミラーに反射した光は投射レンズ160に送られ、OFF動作のマイクロミラーに反射した光はアブソーバ170に吸収される。投射レンズ160に送られた光は、スクリーンに投写され、映像信号に対応した画像がスクリーンに表示される。 When an ON / OFF signal is input from the image signal processing unit 210 to the reflective image forming element 130, each micromirror operates ON or OFF according to the ON / OFF signal. Of the light irradiated to the reflective image forming element 130, the light reflected by the micromirror that is turned on is sent to the projection lens 160, and the light reflected by the micromirror that is turned off is absorbed by the absorber 170. The light sent to the projection lens 160 is projected on the screen, and an image corresponding to the video signal is displayed on the screen.
 図1に示す投写型表示装置では、反射型画像形成素子130で反射されたOFF光はアブソーバ170で吸収される。アブソーバ170がOFF光を吸収し、OFF光のエネルギーを熱に変換して放出させていた。その一例が、特開2004-163876号公報(以下では、特許文献1と称する)に開示されている。 In the projection display apparatus shown in FIG. 1, the OFF light reflected by the reflective image forming element 130 is absorbed by the absorber 170. The absorber 170 absorbs the OFF light, and converts the energy of the OFF light into heat and releases it. One example is disclosed in Japanese Patent Application Laid-Open No. 2004-163876 (hereinafter referred to as Patent Document 1).
 また、その他の方法として、光吸収板の放熱性を高めるために、空冷式ラジエータ(放熱板)が光吸収板に設けられた構成が、特開2008-292953号公報(以下では、特許文献2と称する)に開示されている。さらに、液冷式ラジエータを用いる構成が、特開2007-127856号公報(以下では、特許文献3と称する)に開示されている。 As another method, a configuration in which an air-cooled radiator (heat radiating plate) is provided on the light absorbing plate in order to improve the heat radiating property of the light absorbing plate is disclosed in Japanese Patent Application Laid-Open No. 2008-292953 (hereinafter referred to as Patent Document 2). It is disclosed in the following. Furthermore, a configuration using a liquid-cooled radiator is disclosed in Japanese Unexamined Patent Application Publication No. 2007-127856 (hereinafter referred to as Patent Document 3).
 特許文献1から3のそれぞれに開示された方法のいずれにおいても、OFF光が熱として処理され、OFF光のエネルギーが無駄に捨てられていた。 In any of the methods disclosed in Patent Documents 1 to 3, OFF light is processed as heat, and energy of OFF light is wasted.
 OFF光が無駄に捨てられていたことに対して、OFF光を有効に利用する方法が検討されており、OFF光を利用可能にしたプロジェクションテレビジョンの一例が、特開2002-287250号公報(以下では、特許文献4と称する)に開示されている。 In contrast to the fact that the OFF light has been wasted, a method for effectively using the OFF light has been studied. An example of a projection television that can use the OFF light is disclosed in Japanese Patent Laid-Open No. 2002-287250 ( Hereinafter, it is disclosed in Patent Document 4).
 特許文献4に開示された技術では、この文献の図2に示すように、光偏向器400の受光平面3で反射したOFF光をミラー7で受けて受光平面3に戻し、受光平面3で反射させて光源の発光点近傍に戻している。このようにして、光源→受光平面3→ミラー7→受光平面3→光源の伝搬経路でOFF光を往復させることで、受光平面3に照射する光の強度を大きくしている。 In the technique disclosed in Patent Document 4, as shown in FIG. 2 of this document, OFF light reflected by the light receiving plane 3 of the optical deflector 400 is received by the mirror 7 and returned to the light receiving plane 3, and reflected by the light receiving plane 3. To return to the vicinity of the light emitting point of the light source. In this way, the intensity of light applied to the light receiving plane 3 is increased by reciprocating the OFF light in the propagation path of the light source → the light receiving plane 3 → the mirror 7 → the light receiving plane 3 → the light source.
 また、特許文献4では、1フレームにおける平均的なON光の割合を示す平均ON率が定義され、受光平面3に照射される光の強度と平均ON率の関係を示すグラフが開示されている。このグラフから、平均ON率が小さいほど、OFF光を往復させて光源の光に合流させた光の強度が大きくなることがわかる。 Further, Patent Document 4 defines an average ON rate that indicates an average ratio of ON light in one frame, and discloses a graph that indicates the relationship between the intensity of light irradiated on the light receiving plane 3 and the average ON rate. . From this graph, it can be seen that the smaller the average ON rate, the greater the intensity of the light that reciprocates the OFF light and joins the light of the light source.
 平均ON率の変化に対して、画面の明るさが変動しないようにする必要がある。そのため、特許文献4では、通常の輝度レベルを超える高い平均輝度の画像について輝度を制限するCRT方式テレビジョンの技術を採用し、通常の平均輝度レベルに相当する所定値Qを決め、平均ON率がQ以下の場合には、受光平面3に照射する光の強度が一定になるように制御し、平均ON率がQより大きい場合には、OFF光を上記伝搬経路で往復させた光の強度を最大にする制御を行っている。 It is necessary to prevent the screen brightness from fluctuating with changes in the average ON rate. For this reason, Patent Document 4 adopts a CRT television technology that limits the luminance of a high average luminance image exceeding the normal luminance level, determines a predetermined value Q corresponding to the normal average luminance level, and determines the average ON rate. Is less than Q, the light intensity applied to the light receiving plane 3 is controlled to be constant, and when the average ON rate is greater than Q, the intensity of the light obtained by reciprocating the OFF light along the propagation path. Control to maximize
 投写画像に使用されなかったOFF光は、投写画像の内容に依存し、フレーム毎に輝度が変化するため、フレーム間の輝度差が大きいと、明るさの明滅(フリッカリング)現象が顕著になる。フリッカリング現象が顕著になると、画像を見ている人にフリッカを感知させてしまうことになるため、OFF光を光源として再利用することが困難であった。 The OFF light that is not used in the projected image depends on the content of the projected image, and the luminance changes from frame to frame. Therefore, if the luminance difference between frames is large, the blinking (flickering) phenomenon becomes noticeable. . When the flickering phenomenon becomes prominent, flicker is perceived by a person viewing the image, and it is difficult to reuse OFF light as a light source.
 特許文献4に開示された技術では、フリッカリング現象については考慮されておらず、平均ON率がQ以下の場合にはフリッカリング現象が抑制されたとしても、平均ON率がQより大きい場合には、フリッカリング現象が顕著になるおそれがあり、その場合、画像を見ている人にフリッカを感知させてしまう。 In the technique disclosed in Patent Document 4, the flickering phenomenon is not taken into consideration, and when the average ON rate is less than Q, even if the flickering phenomenon is suppressed, the average ON rate is larger than Q. May cause a noticeable flickering phenomenon, in which case the person viewing the image will perceive the flicker.
 本発明の目的の一つは、フリッカの発生を抑え、投写に使用されないOFF光を光源の光として利用可能にした投写型表示装置を提供することである。 One of the objects of the present invention is to provide a projection display apparatus that suppresses the occurrence of flicker and can use OFF light that is not used for projection as light of a light source.
 本発明の一側面の投写型表示装置は、1フレームの映像を示す映像信号に応じてONまたはOFFのいずれかに動作するマトリクス状に配置された複数のマイクロミラーを備え、マイクロミラーを照明する照明光をON動作のマイクロミラーが反射した反射光により投写画像を形成する反射型画像形成素子と、透過率を変更可能に構成され、OFF動作のマイクロミラーの反射光であるOFF光を透過して帰還光として出射する透過型パネルと、光源と、帰還光と光源からの光とが集光された光を入射し、照度分布を均一にして照明光として反射型画像形成素子に照射する光学素子と、初期値として予め定められた基準値を記憶するメモリを含み、現フレームと次フレームのOFF光の輝度の差の絶対値と基準値とを比較し、絶対値が基準値よりも大きな場合には、絶対値が基準値よりも小さくなる、次フレームのOFF光の輝度を求め、求めた輝度の帰還光を得るために透過型パネルの透過率を切り替えるとともに、次フレームにおける帰還光に基づいて新たな基準値を算出し、新たな基準値をメモリに記憶させる制御部と、を有する。 A projection display device according to one aspect of the present invention includes a plurality of micromirrors arranged in a matrix that operates either on or off in response to a video signal indicating one frame of video, and illuminates the micromirror. Reflective image forming element that forms a projected image by the reflected light reflected by the ON-operation micromirror, and the transmittance can be changed, and the OFF light that is reflected from the OFF-operation micromirror is transmitted. Optics that illuminates the reflective image forming element as illumination light with uniform illuminance distribution, by making the transmission panel that emits the feedback light, the light source, and the light collected from the feedback light and the light from the light source. The device includes a memory that stores a predetermined reference value as an initial value, and compares the absolute value of the difference in brightness of the OFF light between the current frame and the next frame with the reference value. Is larger than the reference value, the brightness of the OFF light of the next frame is obtained, and the transmittance of the transmissive panel is switched to obtain the feedback light of the obtained brightness, and in the next frame, the absolute value is smaller than the reference value. A control unit that calculates a new reference value based on the feedback light and stores the new reference value in a memory.
 また、本発明の一側面の投写型表示装置の制御方法は、1フレームの映像を示す映像信号に応じてONまたはOFFのいずれかに動作するマトリクス状に配置された複数のマイクロミラーを備え、マイクロミラーを照明する照明光をON動作のマイクロミラーが反射した反射光により投写画像を形成する反射型画像形成素子と、透過率を変更可能に構成され、OFF動作のマイクロミラーの反射光であるOFF光を透過して帰還光として出射する透過型パネルと、光源と、帰還光と光源からの光とが集光された光を入射し、照度分布を均一にして照明光として反射型画像形成素子に照射する光学素子と、初期値として予め定められた基準値を記憶するメモリとを有する投写型表示装置の制御方法であって、現フレームと次フレームのOFF光の輝度の差の絶対値と基準値とを比較し、絶対値が基準値よりも大きな場合には、絶対値が基準値よりも小さくなる、次フレームのOFF光の輝度を求め、求めた輝度の帰還光を得るために透過型パネルの透過率を切り替えるとともに、次フレームにおける帰還光に基づいて新たな基準値を算出し、新たな基準値をメモリに記憶させるものである。 In addition, a control method for a projection display apparatus according to one aspect of the present invention includes a plurality of micromirrors arranged in a matrix that operates either ON or OFF in response to a video signal indicating one frame of video. Reflective image forming element that forms a projection image with reflected light reflected by the micromirrors that are turned on for illumination light that illuminates the micromirrors, and the reflected light of the micromirrors that are turned off and configured to change the transmittance. Reflection-type image formation as illumination light by making the transmissive panel that transmits OFF light and emitting it as feedback light, the light source, and the light collected from the feedback light and light from the light source, making the illuminance distribution uniform A method for controlling a projection display apparatus having an optical element for irradiating an element and a memory for storing a reference value set in advance as an initial value, wherein the current frame and the next frame are turned off. When the absolute value of the difference in brightness is compared with the reference value, and the absolute value is greater than the reference value, the brightness of the OFF light of the next frame in which the absolute value is smaller than the reference value is obtained, and the obtained brightness In order to obtain the feedback light, the transmittance of the transmissive panel is switched, a new reference value is calculated based on the feedback light in the next frame, and the new reference value is stored in the memory.
図1は関連する投写型表示装置の一構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a related projection display apparatus. 図2は第1の実施形態の投写型表示装置の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of the projection display apparatus according to the first embodiment. 図3は図2に示した光学エンジンの動作を説明するための図である。FIG. 3 is a view for explaining the operation of the optical engine shown in FIG. 図4はランプからの光とOFF光とを合流させる方法を説明するための図である。FIG. 4 is a diagram for explaining a method of combining the light from the lamp and the OFF light. 図5は図2に示した制御部の構成を説明するためのブロック図である。FIG. 5 is a block diagram for explaining the configuration of the control unit shown in FIG. 図6はフリッカを抑制するための、OFF光の調整方法の手順を示すフローチャートである。FIG. 6 is a flowchart showing the procedure of the OFF light adjustment method for suppressing flicker. 図7は第1次光量の利用割合を示すグラフである。FIG. 7 is a graph showing the utilization ratio of the primary light quantity. 図8は第2の実施形態の投写型表示装置の一構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of the projection display apparatus according to the second embodiment. 図9は図8に示した制御部の構成を説明するための図である。FIG. 9 is a diagram for explaining the configuration of the control unit shown in FIG.
 (第1の実施形態)
 本実施形態の投写型表示装置の構成を説明する。
(First embodiment)
The configuration of the projection display device of this embodiment will be described.
 図2は本実施形態の投写型表示装置の一構成例を示すブロック図である。図1に示した構成と同様な構成については、同一の符号を付し、その詳細な説明を省略する。 FIG. 2 is a block diagram showing an example of the configuration of the projection display device of the present embodiment. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図2に示すように、本実施形態の投写型表示装置は、光学エンジン10と、制御部20とを有する。光学エンジン10は、図1に示した光学エンジン100からアブソーバ170を除いた構成と、OFF光帰還部11と、光合流部30とを有する。光合流部30は、反射ミラー31、32と、集光レンズ35とを有する。 As shown in FIG. 2, the projection display device of the present embodiment includes an optical engine 10 and a control unit 20. The optical engine 10 includes a configuration obtained by removing the absorber 170 from the optical engine 100 illustrated in FIG. 1, an OFF light feedback unit 11, and a light merging unit 30. The optical confluence unit 30 includes reflection mirrors 31 and 32 and a condensing lens 35.
 OFF光帰還部11は、OFF光を集光する集光レンズ12と、透過型の液晶パネル14と、集光レンズ12で集束された光を液晶パネル14に導く光ファイバー13とを有する。反射型画像形成素子130で反射したOFF光がOFF光帰還部11を経由して光合流部30に到達するまでの光路が、OFF光を光源側に戻すための帰還路に相当する。 The OFF light feedback unit 11 includes a condenser lens 12 that condenses the OFF light, a transmissive liquid crystal panel 14, and an optical fiber 13 that guides the light focused by the condenser lens 12 to the liquid crystal panel 14. The optical path until the OFF light reflected by the reflective image forming element 130 reaches the light combining unit 30 via the OFF light feedback unit 11 corresponds to a feedback path for returning the OFF light to the light source side.
 なお、帰還路内でOFF光の強度が減衰する際に熱を放出する場合には、熱を吸収するための冷却機構を光ファイバー13および液晶パネル14に設けてもよい。本実施形態では、冷却機構を図に示すことを省略している。 It should be noted that a cooling mechanism for absorbing heat may be provided in the optical fiber 13 and the liquid crystal panel 14 when heat is released when the intensity of OFF light attenuates in the return path. In the present embodiment, the cooling mechanism is not shown in the drawing.
 図2に示すように、制御部20は、画像信号入力部230と、画像信号処理部21と、カラーホイール駆動回路25と、液晶パネル制御部27とを有する。画像信号処理部21は、現画像フレームメモリ212と、次画像フレームメモリ213と、スケーリング/ガンマ補正部215とを有する。 As shown in FIG. 2, the control unit 20 includes an image signal input unit 230, an image signal processing unit 21, a color wheel drive circuit 25, and a liquid crystal panel control unit 27. The image signal processing unit 21 includes a current image frame memory 212, a next image frame memory 213, and a scaling / gamma correction unit 215.
 画像信号入力部230は画像信号処理部21のスケーリング/ガンマ補正部215と信号線で接続されている。スケーリング/ガンマ補正部215はカラーホイール駆動回路25と信号線で接続されている。液晶パネル制御部27は、液晶パネル14、画像信号処理部21の現画像フレームメモリ212および次画像フレームメモリ213、ならびにカラーホイール駆動回路25のそれぞれと信号線を介して接続されている。 The image signal input unit 230 is connected to the scaling / gamma correction unit 215 of the image signal processing unit 21 through a signal line. The scaling / gamma correction unit 215 is connected to the color wheel driving circuit 25 through a signal line. The liquid crystal panel control unit 27 is connected to each of the liquid crystal panel 14, the current image frame memory 212 and the next image frame memory 213 of the image signal processing unit 21, and the color wheel driving circuit 25 via signal lines.
 カラーホイール駆動回路25は、スケーリング/ガンマ補正部215から受信するカラーフィルター同期信号にしたがってカラーホイール140の回転を制御するとともに、カラーフィルター同期信号を液晶パネル制御部27に転送する。 The color wheel drive circuit 25 controls the rotation of the color wheel 140 according to the color filter synchronization signal received from the scaling / gamma correction unit 215 and transfers the color filter synchronization signal to the liquid crystal panel control unit 27.
 なお、ランプ110および制御部20に電源を供給するための電源回路(不図示)については、本発明の特徴に直接関係しないため、その説明を省略する。 Note that a power supply circuit (not shown) for supplying power to the lamp 110 and the control unit 20 is not directly related to the features of the present invention, and thus description thereof is omitted.
 次に、図2に示した光学エンジン10の構成について詳しく説明する。本実施形態は、ランプ110を第1次光源とすると、OFF光を第2次光源の光として利用するものである。 Next, the configuration of the optical engine 10 shown in FIG. 2 will be described in detail. In the present embodiment, when the lamp 110 is a primary light source, the OFF light is used as the light of the secondary light source.
 図3は図2に示した光学エンジンの動作を説明するためのブロック図であり、図4はランプからの光とOFF光とを合流させる方法を説明するための図である。 FIG. 3 is a block diagram for explaining the operation of the optical engine shown in FIG. 2, and FIG. 4 is a diagram for explaining a method of joining the light from the lamp and the OFF light.
 図3に示すように、反射ミラー31は、光学エンジン10の液晶パネル14を透過したOFF光が入射される位置に配置されている。以下では、OFF光が液晶パネル14を透過した後の光を帰還光と称する。反射ミラー31のミラー面は、帰還光の光軸に対して約45度傾いており、帰還光を反射して集光レンズ35に照射する。 As shown in FIG. 3, the reflection mirror 31 is disposed at a position where the OFF light transmitted through the liquid crystal panel 14 of the optical engine 10 is incident. Hereinafter, the light after the OFF light has transmitted through the liquid crystal panel 14 is referred to as feedback light. The mirror surface of the reflection mirror 31 is inclined by about 45 degrees with respect to the optical axis of the return light, reflects the return light and irradiates the condenser lens 35.
 反射ミラー32は、ランプ110から放出され、レンズ120で集束された光が入射される位置に配置されている。反射ミラー32のミラー面は、レンズ120からの光の光軸に対して約45度傾いており、入射される光を反射して集光レンズ35に照射する。 The reflection mirror 32 is disposed at a position where light emitted from the lamp 110 and focused by the lens 120 is incident. The mirror surface of the reflection mirror 32 is inclined about 45 degrees with respect to the optical axis of the light from the lens 120, and reflects incident light to irradiate the condenser lens 35.
 集光レンズ35は、反射ミラー31および反射ミラー32とカラーホイール140との間に配置され、反射ミラー31で反射された光と反射ミラー32で反射された光を集光してカラーホイール140に照射する。 The condenser lens 35 is disposed between the reflection mirror 31 and the reflection mirror 32 and the color wheel 140, and collects the light reflected by the reflection mirror 31 and the light reflected by the reflection mirror 32 to the color wheel 140. Irradiate.
 図3に示したように、帰還光は集光レンズ12、光ファイバー13および液晶パネル14を経由して、反射ミラー31に達する。一方、ランプ110から放出され、レンズ120で集光された光は反射ミラー32に達する。そして、図4に示すように、反射ミラー31および反射ミラー32によって、ランプ110による光と帰還光のそれぞれの光軸が平行に調整され、これらの光が集光レンズ35によって合流することで集束され、1つの光源からの光としてカラーホイール140に照射される。 As shown in FIG. 3, the return light reaches the reflection mirror 31 via the condenser lens 12, the optical fiber 13 and the liquid crystal panel 14. On the other hand, the light emitted from the lamp 110 and collected by the lens 120 reaches the reflection mirror 32. Then, as shown in FIG. 4, the optical axes of the light from the lamp 110 and the feedback light are adjusted in parallel by the reflecting mirror 31 and the reflecting mirror 32, and these lights are converged by being joined by the condenser lens 35. Then, the color wheel 140 is irradiated as light from one light source.
 このようにして、本実施形態では、図1に示したアブソーバ170の代わりに集光レンズ12を備え、集光レンズ12で集束されたOFF光を光ファイバー13で液晶パネル14まで誘導し、液晶パネル14を透過した後の帰還光を反射ミラー31および集光レンズ35を介してランプ110からの光に合流させてカラーホイール140に照射している。 In this way, in this embodiment, the condensing lens 12 is provided instead of the absorber 170 shown in FIG. 1, and the OFF light focused by the condensing lens 12 is guided to the liquid crystal panel 14 by the optical fiber 13. The feedback light after passing through 14 is combined with the light from the lamp 110 via the reflection mirror 31 and the condenser lens 35 and irradiated to the color wheel 140.
 ここまで、OFF光を帰還させて第2次光源の光として利用するための光学エンジン10の構成を説明した。 So far, the configuration of the optical engine 10 for returning the OFF light and using it as the light of the secondary light source has been described.
 反射型画像形成素子130で反射されたOFF光を所定の面積に均一に照射したときの輝度を、本実施形態におけるOFF光の輝度と定義すると、OFF光の輝度は、投写する画像の内容またはマイクロミラーのON/OFF状況によって大きく変化する。例えば、一番明るい全白画面を投写するとき、OFF光は全くなくなり、その反対に全黒画面を投写するとき、ランプ110から供給された光は全てOFF光となる。投写される画像によって、OFF光の輝度は大きく異なるため、帰還させるOFF光の量を適切に調整する必要がある。 If the luminance when the OFF light reflected by the reflective image forming element 130 is uniformly irradiated to a predetermined area is defined as the luminance of the OFF light in this embodiment, the luminance of the OFF light is the content of the image to be projected or It varies greatly depending on the ON / OFF status of the micromirror. For example, when the brightest all-white screen is projected, there is no OFF light. Conversely, when the all-black screen is projected, all the light supplied from the lamp 110 is OFF light. Since the brightness of the OFF light varies greatly depending on the projected image, it is necessary to appropriately adjust the amount of OFF light to be returned.
 制御部20は、帰還光の光量の調整を、連続する2つのフレームのOFF光の輝度に基づいて、カラーフィルター同期信号のタイミングに合わせて行う。以下に、フレーム毎に輝度の異なるOFF光を安定した光にして利用するための制御部20の構成を詳しく説明する。なお、本実施形態では、3原色のそれぞれの色について同様な制御を行っており、ここでは、1つの色の場合について説明する。 The control unit 20 adjusts the amount of the return light in accordance with the timing of the color filter synchronization signal based on the brightness of the OFF light of two consecutive frames. Hereinafter, the configuration of the control unit 20 for using OFF light having different luminance for each frame as stable light will be described in detail. In the present embodiment, the same control is performed for each of the three primary colors. Here, the case of one color will be described.
 図5は図2に示した制御部の構成を説明するためのブロック図である。 FIG. 5 is a block diagram for explaining the configuration of the control unit shown in FIG.
 図5に示す現画像フレームメモリ212が図1に示したフレームメモリ211に相当し、画像信号処理部21は、図1に示した画像信号処理部210に次画像フレームメモリ213が追加された構成である。現在、投写対象となるフレームの画像である現フレーム画像の映像信号が現画像フレームメモリ212に保存され、次に投写対象となるフレームの画像である次フレーム画像の映像信号が次画像フレームメモリ213に格納される。 The current image frame memory 212 shown in FIG. 5 corresponds to the frame memory 211 shown in FIG. 1, and the image signal processing unit 21 has a configuration in which a next image frame memory 213 is added to the image signal processing unit 210 shown in FIG. It is. Currently, the video signal of the current frame image that is the image of the frame to be projected is stored in the current image frame memory 212, and the video signal of the next frame image that is the image of the frame to be projected next is the next image frame memory 213. Stored in
 現フレーム画像の映像信号に基づくON/OFF信号が反射型画像形成素子130に送信されると、次フレーム画像の映像信号が現画像フレームメモリ212に上書きされ、さらに次のフレームの映像信号が次画像フレームメモリ213に上書きされる。画像信号処理部内のフレームメモリを1画面分から2画面分に増設したことにより、連続する2つのフレームの映像の映像信号が順次、フレームメモリに保存される。 When the ON / OFF signal based on the video signal of the current frame image is transmitted to the reflective image forming element 130, the video signal of the next frame image is overwritten in the current image frame memory 212, and the video signal of the next frame is further transferred to the next frame. The image frame memory 213 is overwritten. By increasing the frame memory in the image signal processing unit from one screen to two screens, video signals of two consecutive frames of video are sequentially stored in the frame memory.
 図5に示すように、液晶パネル制御部27は、連続する2つのフレームのOFF光の輝度を比較する輝度比較部271と、輝度の調整および輝度調整のタイミングを制御する同期/調整回路272と、輝度調整を行うか否かの基準値を記憶するメモリ273と、同期信号を同期/調整回路272に供給するデコーダ274と、液晶パネル14の透過率を制御する液晶駆動回路275とを有する。 As shown in FIG. 5, the liquid crystal panel control unit 27 includes a luminance comparison unit 271 that compares the OFF light luminances of two consecutive frames, and a synchronization / adjustment circuit 272 that controls luminance adjustment and luminance adjustment timing. A memory 273 that stores a reference value for determining whether or not to perform brightness adjustment, a decoder 274 that supplies a synchronization signal to the synchronization / adjustment circuit 272, and a liquid crystal drive circuit 275 that controls the transmittance of the liquid crystal panel 14.
 メモリ273は不揮発性メモリである。メモリ273には、フィードバックするOFF光の輝度を調整するか否かの判定基準となる基準値と、連続する2つのフレームのOFF光の輝度差に基づいて帰還光の輝度を決めるための輝度算出式と、帰還光の輝度と液晶パネル14の透過率との関係を示す透過率算出式と、帰還光の輝度に対応して基準値を求めるための基準値算出式とが予め登録されている。 The memory 273 is a nonvolatile memory. The memory 273 calculates the luminance for determining the luminance of the feedback light based on the reference value as a criterion for determining whether or not to adjust the luminance of the OFF light to be fed back, and the luminance difference between the OFF lights of two consecutive frames. The formula, the transmittance calculation formula indicating the relationship between the brightness of the feedback light and the transmittance of the liquid crystal panel 14, and the reference value calculation formula for obtaining the reference value corresponding to the brightness of the feedback light are registered in advance. .
 ここで、OFF光の輝度を調整するか否かの判定基準となる基準値と、基準値算出式とについて説明する。 Here, a reference value that is a criterion for determining whether or not to adjust the brightness of the OFF light and a reference value calculation formula will be described.
 OFF光の輝度を調整するか否かの判定基準となる基準値は、人間がフリッカとして認識できる限界の輝度差であり、基準値よりも小さい輝度差は人間にフリッカとして認識されない。この基準値は、人間の目が1フレーム期間(例えば、フレーム周波数が60Hzの場合は16.67ms)毎に生じる輝度差による明滅を「ちらつき」として感知し始める限界値であり、基本的にはFerry-Porter法則にしたがって、視標の輝度によって変化する。ここでは、視標は投写画像である。 The reference value serving as a criterion for determining whether or not to adjust the brightness of the OFF light is a limit brightness difference that humans can recognize as flicker, and a brightness difference smaller than the reference value is not recognized as flicker by humans. This reference value is a limit value at which the human eye starts to perceive blinking due to a luminance difference that occurs every frame period (for example, 16.67 ms when the frame frequency is 60 Hz) as “flickering”. According to the Ferry-Porter law, it varies depending on the luminance of the target. Here, the visual target is a projected image.
 Ferry-Porter法則によると、視標の輝度をIとすると、人がフリッカを感知できる限界の周波数である臨界融合周波数(Critical Flicker Frequency:CFF)は次の式で表される。 According to the Ferry-Porter law, if the luminance of the target is I, the critical fusion frequency (CFF), which is the limit frequency at which a person can detect flicker, is expressed by the following equation.
 CFF=a・logI+b・・・式(1)
ただし、式(1)におけるa、bは定数である。
CFF = a · log I + b (1)
However, a and b in Formula (1) are constants.
 式(1)から、輝度が大きいほど、CFFが大きくなり、輝度が小さいほど、CFFが小さくなる。このことから、輝度と基準値との関係は、次のようになる。輝度が大きくなると、フリッカが目立ちやすくなるため、基準値は小さくなる。反対に、輝度が小さくなると、フリッカが目立ちにくくなるため、基準値は大きくなる。上述の基準値算出式は、この輝度と基準値との関係に基づいて、帰還光の輝度から基準値を求めるための式である。 From equation (1), the CFF increases as the luminance increases, and the CFF decreases as the luminance decreases. From this, the relationship between the luminance and the reference value is as follows. As the luminance increases, the flicker becomes conspicuous and the reference value decreases. On the other hand, when the luminance is reduced, the flicker is less noticeable and the reference value is increased. The reference value calculation formula described above is a formula for obtaining the reference value from the brightness of the feedback light based on the relationship between the brightness and the reference value.
 実際には、フリッカがあるか否かは人が投写画像を見て「ちらつき」を感じるか否かで判断されるため、帰還光およびランプの光を集光した光の輝度と基準値との関係式が求まる。上述の基準値算出式は、帰還光とランプの光とを集光した光の輝度と基準値との関係式において、ランプの光を一定とし、それら集光した光からランプの光を差し引いた残りの帰還光による輝度と基準値との関係を示す式になっている。 Actually, whether or not there is flicker is determined by whether or not a person feels “flickering” by looking at the projected image, so the brightness of the light collected from the return light and the lamp and the reference value A relational expression is obtained. The above-described reference value calculation formula is a relational expression between the brightness of the light collected from the feedback light and the lamp light and the reference value, and the lamp light is made constant, and the lamp light is subtracted from the collected light. This is an expression showing the relationship between the luminance of the remaining feedback light and the reference value.
 なお、メモリ273に予め登録される輝度算出式については後で説明する。 The luminance calculation formula registered in advance in the memory 273 will be described later.
 図5に示す輝度比較部271は、デコーダ(不図示)と、コンパレータ(不図示)とを有する。デコーダは、現画像フレームメモリ212と次画像フレームメモリ213のそれぞれに保存された映像信号を、次のようにして、OFF光の輝度を示す値に変換する。OFF光の輝度が1フレーム期間中にOFFしているマイクロミラーの数に比例するという関係に基づいて、OFF動作のマイクロミラーの数からOFF光の輝度を求めるための式がデコーダの回路に予め組み込まれており、デコーダは、1フレーム分の映像信号から、OFFに動作するマイクロミラーの数を読み出し、その数に基づいてOFF光の輝度を算出する。 The luminance comparison unit 271 shown in FIG. 5 includes a decoder (not shown) and a comparator (not shown). The decoder converts the video signal stored in each of the current image frame memory 212 and the next image frame memory 213 into a value indicating the brightness of the OFF light as follows. Based on the relationship that the brightness of the OFF light is proportional to the number of micromirrors that are turned off during one frame period, an equation for obtaining the brightness of the OFF light from the number of micromirrors that are turned off is stored in advance in the decoder circuit. The decoder reads out the number of micromirrors operating OFF from the video signal for one frame, and calculates the brightness of the OFF light based on the number.
 輝度比較部271のコンパレータ(不図示)は、デコーダで算出された、2つのOFF光の輝度を比較し、2つのOFF光の輝度差の絶対値を算出する。そして、コンパレータは、連続する2つのフレームのそれぞれのOFF光の輝度の情報とこれら2つのOFF光の輝度差の絶対値の情報とを含む輝度情報を同期/調整回路272に送信する。 A comparator (not shown) of the luminance comparison unit 271 compares the luminances of the two OFF lights calculated by the decoder, and calculates the absolute value of the luminance difference between the two OFF lights. Then, the comparator transmits luminance information including information on the luminance of OFF light of each of the two consecutive frames and information on the absolute value of the luminance difference between the two OFF lights to the synchronization / adjustment circuit 272.
 デコーダ274は、カラーホイール駆動回路25からカラーフィルター同期信号を受信すると、調整対象の色の色フィールドのタイミングを通知するためのカラーフィルター同期信号を同期/調整回路272に送信する。 When the decoder 274 receives the color filter synchronization signal from the color wheel driving circuit 25, the decoder 274 transmits a color filter synchronization signal for notifying the timing of the color field of the color to be adjusted to the synchronization / adjustment circuit 272.
 液晶駆動回路275は、液晶パネル14の透過率の情報を含む調整信号と、カラーフィルター同期信号を同期/調整回路272から受信すると、カラーフィルター同期信号に合わせて、透過率の情報を含む制御信号を液晶パネル14に送信することで、液晶パネル14の透過率を切り替える。ここでは、カラーフィルター同期信号は、調整信号に含まれる透過率に変更するタイミングを示す情報となる。 When the liquid crystal driving circuit 275 receives the adjustment signal including the transmittance information of the liquid crystal panel 14 and the color filter synchronization signal from the synchronization / adjustment circuit 272, the control signal including the transmittance information in accordance with the color filter synchronization signal. Is transmitted to the liquid crystal panel 14 to switch the transmittance of the liquid crystal panel 14. Here, the color filter synchronization signal is information indicating the timing of changing to the transmittance included in the adjustment signal.
 次に、同期/調整回路272の構成について説明する。 Next, the configuration of the synchronization / adjustment circuit 272 will be described.
 図6はフリッカを抑制するための、OFF光の調整方法の手順を示すフローチャートである。ここで説明する手順も、3原色の色毎に行われるが、説明が冗長になるため、1つの色の場合で説明する。OFF光の輝度を調整するか否かの判定基準となる基準値をTとし、現フレームのOFF光の輝度をPとし、次フレームのOFF光の輝度をNとする。輝度情報には、|P-N|、PおよびNの情報が含まれることになる。 FIG. 6 is a flowchart showing a procedure of an OFF light adjustment method for suppressing flicker. The procedure described here is also performed for each of the three primary colors. However, since the description is redundant, the description will be given for the case of one color. A reference value serving as a criterion for determining whether or not to adjust the OFF light luminance is T, the OFF light luminance of the current frame is P, and the OFF light luminance of the next frame is N. The luminance information includes information of | P−N |, P, and N.
 同期/調整回路272は、輝度比較部271から輝度情報を受け取ると、メモリ273からTを読み出し、|P-N|とTを比較する(ステップ1001)。PとNとの差の絶対値がT値より小さい場合、同期/調整回路272は、液晶パネル14の透過率を現状のまま維持させる旨の情報を含む調整信号を液晶駆動回路275に送信する(ステップ1002)。または、同期/調整回路272は、液晶駆動回路275に調整信号を送信しない。 When the synchronization / adjustment circuit 272 receives the brightness information from the brightness comparison unit 271, the synchronization / adjustment circuit 272 reads T from the memory 273 and compares | PN | with T (step 1001). When the absolute value of the difference between P and N is smaller than the T value, the synchronization / adjustment circuit 272 transmits an adjustment signal including information indicating that the transmittance of the liquid crystal panel 14 is maintained as it is to the liquid crystal drive circuit 275. (Step 1002). Alternatively, the synchronization / adjustment circuit 272 does not transmit an adjustment signal to the liquid crystal drive circuit 275.
 ステップ1001において、PとNとの差の絶対値がT値以上の場合、同期/調整回路272は、PとNの大きさを比較する(ステップ1003)。PがNよりも小さい場合、PとNとの差の絶対値を基準値より小さくするために、液晶パネル14におけるOFF光の透過率を下げる必要がある。同期/調整回路272は、PとNとの差の絶対値を基準値より小さくするために、メモリ273に登録された輝度算出式を参照し、PとNとの差の絶対値が基準値を下回る、Nの最大輝度を求める。続いて、同期/調整回路272は、メモリ273に登録された透過率算出式に基づいて、求めた輝度に対応する、液晶パネル14の透過率を求め、求めた透過率の情報を含む調整信号を液晶駆動回路275に送信する(ステップ1004)。 In step 1001, if the absolute value of the difference between P and N is equal to or greater than the T value, the synchronization / adjustment circuit 272 compares the magnitudes of P and N (step 1003). When P is smaller than N, it is necessary to reduce the transmittance of OFF light in the liquid crystal panel 14 in order to make the absolute value of the difference between P and N smaller than the reference value. The synchronization / adjustment circuit 272 refers to the luminance calculation formula registered in the memory 273 in order to make the absolute value of the difference between P and N smaller than the reference value, and the absolute value of the difference between P and N is the reference value. The maximum brightness of N that is less than Subsequently, the synchronization / adjustment circuit 272 obtains the transmittance of the liquid crystal panel 14 corresponding to the obtained luminance based on the transmittance calculation formula registered in the memory 273 and an adjustment signal including information on the obtained transmittance. Is transmitted to the liquid crystal driving circuit 275 (step 1004).
 その後、同期/調整回路272は、次フレームの帰還光の輝度における基準値を基準値算出式から求め、新たな基準値をメモリ273に登録することで、基準値を更新する。基準値を更新するのは、帰還光の輝度が液晶パネル14の透過率の変化に伴って変化するため、帰還光の変化後の輝度を基準にして、Ferry-Porter法則に基づく基準値算出式を満たす基準値を改めて決め直す必要があるからである。 Thereafter, the synchronization / adjustment circuit 272 obtains a reference value for the luminance of the feedback light of the next frame from the reference value calculation formula, and registers the new reference value in the memory 273 to update the reference value. The reference value is updated because the brightness of the feedback light changes as the transmittance of the liquid crystal panel 14 changes. Therefore, the reference value calculation formula based on the Ferry-Porter law based on the brightness after the change of the feedback light This is because it is necessary to re-determine a reference value that satisfies the above.
 帰還光の輝度を変更する場合に基準値を帰還光の変更後の輝度に対応して変化させることで、次々に投写される画像の帰還光の輝度の変化に対して、OFF光を最大限に利用するとともに、フリッカの発生を抑制できる。 When changing the brightness of the feedback light, the reference value is changed according to the brightness after the change of the feedback light, so that the OFF light is maximized against the change in the brightness of the feedback light of the images projected one after another. And the occurrence of flicker can be suppressed.
 一方、ステップ1003で、PがNよりも大きい場合、PとNとの差の絶対値を基準値より小さくするために、液晶パネル14におけるOFF光の透過率を上げる必要がある。同期/調整回路272は、PとNとの差の絶対値を基準値より小さくするために、メモリ273に登録された輝度算出式を参照し、PとNとの差の絶対値が基準値を下回る、Nの最小輝度を求める。続いて、同期/調整回路272は、メモリ273に登録された透過率算出式に基づいて、求めた輝度に対応する、液晶パネル14の透過率を求め、求めた透過率の情報を含む調整信号を液晶駆動回路275に送信する(ステップ1005)。 On the other hand, if P is larger than N in step 1003, it is necessary to increase the transmittance of OFF light in the liquid crystal panel 14 in order to make the absolute value of the difference between P and N smaller than the reference value. The synchronization / adjustment circuit 272 refers to the luminance calculation formula registered in the memory 273 in order to make the absolute value of the difference between P and N smaller than the reference value, and the absolute value of the difference between P and N is the reference value. The minimum brightness of N that is less than. Subsequently, the synchronization / adjustment circuit 272 obtains the transmittance of the liquid crystal panel 14 corresponding to the obtained luminance based on the transmittance calculation formula registered in the memory 273 and an adjustment signal including information on the obtained transmittance. Is transmitted to the liquid crystal driving circuit 275 (step 1005).
 その後、同期/調整回路272は、次フレームの帰還光の輝度における基準値を基準値算出式から求め、新たな基準値をメモリ273に登録することで、基準値を更新する。 Thereafter, the synchronization / adjustment circuit 272 obtains a reference value for the luminance of the feedback light of the next frame from the reference value calculation formula, and registers the new reference value in the memory 273 to update the reference value.
 さらに、ステップ1002、1004、1005において、同期/調整回路272は、デコーダ274から受信するカラーフィルター同期信号を液晶駆動回路275に送信する。カラーフィルター同期信号を液晶パネル14の透過率変更のスイッチングタイミングとして用いることで、各色の透過率がそれぞれの色の色フィールドの周期に対応するように調整される。 Further, in steps 1002, 1004, and 1005, the synchronization / adjustment circuit 272 transmits the color filter synchronization signal received from the decoder 274 to the liquid crystal drive circuit 275. By using the color filter synchronization signal as a switching timing for changing the transmittance of the liquid crystal panel 14, the transmittance of each color is adjusted to correspond to the period of the color field of each color.
 ここで、上述した輝度算出式の一例を説明する。 Here, an example of the luminance calculation formula described above will be described.
 OFF光が液晶パネル14を透過した後の帰還光の光量(F)とON光の光量(S)の関係は、反射型画像形成素子130に入射される、ランプ110から供給される光量である第1次光量を基準にしたとき、次式
F=(1-S)-L-A(t)・・・式(2)
で表すことができる。
The relationship between the light amount (F) of the return light after the OFF light passes through the liquid crystal panel 14 and the light amount (S) of the ON light is the light amount that is incident on the reflective image forming element 130 and supplied from the lamp 110. When the primary light quantity is used as a reference, the following formula F = (1−S) −LA−t (t) (2)
Can be expressed as
 式(2)において、Lは、光ファイバー13、液晶パネル14および反射ミラー31を含む帰還路内における不変損失に相当する分である。例えば、可視光領域で20dB/km以下の損失を持つ光ファイバー13を用い、透過率が90%以上ある液晶パネル14を用いれば、帰還路の不変損失を20%以下に抑えられる。A(t)は、同期/調整回路272の輝度調整による可変損失に相当する分であり、液晶パネル14で遮蔽される光量である。A(t)は、基準値算出式によって定められ、フレーム毎に変化するパラメータである。フレームが一定周期で変化するため、ここでは、A(t)は時間tの関数で表されている。 In Expression (2), L is an amount corresponding to the invariable loss in the return path including the optical fiber 13, the liquid crystal panel 14, and the reflection mirror 31. For example, if the optical fiber 13 having a loss of 20 dB / km or less in the visible light region and the liquid crystal panel 14 having a transmittance of 90% or more are used, the constant loss of the return path can be suppressed to 20% or less. A (t) is the amount corresponding to the variable loss due to the luminance adjustment of the synchronization / adjustment circuit 272, and is the amount of light shielded by the liquid crystal panel 14. A (t) is a parameter that is determined by the reference value calculation formula and changes for each frame. Here, A (t) is expressed as a function of time t because the frame changes at a constant period.
 式(2)から、1フレームのOFF光の光量は(1-S)であり、その値から帰還路で損失される分を引いた値は{(1-S)-L}となる。{(1-S)-L}の光量をそのまま第2次光源としてしまうと、フリッカが発生してしまうおそれがある。そのため、フリッカが発生しないように、{(1-S)-L}からA(t)を引くことで、液晶パネル14を透過させる光量Fが{(1-S)-L-A(t)}で求まる。 From Equation (2), the amount of OFF light in one frame is (1-S), and the value obtained by subtracting the amount lost in the feedback path from that value is {(1-S) -L}. If the light quantity of {(1-S) -L} is used as it is as the secondary light source, flicker may occur. Therefore, by subtracting A (t) from {(1-S) -L} so that flicker does not occur, the amount of light F transmitted through the liquid crystal panel 14 becomes {(1-S) -LA (t). }.
 式(2)の光量算出式の光量を輝度に置き換えた輝度算出式がメモリ273に予め登録されている。同期/調整回路272は、次フレームのOFF光の輝度を調整する際、輝度算出式から求めた輝度に対応する、液晶パネル14の透過率を、透過率算出式から求め、その透過率の情報を含む調整信号を液晶駆動回路275に送信する。 A luminance calculation formula obtained by replacing the light quantity of the formula (2) with the luminance is registered in the memory 273 in advance. When adjusting the brightness of the OFF light of the next frame, the synchronization / adjustment circuit 272 obtains the transmittance of the liquid crystal panel 14 corresponding to the brightness obtained from the brightness calculation formula from the transmittance calculation formula, and information on the transmittance Is sent to the liquid crystal drive circuit 275.
 図7は第1次光量の利用割合を示すグラフであり、式(2)を視覚的に表したグラフである。初期の基準値Tは任意の値でよいが、帰還光の輝度とON光の輝度が一致したときであって、基準値算出式から求まる値を、初期のT値とし、図7では、参照点と表記している。 FIG. 7 is a graph showing the utilization ratio of the primary light quantity, and is a graph visually representing the expression (2). The initial reference value T may be an arbitrary value, but when the brightness of the feedback light and the brightness of the ON light coincide with each other, the value obtained from the reference value calculation formula is set as the initial T value. It is written as a point.
 図7に示すように、第1次光量は、ON光、帰還光、輝度調整による可変損失、および帰還路による不変損失の4つに分類される。図7から、OFF光の光量が大きくなるほど、OFF光による輝度が大きくなるため、輝度差が基準値より大きくならないようにA(t)が大きくなるのがわかる。 As shown in FIG. 7, the primary light quantity is classified into four types: ON light, feedback light, variable loss due to brightness adjustment, and invariant loss due to the feedback path. FIG. 7 shows that A (t) increases so that the brightness difference does not become larger than the reference value because the brightness due to the OFF light increases as the amount of OFF light increases.
 図7を見ると、OFF光を利用しない場合には、ON光とほぼ同じ量の光が損失として扱われていた。本実施形態によれば、損失していた帰還光を光源に利用でき、投写される画像の内容によって異なるが、OFF光を利用しない場合に比べて、光の損失を最大50%程度(ON光=0の場合)に抑えられる。 Referring to FIG. 7, when OFF light is not used, almost the same amount of light as ON light was treated as a loss. According to the present embodiment, the lost feedback light can be used as a light source, and depending on the content of the projected image, the light loss can be reduced by up to about 50% (ON light) compared to the case where OFF light is not used. = 0).
 このようにして、連続する2つのフレームのOFF光の輝度の差が基準値以上に増減する分に応じて、液晶パネル14の透過率を調節することによって、OFF光のうち光源として利用する分の輝度変化を基準値以内に維持している。また、基準値を次フレームの帰還光の輝度に対応した値に更新している。その結果、連続するフレーム間のOFF光の輝度変化が、基準値算出式から求まる基準値以内に抑制され、フリッカリング現象の発生を防ぐことができる。 In this way, by adjusting the transmittance of the liquid crystal panel 14 in accordance with the increase or decrease in the brightness difference of the OFF light between two consecutive frames, the amount of the OFF light that is used as the light source. The luminance change is maintained within the reference value. Further, the reference value is updated to a value corresponding to the brightness of the feedback light of the next frame. As a result, the OFF light luminance change between successive frames is suppressed within the reference value obtained from the reference value calculation formula, and the occurrence of the flickering phenomenon can be prevented.
 次に、本実施形態の投写型表示装置の動作を説明する。メモリ273に予め登録された初期の基準値は、ON光と帰還光のそれぞれの輝度が一致するときで、基準値算出式から求まる値とする。また、3原色のうち、1色の場合で説明する。 Next, the operation of the projection display device of this embodiment will be described. The initial reference value registered in advance in the memory 273 is a value obtained from the reference value calculation formula when the luminances of the ON light and the feedback light match. Further, the case of one color among the three primary colors will be described.
 ユーザが、スクリーンへの投写対象となる画像のデータが格納された情報処理装置(不図示)を、本実施形態の投写型表示装置とケーブルで接続する。続いて、ユーザが情報処理装置および投写型表示装置を起動して、ランプ110の電源をオンにすると、ランプ110からの光がレンズ120および反射ミラー32を介して集光レンズ35に入射する。集光レンズ35で集光された光は、カラーホイール140およびロッドインテグレータ150を介して反射型画像形成素子130に入射する。 The user connects an information processing apparatus (not shown) storing image data to be projected onto the screen to the projection display apparatus of the present embodiment with a cable. Subsequently, when the user activates the information processing apparatus and the projection display apparatus and turns on the power of the lamp 110, the light from the lamp 110 enters the condenser lens 35 via the lens 120 and the reflection mirror 32. The light condensed by the condenser lens 35 enters the reflective image forming element 130 via the color wheel 140 and the rod integrator 150.
 ユーザが情報処理装置を操作して情報処理装置から画像のデータを投写型表示装置に送る旨の指示を入力すると、画像のデータの同期信号とビデオ信号が情報処理装置から投写型表示装置の画像信号入力部230に入力される。画像信号処理部21は、画像信号入力部230を介してから映像信号と同期信号を受信すると、初めのフレーム(以下では、現フレームとする)とその次のフレーム(以下では、次フレームとする)のそれぞれの映像を、現画像フレームメモリ212および次画像フレームメモリ213のそれぞれに保存する。そして、画像信号処理部21が、現画像フレームメモリ212に保存された映像信号に基づくON/OFF信号を反射型画像形成素子130に同期信号に合わせて送信することで、反射型画像形成素子130からのON光による、現フレームの映像信号による画像がスクリーンに投写され、OFF光が集光レンズ12に投写される。 When a user operates the information processing apparatus and inputs an instruction to send image data from the information processing apparatus to the projection display apparatus, a synchronization signal and a video signal of the image data are transmitted from the information processing apparatus to the image of the projection display apparatus. The signal is input to the signal input unit 230. Upon receiving the video signal and the synchronization signal from the image signal input unit 230, the image signal processing unit 21 receives the first frame (hereinafter referred to as the current frame) and the next frame (hereinafter referred to as the next frame). ) Are stored in the current image frame memory 212 and the next image frame memory 213, respectively. The image signal processing unit 21 transmits an ON / OFF signal based on the video signal stored in the current image frame memory 212 to the reflective image forming element 130 in accordance with the synchronization signal, so that the reflective image forming element 130 is transmitted. An image based on the video signal of the current frame by the ON light from is projected onto the screen, and the OFF light is projected onto the condenser lens 12.
 液晶パネル制御部27は、現画像フレームメモリ212に保存された映像信号による画像が投写されている間に、現画像フレームメモリ212および次画像フレームメモリ213のそれぞれの映像信号からOFF光の輝度を算出する。さらに、液晶パネル制御部27は、現フレームと次フレームの連続する2つのフレームのOFF光の輝度の差の絶対値を算出する。続いて、液晶パネル制御部27は、図6に示した手順にしたがって、次フレームのOFF光の輝度の調整が必要か否かを判定する。 The liquid crystal panel control unit 27 adjusts the brightness of the OFF light from the respective video signals of the current image frame memory 212 and the next image frame memory 213 while an image based on the video signal stored in the current image frame memory 212 is being projected. calculate. Further, the liquid crystal panel control unit 27 calculates the absolute value of the difference in luminance of OFF light between two successive frames of the current frame and the next frame. Subsequently, the liquid crystal panel control unit 27 determines whether it is necessary to adjust the brightness of the OFF light of the next frame in accordance with the procedure shown in FIG.
 液晶パネル制御部27は、次フレームのOFF光の輝度の調整が必要であると判断すると、連続する2つのフレームのOFF光の輝度の差の絶対値が基準値より小さくなる、次フレームのOFF光の輝度を求め、その輝度の帰還光を得るための、液晶パネル14の透過率を求める。続いて、液晶パネル制御部27は、カラーフィルター同期信号を用いて、次フレーム画像の映像信号の色情報に対応する、カラーホイール140の色フィルタの色フィールドの開始タイミングに合わせて、液晶パネル14の透過率を、求めた透過率に切り替える。その後、液晶パネル制御部27は、次フレームの帰還光に対応する基準値を求めてメモリ273に登録する。 When the liquid crystal panel control unit 27 determines that the brightness of the OFF light of the next frame needs to be adjusted, the absolute value of the difference in the brightness of the OFF light of the two consecutive frames is smaller than the reference value, and the next frame is turned off. The luminance of light is obtained, and the transmittance of the liquid crystal panel 14 for obtaining feedback light of that luminance is obtained. Subsequently, the liquid crystal panel control unit 27 uses the color filter synchronization signal to match the start timing of the color field of the color filter of the color wheel 140 corresponding to the color information of the video signal of the next frame image. Is switched to the obtained transmittance. Thereafter, the liquid crystal panel control unit 27 obtains a reference value corresponding to the feedback light of the next frame and registers it in the memory 273.
 スクリーンに投写される画像が現フレーム画像から次フレーム画像に切り替わると、OFF光が集光レンズ12および光ファイバー13を経由して液晶パネル14に入射する。上述のようにして透過率が調整された液晶パネル14をOFF光が透過すると、液晶パネル14を透過した後の光である帰還光は、反射ミラー31で反射され、集光レンズ35でランプ110の光と合流する。 When the image projected on the screen is switched from the current frame image to the next frame image, OFF light enters the liquid crystal panel 14 via the condenser lens 12 and the optical fiber 13. When the OFF light is transmitted through the liquid crystal panel 14 whose transmittance has been adjusted as described above, the feedback light that is the light that has passed through the liquid crystal panel 14 is reflected by the reflection mirror 31, and the lamp 110 is reflected by the condenser lens 35. Merge with the light.
 帰還光とランプ110からの光が合流した光は、カラーホイール140およびロッドインテグレータ150を介して反射型画像形成素子130に入射し、現フレーム画像から切り替わった次フレーム画像の投写に利用される。 The light obtained by combining the return light and the light from the lamp 110 enters the reflective image forming element 130 via the color wheel 140 and the rod integrator 150, and is used for projection of the next frame image switched from the current frame image.
 本実施形態のように、ON光がPWM方式で色の階調を表現するとき、マイクロミラーのON動作のパルスの時間は、256階調の場合で、数十μs程度である。また、反射型画像形成素子130で反射されたOFF光が帰還路を経て、再び反射型画像形成素子130に戻るまでの時間は、投写型表示装置の一般的なサイズおよび光速から考えて、数ns程度である。次フレーム画像の投写開始から数十μsの時間に生じたOFF光は数nsで帰還路を経由して反射型画像形成素子130に照射されるため、例えば、16.67msという1フレーム期間は、OFF光を発生させるフレームと同じフレームの映像信号による画像の投写にそのOFF光を第2次光源として用いるのに十分な時間である。 As in this embodiment, when ON light expresses a color gradation in the PWM method, the pulse time of the ON operation of the micromirror is about several tens of μs in the case of 256 gradations. Further, the time required for the OFF light reflected by the reflective image forming element 130 to return to the reflective image forming element 130 again through the return path is several considering the general size and speed of light of the projection display device. It is about ns. Since OFF light generated in the time of several tens of μs from the start of projection of the next frame image is irradiated to the reflective image forming element 130 via the feedback path in several ns, for example, one frame period of 16.67 ms is This is a sufficient time to use the OFF light as a secondary light source for projecting an image using a video signal of the same frame as the frame that generates the OFF light.
 図6に示したフローチャートのステップ1004およびステップ1005の処理における作用を詳しく説明する。 The operation in the processing of step 1004 and step 1005 of the flowchart shown in FIG. 6 will be described in detail.
 ステップ1003において、現フレームのOFF光の輝度が次フレームのOFF光よりも小さい場合、スクリーンに投写される次フレーム画像が現フレーム画像よりも暗い画像になる。次フレーム画像を投写する際、OFF光の輝度が現フレーム画像の場合よりも大きくなってしまうが、液晶パネル制御部27が液晶パネル14の透過率を下げることで(ステップ1004)、第2次光源の輝度が抑えられ、スクリーンの投写画像を見る人はちらつきを感じない。 In step 1003, when the brightness of the OFF light of the current frame is smaller than the OFF light of the next frame, the next frame image projected on the screen becomes an image darker than the current frame image. When the next frame image is projected, the brightness of the OFF light becomes larger than that in the case of the current frame image. However, the liquid crystal panel control unit 27 reduces the transmittance of the liquid crystal panel 14 (step 1004), so that the second order The brightness of the light source is suppressed, and the person viewing the projected image on the screen does not feel flicker.
 反対に、ステップ1003において、現フレームのOFF光の輝度が次フレームのOFF光よりも大きい場合、スクリーンに投写される次フレーム画像が現フレーム画像よりも明るい画像になる。次フレーム画像を投写する際、OFF光の輝度が現フレーム画像の場合よりも小さくなってしまうが、液晶パネル制御部27が液晶パネル14の透過率を上げることで(ステップ1005)、第2次光源の輝度が大きくなり、スクリーンの投写画像を見る人はちらつきを感じない。 On the other hand, when the brightness of the OFF light of the current frame is larger than the OFF light of the next frame in step 1003, the next frame image projected on the screen becomes an image brighter than the current frame image. When the next frame image is projected, the brightness of the OFF light becomes smaller than that in the case of the current frame image, but the liquid crystal panel control unit 27 increases the transmittance of the liquid crystal panel 14 (step 1005), so that the second order The brightness of the light source increases, and the person viewing the projected image on the screen does not feel flicker.
 このようにして、フレーム毎に、基準値算出式に基づく基準値内で、OFF光の輝度調整を行うことによって、フレーム間のOFF光の輝度の変化によるフリッカリング現象が目立たない程度まで抑制され、画像を見る人にフリッカを感じさせない。 In this way, by adjusting the brightness of the OFF light within the reference value based on the reference value calculation formula for each frame, the flickering phenomenon due to the change in the brightness of the OFF light between frames is suppressed to an inconspicuous level. , Do not let the person who sees the image feel flicker.
 上述の構成および動作の説明において1つの色の場合で説明したように、各色について、輝度比較部271、同期/調整回路272および液晶駆動回路275が映像信号の色情報に基づいてカラーフィルター同期信号の色フィールドに合わせて動作し、液晶パネル14の透過率の調整が調整対象の色の色フィールドのタイミングで行われる。 As described in the case of one color in the description of the configuration and operation described above, for each color, the luminance comparison unit 271, the synchronization / adjustment circuit 272, and the liquid crystal driving circuit 275 perform the color filter synchronization signal based on the color information of the video signal. The transmittance of the liquid crystal panel 14 is adjusted at the timing of the color field of the color to be adjusted.
 本実施形態の投写型表示装置は、DMD素子にて画像を変調する際に使用されなかったOFF光を第2次光源として有効に再利用することによって、OFF光を利用しない場合に比べて、プロジェクタの光利用効率を向上させ、明るい画像を提供することが可能となる。 The projection display apparatus according to the present embodiment effectively reuses the OFF light that is not used when the image is modulated by the DMD element as the secondary light source, compared with the case where the OFF light is not used. The light use efficiency of the projector can be improved and a bright image can be provided.
 また、OFF光を帰還させた光は、第2次光源として、投写する画像の輝度を向上させる効果があり、第1次光源の輝度をその分低くすれば、第1次光源の寿命をより長くすることが可能になり、実質的に消費電力を低減させることができる。そのため、投写画像の高輝度化を実現できる上、投写型表示装置に供給する電力の省エネルギー化を図れる。 In addition, the light obtained by returning the OFF light as a secondary light source has an effect of improving the brightness of the projected image. If the brightness of the primary light source is lowered by that amount, the life of the primary light source is further increased. The length can be increased, and the power consumption can be substantially reduced. For this reason, it is possible to increase the brightness of the projected image and to save energy in the power supplied to the projection display device.
 ランプへの供給電力を通常の80~90%にする省電力モードが選択可能に予め設定された投写型表示装置に対して、省電力モードを選択し、さらに、本実施形態の制御方法を適用すれば、ランプの寿命を延ばせるだけでなく、スクリーンに投写される画像の輝度が向上する。その結果、光源の寿命向上とともに電力の省エネルギー化を図れる。 Select a power saving mode for a projection display device that is preset so that a power saving mode that makes the power supplied to the lamp 80 to 90% normal is selectable, and then apply the control method of this embodiment This not only extends the life of the lamp, but also improves the brightness of the image projected on the screen. As a result, the life of the light source can be improved and the power can be saved.
 また、OFF光を第2次光源として利用することによって、画像のコントラスト比および輝度の向上効果が得られる。 Also, by using OFF light as the secondary light source, an effect of improving the contrast ratio and brightness of the image can be obtained.
 DLP方式の投写型表示装置において、フレーム毎に輝度が変化するOFF光の利用は極めて困難であるとされていたが、本実施形態で説明した、OFF光の利用方法を導入することで、OFF光を利用しない場合に比べて、光利用効率が1.5倍程度になることが見込まれる。 In the DLP projection display apparatus, it has been considered extremely difficult to use OFF light whose luminance changes from frame to frame. However, by introducing the method of using OFF light described in this embodiment, the OFF light is turned off. It is expected that the light use efficiency will be about 1.5 times that in the case where light is not used.
 光利用効率が1.5倍程度に見込まれる理由を簡単に説明する。DMD素子に入射された光を100%として考えると、OFF光を利用しない場合、有効に利用された光は50%にとどまり、残りの50%がOFF光としての損失になる。本実施形態では、100%から不変損失分の20%を引いた残りの80%を最大限に利用すれば、0.5×0.8の計算結果から、光利用効率が1.6倍程度に見積もれる。この見積もり値に、フリッカリング現象を抑えるための調整時での可変損失分を考慮すれば、光利用効率が1.5倍程度に見込まれる。 Briefly explain why the light usage efficiency is expected to be about 1.5 times. Assuming that the light incident on the DMD element is 100%, when the OFF light is not used, the light that is effectively used is only 50%, and the remaining 50% is lost as the OFF light. In this embodiment, if the remaining 80% obtained by subtracting 20% of the constant loss from 100% is used to the maximum, the light utilization efficiency is about 1.6 times from the calculation result of 0.5 × 0.8. Can be estimated. In consideration of the variable loss at the time of adjustment for suppressing the flickering phenomenon in this estimated value, the light use efficiency is expected to be about 1.5 times.
 (第2の実施形態)
 本実施形態は、OFF光の輝度の変化に伴って、ランプの電力を制御するものである。
(Second Embodiment)
In the present embodiment, the power of the lamp is controlled in accordance with the change in the brightness of the OFF light.
 図8は本実施形態の投写型表示装置の一構成例を示すブロック図である。なお、第1の実施形態の投写型表示装置と同様な構成について同一の符号を付し、その詳細な説明を省略する。 FIG. 8 is a block diagram showing an example of the configuration of the projection display device of the present embodiment. In addition, the same code | symbol is attached | subjected about the structure similar to the projection type display apparatus of 1st Embodiment, and the detailed description is abbreviate | omitted.
 図8に示すように、本実施形態の投写型表示装置の制御部20aには、第1の実施形態の投写型表示装置の液晶パネル制御部27の代わりにパネル/ランプ制御部51が設けられ、ランプ駆動回路52がさらに追加された構成である。パネル/ランプ制御部51は信号線を介してランプ駆動回路52と接続されている。 As shown in FIG. 8, the control unit 20a of the projection display device according to the present embodiment is provided with a panel / lamp control unit 51 instead of the liquid crystal panel control unit 27 of the projection display device according to the first embodiment. The lamp driving circuit 52 is further added. The panel / lamp controller 51 is connected to the lamp driving circuit 52 through a signal line.
 図9は図8に示した制御部の構成を説明するための図である。 FIG. 9 is a diagram for explaining the configuration of the control unit shown in FIG.
 LED、LASER、ハロゲンランプ、メタルハライドランプ、キセノンランプ等のランプの種類によって寿命を延ばす方法が異なるため、ランプの種類毎に、連続する2つのフレームのOFF光の輝度差に対応してランプへの供給電力を決めるための電力計算式がメモリ273に予め登録されている。 Since the method of extending the life varies depending on the type of lamp such as LED, LASER, halogen lamp, metal halide lamp, xenon lamp, etc., each lamp type corresponds to the brightness difference of OFF light of two consecutive frames. A power calculation formula for determining supply power is registered in the memory 273 in advance.
 同期/調整回路272は、第1の実施形態と同様に動作するとともに、予め設定されたランプの電力計算式に基づいてランプへの供給電力を求め、ランプへの供給電力の情報を含む電力情報とカラーフィルター同期信号をランプ駆動回路52に送信する。 The synchronization / adjustment circuit 272 operates in the same manner as in the first embodiment, obtains power supplied to the lamp based on a preset lamp power calculation formula, and includes power information including information on power supplied to the lamp. The color filter synchronization signal is transmitted to the lamp driving circuit 52.
 ランプ駆動回路52は、パネル/ランプ制御部51からカラーフィルター同期信号と電力情報を受信すると、電力情報にしたがってランプ110への電力を決定し、決定した電力をカラーフィルター同期信号の色フィールドに合わせてランプ110に供給する。 When the lamp driving circuit 52 receives the color filter synchronization signal and the power information from the panel / lamp control unit 51, the lamp driving circuit 52 determines the power to the lamp 110 according to the power information, and matches the determined power with the color field of the color filter synchronization signal. Supplied to the lamp 110.
 本実施形態では、OFF光の輝度の変化に伴って、ランプの種類に応じて、ランプへの供給電力を制御しているため、第1次光源の寿命がさらに向上し、電力の省エネルギー化が促進される。 In the present embodiment, the power supplied to the lamp is controlled according to the type of the lamp as the brightness of the OFF light changes, so that the life of the primary light source is further improved and the power is saved. Promoted.
 なお、第1および第2の実施形態では、反射型画像形成素子130が1つの場合で説明したが、3原色のそれぞれの色に対応する反射型画像形成素子130が設けられた投写型表示装置に、本発明を適用してもよい。この場合、カラーホイール駆動回路25およびカラーホイール140の代わりに、3原色のそれぞれの色に対応するフィルタがそれぞれの反射型画像形成素子130に設けられていればよい。3原色のそれぞれの色に対応する反射型画像形成素子が設けられた投写型表示装置に類似する装置の一例が特許文献4に開示されているため、ここでは、その詳細な説明を省略する。 In the first and second embodiments, the case where there is one reflective image forming element 130 has been described. However, the projection display apparatus provided with the reflective image forming elements 130 corresponding to the three primary colors. In addition, the present invention may be applied. In this case, instead of the color wheel driving circuit 25 and the color wheel 140, filters corresponding to the three primary colors may be provided in the respective reflective image forming elements 130. Since an example of an apparatus similar to a projection display apparatus provided with reflective image forming elements corresponding to the three primary colors is disclosed in Patent Document 4, detailed description thereof is omitted here.
 また、反射型画像形成素子130のOFF光とランプ110からの光とを集光してカラーホイール140に照射する方法として、OFF光帰還部11および光合流部30を用いる方法を説明したが、OFF光帰還部11および光合流部30はその方法の一例であって、他の方法を用いてもよい。 In addition, as a method of condensing the OFF light of the reflective image forming element 130 and the light from the lamp 110 and irradiating the color wheel 140, the method using the OFF light feedback unit 11 and the light confluence unit 30 has been described. The OFF light feedback unit 11 and the optical merging unit 30 are an example of the method, and other methods may be used.
 また、外部から入力されるビデオ信号がアナログ信号の場合で説明したが、デジタル信号であってもよい。この場合、アナログ信号をデジタル信号に変換する機能が画像信号入力部230に設けられていなくてよい。 In addition, although the case where the video signal input from the outside is an analog signal has been described, it may be a digital signal. In this case, the image signal input unit 230 may not be provided with a function for converting an analog signal into a digital signal.
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 10  光学エンジン
 11  OFF光帰還部
 14  液晶パネル
 20  制御部
 21  画像信号処理部
 25  カラーホイール駆動回路
 27  液晶パネル制御部
 30  光合流部
 31、32  反射ミラー
 35  集光レンズ
 110  ランプ
 120  レンズ
 130  反射型画像形成素子
 140  カラーホイール
 150  ロッドインテグレータ
 160  投射レンズ
DESCRIPTION OF SYMBOLS 10 Optical engine 11 OFF light feedback part 14 Liquid crystal panel 20 Control part 21 Image signal processing part 25 Color wheel drive circuit 27 Liquid crystal panel control part 30 Optical confluence part 31, 32 Reflection mirror 35 Condensing lens 110 Lamp 120 Lens 130 Reflective image Forming element 140 Color wheel 150 Rod integrator 160 Projection lens

Claims (5)

  1.  1フレームの映像を示す映像信号に応じてONまたはOFFのいずれかに動作するマトリクス状に配置された複数のマイクロミラーを備え、該マイクロミラーを照明する照明光をON動作のマイクロミラーが反射した反射光により投写画像を形成する反射型画像形成素子と、
     透過率を変更可能に構成され、前記OFF動作のマイクロミラーの反射光であるOFF光を透過して帰還光として出射する透過型パネルと、
     光源と、
     前記帰還光と前記光源からの光とが集光された光を入射し、照度分布を均一にして前記照明光として前記反射型画像形成素子に照射する光学素子と、
     初期値として予め定められた基準値を記憶するメモリを含み、現フレームと次フレームのOFF光の輝度の差の絶対値と前記基準値とを比較し、該絶対値が該基準値よりも大きな場合には、前記絶対値が前記基準値よりも小さくなる、前記次フレームのOFF光の輝度を求め、求めた輝度の前記帰還光を得るために前記透過型パネルの透過率を切り替えるとともに、前記次フレームにおける帰還光に基づいて新たな基準値を算出し、該新たな基準値を前記メモリに記憶させる制御部と、
    を有する投写型表示装置。
    A plurality of micromirrors arranged in a matrix that operates either ON or OFF according to a video signal indicating one frame of video is provided, and illumination light that illuminates the micromirror is reflected by the micromirror that is ON A reflective image forming element that forms a projected image by reflected light; and
    A transmissive panel configured to change the transmittance and transmit the OFF light, which is the reflected light of the micromirror in the OFF operation, and emit it as feedback light;
    A light source;
    An optical element that receives the condensed light of the feedback light and the light from the light source, irradiates the reflective image forming element as the illumination light with a uniform illuminance distribution;
    A memory for storing a predetermined reference value as an initial value, and comparing the absolute value of the difference in luminance of OFF light between the current frame and the next frame with the reference value, and the absolute value is greater than the reference value In this case, the absolute value is smaller than the reference value, the brightness of the OFF light of the next frame is obtained, the transmittance of the transmissive panel is switched to obtain the feedback light having the obtained brightness, and the A control unit that calculates a new reference value based on the feedback light in the next frame and stores the new reference value in the memory;
    A projection display device.
  2.  請求項1記載の投写型表示装置において、
     前記制御部は、
     前記透過型パネルの透過率を切り替える際、前記現フレームのOFF光の輝度が前記次フレームのOFF光の輝度よりも小さいとき、前記透過型パネルの透過率を下げ、前記現フレームのOFF光の輝度が前記次フレームのOFF光の輝度よりも大きいとき、前記透過型パネルの透過率を上げる、投写型表示装置。
    The projection display device according to claim 1,
    The controller is
    When switching the transmittance of the transmissive panel, if the brightness of the OFF light of the current frame is smaller than the brightness of the OFF light of the next frame, the transmittance of the transmissive panel is lowered and the OFF light of the current frame is reduced. A projection display device that increases the transmittance of the transmissive panel when the luminance is larger than the luminance of OFF light of the next frame.
  3.  請求項1または請求項2記載の投写型表示装置において、
     前記制御部は、
     前記新たな基準値を、前記次フレームにおける帰還光の輝度が大きいほど小さい値に設定する、投写型表示装置。
    The projection display device according to claim 1 or 2,
    The controller is
    The projection display apparatus, wherein the new reference value is set to a smaller value as the luminance of the feedback light in the next frame increases.
  4.  請求項1から3のいずれか1項記載の投写型表示装置において、
     複数の色フィルタを備え、前記帰還光と前記光源からの光とが集光された光を前記1フレームの期間を時間分割して前記複数の色フィルタを介して前記光学素子に照射するカラーホイールがさらに設けられ、
     前記メモリは、初期値として前記複数の色のそれぞれの色に対応する基準値を記憶し、
     前記映像信号は、前記複数の色のそれぞれの色に対応する、前記マイクロミラー毎にONまたはOFFのいずれかを指示するための信号であるON/OFF信号を含み、
     前記制御部は、
     前記カラーホイールから前記光学素子に照射される光の色に対応して、前記現フレームの映像信号のON/OFF信号によって算出される、前記OFF光の輝度と前記次フレームの映像信号のON/OFF信号によって算出される、前記OFF光の輝度との差の絶対値と前記基準値とを比較し、その結果に基づいて、前記透過型パネルの透過率の切り替えと前記新たな基準値の算出を行う、投写型表示装置。
    The projection display device according to any one of claims 1 to 3,
    A color wheel that includes a plurality of color filters and that irradiates the optical element through the plurality of color filters by dividing the period of the one frame into time by collecting the light collected from the feedback light and the light from the light source Is further provided,
    The memory stores a reference value corresponding to each color of the plurality of colors as an initial value,
    The video signal includes an ON / OFF signal corresponding to each of the plurality of colors, which is a signal for instructing ON or OFF for each micromirror,
    The controller is
    The brightness of the OFF light and the ON / OFF of the video signal of the next frame calculated by the ON / OFF signal of the video signal of the current frame corresponding to the color of the light emitted from the color wheel to the optical element. The absolute value of the difference with the brightness of the OFF light calculated by the OFF signal is compared with the reference value, and based on the result, the transmittance of the transmissive panel is switched and the new reference value is calculated. A projection display device.
  5.  1フレームの映像を示す映像信号に応じてONまたはOFFのいずれかに動作するマトリクス状に配置された複数のマイクロミラーを備え、該マイクロミラーを照明する照明光をON動作のマイクロミラーが反射した反射光により投写画像を形成する反射型画像形成素子と、透過率を変更可能に構成され、前記OFF動作のマイクロミラーの反射光であるOFF光を透過して帰還光として出射する透過型パネルと、光源と、前記帰還光と前記光源からの光とが集光された光を入射し、照度分布を均一にして前記照明光として前記反射型画像形成素子に照射する光学素子と、初期値として予め定められた基準値を記憶するメモリとを有する投写型表示装置の制御方法であって、
     現フレームと次フレームのOFF光の輝度の差の絶対値と前記基準値とを比較し、
     前記絶対値が前記基準値よりも大きな場合には、前記絶対値が前記基準値よりも小さくなる、前記次フレームのOFF光の輝度を求め、
     求めた輝度の前記帰還光を得るために前記透過型パネルの透過率を切り替えるとともに、前記次フレームにおける帰還光に基づいて新たな基準値を算出し、該新たな基準値を前記メモリに記憶させる、投写型表示装置の制御方法。
    A plurality of micromirrors arranged in a matrix that operates either ON or OFF according to a video signal indicating one frame of video is provided, and illumination light that illuminates the micromirror is reflected by the micromirror that is ON A reflective image forming element that forms a projected image by reflected light, a transmissive panel that is configured so that the transmittance can be changed, and that transmits OFF light, which is reflected light of the micromirror in the OFF operation, and emits it as feedback light; A light source, an optical element that receives light collected from the feedback light and the light from the light source, irradiates the reflective image forming element as the illumination light with a uniform illuminance distribution, and an initial value A control method for a projection display device having a memory for storing a predetermined reference value,
    Comparing the absolute value of the difference in brightness of the OFF light between the current frame and the next frame and the reference value
    If the absolute value is larger than the reference value, obtain the brightness of the OFF light of the next frame, the absolute value is smaller than the reference value,
    The transmittance of the transmissive panel is switched in order to obtain the feedback light having the calculated luminance, and a new reference value is calculated based on the feedback light in the next frame, and the new reference value is stored in the memory. And control method of projection display device.
PCT/JP2010/051032 2010-01-27 2010-01-27 Projection type display device and method of controlling projection type display device WO2011092807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051032 WO2011092807A1 (en) 2010-01-27 2010-01-27 Projection type display device and method of controlling projection type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051032 WO2011092807A1 (en) 2010-01-27 2010-01-27 Projection type display device and method of controlling projection type display device

Publications (1)

Publication Number Publication Date
WO2011092807A1 true WO2011092807A1 (en) 2011-08-04

Family

ID=44318820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051032 WO2011092807A1 (en) 2010-01-27 2010-01-27 Projection type display device and method of controlling projection type display device

Country Status (1)

Country Link
WO (1) WO2011092807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140589A1 (en) * 2012-03-23 2013-09-26 Necディスプレイソリューションズ株式会社 Light source apparatus, projection display apparatus, and illuminating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082959A (en) * 1996-09-09 1998-03-31 Sanyo Electric Co Ltd Projection type video display device
JP2000171737A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Projector device
JP2003121784A (en) * 2001-10-18 2003-04-23 Mitsubishi Electric Corp Projecting device
JP2004138986A (en) * 2001-11-08 2004-05-13 Seiko Epson Corp Projector
WO2009034694A1 (en) * 2007-09-14 2009-03-19 Panasonic Corporation Projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082959A (en) * 1996-09-09 1998-03-31 Sanyo Electric Co Ltd Projection type video display device
JP2000171737A (en) * 1998-12-04 2000-06-23 Matsushita Electric Ind Co Ltd Projector device
JP2003121784A (en) * 2001-10-18 2003-04-23 Mitsubishi Electric Corp Projecting device
JP2004138986A (en) * 2001-11-08 2004-05-13 Seiko Epson Corp Projector
WO2009034694A1 (en) * 2007-09-14 2009-03-19 Panasonic Corporation Projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140589A1 (en) * 2012-03-23 2013-09-26 Necディスプレイソリューションズ株式会社 Light source apparatus, projection display apparatus, and illuminating method
JPWO2013140589A1 (en) * 2012-03-23 2015-08-03 Necディスプレイソリューションズ株式会社 Light source device, projection display device, and illumination method

Similar Documents

Publication Publication Date Title
JP4552986B2 (en) Image display device
JP4111238B2 (en) Image display device
JP3971717B2 (en) Projector including a narrow-band spectral light source to supplement a broadband spectral light source
US11889233B2 (en) Thermal compensation in image projection
JP5669211B2 (en) Projector and control method thereof
US8711290B2 (en) Projection-type video-image display apparatus
JP6047987B2 (en) Projection type display device and control method thereof
JP2003131322A (en) Illuminator and projection type display device and method of driving the same
JP2005521911A (en) Image projector that modulates light source according to image signal
JP2006284982A (en) Dimming information generation device, method thereof, program thereof, recording medium with program recorded therein, and image display device
JP2005215475A (en) Projector
JP2012103642A (en) Projection type video display device
JP2008145508A (en) Display device
JP4552985B2 (en) Image display device
JP3801490B2 (en) Projection-type image display device
JP2005107019A (en) Image display method and system, and projector
WO2011092807A1 (en) Projection type display device and method of controlling projection type display device
JP2006251445A (en) Projector, image display method and image display program
JP2004325644A (en) Projector
JP7254466B2 (en) Control device, projection display device and storage medium
JP2011095402A (en) Projection display device
JP2006064825A (en) Image display device and driving method thereof
JP2009098627A (en) Projection video display device
JP2005274732A (en) Projection type image display apparatus
JP5201172B2 (en) Image display method and apparatus, and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP