WO2011090008A1 - Novel compound; method for synthesizing said compound; and antioxidant, release agent, resin composition, and resin mold product containing said compound - Google Patents

Novel compound; method for synthesizing said compound; and antioxidant, release agent, resin composition, and resin mold product containing said compound Download PDF

Info

Publication number
WO2011090008A1
WO2011090008A1 PCT/JP2011/050695 JP2011050695W WO2011090008A1 WO 2011090008 A1 WO2011090008 A1 WO 2011090008A1 JP 2011050695 W JP2011050695 W JP 2011050695W WO 2011090008 A1 WO2011090008 A1 WO 2011090008A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
carbon atoms
group
hydrocarbon group
formula
Prior art date
Application number
PCT/JP2011/050695
Other languages
French (fr)
Japanese (ja)
Inventor
晴生 岩沢
知弘 小畑
彰基 伊藤
光男 阿久津
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010009175A external-priority patent/JP5573187B2/en
Priority claimed from JP2010021414A external-priority patent/JP5504929B2/en
Priority claimed from JP2010021415A external-priority patent/JP5521589B2/en
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2011090008A1 publication Critical patent/WO2011090008A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/33Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with hydroxy compounds having more than three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates

Definitions

  • the present invention relates to an antioxidant for a polymer material such as a synthetic resin, a novel compound useful as a mold release agent, a method for synthesizing the compound, an antioxidant comprising the compound, a mold release agent, a resin composition, and It relates to a resin molded body.
  • Polymer materials such as synthetic resins are packaging materials, building materials, automotive parts, daily goods, agricultural materials, medical equipment, digital camera lenses, mobile phone lenses, because of their excellent mechanical and chemical properties. It is used in a wide range of applications such as optical lenses represented by CDs, Blu-ray pickup lenses, microlenses, substrates such as disks, light guide plates, and prism sheets.
  • a molded product made of a transparent thermoplastic resin has been used from the viewpoint of processability and flexibility, and the surface of the molded product has diffusion, light collection, diffraction, reflection, etc.
  • a fine shape for imparting optical properties is imparted.
  • the compacts having these fine shapes can be obtained by injection molding, thermal transfer molding applying melt processing by a press method, or a method of transferring a fine shape previously formed on a metal surface by a known method.
  • This molded article made of a transparent thermoplastic resin is usually used as an optical element as it is, and an optical element obtained by a method of coating and curing an ultraviolet curable transparent resin on the surface of the molded article as a substrate. Also used as a transparent stamper to form.
  • polymer materials usually show deterioration phenomena such as coloring due to exposure to high temperatures during heat processing, easily lose their original functions, and may not be suitable for practical use.
  • deterioration phenomena such as coloring may be seen over time.
  • Antioxidants used here include primary antioxidants such as phenolic antioxidants and amine antioxidants, and secondary antioxidants such as phosphorus antioxidants and thioether antioxidants.
  • Patent Document 1 the compounds shown in Patent Document 1 are known as phenolic antioxidants, and for example, the compounds shown in Patent Document 2 are known as phosphorus antioxidants. .
  • these compounds have insufficient heat resistance and have problems such as decomposition when exposed to high temperatures during heat processing.
  • a method for improving the releasability a method of adding various release agents to the synthetic resin is known.
  • the release agent used here include a fluorine-based release agent, a silicone-based release agent, and a fatty acid ester-based release agent.
  • release agents for example, a silicone release agent as shown in Patent Document 3 is known.
  • this release agent has insufficient heat resistance, and has a problem that it is decomposed by being exposed to a high temperature during heat processing.
  • an object of the present invention is to provide a novel compound having high heat resistance, a method for synthesizing the compound, and an antioxidant, a release agent, a resin composition, and a resin molded body containing the compound.
  • the present inventors diligently studied to solve the above problems. As a result, it has been found that the above problem can be solved by using a compound having the following structure, and the present invention has been completed. That is, the present invention provides the following [1] to [10].
  • each L is independently a hydrogen atom, a group represented by the following formula (2), a group represented by the following formula (3), or R 8 CO— (R 8 is a group having 1 to 40 carbon atoms. Or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and each R 4 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • A is a single bond, a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, -S-, -SO 2 -, -CO- or -O-, m is an integer of 0 to 10, and n is an integer of 0 to 4.
  • Ls are hydrogen atoms.
  • each R 1 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 2 is Each independently represents a single bond or —CO—
  • each R 3 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms. is there.
  • each R 6 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 7 is These are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms.
  • each L is independently a hydrogen atom or a group represented by the above formula (3), and at least one of the plurality of L is a group represented by the above formula (3).
  • each L is independently a hydrogen atom or a group represented by R 8 CO—, and at least one of the plurality of L is a group represented by R 8 CO—. 1].
  • each R 4 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 5 is each independently And a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • A is a single bond and a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • m is an integer of 0 to 10
  • n is 0 to 4 Is an integer.
  • each R 1 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 3 is Each independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • Y represents a group represented by R 9 SO 3 —, hydroxyl group Group or carboxyl group.
  • R 9 is a hydrocarbon group having 1 to 20 carbon atoms.
  • each R 6 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 7 is Each independently is a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • X is a halogen atom.
  • each R 8 independently represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and Z represents a hydroxy group, Or it is a halogen atom.
  • L is independently a hydrogen atom, a group represented a group represented by or R 8 CO- in group represented by the following formula (2), the following equation (3), R 8 is Each independently has the same meaning as R 8 in formula (7), and R 4 , R 5 , A, m and n are each independently R 4 , R 5 , A, m in formula (4). And n are synonymous. However, not all four Ls are hydrogen atoms.
  • R 1 and R 3 are each independently synonymous with R 1 and R 3 in Formula (5), and R 2 is independently a single bond or —CO—.
  • R 6 and R 7 are each independently synonymous with R 6 and R 7 in formula (6).
  • the novel compound of the present invention has high heat resistance. For this reason, this compound can be suitably used as an antioxidant or mold release agent for polymer materials such as synthetic resins. In addition, it is possible to provide a resin composition and a resin molded body that are less prone to deterioration phenomena such as coloring and have excellent releasability. Furthermore, the synthesis method according to the present invention can easily synthesize a high-purity novel compound with good yield.
  • the novel compound of the present invention is a compound represented by the following formula (1).
  • the compound represented by the following formula (1) is also referred to as “compound (1)”.
  • each L is independently a hydrogen atom, a group represented by the following formula (2), a group represented by the following formula (3), or R 8 CO— (R 8 is a group having 1 to 40 carbon atoms. Or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and each R 4 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • A is a single bond, a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, -S-, -SO 2 -, -CO- or -O-, m is an integer of 0 to 10, and n is an integer of 0 to 4.
  • Ls are hydrogen atoms.
  • each R 1 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 2 is Each independently represents a single bond or —CO—
  • each R 3 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms. is there.
  • each R 6 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms
  • R 7 is These are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 , R 4 and R 6 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and a pentyl group.
  • alkyl groups having 1 to 20 carbon atoms such as hexyl group; cycloalkyl groups having 3 to 20 carbon atoms such as cyclopentyl group and cyclohexyl group; aromatic carbonization having 6 to 20 carbon atoms such as phenyl group, naphthyl group and biphenyl group Examples thereof include a hydrogen group; an alkenyl group having 2 to 20 carbon atoms such as a vinyl group and an allyl group.
  • Examples of the monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms in R 1 , R 4 and R 6 include a halogenated alkyl group having 1 to 20 carbon atoms, a halogenated cycloalkyl group having 3 to 20 carbon atoms, and Examples thereof include a halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the halogenated alkyl group include a trichloromethyl group, a trifluoromethyl group, a tribromomethyl group, a pentachloroethyl group, a pentafluoroethyl group, and a pentabromoethyl group.
  • halogenated cycloalkyl group examples thereof include a chlorocyclopentyl group and a chlorocyclohexyl group, and examples of the halogenated aromatic hydrocarbon group include a chlorophenyl group and a chloronaphthyl group.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms in the above R 3 , R 5 , R 7 and A include divalent linear or branched hydrocarbon groups having 1 to 20 carbon atoms, And 20 divalent alicyclic hydrocarbon groups and 6 to 20 carbon divalent aromatic hydrocarbon groups.
  • Examples of the divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms in R 3 , R 5 , R 7 and A include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, Alkylene groups such as hexamethylene group and heptamethylene group; branched chain alkylidene groups such as propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group and hexylidene group; alkenylene group; Can be mentioned. In these, an alkylene group is preferable.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms in R 3 , R 5 , R 7 and A include cyclopropylene group, cyclobutylene group, cyclopentylene group and cyclohexylene group. Alkylene group; cycloalkenylene groups such as cyclobutenylene group, cyclopentenylene group and cyclohexenylene group.
  • the bonding site of the alicyclic hydrocarbon group may be on any carbon on the alicyclic ring.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms in R 3 , R 5 , R 7 and A include arylene groups such as a phenylene group, a biphenylene group and a naphthylene group.
  • Examples of the divalent halogenated hydrocarbon group having 1 to 20 carbon atoms in the above R 3 , R 5 , R 7 and A include at least hydrogen atoms of the divalent hydrocarbon group having 1 to 20 carbon atoms exemplified above. And a group in which one is substituted with a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom).
  • a halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom.
  • Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms in R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • Alkyl groups having 1 to 40 carbon atoms such as a group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, lauryl group, myristyl group, palmityl group, stearyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, A cycloalkyl group having 3 to 40 carbon atoms such as cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, etc .; phenyl group, toluyl group, xylyl group, naphthyl group, An aromatic hydrocarbon group having 6 to 40 carbon atoms such as benzyl group; vinyl group, allyl group, 1 Propenyl, 1,3-butadien
  • Examples of the monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms in R 8 include a halogenated alkyl group having 1 to 40 carbon atoms, a halogenated cycloalkyl group having 3 to 40 carbon atoms, and a 6 to 40 carbon atom. And halogenated aromatic hydrocarbon groups.
  • Examples of the halogenated alkyl group include trichloromethyl group, trifluoromethyl group, tribromomethyl group, pentachloroethyl group, pentafluoroethyl group, pentabromoethyl group, heptafluoropropyl group, heptabromopropyl group, nonafluorobutyl.
  • halogenated cycloalkyl group examples include chlorocyclopentyl group and chlorocyclohexyl group.
  • halogenated aromatic hydrocarbon group examples include chlorophenyl group and chloronaphthyl group. It is done.
  • Each A is preferably independently an isopropylidene group, —S—, —SO 2 —, —CO—, or —O—.
  • n is preferably 0.
  • the compound (1) is a compound in which all four Ls are groups represented by the above formula (2) (hereinafter also referred to as “compound (1-1)”). It is preferable from the viewpoint of suppressing the compatibility with the resin and the deterioration phenomenon of the resin.
  • R 1 is preferably each independently a hydrogen atom or a monovalent hydrocarbon group having 3 to 20 carbon atoms, and at least one R 1 bonded to any one aromatic ring has 3 to 20 carbon atoms. It is more preferable that one or two R 1 adjacent to the —OH group bonded to the aromatic ring is a monovalent hydrocarbon group having 3 to 20 carbon atoms.
  • the monovalent hydrocarbon group having 3 to 20 carbon atoms is particularly preferably a t-butyl group
  • R 2 is preferably independently a single bond
  • R 3 is preferably each independently a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, more preferably a methylene group, an ethylene group or a trimethylene group
  • m is preferably 0 or 1, and more preferably 0.
  • compound (1-1) is a compound represented by the following formula (1 ′) (hereinafter also referred to as “compound (1 ′)”)
  • this compound is preferably used as an antioxidant. Can do.
  • R 1 ⁇ R 5, A, m and n have the same meanings as R 1 ⁇ R 5, A, m and n in the formula (1) or (2).
  • Compound (1) is a compound in which L is independently a hydrogen atom or a group represented by the above formula (3) (provided that at least one of a plurality of L is a group represented by the above formula (3)).
  • “compound (1-2)” is also preferable from the viewpoint of heat resistance of the compound, compatibility with the resin, and suppression of the deterioration phenomenon of the resin. It is more preferable that the compound be a group represented by
  • R 6 is preferably independently a hydrogen atom or a monovalent hydrocarbon group having 3 to 20 carbon atoms, and at least one R 6 bonded to any one aromatic ring has 3 to 20 carbon atoms. More preferably, one or two of R 6 bonded to the ortho-position and para-position of the carbon atom on the aromatic ring bonded to the oxygen atom are monovalent having 3 to 20 carbon atoms. R 6 bonded to the ortho and para carbon atoms on the aromatic ring bonded to the oxygen atom is more preferably a monovalent hydrocarbon having 3 to 20 carbon atoms.
  • the monovalent hydrocarbon group having 3 to 20 carbon atoms is particularly preferably a t-butyl group
  • R 7 is preferably each independently a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, more preferably a methylene group, an ethylene group or a trimethylene group
  • m is preferably 0 or 1, and more preferably 1.
  • Compound (1) is a compound wherein each L is independently a hydrogen atom or a group represented by R 8 CO— (provided that at least one of the plurality of L is a group represented by R 8 CO—.
  • Compound (1-3) ”) is preferable from the viewpoint of the heat resistance of the compound, the compatibility with the resin, the releasability of the resin composition containing the compound and the resin molding, and the like. More preferably, the compounds are such that all Ls are groups represented by R 8 CO—.
  • R 8 has the same meaning as R 8 in the compound described above (1).
  • R 8 is preferably independently a monovalent hydrocarbon group having 5 to 40 carbon atoms, more preferably a monovalent hydrocarbon group having 10 to 30 carbon atoms
  • R 5 is preferably each independently a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, more preferably a methylene group, an ethylene group or a trimethylene group
  • m is preferably 0 or 1, and more preferably 0.
  • the compound (1) of the present invention includes a compound represented by the following formula (4) (hereinafter also referred to as “compound (4)”) and a compound represented by the following formula (5) (hereinafter “compound (5)”). And a compound represented by the following formula (6) (hereinafter also referred to as “compound (6)”) and a compound represented by the following formula (7) (hereinafter also referred to as “compound (7)”). It can be synthesized by a method including a step of reacting one compound (i) selected from the group consisting of By reacting compound (4) with compound (i), high-purity novel compound (1) can be easily synthesized in good yield.
  • R 4 , R 5 , A, m and n are each independently synonymous with R 4 , R 5 , A, m and n in the formula (1).
  • R 1 and R 3 each independently have the same meaning as R 1 and R 3 in the formula (2)
  • Y is R 9 SO 3 -, a group represented by a hydroxyl group Or it is a carboxyl group.
  • R 9 is a hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms in R 9 include the same functional groups as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 .
  • R 6 and R 7 are independently the same as R 6 and R 7 in the formula (3), and X is a halogen atom.
  • the compound (6) can be obtained from Phosphorus and Sulfur, 1984, Vol. 19, pp. It can be synthesized by the method described in 285-293.
  • R 8 is a monovalent hydrocarbon group having 1 to 40 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and Z is a hydroxy group or a halogen atom.
  • R 8 has the same meaning as R 8 in the compound described above (1).
  • the temperature and time of the above reaction are not particularly limited, but the reaction temperature is usually ⁇ 30 to 120 ° C., preferably ⁇ 20 to 90 ° C., particularly preferably ⁇ 10 to 80 ° C .; the reaction time is usually 0 1 to 48 hours, preferably 0.5 to 24 hours, particularly preferably 1 to 10 hours.
  • the method for synthesizing the compound (1-1) is not particularly limited, but preferably includes a step of reacting the compound (4) and the compound (5).
  • the molar ratio of compound (4) to compound (5) is usually from 4 to 20, preferably 4.05-5.
  • the compound (4) and the compound (5) are reacted in such an amount, the high-purity novel compound (1-1) can be easily synthesized with better yield.
  • the reaction (I) can be carried out in the presence of carbodiimide and / or a base catalyst.
  • carbodiimide examples include dicyclohexyl carbodiimide and diisopropyl carbodiimide.
  • the molar ratio of compound (5) to carbodiimide is usually 1 to 20, preferably 1.05 to 5.
  • base catalyst examples include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
  • the molar ratio of the compound (5) to the base catalyst (base catalyst / compound (5)) is usually 0.01 to 1, preferably 0.05 to 0.5.
  • an organic solvent such as methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent.
  • the amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, particularly preferably 2-10 ml, per 1 g of compound (5).
  • reaction (I) the molar ratio between the compound (4) and the compound (5), and the reaction temperature and time are the same as described above.
  • the reaction (II) can be performed in the presence of a catalyst or the like.
  • the catalyst include sodium hydride.
  • the molar ratio of the compound (4) to the catalyst (catalyst / compound (4)) is usually 0.01 to 20, preferably 0.1 to 10.
  • an organic solvent such as N, N-dimethylacetamide, methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent.
  • the amount of the solvent to be used is generally 0.1 to 50 ml, preferably 1 to 20 ml, particularly preferably 2 to 10 ml or less per 1 g of compound (5).
  • reaction (II) the molar ratio between the compound (4) and the compound (5), and the reaction temperature and time are the same as described above.
  • R 1, R 3 and Y have the same meanings as R 1, R 3 and Y in the formula (5).
  • the method for synthesizing the compound (1-2) is not particularly limited, but preferably includes a step of reacting the compound (4) and the compound (6) (hereinafter also referred to as “reaction (III)”).
  • the molar ratio of the compound (4) to the compound (6) is usually 1 to 20, preferably 4 to 20, and more preferably 4.05. ⁇ 6.
  • the compound (4) and the compound (6) are reacted in such an amount, the high-purity novel compound (1-2) can be easily synthesized with better yield.
  • reaction temperature and time are the same as described above.
  • the reaction (III) can be performed in the presence of a base catalyst or the like.
  • the base catalyst include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
  • the molar ratio of the compound (6) to the base catalyst (base catalyst / compound (6)) is usually 0.05 to 5, preferably 0.5 to 2.
  • an organic solvent such as methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent.
  • the amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, particularly preferably 2-10 ml per 1 g of compound (6).
  • the method for synthesizing the compound (1-3) is not particularly limited, but preferably includes a step of reacting the compound (4) and the compound (7) (hereinafter also referred to as “reaction (IV)”).
  • the molar ratio of the compound (4) to the compound (7) is usually 1 to 20, preferably 4 to 20, and more preferably 4.05. ⁇ 5.
  • novel compound (1-3) with high purity can be easily synthesized with better yield.
  • reaction temperature and time are the same as described above.
  • Examples of the compound (7) include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecyl acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid.
  • Acid heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, linoglyceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, isopropionic acid, isovaleric acid, isobutyric acid, 2-methyl Butyric acid, cyclopropanecarboxylic acid, cyclobutanecarboxylic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cycloheptanecarboxylic acid, cyclooctanecarboxylic acid, cyclopropylacetic acid, cyclobutylacetic acid, cyclopentylacetic acid, cyclohexylacetic acid, cycloheptylacetic acid Cyclooctylacetic acid, norbornanecarboxylic acid, dinorbornanecarboxylic
  • the reaction (IV) can be performed in the presence of carbodiimide and / or a base catalyst.
  • carbodiimide examples include dicyclohexyl carbodiimide and diisopropyl carbodiimide.
  • the molar ratio of compound (7) to carbodiimide is usually 1 to 20, preferably 1.05 to 5.
  • base catalyst examples include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
  • the molar ratio of the compound (7) to the base catalyst is usually 0.01 to 1, preferably 0.03 to 0.5.
  • an organic solvent such as methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent.
  • the amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, more preferably 2-15 ml per g of compound (7).
  • the compound (4) can be obtained by a known method.
  • a compound represented by the following formula (9) by hydrogenating a compound represented by the following formula (8) (hereinafter referred to as the compound ( 9).)
  • Step (i) wherein the compound (9) is oxidized to obtain a compound represented by the following formula (10) (hereinafter also referred to as compound (10)) (ii), compound ( 10) and a compound represented by the following formula (11) (hereinafter also referred to as compound (11)) and a compound (hereinafter referred to as compound (11 ′) obtained in step (iii) and step (iii)
  • a production method comprising a step (iv) of reacting an alkylene carbonate or a compound represented by the following formula (12) (hereinafter also referred to as compound (12)) in this order.
  • the above step (iv) is not
  • R 4 and n have the same meanings as R 4 and n in the formula (1).
  • R 5 and m are as defined and R 5 and m in the formula (1), X 'is a halogen atom.
  • a conventionally known method can be applied to the step (i).
  • step (ii) a conventionally known method can be applied.
  • the compound (9) may be reacted in the presence of an oxidizing agent and a solvent.
  • oxidizing agent examples include hypohalous acids such as hypochlorous acid and hypobromite, salts thereof, and halogens such as chlorine.
  • the molar ratio of compound (9) to oxidant (oxidant / compound (9)) is preferably 2 to 3, more preferably 2.1 to 2.3.
  • the solvent is not particularly limited, but is preferably a solvent that does not easily react with the oxidizing agent and has high solubility for the compound (9).
  • methanol, acetic acid, toluene, chlorobenzene, dioxane, and these are used.
  • the mixed solvent containing can be mentioned.
  • the amount of the solvent to be used is generally 0.1 to 50 ml per 1 g of compound (9).
  • reaction temperature is usually from 0 ° C. to the boiling point of the solvent, preferably from 10 to 40 ° C .; the reaction time is usually from 0.1 to 10 hours.
  • the step (iii) can be produced by a conventionally known method.
  • the compound (10) and the compound (11) may be reacted in the presence of an acid catalyst.
  • the molar ratio of compound (10) to compound (11) is usually from 4 to 50, preferably from 4 to 10.
  • the acid catalyst examples include inorganic acids such as hydrogen chloride gas, hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as P-toluenesulfonic acid, oxalic acid and methanesulfonic acid.
  • the weight ratio of the compound (10) to the acid catalyst (acid catalyst / compound (10)) is preferably 0.05 to 1, more preferably 0.3 to 0.7.
  • an appropriate cocatalyst for example, an alkyl mercaptan such as methyl mercaptan, ethyl mercaptan, dodecyl mercaptan and / or octyl mercaptan can be added together with the acid catalyst to promote the reaction.
  • the weight ratio of the compound (10) to the promoter (promoter / compound (10)) is preferably 0.01 to 0.1, more preferably 0.02 to 0.06.
  • a solvent may be used as necessary.
  • aromatic compounds such as benzene, toluene and xylene, saturated hydrocarbons such as n-hexane, cyclohexane and n-pentane, methanol and t-butanol Alcohols such as can be used alone or in combination.
  • the weight ratio of the compound (11) to the solvent (solvent / compound (11)) is preferably 0.01 to 10, more preferably 0.1 to 2.
  • reaction temperature is usually from 0 ° C. to 60 ° C., preferably from 10 to 40 ° C .; the reaction time is usually from 1 to 10 hours, preferably 1-5 hours.
  • the step (iv) can be produced by a conventionally known method.
  • the molar ratio of compound (11 ′) to alkylene carbonate (alkylene carbonate / compound (11 ′)) is usually from 4 to 20, preferably from 4 to 10, and the compound (11 ′) and compound (12)
  • the molar ratio (compound (12) / compound (11 ′)) is usually 4 to 20, preferably 4 to 10.
  • examples of the alkylene carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate.
  • the base catalyst examples include carbonates such as potassium carbonate and sodium carbonate, quaternary ammonium salts such as tetrabutylammonium bromide, tetrabutylammonium chloride, tetramethylammonium bromide and tetramethylammonium chloride.
  • the weight ratio of the compound (11 ′) to the base catalyst (base catalyst / compound (11 ′)) is preferably 0.01 to 1, more preferably 0.05 to 0.5.
  • a solvent may be used as necessary.
  • a polar aprotic solvent such as N, N-dimethylformamide, acetonitrile and / or dimethyl sulfoxide, etc. may be used alone or in combination. Can be used.
  • the weight ratio of the compound (11 ′) to the solvent (solvent / compound (11 ′)) is preferably 0.01 to 10, and more preferably 0.1 to 2.
  • reaction temperature is usually 0 ° C. to 200 ° C., preferably 30 to 160 ° C .
  • the reaction time is usually 1 to 10 hours, preferably 1-5 hours.
  • R 9 is a hydrocarbon group having 1 to 20 carbon atoms
  • X is a halogen atom.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms in R 9 include the same functional groups as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 .
  • the molar ratio of the compound (5) to the compound (13) is usually 1 to 20, preferably 2 to 5.
  • Reaction (V) can be performed in the presence of a base catalyst.
  • the base catalyst include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
  • the molar ratio of the compound (13) to the base catalyst (base catalyst / compound (13)) is usually 0.01 to 10, preferably 0.1 to 5.
  • an organic solvent such as N, N-dimethylacetamide, methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent.
  • the amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, particularly preferably 2-10 ml per g of compound (5).
  • the conditions for the reaction (V) are not particularly limited, but the reaction temperature is usually ⁇ 30 to 120 ° C., preferably ⁇ 20 to 90 ° C., particularly preferably ⁇ 10 to 80 ° C .; the reaction time is usually 0.1 to 48 hours, preferably 0.5 to 24 hours, particularly preferably 1 to 10 hours.
  • the antioxidant according to the present invention only needs to contain the compound (1), and preferably consists essentially of the compound (1), and contains the compound (1-1) or the compound (1-2). More preferably.
  • the compound (1-1) and the compound (1-2) are excellent in heat resistance and compatibility with the resin, the resin and the resin that are exposed to a high temperature particularly during processing and molding. It can be suitably used as an antioxidant for molded articles.
  • the release agent according to the present invention only needs to contain the compound (1), preferably consists essentially of the compound (1), and more preferably contains the compound (1-3).
  • the compound (1-3) is excellent in heat resistance and compatibility with the resin, it is particularly suitable as a mold release agent for resins and resin moldings that may be exposed to high temperatures during processing and molding. It can be preferably used.
  • the resin composition according to the present invention contains the compound (1).
  • the resin composition of the present invention preferably contains a resin and the compound (1).
  • the resin examples include cyclic olefin polymer, acrylic resin (PMMA), polycarbonate resin (PC), polyarylate resin (PAR), polysulfone resin (PSF), polyethersulfone resin (PES), polyparaphenylene resin ( PPP), polyarylene ether phosphine oxide resin (PEPO), polyimide resin (PPI), polyetherimide resin (PEI), and polyamideimide resin (PAI).
  • a cyclic olefin polymer is preferably used from the viewpoint of compatibility with the compound (1).
  • the compound (1) content is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin.
  • the resin molding which concerns on this invention contains the said compound (1).
  • the resin molded body of the present invention is preferably obtained by molding the above resin composition.
  • Such a resin molded body is not particularly limited, but specifically, packaging materials, building materials, automotive parts, daily goods, agricultural materials, medical instruments, digital camera lenses, mobile phone lenses
  • resin moldings used in a wide range of applications such as optical lenses represented by CDs, Blu-ray pickup lenses, microlenses, substrates such as disks, light guide plates and prism sheets.
  • the compound (1-1) and the compound (1-2) are particularly excellent in heat resistance and compatibility with the resin.
  • the resin composition and the resin molded body containing the compounds (1-1) and (1-2) are excellent in storage stability, and particularly, deterioration phenomenon such as coloring does not easily occur even when exposed to high temperature.
  • the above compound (1-3) is particularly excellent in heat resistance.
  • the resin composition and resin molding containing the compound (1-3) are excellent in releasability, and particularly excellent in work moldability even when exposed to high temperatures.
  • the residue solution was transferred to a separatory funnel, washed with 100 ml of 10% dilute hydrochloric acid, then washed with 100 ml of saturated aqueous sodium hydrogen carbonate solution, and washed twice with 100 ml of distilled water. Then, it was dried with magnesium sulfate. The dried solution was filtered and evaporated under reduced pressure to obtain a white solid as a crude product of the target product. The white solid was recrystallized from n-hexane to obtain 52.6 g (yield 72%) of the target compound represented by the following formula (1-B).
  • This compound was subjected to 1 H-NMR measurement (AVANCE500 type, manufactured by Bruker Co., Ltd.) and analyzed by TG-DTA (TG8120, manufactured by Rigaku Corporation), and it was confirmed that the target compound was obtained.
  • AVANCE500 type manufactured by Bruker Co., Ltd.
  • TG-DTA TG8120, manufactured by Rigaku Corporation
  • reaction solution was allowed to cool to room temperature, 5.58 g (69.35 mmol) of 2-chloroethanol and 0.28 g (0.87 mmol) of tetrabutylammonium bromide were added, and the mixture was heated and stirred at 140 ° C. for 2 hours. Thereafter, the reaction vessel was cooled to room temperature, 100 ml of distilled water was added, and then the organic layer was extracted with 100 ml of ethyl acetate. After this extraction operation was repeated twice more, the organic layer obtained here was collected and further washed twice with 100 ml of distilled water. After the organic layer was distilled off under reduced pressure, a crude product of the target compound was obtained.
  • the dropping funnel was opened and dripped into the reaction solution over 1 hour. 30 minutes after the completion of dropping, the ice container was removed from the reaction container, and the mixture was further stirred at room temperature of 23 ° C. for 4 hours. Next, the reaction vessel was transferred to a separatory funnel, 100 ml of distilled water was added, the organic layer was extracted with 100 ml of chloroform, this extraction operation was repeated three times, the organic layer was collected, and the organic layer was washed with distilled water. The organic layer was dried over magnesium sulfate and then distilled off under reduced pressure to obtain the target crude crystal.
  • This compound was analyzed by 1 H-NMR measurement (AVANCE500 type manufactured by Bruker, Inc.) and 31 P-NMR measurement (AVANCE500 type manufactured by Bruker, Inc.), and it was confirmed that the target compound was obtained.
  • the analysis results were as follows.
  • the weight reduction rate is small compared to Irganox 1010, Irgafos 168, and Sumilizer GP, and the compounds synthesized in Synthesis Example 1 and Synthesis Example 4 have a particularly weight reduction rate. I found it small.
  • This compound was subjected to 1 H-NMR measurement (AVANCE500 type manufactured by Bruker Co., Ltd.) and analyzed by TG-DTA (TG8120 manufactured by Rigaku Corporation), and it was confirmed that the target compound was obtained.
  • the analysis results were as follows.
  • the injection molding conditions were such that the cylinder temperature was 330 ° C., the injection speed was 200 mm / s, and the mold temperature was raised to 150 ° C. at the measured surface temperature. After cooling the mold, the molded body was removed from the mold, and as a result of observing it with a microscope with an arbitrary 10 mm ⁇ 10 mm area at 10 locations and a magnification of 100 times, peeling (missing) was observed in all areas. It did not occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a novel compound exhibiting excellent heat resistance, a method for synthesizing said compound, and an antioxidant, a release agent, a resin composition, and a resin mold product which contain said compound. The compound is represented by general formula (1).

Description

新規化合物および該化合物の合成方法、ならびに該化合物を含有する酸化防止剤、離型剤、樹脂組成物および樹脂成型体NOVEL COMPOUND, METHOD FOR SYNTHESIZING THE COMPOUND, ANTIOXIDANT, RELEASE AGENT, RESIN COMPOSITION, AND RESIN MOLDED BODY CONTAINING THE COMPOUND
 本発明は、合成樹脂などの高分子材料の酸化防止剤、離型剤に有用な新規化合物および該化合物の合成方法、ならびに該化合物を含んでなる酸化防止剤、離型剤、樹脂組成物および樹脂成型体に関する。 The present invention relates to an antioxidant for a polymer material such as a synthetic resin, a novel compound useful as a mold release agent, a method for synthesizing the compound, an antioxidant comprising the compound, a mold release agent, a resin composition, and It relates to a resin molded body.
 合成樹脂などの高分子材料はその優れた機械的、化学的特性から包装用資材、建材、自動車用部品、日常雑貨品、農業用資材、医療用器具、デジタルカメラ用レンズ、携帯電話用レンズ、CD、ブルーレイ用ピックアップレンズ、マイクロレンズに代表される光学レンズ、ディスク等の基板、導光板、プリズムシート等の幅広い用途に利用されている。 Polymer materials such as synthetic resins are packaging materials, building materials, automotive parts, daily goods, agricultural materials, medical equipment, digital camera lenses, mobile phone lenses, because of their excellent mechanical and chemical properties. It is used in a wide range of applications such as optical lenses represented by CDs, Blu-ray pickup lenses, microlenses, substrates such as disks, light guide plates, and prism sheets.
 また、近年、光学部品の分野では、加工性および自由度の観点から透明な熱可塑性樹脂からなる成形体が用いられており、その成形体の表面に、拡散、集光、回折、反射などの光学特性を付与するための微細形状が付与されている。これらの微細形状を有する成形体は、射出成形、プレス法による溶融加工を応用した熱転写成形、あるいは、あらかじめ公知の方法で金属表面に形成された微細形状を転写する方法などにより得られる。 In recent years, in the field of optical components, a molded product made of a transparent thermoplastic resin has been used from the viewpoint of processability and flexibility, and the surface of the molded product has diffusion, light collection, diffraction, reflection, etc. A fine shape for imparting optical properties is imparted. The compacts having these fine shapes can be obtained by injection molding, thermal transfer molding applying melt processing by a press method, or a method of transferring a fine shape previously formed on a metal surface by a known method.
 この透明な熱可塑性樹脂からなる成形体は、通常そのまま光学素子として使用される他、その成形体を基板として、その表面に紫外線硬化性の透明樹脂などを塗布硬化する方法で得られる光学素子を形成するための透明スタンパーとしても使用される。 This molded article made of a transparent thermoplastic resin is usually used as an optical element as it is, and an optical element obtained by a method of coating and curing an ultraviolet curable transparent resin on the surface of the molded article as a substrate. Also used as a transparent stamper to form.
 しかし、高分子材料は通常、加熱加工時に高温に曝されることによって着色などの劣化現象が見られ、本来の機能を失い易く、実用に適さない場合がある。また、高分子材料は各種用途に使用された後に、経時的に着色などの劣化現象が見られる場合がある。 However, polymer materials usually show deterioration phenomena such as coloring due to exposure to high temperatures during heat processing, easily lose their original functions, and may not be suitable for practical use. In addition, after a polymer material is used for various purposes, deterioration phenomena such as coloring may be seen over time.
 この着色などの劣化現象を抑制する方法として、種々の酸化防止剤を合成樹脂に添加する方法が知られている。ここに使用される酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤等の一次酸化防止剤やリン系酸化防止剤、チオエーテル系酸化防止剤等の二次酸化防止剤がある。 As a method for suppressing this deterioration phenomenon such as coloring, a method of adding various antioxidants to a synthetic resin is known. Antioxidants used here include primary antioxidants such as phenolic antioxidants and amine antioxidants, and secondary antioxidants such as phosphorus antioxidants and thioether antioxidants.
 これらの化合物の中で、フェノール系酸化防止剤としては、例えば、特許文献1に示す化合物が知られており、リン系酸化防止剤としては、例えば、特許文献2に示す化合物が知られている。しかしながら、これらの化合物は、耐熱性が不十分であり、加熱加工時に高温に曝されることによって分解してしまうなどの問題点があった。 Among these compounds, for example, the compounds shown in Patent Document 1 are known as phenolic antioxidants, and for example, the compounds shown in Patent Document 2 are known as phosphorus antioxidants. . However, these compounds have insufficient heat resistance and have problems such as decomposition when exposed to high temperatures during heat processing.
 また、上記微細形状を有する成型体を射出成形や熱転写成形にて形成する場合、使用する金型からの離型が困難であったり、離型が可能であっても金型内へ樹脂が残ったりする場合がある。そこで、離型性を向上させる方法として、種々の離型剤を合成樹脂に添加する方法が知られている。ここに使用される離型剤としては、フッ素系離型剤、シリコーン系離型剤、脂肪酸エステル系離型剤がある。 In addition, when a molded body having the above-mentioned fine shape is formed by injection molding or thermal transfer molding, it is difficult to release from the mold to be used, or the resin remains in the mold even if release is possible. Sometimes. Therefore, as a method for improving the releasability, a method of adding various release agents to the synthetic resin is known. Examples of the release agent used here include a fluorine-based release agent, a silicone-based release agent, and a fatty acid ester-based release agent.
 これらの離型剤として、例えば、特許文献3に示すようなシリコーン系離型剤が知られている。しかしながら、この離型剤は、耐熱性が不十分であり、加熱加工時に高温に曝されることによって分解してしまうなどの問題点があった。 As these release agents, for example, a silicone release agent as shown in Patent Document 3 is known. However, this release agent has insufficient heat resistance, and has a problem that it is decomposed by being exposed to a high temperature during heat processing.
特開平08-040984号公報Japanese Patent Laid-Open No. 08-040984 特開2006-176706号公報JP 2006-176706 A 特開2002-307523号公報JP 2002-307523 A
 本発明は、上述の問題に鑑みてなされたものである。すなわち本発明は、高い耐熱性を有する新規化合物および該化合物の合成方法、ならびに該化合物を含有する酸化防止剤、離型剤、樹脂組成物および樹脂成型体を提供することを目的とする。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a novel compound having high heat resistance, a method for synthesizing the compound, and an antioxidant, a release agent, a resin composition, and a resin molded body containing the compound.
 本発明者らは上記課題を解決するために鋭意検討した。その結果、下記構造を有する化合物を用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は、以下の[1]~[10]を提供するものである。 The present inventors diligently studied to solve the above problems. As a result, it has been found that the above problem can be solved by using a compound having the following structure, and the present invention has been completed. That is, the present invention provides the following [1] to [10].
 [1] 下記式(1)で示される化合物。 [1] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1)において、Lは、それぞれ独立に、水素原子、下記式(2)で表わされる基、下記式(3)で表わされる基またはR8CO-(R8は、炭素数1~40の1価の炭化水素基または炭素数1~40の1価のハロゲン化炭化水素基である。)で表わされる基であり、R4は、それぞれ独立に、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R5は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Aは、単結合、炭素数1~20の2価の炭化水素基、炭素数1~20の2価のハロゲン化炭化水素基、-S-、-SO2-、-CO-または-O-であり、mは0~10の整数であり、nは0~4の整数である。ただし、4つのLすべてが水素原子である場合はない。 In the formula (1), each L is independently a hydrogen atom, a group represented by the following formula (2), a group represented by the following formula (3), or R 8 CO— (R 8 is a group having 1 to 40 carbon atoms. Or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and each R 4 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms. A hydrocarbon group or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and each R 5 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent hydrocarbon group having 1 to 20 carbon atoms. A is a single bond, a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, -S-, -SO 2 -, -CO- or -O-, m is an integer of 0 to 10, and n is an integer of 0 to 4. However, not all four Ls are hydrogen atoms.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(2)において、R1は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R2は、それぞれ独立に、単結合または-CO-であり、R3は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基である。 In the formula (2), each R 1 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 2 is Each independently represents a single bond or —CO—, and each R 3 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms. is there.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(3)において、R6は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R7は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基である。 In the formula (3), each R 6 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 7 is These are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms.
 [2] 上記式(1)において、Lが上記式(2)で表わされる基である、[1]に記載の化合物。
 [3] 上記式(2)において、R2が単結合である、[2]に記載の化合物。
[2] The compound according to [1], wherein in the formula (1), L is a group represented by the formula (2).
[3] The compound according to [2], wherein in the formula (2), R 2 is a single bond.
 [4] 上記式(1)において、Lがそれぞれ独立に、水素原子または上記式(3)で表わされる基であり、複数あるLの少なくとも一つは上記式(3)で表わされる基である、[1]に記載の化合物。 [4] In the above formula (1), each L is independently a hydrogen atom or a group represented by the above formula (3), and at least one of the plurality of L is a group represented by the above formula (3). The compound according to [1].
 [5] 上記式(1)において、Lがそれぞれ独立に、水素原子またはR8CO-で表わされる基であり、複数あるLの少なくとも一つはR8CO-で表わされる基である、[1]に記載の化合物。 [5] In the above formula (1), each L is independently a hydrogen atom or a group represented by R 8 CO—, and at least one of the plurality of L is a group represented by R 8 CO—. 1].
 [6] [2]~[4]のいずれかに記載の化合物を含有する酸化防止剤。 [6] An antioxidant containing the compound according to any one of [2] to [4].
 [7] [5]に記載の化合物を含有する離型剤。 [7] A mold release agent containing the compound according to [5].
 [8] [1]~[5]のいずれかに記載の化合物を含有する樹脂組成物。 [8] A resin composition containing the compound according to any one of [1] to [5].
 [9] [1]~[5]のいずれかに記載の化合物を含有する樹脂成型体。 [9] A resin molding containing the compound according to any one of [1] to [5].
 [10] 下記式(4)で表わされる化合物と、下記式(5)、下記式(6)および下記式(7)で表わされる化合物からなる群より選ばれる1種の化合物とを反応させる工程を含む、下記式(1)で表わされる化合物の合成方法。 [10] A step of reacting a compound represented by the following formula (4) with one compound selected from the group consisting of compounds represented by the following formula (5), the following formula (6) and the following formula (7). A method for synthesizing a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(4)において、R4は、それぞれ独立に、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R5は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Aは、単結合、炭素数1~20の2価の炭化水素基、炭素数1~20の2価のハロゲン化炭化水素基、-S-、-SO2-、-CO-または-O-であり、mは0~10の整数であり、nは0~4の整数である。 In the formula (4), each R 4 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 5 is each independently And a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and A is a single bond and a divalent hydrocarbon group having 1 to 20 carbon atoms. , A divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, —S—, —SO 2 —, —CO— or —O—, m is an integer of 0 to 10, and n is 0 to 4 Is an integer.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(5)において、R1は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R3は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Yは、R9SO3-で表される基、ヒドロキシル基またはカルボキシル基である。ただし、R9は、炭素数1~20の炭化水素基である。 In the formula (5), each R 1 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 3 is Each independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and Y represents a group represented by R 9 SO 3 —, hydroxyl group Group or carboxyl group. R 9 is a hydrocarbon group having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(6)において、R6は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R7は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Xは、ハロゲン原子である。 In the formula (6), each R 6 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 7 is Each independently is a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(7)において、R8は、それぞれ独立に、炭素数1~40の1価の炭化水素基または炭素数1~40の1価のハロゲン化炭化水素基であり、Zは、ヒドロキシ基、またはハロゲン原子である。 In the formula (7), each R 8 independently represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and Z represents a hydroxy group, Or it is a halogen atom.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(1)において、Lは、それぞれ独立に、水素原子、下記式(2)で表わされる基、下記式(3)で表わされる基またはR8CO-で表わされる基であり、R8は、それぞれ独立に、式(7)中のR8と同義であり、R4、R5、A、mおよびnは、それぞれ独立に、式(4)中のR4、R5、A、mおよびnと同義である。ただし、4つのLすべてが水素原子である場合はない。 In formula (1), L is independently a hydrogen atom, a group represented a group represented by or R 8 CO- in group represented by the following formula (2), the following equation (3), R 8 is Each independently has the same meaning as R 8 in formula (7), and R 4 , R 5 , A, m and n are each independently R 4 , R 5 , A, m in formula (4). And n are synonymous. However, not all four Ls are hydrogen atoms.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(2)において、R1およびR3は、それぞれ独立に、式(5)中のR1およびR3と同義であり、R2は、それぞれ独立に、単結合または-CO-である。 In Formula (2), R 1 and R 3 are each independently synonymous with R 1 and R 3 in Formula (5), and R 2 is independently a single bond or —CO—.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(3)において、R6およびR7は、それぞれ独立に、式(6)中のR6およびR7と同義である。 In formula (3), R 6 and R 7 are each independently synonymous with R 6 and R 7 in formula (6).
 本発明の新規化合物は、高い耐熱性を有する。このため、該化合物は、合成樹脂などの高分子材料の酸化防止剤または離型剤として好適に用いることができる。
 また、着色などの劣化現象が起こりにくく、離型性に優れる樹脂組成物および樹脂成型体を提供することができる。
 さらに、本発明に係る合成方法は、高純度の新規化合物を収率良く、容易に合成することができる。
The novel compound of the present invention has high heat resistance. For this reason, this compound can be suitably used as an antioxidant or mold release agent for polymer materials such as synthetic resins.
In addition, it is possible to provide a resin composition and a resin molded body that are less prone to deterioration phenomena such as coloring and have excellent releasability.
Furthermore, the synthesis method according to the present invention can easily synthesize a high-purity novel compound with good yield.
 以下、本発明の新規化合物および該化合物の製造方法、ならびに該化合物を含有する酸化防止剤、離型剤、樹脂組成物および樹脂成型体について詳細に説明する。 Hereinafter, the novel compound of the present invention, a method for producing the compound, and an antioxidant, a release agent, a resin composition, and a resin molded body containing the compound will be described in detail.
 [化合物]
 本発明の新規な化合物は、下記式(1)で表わされる化合物である。なお、以下において、下記式(1)で表される化合物を「化合物(1)」ともいう。
[Compound]
The novel compound of the present invention is a compound represented by the following formula (1). In the following, the compound represented by the following formula (1) is also referred to as “compound (1)”.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1)において、Lは、それぞれ独立に、水素原子、下記式(2)で表わされる基、下記式(3)で表わされる基またはR8CO-(R8は、炭素数1~40の1価の炭化水素基または炭素数1~40の1価のハロゲン化炭化水素基である。)で表わされる基であり、R4は、それぞれ独立に、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R5は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Aは、単結合、炭素数1~20の2価の炭化水素基、炭素数1~20の2価のハロゲン化炭化水素基、-S-、-SO2-、-CO-または-O-であり、mは0~10の整数であり、nは0~4の整数である。ただし、4つのLすべてが水素原子である場合はない。 In the formula (1), each L is independently a hydrogen atom, a group represented by the following formula (2), a group represented by the following formula (3), or R 8 CO— (R 8 is a group having 1 to 40 carbon atoms. Or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and each R 4 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms. A hydrocarbon group or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and each R 5 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent hydrocarbon group having 1 to 20 carbon atoms. A is a single bond, a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, -S-, -SO 2 -, -CO- or -O-, m is an integer of 0 to 10, and n is an integer of 0 to 4. However, not all four Ls are hydrogen atoms.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(2)において、R1は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R2は、それぞれ独立に、単結合または-CO-であり、R3は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基である。 In the formula (2), each R 1 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 2 is Each independently represents a single bond or —CO—, and each R 3 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms. is there.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(3)において、R6は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R7は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基である。 In the formula (3), each R 6 is independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 7 is These are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms.
 上記R1、R4およびR6における炭素数1~20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基およびヘキシル基などの炭素数1~20のアルキル基;シクロペンチル基およびシクロヘキシル基などの炭素数3~20のシクロアルキル基;フェニル基、ナフチル基およびビフェニル基などの炭素数6~20の芳香族炭化水素基;ビニル基およびアリル基などの炭素数2~20のアルケニル基などが挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 , R 4 and R 6 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and a pentyl group. And alkyl groups having 1 to 20 carbon atoms such as hexyl group; cycloalkyl groups having 3 to 20 carbon atoms such as cyclopentyl group and cyclohexyl group; aromatic carbonization having 6 to 20 carbon atoms such as phenyl group, naphthyl group and biphenyl group Examples thereof include a hydrogen group; an alkenyl group having 2 to 20 carbon atoms such as a vinyl group and an allyl group.
 上記R1、R4およびR6における炭素数1~20の1価のハロゲン化炭化水素基としては、炭素数1~20のハロゲン化アルキル基、炭素数3~20のハロゲン化シクロアルキル基および炭素数6~20のハロゲン化芳香族炭化水素基などが挙げられる。前記ハロゲン化アルキル基としては、トリクロロメチル基、トリフルオロメチル基、トリブロモメチル基、ペンタクロロエチル基、ペンタフルオロエチル基およびペンタブロモエチル基などが挙げられ、前記ハロゲン化シクロアルキル基としては、クロロシクロペンチル基およびクロロシクロヘキシル基などが挙げられ、前記ハロゲン化芳香族炭化水素基としては、クロロフェニル基およびクロロナフチル基などが挙げられる。 Examples of the monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms in R 1 , R 4 and R 6 include a halogenated alkyl group having 1 to 20 carbon atoms, a halogenated cycloalkyl group having 3 to 20 carbon atoms, and Examples thereof include a halogenated aromatic hydrocarbon group having 6 to 20 carbon atoms. Examples of the halogenated alkyl group include a trichloromethyl group, a trifluoromethyl group, a tribromomethyl group, a pentachloroethyl group, a pentafluoroethyl group, and a pentabromoethyl group. As the halogenated cycloalkyl group, Examples thereof include a chlorocyclopentyl group and a chlorocyclohexyl group, and examples of the halogenated aromatic hydrocarbon group include a chlorophenyl group and a chloronaphthyl group.
 上記R3、R5、R7およびAにおける炭素数1~20の2価の炭化水素基としては、炭素数1~20の2価の直鎖または分岐鎖の炭化水素基、炭素数3~20の2価の脂環式炭化水素基および炭素数6~20の2価の芳香族炭化水素基などが挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms in the above R 3 , R 5 , R 7 and A include divalent linear or branched hydrocarbon groups having 1 to 20 carbon atoms, And 20 divalent alicyclic hydrocarbon groups and 6 to 20 carbon divalent aromatic hydrocarbon groups.
 上記R3、R5、R7およびAにおける炭素数1~20の2価の直鎖または分岐鎖の炭化水素基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基およびヘプタメチレン基などのアルキレン基;プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基およびヘキシリデン基等の分岐鎖のアルキリデン基;アルケニレン基;アルキニレン基などが挙げられる。これらの中では、アルキレン基が好ましい。 Examples of the divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms in R 3 , R 5 , R 7 and A include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, Alkylene groups such as hexamethylene group and heptamethylene group; branched chain alkylidene groups such as propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group and hexylidene group; alkenylene group; Can be mentioned. In these, an alkylene group is preferable.
 上記R3、R5、R7およびAにおける炭素数3~20の2価の脂環式炭化水素基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基およびシクロへキシレン基などのシクロアルキレン基;シクロブテニレン基、シクロペンテニレン基およびシクロヘキセニレン基などのシクロアルケニレン基などが挙げられる。上記脂環式炭化水素基の結合部位は、脂環上の何れの炭素上でもよい。 Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms in R 3 , R 5 , R 7 and A include cyclopropylene group, cyclobutylene group, cyclopentylene group and cyclohexylene group. Alkylene group; cycloalkenylene groups such as cyclobutenylene group, cyclopentenylene group and cyclohexenylene group. The bonding site of the alicyclic hydrocarbon group may be on any carbon on the alicyclic ring.
 上記R3、R5、R7およびAにおける炭素数6~20の2価の芳香族炭化水素基としては、フェニレン基、ビフェニレン基およびナフチレン基などのアリーレン基などが挙げられる。 Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms in R 3 , R 5 , R 7 and A include arylene groups such as a phenylene group, a biphenylene group and a naphthylene group.
 上記R3、R5、R7およびAにおける炭素数1~20の2価のハロゲン化炭化水素基としては、上記例示の炭素数1~20の2価の炭化水素基が有する水素原子の少なくとも1つを、ハロゲン原子(例:フッ素原子、塩素原子、臭素原子、ヨウ素原子)で置換した基が挙げられる。 Examples of the divalent halogenated hydrocarbon group having 1 to 20 carbon atoms in the above R 3 , R 5 , R 7 and A include at least hydrogen atoms of the divalent hydrocarbon group having 1 to 20 carbon atoms exemplified above. And a group in which one is substituted with a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom).
 上記R8における炭素数1~40の1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基、ミリスチル基、パルミチル基、ステアリル基、などの炭素数1~40のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、などの炭素数3~40のシクロアルキル基;フェニル基、トルイル基、キシリル基、ナフチル基、ベンジル基、などの炭素数6~40の芳香族炭化水素基;ビニル基、アリル基、1-プロペニル基、1,3-ブタジエニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、2-ペンテニル基などの炭素数2~40のアルケニル基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 40 carbon atoms in R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. Alkyl groups having 1 to 40 carbon atoms such as a group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, lauryl group, myristyl group, palmityl group, stearyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, A cycloalkyl group having 3 to 40 carbon atoms such as cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, cycloundecyl group, cyclododecyl group, etc .; phenyl group, toluyl group, xylyl group, naphthyl group, An aromatic hydrocarbon group having 6 to 40 carbon atoms such as benzyl group; vinyl group, allyl group, 1 Propenyl, 1,3-butadienyl group, isopropenyl group, 1-butenyl, 2-butenyl, and the like alkenyl group having 2 to 40 carbon atoms, such as 2-pentenyl group.
 上記R8における炭素数1~40の1価のハロゲン化炭化水素基としては、炭素数1~40のハロゲン化アルキル基、炭素数3~40のハロゲン化シクロアルキル基および炭素数6~40のハロゲン化芳香族炭化水素基などが挙げられる。前記ハロゲン化アルキル基としては、トリクロロメチル基、トリフルオロメチル基、トリブロモメチル基、ペンタクロロエチル基、ペンタフルオロエチル基、ペンタブロモエチル基、ヘプタフルオロプロピル基、ヘプタブロモプロピル基、ノナフルオロブチル基およびノナブロモブチル基などが挙げられ、前記ハロゲン化シクロアルキル基としては、クロロシクロペンチル基およびクロロシクロヘキシル基などが挙げられ、前記ハロゲン化芳香族炭化水素基としては、クロロフェニル基およびクロロナフチル基などが挙げられる。 Examples of the monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms in R 8 include a halogenated alkyl group having 1 to 40 carbon atoms, a halogenated cycloalkyl group having 3 to 40 carbon atoms, and a 6 to 40 carbon atom. And halogenated aromatic hydrocarbon groups. Examples of the halogenated alkyl group include trichloromethyl group, trifluoromethyl group, tribromomethyl group, pentachloroethyl group, pentafluoroethyl group, pentabromoethyl group, heptafluoropropyl group, heptabromopropyl group, nonafluorobutyl. Group, nonabromobutyl group, and the like. Examples of the halogenated cycloalkyl group include chlorocyclopentyl group and chlorocyclohexyl group. Examples of the halogenated aromatic hydrocarbon group include chlorophenyl group and chloronaphthyl group. It is done.
 上記式(1)において、
 Aとしては、それぞれ独立に、イソプロピリデン基、-S-、-SO2-、-CO-、または-O-であることが好ましい。
 nとしては、0であることが好ましい。
In the above formula (1),
Each A is preferably independently an isopropylidene group, —S—, —SO 2 —, —CO—, or —O—.
n is preferably 0.
 また、化合物(1)は、4つのLがすべて上記式(2)で表わされる基である化合物(以下「化合物(1-1)」ともいう。)であることが、化合物の耐熱性、樹脂との相溶性および樹脂の劣化現象を抑制する点等から好ましい。 The compound (1) is a compound in which all four Ls are groups represented by the above formula (2) (hereinafter also referred to as “compound (1-1)”). It is preferable from the viewpoint of suppressing the compatibility with the resin and the deterioration phenomenon of the resin.
 化合物(1-1)において、
 R1としては、それぞれ独立に、水素原子または炭素数3~20の1価の炭化水素基であることが好ましく、任意の一つの芳香環に結合する少なくとも一つのR1が炭素数3~20の1価の炭化水素基であることがより好ましく、芳香環に結合する-OH基に隣接する1つまたは2つのR1が炭素数3~20の1価の炭化水素基であることがさらに好ましく、また、炭素数3~20の1価の炭化水素基としては、t-ブチル基であることが特に好ましく、
 R2としては、それぞれ独立に、単結合であることが好ましく、
 R3としては、それぞれ独立に、炭素数1~20の2価の直鎖または分岐鎖の炭化水素基であることが好ましく、メチレン基、エチレン基またはトリメチレン基であることがより好ましく、
 mとしては、0または1であることが好ましく、0であることがより好ましい。
In compound (1-1),
R 1 is preferably each independently a hydrogen atom or a monovalent hydrocarbon group having 3 to 20 carbon atoms, and at least one R 1 bonded to any one aromatic ring has 3 to 20 carbon atoms. It is more preferable that one or two R 1 adjacent to the —OH group bonded to the aromatic ring is a monovalent hydrocarbon group having 3 to 20 carbon atoms. The monovalent hydrocarbon group having 3 to 20 carbon atoms is particularly preferably a t-butyl group,
R 2 is preferably independently a single bond,
R 3 is preferably each independently a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, more preferably a methylene group, an ethylene group or a trimethylene group,
m is preferably 0 or 1, and more preferably 0.
 上記式(2)において、R2が単結合であると、酸化防止効果を有し、耐熱性がより高く、また樹脂との相溶性に優れた化合物となる。 In the above formula (2), when R 2 is a single bond, the compound has an antioxidant effect, higher heat resistance, and excellent compatibility with the resin.
 また、上記化合物(1-1)が、下記式(1’)で表される化合物(以下「化合物(1')」ともいう。)であると、この化合物は酸化防止剤として好適に用いることができる。 In addition, when the compound (1-1) is a compound represented by the following formula (1 ′) (hereinafter also referred to as “compound (1 ′)”), this compound is preferably used as an antioxidant. Can do.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(1’)中、R1~R5、A、mおよびnは前記式(1)または(2)中のR1~R5、A、mおよびnと同義である。 Wherein (1 '), R 1 ~ R 5, A, m and n have the same meanings as R 1 ~ R 5, A, m and n in the formula (1) or (2).
 化合物(1)は、Lがそれぞれ独立に、水素原子または上記式(3)で表わされる基である化合物(但し、複数あるLの少なくとも一つは上記式(3)で表わされる基である。以下「化合物(1-2)」ともいう。)であることが、化合物の耐熱性、樹脂との相溶性および樹脂の劣化現象を抑制する点等から好ましく、4つのLがすべて上記式(3)で表わされる基である化合物であることがより好ましい。 Compound (1) is a compound in which L is independently a hydrogen atom or a group represented by the above formula (3) (provided that at least one of a plurality of L is a group represented by the above formula (3)). In the following, “compound (1-2)” is also preferable from the viewpoint of heat resistance of the compound, compatibility with the resin, and suppression of the deterioration phenomenon of the resin. It is more preferable that the compound be a group represented by
 化合物(1-2)において、
 R6としては、それぞれ独立に、水素原子または炭素数3~20の1価の炭化水素基であることが好ましく、任意の一つの芳香環に結合する少なくとも一つのR6が炭素数3~20の1価の炭化水素基であることがより好ましく、酸素原子と結合した芳香環上の炭素原子のオルト位とパラ位に結合するR6の一つまたは二つが炭素数3~20の1価の炭化水素基であることがさらに好ましく、酸素原子と結合した芳香環上の炭素原子のオルト位とパラ位の炭素原子に結合するR6の二つが炭素数3~20の1価の炭化水素基であることがより好ましく、また、炭素数3~20の1価の炭化水素基としては、t-ブチル基であることが特に好ましく、
 R7としては、それぞれ独立に、炭素数1~20の2価の直鎖または分岐鎖の炭化水素基であることが好ましく、メチレン基、エチレン基またはトリメチレン基であることがより好ましく、
 mとしては、0または1であることが好ましく、1であることがより好ましい。
In compound (1-2),
R 6 is preferably independently a hydrogen atom or a monovalent hydrocarbon group having 3 to 20 carbon atoms, and at least one R 6 bonded to any one aromatic ring has 3 to 20 carbon atoms. More preferably, one or two of R 6 bonded to the ortho-position and para-position of the carbon atom on the aromatic ring bonded to the oxygen atom are monovalent having 3 to 20 carbon atoms. R 6 bonded to the ortho and para carbon atoms on the aromatic ring bonded to the oxygen atom is more preferably a monovalent hydrocarbon having 3 to 20 carbon atoms. More preferably, the monovalent hydrocarbon group having 3 to 20 carbon atoms is particularly preferably a t-butyl group,
R 7 is preferably each independently a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, more preferably a methylene group, an ethylene group or a trimethylene group,
m is preferably 0 or 1, and more preferably 1.
 化合物(1)は、Lがそれぞれ独立に、水素原子またはR8CO-で表わされる基である化合物(但し、複数あるLの少なくとも一つはR8CO-で表わされる基である。以下「化合物(1-3)」ともいう。)であることが、化合物の耐熱性、樹脂との相溶性ならびに該化合物を含有する樹脂組成物および樹脂成型体の離型性の点等から好ましく、4つのLがすべてR8CO-で表わされる基である化合物であることがより好ましい。なお、R8は、上述した化合物(1)におけるR8と同義である。 Compound (1) is a compound wherein each L is independently a hydrogen atom or a group represented by R 8 CO— (provided that at least one of the plurality of L is a group represented by R 8 CO—. Compound (1-3) ”) is preferable from the viewpoint of the heat resistance of the compound, the compatibility with the resin, the releasability of the resin composition containing the compound and the resin molding, and the like. More preferably, the compounds are such that all Ls are groups represented by R 8 CO—. Incidentally, R 8 has the same meaning as R 8 in the compound described above (1).
 化合物(1-3)において、
 R8としては、それぞれ独立に、炭素数5~40の1価の炭化水素基であることが好ましく、炭素数10~30の1価の炭化水素基であることがより好ましく、
 R5としては、それぞれ独立に、炭素数1~20の2価の直鎖または分岐鎖の炭化水素基であることが好ましく、メチレン基、エチレン基またはトリメチレン基であることがより好ましく、
 mとしては、0または1であることが好ましく、0であることがより好ましい。
In compound (1-3),
R 8 is preferably independently a monovalent hydrocarbon group having 5 to 40 carbon atoms, more preferably a monovalent hydrocarbon group having 10 to 30 carbon atoms,
R 5 is preferably each independently a divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms, more preferably a methylene group, an ethylene group or a trimethylene group,
m is preferably 0 or 1, and more preferably 0.
 [化合物(1)の合成方法]
 本発明の化合物(1)は、下記式(4)で表される化合物(以下「化合物(4)」ともいう。)と、下記式(5)で表される化合物(以下「化合物(5)」ともいう。)、下記式(6)で表わされる化合物(以下「化合物(6)」ともいう。)および下記式(7)で表わされる化合物(以下「化合物(7)」ともいう。)からなる群より選ばれる1種の化合物(i)とを反応させる工程を含む方法で合成することができる。化合物(4)と化合物(i)とを反応させることで、高純度の新規化合物(1)を収率良く、容易に合成することができる。
[Method for Synthesizing Compound (1)]
The compound (1) of the present invention includes a compound represented by the following formula (4) (hereinafter also referred to as “compound (4)”) and a compound represented by the following formula (5) (hereinafter “compound (5)”). And a compound represented by the following formula (6) (hereinafter also referred to as “compound (6)”) and a compound represented by the following formula (7) (hereinafter also referred to as “compound (7)”). It can be synthesized by a method including a step of reacting one compound (i) selected from the group consisting of By reacting compound (4) with compound (i), high-purity novel compound (1) can be easily synthesized in good yield.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(4)において、R4、R5、A、mおよびnは、それぞれ独立に、前記式(1)中のR4、R5、A、mおよびnと同義である。 In the formula (4), R 4 , R 5 , A, m and n are each independently synonymous with R 4 , R 5 , A, m and n in the formula (1).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(5)において、R1およびR3は、それぞれ独立に、前記式(2)中のR1およびR3と同義であり、Yは、R9SO3-で表される基、ヒドロキシル基またはカルボキシル基である。ただし、R9は、炭素数1~20の炭化水素基である。 In formula (5), R 1 and R 3 each independently have the same meaning as R 1 and R 3 in the formula (2), Y is R 9 SO 3 -, a group represented by a hydroxyl group Or it is a carboxyl group. R 9 is a hydrocarbon group having 1 to 20 carbon atoms.
 上記R9における炭素数1~20の炭化水素基としては、上記R1における炭素数1~20の1価の炭化水素基と同様の官能基を挙げることができる。 Examples of the hydrocarbon group having 1 to 20 carbon atoms in R 9 include the same functional groups as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 .
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(6)において、R6およびR7は、それぞれ独立に前記式(3)中のR6およびR7と同義であり、Xは、ハロゲン原子である。 In the formula (6), R 6 and R 7 are independently the same as R 6 and R 7 in the formula (3), and X is a halogen atom.
 なお、化合物(6)は、Phosphorus and Sulfur, 1984, Vol.19,pp.285-293に記載の方法等で合成することができる。 In addition, the compound (6) can be obtained from Phosphorus and Sulfur, 1984, Vol. 19, pp. It can be synthesized by the method described in 285-293.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式(7)において、R8は、炭素数1~40の1価の炭化水素基または炭素数1~40の1価のハロゲン化炭化水素基であり、Zは、ヒドロキシ基またはハロゲン原子である。なお、R8は、上述した化合物(1)におけるR8と同義である。 In the formula (7), R 8 is a monovalent hydrocarbon group having 1 to 40 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and Z is a hydroxy group or a halogen atom. . Incidentally, R 8 has the same meaning as R 8 in the compound described above (1).
 上記反応の温度および時間は特に限定されないが、反応温度は、通常は-30~120℃、好ましくは-20~90℃、特に好ましくは-10~80℃であり;反応時間は、通常は0.1~48時間、好ましくは0.5~24時間、特に好ましくは1~10時間である。 The temperature and time of the above reaction are not particularly limited, but the reaction temperature is usually −30 to 120 ° C., preferably −20 to 90 ° C., particularly preferably −10 to 80 ° C .; the reaction time is usually 0 1 to 48 hours, preferably 0.5 to 24 hours, particularly preferably 1 to 10 hours.
 ≪化合物(1-1)の合成方法≫
 前記化合物(1-1)を合成する方法は、特に制限されないが、化合物(4)と化合物(5)とを反応させる工程を含むことが好ましい。
<< Method for Synthesizing Compound (1-1) >>
The method for synthesizing the compound (1-1) is not particularly limited, but preferably includes a step of reacting the compound (4) and the compound (5).
 化合物(4)と化合物(5)との反応において、化合物(4)と化合物(5)とのモル比(化合物(5)/化合物(4))は、通常は4~20であり、好ましくは4.05~5である。
 このような量で化合物(4)と化合物(5)とを反応させると、高純度の新規化合物(1-1)をより収率良く、容易に合成することができる。
In the reaction of compound (4) and compound (5), the molar ratio of compound (4) to compound (5) (compound (5) / compound (4)) is usually from 4 to 20, preferably 4.05-5.
When the compound (4) and the compound (5) are reacted in such an amount, the high-purity novel compound (1-1) can be easily synthesized with better yield.
 <化合物(1-1)においてR2が-CO-である化合物の合成方法>
 化合物(1-1)において、R2が-CO-である化合物は、化合物(4)と、化合物(5)においてYがカルボキシル基である化合物とを反応させることで得ることができる(以下「反応(I)」ともいう。)。
<Synthesis Method of Compound (1-1) wherein R 2 is —CO—>
In compound (1-1), a compound in which R 2 is —CO— can be obtained by reacting compound (4) with a compound in which Y is a carboxyl group in compound (5) (hereinafter “ Also referred to as “Reaction (I)”).
 該反応(I)は、カルボジイミドおよび/または塩基触媒などの存在下で行うことができる。カルボジイミドとしては、ジシクロヘキシルカルボジイミドおよびジイソプロピルカルボジイミドなどを挙げることができる。 The reaction (I) can be carried out in the presence of carbodiimide and / or a base catalyst. Examples of the carbodiimide include dicyclohexyl carbodiimide and diisopropyl carbodiimide.
 化合物(5)とカルボジイミドとのモル比(カルボジイミド/化合物(5))は、通常は1~20、好ましくは1.05~5である。 The molar ratio of compound (5) to carbodiimide (carbodiimide / compound (5)) is usually 1 to 20, preferably 1.05 to 5.
 また、塩基触媒としては、N,N-ジメチルアミノピリジン、トリエチルアミン、ピリジンおよび炭酸ナトリウムなどが挙げられる。
 化合物(5)と塩基触媒とのモル比(塩基触媒/化合物(5))は、通常は0.01~1、好ましくは0.05~0.5である。
Examples of the base catalyst include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
The molar ratio of the compound (5) to the base catalyst (base catalyst / compound (5)) is usually 0.01 to 1, preferably 0.05 to 0.5.
 また、上記反応(I)では、塩化メチレン、クロロホルム、四塩化炭素および/または1,2-ジクロロエタンなどの有機溶媒や水などを溶媒として用いてもよい。溶媒の使用量は、化合物(5)1gあたり、通常は0.1~50ml、好ましくは1~20ml、特に好ましくは2~10mlである。 In the above reaction (I), an organic solvent such as methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent. The amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, particularly preferably 2-10 ml, per 1 g of compound (5).
 反応(I)において、化合物(4)と化合物(5)とのモル比、および、反応の温度および時間は上記と同様である。 In the reaction (I), the molar ratio between the compound (4) and the compound (5), and the reaction temperature and time are the same as described above.
 <化合物(1-1)においてR2が単結合である化合物の合成方法>
 また、化合物(1-1)において、R2が単結合である化合物は、化合物(4)と、化合物(5)においてYがヒドロキシル基またはR9SO3-で表される基(ただし、R9は、炭素数1~20の炭化水素基である。)である化合物とを反応させることで得ることができる(以下「反応(II)」ともいう。)。
<Synthesis Method of Compound (1-1) wherein R 2 is a Single Bond>
In the compound (1-1), the compound in which R 2 is a single bond includes the compound (4) and the group (5) in which Y is a hydroxyl group or a group represented by R 9 SO 39 is a hydrocarbon group having 1 to 20 carbon atoms.) (Hereinafter also referred to as “reaction (II)”).
 該反応(II)は、触媒などの存在下で行うことができる。該触媒としては、水素化ナトリウムなどが挙げられる。化合物(4)と触媒とのモル比(触媒/化合物(4))は、通常は0.01~20、好ましくは0.1~10である。 The reaction (II) can be performed in the presence of a catalyst or the like. Examples of the catalyst include sodium hydride. The molar ratio of the compound (4) to the catalyst (catalyst / compound (4)) is usually 0.01 to 20, preferably 0.1 to 10.
 また、反応(II)では、N,N-ジメチルアセトアミド、塩化メチレン、クロロホルム、四塩化炭素および/または1,2-ジクロロエタンなどの有機溶媒や水などを溶媒として用いてもよい。溶媒の使用量は、化合物(5)1gあたり、通常は0.1~50ml、好ましくは1~20ml、特に好ましくは2~10ml以下である。 In the reaction (II), an organic solvent such as N, N-dimethylacetamide, methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent. The amount of the solvent to be used is generally 0.1 to 50 ml, preferably 1 to 20 ml, particularly preferably 2 to 10 ml or less per 1 g of compound (5).
 反応(II)において、化合物(4)と化合物(5)とのモル比、および、反応の温度および時間は上記と同様である。 In the reaction (II), the molar ratio between the compound (4) and the compound (5), and the reaction temperature and time are the same as described above.
 <化合物(1’)の合成方法>
 なお、化合物(1’)を合成する場合には、上記合成方法において、化合物(5)の代わりに下記式(5’)で表わされる化合物を用いればよい。
<Synthesis Method of Compound (1 ′)>
In addition, when synthesize | combining a compound (1 '), what is necessary is just to use the compound represented by following formula (5') instead of a compound (5) in the said synthetic method.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(5')において、R1、R3およびYは、式(5)中のR1、R3およびYと同義である。 In the formula (5 '), R 1, R 3 and Y have the same meanings as R 1, R 3 and Y in the formula (5).
 ≪化合物(1-2)の合成方法≫
 前記化合物(1-2)を合成する方法は、特に制限されないが、化合物(4)と化合物(6)とを反応(以下「反応(III)」ともいう。)させる工程を含むことが好ましい。
<< Method for Synthesizing Compound (1-2) >>
The method for synthesizing the compound (1-2) is not particularly limited, but preferably includes a step of reacting the compound (4) and the compound (6) (hereinafter also referred to as “reaction (III)”).
 反応(III)において、化合物(4)と化合物(6)とのモル比(化合物(6)/化合物(4))は、通常は1~20、好ましくは4~20、さらに好ましくは4.05~6である。
 このような量で化合物(4)と化合物(6)とを反応させると、高純度の新規化合物(1-2)をより収率良く、容易に合成することができる。
In the reaction (III), the molar ratio of the compound (4) to the compound (6) (compound (6) / compound (4)) is usually 1 to 20, preferably 4 to 20, and more preferably 4.05. ~ 6.
When the compound (4) and the compound (6) are reacted in such an amount, the high-purity novel compound (1-2) can be easily synthesized with better yield.
 上記反応(III)において、反応の温度および時間は上記と同様である。 In the above reaction (III), the reaction temperature and time are the same as described above.
 また、上記反応(III)は、塩基触媒などの存在下で行うことができる。塩基触媒としては、N,N-ジメチルアミノピリジン、トリエチルアミン、ピリジンおよび炭酸ナトリウムなどが挙げられる。
 化合物(6)と塩基触媒とのモル比(塩基触媒/化合物(6))は、通常は0.05~5、好ましくは0.5~2である。
The reaction (III) can be performed in the presence of a base catalyst or the like. Examples of the base catalyst include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
The molar ratio of the compound (6) to the base catalyst (base catalyst / compound (6)) is usually 0.05 to 5, preferably 0.5 to 2.
 また、上記反応(III)では、塩化メチレン、クロロホルム、四塩化炭素および/または1,2-ジクロロエタンなどの有機溶媒や水などを溶媒として用いてもよい。溶媒の使用量は、化合物(6)1gあたり、通常は0.1~50ml、好ましくは1~20ml、特に好ましくは2~10mlである。 In the reaction (III), an organic solvent such as methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent. The amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, particularly preferably 2-10 ml per 1 g of compound (6).
 ≪化合物(1-3)の合成方法≫
 前記化合物(1-3)を合成する方法は、特に制限されないが、化合物(4)と化合物(7)とを反応(以下「反応(IV)」ともいう。)させる工程を含むことが好ましい。
<< Method of Synthesizing Compound (1-3) >>
The method for synthesizing the compound (1-3) is not particularly limited, but preferably includes a step of reacting the compound (4) and the compound (7) (hereinafter also referred to as “reaction (IV)”).
 反応(IV)において、化合物(4)と化合物(7)とのモル比(化合物(7)/化合物(4))は、通常は1~20、好ましくは4~20、より好ましくは4.05~5である。
 このような量で化合物(4)と化合物(7)とを反応させると、高純度の新規化合物(1-3)をより収率良く、容易に合成することができる。
In the reaction (IV), the molar ratio of the compound (4) to the compound (7) (compound (7) / compound (4)) is usually 1 to 20, preferably 4 to 20, and more preferably 4.05. ~ 5.
When compound (4) and compound (7) are reacted in such an amount, novel compound (1-3) with high purity can be easily synthesized with better yield.
 上記反応(IV)において、反応の温度および時間は上記と同様である。 In the above reaction (IV), the reaction temperature and time are the same as described above.
 化合物(7)としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リノグリセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸、イソプロピオン酸、イソ吉草酸、イソ酪酸、2-メチル酪酸、シクロプロパンカルボン酸、シクロブタンカルボン酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロヘプタンカルボン酸、シクロオクタンカルボン酸、シクロプロピル酢酸、シクロブチル酢酸、シクロペンチル酢酸、シクロヘキシル酢酸、シクロヘプチル酢酸、シクロオクチル酢酸、ノルボルナンカルボン酸、ジノルボルナンカルボン酸、ノルボルナン酢酸、ジノルボルナン酢酸、4-メチルシクロヘキサンカルボン酸、4-エチルシクロヘキサンカルボン酸、4-プロピルシクロヘキサンカルボン酸、4-ブチルシクロヘキサンカルボン酸、4-プロピルシクロヘキサンカルボン酸、4-メチルジシクロヘキサンカルボン酸、4-エチルジシクロヘキサンカルボン酸、4-プロピルジシクロヘキサンカルボン酸、4-ブチルジシクロヘキサンカルボン酸、4-プロピルジシクロヘキサンカルボン酸、コレスタン酸、トリフルオロ酢酸、ペンタフルオロプロピオン酸、ヘプタフルオロ酪酸、ノナフルオロ吉草酸、およびこれらの酸のハロゲン化物などを挙げることができる。 Examples of the compound (7) include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecyl acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid. Acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, linoglyceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, isopropionic acid, isovaleric acid, isobutyric acid, 2-methyl Butyric acid, cyclopropanecarboxylic acid, cyclobutanecarboxylic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cycloheptanecarboxylic acid, cyclooctanecarboxylic acid, cyclopropylacetic acid, cyclobutylacetic acid, cyclopentylacetic acid, cyclohexylacetic acid, cycloheptylacetic acid Cyclooctylacetic acid, norbornanecarboxylic acid, dinorbornanecarboxylic acid, norbornaneacetic acid, dinorbornaneacetic acid, 4-methylcyclohexanecarboxylic acid, 4-ethylcyclohexanecarboxylic acid, 4-propylcyclohexanecarboxylic acid, 4-butylcyclohexanecarboxylic acid, 4- Propylcyclohexanecarboxylic acid, 4-methyldicyclohexanecarboxylic acid, 4-ethyldicyclohexanecarboxylic acid, 4-propyldicyclohexanecarboxylic acid, 4-butyldicyclohexanecarboxylic acid, 4-propyldicyclohexanecarboxylic acid, cholestanoic acid, trifluoro Examples include acetic acid, pentafluoropropionic acid, heptafluorobutyric acid, nonafluorovaleric acid, and halides of these acids.
 該反応(IV)は、カルボジイミドおよび/または塩基触媒などの存在下で行うことができる。カルボジイミドとしては、ジシクロヘキシルカルボジイミドおよびジイソプロピルカルボジイミドなどを挙げることができる。 The reaction (IV) can be performed in the presence of carbodiimide and / or a base catalyst. Examples of the carbodiimide include dicyclohexyl carbodiimide and diisopropyl carbodiimide.
 化合物(7)とカルボジイミドとのモル比(カルボジイミド/化合物(7))は、通常は1~20、好ましくは1.05~5である。 The molar ratio of compound (7) to carbodiimide (carbodiimide / compound (7)) is usually 1 to 20, preferably 1.05 to 5.
 また、塩基触媒としては、N,N-ジメチルアミノピリジン、トリエチルアミン、ピリジンおよび炭酸ナトリウムなどが挙げられる。
 化合物(7)と塩基触媒とのモル比(塩基触媒/化合物(7))は、通常は0.01~1、好ましくは0.03~0.5である。
Examples of the base catalyst include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate.
The molar ratio of the compound (7) to the base catalyst (base catalyst / compound (7)) is usually 0.01 to 1, preferably 0.03 to 0.5.
 また、上記反応では、塩化メチレン、クロロホルム、四塩化炭素および/または1,2-ジクロロエタンなどの有機溶媒や水などを溶媒として用いてもよい。溶媒の使用量は、化合物(7)1gあたり、通常は0.1~50ml、好ましくは1~20ml、より好ましくは2~15mlである。 In the above reaction, an organic solvent such as methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent. The amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, more preferably 2-15 ml per g of compound (7).
 〈化合物(4)の合成方法〉
 上記化合物(4)は、公知の方法で得ることができ、この方法としては、例えば、下記式(8)で表わされる化合物を水素化して下記式(9)で表わされる化合物(以下、化合物(9)ともいう。)を得る工程(i)、化合物(9)を酸化して下記式(10)で表わされる化合物(以下、化合物(10)ともいう。)を得る工程(ii)、化合物(10)と下記式(11)で表わされる化合物(以下、化合物(11)ともいう。)とを反応させる工程(iii)、および、工程(iii)で得られた化合物(以下、化合物(11')ともいう。)と、アルキレンカーボネートまたは下記式(12)で表わされる化合物(以下、化合物(12)ともいう。)とを反応させる工程(iv)をこの順序で含んでなる製造方法を挙げることができる。なお、化合物(4)において、mが0である化合物を合成する場合には、上記工程(iv)は不要である。
<Synthesis Method of Compound (4)>
The compound (4) can be obtained by a known method. For example, a compound represented by the following formula (9) by hydrogenating a compound represented by the following formula (8) (hereinafter referred to as the compound ( 9).) Step (i), wherein the compound (9) is oxidized to obtain a compound represented by the following formula (10) (hereinafter also referred to as compound (10)) (ii), compound ( 10) and a compound represented by the following formula (11) (hereinafter also referred to as compound (11)) and a compound (hereinafter referred to as compound (11 ′) obtained in step (iii) and step (iii) And a production method comprising a step (iv) of reacting an alkylene carbonate or a compound represented by the following formula (12) (hereinafter also referred to as compound (12)) in this order. Can do. In the compound (4), when a compound in which m is 0 is synthesized, the above step (iv) is not necessary.
Figure JPOXMLDOC01-appb-C000030
(式(8)において、Aは、式(1)中のAと同義である。)
Figure JPOXMLDOC01-appb-C000030
(In Formula (8), A is synonymous with A in Formula (1).)
Figure JPOXMLDOC01-appb-C000031
(式(9)において、Aは、式(1)中のAと同義である。)
Figure JPOXMLDOC01-appb-C000031
(In formula (9), A has the same meaning as A in formula (1).)
Figure JPOXMLDOC01-appb-C000032
(式(10)において、Aは、式(1)中のAと同義である。)
Figure JPOXMLDOC01-appb-C000032
(In Formula (10), A is synonymous with A in Formula (1).)
Figure JPOXMLDOC01-appb-C000033
(式(11)において、R4およびnは、式(1)中のR4およびnと同義である。)
Figure JPOXMLDOC01-appb-C000033
(In the formula (11), R 4 and n have the same meanings as R 4 and n in the formula (1).)
 なお、化合物(11)において、R4がフェノールのパラ位に結合した化合物は好ましくない。 In the compound (11), a compound in which R 4 is bonded to the para position of phenol is not preferable.
Figure JPOXMLDOC01-appb-C000034
(式(12)において、R5およびmは、式(1)中のR5およびmと同義であり、X'は、ハロゲン原子である。)
 上記工程(i)は、従来公知の方法を適用できる。
Figure JPOXMLDOC01-appb-C000034
(In the formula (12), R 5 and m are as defined and R 5 and m in the formula (1), X 'is a halogen atom.)
A conventionally known method can be applied to the step (i).
 上記工程(ii)は、従来公知の方法を適用することができ、例えば、上記化合物(9)を、酸化剤および溶媒の存在下で反応させればよい。 In the step (ii), a conventionally known method can be applied. For example, the compound (9) may be reacted in the presence of an oxidizing agent and a solvent.
 酸化剤としては、次亜塩素酸および次亜臭素酸などの次亜ハロゲン酸、これらの塩、ならびに塩素などのハロゲン等を挙げることができる。
 化合物(9)と酸化剤とのモル比(酸化剤/化合物(9))は、好ましくは2~3、さらに好ましくは2.1~2.3である。
Examples of the oxidizing agent include hypohalous acids such as hypochlorous acid and hypobromite, salts thereof, and halogens such as chlorine.
The molar ratio of compound (9) to oxidant (oxidant / compound (9)) is preferably 2 to 3, more preferably 2.1 to 2.3.
 また、溶媒としては、特に制限されないが、上記酸化剤と反応し難いものであって、化合物(9)の溶解性の高い溶媒が望ましく、例えば、メタノール、酢酸、トルエン、クロロベンゼン、ジオキサンおよびこれらを含む混合溶媒を挙げることができる。
 溶媒の使用量は、化合物(9)1gあたり、通常は0.1~50mlである。
The solvent is not particularly limited, but is preferably a solvent that does not easily react with the oxidizing agent and has high solubility for the compound (9). For example, methanol, acetic acid, toluene, chlorobenzene, dioxane, and these are used. The mixed solvent containing can be mentioned.
The amount of the solvent to be used is generally 0.1 to 50 ml per 1 g of compound (9).
 また、この工程(ii)の条件は特に限定されないが、反応温度は、通常は0℃~溶媒の沸点以下の温度、好ましくは10~40℃であり;反応時間は、通常は0.1~10時間である。 The conditions for this step (ii) are not particularly limited, but the reaction temperature is usually from 0 ° C. to the boiling point of the solvent, preferably from 10 to 40 ° C .; the reaction time is usually from 0.1 to 10 hours.
 上記工程(iii)は、従来公知の方法で製造することができ、例えば、上記化合物(10)と上記化合物(11)とを、酸触媒の存在下で反応させればよい。 The step (iii) can be produced by a conventionally known method. For example, the compound (10) and the compound (11) may be reacted in the presence of an acid catalyst.
 化合物(10)と化合物(11)とのモル比(化合物(11)/化合物(10))は、通常は4~50、好ましくは4~10である。 The molar ratio of compound (10) to compound (11) (compound (11) / compound (10)) is usually from 4 to 50, preferably from 4 to 10.
 酸触媒としては、例えば、塩化水素ガス、塩酸、硫酸およびリン酸等の無機酸ならびにP-トルエンスルホン酸、シュウ酸およびメタンスルホン酸等の有機酸を挙げることができる。
 化合物(10)と酸触媒との重量比(酸触媒/化合物(10))は、好ましくは0.05~1、さらに好ましくは0.3~0.7である。
Examples of the acid catalyst include inorganic acids such as hydrogen chloride gas, hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as P-toluenesulfonic acid, oxalic acid and methanesulfonic acid.
The weight ratio of the compound (10) to the acid catalyst (acid catalyst / compound (10)) is preferably 0.05 to 1, more preferably 0.3 to 0.7.
 また、工程(iii)では、上記酸触媒と共に適当な助触媒、例えばメチルメルカプタン、エチルメルカプタン、ドデシルメルカプタンおよび/またはオクチルメルカプタン等のアルキルメルカプタン類などを添加して反応を促進させることができる。
 化合物(10)と助触媒との重量比(助触媒/化合物(10))は、好ましくは0.01~0.1、さらに好ましくは0.02~0.06である。
In the step (iii), an appropriate cocatalyst, for example, an alkyl mercaptan such as methyl mercaptan, ethyl mercaptan, dodecyl mercaptan and / or octyl mercaptan can be added together with the acid catalyst to promote the reaction.
The weight ratio of the compound (10) to the promoter (promoter / compound (10)) is preferably 0.01 to 0.1, more preferably 0.02 to 0.06.
 工程(iii)では、必要に応じて溶媒を用いてもよく、例えば、ベンゼン、トルエンおよびキシレン等の芳香族化合物、n-ヘキサン、シクロヘキサンおよびn-ペンタン等の飽和炭化水素、メタノールおよびt-ブタノール等のアルコール類などを適宣単独で、あるいは混合して使用することができる。
 化合物(11)と溶媒との重量比(溶媒/化合物(11))は、好ましくは0.01~10、さらに好ましくは0.1~2である。
In the step (iii), a solvent may be used as necessary. For example, aromatic compounds such as benzene, toluene and xylene, saturated hydrocarbons such as n-hexane, cyclohexane and n-pentane, methanol and t-butanol Alcohols such as can be used alone or in combination.
The weight ratio of the compound (11) to the solvent (solvent / compound (11)) is preferably 0.01 to 10, more preferably 0.1 to 2.
 また、この工程(iii)の条件は特に限定されないが、反応温度は、通常は0℃~60℃、好ましくは10~40℃であり;反応時間は、通常は1~10時間、好ましくは、1~5時間である。 The conditions for this step (iii) are not particularly limited, but the reaction temperature is usually from 0 ° C. to 60 ° C., preferably from 10 to 40 ° C .; the reaction time is usually from 1 to 10 hours, preferably 1-5 hours.
 上記工程(iv)は、従来公知の方法で製造することができ、例えば、化合物(11')(上記化合物(4)においてm=0である化合物)と、アルキレンカーボネートまたは上記化合物(12)とを、塩基触媒の存在下で反応させればよい。 The step (iv) can be produced by a conventionally known method. For example, the compound (11 ′) (a compound in which m = 0 in the compound (4)) and an alkylene carbonate or the compound (12) May be reacted in the presence of a base catalyst.
 化合物(11')とアルキレンカーボネートとのモル比(アルキレンカーボネート/化合物(11'))は、通常は4~20、好ましくは4~10であり、化合物(11')と化合物(12)とのモル比(化合物(12)/化合物(11'))は、通常は4~20、好ましくは4~10である。 The molar ratio of compound (11 ′) to alkylene carbonate (alkylene carbonate / compound (11 ′)) is usually from 4 to 20, preferably from 4 to 10, and the compound (11 ′) and compound (12) The molar ratio (compound (12) / compound (11 ′)) is usually 4 to 20, preferably 4 to 10.
 ここで、アルキレンカーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネートおよびブチレンカーボネートなどを挙げることができる。 Here, examples of the alkylene carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate.
 塩基触媒としては、例えば、炭酸カリウムおよび炭酸ナトリウムなどの炭酸塩、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラメチルアンモニウムブロミドおよびテトラメチルアンモニウムクロリド等の四級アンモニウム塩などを挙げることができる。
 化合物(11')と、塩基触媒との重量比(塩基触媒/化合物(11'))は、好ましくは0.01~1、さらに好ましくは0.05~0.5である。
Examples of the base catalyst include carbonates such as potassium carbonate and sodium carbonate, quaternary ammonium salts such as tetrabutylammonium bromide, tetrabutylammonium chloride, tetramethylammonium bromide and tetramethylammonium chloride.
The weight ratio of the compound (11 ′) to the base catalyst (base catalyst / compound (11 ′)) is preferably 0.01 to 1, more preferably 0.05 to 0.5.
 工程(iv)では、さらに、必要に応じて溶媒を用いてもよく、例えば、N,N-ジメチルホルムアミド、アセトニトリルおよび/またはジメチルスルホキシド等の極性非プロトン性溶媒などを適宣単独であるいは混合して使用することができる。
 化合物(11')と溶媒との重量比(溶媒/化合物(11'))は、好ましくは0.01~10、さらに好ましくは0.1~2である。
In step (iv), a solvent may be used as necessary. For example, a polar aprotic solvent such as N, N-dimethylformamide, acetonitrile and / or dimethyl sulfoxide, etc. may be used alone or in combination. Can be used.
The weight ratio of the compound (11 ′) to the solvent (solvent / compound (11 ′)) is preferably 0.01 to 10, and more preferably 0.1 to 2.
 また、この工程(iv)の条件は特に限定されないが、反応温度は、通常は0℃~200℃、好ましくは30~160℃であり;反応時間は、通常は1~10時間、好ましくは、1~5時間である。 The conditions for this step (iv) are not particularly limited, but the reaction temperature is usually 0 ° C. to 200 ° C., preferably 30 to 160 ° C .; the reaction time is usually 1 to 10 hours, preferably 1-5 hours.
 〈化合物(5)においてYがR9SO3-で表される基である化合物の合成方法〉
 なお、化合物(5)において、YがR9SO3-で表される基(ただし、R9は、炭素数1~20の炭化水素基である。)である化合物は、化合物(5)においてYがヒドロキシル基である化合物と、下記式(13)で表される化合物(以下「化合物(13)」ともいう。)とを反応させることで得ることができる(以下「反応(V)」ともいう。)。
<Synthesis Method of Compound (5) wherein Y is a Group Represented by R 9 SO 3 —>
In the compound (5), the compound in which Y is a group represented by R 9 SO 3 — (wherein R 9 is a hydrocarbon group having 1 to 20 carbon atoms) It can be obtained by reacting a compound in which Y is a hydroxyl group with a compound represented by the following formula (13) (hereinafter also referred to as “compound (13)”) (hereinafter referred to as “reaction (V)”). Say.).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(13)において、R9は、炭素数1~20の炭化水素基であり、Xは、ハロゲン原子である。R9における炭素数1~20の炭化水素基としては、上記R1における炭素数1~20の1価の炭化水素基と同様の官能基を挙げることができる。 In the formula (13), R 9 is a hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom. Examples of the hydrocarbon group having 1 to 20 carbon atoms in R 9 include the same functional groups as the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 .
 上記反応(V)において、化合物(5)と化合物(13)とのモル比(化合物(13)/化合物(5))は、通常は1~20、好ましくは2~5である。 In the reaction (V), the molar ratio of the compound (5) to the compound (13) (compound (13) / compound (5)) is usually 1 to 20, preferably 2 to 5.
 反応(V)は、塩基触媒の存在下で行うことができる。塩基触媒としては、N,N-ジメチルアミノピリジン、トリエチルアミン、ピリジンおよび炭酸ナトリウムなどが挙げられる。化合物(13)と塩基触媒とのモル比(塩基触媒/化合物(13))は、通常は0.01~10、好ましくは0.1~5である。 Reaction (V) can be performed in the presence of a base catalyst. Examples of the base catalyst include N, N-dimethylaminopyridine, triethylamine, pyridine and sodium carbonate. The molar ratio of the compound (13) to the base catalyst (base catalyst / compound (13)) is usually 0.01 to 10, preferably 0.1 to 5.
 また、反応(V)において、N,N-ジメチルアセトアミド、塩化メチレン、クロロホルム、四塩化炭素および/または1,2-ジクロロエタンなどの有機溶媒や水などを溶媒として用いてもよい。溶媒の使用量は、化合物(5)1gあたり、通常は0.1~50mlであり、1~20mlが好ましく、2~10mlが特に好ましい。 In the reaction (V), an organic solvent such as N, N-dimethylacetamide, methylene chloride, chloroform, carbon tetrachloride and / or 1,2-dichloroethane, water or the like may be used as a solvent. The amount of the solvent to be used is generally 0.1-50 ml, preferably 1-20 ml, particularly preferably 2-10 ml per g of compound (5).
 上記反応(V)の条件は特に限定されないが、反応温度は、通常は-30~120℃、好ましくは-20~90℃、特に好ましくは-10~80℃であり;反応時間は、通常は0.1~48時間、好ましくは0.5~24時間、特に好ましくは1~10時間である。 The conditions for the reaction (V) are not particularly limited, but the reaction temperature is usually −30 to 120 ° C., preferably −20 to 90 ° C., particularly preferably −10 to 80 ° C .; the reaction time is usually 0.1 to 48 hours, preferably 0.5 to 24 hours, particularly preferably 1 to 10 hours.
 [酸化防止剤]
 本発明に係る酸化防止剤は、上記化合物(1)を含有すればよく、本質的に上記化合物(1)のみからなることが好ましく、化合物(1-1)または化合物(1-2)を含有することがより好ましい。
[Antioxidant]
The antioxidant according to the present invention only needs to contain the compound (1), and preferably consists essentially of the compound (1), and contains the compound (1-1) or the compound (1-2). More preferably.
 上記化合物(1-1)および化合物(1-2)は、耐熱性および樹脂との相溶性などに優れるため、特に、加工や成形の際などにおいて、高温に曝されることのある樹脂および樹脂成型体の酸化防止剤として好適に使用することができる。 Since the compound (1-1) and the compound (1-2) are excellent in heat resistance and compatibility with the resin, the resin and the resin that are exposed to a high temperature particularly during processing and molding. It can be suitably used as an antioxidant for molded articles.
 [離型剤]
 本発明に係る離型剤は、上記化合物(1)を含有すればよく、本質的に上記化合物(1)のみからなることが好ましく、化合物(1-3)を含有することがより好ましい。
[Release agent]
The release agent according to the present invention only needs to contain the compound (1), preferably consists essentially of the compound (1), and more preferably contains the compound (1-3).
 上記化合物(1-3)は、耐熱性および樹脂との相溶性などに優れるため、特に、加工や成形の際などにおいて、高温に曝されることのある樹脂および樹脂成型体の離型剤として好適に使用することができる。 Since the compound (1-3) is excellent in heat resistance and compatibility with the resin, it is particularly suitable as a mold release agent for resins and resin moldings that may be exposed to high temperatures during processing and molding. It can be preferably used.
 [樹脂組成物]
 本発明に係る樹脂組成物は、上記化合物(1)を含有する。本発明の樹脂組成物は、樹脂と上記化合物(1)とを含有することが好ましい。
[Resin composition]
The resin composition according to the present invention contains the compound (1). The resin composition of the present invention preferably contains a resin and the compound (1).
 前記樹脂としては、環状オレフィン系重合体、アクリル樹脂(PMMA)、ポリカーボネート樹脂(PC)、ポリアリレート樹脂(PAR)、ポリサルホン樹脂(PSF)、ポリエーテルサルホン樹脂(PES)、ポリパラフェニレン樹脂(PPP)、ポリアリーレンエーテルフォスフィンオキシド樹脂(PEPO)、ポリイミド樹脂(PPI)、ポリエーテルイミド樹脂(PEI)およびポリアミドイミド樹脂(PAI)などを挙げることができる。これらの樹脂の中でも、上記化合物(1)との相溶性などの観点から環状オレフィン系重合体が好適に用いられる。 Examples of the resin include cyclic olefin polymer, acrylic resin (PMMA), polycarbonate resin (PC), polyarylate resin (PAR), polysulfone resin (PSF), polyethersulfone resin (PES), polyparaphenylene resin ( PPP), polyarylene ether phosphine oxide resin (PEPO), polyimide resin (PPI), polyetherimide resin (PEI), and polyamideimide resin (PAI). Among these resins, a cyclic olefin polymer is preferably used from the viewpoint of compatibility with the compound (1).
 なお、樹脂組成物において、化合物(1)配合量は、樹脂100質量部に対して、0.05~20質量部であることが好ましく、0.1~10質量部であることがより好ましい。 In the resin composition, the compound (1) content is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin.
 [樹脂成型体]
 本発明に係る樹脂成型体は、上記化合物(1)を含有する。本発明の樹脂成型体は、上記樹脂組成物を成形したものが好ましい。
[Resin molding]
The resin molding which concerns on this invention contains the said compound (1). The resin molded body of the present invention is preferably obtained by molding the above resin composition.
 このような樹脂成型体としては、特に制限されないが、具体的には、包装用資材、建材、自動車用部品、日常雑貨品、農業用資材、医療用器具、デジタルカメラ用レンズ、携帯電話用レンズ、CD、ブルーレイ用ピックアップレンズ、マイクロレンズに代表される光学レンズ、ディスク等の基板、導光板およびプリズムシート等の幅広い用途に用いられている樹脂成型体を挙げることができる。 Such a resin molded body is not particularly limited, but specifically, packaging materials, building materials, automotive parts, daily goods, agricultural materials, medical instruments, digital camera lenses, mobile phone lenses Examples thereof include resin moldings used in a wide range of applications such as optical lenses represented by CDs, Blu-ray pickup lenses, microlenses, substrates such as disks, light guide plates and prism sheets.
 上記化合物(1-1)および化合物(1-2)は、特に耐熱性、樹脂との相溶性に優れる。該化合物(1-1)および(1-2)を含有する樹脂組成物および樹脂成型体は、保存安定性に優れ、特に、高温に曝されても、着色などの劣化現象が起こりにくい。 The compound (1-1) and the compound (1-2) are particularly excellent in heat resistance and compatibility with the resin. The resin composition and the resin molded body containing the compounds (1-1) and (1-2) are excellent in storage stability, and particularly, deterioration phenomenon such as coloring does not easily occur even when exposed to high temperature.
 上記化合物(1-3)は、特に耐熱性に優れる。該化合物(1-3)を含有する樹脂組成物および樹脂成型体は、離型性に優れ、特に、高温に曝された場合も加工成型性に優れる。 The above compound (1-3) is particularly excellent in heat resistance. The resin composition and resin molding containing the compound (1-3) are excellent in releasability, and particularly excellent in work moldability even when exposed to high temperatures.
 実施例により本発明をより詳細に説明するが、本発明は以下の実施例により制限されない。 The present invention will be described in more detail by way of examples, but the present invention is not limited by the following examples.
 (合成例1)
 滴下ロートと温度計を装着した1L三口フラスコに、下記式(3-A)で表わされる3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシ-フェニル)-プロピルアルコール105.8g(0.4mol)を量り取り、窒素雰囲気下、塩化メチレン500mlを加え溶解し、該フラスコを氷浴で冷却した。この溶液に、トリエチルアミン121g(1.2mol)を加え、次いで溶液温度を5℃以下に保持し、メタンスルホニルクロリド105.4g(0.92mol)を90分間かけて滴下ロートを通じて滴下した。次いで、氷浴をはずし、20℃まで昇温し、20℃で1時間攪拌後、反応液に氷水を加え、塩化メチレン層を分液作業で分取した。この塩化メチレン層を更に蒸留水200mlで分液洗浄し、硫酸マグネシウムで乾燥、ろ過後、溶媒を留去し、粗生成物(メタンスルホネート)を137g得た。
(Synthesis Example 1)
To a 1 L three-necked flask equipped with a dropping funnel and a thermometer, 3- (3 ′, 5′-di-tert-butyl-4′-hydroxy-phenyl) -propyl alcohol represented by the following formula (3-A) 8 g (0.4 mol) was weighed out and dissolved in 500 ml of methylene chloride under a nitrogen atmosphere, and the flask was cooled in an ice bath. To this solution, 121 g (1.2 mol) of triethylamine was added, and then the solution temperature was kept at 5 ° C. or lower, and 105.4 g (0.92 mol) of methanesulfonyl chloride was added dropwise through a dropping funnel over 90 minutes. Next, the ice bath was removed, the temperature was raised to 20 ° C., the mixture was stirred at 20 ° C. for 1 hour, ice water was added to the reaction solution, and the methylene chloride layer was separated by a liquid separation operation. The methylene chloride layer was further washed with 200 ml of distilled water, dried over magnesium sulfate and filtered, and then the solvent was distilled off to obtain 137 g of a crude product (methanesulfonate).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 滴下ロートと温度計を装着した1L三口フラスコに、水素化ナトリウムミネラルオイル懸濁液より精製した水素化ナトリウム3.84g(160mmol)を量り取った。ここに窒素雰囲気下でN,N-ジメチルアセトアミド100mlを加え、懸濁液を作成し、次いで氷浴で冷却した。ついで、下記式(2-A)で表わされる4,4’,4’’,4’’’-[(1-メチルエチリデン)ジ-4-シクロヘキサニル-1-イリデン]テトラキスフェノール18.5g(32mmol)をN,N-ジメチルアセトアミド100mlに溶解し、懸濁液中に、30分間かけて滴下した。この溶液を氷冷下30分間攪拌し、ついで、この溶液中に、上記で合成したメタンスルホネート54.8g(160mmol)をN,N-ジメチルアセトアミド200mlに溶解した溶液を、30分間かけて滴下した。30分後、この溶液を室温まで昇温し、さらに30分後、70℃まで加温した。5時間後、反応液を室温まで冷却し、塩化アンモニウムを反応液に注ぎ、反応を終了させた。反応後の溶液を酢酸エチル300mlで3回抽出後、この有機層を集めて、蒸留水で洗浄し、これを減圧留去し、粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、酢酸エチル-ヘキサン留分より白色固体35.1gを得た。更に、この白色固体35.1gをジエチルエーテル-ヘキサンの混合溶媒で再結晶化することにより、下記式(1-A)で表わされる目的物を30.3g(収率61%)得た。 3. In a 1 L three-necked flask equipped with a dropping funnel and a thermometer, 3.84 g (160 mmol) of sodium hydride purified from a sodium hydride mineral oil suspension was weighed. To this, 100 ml of N, N-dimethylacetamide was added under a nitrogen atmosphere to form a suspension, and then cooled in an ice bath. Next, 18.5 g of 4,4 ′, 4 ″, 4 ′ ″-[(1-methylethylidene) di-4-cyclohexanyl-1-ylidene] tetrakisphenol represented by the following formula (2-A) (32 mmol) was dissolved in 100 ml of N, N-dimethylacetamide and added dropwise to the suspension over 30 minutes. This solution was stirred for 30 minutes under ice-cooling, and then a solution of 54.8 g (160 mmol) of the methanesulfonate synthesized above in 200 ml of N, N-dimethylacetamide was dropped into this solution over 30 minutes. . After 30 minutes, the solution was warmed to room temperature and after another 30 minutes, it was warmed to 70 ° C. After 5 hours, the reaction solution was cooled to room temperature, and ammonium chloride was poured into the reaction solution to complete the reaction. The solution after the reaction was extracted with 300 ml of ethyl acetate three times, and the organic layer was collected and washed with distilled water, and this was distilled off under reduced pressure to obtain a crude product. This crude product was purified by silica gel column chromatography to obtain 35.1 g of a white solid from an ethyl acetate-hexane fraction. Further, 35.1 g of this white solid was recrystallized with a mixed solvent of diethyl ether-hexane to obtain 30.3 g (yield 61%) of the desired product represented by the following formula (1-A).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 この化合物の1H-NMR測定(ブルカー株式会社製 AVANCE500型)、MS分析(日本ウォーターズ株式会社製 ACQUITY UPLC&reg;システム並びにSYNAPT HDMS(High Definition Mass Spectrometry)システム)およびTG-DTAによる分析(理学電気株式会社製TG8120)を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 1 H-NMR measurement of this compound (AVANCE500 type manufactured by Bruker Co., Ltd.), MS analysis (ACQUITY UPLC &reg; system manufactured by Nippon Waters Co., Ltd.) and analysis by SYNPT HDMS (High Definition Mass Spectrometry) system and TG-DTA The company made TG8120) and confirmed that the desired compound was obtained. The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.23ppm(芳香環水素、4H)、7.03ppm(芳香環水素、4H)、6.99ppm(芳香環水素、4H)、6.96ppm(芳香環水素、4H)、6.83ppm(芳香環水素、4H)、6.72ppm(芳香環水素、4H)、5.01ppm(フェノール性水酸基、4H)、3.95ppm(芳香環-O-C 2-、4H)、3.89ppm(芳香環-O-C 2-、4H)、2.73ppm~2.65ppm(12H)、2.03ppm(芳香環-CH2-C 2-CH2-、8H)、1.84ppm(シクロヘキサン環状水素、4H)、1.58ppm~1.21ppm(14H)、1.41ppm(tert-ブチル基、72H)、0.52ppm(メチル基、6H)。 1 H-NMR (solvent: CDCl 3 ) chemical shift σ: 7.23 ppm (aromatic ring hydrogen, 4H), 7.03 ppm (aromatic ring hydrogen, 4H), 6.99 ppm (aromatic ring hydrogen, 4H), 6.96 ppm (Aromatic ring hydrogen, 4H), 6.83 ppm (aromatic ring hydrogen, 4H), 6.72 ppm (aromatic ring hydrogen, 4H), 5.01 ppm (phenolic hydroxyl group, 4H), 3.95 ppm (aromatic ring —O—) C H 2 -, 4H), 3.89ppm ( aromatic -O-C H 2 -, 4H ), 2.73ppm ~ 2.65ppm (12H), 2.03ppm ( aromatic ring -CH 2 -C H 2 - CH 2- , 8H), 1.84 ppm (cyclohexane cyclic hydrogen, 4H), 1.58 ppm to 1.21 ppm (14H), 1.41 ppm (tert-butyl group, 72H), 0.52 ppm (methyl group, 6H) .
 LC-MS:[M++Na]=1585.1150 (calc.1185.1106)、[M++K]=1601.1073 (calc. 1601.0846)
 TG-DTA:融点=170℃]
LC-MS: [M + + Na] = 1585.1150 (calc. 1185.1106), [M + + K] = 1601.1073 (calc. 1601.0846)
TG-DTA: melting point = 170 ° C.]
 (合成例2)
 上記式(2-A)で表わされる4,4’,4’’,4’’’-[(1-メチルエチリデン)ジ-4-シクロヘキサニル-1-イリデン]テトラキスフェノール25.9g(45mmol)、および、下記式(3-B)で表わされる3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシ-フェニル)-プロピオン酸56.2g(202.5mmol)を、2L三口フラスコに量り取り、塩化メチレン800mlを加え溶解し、氷浴で冷却した。冷却後、この溶液に、窒素雰囲気下でジシクロヘキシルカルボジイミド44.5g(216mmol)およびN,N-ジメチルアミノピリジン2.7g(25mmol)を加え攪拌した。30分後、室温まで反応液を昇温させ、室温25℃で4時間攪拌した。4時間後、反応液中で析出した溶媒不溶分を、吸引ろ過により除去し、溶媒可溶分を集めて減圧留去した。残渣溶液が総量500ml程度になった所で、該残渣溶液を分液ロートに移し、10%希塩酸100mlで洗浄し、次いで、飽和炭酸水素ナトリウム水溶液100mlで洗浄し、蒸留水100mlで2回洗浄した後、硫酸マグネシウムで乾燥させた。乾燥後の溶液を、ろ過、減圧留去し、目的物の粗生成物として白色固体を得た。この白色固体をn-ヘキサンで再結晶化することにより、下記式(1-B)で表わされる目的物52.6g(収率72%)を得た。
(Synthesis Example 2)
4,4 ′, 4 ″, 4 ′ ″-[(1-methylethylidene) di-4-cyclohexanyl-1-ylidene] tetrakisphenol 25.9 g (45 mmol) represented by the above formula (2-A) ), And 56.2 g (202.5 mmol) of 3- (3 ′, 5′-di-tert-butyl-4′-hydroxy-phenyl) -propionic acid represented by the following formula (3-B) The solution was weighed into a three-necked flask, dissolved in 800 ml of methylene chloride, and cooled in an ice bath. After cooling, 44.5 g (216 mmol) of dicyclohexylcarbodiimide and 2.7 g (25 mmol) of N, N-dimethylaminopyridine were added to the solution and stirred under a nitrogen atmosphere. After 30 minutes, the reaction solution was warmed to room temperature and stirred at room temperature of 25 ° C. for 4 hours. After 4 hours, the solvent-insoluble matter precipitated in the reaction solution was removed by suction filtration, and the solvent-soluble matter was collected and distilled off under reduced pressure. When the total amount of the residue solution reached about 500 ml, the residue solution was transferred to a separatory funnel, washed with 100 ml of 10% dilute hydrochloric acid, then washed with 100 ml of saturated aqueous sodium hydrogen carbonate solution, and washed twice with 100 ml of distilled water. Then, it was dried with magnesium sulfate. The dried solution was filtered and evaporated under reduced pressure to obtain a white solid as a crude product of the target product. The white solid was recrystallized from n-hexane to obtain 52.6 g (yield 72%) of the target compound represented by the following formula (1-B).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 この化合物の1H-NMR測定(ブルカー株式会社製 AVANCE500型 )、MS分析(日本ウォーターズ株式会社製 ACQUITY UPLC&reg;システム並びにSYNAPT HDMS(High Definition Mass Spectrometry)システム)、TG-DTAによる分析(理学電気株式会社製TG8120)を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 1 H-NMR measurement (AVANCE500 type manufactured by Bruker Co., Ltd.), MS analysis (ACQUITY UPLC &reg; system manufactured by Nihon Waters Co., Ltd.) system and SYNAPT HDMS (High Definition Mass Spectrometry) system, analysis by TG-DTA The company made TG8120) and confirmed that the desired compound was obtained. The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.32ppm(芳香環水素、4H)、7.12ppm(芳香環水素、4H)、7.04ppm(芳香環水素、4H)、7.02ppm(芳香環水素、4H)、6.99ppm(芳香環水素、4H)、6.85ppm(芳香環水素、4H)、5.08ppm(フェノール性水酸基、4H)、2.97ppm(芳香環-OCO-C 2-、4H)、2.82ppm(芳香環-OCO-C 2-、4H)、2.66ppm(シクロヘキサン環状水素、2H)、1.90ppm~1.21ppm(16H)、1.43ppm(tert-ブチル基、72H)、0.51ppm(メチル基、6H)。 1 H-NMR (solvent: CDCl 3 ) Chemical shift σ: 7.32 ppm (aromatic ring hydrogen, 4H), 7.12 ppm (aromatic ring hydrogen, 4H), 7.04 ppm (aromatic ring hydrogen, 4H), 7.02 ppm (Aromatic ring hydrogen, 4H), 6.99 ppm (aromatic ring hydrogen, 4H), 6.85 ppm (aromatic ring hydrogen, 4H), 5.08 ppm (phenolic hydroxyl group, 4H), 2.97 ppm (aromatic ring—OCO—) C H 2- , 4H), 2.82 ppm (aromatic ring-OCO-C H 2- , 4H), 2.66 ppm (cyclohexane cyclic hydrogen, 2H), 1.90 ppm to 1.21 ppm (16H), 1.43 ppm (Tert-butyl group, 72H), 0.51 ppm (methyl group, 6H).
 LC-MS:[M++Na]=1641.0172 (calc. 1641.0277)、[M++K]=1657.0240 (calc. 1657.0016)
 TG-DTA :融点=181℃
LC-MS: [M + + Na] = 1641.0172 (calc. 1641.0277), [M + + K] = 1657.240 (calc. 1657.0016)
TG-DTA: Melting point = 181 ° C.
 (合成例3)
 上記式(2-A)で表わされる4,4’,4’’,4’’’-[(1-メチルエチリデン)ジ-4-シクロヘキサニル-1-イリデン]テトラキスフェノール100g(173mmol)、エチレンカーボネート 122g(1384mmol)、テトラブチルアンモニウムブロミド 11.1g(35mmol)およびN,N-ジメチルホルムアミド100mlを、ジムロート冷却管並びに温度計を装着した500ml三口フラスコに加え、150℃で4時間加熱攪拌を行なった。反応液を冷却し、N,N-ジメチルホルムアミドを減圧留去した後にクロロホルム500mlを加え分液ロートに移した。ここに5%水酸化カリウム水溶液100mlを加え、有機層を分取した。この有機層にさらに5%水酸化カリウム水溶液100mlを加え、有機層を分取した。その後、この溶液を蒸留水100mlで2度洗浄した。ここで得たクロロホルム溶液を硫酸マグネシウムで乾燥し、溶媒を減圧留去し、粗結晶を得た。この粗結晶を酢酸エチルで再結晶することで、下記式(2-B)で表わされる化合物を111g(収率85%)得た。
(Synthesis Example 3)
4,4 ′, 4 ″, 4 ′ ″-[(1-methylethylidene) di-4-cyclohexanyl-1-ylidene] tetrakisphenol 100 g (173 mmol) represented by the above formula (2-A), Add 122 g (1384 mmol) of ethylene carbonate, 11.1 g (35 mmol) of tetrabutylammonium bromide and 100 ml of N, N-dimethylformamide to a 500 ml three-necked flask equipped with a Dimroth condenser and a thermometer, and stir at 150 ° C. for 4 hours. I did it. The reaction mixture was cooled, N, N-dimethylformamide was distilled off under reduced pressure, 500 ml of chloroform was added, and the mixture was transferred to a separatory funnel. 100 ml of 5% aqueous potassium hydroxide solution was added thereto, and the organic layer was separated. To this organic layer was further added 100 ml of 5% aqueous potassium hydroxide solution, and the organic layer was separated. Thereafter, this solution was washed twice with 100 ml of distilled water. The chloroform solution obtained here was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain crude crystals. The crude crystals were recrystallized from ethyl acetate to obtain 111 g (yield 85%) of a compound represented by the following formula (2-B).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 この化合物の1H-NMR測定(ブルカー株式会社製 AVANCE500型)により、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 It was confirmed that the target compound was obtained by 1 H-NMR measurement of this compound (AVANCE500 type manufactured by Bruker Co., Ltd.). The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.25ppm(芳香環水素、4H)、7.05ppm(芳香環水素、4H)、6.86ppm(芳香環水素、4H)、6.75ppm(芳香環水素、4H)、4.07ppm(芳香環-O-C 2-、4H)、4.01ppm(芳香環-O-C 2-、4H)、3.95ppm(芳香環-O-CH2-C 2-OH、4H)、3.90ppm(芳香環-O-CH2-C 2-OH、4H)、2.63ppm(シクロヘキサン環状水素、4H)、1.99ppm(水酸基水素、2H)、1.94ppm(水酸基水素、2H)、1.84ppm(シクロヘキサン環状水素、4H)、1.60ppm(シクロヘキサン環状水素、4H)、1.38ppm(シクロヘキサン環状水素、2H)、1.20ppm(シクロヘキサン環状水素、4H)、0.52ppm(メチル基、6H)。 1 H-NMR (solvent: CDCl 3 ) chemical shift σ: 7.25 ppm (aromatic ring hydrogen, 4H), 7.05 ppm (aromatic ring hydrogen, 4H), 6.86 ppm (aromatic ring hydrogen, 4H), 6.75 ppm (Aromatic ring hydrogen, 4H), 4.07 ppm (aromatic ring —O—C H 2 —, 4H), 4.01 ppm (aromatic ring —O—C H 2 —, 4H), 3.95 ppm (aromatic ring —O -CH 2 -C H 2 -OH, 4H ), 3.90ppm ( aromatic -O-CH 2 -C H 2 -OH , 4H), 2.63ppm ( cyclohexane cyclic hydrogen, 4H), 1.99ppm (hydroxyl Hydrogen, 2H), 1.94 ppm (hydroxyl hydrogen, 2H), 1.84 ppm (cyclohexane cyclic hydrogen, 4H), 1.60 ppm (cyclohexane cyclic hydrogen, 4H), 1.38 ppm (cyclohexane cyclic hydrogen, 2H). 20 pm (cyclohexane cyclic hydrogen, 4H), 0.52ppm (methyl, 6H).
 上記工程で合成した上記式(2-B)で表わされる化合物3.07g(4.09mmol)および上記式(3-B)で表わされる3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシ-フェニル)-プロピオン酸5.0g(18.0mmol)を100mL三口フラスコに量り取り、塩化メチレン40mlを加え溶解した。この溶液に、窒素雰囲気下でジシクロヘキシルカルボジイミド4.05g(19.6mmol)およびN,N-ジメチルアミノピリジン0.25g(2.0mmol)を加え攪拌した。4時間攪拌後、反応液中で、析出した溶媒不溶分を吸引ろ過により除去し、溶媒可溶分を集めて減圧留去した。該残渣溶液をクロロホルム100mlに溶解し、分液ロートに移し、10%希塩酸20mlで洗浄し、次いで、飽和炭酸水素ナトリウム水溶液20mlで洗浄し、さらに蒸留水20mlで2回洗浄した後、硫酸マグネシウムで乾燥させた。乾燥後の溶液を、ろ過、減圧留去させ、目的物の粗生成物として白色固体を得た。この白色固体をシリカゲルカラムクロマトグラフィーで精製し、酢酸エチル:n-ヘキサン留分より、下記式(1-C)で表わされる目的物4.23g(収率58%)を得た。 3.07 g (4.09 mmol) of the compound represented by the above formula (2-B) synthesized in the above step and 3- (3 ′, 5′-di-tert-butyl-) represented by the above formula (3-B) 4'-Hydroxy-phenyl) -propionic acid (5.0 g, 18.0 mmol) was weighed into a 100 mL three-necked flask and dissolved in 40 mL of methylene chloride. To this solution, 4.05 g (19.6 mmol) of dicyclohexylcarbodiimide and 0.25 g (2.0 mmol) of N, N-dimethylaminopyridine were added and stirred under a nitrogen atmosphere. After stirring for 4 hours, the solvent-insoluble matter deposited in the reaction solution was removed by suction filtration, and the solvent-soluble matter was collected and distilled off under reduced pressure. The residue solution is dissolved in 100 ml of chloroform, transferred to a separatory funnel, washed with 20 ml of 10% dilute hydrochloric acid, then washed with 20 ml of a saturated aqueous sodium bicarbonate solution, and further washed twice with 20 ml of distilled water, and then with magnesium sulfate. Dried. The solution after drying was filtered and evaporated under reduced pressure to obtain a white solid as a crude product of the target product. This white solid was purified by silica gel column chromatography, and 4.23 g (yield 58%) of the target compound represented by the following formula (1-C) was obtained from the ethyl acetate: n-hexane fraction.
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
この化合物の1H-NMR測定(ブルカー株式会社製 AVANCE500型 )、TG-DTAによる分析(理学電気株式会社製 TG8120)を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 This compound was subjected to 1 H-NMR measurement (AVANCE500 type, manufactured by Bruker Co., Ltd.) and analyzed by TG-DTA (TG8120, manufactured by Rigaku Corporation), and it was confirmed that the target compound was obtained. The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.25ppm(芳香環水素、4H)、7.05ppm(芳香環水素、4H)、6.98ppm(芳香環水素、8H)、6.84ppm(芳香環水素、4H)、6.73ppm(芳香環水素、4H)、5.05ppm(フェノール性水酸基、4H)、4.43ppm(芳香環-O-CH2-C 2-OC=O、4H)、4.38ppm(芳香環-O-CH2-C 2-OC=O)、4.14ppm(芳香環-O-C 2-、4H)、4.08ppm(芳香環-O-C 2-、4H)、2.87ppm(芳香環-CH2-C 2-C=O、4H)、2.63ppm(芳香環-C 2 -CH2-C=O、シクロヘキサン環状水素、12H)、1.84ppm(シクロヘキサン環状水素、4H)、1.60ppm(シクロヘキサン環状水素、4H)、1.38~1.20ppm(t-ブチル基、シクロヘキサン環状水素、78H)、0.52ppm(メチル基、6H)。 1 H-NMR (solvent: CDCl 3 ) Chemical shift σ: 7.25 ppm (aromatic ring hydrogen, 4H), 7.05 ppm (aromatic ring hydrogen, 4H), 6.98 ppm (aromatic ring hydrogen, 8H), 6.84 ppm (aromatic hydrogen, 4H), 6.73ppm (aromatic hydrogen, 4H), 5.05 ppm (phenolic hydroxyl group, 4H), 4.43ppm (aromatic -O-CH 2 -C H 2 -OC = O, 4H), 4.38ppm (aromatic -O-CH 2 -C H 2 -OC = O), 4.14ppm ( aromatic -O-C H 2 -, 4H ), 4.08ppm ( aromatic -O- C H 2 -, 4H), 2.87ppm ( aromatic ring -CH 2 -C H 2 -C = O , 4H), 2.63ppm ( aromatic ring -C H 2 -CH 2 -C = O , cyclohexane cyclic hydrogen , 12H), 1.84 ppm (cyclohexane cyclic hydrogen, 4H), 1. 60 ppm (cyclohexane cyclic hydrogen, 4H), 1.38 to 1.20 ppm (t-butyl group, cyclohexane cyclic hydrogen, 78H), 0.52 ppm (methyl group, 6H).
 (合成例4)
 上記式(2-A)で表わされる4,4',4'',4'''-[(1-メチルエチリデン)ジ-4-シクロヘキサニル-1-イリデン]テトラキスフェノール5.0g(8.67mmol)、炭酸カリウム5.27g(2.2mmol)およびジメチルアセトアミド75mlを、ジムロート冷却管並びに温度計を装着した500ml三口フラスコに加え、140℃で1時間加熱攪拌を行なった。続いて、反応液を室温まで放冷後、2-クロロエタノール5.58g(69.35mmol)、テトラブチルアンモニウムブロミド0.28g(0.87mmol)を加え、140℃で2時間加熱攪拌した。その後、反応容器を室温まで冷却し、蒸留水を100ml加え、次いで、酢酸エチル100mlで有機層を抽出した。この抽出操作を更に2回繰り返した後、ここで得た有機層を集め、更に蒸留水100mlで2回洗浄作業を行なった。有機層を減圧留去した後、目的化合物の粗生成物を得た。ここで得た粗生成物をシリカゲルカラムクロマトグラフィーで精製を行い、酢酸エチル-n-ヘキサン留分より、上記式(2-B)で表わされる化合物5.67g(収率87%)を得た。
(Synthesis Example 4)
4,4 ′, 4 ″, 4 ′ ″-[(1-methylethylidene) di-4-cyclohexanyl-1-ylidene] tetrakisphenol 5.0 g (8) represented by the above formula (2-A) .67 mmol), 5.27 g (2.2 mmol) of potassium carbonate and 75 ml of dimethylacetamide were added to a 500 ml three-necked flask equipped with a Dimroth condenser and a thermometer, and the mixture was heated and stirred at 140 ° C. for 1 hour. Subsequently, the reaction solution was allowed to cool to room temperature, 5.58 g (69.35 mmol) of 2-chloroethanol and 0.28 g (0.87 mmol) of tetrabutylammonium bromide were added, and the mixture was heated and stirred at 140 ° C. for 2 hours. Thereafter, the reaction vessel was cooled to room temperature, 100 ml of distilled water was added, and then the organic layer was extracted with 100 ml of ethyl acetate. After this extraction operation was repeated twice more, the organic layer obtained here was collected and further washed twice with 100 ml of distilled water. After the organic layer was distilled off under reduced pressure, a crude product of the target compound was obtained. The crude product obtained here was purified by silica gel column chromatography, and 5.67 g (yield 87%) of the compound represented by the above formula (2-B) was obtained from the ethyl acetate-n-hexane fraction. .
 この化合物について1H-NMR測定(ブルカー株式会社製 AVANCE500型)を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 This compound was subjected to 1 H-NMR measurement (AVANCE500 type manufactured by Bruker Co., Ltd.) to confirm that the target compound was obtained. The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.26ppm(芳香環水素、4H)、7.05ppm(芳香環水素、4H)、6.86ppm(芳香環水素、4H)、6.75ppm(芳香環水素、4H)、4.07ppm(芳香環-OC 2-CH2-OH、4H)、4.01ppm(芳香環-OC 2 -CH2-OH、4H)、3.95ppm(芳香環-OCH 2 -C 2 -OH、4H)、3.90ppm(芳香環-OCH 2 -C 2 -OH、4H)、2.63ppm(シクロヘキシル環上水素、4H)、1.98ppm(芳香環-OCH 2 -CH2-O、4H)、1.84ppm(シクロヘキシル環上水素、4H)、1.59ppm(シクロヘキシル環上水素、4H)、1.38ppm(シクロヘキシル環上水素、2H)、1.20ppm(シクロヘキシル環上水素、4H)、0.52ppm(メチル基、6H)。 1 H-NMR (solvent: CDCl 3 ) Chemical shift σ: 7.26 ppm (aromatic ring hydrogen, 4H), 7.05 ppm (aromatic ring hydrogen, 4H), 6.86 ppm (aromatic ring hydrogen, 4H), 6.75 ppm (Aromatic ring hydrogen, 4H), 4.07 ppm (aromatic ring —OC H 2 —CH 2 —OH, 4H), 4.01 ppm (aromatic ring —OC H 2 —CH 2 —OH, 4H), 3.95 ppm ( aromatic ring -OCH 2 -C H 2 -OH, 4H ), 3.90ppm ( aromatic ring -OCH 2 -C H 2 -OH, 4H ), 2.63ppm ( cyclohexyl ring on hydrogen, 4H), 1.98ppm ( aromatic ring -OCH 2 -CH 2 -O H, 4H ), 1.84ppm ( cyclohexyl ring on hydrogen, 4H), 1.59ppm (cyclohexyl ring on hydrogen, 4H), 1.38ppm (cyclohexyl ring on hydrogen, 2H) 1 20 ppm (cyclohexyl ring on hydrogen, 4H), 0.52ppm (methyl, 6H).
 上記工程で合成した上記式(2-B)で表わされる化合物1.85g(2.458mmol)を、滴下ロートおよび温度計を装着した100ml三口フラスコに量り取り、窒素雰囲気下で塩化メチレン15mlを加え溶解し、氷冷した。この溶液にトリエチルアミン1.49g(14.7mmol)を加えた。次いで、2,4,8,10-テトラ-tert-ブチル-6-クロロ-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン5.77g(11.8mmol)を塩化メチレン40mlに溶解した後、滴下ロートを解して、反応溶液中に1時間かけて滴下を行なった。滴下終了30分後、反応容器より氷容器をはずし、室温23℃で更に4時間攪拌した。次いで、反応容器を分液ロートに移し、蒸留水100mlを加え、有機層をクロロホルム100mlで抽出、この抽出作業を3回繰り返した後、有機層を集め、蒸留水で有機層を洗浄した後、有機層を硫酸マグネシウムで乾燥したのち、減圧留去を行い、目的物の粗結晶を得た。この粗結晶について、1H-NMR測定(ブルカー株式会社製AVANCE500型)、GPC分析(東ソー株式会社製HLC-8020)で構造を確認したところ、化合物(1-D)以外に、上記式(2-B)で表わされる化合物の水酸基の1つ~3つが2,4,8,10-テトラ-tert-ブチル-6-クロロ-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシンと反応して得られた化合物が存在することを確認した。 1.85 g (2.458 mmol) of the compound represented by the above formula (2-B) synthesized in the above step was weighed into a 100 ml three-necked flask equipped with a dropping funnel and a thermometer, and 15 ml of methylene chloride was added under a nitrogen atmosphere. Dissolved and ice-cooled. To this solution, 1.49 g (14.7 mmol) of triethylamine was added. Next, 5.77 g (11.8 mmol) of 2,4,8,10-tetra-tert-butyl-6-chloro-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin was added to methylene chloride. After dissolving in 40 ml, the dropping funnel was opened and dripped into the reaction solution over 1 hour. 30 minutes after the completion of dropping, the ice container was removed from the reaction container, and the mixture was further stirred at room temperature of 23 ° C. for 4 hours. Next, the reaction vessel was transferred to a separatory funnel, 100 ml of distilled water was added, the organic layer was extracted with 100 ml of chloroform, this extraction operation was repeated three times, the organic layer was collected, and the organic layer was washed with distilled water. The organic layer was dried over magnesium sulfate and then distilled off under reduced pressure to obtain the target crude crystal. The structure of this crude crystal was confirmed by 1 H-NMR measurement (AVANCE500 type manufactured by Bruker Co., Ltd.) and GPC analysis (HLC-8020 manufactured by Tosoh Corporation). In addition to the compound (1-D), the above formula (2 -B) one to three hydroxyl groups of the compound represented by 2,4,8,10-tetra-tert-butyl-6-chloro-12H-dibenzo [d, g] [1,3,2] dioxa It was confirmed that the compound obtained by reacting with phosphocin was present.
 この粗結晶をイソプロピルアルコールで3回再結晶作業を行い、下記式(1-D)で表わされる目的物の白色結晶を4.59g(収率73%)を得た。 The crude crystal was recrystallized three times with isopropyl alcohol to obtain 4.59 g (yield 73%) of a target white crystal represented by the following formula (1-D).
 この化合物の1H-NMR測定(ブルカー株式会社製 AVANCE500型)、31P-NMR測定(ブルカー株式会社製 AVANCE500型)による分析を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 This compound was analyzed by 1 H-NMR measurement (AVANCE500 type manufactured by Bruker, Inc.) and 31 P-NMR measurement (AVANCE500 type manufactured by Bruker, Inc.), and it was confirmed that the target compound was obtained. The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.30ppm(芳香環水素、8H)、7.26ppm(芳香環水素、12H)、7.08ppm(芳香環水素、4H)、6.92ppm(芳香環水素、4H)、6.81ppm(芳香環水素、4H)、4.78ppm(芳香環-OCH2-C 2 -OP、4H)、4.72ppm(芳香環-OCH2-C 2 -OP、4H)、4.35ppm(芳香環-OC 2 -CH2-OP並びにPh-C 2 -Ph、8H)、4.29ppm(芳香環-OC 2 -CH2-OP、4H)、3.44ppm(Ph-C 2 -Ph、4H)、2.66ppm(シクロヘキシル環上水素、4H)、1.87ppm(シクロヘキシル環上水素、4H)、1.60ppm(シクロヘキシル環上水素、4H)、1.45ppm~1.14ppm(tert-ブチル基、144H、シクロヘキシル環上水素、6H)、0.52ppm(メチル基、6H)。 1 H-NMR (solvent: CDCl 3 ) Chemical shift σ: 7.30 ppm (aromatic ring hydrogen, 8H), 7.26 ppm (aromatic ring hydrogen, 12H), 7.08 ppm (aromatic ring hydrogen, 4H), 6.92 ppm (aromatic hydrogen, 4H), 6.81ppm (aromatic hydrogen, 4H), 4.78 ppm (aromatic ring -OCH 2 -C H 2 -OP, 4H ), 4.72ppm ( aromatic ring -OCH 2 -C H 2 -OP, 4H), 4.35 ppm (aromatic ring —OC H 2 —CH 2 —OP and Ph—C H 2 —Ph, 8H), 4.29 ppm (aromatic ring —OC H 2 —CH 2 —OP, 4H), 3.44 ppm (Ph—C H 2 —Ph, 4H), 2.66 ppm (hydrogen on the cyclohexyl ring, 4H), 1.87 ppm (hydrogen on the cyclohexyl ring, 4H), 1.60 ppm (hydrogen on the cyclohexyl ring) 4H), 1 45ppm ~ 1.14ppm (tert- butyl group, 144H, cyclohexyl ring on hydrogen, 6H), 0.52ppm (methyl, 6H).
 31P-NMR(溶媒:CDCl3) 化学シフトσ:130.22ppm、130.10ppm(ホスファイト,CH2-O-P(芳香族)2)。 31 P-NMR (solvent: CDCl 3 ) Chemical shift σ: 130.22 ppm, 130.10 ppm (phosphite, CH 2 —OP (aromatic) 2 ).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 (評価例1) 酸化防止効果
 ARTON樹脂(ARTON R5300、JSR株式会社製)の10%(wt/wt)トルエン溶液1kgを調製し、そこに、上記合成例1、2または4で合成した化合物または市販の代表的なフェノール系酸化防止剤であるIrganox1010(日本チバガイギー株式会社製)をそれぞれ0.3g(ARTON樹脂に対して0.3%)添加し、溶解させた。次いで、PTFEフィルターでろ過後、トルエン溶液を減圧留去し、濃縮固化した。この固形物をアルゴン雰囲気下、330℃で3時間加熱した後、トルエンに再溶解し、10%(w/w)トルエン溶液に調整した後、黄色度をそれぞれ測定した。結果を表1に示す。
(Evaluation Example 1) Antioxidation Effect 1 kg of a 10% (wt / wt) toluene solution of an ARTON resin (ARTON R5300, manufactured by JSR Corporation) was prepared, and the compound synthesized in Synthesis Example 1, 2 or 4 or Irganox 1010 (manufactured by Nippon Ciba-Geigy Co., Ltd.), which is a typical commercially available phenolic antioxidant, was added in an amount of 0.3 g (0.3% with respect to the ARTON resin) and dissolved. Subsequently, after filtering with a PTFE filter, the toluene solution was distilled off under reduced pressure and concentrated and solidified. The solid was heated at 330 ° C. for 3 hours under an argon atmosphere, then redissolved in toluene, adjusted to a 10% (w / w) toluene solution, and the yellowness was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 (評価例2) 熱分析(TG-DTA)
 上記合成例1~4で合成した化合物、およびIrganox1010(日本チバガイギー株式会社製)Irgafos168(日本チバガイギー株式会社製)、Sumilizer GP(住友化学株式会社製)について、300℃で1時間保持した場合の重量減少率を、TG-DTA(理学電気株式会社製 TG8120)により測定した。
 測定条件:窒素雰囲気で、40℃/minで300℃まで昇温、次いで、300℃で1時間保持し、その重量減少率を算出した。結果を表2に示す。
(Evaluation example 2) Thermal analysis (TG-DTA)
Weights of the compounds synthesized in Synthesis Examples 1 to 4 above, Irganox 1010 (manufactured by Ciba Geigy Japan) Irgafos 168 (manufactured by Ciba Geigy Japan) and Sumilizer GP (manufactured by Sumitomo Chemical Co., Ltd.) at 300 ° C. for 1 hour The decrease rate was measured by TG-DTA (TG8120 manufactured by Rigaku Corporation).
Measurement conditions: In a nitrogen atmosphere, the temperature was raised to 300 ° C. at 40 ° C./min, then held at 300 ° C. for 1 hour, and the weight reduction rate was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 上記合成例1~4で合成した化合物については、いずれもIrganox1010、Irgafos168、およびSumilizer GPと比較して重量減少率は小さく、合成例1および合成例4で合成した化合物は、特に重量減少率が小さいことが分かった。 For the compounds synthesized in Synthesis Examples 1 to 4, the weight reduction rate is small compared to Irganox 1010, Irgafos 168, and Sumilizer GP, and the compounds synthesized in Synthesis Example 1 and Synthesis Example 4 have a particularly weight reduction rate. I found it small.
 (評価例3) 保存安定性
 ARTON樹脂(ARTON R5300、JSR株式会社製)0.9gと、上記合成例1で合成した化合物0.1gとを混合し、該混合物を塩化メチレン9gに溶解して固形分濃度10wt%の溶液を調製した。シャーレに該溶液を塗布し、乾燥した後、一晩静置してフィルムを形成した。その後、得られたフィルムをシャーレから剥離してから、減圧乾燥機にて100℃で24時間乾燥した。得られたフィルムを切り刻んで試験管に入れ、窒素ガスフローしながら、はんだ槽を用いて300℃で18時間加熱した。加熱前後のフィルム30mgを、それぞれ、テトラヒドロフラン(THF)5mLに溶解させ、これらの溶液を用い、GPC測定を行なった。RI検出領域のピーク面積(ポリマー部)を求め、加熱前後の面積からゲル分率を以下式に従って算出した。
(Evaluation Example 3) Storage stability 0.9 g of ARTON resin (ARTON R5300, manufactured by JSR Corporation) and 0.1 g of the compound synthesized in Synthesis Example 1 were mixed, and the mixture was dissolved in 9 g of methylene chloride. A solution having a solid content concentration of 10 wt% was prepared. The solution was applied to a petri dish, dried, and allowed to stand overnight to form a film. Then, after peeling off the obtained film from a petri dish, it dried at 100 degreeC with the vacuum dryer for 24 hours. The obtained film was cut into a test tube and heated at 300 ° C. for 18 hours using a solder bath while flowing nitrogen gas. Each 30 mg of the film before and after heating was dissolved in 5 mL of tetrahydrofuran (THF), and GPC measurement was performed using these solutions. The peak area (polymer part) of the RI detection region was determined, and the gel fraction was calculated from the area before and after heating according to the following formula.
 また、合成例1で合成した化合物に代えてIrganox1010(日本チバガイギー株式会社製)を用いて同様にゲル分率を測定した。それぞれ、結果を表3に示す。
 ゲル分率(%)=(1-加熱後の樹脂のRI検出領域のピーク面積/加熱前後の樹脂のRI検出領域のピーク面積)×100
Moreover, it replaced with the compound synthesize | combined in the synthesis example 1, and measured the gel fraction similarly using Irganox1010 (made by Nippon Ciba-Geigy Co., Ltd.). The results are shown in Table 3, respectively.
Gel fraction (%) = (1−peak area of RI detection region of resin after heating / peak area of RI detection region of resin before and after heating) × 100
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 (合成例5)
 上記式(2-A)で表わされる4,4',4'',4'''-[(1-メチルエチリデン)ジ-4-シクロヘキサニル-1-イリデン]テトラキスフェノール10.0g(17.3mmol)、ステアリン酸 20.2g(70.9mmol)を500mL三口フラスコに測り取り、塩化メチレン200mlを加え溶解した。この溶液を氷浴で冷却した後、窒素雰囲気下、ジシクロヘキシルカルボジイミド15.7g(76.1mmol)、N,N-ジメチルアミノピリジン0.42g(3.5mmol)を加え攪拌した。30分後、室温まで反応液を昇温させ、室温25℃で4時間攪拌した。反応液中で、析出した溶媒不溶分を吸引ろ過により除去し、溶媒可溶分を集めて減圧留去した。有機分が総量100ml程度になった所で、液を分液ロートに移し、10%希塩酸50mlで洗浄、次いで、飽和炭酸ナトリウム水溶液50mlで洗浄、蒸留水100mlで2回洗浄した後、硫酸マグネシウムで乾燥後、ろ紙によるろ過および減圧留去を行い、目的物の粗生成物として白色結晶を得た。この粗結晶について、1H-NMR測定(ブルカー株式会社製AVANCE500型)、GPC分析(東ソー株式会社製HLC-8020)で構造を確認したところ、化合物(1-A)以外に、上記式(2-A)で表わされる化合物のフェノール性水酸基の1つ~3つがステアリン酸と反応して得られた化合物が存在することを確認した。
(Synthesis Example 5)
10.0 g (17) of 4,4 ′, 4 ″, 4 ′ ″-[(1-methylethylidene) di-4-cyclohexanyl-1-ylidene] tetrakisphenol represented by the above formula (2-A) .3 mmol) and 20.2 g (70.9 mmol) of stearic acid were weighed into a 500 mL three-necked flask and 200 ml of methylene chloride was added and dissolved. After this solution was cooled in an ice bath, 15.7 g (76.1 mmol) of dicyclohexylcarbodiimide and 0.42 g (3.5 mmol) of N, N-dimethylaminopyridine were added and stirred under a nitrogen atmosphere. After 30 minutes, the reaction solution was warmed to room temperature and stirred at room temperature of 25 ° C. for 4 hours. In the reaction solution, the precipitated solvent-insoluble matter was removed by suction filtration, and the solvent-soluble matter was collected and distilled off under reduced pressure. When the organic content reaches about 100 ml, the liquid is transferred to a separatory funnel, washed with 50 ml of 10% dilute hydrochloric acid, then washed with 50 ml of saturated aqueous sodium carbonate solution, washed twice with 100 ml of distilled water, and then washed with magnesium sulfate. After drying, filtration with filter paper and distillation under reduced pressure were performed to obtain white crystals as a target crude product. The structure of this crude crystal was confirmed by 1 H-NMR measurement (AVANCE500 type manufactured by Bruker Co., Ltd.) and GPC analysis (HLC-8020 manufactured by Tosoh Corporation). As a result, in addition to the compound (1-A), the above formula (2 It was confirmed that a compound obtained by reacting one to three phenolic hydroxyl groups of the compound represented by -A) with stearic acid was present.
 次いで、この白色固体に対して酢酸エチル-n-ヘキサンで再結晶化することにより、下記式(1-E)で表わされる目的物23.6g(収率83%)を得た。 Next, this white solid was recrystallized from ethyl acetate-n-hexane to obtain 23.6 g (yield 83%) of the target compound represented by the following formula (1-E).
 この化合物の1H-NMR測定(ブルカー株式会社製AVANCE500型 )、TG-DTAによる分析(理学電気株式会社製TG8120)を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 This compound was subjected to 1 H-NMR measurement (AVANCE500 type manufactured by Bruker Co., Ltd.) and analyzed by TG-DTA (TG8120 manufactured by Rigaku Corporation), and it was confirmed that the target compound was obtained. The analysis results were as follows.
 1H-NMR(溶媒:CDCl3) 化学シフトσ:7.32ppm(芳香環水素、4H)、7.13ppm(芳香環水素、4H)、7.03ppm(芳香環水素、4H)、6.89ppm(芳香環水素、4H)、2.68ppm(シクロヘキサン環状水素、2H)、2.52ppm(COO-C 2-、4H)、1.90ppm~1.20ppm(136H)、0.88ppm(ステアリン酸メチル基、12H)、0.51ppm(CH3基、6H)。 1 H-NMR (solvent: CDCl 3 ) Chemical shift σ: 7.32 ppm (aromatic ring hydrogen, 4H), 7.13 ppm (aromatic ring hydrogen, 4H), 7.03 ppm (aromatic ring hydrogen, 4H), 6.89 ppm (Aromatic ring hydrogen, 4H), 2.68 ppm (cyclohexane cyclic hydrogen, 2H), 2.52 ppm (COO—C H 2 —4H), 1.90 ppm to 1.20 ppm (136H), 0.88 ppm (stearic acid methyl group, 12H), 0.51ppm (CH 3 groups, 6H).
 TG-DTA :分解点=423℃ TG-DTA: Decomposition point = 423 ° C
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 (評価例4)
 ARTON樹脂(ARTON R5300、JSR株式会社製)の10%(wt/wt)トルエン溶液1kgを調製し、そこに、上記合成例5で合成した化合物0.5g(ARTON樹脂に対して0.5%)を添加し、溶解させた。次いで、大量のメタノールで得られた混合物を凝固・単離した後、二軸押し出し機にて造粒し、ペレットを得た。ここで得たペレットについて、インライン式射出成形機(型締め75ton,シリンダー径28mn)を用い、射出成形を行なった。
(Evaluation example 4)
1 kg of 10% (wt / wt) toluene solution of ARTON resin (ARTON R5300, manufactured by JSR Corporation) was prepared, and 0.5 g of the compound synthesized in Synthesis Example 5 (0.5% based on ARTON resin) was prepared there. ) Was added and dissolved. Next, the mixture obtained with a large amount of methanol was solidified and isolated, and then granulated with a twin screw extruder to obtain pellets. The pellets obtained here were injection molded using an inline injection molding machine (clamping 75 ton, cylinder diameter 28 mn).
 射出成形条件は、シリンダー温度を330℃、射出速度を200mm/sとし、金型温度を表面の実測温度で150℃まで昇温させた。
 金型冷却後、成型体を金型から取り外し、その表面に関して、任意の10mm×10mmの領域を10箇所、100倍の倍率としたマイクロスコープで観察した結果、全ての領域で剥離(欠落)は生じていなかった。
The injection molding conditions were such that the cylinder temperature was 330 ° C., the injection speed was 200 mm / s, and the mold temperature was raised to 150 ° C. at the measured surface temperature.
After cooling the mold, the molded body was removed from the mold, and as a result of observing it with a microscope with an arbitrary 10 mm × 10 mm area at 10 locations and a magnification of 100 times, peeling (missing) was observed in all areas. It did not occur.

Claims (10)

  1.  下記式(1)で示される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Lは、それぞれ独立に、水素原子、下記式(2)で表わされる基、下記式(3)で表わされる基またはR8CO-(R8は、炭素数1~40の1価の炭化水素基または炭素数1~40の1価のハロゲン化炭化水素基である。)で表わされる基であり、R4は、それぞれ独立に、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R5は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Aは、単結合、炭素数1~20の2価の炭化水素基、炭素数1~20の2価のハロゲン化炭化水素基、-S-、-SO2-、-CO-または-O-であり、mは0~10の整数であり、nは0~4の整数である。ただし、4つのLすべてが水素原子である場合はない。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R1は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R2は、それぞれ独立に、単結合または-CO-であり、R3は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)において、R6は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R7は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基である。)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), each L is independently a hydrogen atom, a group represented by the following formula (2), a group represented by the following formula (3) or R 8 CO— (R 8 is a group having 1 to A monovalent hydrocarbon group having 40 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms), and each R 4 independently represents a monovalent hydrocarbon having 1 to 20 carbon atoms. Or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and each R 5 is independently a divalent hydrocarbon group having 1 to 20 carbon atoms or 2 having 1 to 20 carbon atoms. A is a single bond, a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, -S-, -SO 2 -, -. a CO- or -O-, m is an integer from 0 to 10, n is an integer of 0 to 4 However, 4 Not when all the L is a hydrogen atom.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), R 1 each independently represent a hydrogen atom, a monovalent halogenated hydrocarbon group of monovalent hydrocarbon group having 1 to 20 carbon atoms of 1 to 20 carbon atoms, R 2 Each independently represents a single bond or —CO—, and each R 3 independently represents a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms. .)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (3), R 6 is, independently, a hydrogen atom, a monovalent halogenated hydrocarbon group of monovalent hydrocarbon group having 1 to 20 carbon atoms of 1 to 20 carbon atoms, R 7 Are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms.)
  2.  上記式(1)において、Lが上記式(2)で表わされる基である、請求項1に記載の化合物。 The compound according to claim 1, wherein in the formula (1), L is a group represented by the formula (2).
  3.  上記式(2)において、R2が単結合である、請求項2に記載の化合物。 The compound of Claim 2 whose R < 2 > is a single bond in the said Formula (2).
  4.  上記式(1)において、Lがそれぞれ独立に、水素原子または上記式(3)で表わされる基であり、複数あるLの少なくとも一つは上記式(3)で表わされる基である、請求項1に記載の化合物。 In the above formula (1), each L is independently a hydrogen atom or a group represented by the above formula (3), and at least one of the plurality of Ls is a group represented by the above formula (3). 1. The compound according to 1.
  5.  上記式(1)において、Lがそれぞれ独立に、水素原子またはR8CO-で表わされる基であり、複数あるLの少なくとも一つはR8CO-で表わされる基である、請求項1に記載の化合物。 In the formula (1), each L is independently a hydrogen atom or a group represented by R 8 CO—, and at least one of the plurality of L is a group represented by R 8 CO—. The described compound.
  6.  請求項2~4のいずれか1項に記載の化合物を含有する酸化防止剤。 An antioxidant containing the compound according to any one of claims 2 to 4.
  7.  請求項5に記載の化合物を含有する離型剤。 A mold release agent containing the compound according to claim 5.
  8.  請求項1~5のいずれか1項に記載の化合物を含有する樹脂組成物。 A resin composition containing the compound according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1項に記載の化合物を含有する樹脂成型体。 A resin molded body containing the compound according to any one of claims 1 to 5.
  10.  下記式(4)で表わされる化合物と、下記式(5)、下記式(6)および下記式(7)で表わされる化合物からなる群より選ばれる1種の化合物とを反応させる工程を含む、下記式(1)で表わされる化合物の合成方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)において、R4は、それぞれ独立に、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R5は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Aは、単結合、炭素数1~20の2価の炭化水素基、炭素数1~20の2価のハロゲン化炭化水素基、-S-、-SO2-、-CO-または-O-であり、mは0~10の整数であり、nは0~4の整数である。)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)において、R1は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R3は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Yは、R9SO3-で表される基、ヒドロキシル基またはカルボキシル基である。ただし、R9は、炭素数1~20の炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(6)において、R6は、それぞれ独立に、水素原子、炭素数1~20の1価の炭化水素基または炭素数1~20の1価のハロゲン化炭化水素基であり、R7は、それぞれ独立に、炭素数1~20の2価の炭化水素基または炭素数1~20の2価のハロゲン化炭化水素基であり、Xは、ハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000007
    (式(7)において、R8は、それぞれ独立に、炭素数1~40の1価の炭化水素基または炭素数1~40の1価のハロゲン化炭化水素基であり、Zは、ヒドロキシ基、またはハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000008
    (式(1)において、Lは、それぞれ独立に、水素原子、下記式(2)で表わされる基、下記式(3)で表わされる基またはR8CO-で表わされる基であり、R8は、それぞれ独立に、式(7)中のR8と同義であり、R4、R5、A、mおよびnは、それぞれ独立に、式(4)中のR4、R5、A、mおよびnと同義である。ただし、4つのLすべてが水素原子である場合はない。)
    Figure JPOXMLDOC01-appb-C000009
    (式(2)において、R1およびR3は、それぞれ独立に、式(5)中のR1およびR3と同義であり、R2は、それぞれ独立に、単結合または-CO-である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(3)において、R6およびR7は、それぞれ独立に、式(6)中のR6およびR7と同義である。)
    A step of reacting a compound represented by the following formula (4) with one compound selected from the group consisting of compounds represented by the following formula (5), the following formula (6) and the following formula (7): A method for synthesizing a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (4), each R 4 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and R 5 is each represented by Independently, it is a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and A is a single bond, a divalent hydrocarbon having 1 to 20 carbon atoms. A divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, —S—, —SO 2 —, —CO— or —O—, m is an integer of 0 to 10, and n is 0 to It is an integer of 4.)
    Figure JPOXMLDOC01-appb-C000005
    In (formula (5), R 1 each independently represent a hydrogen atom, a monovalent halogenated hydrocarbon group of monovalent hydrocarbon group having 1 to 20 carbon atoms of 1 to 20 carbon atoms, R 3 Are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and Y is a group represented by R 9 SO 3 —, A hydroxyl group or a carboxyl group, wherein R 9 is a hydrocarbon group having 1 to 20 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (6), R 6 are each independently a hydrogen atom, a monovalent halogenated hydrocarbon group of monovalent hydrocarbon group having 1 to 20 carbon atoms of 1 to 20 carbon atoms, R 7 Are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms or a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen atom.)
    Figure JPOXMLDOC01-appb-C000007
    (In Formula (7), each R 8 independently represents a monovalent hydrocarbon group having 1 to 40 carbon atoms or a monovalent halogenated hydrocarbon group having 1 to 40 carbon atoms, and Z represents a hydroxy group. Or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000008
    (In formula (1), L is independently a hydrogen atom, a group represented a group represented by or R 8 CO- in group represented by the following formula (2), the following equation (3), R 8 Are each independently synonymous with R 8 in formula (7), and R 4 , R 5 , A, m and n are each independently R 4 , R 5 , A, (It is synonymous with m and n. However, not all four Ls are hydrogen atoms.)
    Figure JPOXMLDOC01-appb-C000009
    (In Formula (2), R 1 and R 3 are each independently synonymous with R 1 and R 3 in Formula (5), and R 2 is independently a single bond or —CO—. .)
    Figure JPOXMLDOC01-appb-C000010
    (In formula (3), R 6 and R 7 independently has the same meaning as R 6 and R 7 in the formula (6).)
PCT/JP2011/050695 2010-01-19 2011-01-18 Novel compound; method for synthesizing said compound; and antioxidant, release agent, resin composition, and resin mold product containing said compound WO2011090008A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010009175A JP5573187B2 (en) 2010-01-19 2010-01-19 NOVEL COMPOUND, METHOD FOR SYNTHESIZING THE COMPOUND, ANTIOXIDANT, RESIN COMPOSITION, AND RESIN MOLDED BODY CONTAINING THE COMPOUND
JP2010-009175 2010-01-19
JP2010-021414 2010-02-02
JP2010-021415 2010-02-02
JP2010021414A JP5504929B2 (en) 2010-02-02 2010-02-02 NOVEL COMPOUND, METHOD FOR SYNTHESIZING THE COMPOUND, ANTIOXIDANT, RESIN COMPOSITION, AND RESIN MOLDED BODY CONTAINING THE COMPOUND
JP2010021415A JP5521589B2 (en) 2010-02-02 2010-02-02 NOVEL COMPOUND, AND RESIN COMPOSITION AND RESIN MOLDED BODY CONTAINING THE COMPOUND

Publications (1)

Publication Number Publication Date
WO2011090008A1 true WO2011090008A1 (en) 2011-07-28

Family

ID=44306811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050695 WO2011090008A1 (en) 2010-01-19 2011-01-18 Novel compound; method for synthesizing said compound; and antioxidant, release agent, resin composition, and resin mold product containing said compound

Country Status (1)

Country Link
WO (1) WO2011090008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157507A (en) * 2010-02-02 2011-08-18 Jsr Corp New compound, and method for synthesizing the same, and antioxidant, resin composition and resin molded form each including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE866799A (en) * 1978-05-08 1978-09-01 Argus Chem STABILIZED SYNTHETIC RESINS
JPH0769954A (en) * 1993-08-30 1995-03-14 Sumitomo Chem Co Ltd Multi-functional vinyl ether compound
JPH10259190A (en) * 1996-08-06 1998-09-29 Sumitomo Chem Co Ltd Phosphorous esters, their production and their use
JP2001049127A (en) * 1998-04-17 2001-02-20 Yoshitomi Fine Chemicals Ltd Stabilizer for organic polymer material and organic polymer material composition
JP2007163577A (en) * 2005-12-09 2007-06-28 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE866799A (en) * 1978-05-08 1978-09-01 Argus Chem STABILIZED SYNTHETIC RESINS
JPH0769954A (en) * 1993-08-30 1995-03-14 Sumitomo Chem Co Ltd Multi-functional vinyl ether compound
JPH10259190A (en) * 1996-08-06 1998-09-29 Sumitomo Chem Co Ltd Phosphorous esters, their production and their use
JP2001049127A (en) * 1998-04-17 2001-02-20 Yoshitomi Fine Chemicals Ltd Stabilizer for organic polymer material and organic polymer material composition
JP2007163577A (en) * 2005-12-09 2007-06-28 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157507A (en) * 2010-02-02 2011-08-18 Jsr Corp New compound, and method for synthesizing the same, and antioxidant, resin composition and resin molded form each including the same

Similar Documents

Publication Publication Date Title
US20220243008A1 (en) Thermoplastic resin, method for manufacturing same, and optical lens
JP2022505145A (en) Polycyclic compound
EP3115397B1 (en) Silsesquioxane complex polymer and method for preparing same
US11760712B2 (en) Triarylmethane compounds
US20240124712A1 (en) Methods for producing polycarbonate copolymer and polysiloxane compound, polycarbonate copolymer, polysiloxane compound, composition, and molded body
WO2023036868A1 (en) (het)aryl substituted bisphenol compounds and thermoplastic resins
JP6436878B2 (en) Compound production method and mixed crystal
WO2023038156A1 (en) (het)aryl substituted bisphenol compounds and thermoplastic resins
KR20150102860A (en) Silsesquioxane composite polymer and method for manufacturing thereof
JP5573187B2 (en) NOVEL COMPOUND, METHOD FOR SYNTHESIZING THE COMPOUND, ANTIOXIDANT, RESIN COMPOSITION, AND RESIN MOLDED BODY CONTAINING THE COMPOUND
KR20150102861A (en) Silsesquioxane composite polymer and method for manufacturing thereof
JPWO2017030090A1 (en) Polymerizable composition comprising reactive silsesquioxane compound and aromatic vinyl compound
WO2011090008A1 (en) Novel compound; method for synthesizing said compound; and antioxidant, release agent, resin composition, and resin mold product containing said compound
JP5521589B2 (en) NOVEL COMPOUND, AND RESIN COMPOSITION AND RESIN MOLDED BODY CONTAINING THE COMPOUND
TW202035512A (en) Thermoplastic resin composition, and optical lens or film using same
TWI718228B (en) Bisphenol compound and aromatic polycarbonate
JP5504929B2 (en) NOVEL COMPOUND, METHOD FOR SYNTHESIZING THE COMPOUND, ANTIOXIDANT, RESIN COMPOSITION, AND RESIN MOLDED BODY CONTAINING THE COMPOUND
KR20170072866A (en) 1,3-bis(3-methyl-4-hydroxyphenyl)-5,7-dimethyl-adamantane and method for preparing same, and aromatic polycarbonate resin and method for preparing same
TW201202328A (en) New compound, and method for synthesizing the same, and antioxidant, resin composition and resin molded form each including the same
EP3199557B1 (en) Transparent body production method, transparent body, and amorphous body
KR101843937B1 (en) Polyester resin composition
JP3853236B2 (en) Liquid epoxy resin composition and cured product thereof
JP4141869B2 (en) Curing accelerator
WO2022077450A1 (en) Polycarbonate, preparation method therefor and use thereof
WO2024117265A1 (en) Binaphthyl compounds and thermoplastic resins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734614

Country of ref document: EP

Kind code of ref document: A1