WO2011091654A1 - 风力发电模块 - Google Patents

风力发电模块 Download PDF

Info

Publication number
WO2011091654A1
WO2011091654A1 PCT/CN2010/075128 CN2010075128W WO2011091654A1 WO 2011091654 A1 WO2011091654 A1 WO 2011091654A1 CN 2010075128 W CN2010075128 W CN 2010075128W WO 2011091654 A1 WO2011091654 A1 WO 2011091654A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind power
power generation
wind
matrix
generation module
Prior art date
Application number
PCT/CN2010/075128
Other languages
English (en)
French (fr)
Inventor
王秀顺
Original Assignee
Wang Xiushun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Xiushun filed Critical Wang Xiushun
Publication of WO2011091654A1 publication Critical patent/WO2011091654A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to wind power generation technology, in particular to a horizontal axis wind power generation device. Background technique
  • the blade In order to meet the power generation requirements, the blade must have a sufficiently large diameter, so that the diameter of the blade of the existing power generation device is large, which is not only high in manufacturing cost but also difficult to maintain and maintain.
  • the present invention is directed to the above-mentioned shortcomings of the existing wind power generators, and improves the power generation efficiency while reducing the manufacturing cost, thereby reducing the "I electricity cost.” Summary of the invention
  • An object of the present invention is to provide a wind power generation module and a matrix type wind power generation device thereof, which solve the problems of high power generation cost, difficulty in starting, and low power generation.
  • the technical solution adopted by the present invention includes:
  • a wind power generation module characterized in that: the module has a rectangular parallelepiped structural frame, the structural frame is filled with a gas impermeable material, and a wind trapping air passage is formed in the structural frame, the wind trapping
  • the inner shape line of the air duct is a contraction curve, one end of which is a larger air inlet, and the other end is a smaller air outlet, which is provided at the air outlet of the wind trapping duct.
  • a horizontal shaft impeller the shaft of the horizontal shaft impeller is directly connected to a generator.
  • a curved inlet duct is connected upstream of the air inlet of the wind trapping duct.
  • an L-shaped elbow is connected to the air inlet of the wind trapping duct.
  • the wind power module is installed at the top of the building or inside the building
  • the wind power generation module is horizontally mounted on the rotary disk.
  • the technical solution adopted by the present invention further includes:
  • a matrix type wind power generation device comprising the above-mentioned wind power generation module, characterized in that: the matrix type wind power generation device is erected on the ground, and has a plurality of wind power generation modules arranged in a matrix, the plurality of wind power generation The air inlets of the module's wind trapping air ducts face the same side, and any two adjacent wind power generation modules are fixed together by a machine joint structure.
  • the base body further includes a seat body including an annular track fixed on the ground and a base rotatably moving on the circular track, and the lowest row of the matrix wind power generation device
  • the wind power generation module is fixedly connected to the base of the seat body.
  • a wind direction monitoring device and a tracking slewing device are further disposed on the base, and the wind direction monitoring device is electrically connected to the tracking slewing device, and the tracking slewing device control seat body is Rotate or position on the track.
  • the annular track includes a plurality of rings having different diameters
  • the base is rectangular
  • a plurality of rollers are disposed on the base corresponding to the position of the ring.
  • the tracking slewing device controls the driving and braking of the plurality of rollers.
  • the mechanical coupling structure between any two adjacent wind power generation modules is a bolted joint, a welded joint or a tie rod joint.
  • the annular track disposed on the ground has a plurality of rings having different diameters
  • the base is rectangular
  • a plurality of rollers are disposed on the base corresponding to each ring.
  • the tracking slewing device controls the driving or braking of the plurality of rollers; a balance raft is fixed on the base, and the balance slid is arranged on a ring having the largest diameter, and is in the matrix wind power generation device
  • a plurality of pull anchor fixing structures are disposed between the two sides and the balance weir.
  • the wind power generation module in the lower layer uses steel or alloy material to manufacture the structural frame thereof, and
  • the upper wind power generation module uses industrial plastic or resin materials to manufacture its structural frame.
  • the wind power generator of the present invention has the following features:
  • the structure of the device is modular.
  • the same wind power generation module can be arbitrarily combined into a plurality of wind power plants with installed capacity, and the components between each wind power generation module are interchangeable, suitable for mass production and mass production, thereby reducing manufacturing costs and making wind power generation costly.
  • the amplitude is reduced.
  • the unit impeller area generates a large amount of electricity. Due to the use of trapping air ducts, after the natural wind passes through the air duct, the wind energy gathers and strengthens several times as much as the natural wind; therefore, the power generation per unit impeller area will also increase several times, and at the same time, due to the vertical combination of several wind power generation modules, Most of the wind power generation modules are located higher than the ground, and the air velocity is larger than the ground, which can greatly increase the power generation of a single unit.
  • the starting wind speed is small. Due to the wind trapping air duct, the natural wind gathers and the wind is several times the natural wind force. Therefore, at a lower natural wind speed, the impeller can be started, and at the same time, the impeller is greatly reduced in diameter, and the moment of inertia is also Reduced, is conducive to the start of the breeze.
  • Figure 1 is a front elevational view showing the structure of the present invention
  • Figure 2 is a right side view of the structure of the present invention.
  • Figure 3 is a plan view of the structure of the present invention.
  • Figure 4 is a front elevational view of another embodiment of the present invention.
  • Figure 5 is a right side view of another embodiment of the present invention.
  • Figure 6 is a plan view of another embodiment of the present invention.
  • Figure 7 is a front elevational view of the wind power generation module used in the present invention.
  • Figure 8 is a side cross-sectional structural view of a wind power generation module used in the present invention.
  • FIGS. 10A and 10B are views showing a wind power generation module used in the present invention connected to an L-shaped elbow;
  • FIG. 11 is a schematic structural view of a wind power generation module used in the present invention installed on the top of a building;
  • FIG. 12 is a schematic structural view of a wind power generation module used in the present invention installed inside a building;
  • FIG. 13 is a wind power generation module used in the present invention.
  • Figure 14 and Figure 15 are schematic diagrams of the principle of a low-speed wind tunnel. detailed description
  • FIG. 1 there is shown a wind power plant of the present invention comprising a base 10 and a matrix wind power generator 20 erected (vertically) on the base 10. , among them:
  • the base body 10 includes an annular track 11 fixed on the ground and a base 12 rotatably moving on the circular track 11.
  • the base 12 is further provided with a wind direction monitoring device (using the prior art) and tracking rotation.
  • the device, the wind direction monitoring device is electrically connected to the tracking slewing device, so as to be able to measure the wind direction and deliver to the tracking slewing device, the tracking slewing device receives the information provided by the wind direction monitoring device, and then the control seat
  • the body 10 is rotationally moved or positioned on the track to ensure that the windward faces of the plurality of wind power modules on the base 10 are adapted to the wind direction.
  • the annular track 11 has two loops (one outer ring and one inner ring, and of course, a plurality of rings having different diameters may be disposed), and the base 12 is rectangular;
  • the tracking and revolving device includes a plurality of rollers 13 disposed on the base 12 corresponding to the positions of the outer ring and the inner ring, and the base 12 can be realized by driving or braking the plurality of rollers 13 Rotational movement or positioning on the annular track 11;
  • the matrix wind power generation device 20 has a plurality of wind power generation modules 21, and each of the wind power generation modules 21 has a windward surface 211 on one side, and all of the wind power modules 21 are arranged in a matrix.
  • the windward faces 211 of the power generation module 21 are all facing the same side, and any two adjacent wind power generation modules 21 are fixed together by mechanical coupling structures (such as bolting, welding or tie rod coupling), and the lowest row of wind power generation
  • the module 21 is fixedly connected to the base 12 of the base 10;
  • each wind power generation module 21 has a rectangular parallelepiped structural frame 212, and the structural frame 212 is filled with a gas impermeable material, so that a longitudinal direction of the wind power generation module 21 is formed in the structural frame 212.
  • a wind trapping duct 213 the inner line (inner contour) of the wind trapping duct 213 is a contraction curve, and the front end thereof (ie, corresponding to the windward side)
  • One end of the 211 is a larger air inlet 214, and the rear end is a smaller air outlet 215.
  • a horizontal axis impeller 216 is disposed on the air outlet 215 of the wind trapping duct 213.
  • the horizontal shaft impeller 216 The rear end of the rotating shaft is directly connected to a generator 217.
  • the inner shape line of the wind trapping duct 213 of the present invention is designed according to the principle of wind tunnel.
  • Wind tunnels are commonly used in the aerospace industry to test the performance of a scaled-down aerospace vehicle model at a certain speed of air flow.
  • the device produces airflow through the shrinking air duct in a closed closed loop.
  • the shape line is accelerated, and an airflow that accelerates to obtain a higher speed is formed in the small interface duct, so that the aircraft model simulates high-speed flight.
  • the speed VI is formed by a fan inside the pipe.
  • the tail wind generated by the small interface A2 is accelerated by the fan.
  • the air source generated by the A1 cross section is changed from the airflow generated by the fan to the natural wind, and the natural wind flows through the contraction air duct at the speed of VI.
  • V2 acceleration occurs when the inner line is to the small interface A2.
  • the area of the air inlet 214 is four times the area of the air outlet 215.
  • the level 2 light wind of 1.6-3.3 m/s can be improved to a level 5 wind, which is sufficient to drive the horizontal shaft impeller 216 provided by the air outlet 215. Rotating power generation.
  • the inner shape line of the wind trapping duct 213 of the present invention is a contraction curve, and is different from the general la, and the mouth of the eight ports is not subjected to the above-mentioned strict proportional acceleration phenomenon.
  • the weak wind that cannot drive the impeller in nature is improved by a high multiple, and the wind energy capable of efficiently pushing the impeller is obtained, and the contracted inner line of the wind trapping air passage is accelerated by the curved surface of the inner shape line, so
  • the shape is a long and deep curved cylinder.
  • the working process of the wind power generation device of the present invention is as follows:
  • Each wind power generation module 21 is combined horizontally and vertically by a ⁇ joint to form a rectangular array.
  • the entire rectangular array is placed on a rotating device consisting of a base 12 and an endless track 11,
  • the wind-to-wind slave system automatically adjusts the front windward angle of the array.
  • wind power generation modules 21 are arranged from low to high, while using high-altitude wind power generation, wind power close to the ground position is also utilized, and the wind power utilization rate is improved;
  • the slewing device consisting of the base 12 and the circular track 11 can adjust the windward direction of the entire power generating device for the wind direction, and can utilize the wind to the maximum extent, and can generate electricity regardless of the wind direction, thereby avoiding the device being idle;
  • the wind is strengthened by the polymerization strengthening of the wind trapping air passage, so that the diameter of the impeller can be designed to be smaller, and the generator 217 can be directly driven by the transmission without the need of a shifting device, thereby lowering the cost and reducing the power generation cost.
  • each wind power generation module 21 is about 10 meters high. In the case where only 33 wind power generation modules 21 are installed as shown in FIG. 1, the overall height of the matrix wind power generation module 21 is about 30 meters. , can rely on the strength of the base 12 to resist wind shaking.
  • the annular track 11 provided on the ground has more than four rings, and the base 12 is still rectangular; and correspondingly on the base 12
  • the position of the ring is provided with a plurality of rollers 13 for driving or braking the plurality of rollers 13 to realize the rotational movement or positioning of the base 12 on the circular track 11; not only, but also fixed on the base 12
  • a balance weir 14 is slidably disposed on one of the loops (generally the one having the largest diameter) and then disposed between the two sides of the matrix wind power generator 20 and the balance weir 14
  • the plurality of pull anchor fixing structures 15 can rely on the stable torque provided by the balance cymbal 14 when encountering a large wind sway, so
  • the pressure applied to the ground closer to the ground is increased, and the pressure is applied to the upper side, so that the lower the pressure, the lower the pressure is.
  • the layer of wind power generation module 21 should be made of a stronger material (for example: steel or alloy material), while the upper wind power generation module 21 is made of a less strong material (for example: industrial plastic or resin material). In order to manufacture, the metal material can be saved, and the load-bearing capacity of the lower-layer wind power generation module 21 can be alleviated.
  • the wind power generation module 21 of the present invention may have the following equivalent replacement: as shown in FIG. 9, a curve inlet air is connected upstream (front end) of the wind trapping duct 213 having a contraction curve shape. a track 22 for guiding wind in different directions to the wind trapping duct 213 in a space of complicated shape;
  • an L-shaped elbow 23 is connected to the front end of the wind collecting duct 213 having a contraction curve shape for guiding the vertical inflow wind to the horizontal direction for the horizontal shaft impeller.
  • the generator is used; or, the horizontal inlet air is directed to the vertical direction for use by the vertical axis impeller generator;
  • the wind power generation module used in the present invention can also be disposed on the top of the building or inside the building, and is suitable for use in certain areas, such as natural winds that are oriented in one direction all the year round;
  • the wind power module can be horizontally mounted on the rotary disk 24 as shown in Fig. 13 to accommodate different wind directions.
  • wind power generation module 21 used in the above-described FIG. 9 and FIG. 10 may be stacked and fixed as a matrix type wind power generation device 20 as shown in FIGS. 1, 2, and 3 or as shown in FIGS. 4, 5, and 6. It is only necessary to simply change part of the structure, and will not be described.
  • the trapping duct of the wind power generator 217 provided by the present invention is equivalent to the contraction duct in the wind tunnel test, and the inner line is designed as a contraction curve, which can greatly increase the wind speed of the trapping wind, thereby efficiently pushing the impeller.
  • Most of the wind turbine generator 217 of the utility model is located on a higher ground, and can greatly increase the power generation capacity of a single unit. At the same time, it can be combined by a modular array structure to form a multi-series wind power station with different power generation capacities. .

Description

风力发电模块
技术领域
本发明涉及风力发电技术, 特别涉及一种水平轴风力发电装置。 背景技术
目前, 世界上现行的水平轴风力发电装置, 大多采用由自然风直接致 动的三个大的桨叶, 其缺点包括:
1.为了达到发电要求, 浆叶必须具有足够大的直径, 因此现有发电装 置的浆叶直径巨大, 不仅制造成本高, 而且维护维修困难。
2.由于浆叶直径巨大, 当然转动惯量也大, 所以起动困难, 在较小风 力 (小于 3级风时)无法起动发电;
3.由于浆叶转动惯量大, 导致浆叶转速低, 因此发电机组内还需要添 加增速装置, 导致造价较高;
4.桨叶少, 单位面积内风力利用率和发电量较低;
5.为了获取高空中的气流, 需要竖立高几十米的塔身, 不仅制造成本 高, 而且浆叶下方的气流并未被利用到。
本发明针对现有风力发电机的上述缺点而进行改进, 在降低制造成本 的同时, 提高其发电效率, 以降 «I电成本。 发明内容
本发明的目的在于提供一种风力发电模块及其组成的矩阵式风力发电 装置, 以解决现有技 在的发电成本高, 起动困难, 发电量低的问题。
为实现上述目的, 本发明采用的技术方案包括:
一种风力发电模块, 其特征在于: 该模块具有一个长方体形的结构框 架, 所述的结构框架内填充有不透气材料, 并使该结构框架内形成一个风 力捕集风道, 该风力捕集风道的内形线是收缩曲线, 其一端是面积较大的 入风口, 另一端是面积较小的出风口, 在该风力捕集风道的出风口上设有 一个水平轴叶轮, 该水平轴叶轮的转轴直接连接一个发电机。
其中: 在该风力捕集风道的入风口上游连接有一个曲线进风道。
其中: 在该风力捕集风道的入风口处连接有一个 L形弯管。
其中: 该风力发电模块设置于建筑物顶部或者建筑物内部
其中: 所述的风力发电模块卧式安装在回转盘上。
为实现上述目的, 本发明采用的技术方案还包括:
一种由上述风力发电模块组成的矩阵式风力发电装置, 其特征在于: 所述矩阵式风力发电装置竖立在地面上, 并具有复数个呈矩阵式排列的风 力发电模块, 所述复数个风力发电模块的风力捕集风道的入风口朝向同一 侧, 且任意两个相邻的风力发电模块之间采用机 接结构固定在一起。
在较佳的技术方案中: 还包括有座体, 所述的座体包括固定在地面上 的环形轨道和在该环形轨道上旋转移动的底座, 所述的矩阵式风力发电装 置的最低一排风力发电模块与所述的座体的底座固定连接。
在较佳的技术方案中: 在所述的底座上还设有风向监测装置与跟踪回 转装置, 所述的风向监测装置与所述的跟踪回转装置电连接, 所述的跟踪 回转装置控制座体在轨道上旋转移动或定位。
在较佳的技术方案中: 所述的环形轨道包括多个直径不同的环圏, 所 述的底座为长方形, 并在该底座上对应所述环圏的位置设置有多个滚轮, 所述的跟踪回转装置控制所述的数个滚轮的驱动与制动。
在较佳的技术方案中: 任意两个相邻的风力发电模块之间采用机械联 接结构是螺栓联接、 焊接或者拉杆联接。
在较佳的技术方案中: 在地面上设置的环形轨道具有多个直径不同的 环圏, 所述的底座为长方形, 并在该底座上对应每个环圏的位置设有数个 滚轮, 所述的跟踪回转装置控制所述的数个滚轮的驱动或者制动; 在底座 上固定有一个平衡圏, 所述的平衡圏滑设在直径最大的一个环圏上, 并在 矩阵式风力发电装置的两侧与该平衡圏之间各设置有多个拉锚固定结构。
在较佳的技术方案中: 矩阵式风力发电装置的数个风力发电模块中, 处于下层的风力发电模块选用钢材或者合金材料来制造其结构框架, 而处 于上层的风力发电模块选用工业塑料或者树脂材料来制造其结构框架。 本发明的风力发电装置具备如下特点:
1.装置结构模块化。 用相同的风力发电模块可任意组合成多系列装机 容量的风电电站,每个风力发电模块间的零部件具有互换性,适合成批量、 大规模生产, 从而降低制造成本, 使风力发电成本大幅度降低。
2.单位叶轮面积发电量大。 由于采用捕集风道, 使自然风通过风道后, 风能聚集加强为自然风的数倍; 因此单位叶轮面积发电量也将增加数倍, 同时由于将数个风力发电模块竖向组合后, 大部分风力发电模块处于较地 面更高位置, 空中风速较地面更大, 更能大大提高单台机组的发电量。
3.起动风速小。 由于采用风力捕集风道, 使自然风聚集增强, 叶轮处 风力为自然风力数倍, 因此在较低自然风速下, 叶轮即可起动, 同时由于 叶轮直径大大减小, 其转动惯量也随之减小, 有利于微风起动。 附图说明
图 1是本发明 结构的主视图;
图 2是本发明 结构的右视图;
图 3是本发明 结构的俯视图;
图 4是本发明另一实施例的主视图;
图 5是本发明另一实施例的右视图
图 6是本发明另一实施例的俯视图;
图 7是本发明使用的风力发电模块的主视图;
图 8是本发明使用的风力发电模块的侧剖结构示意图;
图 9是本发明使用的风力发电模块连接一个曲线进风道的示意图; 图 10A、 图 10B是本发明使用的风力发电模块连接一个 L形弯管的示 意图;
图 11是本发明使用的风力发电模块设置于建筑物顶部的结构示意图; 图 12是本发明使用的风力发电模块设置于建筑物内部的结构示意图; 图 13是本发明使用的风力发电模块安装在回转盘上的结构示意图; 图 14、 图 15是低速风洞原理示意图。 具体实施方式
参见图 1、 图 2、 图 3, 其中示出本发明提供的一种风力发电装置, 该 风力发电装置包括座体 10和竖立(竖直地)设置在座体 10上的矩阵式风 力发电装置 20, 其中:
所述的座体 10 包括固定在地面上的环形轨道 11和在该环形轨道 11 上旋转移动的底座 12, 在所述的底座 12上还设有风向监测装置(采用现 有技术)与跟踪回转装置, 所述的风向监测装置与所述的跟踪回转装置电 连接, 以便能够测量风向并输送给所述的跟踪回转装置, 所述的跟踪回转 装置则接收风向监测装置提供的信息,然后控制座体 10在轨道上旋转移动 或定位, 以保证座体 10上的复数个风力发电模块的迎风面与风向相适应。 在本实施例中,所述的环形轨道 11具有两个环圏(一个外环圏与一个内环 圏, 当然也可以设置多个直径不同的环圏), 所述的底座 12为长方形; 而 所述的跟踪回转装置包括在该底座 12上对应所述的外环圏和内环圏的位 置设置的数个滚轮 13, 利用所述的数个滚轮 13的驱动或者制动, 可以实 现底座 12在环形轨道 11上的旋转移动或定位;
所述的矩阵式风力发电装置 20具有复数个风力发电模块 21, 每一个 风力发电模块 21都有一侧是迎风面 211, 所述的复数个风力发电模块 21 呈矩阵式地排列时, 所有的风力发电模块 21的迎风面 211都朝向同一侧, 任意两个相邻的风力发电模块 21之间都采用机械联接结构(如:螺栓联接、 焊接或者拉杆联接)固定在一起, 而最低一排风力发电模块 21与所述的座 体 10的底座 12固定连接;
参见图 7、 图 8, 其中示出本发明提供的风力发电模块 21的一个较佳 实施例。 由图可知, 每个风力发电模块 21 具有一个长方体形的结构框架 212, 并在所述的结构框架 212 内填充有不透气材料, 使该结构框架 212 内形成一个贯穿该风力发电模块 21前后方向的风力捕集风道 213, 该风力 捕集风道 213的内形线(内轮廓)为收缩曲线, 其前端(即对应于迎风面 211的一端)是面积较大的入风口 214, 后端是面积较小的出风口 215, 在 该风力捕集风道 213的出风口 215上设有一个水平轴叶轮 216, 该水平轴 叶轮 216的转轴后端直接连接一个发电机 217。当风从该风力捕集风道 213 的入风口 214吹入, 受到结构框架 212内不透气材料的阻挡, 会沿着风力 捕集风道 213的收缩曲线状的内形线在该出风口 215处集中。
需要强调的是, 本发明的风力捕集风道 213的内形线是根据风洞原理 设计的。 风洞常用于在航天航空领域测试按比例缩小的航空飞行器模型在 一定速度空气流中的性能, 如图 14、 图 15所示, 其装置在循环的闭路管 道中产生气流经过收缩风筒的内形线产生加速, 在小界面管道内形成加速 获得较高速度的气流, 使飞行器模型模拟高速飞行。 速度 VI是由管道内 的风扇形成的,通过小界面 A2产生的尾风再经风扇加速,通过 A1截面的 风源由电扇产生气流改为自然风, 自然风以 VI 的速度流经收缩风筒内形 线至小界面 A2时产生 V2加速。 这个收缩风筒内形线是经过严格计算的, 产生的结果是必须是: A1/A2=V2/V1, 从而得出 V2=Vl x Al/A2。 以入风 口 214的面积是出风口 215的面积的四倍为例, 1.6-3.3米 /秒的 2级轻风可 以被提高为 5级劲风, 足以带动该出风口 215设置的水平轴叶轮 216旋转 发电了。 因此, 本发明所述的风力捕集风道 213的内形线为收缩曲线, 并 不同于一般喇,,八口的大小口, 喇叭口是没有上述严格比例加速现象的。 利 用此原理将大自然中不能驱动叶轮的弱风经过高倍数的提高, 获得能够高 效推动叶轮的风能, 风力捕集风道的收缩内形线因要达到通过内形线曲面 加速的目的, 所以形状呈比较长而深的曲面筒形。
本发明的风力发电装置工作过程如下:
1.在每个风力发电模块 21中, 自然风通过风力捕集风道 213的入风口 214进入, 由于该风道的聚合加强作用, 流过风道后在叶轮处得到数倍加 强后, 推动叶轮转动发电。
2.每个风力发电模块 21通过^联接进行横向和竖向组合, 构成矩形 阵列。
3.整个矩形阵列置于由底座 12与环形轨道 11组成的回转装置上, 通 过风向 宗随动系统自动调整阵列的正面朝风角度。
采用上述结构, 具有以下优点:
1、 由于风力发电模块 21从低到高排列, 在利用高空中的风力发电的 同时, 接近地面位置的风力也得到了利用, 提高了风力利用率;
2、 由底座 12与环形轨道 11组成的回转装置,可以针对风向调整整个 发电装置的迎风方向, 能够最大程度地利用风力, 不论风向如何都能够发 电, 避免了装置闲置;
3、通过风力捕集风道的聚合加强作用,即使在 2级轻风的气候条件下, 仍然能够发电, 提高了发电装置的适应性;
4、通过风力捕集风道的聚合加强作用加强风力,使得叶轮的直径可以 设计得更小, 而且不需要变速装置就可以直接带动发电机 217发电, 因此 造价更低, 降低了发电成本。
在上述实施例中, 每个风力发电模块 21高约 10米, 在如图 1所示, 仅安装 3 3个风力发电模块 21的情况下,该矩阵式风力发电模块 21的整 体高度约 30米, 能够依靠底座 12的力量抵抗风力摇晃。
而在下述实施例中, 如图 4、 图 5、 图 6所示, 安装 10 x 10个风力发 电模块 21,矩阵式风力发电模块 21的整体高度达到约 100米(或者更高), 重量也大大增加, 因此需要对整体结构强度和抗震能力进行如下强化: 在地面上设置的环形轨道 11具有四个以上的环圏, 而所述的底座 12 仍为长方形; 并在该底座 12上对应每个环圏的位置设有数个滚轮 13, 利 用所述的数个滚轮 13的驱动或者制动,以实现底座 12在环形轨道 11上的 旋转移动或定位; 不仅如此, 还在底座 12上固定有一个平衡圏 14, 所述 的平衡圏 14滑设在其中一个环圏(一般是直径最大的一个环圏)上, 然后 在矩阵式风力发电装置 20的两侧与该平衡圏 14之间各设置多个拉锚固定 结构 15, 当遭遇大风力形成晃动的时候, 可以依靠平衡圏 14提供的稳定 力矩, 使得矩阵式风力发电装置 20不会倾覆。
众所周知, 矩阵式风力发电装置 20的复数个风力发电模块 21中, 越 靠近地面的承受的压力越大, 越靠上的则承受越小的压力, 因此, 处于下 层的风力发电模块 21, 应当选用强度更大的材料(例如: 钢材或者合金材 料)来制造, 而处于上层的风力发电模块 21, 则选用强度较小的材料(例 如: 工业塑料或者树脂材料)来制造, 这样一来, 在节约金属材料的同时, 还能够减轻下层风力发电模块 21的承重。
除此之外, 本发明的风力发电模块 21 , 还可以有以下等效替换: 如图 9所示, 在呈收缩曲线形状的风力捕集风道 213上游(前端)还 连接有一个曲线进风道 22, 用来在复杂形状的空间中将不同方向的风力导 引至该风力捕集风道 213;
如图 10A、 图 10B所示, 则在呈收缩曲线形状的风力捕集风道 213前 端连接有一个 L形弯管 23, 用来将垂直方向的入风引导至水平方向, 以供 水平轴叶轮发电机使用; 或者, 将水平方向的入风引导至垂直方向, 以供 垂直轴叶轮发电机使用;
再如图 11、 图 12所示, 本发明使用的风力发电模块还可以设置于建 筑物顶部或者建筑物内部, 适用于在某些特定的地区, 如自然风常年朝向 一个方向的地区使用;
而在风向经常改变的地区,则可以如图 13所示,将所述的风力发电模 块卧式安装在回转盘 24上, 以适应不同的风向。
另外, 上述图 9、 图 10中所使用的风力发电模块 21, 还可以如图 1、 2、 3或者如图 4、 5、 6—般, 堆叠固定组合为矩阵式风力发电装置 20来 使用, 只需简单变换部分结构即可, 不予赘述。
不论如何改变, 本发明提供的风力发电机 217的捕集风道相当于风洞 试验中的收缩风筒, 内形线设计为收缩曲线,可以大大提高捕集风的风速, 从而高效推动叶轮。 本实用新型风力发电机 217大部分单元处于较高的地 面亦能大大提高单台机组的发电量, 同时又可以采用模块化阵列结构进行 组合, 形成不同发电能力的多系列^ L容量的风电电站。
以上说明对本发明而言只是说明性的, 而非限制性的, 本领域普通技 术人员理解, 在不脱离权利要求所限定的精神和范围的情况下, 可作出许 多修改、 变化或等效, ^将落入本发明的保护范围之内。

Claims

权利要求
1. 一种风力发电模块,其特征在于:具有一个长方体形的结构框架, 所述的结构框架内填充有不透气材料, 并使该结构框架内形成一个风力捕 集风道, 该风力捕集风道的内形线是收缩曲线, 其一端是面积较大的入风 口, 另一端是面积较小的出风口, 在该风力捕集风道的出风口上设有一个 水平轴叶轮, 该水平轴叶轮的转轴直接连接一个发电机。
2. 根据权利要求 1所述的风力发电模块, 其特征在于: 在该风力捕 集风道的入风口上游连接有一个曲线进风道。
3. 根据权利要求 1所述的风力发电模块, 其特征在于: 在该风力捕 集风道的入风口处连接有一个 L形弯管。
4. 根据权利要求 1所述的风力发电模块, 其特征在于: 该风力发电 模块设置于建筑物顶部或者建筑物内部。
5. 根据权利要求 1所述的风力发电模块, 其特征在于: 所述的风力 发电模块卧式安装在回转盘上。
6. 一种由权利要求 1所述的风力发电模块组成的矩阵式风力发电装 置, 其特征在于: 所述的矩阵式风力发电装置竖立在地面上, 并具有复数 个呈矩阵式排列的风力发电模块, 所述的复数个风力发电模块的风力捕集 风道的入风口朝向同一侧, 且任意两个相邻的风力发电模块之间采用积誠 联接结构固定在一起。
7. 根据权利要求 6所述的矩阵式风力发电装置, 其特征在于: 还包 括有座体, 所述的座体包括固定在地面上的环形轨道和在该环形轨道上旋 转移动的底座, 所述的矩阵式风力发电装置的最低一排风力发电模块与所 述的座体的底座固定连接。
8. 根据权利要求 7所述的矩阵式风力发电装置, 其特征在于: 在所 述的底座上还设有风向监测装置与跟踪回转装置, 所述的风向监测装置与 所述的跟踪回转装置电连接, 所述的跟踪回转装置控制座体在轨道上旋转 移动或定位。
9. 根据权利要求 8所述的矩阵式风力发电装置, 其特征在于: 所述 的环形轨道包括多个直径不同的环圏, 所述的底座为长方形, 并在该底座 上对应所述环圏的位置设置有多个滚轮, 所述的跟踪回转装置控制所述的 数个滚轮的驱动与制动。
10. 根据权利要求 6所述的矩阵式风力发电装置, 其特征在于: 任意 两个相邻的风力发电模块之间采用机械联接结构是螺栓联接、 烊接或者拉 杆联接。
11. 根据权利要求 8所述的矩阵式风力发电装置, 其特征在于: 在地 面上设置的环形轨道具有多个直径不同的环圏, 所述的底座为长方形, 并 在该底座上对应每个环圏的位置设有数个滚轮, 所述的跟踪回转装置控制 所述的数个滚轮的驱动或者制动; 在底座上固定有一个平衡圏, 所述的平 衡圏滑设在直径最大的一个环圏上, 并在矩阵式风力发电装置的两侧与该 平衡圏之间各设置有多个拉锚固定结构。
12. 根据权利要求 11所述的矩阵式风力发电装置, 其特征在于: 矩 阵式风力发电装置的数个风力发电模块中, 处于下层的风力发电模块选用 钢材或者合金材料来制造其结构框架, 而处于上层的风力发电模块选用工 业塑料或者树脂材料来制造其结构框架。
PCT/CN2010/075128 2010-01-26 2010-07-13 风力发电模块 WO2011091654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010101851.7 2010-01-26
CN2010101018517A CN101776046B (zh) 2010-01-26 2010-01-26 风力发电模块及其组成的矩阵式风力发电装置

Publications (1)

Publication Number Publication Date
WO2011091654A1 true WO2011091654A1 (zh) 2011-08-04

Family

ID=42512600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075128 WO2011091654A1 (zh) 2010-01-26 2010-07-13 风力发电模块

Country Status (2)

Country Link
CN (1) CN101776046B (zh)
WO (1) WO2011091654A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3356672A4 (en) * 2015-10-02 2019-05-22 Agarwal, Subhash Omkarmal ENERGY PRODUCTION USING THE WIND

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101776045B (zh) * 2010-01-26 2012-07-11 王秀顺 矩阵式风力发电装置
ES2397176B1 (es) * 2011-07-26 2014-05-23 José María URDAMPILLETA UNANUE Generador de energia eólica, continuo, tubular y apilable
CN105089939B (zh) * 2014-05-25 2018-09-14 徐建宁 集成阵列风力发电机
CN106351794A (zh) * 2015-07-21 2017-01-25 彭辰祺 高空风能综合利用工程构想

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2488337A1 (fr) * 1980-08-08 1982-02-12 Materiel Magnetique Eolienne a roues multiples d'axe horizontal, carenees et juxtaposees
CN2890400Y (zh) * 2006-04-24 2007-04-18 王涛 一种风力发电装置
CN101270726A (zh) * 2007-12-12 2008-09-24 陈晓通 多风轮机械聚能风力发电机组
CN201206530Y (zh) * 2008-01-17 2009-03-11 陈革 高效风能发电装置
CN101776045A (zh) * 2010-01-26 2010-07-14 王秀顺 矩阵式风力发电装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2344577Y (zh) * 1998-11-09 1999-10-20 刘明云 轨道式风力发动机
CN201621009U (zh) * 2010-01-26 2010-11-03 王秀顺 风力发电模块及其组成的矩阵式风力发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2488337A1 (fr) * 1980-08-08 1982-02-12 Materiel Magnetique Eolienne a roues multiples d'axe horizontal, carenees et juxtaposees
CN2890400Y (zh) * 2006-04-24 2007-04-18 王涛 一种风力发电装置
CN101270726A (zh) * 2007-12-12 2008-09-24 陈晓通 多风轮机械聚能风力发电机组
CN201206530Y (zh) * 2008-01-17 2009-03-11 陈革 高效风能发电装置
CN101776045A (zh) * 2010-01-26 2010-07-14 王秀顺 矩阵式风力发电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3356672A4 (en) * 2015-10-02 2019-05-22 Agarwal, Subhash Omkarmal ENERGY PRODUCTION USING THE WIND

Also Published As

Publication number Publication date
CN101776046A (zh) 2010-07-14
CN101776046B (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
US10253755B2 (en) Wind energy conversion devices
US20110103942A1 (en) Wind energy system
CN103270292B (zh) 用于风力和/或水力发电的跟随风/水的双涡轮系统(风追踪器)
JP2004528509A (ja) 集風式風力発電方法とその設備
CN201810475U (zh) 聚风风轮装置及一种风力发电设备
WO2009067845A1 (fr) Aérogénérateur à axe vertical de type à portance à quatre quadrants à direction constante
CN103925150A (zh) 一种基于文丘里效应的万向聚风落地式微风发电机
WO2011091654A1 (zh) 风力发电模块
WO2011091653A1 (zh) 矩阵式风力发电装置
CN101539094B (zh) 一种聚压式风力发电装置
CN101539108A (zh) 一种双电机聚压式风力发电装置
WO2019101106A1 (zh) 一种提高低流速的动力装置
CN103511187B (zh) 一种聚风型风力发电装置
CN201621009U (zh) 风力发电模块及其组成的矩阵式风力发电装置
CN102235302A (zh) 聚风风轮装置及一种风力发电设备
CN201621008U (zh) 矩阵式风力发电装置
CN107061141A (zh) 一种设有虹吸风道的风力发电机
CN102278280A (zh) 一种新型提高风机或风力发电机效率的装置
CN203770026U (zh) 一种聚风型风力发电装置
CN206942924U (zh) 一种设有虹吸风道的风力发电机
CN104234930A (zh) 一种挡风装置及方法及应用
CN211343210U (zh) 一种涡旋集风式垂直轴风力发电机
WO2013113136A1 (zh) 物腔自产风力的装置及其发电的方法
CN207989229U (zh) 一种竖直型可升降式微风发电塔
CN103775286A (zh) 新型菱形斜拉帆叶式发电机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10844431

Country of ref document: EP

Kind code of ref document: A1