WO2011090125A1 - Light control plate, surface light source device, and transmission-type image display device - Google Patents

Light control plate, surface light source device, and transmission-type image display device Download PDF

Info

Publication number
WO2011090125A1
WO2011090125A1 PCT/JP2011/050999 JP2011050999W WO2011090125A1 WO 2011090125 A1 WO2011090125 A1 WO 2011090125A1 JP 2011050999 W JP2011050999 W JP 2011050999W WO 2011090125 A1 WO2011090125 A1 WO 2011090125A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
control plate
light control
axis
light source
Prior art date
Application number
PCT/JP2011/050999
Other languages
French (fr)
Japanese (ja)
Inventor
武志 川上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011090125A1 publication Critical patent/WO2011090125A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure

Definitions

  • the present invention relates to a light control plate, a surface light source device, and a transmissive image display device.
  • a direct type surface light source device is used as an example of a light source that outputs a backlight of a liquid crystal display unit.
  • a typical surface light source device a device in which a plurality of light sources are arranged on the back side of a light control plate such as a light diffusion plate is used.
  • the luminance of the light emitting surface can be easily increased by increasing the number of light sources to be arranged.
  • the distance between the light source and the light control plate is shortened, there is a problem that the luminance uniformity is lowered.
  • the periodic brightness non-uniformity that occurs because the brightness near the light source is high is a problem. Due to the reduction in the number of light sources for reducing the thickness of the surface light source device or reducing the power consumption, the periodic luminance non-uniformity has become a greater problem.
  • Patent Document 1 a light amount correction pattern is formed on a light diffusion plate as an example of a light control plate corresponding to the distance between the light source and the light diffusion plate. ing.
  • Patent Document 2 by providing a prism with a sawtooth cross section in a part of the surface of the light diffusing plate that faces the light source, just above the light source, light near the light source with a large amount of light is scattered. ing.
  • an object of the present invention is to provide a light control plate, a surface light source device, and a transmissive image display device that can suppress uneven brightness more stably.
  • the light control plate according to the present invention is a light control plate that emits light incident from the first surface from a second surface located on the opposite side of the first surface.
  • the light control plate according to the present invention includes a plurality of convex portions formed on the second surface.
  • Each of the plurality of convex portions extends in the first direction, and the plurality of convex portions are arranged in parallel in a second direction orthogonal to the first direction.
  • an axis passing through both ends of each convex portion with respect to the second direction is an x-axis, and the center of both ends on the x-axis is passed.
  • each convex portion in the cross section is ⁇ 0.475 w a ⁇ x ⁇ 0. in .475w a, represented by z (x) satisfying the equation (1).
  • z 0 (x) satisfies Formula (2).
  • h a is a number of 0.56 w a or more and less than 0.58 w a
  • k a is a number of ⁇ 0.039 or more and less than ⁇ 0.027.
  • the convex portion has a cross-sectional shape represented by z (x), it is possible to more stably reduce uneven brightness of light emitted from the light control plate.
  • the light control plate according to the present invention may be made of a transparent material, and the refractive index of each convex portion may be 1.50 or more and less than 1.52.
  • the surface light source device includes a light control plate according to the present invention and a plurality of light sources that are arranged apart from each other and supply light to the first surface of the light control plate.
  • the surface light source device includes the light control plate according to the present invention, it is possible to more stably reduce non-uniform luminance of emitted light.
  • a transmissive image display device includes a light control plate according to the present invention, a plurality of light sources that are spaced apart from each other and supply light to the first surface of the light control plate, and the light control plate A transmissive image display unit that is illuminated by light emitted from the second surface and displays an image.
  • the transmissive image display device includes the light control plate according to the present invention, it is possible to stably illuminate the transmissive image display unit with light in which uneven luminance is suppressed. Therefore, it is possible to stably display an image without uneven brightness.
  • a light control plate that can more stably suppress uneven luminance, a surface light source device including the light control plate, and a transmissive image display device.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention.
  • FIG. 2 is a cross-sectional view of a light diffusing plate used in the transmissive image display apparatus shown in FIG.
  • FIG. 3 is a drawing showing a cross-sectional shape of an example of the convex portion of the light diffusion plate.
  • FIG. 4 is a diagram illustrating conditions that are satisfied by a contour line indicating the cross-sectional shape of the convex portion illustrated in FIG. 3.
  • FIG. 5 is a diagram for explaining an example of a contour line of a convex portion and a condition to be satisfied by the contour line.
  • FIG. 6 is a cross-sectional view showing another example of the light diffusing plate.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention.
  • FIG. 1 is an exploded view of a transmissive image display device.
  • FIG. 2 is a cross-sectional view of a light diffusing plate included in the surface light source device included in the transmissive image display device shown in FIG. In FIG. 2, two adjacent light sources are also schematically shown for convenience of explanation.
  • the transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 that supplies a backlight to the transmissive image display unit 10.
  • An example of the transmissive image display unit 10 is a liquid crystal display panel in which linear polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11, for example.
  • the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television).
  • the liquid crystal cell 11 and the polarizing plates 12 and 13 those used in a transmissive image display device such as a conventional liquid crystal display device can be used.
  • An example of the liquid crystal cell 11 is a known liquid crystal cell such as a TFT liquid crystal cell or an STN liquid crystal cell.
  • the surface light source device 20 is a so-called direct type surface light source device.
  • the surface light source device 20 includes a light source unit 30 including a plurality of light sources 31.
  • the plurality of light sources 31 are arranged in parallel.
  • Each light source 31 is a linear light source extending in a direction orthogonal to the arrangement direction of the plurality of light sources 31.
  • An example of each light source 31 is a straight tubular light source such as a fluorescent lamp (cold cathode ray lamp).
  • the plurality of light sources 31 are arranged at intervals so that the central axes of the light sources 31 are located in the same plane P.
  • the distance between the central axes of two adjacent light sources 31 among the plurality of light sources 31 is L
  • an example of the distance L is 10 mm to 150 mm.
  • the light source 31 has been described as being linear.
  • the light source 31 may be a point light source such as an LED.
  • the plane P shown in FIG. 1 is a virtual plane for convenience of explanation.
  • the plurality of light sources 31 are preferably arranged in the lamp box 32 as shown in FIG.
  • the inner surface 32a of the lamp box 32 is preferably formed as a light reflecting surface. This is because the light output from each light source 31 is reliably output to the transmissive image display unit 10 side, so that the light from each light source 31 can be used efficiently.
  • the light source unit 30 will be described as including the lamp box 32 having the above-described preferable configuration.
  • the surface light source device 20 is a light diffusing plate as a light control plate disposed on the front side (upper side in FIG. 1) of the light source unit 30, that is, on the transmissive image display unit 10 side and spaced from the light source 31. 40.
  • the distance between the light diffusion plate 40 and the plurality of light sources 31 is D
  • an example of the distance D is 3 mm to 50 mm.
  • the distance between the two adjacent light sources 31, 31 is set so that L / D is 2 or more, preferably L / D is 2.5 or more. L and the separation distance D are selected.
  • the light diffusing plate 40 does not project the image of each light source 31 onto the transmissive image display unit 10, and is reflected by the light from the light source unit 30, that is, the direct light from each light source 31 and the inner surface 32 a of the lamp box 32. This is for irradiating the reflected light while diffusing it toward the transmissive image display unit 10.
  • the thickness d of the light diffusing plate 40 is usually 0.1 mm to 5 mm.
  • the light diffusing plate 40 may be a film or a sheet.
  • the light diffusion plate 40 is made of a transparent material.
  • the transparent material are transparent resin and transparent glass.
  • An example of the refractive index of the transparent material is 1.50 or more and less than 1.52.
  • the transparent resin include a modified norbornene resin, polyacrylonitrile resin, MS resin (methyl methacrylate-styrene copolymer resin, styrene ratio: 10% to 30%).
  • additives such as an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, a flame retardant, and a lubricant can be added to the transparent resin material. These additives can be used alone or in combination of two or more.
  • UV absorbers examples include benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, malonic ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. is there.
  • the ultraviolet absorber are a benzotriazole ultraviolet absorber and a triazine ultraviolet absorber.
  • a transparent resin material is usually used without adding a light diffusing agent as an additive.
  • a light diffusing agent may be added and used.
  • the light diffusing plate 40 may be coated with an antistatic agent on one side or both sides.
  • an antistatic agent By applying an antistatic agent, dust adhesion due to static electricity can be prevented, and a decrease in light transmittance due to dust adhesion can be prevented.
  • the light diffusing plate 40 has a substantially flat first surface 40a on the light source unit 30 side and a second surface 40b on the transmissive image display unit 10 side. A plurality of convex portions 41 are formed on the second surface 40b. In the light diffusing plate 40 in which the convex portion 41 is formed, the thickness d of the light diffusing plate 40 can be a distance between the top of the convex portion 41 and the first surface 40a.
  • each convex portion 41 is a linear optical element extending in one direction (first direction).
  • optical elements are lenses and prisms.
  • the plurality of convex portions 41 are arranged in parallel in a direction (second direction) substantially orthogonal to the extending direction of the convex portions 41.
  • the plurality of convex portions 41 are formed on the entire surface of the second surface 40b.
  • the ends 41 a in the cross-sectional shape of the adjacent convex portions 41 overlap in the arrangement direction of the convex portions 41.
  • each convex portion 41 is substantially the same among the plurality of convex portions 41.
  • the separation distance D and the distance L are selected so that L / D, which is the ratio of the separation distance D and the distance L between the two adjacent light sources 31, 31, is 2 or more, preferably 2.5 or more. This is as described above.
  • FIG. 3 is a drawing showing an example of a cross-sectional shape orthogonal to the extending direction of the convex portion, and shows an enlarged one convex portion.
  • the cross-sectional shape of the convex portion 41 will be described using a local xz coordinate system set as shown in FIG.
  • the x-axis constituting the xz coordinate system is parallel to the arrangement direction (second direction) of the plurality of convex portions 41, and the z-axis is parallel to the plate thickness direction (direction orthogonal to the first and second directions). It is.
  • the cross-sectional shape of the convex portion 41 is represented by z (x) that satisfies Expression (3).
  • z 0 (x) satisfies Formula (4).
  • w a is the length of the convex portion 41 in the x-axis direction.
  • h a is a constant selected from the range of 0.56 w a ⁇ h a ⁇ 0.58 w a .
  • k a is a constant selected from the range of ⁇ 0.039 ⁇ k a ⁇ 0.027.
  • h a corresponds to the maximum height in the z-axis direction between both ends 41a and 41a of the convex portion 41 when the convex portion 41 has a shape represented by z 0 (x).
  • FIG. 3 illustrates a shape in which z 0 (x) is expanded and contracted by a predetermined multiple (for example, one time) in the z direction within a range satisfying the expression (3).
  • both ends 41a and 41a are located on the x-axis
  • the top 41b is located on the z-axis.
  • the convex portion 41 has a contour line that is symmetric with respect to the z-axis.
  • the contour line of the convex portion 41 is not limited to a shape in which z 0 (x) is expanded and contracted by a predetermined time (for example, 1 time) in the z direction.
  • the outline of the convex part 41 should just satisfy
  • z (x) is an outline represented by 0.95z 0 (x) when z 0 (x) is determined for a certain width w a as shown in FIG. 1.05z 0 (x), any contour line passing through the region between the contour lines may be used.
  • Width w a of the convex portion 41 since formation of the convex portion 41 is easy, usually 40 ⁇ m or more, preferably 80 ⁇ m or more, since the pattern due to the convex portion 41 is hardly visible to the naked eye Usually, it is 800 ⁇ m or less, preferably 450 ⁇ m or less. Specific examples of width w a is, 410 ⁇ m, 400 ⁇ m, 325 ⁇ m, a 280 ⁇ m and 100 [mu] m. However, the value of w a is not limited to this.
  • FIG. 5 is a drawing showing an example of the contour line of the convex portion and the conditions that the contour line of the convex portion should satisfy.
  • the horizontal axis in FIG. 5 indicates the position ( ⁇ m), and the vertical axis indicates the height ( ⁇ m).
  • w a 100 ⁇ m
  • h a 0.57 w a
  • k a ⁇ 0.033.
  • Z 0 (x) determined by these numerical values is referred to as z1 0 (x) for convenience.
  • w a 100 ⁇ m, but it is not limited to this, as described above.
  • the cross-sectional shape of the convex portion 41 is represented by z (x) that satisfies Expression (3).
  • the cross-sectional shape of the convex portion 41 may be expressed by z (x) that satisfies the expression (3) when ⁇ 0.475 w a ⁇ x ⁇ 0.475 w a . This is because the molding error tends to be relatively large in the vicinity of the bottom of the convex portion 41 (in the vicinity of the end), but the shape of the vicinity of the bottom has little influence on the light diffusibility.
  • the light diffusing plate 40 shown in FIG. 2 When the light diffusing plate 40 shown in FIG. 2 is applied to the transmissive image display device 1, the light diffusing plate 40 is arranged such that the extending direction (first direction) of the convex portion 41 is the horizontal direction of the screen. You may arrange
  • the light diffusing plate 40 can be manufactured by designing the cross-sectional shape of the convex portion 41 so as to satisfy Equation (3) and, for example, by cutting out from a transparent material.
  • the light diffusing plate 40 can be manufactured by a method such as an injection molding method, an extrusion molding method, a press molding method, or a photopolymer method.
  • the light output from each light source 31 of the light source unit 30 is reflected directly or by the inner surface 32 a of the lamp box 32 to the light diffusing plate 40. Incident.
  • the light incident on the light diffusing plate 40 is irradiated from the second surface 40b toward the transmissive image display unit 10. Since a plurality of convex portions 41 are formed on the second surface 40 b, light is emitted through the convex portions 41. As a result, planar light is generated by the light diffusion plate 40.
  • the convex portion 41 has a cross-sectional shape represented by z (x), it is possible to suppress nonuniform luminance.
  • the L / D is a predetermined value (deformation due to displacement of the light diffusion plate 40 with respect to the light source 31 or heat). For example, even if it fluctuates from the design value), non-uniform luminance is less likely to occur, and the non-uniform luminance can be suppressed more stably.
  • the point that the light diffusing plate 40 can suppress non-uniformity in luminance and can further stably suppress non-uniform luminance will be specifically described with reference to simulation results.
  • the simulation was performed in a configuration in which a light diffusion plate 40 is disposed on a plurality of light sources 31 as shown in FIG.
  • the refractive index of the light diffusing plate 40 was 1.51 including the convex portion 41.
  • the light emitted from the light diffusing plate 40 was obtained by the ray tracing method, and the luminance uniformity (%) in the plane orthogonal to the z direction was calculated.
  • the brightness uniformity (%) was calculated by “(lowest brightness / highest brightness) ⁇ 100”.
  • z 0 (x) h a and k a are included in the the case of the above-described range (i.e., 0.56w a ⁇ h a ⁇ 0.58w a and -0.039 ⁇ k a ⁇ -0.027)
  • a case outside the above range will be described as a comparative example.
  • Example 1 achieves a brightness uniformity of 88.4%.
  • the conditions of Example 1, Comparative Example 1, and Comparative Example 2 other than the cross-sectional shape of the convex portion 41 are the same. Therefore, by setting the cross-sectional shape of the convex portion 41 to the shape of Example 1, it is possible to obtain a higher luminance uniformity than Comparative Example 1 and Comparative Example 2.
  • Example 2 a simulation was performed under the condition that L / D was changed from Example 1.
  • the simulation of Example 2 was performed under the same conditions as in Example 1 except that the distance D between the light source 31 and the light diffusion plate 40 was 14 mm.
  • L / D 2.14.
  • Example 2 achieves a brightness uniformity of 83.6%. That is, by having the convex portion 41 represented by z (x) whose cross-sectional shape satisfies the expression (3), the light diffusion plate 40 has an L / D that varies from a predetermined value (for example, a design value). However, non-uniform luminance is less likely to occur, and the non-uniform luminance can be suppressed more stably.
  • the surface light source device 20 including the light diffusing plate 40 can output light in which unevenness in luminance is suppressed.
  • the transmissive image display device 1 including the light diffusing plate 40 the transmissive image display unit 10 can be illuminated by light with suppressed luminance non-uniformity. Therefore, the transmissive image display device 1 can improve display quality. Can do. Even the surface light source device 20 including the light diffusing plate 40 can more stably output light in which nonuniform luminance is suppressed.
  • the transmissive image display device 1 including the light diffusing plate 40 it is possible to suppress a change in display quality due to a displacement of the light diffusing plate 40 with respect to the light source 31 or deformation due to heat or the like while improving display quality.
  • the light control plate may be an optical component that adjusts the luminance uniformity of light output from a plurality of light sources in a plane parallel to a plane on which the plurality of light sources are arranged.
  • the light control plate may be a brightness adjusting plate such as an optical sheet such as a prism sheet or a lens sheet or an optical film having a plurality of the convex portions described above on the light emission side of a plate made of a transparent material.
  • the light diffusion plate 40 may be a single layer plate made of a single transparent material.
  • the light diffusing plate 40 may be a multilayer plate having a structure in which layers made of different transparent materials are laminated.
  • FIG. 6 is a cross-sectional view of an example of a light diffusion plate in the case of a multilayer plate.
  • the light diffusing plate 50 as a multilayer plate includes a skin layer 51, a base portion 52 provided on the skin layer 51, and a convex portion forming layer 53 provided on the base portion 52.
  • the convex portion forming layer 53 is a shape imparting layer configured by arranging a plurality of convex portions 41 in a direction orthogonal to the extending direction of the convex portions 41.
  • the shape of the convex portion 41 is the same as that shown in FIG.
  • Each convex portion 41 included in the convex portion forming layer 53 is made of a transparent material.
  • the refractive index of each convex part 41 can be 1.50 or more and less than 1.52.
  • the base portion 52 is a plate-like body made of a transparent material.
  • the refractive index of the base portion 52 can be 1.50 or more and less than 1.52.
  • the refractive index of the base portion 52 may be different from the refractive index of the convex portion 41.
  • the refractive index of the base portion 52 is preferably the same as the refractive index of the convex portion 41.
  • the skin layer 51 is also a plate-like body made of a transparent material.
  • the surface of the skin layer 51 opposite to the base portion 52 is flat.
  • the skin layer 51 is thinner than the base portion 52.
  • An example of the thickness of the skin layer 51 is 10 ⁇ m or more and less than 100 ⁇ m.
  • the skin layer 51 may have a refractive index difference of 0.1 or less with respect to the base portion 52.
  • the refractive index of the skin layer 51 is preferably the same as that of the base portion 52.
  • the skin layer 51 preferably contains an ultraviolet absorber. This is because, when the skin layer 51 contains the ultraviolet absorber, for example, when the light source 31 including ultraviolet rays is used as output light like a fluorescent tube, deterioration of the light diffusion plate due to the ultraviolet rays from the light source 31 can be prevented. Moreover, when the base
  • the plurality of light sources 31 included in the light source unit 30 are arranged at substantially equal intervals with the interval L.
  • the distance between the two adjacent light sources 31 may be different.
  • SYMBOLS 1 Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 30 ... Light source part, 31 ... Light source, 40 ... Light diffusing plate (light control board), 40a ... 1st surface, 40b ... 2nd surface, 41 ... convex part, 41a ... end of convex part, 41b ... top part of convex part.

Abstract

A light control plate (40) emits, from a second surface (40b), the light that entered from a first surface (40a). The light control plate is provided with a plurality of projected parts (41) on the second surface. The projected parts extend in a first direction and are disposed in parallel in a second direction which is orthogonal to the first direction. With respect to the cross-sectional surface which is orthogonal to the first direction of the projected parts, the shape of the outline of the projected parts in the cross-sectional surface is represented by z(x) which fulfills the formula 0.95×z0(x)≤z(x)≤1.05×z0(x) in a range of -0.475wa≤x≤0.475wa, wherein the x axis represents the axis which passes through both ends of the projected parts in relation to the second direction, and the z axis represents the axis which passes through the center of both ends in relation to the x axis and which is orthogonal to the x axis. (z0(x) is represented by the subsequent formula.) As a consequence, a light control plate, surface light source device, and transmission-type image display device, in which it is possible to stably prevent the brightness from becoming uneven, can be provided. (wa represents the length of the projected parts in the x axis direction, ha has a range of 0.56wa≤ha<0.58wa, and ka has a range of -0.039≤ka<-0.027.)

Description

光制御板、面光源装置及び透過型画像表示装置Light control plate, surface light source device, and transmissive image display device
 本発明は、光制御板、面光源装置及び透過型画像表示装置に関する。 The present invention relates to a light control plate, a surface light source device, and a transmissive image display device.
 液晶表示装置などの透過型画像表示装置では、液晶表示部のバックライトを出力する光源の一例として直下型面光源装置が使用されている。典型的な面光源装置として、光拡散板といった光制御板の背面側に複数の光源を並べたものが利用されている。このような面光源装置では、配置する光源数を増やすことにより発光面を容易に高輝度化できる。しかしながら、光源と光制御板との距離を短くすると輝度均斉度が低くなるという問題点を有する。特に、光源の真上付近での輝度が高くなるために発生する周期的な輝度の不均一が問題である。面光源装置の薄型化、或いは低消費電力化のための光源数が削減されることによって上記周期的な輝度の不均一がより大きな問題となってきている。 In a transmissive image display device such as a liquid crystal display device, a direct type surface light source device is used as an example of a light source that outputs a backlight of a liquid crystal display unit. As a typical surface light source device, a device in which a plurality of light sources are arranged on the back side of a light control plate such as a light diffusion plate is used. In such a surface light source device, the luminance of the light emitting surface can be easily increased by increasing the number of light sources to be arranged. However, when the distance between the light source and the light control plate is shortened, there is a problem that the luminance uniformity is lowered. In particular, the periodic brightness non-uniformity that occurs because the brightness near the light source is high is a problem. Due to the reduction in the number of light sources for reducing the thickness of the surface light source device or reducing the power consumption, the periodic luminance non-uniformity has become a greater problem.
 そこで、輝度均斉度を確保するために、例えば、特許文献1では、光制御板の一例としての光拡散板に、光源と光拡散板との間の距離に対応して光量補正パターンを形成している。同様に、特許文献2では、光拡散板の光源に面する面の光源の真上付近の一部に断面が鋸歯状のプリズムを設けることで、光量の多い光源の真上付近の光を散らしている。 Therefore, in order to ensure the luminance uniformity, for example, in Patent Document 1, a light amount correction pattern is formed on a light diffusion plate as an example of a light control plate corresponding to the distance between the light source and the light diffusion plate. ing. Similarly, in Patent Document 2, by providing a prism with a sawtooth cross section in a part of the surface of the light diffusing plate that faces the light source, just above the light source, light near the light source with a large amount of light is scattered. ing.
特開平6-273760号公報JP-A-6-273760 特開2004-127680号公報JP 2004-127680 A
 しかし、特許文献1の光量補正パターン及び特許文献2の断面が鋸歯状のプリズムのように、光源の位置と光制御板との間の距離に依存関係を持たせたバックライトの構成では、光制御板の位置ずれや、熱による変形などによって、輝度均斉度が悪化する。 However, in the configuration of the backlight in which the light amount correction pattern of Patent Document 1 and the cross section of Patent Document 2 have a dependency relationship with the distance between the position of the light source and the light control plate, such as a sawtooth prism, The brightness uniformity deteriorates due to the displacement of the control plate or deformation due to heat.
 そこで、本発明は、より安定して輝度の不均一を抑制可能な光制御板、面光源装置及び透過型画像表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a light control plate, a surface light source device, and a transmissive image display device that can suppress uneven brightness more stably.
 本発明に係る光制御板は、第1の面から入射した光を第1の面と反対側に位置する第2の面から出射する光制御板である。本発明に係る光制御板は、第2の面に形成される複数の凸状部を備える。複数の凸状部の各々は、第1の方向に延在しており、複数の凸状部は、第1の方向に直交する第2の方向に並列配置されている。また、複数の凸状部の各々の第1の方向に直交する断面において、前記第2の方向に対する各凸状部の両端をとおる軸をx軸とし、x軸上において上記両端の中心をとおりx軸に直交する軸をz軸とし、各凸状部のx軸方向の長さをwとしたとき、上記断面における各凸状部の輪郭形状は、-0.475w≦x≦0.475wにおいて、式(1)を満たすz(x)で表される。
Figure JPOXMLDOC01-appb-M000003
 ただし、式(1)において、z(x)は式(2)を満たす。
Figure JPOXMLDOC01-appb-M000004
式(2)中、hは0.56w以上且つ0.58w未満の数であり、kは-0.039以上且つ-0.027未満の数である。
The light control plate according to the present invention is a light control plate that emits light incident from the first surface from a second surface located on the opposite side of the first surface. The light control plate according to the present invention includes a plurality of convex portions formed on the second surface. Each of the plurality of convex portions extends in the first direction, and the plurality of convex portions are arranged in parallel in a second direction orthogonal to the first direction. Further, in a cross section orthogonal to the first direction of each of the plurality of convex portions, an axis passing through both ends of each convex portion with respect to the second direction is an x-axis, and the center of both ends on the x-axis is passed. When the axis perpendicular to the x-axis is the z-axis and the length of each convex portion in the x-axis direction is w a , the contour shape of each convex portion in the cross section is −0.475 w a ≦ x ≦ 0. in .475w a, represented by z (x) satisfying the equation (1).
Figure JPOXMLDOC01-appb-M000003
However, in Formula (1), z 0 (x) satisfies Formula (2).
Figure JPOXMLDOC01-appb-M000004
In the formula (2), h a is a number of 0.56 w a or more and less than 0.58 w a , and k a is a number of −0.039 or more and less than −0.027.
 上記構成の光制御板では、凸状部が上記z(x)で表される断面形状を有することから、光制御板から出射される光の輝度の不均一をより安定して低減できる。 In the light control plate having the above configuration, since the convex portion has a cross-sectional shape represented by z (x), it is possible to more stably reduce uneven brightness of light emitted from the light control plate.
 本発明に係る光制御板は、透明材料からなり、各凸状部の屈折率は1.50以上且つ1.52未満である、とすることができる。 The light control plate according to the present invention may be made of a transparent material, and the refractive index of each convex portion may be 1.50 or more and less than 1.52.
 本発明に係る面光源装置は、本発明に係る光制御板と、互いに離間して配置されており、光制御板の第1の面に光を供給する複数の光源と、を備える。 The surface light source device according to the present invention includes a light control plate according to the present invention and a plurality of light sources that are arranged apart from each other and supply light to the first surface of the light control plate.
 本発明に係る面光源装置は、本発明に係る光制御板を備えているので、出射される光の輝度の不均一をより安定して低減できる。 Since the surface light source device according to the present invention includes the light control plate according to the present invention, it is possible to more stably reduce non-uniform luminance of emitted light.
 本発明に係る透過型画像表示装置は、本発明に係る光制御板と、互いに離間して配置されており、光制御板の第1の面に光を供給する複数の光源と、光制御板の第2の面から出射される光によって照明され画像を表示する透過型画像表示部と、を備える。 A transmissive image display device according to the present invention includes a light control plate according to the present invention, a plurality of light sources that are spaced apart from each other and supply light to the first surface of the light control plate, and the light control plate A transmissive image display unit that is illuminated by light emitted from the second surface and displays an image.
 本発明に係る透過型画像表示装置では、本発明に係る光制御板を備えているので、安定して輝度の不均一の抑制された光で透過型画像表示部を照明することができる。よって、輝度の不均一のない画像を安定して表示可能である。 Since the transmissive image display device according to the present invention includes the light control plate according to the present invention, it is possible to stably illuminate the transmissive image display unit with light in which uneven luminance is suppressed. Therefore, it is possible to stably display an image without uneven brightness.
 本発明によれば、より安定して輝度の不均一を抑制可能な光制御板並びにその光制御板を含む面光源装置及び透過型画像表示装置を提供することができる。 According to the present invention, it is possible to provide a light control plate that can more stably suppress uneven luminance, a surface light source device including the light control plate, and a transmissive image display device.
図1は、本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention. 図2は、図1に示した透過型画像表示装置に用いられる光拡散板の断面図である。FIG. 2 is a cross-sectional view of a light diffusing plate used in the transmissive image display apparatus shown in FIG. 図3は、光拡散板が有する凸状部の一例の断面形状を示す図面である。FIG. 3 is a drawing showing a cross-sectional shape of an example of the convex portion of the light diffusion plate. 図4は、図3に示す凸状部の断面形状を示す輪郭線が満たす条件を示す図面である。FIG. 4 is a diagram illustrating conditions that are satisfied by a contour line indicating the cross-sectional shape of the convex portion illustrated in FIG. 3. 図5は、凸状部の輪郭線の一例及びその輪郭線が満たすべき条件を説明する図面である。FIG. 5 is a diagram for explaining an example of a contour line of a convex portion and a condition to be satisfied by the contour line. 図6は、光拡散板の他の例を示す断面図である。FIG. 6 is a cross-sectional view showing another example of the light diffusing plate.
 以下、図面を参照して本発明の光制御板、面光源装置及び透過型画像表示装置の実施形態について説明する。図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of a light control plate, a surface light source device, and a transmissive image display device of the present invention will be described with reference to the drawings. In the description of the drawings, the same reference numerals are given to the same elements, and duplicate descriptions are omitted. The dimensional ratios in the drawings do not necessarily match those described.
 図1は、本発明に係る透過型画像表示装置の一実施形態の構成を模式的に示す断面図である。図1は、透過型画像表示装置を分解して示している。図2は、図1に示した透過型画像表示装置に含まれる面光源装置が有する光拡散板の断面図である。図2では、説明の便宜のため、隣接する2つの光源も模式的に示している。 FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a transmissive image display device according to the present invention. FIG. 1 is an exploded view of a transmissive image display device. FIG. 2 is a cross-sectional view of a light diffusing plate included in the surface light source device included in the transmissive image display device shown in FIG. In FIG. 2, two adjacent light sources are also schematically shown for convenience of explanation.
 透過型画像表示装置1は、透過型画像表示部10と、透過型画像表示部10にバックライトを供給する面光源装置20とを備える。透過型画像表示部10の例は、例えば液晶セル11の両面に直線偏光板12,13が配置された液晶表示パネルである。この場合、透過型画像表示装置1は液晶表示装置(又は液晶テレビ)である。液晶セル11,偏光板12,13は、従来の液晶表示装置等の透過型画像表示装置で用いられているものを用いることができる。液晶セル11の例は、TFT型の液晶セル、STN型の液晶セル等の公知の液晶セルである。 The transmissive image display device 1 includes a transmissive image display unit 10 and a surface light source device 20 that supplies a backlight to the transmissive image display unit 10. An example of the transmissive image display unit 10 is a liquid crystal display panel in which linear polarizing plates 12 and 13 are disposed on both surfaces of a liquid crystal cell 11, for example. In this case, the transmissive image display device 1 is a liquid crystal display device (or a liquid crystal television). As the liquid crystal cell 11 and the polarizing plates 12 and 13, those used in a transmissive image display device such as a conventional liquid crystal display device can be used. An example of the liquid crystal cell 11 is a known liquid crystal cell such as a TFT liquid crystal cell or an STN liquid crystal cell.
 面光源装置20は、いわゆる直下型の面光源装置である。面光源装置20は、複数の光源31を含む光源部30を有する。複数の光源31は、並列配置されている。各光源31は、複数の光源31の配列方向に直交する方向に延在している線状光源である。各光源31の例は蛍光ランプ(冷陰極線ランプ)のような直管状の光源である。複数の光源31は各光源31の中心軸線が同一の平面P内に位置するように間隔をあけて配置されている。複数の光源31のうちの、隣接する2つの光源31,31の中心軸線間の距離をLとした場合、距離Lの例は10mm~150mmである。ここでは、光源31は線状として説明した。しかしながら、光源31は、LEDのような点状光源などを用いることも可能である。図1中に示した平面Pは説明の便宜のためであり、仮想的な平面である。 The surface light source device 20 is a so-called direct type surface light source device. The surface light source device 20 includes a light source unit 30 including a plurality of light sources 31. The plurality of light sources 31 are arranged in parallel. Each light source 31 is a linear light source extending in a direction orthogonal to the arrangement direction of the plurality of light sources 31. An example of each light source 31 is a straight tubular light source such as a fluorescent lamp (cold cathode ray lamp). The plurality of light sources 31 are arranged at intervals so that the central axes of the light sources 31 are located in the same plane P. When the distance between the central axes of two adjacent light sources 31 among the plurality of light sources 31 is L, an example of the distance L is 10 mm to 150 mm. Here, the light source 31 has been described as being linear. However, the light source 31 may be a point light source such as an LED. The plane P shown in FIG. 1 is a virtual plane for convenience of explanation.
 複数の光源31は、図1に示すように、ランプボックス32内に配置されていることが好ましい。ランプボックス32の内面32aは、光反射面として形成されていることが好ましい。これにより、各光源31から出力された光が透過型画像表示部10側に確実に出力されるため、各光源31からの光を効率的に利用することが可能となるからである。本実施形態では、光源部30は、上記好ましい構成のランプボックス32を有するものとして説明する。 The plurality of light sources 31 are preferably arranged in the lamp box 32 as shown in FIG. The inner surface 32a of the lamp box 32 is preferably formed as a light reflecting surface. This is because the light output from each light source 31 is reliably output to the transmissive image display unit 10 side, so that the light from each light source 31 can be used efficiently. In the present embodiment, the light source unit 30 will be described as including the lamp box 32 having the above-described preferable configuration.
 面光源装置20は、光源部30の前面側(図1中、上側)、すなわち、透過型画像表示部10側に、光源31に対して離間して配置された光制御板としての光拡散板40を有している。後述するように、上記光拡散板40と複数の光源31との間の離間距離をDとした場合、離間距離Dの例は、3mm~50mmである。面光源装置20では、薄型化を図るため、L/Dが2以上となるように、好ましくは、L/Dが2.5以上となるように、隣接する2つの光源31,31間の距離L及び離間距離Dが選択されている。 The surface light source device 20 is a light diffusing plate as a light control plate disposed on the front side (upper side in FIG. 1) of the light source unit 30, that is, on the transmissive image display unit 10 side and spaced from the light source 31. 40. As will be described later, when the distance between the light diffusion plate 40 and the plurality of light sources 31 is D, an example of the distance D is 3 mm to 50 mm. In the surface light source device 20, in order to reduce the thickness, the distance between the two adjacent light sources 31, 31 is set so that L / D is 2 or more, preferably L / D is 2.5 or more. L and the separation distance D are selected.
 光拡散板40は、各光源31の像を透過型画像表示部10に投影しないために、光源部30からの光、すなわち、各光源31からの直接光及びランプボックス32の内面32aで反射した反射光を透過型画像表示部10に向けて拡散させつつ照射するためのものである。光拡散板40の厚さdは、通常は0.1mm~5mmである。光拡散板40は、フィルム状であってもよいし、シート状であってもよい。 The light diffusing plate 40 does not project the image of each light source 31 onto the transmissive image display unit 10, and is reflected by the light from the light source unit 30, that is, the direct light from each light source 31 and the inner surface 32 a of the lamp box 32. This is for irradiating the reflected light while diffusing it toward the transmissive image display unit 10. The thickness d of the light diffusing plate 40 is usually 0.1 mm to 5 mm. The light diffusing plate 40 may be a film or a sheet.
 光拡散板40は透明材料からなる。透明材料の例は、透明樹脂、透明ガラスである。透明材料の屈折率の例は、1.50以上且つ1.52未満である。また、透明樹脂の例は、変性ノルボルネン樹脂、ポリアクリロニトリル樹脂、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂、スチレンの割合:10%~30%)などである。 The light diffusion plate 40 is made of a transparent material. Examples of the transparent material are transparent resin and transparent glass. An example of the refractive index of the transparent material is 1.50 or more and less than 1.52. Examples of the transparent resin include a modified norbornene resin, polyacrylonitrile resin, MS resin (methyl methacrylate-styrene copolymer resin, styrene ratio: 10% to 30%).
 透明材料として透明樹脂材料を用いる場合、透明樹脂材料に紫外線吸収剤、帯電防止剤、酸化防止剤、加工安定剤、難燃剤、滑剤などの添加剤を添加することもできる。これらの添加剤はそれぞれ単独で、または2種以上を組み合わせて用いることができる。 When a transparent resin material is used as the transparent material, additives such as an ultraviolet absorber, an antistatic agent, an antioxidant, a processing stabilizer, a flame retardant, and a lubricant can be added to the transparent resin material. These additives can be used alone or in combination of two or more.
 紫外線吸収剤の例は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸アニリド系紫外線吸収剤、トリアジン系紫外線吸収剤などである。紫外線吸収剤の好ましい例はベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤である。 Examples of UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, malonic ester UV absorbers, oxalic anilide UV absorbers, and triazine UV absorbers. is there. Preferable examples of the ultraviolet absorber are a benzotriazole ultraviolet absorber and a triazine ultraviolet absorber.
 透明樹脂材料は通常、添加剤として光拡散剤を添加することなく用いられる。しかしながら、本発明の目的を著しく損なわない量であれば、光拡散剤を添加して用いてもよい。 A transparent resin material is usually used without adding a light diffusing agent as an additive. However, as long as the object of the present invention is not significantly impaired, a light diffusing agent may be added and used.
 光拡散板40には、片面または両面に帯電防止剤が塗布されていてもよい。帯電防止剤を塗布することにより、静電気によるホコリの付着などを防止して、ホコリの付着による光線透過率の低下を防止することができる。 The light diffusing plate 40 may be coated with an antistatic agent on one side or both sides. By applying an antistatic agent, dust adhesion due to static electricity can be prevented, and a decrease in light transmittance due to dust adhesion can be prevented.
 図1及び図2に示すように、光拡散板40は、光源部30側にほぼ平坦な第1の面40aを有すると共に、透過型画像表示部10側に第2の面40bを有する。第2の面40bには、複数の凸状部41が形成されている。凸状部41が形成されている光拡散板40において、光拡散板40の厚さdは、凸状部41の頂部と第1の面40aとの間の距離とすることができる。 1 and 2, the light diffusing plate 40 has a substantially flat first surface 40a on the light source unit 30 side and a second surface 40b on the transmissive image display unit 10 side. A plurality of convex portions 41 are formed on the second surface 40b. In the light diffusing plate 40 in which the convex portion 41 is formed, the thickness d of the light diffusing plate 40 can be a distance between the top of the convex portion 41 and the first surface 40a.
 図2に示すように、各凸状部41は、一方向(第1の方向)に延在している線状の光学要素である。光学要素の例は、レンズやプリズムである。複数の凸状部41は、凸状部41の延在方向に略直交する方向(第2の方向)に並列配置されている。複数の凸状部41は、第2の面40bの全面に形成されている。隣接する凸状部41の断面形状における端41aは凸状部41の配列方向において重なっている。 As shown in FIG. 2, each convex portion 41 is a linear optical element extending in one direction (first direction). Examples of optical elements are lenses and prisms. The plurality of convex portions 41 are arranged in parallel in a direction (second direction) substantially orthogonal to the extending direction of the convex portions 41. The plurality of convex portions 41 are formed on the entire surface of the second surface 40b. The ends 41 a in the cross-sectional shape of the adjacent convex portions 41 overlap in the arrangement direction of the convex portions 41.
 各凸状部41の延在方向に直交する断面形状は複数の凸状部41間で略同一である。離間距離D及び隣接する2つの光源31,31間の距離Lの比であるL/Dが2以上、好ましくは、2.5以上という条件を満たすように、離間距離D及距離Lが選択されることは、上述したとおりである。 The cross-sectional shape orthogonal to the extending direction of each convex portion 41 is substantially the same among the plurality of convex portions 41. The separation distance D and the distance L are selected so that L / D, which is the ratio of the separation distance D and the distance L between the two adjacent light sources 31, 31, is 2 or more, preferably 2.5 or more. This is as described above.
 図3は凸状部の延在方向に直交する断面形状の一例を示す図面であり、一つの凸状部を拡大して示している。凸状部41の断面形状を、図3に示すように設定した局所的なxz座標系を用いて説明する。xz座標系を構成するx軸は複数の凸状部41の配列方向(第2の方向)に平行であり、z軸は板厚方向(第1及び第2の方向に直交する方向)に平行である。 FIG. 3 is a drawing showing an example of a cross-sectional shape orthogonal to the extending direction of the convex portion, and shows an enlarged one convex portion. The cross-sectional shape of the convex portion 41 will be described using a local xz coordinate system set as shown in FIG. The x-axis constituting the xz coordinate system is parallel to the arrangement direction (second direction) of the plurality of convex portions 41, and the z-axis is parallel to the plate thickness direction (direction orthogonal to the first and second directions). It is.
 xz座標系のxz面において、凸状部41の断面形状は、式(3)を満たすz(x)で表される。
Figure JPOXMLDOC01-appb-M000005
 ただし、式(3)において、z(x)は式(4)を満たす。
Figure JPOXMLDOC01-appb-M000006
式(4)中、wは凸状部41のx軸方向の長さである。hは0.56w≦h<0.58wの範囲から選択される定数である。kは-0.039≦k<-0.027の範囲から選択される定数である。hは、凸状部41をz(x)で表される形状とした場合における凸状部41の両端41a,41a間のz軸方向の最大高さに対応する。kは、凸状部41のとがり方を示すパラメータである。h,kの例は、h=0.56w、k=-0.039である。図3では、式(3)を満たす範囲内でz(x)をz方向に所定倍(例えば1倍)だけ伸縮した形状を例示している。図3に示した一例では、両端41a,41aがx軸上に位置するとともに、頂部41bがz軸上に位置する。凸状部41はz軸に対して対称な輪郭線を有する。
In the xz plane of the xz coordinate system, the cross-sectional shape of the convex portion 41 is represented by z (x) that satisfies Expression (3).
Figure JPOXMLDOC01-appb-M000005
However, in Formula (3), z 0 (x) satisfies Formula (4).
Figure JPOXMLDOC01-appb-M000006
In formula (4), w a is the length of the convex portion 41 in the x-axis direction. h a is a constant selected from the range of 0.56 w a ≦ h a <0.58 w a . k a is a constant selected from the range of −0.039 ≦ k a <−0.027. h a corresponds to the maximum height in the z-axis direction between both ends 41a and 41a of the convex portion 41 when the convex portion 41 has a shape represented by z 0 (x). k a is a parameter indicating how the convex portion 41 is sharpened. Examples of h a, k a is, h a = 0.56w a, a k a = -0.039. FIG. 3 illustrates a shape in which z 0 (x) is expanded and contracted by a predetermined multiple (for example, one time) in the z direction within a range satisfying the expression (3). In the example shown in FIG. 3, both ends 41a and 41a are located on the x-axis, and the top 41b is located on the z-axis. The convex portion 41 has a contour line that is symmetric with respect to the z-axis.
 凸状部41の輪郭線は、z(x)をz方向に所定倍(例えば1倍)だけ伸縮した形状に限定されない。凸状部41の輪郭線は、式(3)を満たしていればよい。式(3)においてz(x)は、図4に示すように、ある幅wに対してz(x)を決定した際に、0.95z(x)で表される輪郭線と、1.05z(x)で表される輪郭線の間の領域をとおる輪郭線であればよい。 The contour line of the convex portion 41 is not limited to a shape in which z 0 (x) is expanded and contracted by a predetermined time (for example, 1 time) in the z direction. The outline of the convex part 41 should just satisfy | fill Formula (3). In Expression (3), z (x) is an outline represented by 0.95z 0 (x) when z 0 (x) is determined for a certain width w a as shown in FIG. 1.05z 0 (x), any contour line passing through the region between the contour lines may be used.
 凸状部41の幅wは、凸状部41の形成が容易であることから、通常40μm以上、好ましくは80μm以上であり、凸状部41に起因する模様が肉眼で視認されにくいことから、通常800μm以下、好ましくは450μm以下である。幅wの具体例は、410μm、400μm、325μm、280μm及び100μmである。ただし、wの値はこれに限定されない。  Width w a of the convex portion 41, since formation of the convex portion 41 is easy, usually 40μm or more, preferably 80μm or more, since the pattern due to the convex portion 41 is hardly visible to the naked eye Usually, it is 800 μm or less, preferably 450 μm or less. Specific examples of width w a is, 410μm, 400μm, 325μm, a 280μm and 100 [mu] m. However, the value of w a is not limited to this.
 図5を利用して凸状部41の輪郭線の一例及び凸状部41の輪郭線が満たすべき条件を具体的に示す。図5は凸状部の輪郭線の一例及び凸状部の輪郭線が満たすべき条件を示す図面である。図5の横軸は位置(μm)を示し、縦軸は高さ(μm)を示している。図5に示した例では、w=100μm、h=0.57w、k=-0.033とする。これらの数値で決まるz(x)を、便宜的にz1(x)と称す。図5ではz(x)=z1(x)の場合の輪郭線形状を示している。 An example of the contour line of the convex portion 41 and conditions that the contour line of the convex portion 41 should satisfy are specifically shown using FIG. FIG. 5 is a drawing showing an example of the contour line of the convex portion and the conditions that the contour line of the convex portion should satisfy. The horizontal axis in FIG. 5 indicates the position (μm), and the vertical axis indicates the height (μm). In the example shown in FIG. 5, it is assumed that w a = 100 μm, h a = 0.57 w a , and k a = −0.033. Z 0 (x) determined by these numerical values is referred to as z1 0 (x) for convenience. FIG. 5 shows an outline shape in the case of z (x) = z1 0 (x).
 図5では、上記z1(x)に基づいた輪郭線が満たす条件を説明するために、z1(x)で表される輪郭線とともに、0.95z1(x)で示される輪郭線(図中の破線)及び1.05z1(x)で示される輪郭線(図中の一点鎖線)を示している。凸状部41の輪郭線は、式(3)を満たせばよいので、0.95z1(x)で表される輪郭線と、1.05z1(x)で表される輪郭線との間の領域を通るものであればよい。 In Figure 5, in order to explain the condition that contour lines based on the above z1 0 (x) satisfies, with contour lines represented by z1 0 (x), the contour lines shown by 0.95z1 0 (x) ( A contour line (dashed line in the figure) indicated by a broken line in the figure) and 1.05z1 0 (x) is shown. Contour of the convex portion 41, so should satisfy equation (3), between a contour line represented by 0.95z1 0 (x), a contour line represented by 1.05z1 0 (x) As long as it passes through this area.
 上記形状例1では、w=100μmとしたがこれに限定されないことは前述したとおりである。 In the first shape example, w a = 100 μm, but it is not limited to this, as described above.
 上記説明では、凸状部41の断面形状が式(3)を満たすz(x)で表されるとした。ただし、凸状部41の断面形状は、-0.475w≦x≦0.475wにおいて式(3)を満たすz(x)で表されていればよい。凸状部41の裾付近(端部近傍)では成形誤差が比較的大きくなる傾向にある一方、裾付近の形状が光の拡散性に与える影響は小さいからである。 In the above description, it is assumed that the cross-sectional shape of the convex portion 41 is represented by z (x) that satisfies Expression (3). However, the cross-sectional shape of the convex portion 41 may be expressed by z (x) that satisfies the expression (3) when −0.475 w a ≦ x ≦ 0.475 w a . This is because the molding error tends to be relatively large in the vicinity of the bottom of the convex portion 41 (in the vicinity of the end), but the shape of the vicinity of the bottom has little influence on the light diffusibility.
 図2に示した光拡散板40を透過型画像表示装置1に適用する場合、光拡散板40を、凸状部41の延在方向(第1の方向)が画面の横方向になるように配置してもよいし、縦方向になるように配置してもよい。 When the light diffusing plate 40 shown in FIG. 2 is applied to the transmissive image display device 1, the light diffusing plate 40 is arranged such that the extending direction (first direction) of the convex portion 41 is the horizontal direction of the screen. You may arrange | position and may arrange | position so that it may become a vertical direction.
 式(3)を満たすように凸状部41の断面形状を設計し、例えば透明材料から削り出す方法によって、光拡散板40を製造することができる。また、透明材料として透明樹脂材料を用いる場合は、例えば射出成形法、押出成型法、プレス成形法、フォトポリマー法などの方法によって光拡散板40を製造することができる。 The light diffusing plate 40 can be manufactured by designing the cross-sectional shape of the convex portion 41 so as to satisfy Equation (3) and, for example, by cutting out from a transparent material. When a transparent resin material is used as the transparent material, the light diffusing plate 40 can be manufactured by a method such as an injection molding method, an extrusion molding method, a press molding method, or a photopolymer method.
 光拡散板40を含む面光源装置20及び透過型画像表示装置1では、光源部30の各光源31から出力された光は、直接又はランプボックス32の内面32aで反射して光拡散板40に入射される。光拡散板40に入射した光は、第2の面40bから透過型画像表示部10に向けて照射される。第2の面40bには、凸状部41が複数形成されているため、凸状部41を介して光が出射される。その結果、光拡散板40によって面状の光が生成される。この際、凸状部41が上記z(x)で表される断面形状を有することで、輝度の不均一を抑制可能である。 In the surface light source device 20 and the transmissive image display device 1 including the light diffusing plate 40, the light output from each light source 31 of the light source unit 30 is reflected directly or by the inner surface 32 a of the lamp box 32 to the light diffusing plate 40. Incident. The light incident on the light diffusing plate 40 is irradiated from the second surface 40b toward the transmissive image display unit 10. Since a plurality of convex portions 41 are formed on the second surface 40 b, light is emitted through the convex portions 41. As a result, planar light is generated by the light diffusion plate 40. At this time, since the convex portion 41 has a cross-sectional shape represented by z (x), it is possible to suppress nonuniform luminance.
 凸状部41の断面形状が式(3)を満たすz(x)で表されることから、例えば光拡散板40の光源31に対する位置ずれや熱などによる変形でL/Dが所定の値(例えば設計値)から変動しても、輝度の不均一が生じにくく、より安定して輝度の不均一を抑制できる。 Since the cross-sectional shape of the convex portion 41 is represented by z (x) satisfying the expression (3), for example, the L / D is a predetermined value (deformation due to displacement of the light diffusion plate 40 with respect to the light source 31 or heat). For example, even if it fluctuates from the design value), non-uniform luminance is less likely to occur, and the non-uniform luminance can be suppressed more stably.
 光拡散板40が輝度の不均一を抑制可能であり、更に、安定して輝度の不均一を抑制できる点について、シミュレーション結果を参照して具体的に説明する。 The point that the light diffusing plate 40 can suppress non-uniformity in luminance and can further stably suppress non-uniform luminance will be specifically described with reference to simulation results.
 シミュレーションは、図2に示したように、複数の光源31上に光拡散板40を配置した構成において実施した。また、光拡散板40の屈折率は、凸状部41を含めて1.51とした。シミュレーションでは、光拡散板40からの出射光を光線追跡法により求め、z方向に直交する面における輝度均斉度(%)を算出した。輝度均斉度(%)は、「(最低輝度/最高輝度)×100」によって算出した。 The simulation was performed in a configuration in which a light diffusion plate 40 is disposed on a plurality of light sources 31 as shown in FIG. The refractive index of the light diffusing plate 40 was 1.51 including the convex portion 41. In the simulation, the light emitted from the light diffusing plate 40 was obtained by the ray tracing method, and the luminance uniformity (%) in the plane orthogonal to the z direction was calculated. The brightness uniformity (%) was calculated by “(lowest brightness / highest brightness) × 100”.
 ミュレーションでの凸状部41の断面形状の輪郭線はz(x)=z(x)である。z(x)に含まれるh及びkが、上述した範囲(すなわち、0.56w≦h<0.58w及び-0.039≦k<-0.027)の場合を実施例とし、上記範囲以外の場合を比較例として説明する。 The contour line of the cross-sectional shape of the convex portion 41 in the simulation is z (x) = z 0 (x). z 0 (x) h a and k a are included in the the case of the above-described range (i.e., 0.56w a ≦ h a <0.58w a and -0.039 ≦ k a <-0.027) A case outside the above range will be described as a comparative example.
 実施例1、比較例1及び比較例2では、隣接する2つの光源31の間隔Lを30mmとし、光源31と光拡散板40との距離Dを15mmとした。この場合、L/D=2.00である。表1に実施例1、比較例1及び比較例2で設定したh、kの値と共に、シミュレーションより得られた輝度均斉度の結果を示す。表1において、w=100μmである。
Figure JPOXMLDOC01-appb-T000007
In Example 1, Comparative Example 1, and Comparative Example 2, the distance L between two adjacent light sources 31 was 30 mm, and the distance D between the light source 31 and the light diffusion plate 40 was 15 mm. In this case, L / D = 2.00. Example Table 1 1, h a set in Comparative Example 1 and Comparative Example 2, with the value of k a, shows the results of the uniformity ratio of luminance Simulation. In Table 1, w a = 100 μm.
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、実施例1は88.4%の輝度均斉度を実現する。凸状部41の断面形状以外の実施例1、比較例1及び比較例2の条件は同じである。従って、凸状部41の断面形状を実施例1の形状とすることで、比較例1及び比較例2より高い輝度均斉度を得ることが可能である。 As shown in Table 1, Example 1 achieves a brightness uniformity of 88.4%. The conditions of Example 1, Comparative Example 1, and Comparative Example 2 other than the cross-sectional shape of the convex portion 41 are the same. Therefore, by setting the cross-sectional shape of the convex portion 41 to the shape of Example 1, it is possible to obtain a higher luminance uniformity than Comparative Example 1 and Comparative Example 2.
 実施例2として、実施例1に対してL/Dを変更した条件でシミュレーションを実施した。光源31と光拡散板40との距離Dを14mmとした点以外は、実施例1の場合と同様の条件で実施例2のシミュレーションを行った。実施例2では、L/D=2.14である。表2に実施例2のシミュレーション結果を示す。表2においても、w=100μmである。
Figure JPOXMLDOC01-appb-T000008
As Example 2, a simulation was performed under the condition that L / D was changed from Example 1. The simulation of Example 2 was performed under the same conditions as in Example 1 except that the distance D between the light source 31 and the light diffusion plate 40 was 14 mm. In Example 2, L / D = 2.14. Table 2 shows the simulation results of Example 2. Also in Table 2, w a = 100 μm.
Figure JPOXMLDOC01-appb-T000008
 実施例2のシミュレーション条件では、L/Dは2.14であることから、実施例2のL/Dは、実施例1の場合のL/Dに対して変動している。しかしながら、実施例2は、83.6%という輝度均斉度を実現する。すなわち、断面形状が式(3)を満たすz(x)で表される凸状部41を有することにより、光拡散板40は、L/Dが所定の値(例えば設計値)から変動しても、輝度の不均一が生じにくく、より安定して輝度の不均一を抑制できる。 Since the L / D is 2.14 under the simulation conditions of the second embodiment, the L / D of the second embodiment varies with the L / D of the first embodiment. However, Example 2 achieves a brightness uniformity of 83.6%. That is, by having the convex portion 41 represented by z (x) whose cross-sectional shape satisfies the expression (3), the light diffusion plate 40 has an L / D that varies from a predetermined value (for example, a design value). However, non-uniform luminance is less likely to occur, and the non-uniform luminance can be suppressed more stably.
 上述した作用効果を光拡散板40が有するので、光拡散板40を備える面光源装置20は、輝度の不均一が抑制された光を出力することができる。光拡散板40を含む透過型画像表示装置1では、輝度の不均一が抑制された光によって透過型画像表示部10を照明できるので、透過型画像表示装置1は、表示品質の向上を図ることができる。光拡散板40を備える面光源装置20でも、輝度の不均一が抑制された光をより安定して出力可能である。光拡散板40を備える透過型画像表示装置1では、表示品質の向上を図りながら、光拡散板40の光源31に対する位置ずれや熱などによる変形による表示品質の変動を抑制可能である。 Since the light diffusing plate 40 has the above-described effects, the surface light source device 20 including the light diffusing plate 40 can output light in which unevenness in luminance is suppressed. In the transmissive image display device 1 including the light diffusing plate 40, the transmissive image display unit 10 can be illuminated by light with suppressed luminance non-uniformity. Therefore, the transmissive image display device 1 can improve display quality. Can do. Even the surface light source device 20 including the light diffusing plate 40 can more stably output light in which nonuniform luminance is suppressed. In the transmissive image display device 1 including the light diffusing plate 40, it is possible to suppress a change in display quality due to a displacement of the light diffusing plate 40 with respect to the light source 31 or deformation due to heat or the like while improving display quality.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されない。例えば光制御板を光拡散板40として説明したが、本発明はこれに限定されない。光制御板は、複数の光源から出力された光の、複数の光源が配置される平面に平行な平面内での輝度の均一性を調整する光部品であればよい。例えば、光制御板は、透明材料からなる板の光の出射側に、上述した凸状部を複数有する、プリズムシートやレンズシートなどの光学シート又は光学フィルムといった輝度調整板とすることもできる。更に、隣接する凸状部41の断面形状における端41aは凸状部41の配列方向において重なっているとして説明した。しかしながら、光拡散板40の断面形状において、隣接する2つの凸状部41のうちの一方の凸状部41の端41aと他方の凸状部41の端41aの間に平坦部(例えば製造誤差により生じる程度のもの)などが生じているものとすることができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, although the light control plate has been described as the light diffusion plate 40, the present invention is not limited to this. The light control plate may be an optical component that adjusts the luminance uniformity of light output from a plurality of light sources in a plane parallel to a plane on which the plurality of light sources are arranged. For example, the light control plate may be a brightness adjusting plate such as an optical sheet such as a prism sheet or a lens sheet or an optical film having a plurality of the convex portions described above on the light emission side of a plate made of a transparent material. Further, it has been described that the end 41a in the cross-sectional shape of the adjacent convex portions 41 overlaps in the arrangement direction of the convex portions 41. However, in the cross-sectional shape of the light diffusing plate 40, a flat portion (for example, a manufacturing error) between the end 41a of one convex portion 41 and the end 41a of the other convex portion 41 of the two adjacent convex portions 41. Or the like generated by the above).
 光拡散板40は、単独の透明材料で構成された単層板であってもよい。光拡散板40は、互いに異なる透明材料で構成された層が積層された構造の多層板であってもよい。 The light diffusion plate 40 may be a single layer plate made of a single transparent material. The light diffusing plate 40 may be a multilayer plate having a structure in which layers made of different transparent materials are laminated.
 図6は、多層板とした場合の光拡散板の一例の断面図である。図6に示すように、多層板としての光拡散板50は、スキン層51と、スキン層51上に設けられた基体部52と、基体部52上に設けられた凸状部形成層53とを有する。スキン層51と基体部52との間の界面及び基体部52と凸状部形成層53との界面は、図6に示すように平坦である。 FIG. 6 is a cross-sectional view of an example of a light diffusion plate in the case of a multilayer plate. As shown in FIG. 6, the light diffusing plate 50 as a multilayer plate includes a skin layer 51, a base portion 52 provided on the skin layer 51, and a convex portion forming layer 53 provided on the base portion 52. Have The interface between the skin layer 51 and the base portion 52 and the interface between the base portion 52 and the convex portion forming layer 53 are flat as shown in FIG.
 凸状部形成層53は、複数の凸状部41が凸状部41の延在方向に直交する方向に配列されて構成された形状付与層である。凸状部41の形状は、図2に示したものと同じである。凸状部形成層53が有する各凸状部41は透明材料からなる。各凸状部41の屈折率は1.50以上且つ1.52未満とすることができる。 The convex portion forming layer 53 is a shape imparting layer configured by arranging a plurality of convex portions 41 in a direction orthogonal to the extending direction of the convex portions 41. The shape of the convex portion 41 is the same as that shown in FIG. Each convex portion 41 included in the convex portion forming layer 53 is made of a transparent material. The refractive index of each convex part 41 can be 1.50 or more and less than 1.52.
 基体部52は、透明材料からなる板状体である。基体部52の屈折率は1.50以上且つ1.52未満とすることができる。基体部52の屈折率は、凸状部41の屈折率と異なっていてもよい。しかしながら、基体部52の屈折率は、凸状部41の屈折率と同じであることが好ましい。 The base portion 52 is a plate-like body made of a transparent material. The refractive index of the base portion 52 can be 1.50 or more and less than 1.52. The refractive index of the base portion 52 may be different from the refractive index of the convex portion 41. However, the refractive index of the base portion 52 is preferably the same as the refractive index of the convex portion 41.
 スキン層51も透明材料からなる板状体である。スキン層51において基体部52と反対側の面は平坦である。スキン層51の厚さは基体部52より薄い。スキン層51の厚さの例は、10μm以上且つ100μm未満である。スキン層51の屈折率は基体部52との屈折率差が0.1以下のものとすることができる。スキン層51の屈折率は基体部52と同じ屈折率であることが好ましい。 The skin layer 51 is also a plate-like body made of a transparent material. The surface of the skin layer 51 opposite to the base portion 52 is flat. The skin layer 51 is thinner than the base portion 52. An example of the thickness of the skin layer 51 is 10 μm or more and less than 100 μm. The skin layer 51 may have a refractive index difference of 0.1 or less with respect to the base portion 52. The refractive index of the skin layer 51 is preferably the same as that of the base portion 52.
 基体部52が樹脂からなる場合、スキン層51は、好ましくは、紫外線吸収剤を含む。紫外線吸収剤をスキン層51が含むことによって、例えば、蛍光管のように出力光に紫外線を含む光源31を用いた場合、光源31からの紫外線による光拡散板の劣化を防止できるからである。また、基体部52が吸湿性を有する場合には、スキン層51を構成する材料は、吸湿を抑制する材料とすることができる。凸状部53が吸湿性を有する場合には、スキン層51を構成する材料は、凸状部53より吸湿し易い材料とすることができる。 When the base portion 52 is made of a resin, the skin layer 51 preferably contains an ultraviolet absorber. This is because, when the skin layer 51 contains the ultraviolet absorber, for example, when the light source 31 including ultraviolet rays is used as output light like a fluorescent tube, deterioration of the light diffusion plate due to the ultraviolet rays from the light source 31 can be prevented. Moreover, when the base | substrate part 52 has a hygroscopic property, the material which comprises the skin layer 51 can be made into the material which suppresses moisture absorption. When the convex part 53 has a hygroscopic property, the material which comprises the skin layer 51 can be made into the material which absorbs moisture more easily than the convex part 53. FIG.
 これまでの説明では、光源部30が有する複数の光源31は、間隔Lでほぼ等間隔に配置されているとした。しかしながら、隣接する2つの光源31,31間の距離は異なっていても良い。この場合は、隣接する2つの光源31,31間の間隔の平均距離Lを使用して、光源31間の距離と、光源31と光制御板との間の距離の比を定義することができる。 In the description so far, it is assumed that the plurality of light sources 31 included in the light source unit 30 are arranged at substantially equal intervals with the interval L. However, the distance between the two adjacent light sources 31 may be different. In this case, by using the average distance L m intervals between 31 and 31 adjacent two light sources, and the distance between the light source 31, to define the ratio of the distance between the light source 31 and the light control plate it can.
 1…透過型画像表示装置、10…透過型画像表示部、20…面光源装置、30…光源部、31…光源、40…光拡散板(光制御板)、40a…第1の面、40b…第2の面、41…凸状部、41a…凸状部の端、41b…凸状部の頂部。 DESCRIPTION OF SYMBOLS 1 ... Transmission type image display apparatus, 10 ... Transmission type image display part, 20 ... Surface light source device, 30 ... Light source part, 31 ... Light source, 40 ... Light diffusing plate (light control board), 40a ... 1st surface, 40b ... 2nd surface, 41 ... convex part, 41a ... end of convex part, 41b ... top part of convex part.

Claims (4)

  1.  第1の面から入射した光を前記第1の面と反対側に位置する第2の面から出射する光制御板であって、
     第2の面に形成される複数の凸状部を備え、
     複数の前記凸状部の各々は、第1の方向に延在しており、複数の前記凸状部は、前記第1の方向に直交する第2の方向に並列配置されており、
     複数の前記凸状部の各々の前記第1の方向に直交する断面において、前記第2の方向に対する各前記凸状部の両端をとおる軸をx軸とし、前記x軸上において前記両端の中心をとおり前記x軸に直交する軸をz軸とし、各前記凸状部のx軸方向の長さをwとしたとき、前記断面における各前記凸状部の輪郭形状が、-0.475w≦x≦0.475wにおいて、式(1)を満たすz(x)で表される、光制御板。
    Figure JPOXMLDOC01-appb-M000001
     ただし、式(1)において、z(x)は、式(2)を満たす。
    Figure JPOXMLDOC01-appb-M000002
    (式(2)中、hは0.56w以上且つ0.58w未満の数、kは-0.039以上且つ-0.027未満の数)
    A light control plate that emits light incident from a first surface from a second surface located on the opposite side of the first surface;
    A plurality of convex portions formed on the second surface;
    Each of the plurality of convex portions extends in a first direction, and the plurality of convex portions are arranged in parallel in a second direction orthogonal to the first direction,
    In a cross section orthogonal to the first direction of each of the plurality of convex portions, an axis passing through both ends of each convex portion with respect to the second direction is an x axis, and the centers of the both ends on the x axis When the z-axis is the axis perpendicular to the x-axis and the length in the x-axis direction of each convex portion is w a , the contour shape of each convex portion in the cross section is −0.475 w. in a ≦ x ≦ 0.475w a, represented by z (x) satisfying the equation (1), the light control plate.
    Figure JPOXMLDOC01-appb-M000001
    However, in the formula (1), z 0 (x) satisfies the formula (2).
    Figure JPOXMLDOC01-appb-M000002
    (Wherein (in 2), h a is a number less than 0.56W a more and 0.58w a, k a is a number less than -0.039 or more and -0.027)
  2.  前記光制御板は透明材料からなり、
     各前記凸状部の屈折率は1.50以上且つ1.52未満である、
    請求項1記載の光制御板。
    The light control plate is made of a transparent material,
    The refractive index of each convex portion is 1.50 or more and less than 1.52.
    The light control board according to claim 1.
  3.  請求項1又は請求項2に記載の光制御板と、
     互いに離間して配置されており、前記光制御板の前記第1の面に光を供給する複数の光源と、
    を備える、面光源装置。
    The light control plate according to claim 1 or 2,
    A plurality of light sources that are spaced apart from each other and that supply light to the first surface of the light control plate;
    A surface light source device.
  4.  請求項1又は請求項2に記載の光制御板と、
     互いに離間して配置されており、前記光制御板の前記第1の面に光を供給する複数の光源と、
     前記光制御板の前記第2の面から出射された光によって照明されて画像を表示する透過型画像表示部と、
    を備える、透過型画像表示装置。
    The light control plate according to claim 1 or 2,
    A plurality of light sources that are spaced apart from each other and that supply light to the first surface of the light control plate;
    A transmissive image display unit that displays an image illuminated by light emitted from the second surface of the light control plate;
    A transmissive image display device.
PCT/JP2011/050999 2010-01-22 2011-01-20 Light control plate, surface light source device, and transmission-type image display device WO2011090125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010012001A JP2011150174A (en) 2010-01-22 2010-01-22 Optical control plate, surface light source device and transmission type image display device
JP2010-012001 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011090125A1 true WO2011090125A1 (en) 2011-07-28

Family

ID=44306925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050999 WO2011090125A1 (en) 2010-01-22 2011-01-20 Light control plate, surface light source device, and transmission-type image display device

Country Status (3)

Country Link
JP (1) JP2011150174A (en)
TW (1) TW201137408A (en)
WO (1) WO2011090125A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231339A (en) * 1999-02-10 2000-08-22 Dainippon Printing Co Ltd Display device
WO2006036029A1 (en) * 2004-09-30 2006-04-06 Sony Corporation Optical sheet, backlight, and liquid crystal display device
JP2007011292A (en) * 2005-05-31 2007-01-18 Sony Corp Liquid crystal display, method for producing optical sheet, and optical sheet
JP2007286261A (en) * 2006-04-14 2007-11-01 Sony Corp Optical sheet, backlight device and liquid crystal display
JP2008122525A (en) * 2006-11-09 2008-05-29 Sony Corp Optical sheet laminate and liquid crystal display apparatus
JP2009015132A (en) * 2007-07-06 2009-01-22 Toppan Printing Co Ltd Lens sheet, optical sheet for display, and back light unit and display device using the same
JP2009053623A (en) * 2007-08-29 2009-03-12 Toppan Printing Co Ltd Lens sheet, optical sheet for display, backlight unit and display apparatus using them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231339A (en) * 1999-02-10 2000-08-22 Dainippon Printing Co Ltd Display device
WO2006036029A1 (en) * 2004-09-30 2006-04-06 Sony Corporation Optical sheet, backlight, and liquid crystal display device
JP2007011292A (en) * 2005-05-31 2007-01-18 Sony Corp Liquid crystal display, method for producing optical sheet, and optical sheet
JP2007286261A (en) * 2006-04-14 2007-11-01 Sony Corp Optical sheet, backlight device and liquid crystal display
JP2008122525A (en) * 2006-11-09 2008-05-29 Sony Corp Optical sheet laminate and liquid crystal display apparatus
JP2009015132A (en) * 2007-07-06 2009-01-22 Toppan Printing Co Ltd Lens sheet, optical sheet for display, and back light unit and display device using the same
JP2009053623A (en) * 2007-08-29 2009-03-12 Toppan Printing Co Ltd Lens sheet, optical sheet for display, backlight unit and display apparatus using them

Also Published As

Publication number Publication date
JP2011150174A (en) 2011-08-04
TW201137408A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
JP2012032537A (en) Optical polarizer, surface light source device, and transmission image display device
WO2011132639A1 (en) Light control plate unit, area light source device, and transmissive image display device
WO2011090125A1 (en) Light control plate, surface light source device, and transmission-type image display device
WO2011090123A1 (en) Light control plate, planar light source device, and transmissive image display device
JP5059171B2 (en) Light control plate, surface light source device, and transmissive image display device
JP2011118176A (en) Optical control board, surface light source device, and transmission type image display device
WO2011018963A1 (en) Complex light control plate, area light source device, and transmission-type image display device
JP2011150175A (en) Optical control plate, surface light source device and transmission type image display device
JP2011150171A (en) Optical control plate, surface light source device and transmission type image display device
JP2011150173A (en) Optical control plate, surface light source device and transmission type image display device
WO2011096403A1 (en) Light control plate, light control plate unit, surface light source device, and transmission image display device
TWI468798B (en) Backlight module, liquid crystal display device and method for designing dot of light guiding plate
JP2011028033A (en) Optical control plate, surface light source device, and transmissive image display device
JP2011138691A (en) Light control board unit, planar light source device, and transmission image display device
JP2014146468A (en) Light guide plate
JP2013254592A (en) Light guide plate unit
JP2012199104A (en) Composite light control board
JP2011059668A (en) Complex light control plate, area light source device, and transmission-type image display device
WO2011016456A1 (en) Complex light control plate, area light source device and transmission-type image display device
WO2011030913A1 (en) Composite light control plate
WO2012036161A1 (en) Light control plate unit, planar light source device, and transmissive image display device
WO2011018961A1 (en) Complex light control plate, area light source device, and transmission-type image display device
WO2012026426A1 (en) Light control plate unit, planar light source device, and transmissive image display device
JP2011197297A (en) Light control plate, light control plate unit, surface light source device, and transmission type image display device
JP2011197295A (en) Light control plate, light control plate unit, surface light source device, and transmission type image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734731

Country of ref document: EP

Kind code of ref document: A1