WO2011089868A1 - Dish washing device - Google Patents

Dish washing device Download PDF

Info

Publication number
WO2011089868A1
WO2011089868A1 PCT/JP2011/000123 JP2011000123W WO2011089868A1 WO 2011089868 A1 WO2011089868 A1 WO 2011089868A1 JP 2011000123 W JP2011000123 W JP 2011000123W WO 2011089868 A1 WO2011089868 A1 WO 2011089868A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
rinse
rinsing
cleaning
cleaned
Prior art date
Application number
PCT/JP2011/000123
Other languages
French (fr)
Japanese (ja)
Inventor
香苗 山中
桂 南部
徹 廣瀬
清 澤井
博之 香山
浩章 乾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800063096A priority Critical patent/CN102711579A/en
Priority to KR1020127019083A priority patent/KR20120125257A/en
Publication of WO2011089868A1 publication Critical patent/WO2011089868A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4234Steam generating arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0002Washing processes, i.e. machine working principles characterised by phases or operational steps
    • A47L15/0015Washing processes, i.e. machine working principles characterised by phases or operational steps other treatment phases, e.g. steam or sterilizing phase
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/46Devices for the automatic control of the different phases of cleaning ; Controlling devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/48Drying arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2601/00Washing methods characterised by the use of a particular treatment
    • A47L2601/04Steam
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2601/00Washing methods characterised by the use of a particular treatment
    • A47L2601/17Sonic or ultrasonic waves

Definitions

  • the present invention relates to a dishwashing apparatus.
  • a conventional dishwashing apparatus includes a washing water supply device such as a circulation pump and a heater for heating the washing water.
  • This dish washing apparatus pressurizes washing water with a circulation pump etc. while heating washing water supplied into the washing tank with a heater, and sprays it from the rotating jet nozzle toward the dishes installed in the washing tank. Wash.
  • FIG. 18 is a schematic sequence diagram of a conventional tableware washing apparatus.
  • the process of such a dishwashing apparatus basically includes a washing process, a plurality of rinsing processes including a final rinse, and a drying process.
  • the amount of water used in each step is at least several liters although it depends on the number of dishes.
  • the circulating water is heated to 60 ° C. or higher by the heater in the washing step and the final rinse of the rinsing step.
  • circulating water is often heated to around 70 ° C. for the purpose of sterilizing dishes and assisting in the drying of the next process (see, for example, Patent Document 1). That is, when the tableware is warmed by the heated washing water in the final rinse immediately before drying, the time required for drying is shortened.
  • FIG. 19 is a cross-sectional view of a conventional dishwashing apparatus, which is a dishwashing apparatus described in Patent Document 2.
  • the dishwasher includes a washing tub 68, tableware 49, basket 50, drainage pump 51, injection pipe 52, injection hole, three-way valves 53 and 54, pure water device 55, water supply pipe 56, steam generator side water supply pipe. 56 a, check valve 57, steam generation chamber 58, heating element 59, water level detectors 60 and 61, drain hose 62, cleaning tank side water supply pipe 63, steam pipe 64, door 65, and air vent hole 66. .
  • FIG. 20A is a cross-sectional view of an injection pipe of a conventional dishwashing apparatus
  • FIG. 20B is a cross-sectional view showing a state in which steam and clean water are mixed in an injection hole provided in the injection pipe of the dishwashing apparatus.
  • the dish washing apparatus configured as described above
  • the mixture obtained by mixing the pressurized steam and the washing water is directed toward the dishes 49 in the basket 50 in FIG.
  • the tableware 49 is evenly washed by spraying.
  • the pressurized steam is supplied from the steam generation chamber 58. Wash water is also induced from pressurized steam. And after washing
  • the dishwashing apparatus described in Patent Document 2 does not use a circulation pump for the purpose of improving cleaning efficiency, saving space, and reducing costs.
  • This dishwashing apparatus accumulates water at the bottom of the washing tank, that is, below the dish basket, and generates steam from the water surface. And this tableware washing apparatus wash
  • the present invention is a tableware washing apparatus having a washing step and a rinsing step for rinsing a plurality of times, a washing tank for containing an object to be washed, a water supply unit for supplying clean water to the washing tank, and a washing A cleaning pump that pumps the cleaning water stored in the tank, a cleaning nozzle that is connected to the cleaning pump and injects the cleaning water onto the object to be cleaned, and is provided in the cleaning tank and from the water vapor of the cleaning water or cleaning water.
  • a water particle generator that generates water particles of a size, and the rinse agent is supplied into the cleaning tank in either the cleaning step or the rinsing step, and the final rinse after the rinse agent is supplied In this case, water particle rinsing for adhering water particles to the object to be cleaned is performed.
  • the amount of water used for the water particles is supplied in the final rinse.
  • the amount of water can be significantly reduced compared to conventional rinsing with circulating water, and a large amount of water does not need to be heated, so that power consumption can also be reduced.
  • the dish washing apparatus of the present invention can improve the drying performance.
  • FIG. 1 is an elevation view of the tableware washing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a sequence schematic diagram of the tableware washing apparatus.
  • FIG. 3 is a process flow schematic diagram of the tableware washing apparatus.
  • FIG. 4 is an elevation view of the tableware washing apparatus according to the second embodiment of the present invention.
  • FIG. 5 is an elevation view of the tableware washing apparatus according to the third embodiment of the present invention.
  • FIG. 6 is an elevation view of the mixed water particle generator of the dishwasher.
  • FIG. 7 is a characteristic diagram of the amount of adhered water of the tableware immediately before drying according to the final rinsing method of the tableware washing apparatus.
  • FIG. 8 is a drying performance characteristic chart according to the final rinse method of the tableware washing apparatus.
  • FIG. 9 is a correlation graph between the drying performance of the tableware washing apparatus and the tableware surface temperature.
  • FIG. 10 is a diagram showing the level of water droplets remaining on another glass of the last rinse of the dishwashing apparatus.
  • FIG. 11 is an elevation view of the tableware washing apparatus according to the fourth embodiment of the present invention.
  • FIG. 12 is a schematic sequence diagram of the tableware washing apparatus.
  • FIG. 13 is an elevation view of the tableware washing apparatus according to the fifth embodiment of the present invention.
  • FIG. 14 is a sequence outline diagram of the tableware washing apparatus.
  • FIG. 15 is an elevation view of the tableware washing apparatus according to the sixth embodiment of the present invention.
  • FIG. 16 is an elevation view of the tableware washing apparatus according to the seventh embodiment of the present invention.
  • FIG. 17 is an elevation view of the tableware washing apparatus according to the eighth embodiment of the present invention.
  • FIG. 18 is a schematic sequence diagram of a conventional tableware washing apparatus.
  • FIG. 19 is a sectional view of the tableware washing apparatus.
  • FIG. 20A is a cross-sectional view of the injection tube of the tableware washing apparatus.
  • FIG. 20B is a cross-sectional view showing a state in which steam and clean water are mixed in an injection hole provided in an injection pipe of the tableware washing apparatus.
  • FIG. 1 is an elevation view of the tableware washing apparatus according to Embodiment 1 of the present invention.
  • the object to be cleaned 3 is set and accommodated in the tableware basket 2 of the cleaning tank 1.
  • the cleaning tank 1 is provided with a water supply unit 4 for supplying clean water such as tap water in the cleaning tank 1.
  • a drainage part 5 for discharging wastewater used for cleaning and rinsing to the outside of the cleaning tank 1 and a cleaning pump 7 for pumping the cleaning water stored in the water storage part 6. Yes. Wash water is stored in the water reservoir 6.
  • the bottom inner wall of the cleaning tank 1 is connected to the cleaning pump 7 and also has a cleaning nozzle 8 for injecting cleaning water onto the object to be cleaned 3, a first heating unit 9 for heating the cleaning water, and a mist from water vapor by boiling.
  • a water particle generator 10 that generates water particles of a size is provided.
  • a rinse agent charging part 11 and a rinse agent charging port 12 are installed on the side surface of the cleaning tank 1.
  • the rinse agent introduction unit 11 stores the rinse agent and introduces the rinse agent into the cleaning tank 1 at a necessary timing.
  • the height position of the rinse agent inlet 12 is set to be between the height of the water supply unit 4 and the water storage unit 6.
  • the rinsing agent is mixed into the supplied water flow until the water supplied to the cleaning tank 1 flows into the water storage unit 6 at the time of water supply.
  • a control unit 13 is installed on the side surface of the cleaning tank 1.
  • the control unit 13 controls the water vapor rinse course that is performed in the final rinse of the rinsing process.
  • the water particle rinsing means that the water particle generator 10 is driven to cause the water particles of clean water to adhere to the article 3 to be rinsed.
  • the washing water is a general term for a liquid for washing the object to be washed 3 or rinsing.
  • FIG. 2 is a sequence outline diagram of the tableware washing apparatus according to the first embodiment of the present invention.
  • the horizontal axis indicates the operation time
  • the vertical axis indicates the dish temperature
  • the sequence of the conventional dishwashing apparatus and the sequence of the dishwashing apparatus of the present invention are vertically aligned.
  • FIG. 3 is a process flow schematic diagram of the tableware washing apparatus according to the first embodiment of the present invention.
  • FIG. 3 shows a process flow from the end of the last two rinses to the end of the final rinse.
  • the dishwasher configured as described above will be described below.
  • a detergent is introduced, and a predetermined amount of tap water is supplied from the water supply unit 4 by the control unit 13 to the cleaning tank 1 in which the object to be cleaned 3 is accommodated.
  • the supplied water is stored in the water storage unit 6 and the cleaning process is started.
  • the detergent dissolves and the cleaning water stored in the water storage section 6 is pumped from the cleaning pump 7 to the cleaning nozzle 8 while being heated by the first heating section 9 and sprayed toward the object to be cleaned 3. Cleaning is performed.
  • the cleaning water sprayed on the object to be cleaned 3 returns to the water storage unit 6 again, repeats the above operation, and is circulated for the purpose of cleaning through the cleaning pump 7.
  • the controller 13 After cleaning by spraying for a predetermined time is repeated, when a predetermined temperature generally in the vicinity of 60 ° C. is detected by a water temperature detection sensor (not shown), the controller 13 switches the first heating unit 9. Is turned off. Thereafter, after a predetermined time of operation, the cleaning pump 7 is stopped by the control unit 13, the cleaning water is discharged to the outside of the cleaning tank 1 by the drainage unit 5, and the cleaning process ends.
  • the rinsing process is started by supplying a predetermined amount of water from the water supply unit 4 to the cleaning tank 1 in the same manner as at the start of cleaning.
  • the water stored in the water storage unit 6 circulates in the cleaning tank 1 as in the cleaning step, and the dirt and detergent adhering to the object to be cleaned 3 are rinsed away by jetting.
  • drainage is performed in the same manner as in the cleaning process, and normal rinsing is completed. Thereafter, the usual rinsing is repeated 1 to several times by the same method, and the last two rinses are completed by drainage ((b) of FIG. 2).
  • the rinsing operation immediately before the final will be described using the flow of FIG.
  • the water supply valve 14 is opened by the control unit 13 (f) and tap water is supplied into the cleaning tank 1 through the path 15.
  • the washing water at this time is cleaner than the washing water used so far because the amount of dirt is reduced by rinsing.
  • the rinse agent inlet 12 is opened by the control unit 13 (g), and the rinse agent is mixed in the middle of the clean water flowing into the water storage unit 6 from the water supply port 16.
  • the rinse agent inlet 12 is closed (h), and the injection of the rinse agent is completed.
  • the control unit 13 closes the water supply valve 14 (j), and the water supply is completed.
  • the reason why the rinse agent is not injected into the water storage unit 6 and is mixed into the clean water before being stored in the water storage unit 6 is as follows.
  • the amount of dirt such as eggs is large, a large amount of bubbles are present in the upper part of the water storage unit 6 without being circulated during operation when the rinse agent is injected into the water storage unit 6.
  • the hydrophilic group of the rinsing agent is selectively arranged on the water film on the surface of the foam and the hydrophobic groups are directed toward the air inside and outside the foam. To do.
  • the rinse agent is taken into the foam surface before reaching the water layer below the foam layer.
  • the amount of the rinse agent that circulates in the cleaning tank 1 together with water is relatively reduced.
  • the rinse agent is injected into the supply water until the supply water is stored in the water storage section 6. Since the rinse agent flows in along the wall surface of the water storage unit 6, the relative amount of the rinse agent taken into the foam surface is suppressed rather than being injected from above the foam. Therefore, it is desirable that the rinse agent is mixed with clean water in a place where there is no foam.
  • the cleaning pump 7 is operated (k) by the control unit 13, and the rinse water containing the rinse agent is jetted from the cleaning nozzle 8 toward the object to be cleaned 3. .
  • the injected water is circulated and used in the same manner as the previous rinsing, and the circulating injection is performed for a predetermined time.
  • the cleaning pump 7 is stopped by the control unit 13 (m)
  • the drainage unit 5 is operated (n)
  • the drainage is performed for a predetermined time, and the last rinse immediately ends.
  • the control unit 13 opens the water supply valve 14 (o), and water is supplied to the water particle generator 10 through the path 17.
  • water supply valve 14 is closed (q) by the control unit 13 and the switch of the water particle generator 10 is turned ON (r).
  • the first heating unit 9 is provided in the water storage unit 6 and heats the cleaning water.
  • the water vapor causes condensation to rinse the surface of the article 3 to be cleaned, and causes the water droplets that have adhered to grow and drop.
  • the supply of the water vapor is performed until the surface temperature of the object to be cleaned 3 reaches 70 ° C. by an infrared sensor or the like.
  • the control unit 13 turns off the switch of the water particle generator 10 (t).
  • the condensed water stored in the water storage unit 6 is discharged out of the washing tank 1 by the drainage unit 5, and the final rinse is completed ((d) in FIG. 2).
  • the water particles are water vapor and can be efficiently heated by latent heat, the water particles are efficiently heated in a shorter time than using normal high-temperature jet water. Moreover, only the amount of water used for steaming is sufficient for the conventional rinsing with circulating water. Therefore, the amount of water is greatly reduced, and a large amount of water does not need to be heated, so that power consumption is reduced. Moreover, the water used for steaming is clean water immediately after water supply that does not circulate in the washing tank 1. Therefore, it does not include dirt accumulated in the washing tank 1, which is taken into the washing water during circulation, the washing pump 7, or the circulation water channel as in the prior art. As a result, unsanitation due to the use of circulating water is suppressed.
  • the combination of water vapor and rinsing has the following effects compared to the conventional method and the method using only water vapor.
  • the amount of water adhering to the surface of the article to be cleaned 3 is greatly reduced, and drying is performed efficiently.
  • the water vapor spreads throughout the washing tank 1. Therefore, there is no occurrence of a location where the spray water does not come from the trajectory of the spray nozzle as seen in the conventional rinse with the spray water.
  • the sterilization effect in more detail in the cleaning tank 1 is improved.
  • Escherichia coli, Salmonella, and Staphylococcus that are killed by contact with hot water at about 70 ° C. for 3 minutes are surely sterilized. A clean and clean finish is obtained.
  • a drying process is performed.
  • outside air is generally sent into the cleaning tank 1 by a blower fan, and air is heated by a heating unit such as a heater on the air passage of the blower fan.
  • the warmed air is replaced with air containing a large amount of moisture that fills the cleaning tank 1, thereby improving the drying property.
  • a heating unit such as a heater on the air passage of the blower fan.
  • the warmed air is replaced with air containing a large amount of moisture that fills the cleaning tank 1, thereby improving the drying property.
  • a large amount of water droplets remain on the surface of the object to be cleaned 3 immediately before drying, as in the case of rinsing with normal spray water or steam only.
  • steam rinse has sufficient calorie
  • the rinsing water may be heated by the first heating unit 9 until the water temperature reaches a predetermined temperature for the purpose of improving the rinsing performance.
  • the water particle generator 10 uses only clean water.
  • water particles may be generated by boiling the cleaning water stored in the water storage unit 6 or the like by the first heating unit 9 used for heating the cleaning water.
  • the 1st heating part 9 becomes a water particle generator.
  • a member with high heat resistance needs to be used for the surrounding members.
  • the water supply may be used once the scale components are removed through a water purification filter or the like.
  • a scale component removal agent may be periodically injected into the dishwashing apparatus without using the water purification filter.
  • the rinsing agent is not limited to a supply method in which the rinsing agent is mixed into the water flow of the supply water until the water supplied to the cleaning tank 1 flows into the water storage unit 6.
  • the rinse agent can be supplied anywhere in the cleaning tank 1. I do not care.
  • the spray water flows into the water storage section 6 while dissolving the rinse agent supplied somewhere in the cleaning tank 1. Therefore, compared with the system which supplies a rinse agent directly from the upper surface of the foam collected in the water storage part 6, the ratio by which a rinse agent is taken in into a foam becomes small.
  • the injection of the rinse agent is not limited to the above method.
  • the user may put in the rinse agent at an appropriate timing, or may use a capsule-type or solid-state detergent in which the rinse agent dissolves in a specific process such as during a rinsing process.
  • a heat resistant temperature 100 ° C. or higher for the location where water vapor is applied immediately after the rinsing agent is supplied and the constituent materials in the apparatus where water vapor is generated.
  • FIG. 4 is an elevation view of the tableware washing apparatus according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the dishwashing apparatus heats water in a separate chamber 19 at the bottom of the cleaning tank 1, an ultrasonic vibrator 20 that is a water particle generator that generates mist-like water particles, and water in the separate chamber 19 that includes the ultrasonic vibrator 20. And a water level detection sensor 22 for detecting the water level in the separate chamber 19.
  • the 2nd heating part 21 is used as a heating part which heats clean water.
  • a path 23 for supplying clean water from the water supply unit 4 is connected to the separate chamber 19 by switching the water supply valve 14.
  • the separate chamber 19 and the cleaning tank 1 are communicated with each other by an opening / closing door 24.
  • the object to be cleaned 3 is rinsed with rinse water containing a rinse agent immediately before the final rinse, the cleaning pump 7 is stopped, and the water in the cleaning tank 1 is drained by the drainage unit 5.
  • clean water is supplied to the separate chamber 19 through the water supply valve 14 and the path 23 by the control unit 13 and supplied until detected by the water level detection sensor 22.
  • the opening / closing door 24 is opened by the control unit 13, and the separate chamber 19 and the inside of the cleaning tank 1 are communicated.
  • the generated high temperature water mist is supplied into the cleaning tank 1 through the door 24.
  • the high-temperature water particles supplied into the cleaning tank 1 adhere to the objects to be cleaned 3 and the wall surfaces of the cleaning tank 1 and are heated by sensible heat. Further, the water particles expand the adhesion area, coalesce with the water droplets adhered at the last rinse, grow and drop, whereby the water droplets originally adhered to the surface of the object to be cleaned 3 are removed.
  • the control unit 13 stops the ultrasonic vibrator 20 and the second heating unit 21. Thereafter, the remaining water stored in the separate chamber 19 is discharged out of the cleaning tank 1 by the drainage unit 5, and the final rinse in which water particles are rinsed is completed.
  • water particles generated by the ultrasonic transducer 20 are used. Therefore, although it is a small amount of clean water, the size of water particles is larger than that of water vapor, and the amount of water adhering to the surface of the object to be cleaned 3 increases in a short time. And the water droplet containing the dirt adhering to the to-be-washed
  • the subsequent drying process is performed by the energy saving drying course by the blower fan as in the first embodiment, and the operation ends.
  • water droplets containing dirt adhering immediately before the final rinse are dropped by water particles which are clean water. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, they are not white and conspicuous water droplet traces caused by dirt as seen when circulating water is used, so that a beautiful finish can be obtained.
  • the amount of water and power consumption used in the final rinse are greatly reduced compared to the conventional method. Since the temperature of the object to be cleaned 3 has reached 70 ° C. or higher, the power consumption is reduced by the energy-saving drying course, and furthermore, high-efficiency sterilization effect in which high-temperature water particles are distributed throughout the final rinse. I can expect.
  • the water particle generator may have any configuration as long as it generates mist-like water particles, such as a spray nozzle, instead of the ultrasonic vibrator 20.
  • the generation direction of the water particles may be a direction from the upper side in the cleaning tank 1 toward the object to be cleaned 3.
  • water particle supply ports may be installed at a plurality of locations.
  • the second heating unit 21 may boil clean water and generate water particles.
  • the 2nd heating part 21 becomes a water particle generator.
  • the separate room 19 may be installed as a part of the water storage unit 6. At that time, there may be no boundary between the separate chamber 19 and the water storage unit 6, or the filter may be isolated by a filter or an opening / closing door.
  • the injection of the rinse agent is not limited to the above method.
  • the user may put in at an appropriate timing, or may use a capsule type or a solid type detergent in which the rinse agent dissolves in a specific process such as during a rinsing process.
  • FIG. 5 is an elevation view of the tableware washing apparatus according to Embodiment 3 of the present invention
  • FIG. 6 is an elevation view of the mixed water particle generating apparatus of the tableware washing apparatus.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a mixed water particle generator 25 is installed at the bottom of the cleaning tank 1.
  • the mixed water particle generator 25 is connected to the path 27. Further, the water supply valve 14 and a water purification filter 26 that can be removed from the outside are connected to the path 27.
  • the mixed water particle generator 25 has a structure for storing clean water therein.
  • the mixed water particle generation unit 28 which is an instantaneous boiling type water particle heating unit is formed of a plurality of thin heater tubes and has a cylindrical shape. The heater tube is hollow and the heater is disposed on the outer wall.
  • the mixed water particle generator 28 is installed with one end in the mixed water particle generator 25 and the mixed water particle supply port 29 at the other end facing the cleaning tank 1.
  • a water supply pump 30 that pumps the stored clean water to the mixed water particle generator 28 and a water level detection sensor (not shown) at the time of water supply are installed. That is, the mixed water particle generator 25 includes an instantaneous boiling water particle heating unit and a water supply pump 30.
  • FIG. 7 is a characteristic chart of the amount of adhering water on the tableware just before drying according to the final rinsing method of the tableware washing apparatus according to Embodiment 3 of the present invention.
  • Figure 7 shows JEMA dishwasher performance measurement test (JEMA-HD84, revised on December 4, 2003 3. Washing performance, 4. Drying performance) on Panasonic tabletop dishwasher (NP-TS1) This is the result obtained.
  • FIG. 8 is a drying performance characteristic chart according to the final rinsing method of the dishwashing apparatus of Embodiment 3 of the present invention
  • FIG. 9 is a correlation graph between the drying performance of the dishwashing apparatus and the dish surface temperature.
  • FIG. 8 is a drying performance characteristic chart according to the final rinsing method of the dishwashing apparatus of Embodiment 3 of the present invention
  • FIG. 9 is a correlation graph between the drying performance of the dishwashing apparatus and the dish surface temperature.
  • FIG. 8 is a drying performance characteristic chart according to the final rinsing method of the dishwash
  • FIG. 10 is a figure which shows the water drop trace level which remained in the glass of another rinse of the final round of the tableware washing apparatus of Embodiment 3 of this invention.
  • the water drop level is determined by visually determining the number of remaining water drop traces in five stages, and the number of samples is three.
  • the drying performance is represented by the ratio of the number of dishes for each determination (A: completely dry, B: less than 3 remaining water drops, C: other than A and B).
  • A completely dry
  • B less than 3 remaining water drops
  • C other than A and B.
  • the object to be cleaned 3 is rinsed by the rinse water containing the rinse agent immediately before the final rinse, the cleaning pump 7 is stopped, and the cleaning water in the cleaning tank 1 is drained by the drainage unit 5. .
  • the control unit 13 supplies clean water to the inside of the mixed water particle generator 25 through the water supply valve 14 and the path 27 until a water level detection sensor (not shown) detects a predetermined water level.
  • a water level detection sensor not shown
  • the feed water pump 30 is driven. Then, the clean water stored in the mixed water particle generator 25 is pumped to the mixed water particle generator 28.
  • the purified water that has been pumped passes through a thin heater tube whose inner wall has become high temperature, partly boiled to become water vapor, and part becomes high temperature water particles that are not water vapor.
  • First mixed water particles composed of water vapor and high-temperature water particles are supplied from the mixed water particle supply port 29 into the cleaning tank 1. At this time, the supplied first mixed water particles warm the article to be cleaned 3 and perform sterilization. And if the surface of the to-be-cleaned object 3 reaches 70 degreeC by detection with an infrared sensor etc., the mixed water particle generation part 28 and the water supply pump 30 will stop.
  • the remaining water stored in the mixed water particle generator 25 is drained to the outside of the washing tank 1 by the drainage unit 5.
  • the first mixed water particles are both water vapor and high-temperature water particles that are not water vapor. Therefore, efficient heating and sterilization due to the latent heat of water vapor and efficient rinsing effect due to an increase in the amount of water adhering to the surface of the article 3 to be cleaned by water particles larger than water vapor can be obtained at the same time.
  • water vapor and water particles that are not water vapor combine to increase its own weight and quickly and reliably adhere to the surface of the object to be cleaned 3, thereby shortening the processing time.
  • the manufacturing cost is greatly reduced in the third embodiment as compared with a case where a device for generating water vapor and a device for generating high-temperature water particles that are not water vapor are separately provided in order to obtain each effect. .
  • the subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed.
  • water droplets containing dirt adhering immediately before the final rinse are dropped by water particles that are clean water. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, the object to be cleaned 3 has a beautiful finish because it is not a white and conspicuous water droplet trace caused by dirt as seen when circulating water is used.
  • the amount of water and power consumption used in the final rinsing are significantly reduced compared to the conventional method. And since the temperature of the to-be-cleaned object 3 has reached 70 degreeC or more, the power consumption by an energy saving drying course can be reduced. Furthermore, the high-efficiency sterilization effect that spreads through every corner by the high-temperature water particles at the final rinse can be expected.
  • the drying performance equivalent to that of the conventional method can be obtained only by blowing. It is shown that. Further, as shown in FIG. 9, from the correlation diagram between the obtained A performance judgment value and the tableware surface temperature, when the tableware temperature is about 71 ° C., the drying performance equivalent to the conventional method is obtained. Therefore, in the combination of the first mixed water particles and the rinse, energy saving drying only by blowing can be performed by setting the surface temperature of the tableware to be cleaned 3 to 70 ° C. or more and 100 ° C. or less in the final rinse.
  • the method of the third embodiment in which the first mixed water particles and the rinsing are combined is used before the drying process.
  • the amount of water adhering to the surface becomes less than half, and drying is performed efficiently.
  • the level of water droplet traces remaining on the glass after drying, for the combination of the first mixed water particles and the rinse agent has a good level equal to or higher than that of the rinse agent alone.
  • the washed and dried object 3 of the third embodiment is found only in the conventional method and the first mixed water particles, or when the rinse agent is added to the jet water (hereinafter, rinse agent only). White water drops are greatly reduced. Although the power consumption and the amount of water are reduced, the object to be cleaned 3 has a beautiful finish.
  • the amount of water in the combined use of the first mixed water particles and the rinse agent is the same as that of the rinse agent alone.
  • the combined use of the first mixed water particles and the rinsing agent has the following advantages as compared with the case of only the rinsing agent in which the final rinse is performed by circulating water using hot water. Advantages are that there is no redeposition due to rinsing water, and the amount of heating water is small and the power consumption and the amount of water used are reduced. Further, since the water droplet newly attached to the object to be cleaned 3 in the final rinse is clean water, the white water droplet trace remaining after drying can be greatly reduced.
  • the mixed water particle generator 25 may be any device that generates water vapor and water particles that are not water vapor, even if it does not have the structure described in the third embodiment.
  • the first mixed water particles are generated in a direction from the upper side in the cleaning tank 1 toward the object 3 to be cleaned, and a plurality of mixed water particle supply ports 29 are provided in order to efficiently supply the first mixed water particles. You may install in. Further, if possible, the mixed water particle supply port 29 may be configured so that the water being cleaned does not enter.
  • the installation location of the water purification filter 26 is not limited to the above location, and the water purification filter 26 itself may not be installed.
  • the mixed water particle generator 25 configured as described above the mixed water particle generator 28 may accumulate and clog the scale. Therefore, the mixed water particle generating unit 28 needs to be devised in terms of the structure or the like or periodically cleaned with a scale component remover.
  • the scale is prevented from being deposited.
  • the rinsing agent is not limited to the above method.
  • the user may put it in at an appropriate timing, or a capsule-type or solid-type detergent in which the rinse agent dissolves in a specific process such as during a rinsing process may be used.
  • a material having a heat-resistant temperature of 100 ° C. or higher as a location where water vapor is applied immediately after the supply and a constituent material in the apparatus where the water vapor is generated.
  • FIG. 11 is an elevation view of the tableware washing apparatus according to Embodiment 4 of the present invention
  • FIG. 12 is a sequence schematic diagram of the tableware washing apparatus.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a dirt sensor 32 that detects the amount of dirt in the circulating water is installed in a path 31 through which the circulating water passes from the water storage unit 6 toward the cleaning pump 7.
  • the vertical axis represents the water temperature
  • the horizontal axis represents the operation time. From the top, the conventional sequence, the sequence 33 when the amount of dirt is large, and the sequence 34 when the amount of dirt is small are shown.
  • the dishwashing apparatus of the fourth embodiment automatically selects a sequence according to the amount of dirt.
  • a rinsing agent is introduced in the cleaning process, and when the amount of dirt is small, the rinsing agent is introduced in the last rinse.
  • the form and operation of the final rinse with water particles are the same as in the first to third embodiments. Since cleaning and rinsing methods by jetting in each process are the same as those in the first to third embodiments, detailed description thereof is omitted.
  • the dirt sensor 32 detects the amount of dirt in the circulating water.
  • the control unit 13 supplies the rinse agent into the cleaning tank 1 from the rinse agent inlet 12. Is done.
  • the process proceeds in the same manner as in the conventional method until the last rinse.
  • water particle rinsing is performed by the same method as in the first and second embodiments.
  • the reason for supplying the rinse agent during the cleaning process is as follows.
  • the amount of dirt is large, especially when egg yolk protein is contained in large quantities, the protein is denatured by the high temperature during the washing and rinsing process, and tends to adhere to a glass or the like.
  • unevenness and hydrophilicity variations occur on the surface of the article 3 to be cleaned, and water droplets remain in the last rinse and the final rinse, resulting in a decrease in drying performance.
  • Once this type of dirt is deposited, it is difficult to remove with normal rinsing. Therefore, it is important to prevent the above-described dirt from adhering to the article 3 to be cleaned.
  • the rinse agent is supplied into the washing water in which a large amount of dirt peeled off from the dishes is floating.
  • a rinse agent component that is not contained as a detergent component for a general dishwasher or contained in a very small amount is sufficiently contained.
  • the amount of dirt is less than the predetermined amount, it is more effective to reduce water droplets due to the rinse agent when the rinse agent is introduced immediately before the final rinse than when the rinse agent is introduced at the initial stage of cleaning. Therefore, it is desirable to adopt the systems of the first and second embodiments as usual.
  • the amount of soiling is small, or when there is a small amount of soiling that denatures and adheres to the surface of the tableware, it is more effective to introduce a rinse agent in the last rinse.
  • the rinsing effect is exhibited with a smaller amount of the rinsing agent.
  • the adhesion of dirt to the surface of the object to be cleaned 3 immediately before is prevented.
  • the surface of the tableware is treated to have a more uniform hydrophilicity, thereby reducing the amount of remaining water droplets. Thereby, the amount of water drops to be dropped in the water particle rinsing can be reduced. Therefore, the drying performance in the subsequent drying step or natural drying is improved, and water droplet traces remaining after drying are prevented.
  • the mixed water particle generator 25 may have a system and structure for generating water vapor and water particles that are not water vapor, or mixed water particles as described in the first to third embodiments.
  • the sequence may be selected manually by the user. At this time, it is desirable to judge the course depending on whether the egg yolk component is particularly dirty or not.
  • the dirt sensor 32 is not limited to the detection of the amount of dirt, but, for example, a sensor that can detect the type of dirt, particularly the amount of protein, is most desirable.
  • the stain detection method is not limited to the above-described method.
  • the user may put in the rinse agent himself. It is possible to adopt a method in which detergents such as capsules or solids in which the rinsing agent dissolves in a specific process, such as during a washing process or a rinsing process, are used depending on the state of dirt.
  • FIG. 13 is an elevation view of the tableware washing apparatus according to the fifth embodiment of the present invention
  • FIG. 14 is a sequence schematic diagram of the tableware washing apparatus.
  • the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the dishwashing apparatus includes a separate chamber 19 disposed at the bottom of the cleaning tank 1, an ultrasonic vibrator 20 that is a water particle generator that generates mist-like water particles in the separate chamber 19, and water in the separate chamber 19.
  • a second heating unit 21 for heating the water level and a water level detection sensor 22 for detecting the water level in the separate chamber 19 are installed.
  • the water particle generation point 36 includes the first heating unit 9 and is a part of the water storage unit 6 through the open / close door 35.
  • a path 23 for supplying clean water from the water supply unit 4 is connected to the separate chamber 19 by switching the water supply valve 14.
  • the separate chamber 19 and the cleaning tank 1 are communicated with each other by an opening / closing door 24.
  • a rinse agent charging unit 11 and a rinse agent charging port 12 connected to a separate chamber 19 are installed in a part of the cleaning tank 1.
  • the vertical axis indicates the water temperature and the horizontal axis indicates the operation time, and the sequence of the conventional method and the sequence of the dishwashing apparatus according to the fifth to eighth embodiments are shown in order from the top.
  • the rinsing immediately before the final is started by supplying a predetermined amount of water from the water supply unit 4 to the washing tank 1 in the same manner as the previous rinsing.
  • the water stored in the water storage section 6 circulates in the cleaning tank 1 in the same manner as the cleaning step, and rinses away dirt and detergent adhering to the object to be cleaned 3 by jetting.
  • drainage is performed in the same manner as the washing step, and the normal rinsing step is completed. Thereafter, the usual rinsing is repeated one to several times by the same method, and the last rinsing is completed by drainage ((u) in FIG. 14).
  • the final rinse begins.
  • the opening / closing door 35 provided in the water storage unit 6 is closed by the control unit 13, and the water particle generation point 36 in the water storage unit 6 becomes a private room.
  • clean water is supplied from the water supply unit 4 to the cleaning tank 1 via the path 15.
  • the clean water supplied to the cleaning tank 1 is stored in the water particle generation location 36.
  • the first heating unit 9 operates to heat the water stored in the water particle generation location 36.
  • the water supply valve 14 is switched to the path 23, and water is supplied to the separate chamber 19 via the path 23.
  • the water supply valve 14 When the water level in the separate chamber 19 reaches the water level detected by the water level detection sensor 22, the water supply valve 14 is closed and the water supply ends. An appropriate amount of rinse agent is introduced into the separate chamber 19 from the rinse agent inlet 12 before or after the start of water supply to the separate chamber 19 or immediately after the end of the water supply, and is dissolved in the stored washing water.
  • the opening / closing door 35 is opened by the control unit 13, and the separate chamber 19 and the inside of the cleaning tank 1 are communicated.
  • the ultrasonic vibrator 20 and the second heating unit 21 are operated, and mist-like water particles containing a rinse agent are generated while the cleaning water in the separate chamber 19 is heated.
  • the generated water particles containing a high-temperature rinse agent (hereinafter, rinse-in water particles) are supplied into the cleaning tank 1 through the open / close door 24 for about 5 minutes.
  • the ultrasonic vibrator 20 and the second heating unit 21 are stopped by the control unit 13, and the supply of rinse-in water particles is completed.
  • the rinse agent may be supplied immediately before or when the ultrasonic transducer 20 is driven in the final rinse.
  • the rinse-in water particles supplied into the cleaning tank 1 adhere to the object to be cleaned 3 and the wall surface of the cleaning tank 1, and the water droplets on the adhesion surface are dropped by growth.
  • the rinse-in water particles adhere closely to the surface of the article 3 to be cleaned and treat the surface to be hydrophilic evenly.
  • the operation time of the ultrasonic vibrator 20 is about 5 minutes immediately after the second heating unit 21 is operated, the rinse-in water particles are heated to 40 ° C. to 50 ° C., and are moved to the surface of the object 3 to be cleaned.
  • the object to be cleaned 3 is heated by sensible heat along with the adhesion of.
  • the water in the water particle generation portion 36 that has been heated by the first heating unit 9 gradually begins to be supplied to the cleaning tank 1 as water vapor.
  • high-temperature steam with a stable supply amount is supplied into the cleaning tank 1.
  • the supplied water vapor is combined with the rinse-in water particles floating in the space or adhering to the surface of the object to be cleaned 3 as it is sterilizing the bacteria floating in the space of the cleaning tank 1.
  • the water vapor and the rinse-in water particles are combined, they adhere to the surface of the object to be cleaned 3 more quickly and reliably as high-temperature water particles whose own weight is increased by the combination, and the object to be cleaned 3 is heated.
  • the control unit 13 switches the first heating unit 9 on. It is turned off. Residual water stored in the water particle generation point 36 is drained by the drainage part 5 simultaneously with the residual water in the separate chamber 19 through the water storage part 6 when the open / close door 35 is opened, and the final rinse is completed.
  • the subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed.
  • the object to be cleaned 3 after drying is greatly reduced in water droplets adhered and soiled by rinse-in water particles and water vapor immediately before drying.
  • the number of water droplet traces remaining after drying is reduced.
  • the amount of water and power consumption used in the final rinsing are significantly reduced compared to the conventional method. Moreover, since the temperature of the article to be cleaned 3 has reached 70 ° C. or higher, the power consumption by the energy saving drying course is reduced. In addition, high-efficiency sterilization effect that can be expected throughout the whole area can be expected by high-temperature water particles at the final rinse.
  • the total amount of water used for the water particles can be reduced as compared with the jet water by supplying the rinse agent in the water particles. Therefore, when supplying the rinse agent having the same concentration as the case where the rinse agent is dissolved in the jet water to the surface of the article 3 to be cleaned, the amount of the rinse agent used is greatly reduced, and the environmental load and running cost are reduced.
  • the rinse agent is adhered to the surface of the article 3 to be cleaned by supplying the rinse agent contained in the water particles. Immediately after the rinsing agent is supplied or when water particles supplied at the same time adhere to the surface of the object 3 to be cleaned, the water droplets immediately spread and coalesce with the adjacent water droplets, so that the water droplets fall more quickly and efficiently.
  • the effect of rinsing as a whole is enhanced by the amount of water contained in the rinse-in water particles as well as the water particles.
  • the water particle generator is provided with the first heating unit 9 used for normal operation as a part of the water storage unit 6 to reduce the cost.
  • this structure is not necessary if the structure generates water vapor.
  • a device that generates water vapor separately may be provided so that clean water is directly supplied to the separate chamber 19.
  • the structure for generating water vapor may be provided with a separate room 19 and an opening / closing door, and the water supply unit 4 and the first heating unit 9 may be used in combination.
  • the rinse agent inlet 12 may be supplied to the separate chamber 19 after the rinse agent is dissolved in the clean water supplied without being directly provided in the separate chamber 19 of the rinse-in water particle generator.
  • the rinse-in water particles are clean water particles.
  • rinse-in water particle generator and the rinse agent charging unit 11 may be integrated. Any method may be applied as long as the rinsing agent is dissolved in the water used to generate the water particles.
  • FIG. 15 is an elevation view of the tableware washing apparatus according to the sixth embodiment of the present invention.
  • the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the dishwasher includes a separate chamber 38 at the bottom of the cleaning tank 1, an ultrasonic vibrator 20 that is a water particle generator that generates mist-like water particles in the separate chamber 38, and a water level detection sensor 39.
  • the upper surface of the wall surface on one side of the separate chamber 38 is open.
  • An opening / closing door 40 is installed from the bottom surface of the separate chamber 38 to the height of the water level detection sensor 39.
  • a separate room 41 is provided adjacent to the separate room 38 with the opening / closing door 40 as a boundary.
  • a water particle heating unit 42 is installed between the bottom surface and the height of the water level detection sensor 39 installed in the separate chamber 38.
  • the upper part of the separate room 38 and the separate room 41 is connected by the open part in the upper part of the opening / closing door 40, and internal air can freely come and go.
  • a path 43 for supplying clean water from the water supply unit 4 by switching the water supply valve 14 is connected to the separate room 38. By opening the opening / closing door 40, clean water also flows into the separate chamber 41.
  • a rinse agent charging part 11 and a rinse agent charging port 12 connected to the inside of the separate chamber 38 are installed in a part of the cleaning tank 1 located in the vicinity of the separate chamber 38. Further, the separate chamber 38 and the cleaning tank 1 are communicated with each other by an opening / closing door 44.
  • the water supply valve 14 is opened and the clean water is supplied to the separate chamber 38 and the separate chamber 41 with the open / close door 40 opened through the passage 43, and the water level is detected. Water is supplied until the sensor 39 detects the water level.
  • the opening / closing door 40 is closed and the separate room 38 and the separate room 41 are blocked.
  • an appropriate amount of rinse agent is charged into the clean water stored in the separate chamber 38 from the rinse agent inlet 12.
  • the ultrasonic transducer 20 and the water particle heating unit 42 in the separate chamber 41 are operated, and the open / close door 44 is opened.
  • the water containing the rinse agent stored in the separate chamber 38 is supplied to the cleaning tank 1 through the open / close door 44 opened as rinse-in water particles.
  • the rinse-in water particles adhere closely to the surface of the article to be cleaned 3 and uniformly treat the entire article to be cleaned 3 to be hydrophilic.
  • the drainage section 5 is activated, and the remaining water containing the rinse agent in the separate chamber 38 is drained.
  • the opening / closing door 40 opens, and the hot water heated in the separate room 41 flows into the separate room 38.
  • High-temperature water particles are generated by the ultrasonic vibrator 20 and supplied to the cleaning tank 1 through the open / close door 44.
  • the supplied high-temperature water particles adhere to the surface of the object to be cleaned 3 as they are, or are combined with the rinse-in water particles floating in the space to increase in size, and quickly and reliably adhere to the surface of the object to be cleaned 3. .
  • the supply of the high-temperature water particles is stopped when it is detected that the surface temperature of the object to be cleaned 3 has reached 70 ° C. by an infrared sensor or the like after a predetermined time has elapsed. That is, the operations of the water particle heating unit 42 and the ultrasonic transducer 20 are stopped.
  • the remaining water in the separate chamber 38 and the separate chamber 41 is drained by the drainage section 5, and the final rinse is completed.
  • the subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed.
  • the to-be-cleaned object 3 after drying is greatly reduced in dirty water droplets adhering immediately before the final rinse due to rinse-in water particles and high-temperature water particles immediately before drying. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, not the white and conspicuous water droplet traces caused by dirt as seen when circulating water is used, but a beautiful finish of the article to be cleaned 3 is obtained.
  • the amount of water used in the final rinse can be greatly reduced compared to the conventional method. Moreover, since the temperature of the to-be-cleaned object 3 has reached 70 degreeC or more, the power consumption by the energy-saving drying course only of ventilation is reduced. Furthermore, the high-temperature water particles in the final rinsing are distributed throughout the object to be cleaned 3, and a highly efficient sterilization effect can be expected.
  • the rinsing agent is included in the water particles and supplied. Therefore, the amount of the rinse agent used is greatly reduced compared to the jet water. And environmental burden and running cost are reduced.
  • the rinse agent when the rinse agent is supplied while being contained in the water particles, the rinse agent adheres to every corner of the article 3 to be cleaned. Immediately after the rinsing agent is attached or when water particles supplied at the same time adhere to the surface of the article 3 to be cleaned, the particles immediately wet and spread, and can merge with adjacent water droplets. As a result, water droplets fall more quickly and efficiently.
  • the rinse effect as a whole is enhanced not only by water particles but also by the amount of water contained in the rinse-in water particles.
  • rinse-in water particles and high-temperature water particles are supplied in the form of a mist having a particle size larger than that of water vapor. Therefore, the amount of water that adheres to the surface of the article 3 to be cleaned in a short time is large, and the water drop dropping efficiency and the rinsing performance are increased accordingly.
  • a device for rinsing-in water particles and a device for water particle generation are used together by one unit. Therefore, the manufacturing cost is greatly reduced. Further, since the space for installing the rinse-in water particle device, the water particle generating device, the power source of these devices, and the control unit 13 can be halved, the dishwasher can be made compact.
  • the manufacturing cost is reduced by using the water particle generator as a part of the water storage unit 6 and the heating means used for normal operation.
  • the structure generates water vapor, it is not necessary to use the above-described configuration.
  • a device that generates water vapor may be provided separately so that clean water is directly supplied into the device.
  • the structure for generating water vapor may be provided with a separate chamber 38 and an opening / closing door, and the water supply unit 4 and the first heating unit 9 may be used in combination.
  • the rinse agent inlet 12 may not be directly supplied to the separate chamber 38 of the rinse-in water particle generator, but may be supplied to the separate chamber 38 after being dissolved in the supplied water. Furthermore, the rinse-in water particle generator and the rinse agent charging unit 11 may be integrated. As long as the rinse agent is dissolved in the water used to generate water particles, any type of rinse agent may be used.
  • FIG. 16 is an elevation view of the tableware washing apparatus according to the seventh embodiment of the present invention.
  • the same components as those in the first to sixth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the rinse-in water particle generation point 46 includes an open / close door 45, the first heating unit 9 of the water storage unit 6, the ultrasonic vibrator 20 that generates mist-like water particles, and the rinse-in water particles.
  • a water level detection sensor 47 for detecting the water level in the generation location 46 is provided.
  • the opening / closing door 45 is closed, and the rinse-in water particle generation point 46 is made into a private room in the water storage section 6.
  • the water supply valve 14 is opened, and clean water is supplied into the cleaning tank 1 through the path 15.
  • the rinse agent inlet 12 is opened, and the rinse agent is mixed while clean water flows from the water supply port 16 to the rinse-in water particle generation portion 46.
  • the rinse agent inlet 12 is closed, and the injection of the rinse agent is completed.
  • the water supply valve 14 is closed and the water supply is completed.
  • the rinse-in water particle generation point 46 Since the rinse-in water particle generation point 46 is installed in the cleaning tank 1 without a cover, the generated rinse-in water particles are supplied to the cleaning tank 1 as it is for about 5 minutes. After a predetermined time has elapsed, the ultrasonic transducer 20 and the first heating unit 9 are stopped, and the supply of rinse-in water particles is completed.
  • the rinse-in water particles supplied into the cleaning tank 1 adhere to the object to be cleaned 3 and the wall surface of the cleaning tank 1, and the water droplets on the adhesion surface are dropped by growth.
  • the rinse-in water particles adhere closely to the surface of the article 3 to be cleaned and treat the surface to be hydrophilic evenly.
  • the operating time of the ultrasonic transducer 20 is about 5 minutes immediately after the first heating unit 9 is operated. Therefore, the rinse-in water particles are heated to 40 ° C. to 50 ° C., and the object to be cleaned 3 is heated by sensible heat as it adheres to the surface of the object to be cleaned 3.
  • the switch of the mixed water particle generating unit 28 is turned on, and when the temperature of the mixed water particle generating unit 28 reaches a predetermined temperature, the feed water pump 30 is driven, and the clean water stored in the mixed water particle generating device 25 is The mixed water particle generation unit 28 is pumped.
  • the purified water that has been pumped passes through a thin heater tube with a high inner wall, partially boiling to become water vapor, and partly becoming high-temperature water particles that do not contain water containing a rinsing agent. 29 is supplied into the cleaning tank 1.
  • the second mixed water particles made of mist which is high-temperature water particles that are not water vapor containing the supplied water vapor and rinse agent, adhere to the surface of the object to be cleaned 3 as they are.
  • the second mixed water particles are combined with the rinse-in water particles floating in the space and become large, and quickly and reliably adhere to the surface of the object to be cleaned 3.
  • the feed water pump 30 and the mixed water particle generating unit 28 are stopped. Then, the open / close door 45 is opened, and the remaining water stored in the rinse-in water particle generation point 46 flows into the water storage unit 6.
  • the drainage section 5 is operated, the residual water in the water storage section 6 and the residual water in the mixed water particle generator 25 are drained, and the final rinse is completed.
  • the rinse-in water particles adhere to the surface of the article to be cleaned 3 evenly just before rinsing with water particles, and the entire surface is treated to be hydrophilic. Therefore, when the second mixed water particles adhere, the second mixed water particles spread out.
  • the water content of the rinse-in water particles is added to increase the efficiency of water droplet growth, coalescence, and dropping.
  • the amount of rinsing agent used can be significantly reduced compared to the amount used in circulating water, the environmental load is reduced and the running cost is also reduced.
  • the use of the second mixed water particles for rinsing the water particles provides the advantage of high temperature water particles that are not water vapor and water vapor.
  • production location 46 is an instantaneous boiling type, a large amount of water particles are supplied with little power consumption immediately after driving. Therefore, various effects such as heating of the article 3 to be cleaned in a short time, sterilization by efficient latent heat, and improvement of rinsing efficiency can be obtained.
  • the subsequent drying process is performed by the energy saving drying course by the blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed.
  • the object to be cleaned 3 after drying has drastically reduced dirty water droplets adhering thereto by the rinse-in water particles and the second mixed water particles immediately before drying. Therefore, the number of water droplet traces remaining after drying is reduced. Even if a water droplet trace remains, it is not a white and conspicuous water droplet trace caused by dirt as seen when circulating water is used, but a beautiful finish is obtained.
  • the amount of water and power consumption used in the final rinse are greatly reduced compared to the conventional method. Since the temperature of the object to be cleaned 3 has reached 70 ° C. or higher, power consumption by the energy saving drying course is reduced. Furthermore, at the time of the final rinse, high-temperature water particles spread throughout the entire area, and a high sterilization effect can be expected.
  • the rinse-in water particle generator is used as a part of the water storage unit 6, and the first heating unit 9 used for normal operation is used in combination. Therefore, the heating part for the rinse-in water particle generator is not necessary, and the cost is reduced.
  • the rinse-in water particle generator may be provided separately from the water storage unit 6.
  • the rinse-in water particle generator may be provided together with the mixed water particle generator 25 or may be integrated.
  • the rinse-in water particle generator is not covered and is exposed in the cleaning tank 1.
  • the path 31 from the supply port to the rinse-in water particle generator is sufficiently rinsed by multiple rinses. Therefore, the clean water supplied to the rinse-in water particle generator is not at a level at which the clean water is contaminated and the dirt 3 adheres to the surface of the article 3 to be cleaned due to the rinse-in water particles.
  • the rinsing is insufficient, it is dissolved in the circulating water that has become hot in the path 27 of the circulating water that is installed at the bottom and side of the washing tank 1 through which the circulating water that accumulates most dirt passes.
  • the method of supplying the rinse agent is not limited to the above.
  • the rinsing agent supply pipe may be connected to the rinsing-in water particle generator, or the rinsing agent may be introduced directly into the water storage location in the apparatus.
  • FIG. 17 is an elevation view of the tableware washing apparatus according to the eighth embodiment of the present invention.
  • the same components as those in the first to seventh embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a mixed water particle generator 25 is installed at the bottom of the cleaning tank 1.
  • the detailed structure of the mixed water particle generator 25 is as shown in FIG. Further, the rinse agent inlet 12 is connected between the water supply valve 14 and the mixed water particle generator 25 in the path 27. Furthermore, the mixed water particle generator 25 is provided with a drainage path 48 connected to the drainage unit 5 at the bottom.
  • the operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus of the eighth embodiment is performed from the cleaning step to the last rinse immediately after the same operation as in the first and seventh embodiments, the final rinse will be described.
  • the water supply valve 14 and the rinse agent inlet 12 are opened. An appropriate amount of clean water and a rinsing agent are supplied into the mixed water particle generator 25 through the path 27.
  • the feed water pump 30 is driven, and the rinse agent stored in the mixed water particle generating device 25
  • the clean water containing is pumped to the mixed water particle generator 28.
  • the purified water that has been pumped passes through a thin heater pipe whose inner wall is at a high temperature, partly becomes water vapor, and part becomes high-temperature rinse-in water particles containing a rinse agent, and the washing tank is supplied from the mixed water particle supply port 29. 1 is supplied.
  • the second mixed water particles composed of the supplied water vapor and rinse-in water particles adhere to the surface of the object to be cleaned 3 as they are.
  • the water vapor and the rinse-in water particles are combined in the cleaning tank 1 to increase their own weight, and quickly and reliably adhere to the surface of the object to be cleaned 3.
  • the contact angle becomes small immediately after adhering.
  • the rinse-in water particles coalesce with the surrounding rinse-in water particles, the condensed water of the water vapor, and the water droplets attached in the last rinse.
  • the rinse-in water particles wet and spread on the surface of the article to be cleaned 3 and form large water droplets and fall from the surface of the article to be cleaned 3.
  • the dirt component and the scale component contained in the water droplets adhered in the rinse immediately before the final are removed from the surface of the article 3 to be cleaned. And in the next drying process, generation
  • the rinse-in water particles are simultaneously supplied by the same apparatus as the water vapor, so that the dirt components and the like are removed in a short time. And the surface of the to-be-washed
  • the rinse-in water particle generator does not have to be provided separately, the manufacturing cost is greatly reduced. Furthermore, since the space for installing the rinse-in water particle generating device and the device for generating water vapor, the power source of these devices, and the control unit 13 can be halved, the dishwasher can be made compact.
  • the rinsing effect is high even though the amount of water used is small. Moreover, since both the sterilization performance and the heating speed are high, all of the power consumption, the amount of water, and the heating time are reduced as compared with the rinsing with the jet water.
  • the water particle generator 28 is stopped. Then, the remaining water in the mixed water particle generator 25 is drained from the drainage part 5 through the drainage path 48, and the final rinse is completed. In this way, the water particle rinsing is performed until the water particle generator sets the surface temperature of the article to be cleaned 3 to 70 ° C. or more immediately before the drying step.
  • the subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed.
  • dirty water droplets adhering to the rinse-in water particles and water vapor immediately before drying are greatly reduced. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, they are not white and conspicuous water droplet traces caused by dirt as seen when circulating water is used, so that a beautiful finish of the article to be cleaned 3 can be obtained.
  • the temperature of the object to be cleaned 3 has reached 70 ° C. or higher in the final rinse, an effect of reducing power consumption by the energy saving drying course can be obtained. That is, the object to be cleaned 3 is dried only by driving the air blowing unit without heating the object to be cleaned 3 by the heating unit.
  • the method of charging the rinse agent is not limited to the above.
  • the rinse agent may be directly supplied into the mixed water particle generator 25.
  • the rinsing agent charging unit 11 may be integrated with the mixed water particle generator 25. That is, any method may be used as long as the rinse agent is dissolved in the clean water used for the second mixed water particles.
  • a water purification filter 26 is provided in order to prevent scale accumulation on the mixed water particle generating unit 28.
  • the clean water before being sent to the mixed water particle generating unit 28 in the pretreatment may be once heated to 70 ° C. or higher to cause the scale component to precipitate or the scale component removing agent to be used periodically.
  • the mixed water particle supply port 29 should be installed on the side surface from the bottom of the cleaning tank 1 so that dirt components being cleaned do not enter the mixed water particle generator 25. Furthermore, if it is the size of the washing tank 1 of a normal household dishwasher, the mixed water particle supply port 29 can sufficiently supply the second mixed water particles throughout the washing tank 1 even at one location. However, a plurality of mixed water particle supply ports 29 may be provided for more reliable and efficient treatment. Moreover, the installation location of the mixed water particle supply port 29 is not limited to the bottom and side surfaces of the cleaning tank 1 and may be provided at other locations such as the top. For example, a plurality of mixed water particle supply ports 29 may be provided in the injection nozzle, and the second mixed water particles may be supplied while rotating. Further, it is desirable to use a material having a heat-resistant temperature of 100 ° C. or higher as the location where water vapor is applied immediately after the supply and the constituent material in the apparatus where the water vapor is generated.
  • the tableware washing apparatus of the present invention can be applied to uses such as household and commercial dishwashing apparatuses and various industrial dishwashing and drying apparatuses.

Landscapes

  • Washing And Drying Of Tableware (AREA)

Abstract

A dish washing device has a washing step and a rinsing step which performs multiple times of rinsing, and the dish washing device comprises a washing container, a water supplying section, a washing pump, a washing nozzle, and a water particle generating device which generates water particles of washing water or clean water. A rinsing agent is supplied into the washing container either in the washing step or in the rinsing step, and in the rising of the last round performed after the rinsing agent is supplied, water particle rinsing for adhering the water particles to an object being washed is performed.

Description

食器洗浄装置Dishwasher
 本発明は、食器洗浄装置に関する。 The present invention relates to a dishwashing apparatus.
 従来の食器洗浄装置は、循環ポンプ等の洗浄水供給装置と、洗浄水を加熱するヒーター等とを備えている。この食器洗浄装置は、洗浄槽内に供給した洗浄水をヒーターによって加熱しながら、洗浄水を循環ポンプ等によって加圧し、回転する噴射ノズルから洗浄槽内に設置した食器類に向けて噴射して洗浄を行う。 A conventional dishwashing apparatus includes a washing water supply device such as a circulation pump and a heater for heating the washing water. This dish washing apparatus pressurizes washing water with a circulation pump etc. while heating washing water supplied into the washing tank with a heater, and sprays it from the rotating jet nozzle toward the dishes installed in the washing tank. Wash.
 図18は、従来の食器洗浄装置のシーケンス概要図である。従来の食器洗浄装置では、洗浄槽内に供給された水が所定時間、循環されて食器に向けて噴射される。このような食器洗浄装置の工程は基本的に、洗浄工程、最終回のすすぎを含む複数回のすすぎ工程、および乾燥工程からなる。また、各工程において使用する水量は、食器点数によるが、少なくとも数リットル以上である。従来の食器洗浄装置では、洗浄工程とすすぎ工程の最終回のすすぎとにおいて、循環水がヒーターによって60℃以上まで加熱されている。特に最終回のすすぎでは食器の除菌、および次工程の乾燥における補助を目的として、循環水は70℃付近まで加熱されることが多い(例えば、特許文献1参照)。つまり、乾燥直前の最終回のすすぎにおいて、食器類は加熱された洗浄水により暖められると、乾燥に要する時間が短くなる。 FIG. 18 is a schematic sequence diagram of a conventional tableware washing apparatus. In the conventional tableware washing apparatus, water supplied into the washing tank is circulated for a predetermined time and sprayed toward the tableware. The process of such a dishwashing apparatus basically includes a washing process, a plurality of rinsing processes including a final rinse, and a drying process. In addition, the amount of water used in each step is at least several liters although it depends on the number of dishes. In the conventional tableware washing apparatus, the circulating water is heated to 60 ° C. or higher by the heater in the washing step and the final rinse of the rinsing step. In particular, in the final rinsing, circulating water is often heated to around 70 ° C. for the purpose of sterilizing dishes and assisting in the drying of the next process (see, for example, Patent Document 1). That is, when the tableware is warmed by the heated washing water in the final rinse immediately before drying, the time required for drying is shortened.
 図19は従来の食器洗浄装置の断面図であり、特許文献2に記載の食器洗浄装置である。食器洗浄装置は、洗浄槽68、食器類49、カゴ50、排水用ポンプ51、噴射管52、噴射孔、3方弁53、54、純水装置55、給水パイプ56、蒸気発生器側給水パイプ56a、逆止弁57、蒸気発生室58、発熱体59、水位検出器60、61、排水ホース62、洗浄槽側給水パイプ63、蒸気管64、ドア65、および空気抜け孔66を備えている。 FIG. 19 is a cross-sectional view of a conventional dishwashing apparatus, which is a dishwashing apparatus described in Patent Document 2. The dishwasher includes a washing tub 68, tableware 49, basket 50, drainage pump 51, injection pipe 52, injection hole, three- way valves 53 and 54, pure water device 55, water supply pipe 56, steam generator side water supply pipe. 56 a, check valve 57, steam generation chamber 58, heating element 59, water level detectors 60 and 61, drain hose 62, cleaning tank side water supply pipe 63, steam pipe 64, door 65, and air vent hole 66. .
 図20Aは従来の食器洗浄装置の噴射管の断面図、図20Bは同食器洗浄装置の噴射管に設けた噴射孔部において蒸気と清浄水とを混合する状態を示す断面図である。以上のように構成された食器洗浄装置では、蒸気の噴射管の噴射孔52aより、加圧蒸気と洗浄水とを混合させた混合体を、図19のカゴ50内の食器類49に向かって噴射させ、食器類49を均一に洗浄する。ここで加圧蒸気は、蒸気発生室58から供給される。また洗浄水は、加圧蒸気から誘発される。そして洗浄後、噴射孔52aより加圧蒸気のみが噴射され、食器類49が乾燥殺菌される。 FIG. 20A is a cross-sectional view of an injection pipe of a conventional dishwashing apparatus, and FIG. 20B is a cross-sectional view showing a state in which steam and clean water are mixed in an injection hole provided in the injection pipe of the dishwashing apparatus. In the dish washing apparatus configured as described above, the mixture obtained by mixing the pressurized steam and the washing water is directed toward the dishes 49 in the basket 50 in FIG. The tableware 49 is evenly washed by spraying. Here, the pressurized steam is supplied from the steam generation chamber 58. Wash water is also induced from pressurized steam. And after washing | cleaning, only pressurized steam is injected from the injection hole 52a, and the tableware 49 is dry-sterilized.
 しかしながら、上記特許文献1に記載の食器洗浄装置では、最終回のすすぎにおいて数リットルの水を70℃付近まで加熱する必要がある。そのため特許文献1に記載の食器洗浄装置では、消費電力が大きく、ランニングコストがかかるという課題があった。 However, in the dishwashing apparatus described in Patent Document 1, it is necessary to heat several liters of water to around 70 ° C. in the final rinse. For this reason, the dishwashing apparatus described in Patent Document 1 has a problem of high power consumption and high running cost.
 さらに特許文献2の、洗浄水が噴射孔52aから被洗浄物に向けて噴射される方式では、洗浄槽68内の隅々まで均一に洗浄水があてられない。そのため、最終回のすすぎ時の洗浄槽68内の除菌が不完全となる。また食器洗浄装置では、洗浄水が循環して噴射されているため、すすぎ工程中に洗浄槽68内にたまった汚れを含んだ水により食器をすすぐことになるという課題があった。 Furthermore, in the method of Patent Document 2 in which cleaning water is sprayed from the injection holes 52a toward the object to be cleaned, the cleaning water cannot be uniformly applied to every corner in the cleaning tank 68. Therefore, the sterilization in the cleaning tank 68 at the final rinse is incomplete. Further, in the dishwashing apparatus, since the washing water is circulated and jetted, there is a problem that the dishes are rinsed with water containing dirt accumulated in the washing tank 68 during the rinsing process.
 また、特許文献2に記載の食器洗浄装置は、洗浄効率の向上、省スペース及び低コストを目的として、循環ポンプを使わない。この食器洗浄装置は、洗浄槽の底部、すなわち食器カゴの下に水を溜め、水面から蒸気を発生させる。そしてこの食器洗浄装置は、水が混合された蒸気を食器へ向けて噴射して食器を洗浄する。 In addition, the dishwashing apparatus described in Patent Document 2 does not use a circulation pump for the purpose of improving cleaning efficiency, saving space, and reducing costs. This dishwashing apparatus accumulates water at the bottom of the washing tank, that is, below the dish basket, and generates steam from the water surface. And this tableware washing apparatus wash | cleans tableware by injecting the vapor | steam with which water was mixed toward tableware.
 しかし、上記特許文献2に記載の食器洗浄装置では、最終回のすすぎに加圧蒸気のみを使用している。そのため、被洗浄物やタンク内壁の表面に結露が大量に発生していた。その結果、特許文献2の食器洗浄装置では、食器を完全に乾燥できないか、もしくは、大量に電力を消費して長時間かけて乾燥させる必要があった。 However, in the tableware washing apparatus described in Patent Document 2, only pressurized steam is used for the final rinse. Therefore, a large amount of dew condensation occurred on the surface of the object to be cleaned and the inner wall of the tank. As a result, in the tableware washing apparatus of Patent Document 2, the tableware cannot be completely dried, or it is necessary to consume a large amount of power and dry it for a long time.
 さらに、最終回のすすぎまでに食器に付着したスケール成分、および汚れを含む水滴は、蒸気だけにより完全に置換されることはない。そのため、どうしても乾燥後に食器表面に白い水滴跡が残るという課題があった。 Furthermore, scale components adhering to the tableware by the final rinse and water droplets containing dirt are not completely replaced by steam alone. Therefore, there was a problem that a white water mark remains on the surface of the tableware after drying.
特開平6-22894号公報JP-A-6-22894 特公平7-32756号公報Japanese Patent Publication No. 7-32756
 本発明は、洗浄工程と複数回のすすぎを行うすすぎ工程とを有する食器洗浄装置であって、被洗浄物を収容するための洗浄槽と、洗浄槽に清浄水を供給する給水部と、洗浄槽に貯水された洗浄水を圧送する洗浄ポンプと、洗浄ポンプと接続するとともに洗浄水を被洗浄物に噴射する洗浄ノズルと、洗浄槽内に設けられるとともに洗浄水または清浄水の水蒸気からミストの大きさの水粒子を発生させる水粒子発生装置とを備え、洗浄工程とすすぎ工程とのどちらかの工程においてリンス剤が洗浄槽内に供給されるとともに、リンス剤の供給以降の最終回のすすぎにおいて、被洗浄物に水粒子を付着させる水粒子すすぎが行われる。 The present invention is a tableware washing apparatus having a washing step and a rinsing step for rinsing a plurality of times, a washing tank for containing an object to be washed, a water supply unit for supplying clean water to the washing tank, and a washing A cleaning pump that pumps the cleaning water stored in the tank, a cleaning nozzle that is connected to the cleaning pump and injects the cleaning water onto the object to be cleaned, and is provided in the cleaning tank and from the water vapor of the cleaning water or cleaning water. A water particle generator that generates water particles of a size, and the rinse agent is supplied into the cleaning tank in either the cleaning step or the rinsing step, and the final rinse after the rinse agent is supplied In this case, water particle rinsing for adhering water particles to the object to be cleaned is performed.
 このように本発明の食器洗浄装置では、最終回のすすぎにおいて、水粒子に使用するだけの水分量が供給される。そのため、従来の循環水によるすすぎに対して、水量を大幅に削減できるとともに、大量の水を加熱しなくてすむため、消費電力も削減することができる。 Thus, in the dishwashing apparatus of the present invention, the amount of water used for the water particles is supplied in the final rinse. As a result, the amount of water can be significantly reduced compared to conventional rinsing with circulating water, and a large amount of water does not need to be heated, so that power consumption can also be reduced.
 また、水粒子すすぎでは洗浄槽内のすみずみまで水粒子が行き渡るため、従来の噴射水によるすすぎにおいて見られるような、噴射ノズルの軌跡に由来する噴射水のあたらない箇所の発生がない。そのため、洗浄槽内のより細部における除菌効果が向上する。 In addition, since water particles are distributed throughout the washing tank in the case of water particle rinsing, there is no occurrence of locations where the spray water does not come from the trajectory of the spray nozzle, as seen in the conventional rinse with spray water. Therefore, the sterilization effect in more detail in the washing tank is improved.
 また、水粒子によるすすぎ前に、リンス剤による食器表面への水滴残りの改善と食器表面の親水性の向上効果とがある。そのため、水粒子のみを使用する場合に見られるような水粒子の結露、および水滴残りを大幅に防ぐことができる。一般に噴射水すすぎの場合よりも乾燥性能が悪化する水粒子すすぎと比べ、本発明の食器洗浄装置では乾燥性能を向上させることができる。 Also, before rinsing with water particles, there is an effect of improving the remaining water droplets on the tableware surface and the hydrophilic property of the tableware surface by the rinse agent. Therefore, the condensation of water particles and the remaining water droplets as seen when only water particles are used can be largely prevented. Compared with water particle rinsing in which the drying performance is generally worse than in the case of rinsing with jet water, the dish washing apparatus of the present invention can improve the drying performance.
図1は、本発明の実施の形態1の食器洗浄装置の立面図である。FIG. 1 is an elevation view of the tableware washing apparatus according to Embodiment 1 of the present invention. 図2は、同食器洗浄装置のシーケンス概要図である。FIG. 2 is a sequence schematic diagram of the tableware washing apparatus. 図3は、同食器洗浄装置の工程フロー概要図である。FIG. 3 is a process flow schematic diagram of the tableware washing apparatus. 図4は、本発明の実施の形態2の食器洗浄装置の立面図である。FIG. 4 is an elevation view of the tableware washing apparatus according to the second embodiment of the present invention. 図5は、本発明の実施の形態3の食器洗浄装置の立面図である。FIG. 5 is an elevation view of the tableware washing apparatus according to the third embodiment of the present invention. 図6は、同食器洗浄装置の混合水粒子発生装置の立面図である。FIG. 6 is an elevation view of the mixed water particle generator of the dishwasher. 図7は、同食器洗浄装置の最終回のすすぎ方式別の乾燥直前の食器付着水量特性図である。FIG. 7 is a characteristic diagram of the amount of adhered water of the tableware immediately before drying according to the final rinsing method of the tableware washing apparatus. 図8は、同食器洗浄装置の最終回のすすぎ方式別の乾燥性能特性図である。FIG. 8 is a drying performance characteristic chart according to the final rinse method of the tableware washing apparatus. 図9は、同食器洗浄装置の乾燥性能と食器表面温度との相関グラフである。FIG. 9 is a correlation graph between the drying performance of the tableware washing apparatus and the tableware surface temperature. 図10は、同食器洗浄装置の最終回のすすぎ別のグラスに残った水滴跡レベルを示す図である。FIG. 10 is a diagram showing the level of water droplets remaining on another glass of the last rinse of the dishwashing apparatus. 図11は、本発明の実施の形態4の食器洗浄装置の立面図である。FIG. 11 is an elevation view of the tableware washing apparatus according to the fourth embodiment of the present invention. 図12は、同食器洗浄装置のシーケンス概要図である。FIG. 12 is a schematic sequence diagram of the tableware washing apparatus. 図13は、本発明の実施の形態5の食器洗浄装置の立面図である。FIG. 13 is an elevation view of the tableware washing apparatus according to the fifth embodiment of the present invention. 図14は、同食器洗浄装置のシーケンス概要図である。FIG. 14 is a sequence outline diagram of the tableware washing apparatus. 図15は、本発明の実施の形態6の食器洗浄装置の立面図である。FIG. 15 is an elevation view of the tableware washing apparatus according to the sixth embodiment of the present invention. 図16は、本発明の実施の形態7の食器洗浄装置の立面図である。FIG. 16 is an elevation view of the tableware washing apparatus according to the seventh embodiment of the present invention. 図17は、本発明の実施の形態8の食器洗浄装置の立面図である。FIG. 17 is an elevation view of the tableware washing apparatus according to the eighth embodiment of the present invention. 図18は、従来の食器洗浄装置のシーケンス概要図である。FIG. 18 is a schematic sequence diagram of a conventional tableware washing apparatus. 図19は、同食器洗浄装置の断面図である。FIG. 19 is a sectional view of the tableware washing apparatus. 図20Aは、同食器洗浄装置の噴射管の断面図である。FIG. 20A is a cross-sectional view of the injection tube of the tableware washing apparatus. 図20Bは、同食器洗浄装置の噴射管に設けた噴射孔部において蒸気と清浄水とを混合する状態を示す断面図である。FIG. 20B is a cross-sectional view showing a state in which steam and clean water are mixed in an injection hole provided in an injection pipe of the tableware washing apparatus.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明は限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by this embodiment.
 (実施の形態1)
 図1は、本発明の実施の形態1の食器洗浄装置の立面図である。被洗浄物3は、洗浄槽1の食器カゴ2にセットされ、収容されている。洗浄槽1には、洗浄槽1内に水道水等の清浄水の給水を行うための給水部4が備えられている。洗浄槽1の底部外壁には、洗浄およびすすぎに使用した排水を洗浄槽1の外部に排出する排水部5と、貯水部6に貯水された洗浄水を圧送する洗浄ポンプ7とが設けられている。貯水部6には、洗浄水が貯められる。洗浄槽1の底部内壁には、洗浄ポンプ7と接続するとともに洗浄水を被洗浄物3に噴射する洗浄ノズル8と、洗浄水を加熱する第1の加熱部9と、沸騰により水蒸気からミストの大きさの水粒子を発生させる水粒子発生装置10とが設けられている。さらに、洗浄槽1の側面に、リンス剤投入部11と、リンス剤投入口12とが設置されている。ここでリンス剤投入部11は、リンス剤を貯留し必要なタイミングにて洗浄槽1内にリンス剤を投入する。リンス剤投入口12の高さ位置は、給水部4と貯水部6との高さの間になるように設置されている。そしてリンス剤は、給水時に洗浄槽1に給水された水が貯水部6に流れ込むまでの間に、供給される水流に混入される。
(Embodiment 1)
FIG. 1 is an elevation view of the tableware washing apparatus according to Embodiment 1 of the present invention. The object to be cleaned 3 is set and accommodated in the tableware basket 2 of the cleaning tank 1. The cleaning tank 1 is provided with a water supply unit 4 for supplying clean water such as tap water in the cleaning tank 1. On the bottom outer wall of the cleaning tank 1, there are provided a drainage part 5 for discharging wastewater used for cleaning and rinsing to the outside of the cleaning tank 1 and a cleaning pump 7 for pumping the cleaning water stored in the water storage part 6. Yes. Wash water is stored in the water reservoir 6. The bottom inner wall of the cleaning tank 1 is connected to the cleaning pump 7 and also has a cleaning nozzle 8 for injecting cleaning water onto the object to be cleaned 3, a first heating unit 9 for heating the cleaning water, and a mist from water vapor by boiling. A water particle generator 10 that generates water particles of a size is provided. Furthermore, a rinse agent charging part 11 and a rinse agent charging port 12 are installed on the side surface of the cleaning tank 1. Here, the rinse agent introduction unit 11 stores the rinse agent and introduces the rinse agent into the cleaning tank 1 at a necessary timing. The height position of the rinse agent inlet 12 is set to be between the height of the water supply unit 4 and the water storage unit 6. The rinsing agent is mixed into the supplied water flow until the water supplied to the cleaning tank 1 flows into the water storage unit 6 at the time of water supply.
 また、洗浄槽1の側面に制御部13が設置されている。ここで制御部13は、水粒子すすぎがすすぎ工程のうちの最終回のすすぎにおいて行われる水蒸気リンスコースを制御する。水粒子すすぎとは、水粒子発生装置10を駆動させることにより清浄水の水粒子を、被洗浄物3に付着させてすすぎを行うことである。また洗浄水とは、被洗浄物3を洗浄する、又はすすぐ液体の総称である。 Further, a control unit 13 is installed on the side surface of the cleaning tank 1. Here, the control unit 13 controls the water vapor rinse course that is performed in the final rinse of the rinsing process. The water particle rinsing means that the water particle generator 10 is driven to cause the water particles of clean water to adhere to the article 3 to be rinsed. The washing water is a general term for a liquid for washing the object to be washed 3 or rinsing.
 図2は、本発明の実施の形態1の食器洗浄装置のシーケンス概要図である。図2において、横軸は運転時間、縦軸は食器温度を示し、従来の食器洗浄装置のシーケンスと、本発明の食器洗浄装置のシーケンスとが縦に並列されている。図3は、本発明の実施の形態1の食器洗浄装置の工程フロー概要図である。図3は、最終回より2つ前のすすぎが終了してから最終回のすすぎが終了するまでの工程フローを示している。 FIG. 2 is a sequence outline diagram of the tableware washing apparatus according to the first embodiment of the present invention. In FIG. 2, the horizontal axis indicates the operation time, the vertical axis indicates the dish temperature, and the sequence of the conventional dishwashing apparatus and the sequence of the dishwashing apparatus of the present invention are vertically aligned. FIG. 3 is a process flow schematic diagram of the tableware washing apparatus according to the first embodiment of the present invention. FIG. 3 shows a process flow from the end of the last two rinses to the end of the final rinse.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。まず、食器洗浄装置の運転が開始されると、洗剤が投入され、被洗浄物3を収容した洗浄槽1に、制御部13によって給水部4から所定量の水道水が供給される。給水された水は貯水部6に貯留され、洗浄工程が開始される。 The operation of the dishwasher configured as described above will be described below. First, when the operation of the dishwashing apparatus is started, a detergent is introduced, and a predetermined amount of tap water is supplied from the water supply unit 4 by the control unit 13 to the cleaning tank 1 in which the object to be cleaned 3 is accommodated. The supplied water is stored in the water storage unit 6 and the cleaning process is started.
 洗浄工程は洗剤が溶解するとともに、貯水部6に貯水された洗浄水が第1の加熱部9により加熱されながら、洗浄ポンプ7から洗浄ノズル8に圧送され、被洗浄物3に向けて噴射されて洗浄が行なわれる。被洗浄物3に噴射された洗浄水は再び、貯水部6に戻り、上記動作を繰り返し、洗浄ポンプ7を介して洗浄の目的のため循環使用される。 In the cleaning process, the detergent dissolves and the cleaning water stored in the water storage section 6 is pumped from the cleaning pump 7 to the cleaning nozzle 8 while being heated by the first heating section 9 and sprayed toward the object to be cleaned 3. Cleaning is performed. The cleaning water sprayed on the object to be cleaned 3 returns to the water storage unit 6 again, repeats the above operation, and is circulated for the purpose of cleaning through the cleaning pump 7.
 所定時間の噴射による洗浄が繰り返された後、水温検知センサー(図示せず)により、一般的に60℃近傍の所定の温度が検知されると、制御部13によって第1の加熱部9のスイッチがOFFされる。その後、所定時間の運転の後、制御部13によって洗浄ポンプ7が停止し、排水部5によって、洗浄水が洗浄槽1の外部に排出され、洗浄工程が終了する。 After cleaning by spraying for a predetermined time is repeated, when a predetermined temperature generally in the vicinity of 60 ° C. is detected by a water temperature detection sensor (not shown), the controller 13 switches the first heating unit 9. Is turned off. Thereafter, after a predetermined time of operation, the cleaning pump 7 is stopped by the control unit 13, the cleaning water is discharged to the outside of the cleaning tank 1 by the drainage unit 5, and the cleaning process ends.
 次に、複数回のすすぎが行われるすすぎ工程に移行される。すすぎ工程は、洗浄開始時と同様、給水部4から洗浄槽1に所定量の水が供給され、開始される。貯水部6に貯留した水は、洗浄工程と同様に、洗浄槽1内を循環し、被洗浄物3に付着した汚れおよび洗剤は、噴射によってすすぎ流される。すすぎ工程は、所定時間、すすぎ運転を行った後、洗浄工程と同様に排水が行われ、通常のすすぎが終了する。その後、同様の方法により、通常のすすぎが1~数回繰り返され、最終回の2つ前のすすぎが排水によって終了する(図2の(b))。 Next, the process proceeds to a rinsing process in which multiple rinsings are performed. The rinsing process is started by supplying a predetermined amount of water from the water supply unit 4 to the cleaning tank 1 in the same manner as at the start of cleaning. The water stored in the water storage unit 6 circulates in the cleaning tank 1 as in the cleaning step, and the dirt and detergent adhering to the object to be cleaned 3 are rinsed away by jetting. In the rinsing process, after performing a rinsing operation for a predetermined time, drainage is performed in the same manner as in the cleaning process, and normal rinsing is completed. Thereafter, the usual rinsing is repeated 1 to several times by the same method, and the last two rinses are completed by drainage ((b) of FIG. 2).
 次に、最終直前のすすぎの動作について、図3のフローを用いながら説明する。最終直前のすすぎが開始されると、制御部13によって、給水弁14が開き(f)経路15を介して洗浄槽1内に水道水が給水される。このときの洗浄水は、すすぎにより汚れの量が減っているので、これまでに用いられている洗浄水より清浄である。次に制御部13により、リンス剤投入口12が開き(g)、清浄水が給水口16から貯水部6に流れ込む途中において、リンス剤が混入される。必要量のリンス剤が投入されると、リンス剤投入口12が閉じ(h)、リンス剤の注入が完了する。また、水位センサーにより必要量の水道水が洗浄槽1内に供給されたことが検知されると(i)、制御部13によって、給水弁14が閉じ(j)、給水が完了する。 Next, the rinsing operation immediately before the final will be described using the flow of FIG. When rinsing immediately before the final time is started, the water supply valve 14 is opened by the control unit 13 (f) and tap water is supplied into the cleaning tank 1 through the path 15. The washing water at this time is cleaner than the washing water used so far because the amount of dirt is reduced by rinsing. Next, the rinse agent inlet 12 is opened by the control unit 13 (g), and the rinse agent is mixed in the middle of the clean water flowing into the water storage unit 6 from the water supply port 16. When the necessary amount of rinse agent is charged, the rinse agent inlet 12 is closed (h), and the injection of the rinse agent is completed. When the water level sensor detects that the required amount of tap water has been supplied into the washing tank 1 (i), the control unit 13 closes the water supply valve 14 (j), and the water supply is completed.
 この際、リンス剤が貯水部6に注入されず、貯水部6に貯留されるまでの間に清浄水に混入させる理由は、以下のようである。一般的に、卵などの汚れ量が多い時、リンス剤が貯水部6に注入される時点において運転中に循環せずに貯水部6の上部に、大量の泡が存在している。通常、界面活性剤であるリンス剤を泡の上から注入すると、選択的にリンス剤の親水基が泡の表面である水膜に、疎水基が泡の内側及び外側にある空気に向けて配列する。リンス剤は、泡の層より下の水層に到達するまでに泡表面に取り込まれる。その結果、水とともに洗浄槽1内を循環するリンス剤の量が相対的に少なくなる。対して、供給水へのリンス剤の注入が貯水部6に供給水が貯留するまでに行なわれる。リンス剤は、貯水部6の壁面を伝って流れ込むため、泡の上から注入するより泡表面に取り込まれるリンス剤の相対量が抑制される。したがって、泡がない箇所においてリンス剤は清浄水に混入された方が望ましい。 At this time, the reason why the rinse agent is not injected into the water storage unit 6 and is mixed into the clean water before being stored in the water storage unit 6 is as follows. In general, when the amount of dirt such as eggs is large, a large amount of bubbles are present in the upper part of the water storage unit 6 without being circulated during operation when the rinse agent is injected into the water storage unit 6. Normally, when a rinsing agent as a surfactant is injected from above the foam, the hydrophilic group of the rinsing agent is selectively arranged on the water film on the surface of the foam and the hydrophobic groups are directed toward the air inside and outside the foam. To do. The rinse agent is taken into the foam surface before reaching the water layer below the foam layer. As a result, the amount of the rinse agent that circulates in the cleaning tank 1 together with water is relatively reduced. In contrast, the rinse agent is injected into the supply water until the supply water is stored in the water storage section 6. Since the rinse agent flows in along the wall surface of the water storage unit 6, the relative amount of the rinse agent taken into the foam surface is suppressed rather than being injected from above the foam. Therefore, it is desirable that the rinse agent is mixed with clean water in a place where there is no foam.
 次に、給水およびリンス剤の投入が完了した時点において、制御部13によって洗浄ポンプ7が動作(k)し、洗浄ノズル8から被洗浄物3に向けてリンス剤を含むすすぎ水が噴射される。噴射された水は、直前のすすぎと同様に循環使用され、所定時間、循環噴射が行われる。所定時間に到達したら(l)、制御部13によって洗浄ポンプ7が停止し(m)、排水部5が作動し(n)、所定時間、排水が行われ、最終直前のすすぎが終了する。このすすぎ終了後、リンス剤による、すすぎ水自体の界面張力を低下させる効果、および被洗浄物3の表面に汚れが付着することを防止する効果によって、被洗浄物3の表面に付着し残る水滴は、リンス剤がない時に比較して大幅に減少している。 Next, at the time when the supply of the water supply and the rinse agent is completed, the cleaning pump 7 is operated (k) by the control unit 13, and the rinse water containing the rinse agent is jetted from the cleaning nozzle 8 toward the object to be cleaned 3. . The injected water is circulated and used in the same manner as the previous rinsing, and the circulating injection is performed for a predetermined time. When the predetermined time is reached (l), the cleaning pump 7 is stopped by the control unit 13 (m), the drainage unit 5 is operated (n), the drainage is performed for a predetermined time, and the last rinse immediately ends. After this rinsing is completed, water drops remaining on the surface of the object to be cleaned 3 due to the effect of reducing the interfacial tension of the rinse water itself by the rinse agent and the effect of preventing dirt from adhering to the surface of the object to be cleaned 3 Is significantly reduced compared to when there is no rinse agent.
 次に、最終回のすすぎに移行され、水粒子すすぎが行われる。最終直前のすすぎが終了すると同時に、制御部13によって、給水弁14が開き(o)、経路17を介して、水粒子発生装置10に給水が行われる。内部の水位センサー(図示せず)によって所定の水量の給水が検知されると(p)、制御部13によって給水弁14が閉じ(q)、水粒子発生装置10のスイッチがON(r)になる。水粒子発生装置10において、沸騰により発生した水蒸気は、水粒子放出口18から洗浄槽1内に水粒子として供給され、被洗浄物3を含む洗浄槽1内を加温する。ここで第1の加熱部9は、貯水部6に備えられ、洗浄水を加熱する。また水蒸気は、結露を生じさせて被洗浄物3の表面をすすいだり、付着していた水滴を成長させて落下させたりする。この水蒸気の供給は、赤外線センサーなどにより被洗浄物3の表面温度が70℃に到達するまで行われる。被洗浄物3の表面が70℃に到達したことが検知されると(s)、制御部13によって水粒子発生装置10のスイッチがOFF(t)となる。次に貯水部6に貯留した結露水が排水部5によって洗浄槽1の外に排出され、最終回のすすぎが終了する(図2の(d))。 Next, the final rinsing is performed and water particle rinsing is performed. Simultaneously with the end of the last rinse, the control unit 13 opens the water supply valve 14 (o), and water is supplied to the water particle generator 10 through the path 17. When water supply of a predetermined amount of water is detected by an internal water level sensor (not shown) (p), the water supply valve 14 is closed (q) by the control unit 13 and the switch of the water particle generator 10 is turned ON (r). Become. In the water particle generator 10, water vapor generated by boiling is supplied as water particles from the water particle discharge port 18 into the cleaning tank 1, and heats the cleaning tank 1 including the article to be cleaned 3. Here, the first heating unit 9 is provided in the water storage unit 6 and heats the cleaning water. Further, the water vapor causes condensation to rinse the surface of the article 3 to be cleaned, and causes the water droplets that have adhered to grow and drop. The supply of the water vapor is performed until the surface temperature of the object to be cleaned 3 reaches 70 ° C. by an infrared sensor or the like. When it is detected that the surface of the object to be cleaned 3 has reached 70 ° C. (s), the control unit 13 turns off the switch of the water particle generator 10 (t). Next, the condensed water stored in the water storage unit 6 is discharged out of the washing tank 1 by the drainage unit 5, and the final rinse is completed ((d) in FIG. 2).
 この際、本実施の形態1では、水粒子が水蒸気であり、潜熱による効率のよい加温が可能であるので、通常の高温の噴射水を用いるよりも短時間に効率よく加温される。また、従来の循環水によるすすぎに対して、水蒸気化に使用するだけの水分量のみでよい。そのため、水量は大幅に削減され、大量の水が加熱されなくてすむため、消費電力は削減される。また、水蒸気化に使用される水は、洗浄槽1内を循環しない給水直後の清浄水である。そのため、従来のように循環中に洗浄水中に取り込まれる洗浄槽1内、洗浄ポンプ7、または循環水路等に溜まった汚れを含んでいない。その結果、循環水の使用による不衛生さが抑制される。 At this time, in the first embodiment, since the water particles are water vapor and can be efficiently heated by latent heat, the water particles are efficiently heated in a shorter time than using normal high-temperature jet water. Moreover, only the amount of water used for steaming is sufficient for the conventional rinsing with circulating water. Therefore, the amount of water is greatly reduced, and a large amount of water does not need to be heated, so that power consumption is reduced. Moreover, the water used for steaming is clean water immediately after water supply that does not circulate in the washing tank 1. Therefore, it does not include dirt accumulated in the washing tank 1, which is taken into the washing water during circulation, the washing pump 7, or the circulation water channel as in the prior art. As a result, unsanitation due to the use of circulating water is suppressed.
 また、水蒸気とリンスとを組合せた方式は、従来方式、および水蒸気のみの方式に比較すると、以下の効果がある。最終回のすすぎ終了時、すなわち、続く乾燥工程前に、被洗浄物3の表面に付着した水分量は大幅に少なくなり、乾燥が効率よく行われる。さらに、水蒸気によるすすぎでは、洗浄槽1内のすみずみまで水蒸気が行き渡る。そのため、従来の噴射水によるすすぎにおいて見られるような、噴射ノズルの軌跡に由来する噴射水のあたらない箇所の発生がない。その結果、洗浄槽1内のより細部における除菌効果が向上される。特に、被洗浄物3の表面が70℃以上になるまで加温されることにより、70℃前後の熱湯に3分接触して死滅する大腸菌、サルモネラ菌、およびブドウ球菌は確実に除菌され、衛生的かつ清潔な仕上がりが得られる。 Also, the combination of water vapor and rinsing has the following effects compared to the conventional method and the method using only water vapor. At the end of the final rinse, that is, before the subsequent drying step, the amount of water adhering to the surface of the article to be cleaned 3 is greatly reduced, and drying is performed efficiently. Further, in the case of rinsing with water vapor, the water vapor spreads throughout the washing tank 1. Therefore, there is no occurrence of a location where the spray water does not come from the trajectory of the spray nozzle as seen in the conventional rinse with the spray water. As a result, the sterilization effect in more detail in the cleaning tank 1 is improved. In particular, by heating until the surface of the object 3 to be cleaned reaches 70 ° C. or higher, Escherichia coli, Salmonella, and Staphylococcus that are killed by contact with hot water at about 70 ° C. for 3 minutes are surely sterilized. A clean and clean finish is obtained.
 最後に、乾燥工程が行われる。乾燥工程は、一般的に送風ファンによって、外気を洗浄槽1内に送り込み、送風ファンの風路上にあるヒーターなどの加熱部によって空気が加温される。加温された空気は、洗浄槽1内に充満する湿気を大量に含んだ空気と置換されることにより乾燥性が高められる。本実施の形態1では、上述したように、リンス剤の併用効果により、通常の噴射水、または水蒸気だけのすすぎの場合のように、乾燥直前の被洗浄物3の表面に大量の水滴が残っていない。また、水蒸気すすぎによって加温された被洗浄物3は、自然蒸発するのに十分な熱量を有している。そのため、噴射水、または水蒸気だけのすすぎにおける必要な洗浄槽1内の空気が加熱され、被洗浄物3が乾燥される手段を用いなくてもよい。その結果、消費電力を削減できる送風ファンのみの省エネ乾燥コースが選択される。省エネ乾燥コースが選択された際は、最終回のすすぎが終了した後、送風ファンのスイッチがONになり、従来方式の乾燥時間と同等の所定時間が経過されるとスイッチがOFFとなり、全ての運転が終了する。 Finally, a drying process is performed. In the drying process, outside air is generally sent into the cleaning tank 1 by a blower fan, and air is heated by a heating unit such as a heater on the air passage of the blower fan. The warmed air is replaced with air containing a large amount of moisture that fills the cleaning tank 1, thereby improving the drying property. In the first embodiment, as described above, due to the combined effect of the rinsing agent, a large amount of water droplets remain on the surface of the object to be cleaned 3 immediately before drying, as in the case of rinsing with normal spray water or steam only. Not. Moreover, the to-be-cleaned object 3 heated by water vapor | steam rinse has sufficient calorie | heat amount for spontaneous evaporation. Therefore, it is not necessary to use means for heating the air in the cleaning tank 1 necessary for rinsing only with jet water or water vapor, and drying the article 3 to be cleaned. As a result, an energy-saving drying course with only a blower fan that can reduce power consumption is selected. When the energy-saving drying course is selected, after the final rinse is completed, the blower fan is turned on, and when a predetermined time equivalent to the conventional drying time has elapsed, the switch is turned off. Driving ends.
 このように、本実施の形態1では、最終回のすすぎである水蒸気すすぎ(水粒子すすぎ)の前に、リンス剤による被洗浄物3表面への水滴残りの改善と被洗浄物3表面の親水処理とが施されている。そのため、水蒸気のみを使用する場合に見られるような結露、および水滴残りが大幅に低下される。一般に噴射水すすぎの場合よりも乾燥性能が悪化する水蒸気すすぎと比べて、本実施の形態1では乾燥性能が向上する。また本実施の形態1では、清浄水であるため、リンス剤を併用しても完全に抑えきることのできない噴射水すすぎにおいて見られる循環水由来の汚れ成分を含んだ白い水滴跡は大幅に削減できる。 Thus, in this Embodiment 1, before the water vapor rinse (water particle rinse) which is the final rinse, improvement of water droplet residue on the surface of the object to be cleaned 3 by the rinse agent and the hydrophilicity of the surface of the object to be cleaned 3 are performed. Processing is given. Therefore, the dew condensation and water droplet residue as seen when using only water vapor are greatly reduced. In general, the drying performance is improved in the first embodiment as compared with the steam rinsing in which the drying performance is worse than that in the case of rinsing with jet water. Moreover, in this Embodiment 1, since it is clean water, the trace of the white water droplet containing the dirt component derived from the circulating water seen in the spray water rinse which cannot be completely suppressed even if it uses a rinse agent together is reduced significantly. it can.
 なお、上記のすすぎ工程において、すすぎ性能を高めることを目的に、水温が所定温度になるまで、第1の加熱部9によるすすぎ水の加熱が行われてもよい。 In the above rinsing step, the rinsing water may be heated by the first heating unit 9 until the water temperature reaches a predetermined temperature for the purpose of improving the rinsing performance.
 また水粒子発生装置10は、清浄水のみを使用する方が望ましい。しかし、洗浄水の加熱に使用する第1の加熱部9により貯水部6などに溜めた洗浄水を沸騰させて、水粒子を発生させてもよい。この場合、第1の加熱部9が水粒子発生装置となる。ただし、その際は、周囲の部材には耐熱性の高い部材が用いられる必要がある。 Also, it is desirable that the water particle generator 10 uses only clean water. However, water particles may be generated by boiling the cleaning water stored in the water storage unit 6 or the like by the first heating unit 9 used for heating the cleaning water. In this case, the 1st heating part 9 becomes a water particle generator. However, in that case, a member with high heat resistance needs to be used for the surrounding members.
 さらに、水粒子発生装置10において、給水を一度、浄水フィルターなどを通してスケール成分が除去されてから使用してもよい。その場合、水粒子発生装置10内へのスケール堆積を防げるという長所と、フィルターを定期的に交換する必要があるという短所とがあるが、使用目的等に応じて適切な形態をとればよい。また、浄水フィルターを用いずに定期的にスケール成分除去剤が食器洗浄装置に投入されてもよい。 Furthermore, in the water particle generator 10, the water supply may be used once the scale components are removed through a water purification filter or the like. In this case, there is an advantage that scale accumulation in the water particle generator 10 can be prevented and a disadvantage that the filter needs to be replaced periodically, but an appropriate form may be taken depending on the purpose of use. Moreover, a scale component removal agent may be periodically injected into the dishwashing apparatus without using the water purification filter.
 さらに本発明においてリンス剤は、洗浄槽1に給水された水が貯水部6に流れ込むまでの間に、リンス剤が供給水の水流に混入される供給方式には限定しない。例えば、供給水の水流から離れ、かつ、噴射水による洗浄およびすすぎ工程が開始するまでに貯水部6にリンス剤が流れ込まない箇所であれば、リンス剤は洗浄槽1内のどこに供給されても構わない。その際は、給水が完了し、噴射水による洗浄およびすすぎ工程が開始した後に、噴射水が洗浄槽1内のどこかに供給されていたリンス剤を溶解しながら貯水部6に流れ込む。そのため、貯水部6に溜まった泡の上面から直接リンス剤を供給する方式に比較し、リンス剤が泡に取り込まれる割合が少量となる。 Further, in the present invention, the rinsing agent is not limited to a supply method in which the rinsing agent is mixed into the water flow of the supply water until the water supplied to the cleaning tank 1 flows into the water storage unit 6. For example, if the rinse agent does not flow into the water storage unit 6 before the cleaning and rinsing process with the spray water starts, the rinse agent can be supplied anywhere in the cleaning tank 1. I do not care. At that time, after the water supply is completed and the cleaning and rinsing process with the spray water is started, the spray water flows into the water storage section 6 while dissolving the rinse agent supplied somewhere in the cleaning tank 1. Therefore, compared with the system which supplies a rinse agent directly from the upper surface of the foam collected in the water storage part 6, the ratio by which a rinse agent is taken in into a foam becomes small.
 なお、リンス剤の投入は、上記の方式に限定されるものではない。たとえば使用者がタイミングを見計らってリンス剤を投入してもよいし、すすぎ工程中など、特定の工程においてリンス剤が溶解するタイプのカプセル状、もしくは固形状などの洗剤を使用してもよい。さらに、リンス剤の供給直後に水蒸気があたる箇所、および水蒸気が発生する装置内の構成材料は、耐熱温度が100℃以上を使用することが望ましい。 In addition, the injection of the rinse agent is not limited to the above method. For example, the user may put in the rinse agent at an appropriate timing, or may use a capsule-type or solid-state detergent in which the rinse agent dissolves in a specific process such as during a rinsing process. Furthermore, it is desirable to use a heat resistant temperature of 100 ° C. or higher for the location where water vapor is applied immediately after the rinsing agent is supplied and the constituent materials in the apparatus where water vapor is generated.
 (実施の形態2)
 図4は、本発明の実施の形態2の食器洗浄装置の立面図である。本発明の実施の形態2では、実施の形態1と同じ構成要素には同一の符号を附し、その詳細な説明は省略する。
(Embodiment 2)
FIG. 4 is an elevation view of the tableware washing apparatus according to the second embodiment of the present invention. In the second embodiment of the present invention, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 食器洗浄装置は、洗浄槽1の底部に別室19と、霧状の水粒子を発生する水粒子発生装置である超音波振動子20と、超音波振動子20を含む別室19内の水を加熱する第2の加熱部21と、別室19内の水位を検知する水位検知センサー22とを備えている。本発明の実施の形態2では、清浄水を加熱する加熱部として第2の加熱部21が使用される。さらに別室19には、給水弁14の切り替えによって、給水部4から清浄水を給水する経路23が接続されている。別室19と洗浄槽1内とは、開閉扉24によって連通されている。 The dishwashing apparatus heats water in a separate chamber 19 at the bottom of the cleaning tank 1, an ultrasonic vibrator 20 that is a water particle generator that generates mist-like water particles, and water in the separate chamber 19 that includes the ultrasonic vibrator 20. And a water level detection sensor 22 for detecting the water level in the separate chamber 19. In Embodiment 2 of this invention, the 2nd heating part 21 is used as a heating part which heats clean water. Furthermore, a path 23 for supplying clean water from the water supply unit 4 is connected to the separate chamber 19 by switching the water supply valve 14. The separate chamber 19 and the cleaning tank 1 are communicated with each other by an opening / closing door 24.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態2の食器洗浄装置の動作は、本実施の形態1の食器洗浄装置の最終直前のすすぎまでは同じであるので、最終回のすすぎ開始前からの動作を説明する。 The operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus according to the second embodiment is the same until the last rinse of the dishwashing apparatus according to the first embodiment, the operation from the start of the final rinse will be described.
 実施の形態1と同様に、最終直前のすすぎにおいてリンス剤を含むすすぎ水により被洗浄物3をすすぎ、洗浄ポンプ7の停止、さらに排水部5によって洗浄槽1内の水が排水される。次に、制御部13によって、給水弁14と経路23とを介して別室19に清浄水が給水され、水位検知センサー22により検知されるまで給水される。給水が終了すると、制御部13によって開閉扉24が開き、別室19と洗浄槽1内とが連通される。そして、超音波振動子20と第2の加熱部21とが作動し、別室19内の水が加熱されて霧状の水粒子(ミスト)が発生する。発生した高温の水粒子であるミストは、開閉扉24を経て洗浄槽1内に供給される。洗浄槽1内に供給された高温の水粒子は、被洗浄物3および洗浄槽1の壁面に付着し、顕熱によって加熱される。また水粒子は、付着面積を広げて、最終直前すすぎにおいて付着していた水滴に合体し、成長させて落下させることにより、被洗浄物3の表面に元々付着していた水滴が除去される。 As in the first embodiment, the object to be cleaned 3 is rinsed with rinse water containing a rinse agent immediately before the final rinse, the cleaning pump 7 is stopped, and the water in the cleaning tank 1 is drained by the drainage unit 5. Next, clean water is supplied to the separate chamber 19 through the water supply valve 14 and the path 23 by the control unit 13 and supplied until detected by the water level detection sensor 22. When the water supply is finished, the opening / closing door 24 is opened by the control unit 13, and the separate chamber 19 and the inside of the cleaning tank 1 are communicated. And the ultrasonic transducer | vibrator 20 and the 2nd heating part 21 act | operate, the water in the separate chamber 19 is heated, and a mist-like water particle (mist) generate | occur | produces. The generated high temperature water mist is supplied into the cleaning tank 1 through the door 24. The high-temperature water particles supplied into the cleaning tank 1 adhere to the objects to be cleaned 3 and the wall surfaces of the cleaning tank 1 and are heated by sensible heat. Further, the water particles expand the adhesion area, coalesce with the water droplets adhered at the last rinse, grow and drop, whereby the water droplets originally adhered to the surface of the object to be cleaned 3 are removed.
 所定時間が経過した後、赤外線センサーなどにより被洗浄物3の表面温度が70℃に到達したことを検知すると、制御部13によって超音波振動子20、および第2の加熱部21が停止する。その後、別室19に貯留した残水は、排水部5によって洗浄槽1の外に排出され、水粒子すすぎが行われる最終回のすすぎが終了する。このように、本実施の形態2では、超音波振動子20により発生させた水粒子が使用されている。そのため、少量の清浄水でありながら、水粒子の大きさが水蒸気より大きく、短時間に被洗浄物3表面への付着水量が増加する。そして被洗浄物3表面に付着していた汚れを含む水滴が早く成長して落下し、すすぎ性能が高められる。 When the surface temperature of the object to be cleaned 3 has reached 70 ° C. after an elapse of a predetermined time by the infrared sensor or the like, the control unit 13 stops the ultrasonic vibrator 20 and the second heating unit 21. Thereafter, the remaining water stored in the separate chamber 19 is discharged out of the cleaning tank 1 by the drainage unit 5, and the final rinse in which water particles are rinsed is completed. As described above, in the second embodiment, water particles generated by the ultrasonic transducer 20 are used. Therefore, although it is a small amount of clean water, the size of water particles is larger than that of water vapor, and the amount of water adhering to the surface of the object to be cleaned 3 increases in a short time. And the water droplet containing the dirt adhering to the to-be-washed | cleaned material 3 grows up quickly, falls, and a rinse performance is improved.
 続く乾燥工程は、実施の形態1と同様に送風ファンによる省エネ乾燥コースにより行われ、運転が終了する。乾燥後の被洗浄物3は、乾燥直前に、最終回のすすぎ直前において付着していた汚れを含む水滴が、清浄水である水粒子により落下している。そのため、乾燥後に残る水滴跡の個数が低減される。また仮に水滴跡が残ったとしても、循環水を使用した際に見られるような汚れ起因の白くて目立つ水滴跡ではないため、美しい仕上がりが得られる。 The subsequent drying process is performed by the energy saving drying course by the blower fan as in the first embodiment, and the operation ends. In the object to be cleaned 3 after drying, immediately before drying, water droplets containing dirt adhering immediately before the final rinse are dropped by water particles which are clean water. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, they are not white and conspicuous water droplet traces caused by dirt as seen when circulating water is used, so that a beautiful finish can be obtained.
 また、最終回のすすぎにおいて使用する水量、および消費電力は、従来方式より大幅に削減される。被洗浄物3の温度が70℃以上に到達しているため、省エネ乾燥コースによる消費電力の削減、さらに、最終回のすすぎ時の高温の水粒子がすみずみまで行き渡る効率の高い除菌効果が期待できる。 Also, the amount of water and power consumption used in the final rinse are greatly reduced compared to the conventional method. Since the temperature of the object to be cleaned 3 has reached 70 ° C. or higher, the power consumption is reduced by the energy-saving drying course, and furthermore, high-efficiency sterilization effect in which high-temperature water particles are distributed throughout the final rinse. I can expect.
 なお、水粒子発生装置は、超音波振動子20でなくとも、噴霧ノズルなど、霧状の水粒子を発生するものであればどのような構成でもよい。さらに、水粒子の発生方向は、洗浄槽1内の上方から被洗浄物3に向けた方向としてもよい。また、効率よく水粒子を供給するため、水粒子の供給口は複数個所に設置されてもよい。 It should be noted that the water particle generator may have any configuration as long as it generates mist-like water particles, such as a spray nozzle, instead of the ultrasonic vibrator 20. Furthermore, the generation direction of the water particles may be a direction from the upper side in the cleaning tank 1 toward the object to be cleaned 3. Further, in order to efficiently supply water particles, water particle supply ports may be installed at a plurality of locations.
 また、第2の加熱部21のみが清浄水を沸騰させ水粒子を発生させてもよい。この場合、第2の加熱部21が、水粒子発生装置となる。 Also, only the second heating unit 21 may boil clean water and generate water particles. In this case, the 2nd heating part 21 becomes a water particle generator.
 また、別室19は貯水部6の一部として設置してもよい。その際、別室19と貯水部6との境界はなくてもよいし、フィルター、または開閉扉などにより隔離してもよい。 Further, the separate room 19 may be installed as a part of the water storage unit 6. At that time, there may be no boundary between the separate chamber 19 and the water storage unit 6, or the filter may be isolated by a filter or an opening / closing door.
 なお、リンス剤の投入は、上記の方式に限定されるものではない。たとえば使用者が、タイミングを見計らって投入してもよいし、すすぎ工程中など、特定の工程においてリンス剤が溶解するタイプのカプセル状、もしくは固形状などの洗剤を使用してもよい。 In addition, the injection of the rinse agent is not limited to the above method. For example, the user may put in at an appropriate timing, or may use a capsule type or a solid type detergent in which the rinse agent dissolves in a specific process such as during a rinsing process.
 (実施の形態3)
 図5は本発明の実施の形態3の食器洗浄装置の立面図、図6は同食器洗浄装置の混合水粒子発生装置の立面図である。本発明の実施の形態3では、実施の形態1および2と同じ構成要素については同一符号を附し、その詳細な説明は省略する。
(Embodiment 3)
FIG. 5 is an elevation view of the tableware washing apparatus according to Embodiment 3 of the present invention, and FIG. 6 is an elevation view of the mixed water particle generating apparatus of the tableware washing apparatus. In the third embodiment of the present invention, the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図5、図6において、洗浄槽1の底部に混合水粒子発生装置25が設置されている。混合水粒子発生装置25は、経路27に接続されている。また経路27には、給水弁14と、外部から取り外し可能な浄水フィルター26が接続されている。 5 and 6, a mixed water particle generator 25 is installed at the bottom of the cleaning tank 1. The mixed water particle generator 25 is connected to the path 27. Further, the water supply valve 14 and a water purification filter 26 that can be removed from the outside are connected to the path 27.
 混合水粒子発生装置25は、内部に清浄水を貯留させる構造になっている。また瞬間沸騰型の水粒子加熱部である混合水粒子発生部28は、複数の細いヒーター管から構成され筒状である。ヒーター管は、空洞となっていて外壁にヒーターが配置されている。混合水粒子発生部28は、一端を混合水粒子発生装置25内に、他端の混合水粒子供給口29を洗浄槽1内に向けて設置されている。混合水粒子発生装置25内には、貯水した清浄水を混合水粒子発生部28に圧送する給水ポンプ30と、給水時の水位検知センサー(図示せず)とが設置されている。すなわち混合水粒子発生装置25は、瞬間沸騰型の水粒子加熱部と、給水ポンプ30とを備えている。 The mixed water particle generator 25 has a structure for storing clean water therein. Moreover, the mixed water particle generation unit 28 which is an instantaneous boiling type water particle heating unit is formed of a plurality of thin heater tubes and has a cylindrical shape. The heater tube is hollow and the heater is disposed on the outer wall. The mixed water particle generator 28 is installed with one end in the mixed water particle generator 25 and the mixed water particle supply port 29 at the other end facing the cleaning tank 1. In the mixed water particle generator 25, a water supply pump 30 that pumps the stored clean water to the mixed water particle generator 28 and a water level detection sensor (not shown) at the time of water supply are installed. That is, the mixed water particle generator 25 includes an instantaneous boiling water particle heating unit and a water supply pump 30.
 図7は、本発明の実施の形態3の食器洗浄装置の最終回のすすぎ方式別の乾燥直前の食器付着水量特性図である。図7は、パナソニック製の卓上食器洗い乾燥機(NP-TS1)におけるJEMA食器洗い乾燥機の性能測定試験(JEMA-HD84、2003年12月4日改正版 3.洗浄性能、4.乾燥性能)を実施した際に得られた結果である。図8は本発明の実施の形態3の食器洗浄装置の最終回のすすぎ方式別の乾燥性能特性図、図9は同食器洗浄装置の乾燥性能と食器表面温度との相関グラフである。また、図10は本発明の実施の形態3の食器洗浄装置の最終回のすすぎ別のグラスに残った水滴跡レベルを示す図である。水滴跡レベルは、残った水滴跡の個数域を5段階分けを行い、目視判定したものであり、サンプル数は各々3個である。 FIG. 7 is a characteristic chart of the amount of adhering water on the tableware just before drying according to the final rinsing method of the tableware washing apparatus according to Embodiment 3 of the present invention. Figure 7 shows JEMA dishwasher performance measurement test (JEMA-HD84, revised on December 4, 2003 3. Washing performance, 4. Drying performance) on Panasonic tabletop dishwasher (NP-TS1) This is the result obtained. FIG. 8 is a drying performance characteristic chart according to the final rinsing method of the dishwashing apparatus of Embodiment 3 of the present invention, and FIG. 9 is a correlation graph between the drying performance of the dishwashing apparatus and the dish surface temperature. Moreover, FIG. 10 is a figure which shows the water drop trace level which remained in the glass of another rinse of the final round of the tableware washing apparatus of Embodiment 3 of this invention. The water drop level is determined by visually determining the number of remaining water drop traces in five stages, and the number of samples is three.
 図8において、乾燥性能は全食器点数に対する各判定(A:完全に乾いている、B:残っている水滴が3つ以下、C:AおよびB以外)の食器点数の割合によって表している。評価は、従来方式の性能と同等以上の性能が出た場合は○、下回る場合は×として判定している。 In FIG. 8, the drying performance is represented by the ratio of the number of dishes for each determination (A: completely dry, B: less than 3 remaining water drops, C: other than A and B). In the evaluation, when the performance equal to or higher than the performance of the conventional method is obtained, it is judged as ○, and when it is lower, it is judged as ×.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態3の食器洗浄装置の動作は、本実施の形態1の最終直前のすすぎまでは同じであるので、最終回のすすぎ開始前からの動作を説明する。 The operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus of the third embodiment is the same until the last rinse immediately before the first embodiment, the operation from before the final rinse is described.
 実施の形態1と同様に、最終直前のすすぎにおいてリンス剤を含むすすぎ水により被洗浄物3がすすがれ、洗浄ポンプ7の停止、さらに排水部5によって洗浄槽1内の洗浄水が排水される。次に、制御部13によって、給水弁14と経路27とを介して清浄水が混合水粒子発生装置25の内部に、水位検知センサー(図示せず)が所定の水位を検知するまで給水される。次に混合水粒子発生部28がONになり、混合水粒子発生部28の温度が所定温度に達すると給水ポンプ30が駆動する。そして混合水粒子発生装置25内に貯水された清浄水は、混合水粒子発生部28へ圧送される。圧送された清浄水は、内壁が高温になった細いヒーター管を通過しながら一部は沸騰されて水蒸気になり、一部は水蒸気でない高温の水粒子であるミストになる。水蒸気と高温の水粒子とから構成される第1の混合水粒子は、混合水粒子供給口29から洗浄槽1内へ供給される。この際、供給された第1の混合水粒子は、被洗浄物3を加温するとともに除菌を行う。そして、赤外線センサーなどの検知により被洗浄物3の表面が70℃に到達すると、混合水粒子発生部28と給水ポンプ30とが停止する。混合水粒子発生装置25内に貯水した残水は、排水部5によって洗浄槽1の外部に排水される。 As in the first embodiment, the object to be cleaned 3 is rinsed by the rinse water containing the rinse agent immediately before the final rinse, the cleaning pump 7 is stopped, and the cleaning water in the cleaning tank 1 is drained by the drainage unit 5. . Next, the control unit 13 supplies clean water to the inside of the mixed water particle generator 25 through the water supply valve 14 and the path 27 until a water level detection sensor (not shown) detects a predetermined water level. . Next, when the mixed water particle generating unit 28 is turned on and the temperature of the mixed water particle generating unit 28 reaches a predetermined temperature, the feed water pump 30 is driven. Then, the clean water stored in the mixed water particle generator 25 is pumped to the mixed water particle generator 28. The purified water that has been pumped passes through a thin heater tube whose inner wall has become high temperature, partly boiled to become water vapor, and part becomes high temperature water particles that are not water vapor. First mixed water particles composed of water vapor and high-temperature water particles are supplied from the mixed water particle supply port 29 into the cleaning tank 1. At this time, the supplied first mixed water particles warm the article to be cleaned 3 and perform sterilization. And if the surface of the to-be-cleaned object 3 reaches 70 degreeC by detection with an infrared sensor etc., the mixed water particle generation part 28 and the water supply pump 30 will stop. The remaining water stored in the mixed water particle generator 25 is drained to the outside of the washing tank 1 by the drainage unit 5.
 このように、本実施の形態3では、第1の混合水粒子が水蒸気と水蒸気でない高温の水粒子との双方からなる。そのため、水蒸気の潜熱による効率の良い加温および除菌と、水蒸気より大きい水粒子による被洗浄物3表面への付着水量の増加による効率の良いすすぎ効果とが同時に得られる。また空気中において、水蒸気と水蒸気でない水粒子とが合体することにより、自重が大きくなり、迅速かつ確実に被洗浄物3の表面に付着し、処理時間が短縮される。また、各々の効果を得るために水蒸気を発生させる装置と、水蒸気でない高温の水粒子を発生させる装置とを別個に設ける場合に比べて、本実施の形態3では製造コストが大幅に削減される。また、混合水粒子発生装置25およびその装置の電源、制御部13を設けるスペースは半分となるため、食器洗浄装置はコンパクトになる。 Thus, in the third embodiment, the first mixed water particles are both water vapor and high-temperature water particles that are not water vapor. Therefore, efficient heating and sterilization due to the latent heat of water vapor and efficient rinsing effect due to an increase in the amount of water adhering to the surface of the article 3 to be cleaned by water particles larger than water vapor can be obtained at the same time. In addition, in the air, water vapor and water particles that are not water vapor combine to increase its own weight and quickly and reliably adhere to the surface of the object to be cleaned 3, thereby shortening the processing time. In addition, the manufacturing cost is greatly reduced in the third embodiment as compared with a case where a device for generating water vapor and a device for generating high-temperature water particles that are not water vapor are separately provided in order to obtain each effect. . Moreover, since the space which provides the mixed water particle generator 25, the power supply of the apparatus, and the control part 13 becomes half, a dishwasher becomes compact.
 続く乾燥工程は、実施の形態1と同様に送風ファンによる省エネ乾燥コースによって行われ、食器洗浄装置の運転が終了する。乾燥後の被洗浄物3は、乾燥直前に、最終回のすすぎ直前において付着していた汚れを含む水滴が清浄水である水粒子によって落下している。そのため、乾燥後に残る水滴跡の個数が低減される。仮に水滴跡が残ったとしても、循環水を使用した際に見られるような汚れ起因の白くて目立つ水滴跡でないため、被洗浄物3は美しい仕上がりとなる。 The subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed. In the object to be cleaned 3 after drying, immediately before drying, water droplets containing dirt adhering immediately before the final rinse are dropped by water particles that are clean water. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, the object to be cleaned 3 has a beautiful finish because it is not a white and conspicuous water droplet trace caused by dirt as seen when circulating water is used.
 また、最終回のすすぎにおいて使用する水量、および消費電力は従来方式より大幅に削減される。そして被洗浄物3の温度が70℃以上に到達しているため、省エネ乾燥コースによる消費電力が削減できる。さらに、最終回のすすぎ時の高温の水粒子による、すみずみまで行き渡る効率の高い除菌効果が期待できる。 Also, the amount of water and power consumption used in the final rinsing are significantly reduced compared to the conventional method. And since the temperature of the to-be-cleaned object 3 has reached 70 degreeC or more, the power consumption by an energy saving drying course can be reduced. Furthermore, the high-efficiency sterilization effect that spreads through every corner by the high-temperature water particles at the final rinse can be expected.
 一般的に、図8に示すように、最終回のすすぎが第1の混合水粒子のみによって行われた場合、被洗浄物3の表面温度が73℃と高温であっても、送風では従来方式と同等の乾燥性能は得られない。これは、図7に示すように、食器表面に付着して残る水分量が多いこと、また、すすぎ工程後も洗浄槽1内に残る湿気が大量であることが一因だと考えられる。 In general, as shown in FIG. 8, when the final rinse is performed only by the first mixed water particles, even if the surface temperature of the object to be cleaned 3 is as high as 73 ° C., the conventional method is used for blowing. The drying performance equivalent to is not obtained. As shown in FIG. 7, this is considered to be due to the fact that the amount of moisture remaining on the surface of the tableware is large and that the amount of moisture remaining in the washing tank 1 after the rinsing process is large.
 それに対し、第1の混合水粒子とリンスとの組合せでは、第1の混合水粒子投入時の被洗浄物3の到達温度が73℃の場合、送風のみでも従来方式と同等の乾燥性能が得られたことを示している。また図9に示すように、得られた乾燥性能のA判定の値と食器表面温度との相関図から、食器温度が約71℃の時に、従来方式と同等の乾燥性能が得られる。従って、第1の混合水粒子とリンスとの組合せでは、最終回のすすぎにおいて被洗浄物3である食器の表面温度を70℃以上100℃以下にすることにより、送風のみの省エネ乾燥ができる。そして最終回のすすぎにおける優れた効果だけでなく、乾燥工程における消費電力の削減、および乾燥時間の短縮など、第1の混合水粒子のみでは得られない効果が得られる。さらに、食器表面温度が73℃度になるまで水蒸気を供給すれば、より確実に送風のみによって食器は乾燥できる。 On the other hand, in the case of the combination of the first mixed water particles and the rinse, when the temperature reached by the object 3 to be cleaned when the first mixed water particles are charged is 73 ° C., the drying performance equivalent to that of the conventional method can be obtained only by blowing. It is shown that. Further, as shown in FIG. 9, from the correlation diagram between the obtained A performance judgment value and the tableware surface temperature, when the tableware temperature is about 71 ° C., the drying performance equivalent to the conventional method is obtained. Therefore, in the combination of the first mixed water particles and the rinse, energy saving drying only by blowing can be performed by setting the surface temperature of the tableware to be cleaned 3 to 70 ° C. or more and 100 ° C. or less in the final rinse. And not only the outstanding effect in the last rinse, but the effect which cannot be obtained only with the 1st mixed water particle, such as reduction of the power consumption in a drying process and shortening of drying time, is acquired. Furthermore, if water vapor | steam is supplied until the tableware surface temperature becomes 73 degreeC, a tableware can be dried more reliably only by ventilation.
 実測して効果を確認するため、パナソニック製の卓上食器洗い乾燥機(NP-TS1)において、JEMA食器洗い乾燥機の性能測定試験(JEMA-HD84、2003年12月4日改正版 3.洗浄性能、4.乾燥性能)が、本実施の形態3のリンスと第1の混合水粒子すすぎのコース、および省エネ乾燥コースにて実施された。従来のシーケンスに対して本実施の形態3のシーケンスでは、総電力量を247Wh(約32%)削減、総運転時間を8分(約12%)削減、総水量を2.08L(約17%)削減する効果が得られた。これらの効果はビルトイン型の食器洗い乾燥機、例えば、パナソニック製のビルトイン食器洗い乾燥機NP-P45MD2Wでは、総電力量を約27%削減、総運転時間を約12%削減、総水量を約15%削減できることになる。 In order to confirm the effect by actual measurement, in the Panasonic dishwasher (NP-TS1), JEMA dishwasher performance measurement test (JEMA-HD84, revised December 4, 2003 3. Washing performance, 4 The drying performance was performed in the course of rinsing and first mixed water particle rinsing according to the third embodiment and the energy-saving drying course. Compared to the conventional sequence, in the sequence of the third embodiment, the total electric energy is reduced by 247 Wh (about 32%), the total operation time is reduced by 8 minutes (about 12%), and the total water amount is 2.08 L (about 17%). ) The effect of reduction was obtained. These effects are achieved with built-in dishwashers such as Panasonic's built-in dishwasher NP-P45MD2W, which reduces total power consumption by approximately 27%, total operation time by approximately 12%, and total water consumption by approximately 15%. It will be possible.
 図7に示すように、第1の混合水粒子とリンスとを組合せた本実施の形態3の方式は、従来方式および第1の混合水粒子のみの方式と比べると、乾燥工程前に食器の表面に付着した水分量が半分以下になり、乾燥が効率よく行われる。 As shown in FIG. 7, compared with the conventional method and the method using only the first mixed water particles, the method of the third embodiment in which the first mixed water particles and the rinsing are combined is used before the drying process. The amount of water adhering to the surface becomes less than half, and drying is performed efficiently.
 また、乾燥後にグラスなどに残る水滴跡のレベルは、第1の混合水粒子とリンス剤との組合せでは、リンス剤のみに対して同等以上の良好なレベルが得られている。本実施の形態3の洗浄、乾燥した被洗浄物3には、従来方式および第1の混合水粒子のみ、また、噴射水にリンス剤を投入した場合(以下、リンス剤のみ)に見られるような白い水滴跡が大幅に減少している。消費電力および水量が削減されたにも関わらず、被洗浄物3は美しい仕上りとなる。 In addition, the level of water droplet traces remaining on the glass after drying, for the combination of the first mixed water particles and the rinse agent, has a good level equal to or higher than that of the rinse agent alone. The washed and dried object 3 of the third embodiment is found only in the conventional method and the first mixed water particles, or when the rinse agent is added to the jet water (hereinafter, rinse agent only). White water drops are greatly reduced. Although the power consumption and the amount of water are reduced, the object to be cleaned 3 has a beautiful finish.
 さらに、注目すべき効果としては、循環しない清浄水による最終回のすすぎと、洗浄槽1内のすみずみまで行き渡る第1の混合水粒子とによる除菌効果である。 Furthermore, a remarkable effect is the sterilization effect by the final rinse with clean water that does not circulate and the first mixed water particles that spread throughout the washing tank 1.
 なお、第1の混合水粒子とリンス剤との併用における水分量は、リンス剤のみの場合と同等である。しかし第1の混合水粒子とリンス剤との併用は、最終回のすすぎを熱水による循環水によって行うリンス剤のみの場合と比較すると、以下の有利な点がある。有利な点とは、すすぎ水による再付着がないこと、加熱水量が少なく消費電力と使用水量とが削減されることである。さらに、最終回のすすぎにおいて被洗浄物3に新たに付着する水滴が清浄水であることから、乾燥後に残る白い水滴跡が大幅に低減できる。 Note that the amount of water in the combined use of the first mixed water particles and the rinse agent is the same as that of the rinse agent alone. However, the combined use of the first mixed water particles and the rinsing agent has the following advantages as compared with the case of only the rinsing agent in which the final rinse is performed by circulating water using hot water. Advantages are that there is no redeposition due to rinsing water, and the amount of heating water is small and the power consumption and the amount of water used are reduced. Further, since the water droplet newly attached to the object to be cleaned 3 in the final rinse is clean water, the white water droplet trace remaining after drying can be greatly reduced.
 また、混合水粒子発生装置25は、本実施の形態3において述べた構造でなくても水蒸気と水蒸気でない水粒子とを発生させるものであればよい。 Further, the mixed water particle generator 25 may be any device that generates water vapor and water particles that are not water vapor, even if it does not have the structure described in the third embodiment.
 また第1の混合水粒子の発生は、洗浄槽1内の上方から被洗浄物3に向けた方向とし、効率よく第1の混合水粒子を供給するため、混合水粒子供給口29を複数個所に設置してもよい。さらに、可能であれば、混合水粒子供給口29は、洗浄中の水が入り込まない構成であればなおよい。 Further, the first mixed water particles are generated in a direction from the upper side in the cleaning tank 1 toward the object 3 to be cleaned, and a plurality of mixed water particle supply ports 29 are provided in order to efficiently supply the first mixed water particles. You may install in. Further, if possible, the mixed water particle supply port 29 may be configured so that the water being cleaned does not enter.
 さらに、浄水フィルター26の設置箇所は上記の箇所に限定されるものではなく、浄水フィルター26自体を設置しなくても構わない。ただし、上記のような構成の混合水粒子発生装置25を用いる場合、混合水粒子発生部28においてスケール分が蓄積し詰まる恐れがある。そのため混合水粒子発生部28は、構造面などにおいて工夫するか、定期的にスケール成分除去剤による洗浄をする必要がある。もしくは、前処理として、スケール成分が析出しやすい70℃以上に水がいったん加温されてから、混合水粒子発生部28へ送られるとスケールの堆積が防がれる。 Furthermore, the installation location of the water purification filter 26 is not limited to the above location, and the water purification filter 26 itself may not be installed. However, when the mixed water particle generator 25 configured as described above is used, the mixed water particle generator 28 may accumulate and clog the scale. Therefore, the mixed water particle generating unit 28 needs to be devised in terms of the structure or the like or periodically cleaned with a scale component remover. Alternatively, as a pretreatment, when the water is once heated to 70 ° C. or more where the scale components are likely to precipitate and then sent to the mixed water particle generation unit 28, the scale is prevented from being deposited.
 なおリンス剤の投入は、上記の方式に限定されるものではない。たとえば使用者がタイミングを見計らって投入してもよいし、すすぎ工程中など、特定の工程においてリンス剤が溶解するタイプのカプセル状もしくは固形状等の洗剤が使用されてもよい。さらに、供給直後に水蒸気があたる箇所、および水蒸気が発生する装置内の構成材料は、耐熱温度が100℃以上のものを使用することが望ましい。 Note that the rinsing agent is not limited to the above method. For example, the user may put it in at an appropriate timing, or a capsule-type or solid-type detergent in which the rinse agent dissolves in a specific process such as during a rinsing process may be used. Furthermore, it is desirable to use a material having a heat-resistant temperature of 100 ° C. or higher as a location where water vapor is applied immediately after the supply and a constituent material in the apparatus where the water vapor is generated.
 (実施の形態4)
 図11は本発明の実施の形態4の食器洗浄装置の立面図、図12は同食器洗浄装置のシーケンス概要図である。本発明の実施の形態4では、実施の形態1~3と同じ構成要素には同一の符号を附し、その詳細な説明は省略する。
(Embodiment 4)
FIG. 11 is an elevation view of the tableware washing apparatus according to Embodiment 4 of the present invention, and FIG. 12 is a sequence schematic diagram of the tableware washing apparatus. In the fourth embodiment of the present invention, the same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図11において、貯水部6から洗浄ポンプ7に向けて循環水が通過する経路31に、循環水中の汚れ量を検知する汚れセンサー32が設置されている。図12において、縦軸が水温、横軸が運転時間であり、上から順に、従来方式のシーケンス、汚れ量が多い時のシーケンス33、汚れ量が少ない時のシーケンス34が示されている。 In FIG. 11, a dirt sensor 32 that detects the amount of dirt in the circulating water is installed in a path 31 through which the circulating water passes from the water storage unit 6 toward the cleaning pump 7. In FIG. 12, the vertical axis represents the water temperature, and the horizontal axis represents the operation time. From the top, the conventional sequence, the sequence 33 when the amount of dirt is large, and the sequence 34 when the amount of dirt is small are shown.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態4の食器洗浄装置は、汚れ量によって自動的にシーケンスを選択する。汚れ量が多い時は洗浄工程においてリンス剤が投入され、汚れ量が少ない時は最終直前のすすぎにおいてリンス剤が投入される。水粒子による最終回のすすぎの形態および動作は、本実施の形態1~3と同じである。各工程の噴射による洗浄、およびすすぎ方式は本実施の形態1~3と同じであるため、詳細な説明は省略する。 The operation of the dishwasher configured as described above will be described below. The dishwashing apparatus of the fourth embodiment automatically selects a sequence according to the amount of dirt. When the amount of dirt is large, a rinsing agent is introduced in the cleaning process, and when the amount of dirt is small, the rinsing agent is introduced in the last rinse. The form and operation of the final rinse with water particles are the same as in the first to third embodiments. Since cleaning and rinsing methods by jetting in each process are the same as those in the first to third embodiments, detailed description thereof is omitted.
 まず、洗浄工程が開始され所定時間が経過すると、汚れセンサー32によって、循環水中の汚れ量が検出される。汚れ量の値が所定量より多い場合は、汚れ量が多い時のシーケンス33に示すように、汚れ量を検出したとき制御部13によってリンス剤がリンス剤投入口12から洗浄槽1内に供給される。次に、最終直前すすぎまで従来方式と同様に工程が進む。最終回のすすぎにおいて、本実施の形態1および2と同様の方法によって水粒子すすぎが実施される。汚れ量の値が所定量より少ない場合は、汚れ量が少ない時のシーケンス34に示すように、リンス剤は供給されずに、本実施の形態1および2と同様の方式により各工程が実施される。各々のシーケンスについて、汚れ量とリンス剤投入タイミングとの関係について以下、説明する。 First, when the cleaning process is started and a predetermined time elapses, the dirt sensor 32 detects the amount of dirt in the circulating water. When the amount of dirt is larger than the predetermined amount, as shown in the sequence 33 when the amount of dirt is large, when the amount of dirt is detected, the control unit 13 supplies the rinse agent into the cleaning tank 1 from the rinse agent inlet 12. Is done. Next, the process proceeds in the same manner as in the conventional method until the last rinse. In the final rinsing, water particle rinsing is performed by the same method as in the first and second embodiments. When the value of the amount of dirt is smaller than the predetermined amount, as shown in the sequence 34 when the amount of dirt is small, the rinsing agent is not supplied and each step is performed by the same method as in the first and second embodiments. The The relationship between the amount of dirt and the rinse agent charging timing will be described below for each sequence.
 汚れ量が所定量より多い場合、洗浄工程中にリンス剤を供給する理由は、以下のようである。一般的に汚れ量が多い場合、特に卵黄タンパク質が大量に含まれていると、洗浄およびすすぎ工程中の高温によってタンパク質が変性し、グラスなどに膜状に付着しやすくなる。その結果、被洗浄物3の表面に凹凸、および親水性のばらつきが生じ、最終直前すすぎおよび最終回のすすぎにおける水滴残りが多くなり、乾燥性能が低下するからである。この種の汚れは、いったん付着すると通常のすすぎでは落ちにくい。したがって、被洗浄物3に上述の汚れが付着しないようにすることが重要である。 When the amount of dirt is larger than the predetermined amount, the reason for supplying the rinse agent during the cleaning process is as follows. In general, when the amount of dirt is large, especially when egg yolk protein is contained in large quantities, the protein is denatured by the high temperature during the washing and rinsing process, and tends to adhere to a glass or the like. As a result, unevenness and hydrophilicity variations occur on the surface of the article 3 to be cleaned, and water droplets remain in the last rinse and the final rinse, resulting in a decrease in drying performance. Once this type of dirt is deposited, it is difficult to remove with normal rinsing. Therefore, it is important to prevent the above-described dirt from adhering to the article 3 to be cleaned.
 従って本実施の形態4のように汚れ量が所定量より多い場合、食器類から剥離された汚れが大量に浮遊する洗浄水中に、リンス剤を供給する。このことにより、一般的な食器洗浄装置用の洗剤成分として含まれていない、もしくは、ごく少量しか含まれていないリンス剤の成分が十分に含まれる。その結果、グラスなどの食器類に付着しやすい、変性した卵黄タンパク質等が、食器類に付着されることを防止できる。そのため、上述のような乾燥前の水滴残りは防がれ、乾燥工程および自然乾燥時における乾燥性能が高められる。 Therefore, when the amount of dirt is larger than the predetermined amount as in the fourth embodiment, the rinse agent is supplied into the washing water in which a large amount of dirt peeled off from the dishes is floating. As a result, a rinse agent component that is not contained as a detergent component for a general dishwasher or contained in a very small amount is sufficiently contained. As a result, it is possible to prevent denatured egg yolk protein or the like that easily adheres to tableware such as glass from adhering to the tableware. Therefore, the water droplet residue before drying as described above is prevented, and the drying performance in the drying process and natural drying is enhanced.
 一方、汚れ量が所定量より少ない場合、洗浄初期にリンス剤が投入されるより、最終直前のすすぎにおいてリンス剤が投入される方が、リンス剤による水滴を減少させる効果が高い。そのため、通常どおり、本実施の形態1および2の方式をとることが望ましい。特に、汚れ量が少ない場合、または変性して食器類の表面に付着するような汚れが少量である場合、最終直前のすすぎにおいてリンス剤が投入される方が有効である。洗浄工程中に比べて、水の入れ替えにより洗浄水中の汚れ量が減少したすすぎ工程中の洗浄水にリンス剤を溶解させることにより、より少量のリンス剤でリンス効果が発揮される。また水粒子すすぎにおいて、より直前の被洗浄物3の表面への汚れの付着が防止される。食器類の表面は、より均一な親水性に処理されることにより残る水滴量が減らされる。それによって、水粒子すすぎにおいて落下させる水滴量が少なくてすむ。そのため、続く乾燥工程または自然乾燥時の乾燥性能が向上し、乾燥後に残る水滴跡は防止される。 On the other hand, when the amount of dirt is less than the predetermined amount, it is more effective to reduce water droplets due to the rinse agent when the rinse agent is introduced immediately before the final rinse than when the rinse agent is introduced at the initial stage of cleaning. Therefore, it is desirable to adopt the systems of the first and second embodiments as usual. In particular, when the amount of soiling is small, or when there is a small amount of soiling that denatures and adheres to the surface of the tableware, it is more effective to introduce a rinse agent in the last rinse. By rinsing the rinsing agent in the rinsing water in the rinsing step in which the amount of dirt in the rinsing water is reduced by replacing the water as compared with during the washing step, the rinsing effect is exhibited with a smaller amount of the rinsing agent. Further, in the water particle rinsing, the adhesion of dirt to the surface of the object to be cleaned 3 immediately before is prevented. The surface of the tableware is treated to have a more uniform hydrophilicity, thereby reducing the amount of remaining water droplets. Thereby, the amount of water drops to be dropped in the water particle rinsing can be reduced. Therefore, the drying performance in the subsequent drying step or natural drying is improved, and water droplet traces remaining after drying are prevented.
 なお、混合水粒子発生装置25は、実施の形態1~3において説明したような、水蒸気および水蒸気でない水粒子、またはそれらの混合水粒子を発生する方式および構造としてもよい。 The mixed water particle generator 25 may have a system and structure for generating water vapor and water particles that are not water vapor, or mixed water particles as described in the first to third embodiments.
 またシーケンスは、使用者が手動によりコース選択してもよい。この際、特に卵黄成分の汚れが多いか少ないかによりコースを判断することが望ましい。 Also, the sequence may be selected manually by the user. At this time, it is desirable to judge the course depending on whether the egg yolk component is particularly dirty or not.
 さらに、汚れセンサー32は、汚れ量の検知に限るものではなく、例えば、汚れの種類、特にタンパク質の量が検知されるものが最も望ましい。なお、汚れ検知の方式についても上述の方式に限らない。たとえば、リンス剤の投入を使用者が自ら行ってもよい。洗浄工程中またはすすぎ工程中など、特定の工程においてリンス剤が溶解するタイプのカプセル状、もしくは固形状などの洗剤が汚れの状況から使い分けて投入される方式をとっても構わない。 Furthermore, the dirt sensor 32 is not limited to the detection of the amount of dirt, but, for example, a sensor that can detect the type of dirt, particularly the amount of protein, is most desirable. Note that the stain detection method is not limited to the above-described method. For example, the user may put in the rinse agent himself. It is possible to adopt a method in which detergents such as capsules or solids in which the rinsing agent dissolves in a specific process, such as during a washing process or a rinsing process, are used depending on the state of dirt.
 さらに、供給直後に水蒸気があたる箇所、および水蒸気が発生する装置内の構成材料は、耐熱温度が100℃以上のものを使用することが望ましい。 Furthermore, it is desirable to use a material having a heat-resistant temperature of 100 ° C. or more as a location where water vapor is applied immediately after supply and a constituent material in the apparatus where water vapor is generated.
 (実施の形態5)
 図13は本発明の実施の形態5の食器洗浄装置の立面図、図14は同食器洗浄装置のシーケンス概要図である。本発明の実施の形態5では、実施の形態1~4と同じ構成要素については同一の符号を附し、その詳細な説明は省略する。
(Embodiment 5)
FIG. 13 is an elevation view of the tableware washing apparatus according to the fifth embodiment of the present invention, and FIG. 14 is a sequence schematic diagram of the tableware washing apparatus. In the fifth embodiment of the present invention, the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図13において食器洗浄装置は、洗浄槽1の底部に配置された別室19と、別室19に霧状の水粒子を発生させる水粒子発生装置である超音波振動子20と、別室19内の水を加熱する第2の加熱部21と、別室19内の水位を検知する水位検知センサー22とが設置されている。水粒子発生箇所36は、第1の加熱部9を含み、開閉扉35を介した貯水部6の一部である。さらに別室19には、給水弁14の切り替えによって、給水部4から清浄水を給水する経路23が接続されている。別室19と洗浄槽1内とは、開閉扉24によって連通されている。また、洗浄槽1の一部にリンス剤投入部11と、別室19内に連結したリンス剤投入口12とが設置されている。 In FIG. 13, the dishwashing apparatus includes a separate chamber 19 disposed at the bottom of the cleaning tank 1, an ultrasonic vibrator 20 that is a water particle generator that generates mist-like water particles in the separate chamber 19, and water in the separate chamber 19. A second heating unit 21 for heating the water level and a water level detection sensor 22 for detecting the water level in the separate chamber 19 are installed. The water particle generation point 36 includes the first heating unit 9 and is a part of the water storage unit 6 through the open / close door 35. Furthermore, a path 23 for supplying clean water from the water supply unit 4 is connected to the separate chamber 19 by switching the water supply valve 14. The separate chamber 19 and the cleaning tank 1 are communicated with each other by an opening / closing door 24. In addition, a rinse agent charging unit 11 and a rinse agent charging port 12 connected to a separate chamber 19 are installed in a part of the cleaning tank 1.
 また、図14において、縦軸は水温、横軸が運転時間であり、上から順に、従来方式のシーケンス、本実施の形態5~8の食器洗浄装置のシーケンスを示している。 In FIG. 14, the vertical axis indicates the water temperature and the horizontal axis indicates the operation time, and the sequence of the conventional method and the sequence of the dishwashing apparatus according to the fifth to eighth embodiments are shown in order from the top.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態5の食器洗浄装置の動作は、本実施の形態1の食器洗浄装置と同様の動作によって洗浄工程から最終回の2つ前のすすぎまで行うため、それ以降から説明する。 The operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus of the fifth embodiment is performed from the washing process to the last two rinses by the same operation as the dishwashing apparatus of the first embodiment, it will be described from then on.
 最終回の2つ前のすすぎが終了した後、最終直前のすすぎは、それ以前のすすぎと同様に給水部4から洗浄槽1に所定量の水が供給されて開始される。貯水部6に貯留した水は、洗浄工程と同様に洗浄槽1内を循環し、被洗浄物3に付着した汚れおよび洗剤を噴射によってすすぎ流す。所定時間、運転した後、洗浄工程と同様に排水が行われ、通常すすぎ工程が終了する。その後、同様の方法によって通常すすぎが1~数回繰り返され、最終直前のすすぎが排水によって終了する(図14の(u))。 After the last two rinsings are completed, the rinsing immediately before the final is started by supplying a predetermined amount of water from the water supply unit 4 to the washing tank 1 in the same manner as the previous rinsing. The water stored in the water storage section 6 circulates in the cleaning tank 1 in the same manner as the cleaning step, and rinses away dirt and detergent adhering to the object to be cleaned 3 by jetting. After operating for a predetermined time, drainage is performed in the same manner as the washing step, and the normal rinsing step is completed. Thereafter, the usual rinsing is repeated one to several times by the same method, and the last rinsing is completed by drainage ((u) in FIG. 14).
 次に、最終回のすすぎが開始する。まず、制御部13によって貯水部6に設けられた開閉扉35が閉じ、貯水部6内の水粒子発生箇所36が個室となる。その後、給水部4から経路15を経て洗浄槽1に清浄水が給水される。洗浄槽1に給水された清浄水は、水粒子発生箇所36内に貯留される。水粒子発生箇所36内の水位が水位検知センサー37によって検知されると、第1の加熱部9が作動して水粒子発生箇所36に貯留した水を加熱する。そして、給水弁14が経路23に切り替わり、経路23を経て別室19に給水が行われる。別室19の水位が、水位検知センサー22によって検知される水位に達すると給水弁14が閉じ、給水が終了する。別室19への給水が開始される前後、もしくは給水終了直後に、リンス剤投入口12から適量のリンス剤が別室19内に投入され、貯留した洗浄水に溶解する。 Next, the final rinse begins. First, the opening / closing door 35 provided in the water storage unit 6 is closed by the control unit 13, and the water particle generation point 36 in the water storage unit 6 becomes a private room. Thereafter, clean water is supplied from the water supply unit 4 to the cleaning tank 1 via the path 15. The clean water supplied to the cleaning tank 1 is stored in the water particle generation location 36. When the water level in the water particle generation location 36 is detected by the water level detection sensor 37, the first heating unit 9 operates to heat the water stored in the water particle generation location 36. Then, the water supply valve 14 is switched to the path 23, and water is supplied to the separate chamber 19 via the path 23. When the water level in the separate chamber 19 reaches the water level detected by the water level detection sensor 22, the water supply valve 14 is closed and the water supply ends. An appropriate amount of rinse agent is introduced into the separate chamber 19 from the rinse agent inlet 12 before or after the start of water supply to the separate chamber 19 or immediately after the end of the water supply, and is dissolved in the stored washing water.
 次に、制御部13によって開閉扉35が開き、別室19と洗浄槽1内とが連通される。そして、超音波振動子20と第2の加熱部21とが作動し、別室19内の洗浄水が加熱されながらリンス剤を含んだ霧状の水粒子が発生する。発生した高温のリンス剤を含んだ水粒子(以下、リンスイン水粒子)は、開閉扉24を経て洗浄槽1内に5分程度、供給される。所定時間が経過した後、制御部13によって超音波振動子20および第2の加熱部21が停止し、リンスイン水粒子の供給が終了する。ここでリンス剤の供給は、最終回のすすぎにおいて超音波振動子20が駆動する直前、もしくは駆動する時に行なわれればよい。 Next, the opening / closing door 35 is opened by the control unit 13, and the separate chamber 19 and the inside of the cleaning tank 1 are communicated. Then, the ultrasonic vibrator 20 and the second heating unit 21 are operated, and mist-like water particles containing a rinse agent are generated while the cleaning water in the separate chamber 19 is heated. The generated water particles containing a high-temperature rinse agent (hereinafter, rinse-in water particles) are supplied into the cleaning tank 1 through the open / close door 24 for about 5 minutes. After the predetermined time has elapsed, the ultrasonic vibrator 20 and the second heating unit 21 are stopped by the control unit 13, and the supply of rinse-in water particles is completed. Here, the rinse agent may be supplied immediately before or when the ultrasonic transducer 20 is driven in the final rinse.
 この際、洗浄槽1内に供給されたリンスイン水粒子は、被洗浄物3および洗浄槽1の壁面に付着し、付着面についた水滴を成長により落下させる。そしてリンスイン水粒子は、被洗浄物3の表面に密に付着し、表面をむらなく親水性に処理する。また超音波振動子20の作動時間は、第2の加熱部21が作動した直後から5分程度であるので、リンスイン水粒子は40℃~50℃に加温され、被洗浄物3の表面への付着とともに被洗浄物3を顕熱によって加温する。 At this time, the rinse-in water particles supplied into the cleaning tank 1 adhere to the object to be cleaned 3 and the wall surface of the cleaning tank 1, and the water droplets on the adhesion surface are dropped by growth. The rinse-in water particles adhere closely to the surface of the article 3 to be cleaned and treat the surface to be hydrophilic evenly. Further, since the operation time of the ultrasonic vibrator 20 is about 5 minutes immediately after the second heating unit 21 is operated, the rinse-in water particles are heated to 40 ° C. to 50 ° C., and are moved to the surface of the object 3 to be cleaned. The object to be cleaned 3 is heated by sensible heat along with the adhesion of.
 また、リンスイン水粒子の供給中に、第1の加熱部9によって加熱されていた水粒子発生箇所36内の水が、徐々に水蒸気となって洗浄槽1に供給され始める。リンスイン水粒子の供給終了に前後して、供給量が安定した高温水蒸気が洗浄槽1内に供給される。 In addition, during the supply of the rinse-in water particles, the water in the water particle generation portion 36 that has been heated by the first heating unit 9 gradually begins to be supplied to the cleaning tank 1 as water vapor. Around the end of the supply of the rinse-in water particles, high-temperature steam with a stable supply amount is supplied into the cleaning tank 1.
 この際、供給される水蒸気は、洗浄槽1の空間に浮遊する菌を除菌しつつ、空間に浮遊するリンスイン水粒子と合体したり、そのまま被洗浄物3の表面に付着する。水蒸気とリンスイン水粒子とが合体した場合、合体により自重が重くなった高温の水粒子として、より迅速かつ確実に被洗浄物3の表面に付着し、被洗浄物3を加温する。 At this time, the supplied water vapor is combined with the rinse-in water particles floating in the space or adhering to the surface of the object to be cleaned 3 as it is sterilizing the bacteria floating in the space of the cleaning tank 1. When the water vapor and the rinse-in water particles are combined, they adhere to the surface of the object to be cleaned 3 more quickly and reliably as high-temperature water particles whose own weight is increased by the combination, and the object to be cleaned 3 is heated.
 また、水蒸気が被洗浄物3の表面に付着した場合、水蒸気は潜熱によって効率のよい加温と除菌とを行いながら液化される。この際、すでに被洗浄物3の表面が、全体的に密に付着したリンスイン水粒子により覆われている。そのため、水蒸気とリンスイン水粒子との合体した液滴、および水蒸気が被洗浄物3の表面に付着する際、液滴同士がより迅速かつ確実に、被洗浄物3の表面において濡れ広がって合体し、水滴の成長と落下とが効率よく行われる。 Further, when water vapor adheres to the surface of the object 3 to be cleaned, the water vapor is liquefied while performing efficient heating and sterilization by latent heat. At this time, the surface of the article 3 to be cleaned has already been covered with rinse-in water particles that are densely adhered as a whole. Therefore, when the water droplets and rinsed water particles are combined and the water vapor adheres to the surface of the object 3 to be cleaned, the droplets wet and spread on the surface of the object 3 to be combined more quickly and reliably. Water droplets grow and fall efficiently.
 この水蒸気の供給は、所定時間が経過した後、赤外線センサーなどにより被洗浄物3の表面温度が70℃に到達したことが検知されると、制御部13によって第1の加熱部9のスイッチがOFFされる。水粒子発生箇所36に貯留した残水は、開閉扉35が開いて貯水部6を介して、別室19の残水と同時に排水部5によって排水され、最終回のすすぎが終了する。 When the water vapor is supplied after a predetermined time has elapsed and the surface temperature of the article 3 to be cleaned has reached 70 ° C. by an infrared sensor or the like, the control unit 13 switches the first heating unit 9 on. It is turned off. Residual water stored in the water particle generation point 36 is drained by the drainage part 5 simultaneously with the residual water in the separate chamber 19 through the water storage part 6 when the open / close door 35 is opened, and the final rinse is completed.
 続く乾燥工程は、実施の形態1と同様に送風ファンによる省エネ乾燥コースによって行われ、食器洗浄装置の運転が終了する。乾燥後の被洗浄物3は、乾燥直前に、リンスイン水粒子と水蒸気とによって付着し汚れた水滴が大幅に低減される。乾燥後に残る水滴跡の個数が低減される。また仮に水滴跡が残ったとしても、循環水を使用した際に見られるような汚れ起因の白くて目立つ水滴跡ではなく、被洗浄物3は美しい仕上がりとなる。 The subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed. The object to be cleaned 3 after drying is greatly reduced in water droplets adhered and soiled by rinse-in water particles and water vapor immediately before drying. The number of water droplet traces remaining after drying is reduced. Moreover, even if a water droplet trace remains, it is not a white and conspicuous water droplet trace caused by dirt as seen when using circulating water, but the object to be cleaned 3 has a beautiful finish.
 また、最終回のすすぎにおいて使用する水量および消費電力は、従来方式より大幅に削減される。また被洗浄物3の温度が70℃以上に到達しているため、省エネ乾燥コースによる消費電力が削減される。さらに、最終回のすすぎ時の高温の水粒子によって、すみずみまで行き渡る効率の高い除菌効果が期待できる。 Also, the amount of water and power consumption used in the final rinsing are significantly reduced compared to the conventional method. Moreover, since the temperature of the article to be cleaned 3 has reached 70 ° C. or higher, the power consumption by the energy saving drying course is reduced. In addition, high-efficiency sterilization effect that can be expected throughout the whole area can be expected by high-temperature water particles at the final rinse.
 このように、本実施の形態5では、リンス剤を水粒子に含ませて供給することにより、噴射水に比べて水粒子に使用する全水量が少なくてすむ。そのため、噴射水にリンス剤を溶解させる場合と同濃度のリンス剤を被洗浄物3表面に供給する場合、リンス剤の使用量は大幅に削減され、環境負荷とランニングコストとが低減させられる。 Thus, in the fifth embodiment, the total amount of water used for the water particles can be reduced as compared with the jet water by supplying the rinse agent in the water particles. Therefore, when supplying the rinse agent having the same concentration as the case where the rinse agent is dissolved in the jet water to the surface of the article 3 to be cleaned, the amount of the rinse agent used is greatly reduced, and the environmental load and running cost are reduced.
 さらに、リンス剤が水粒子内に含まれて供給されることによりで、被洗浄物3表面のすみずみまでリンス剤が付着される。リンス剤の供給直後、もしくは同時期に供給される水粒子が被洗浄物3の表面に付着した際、即時に濡れ広がって隣の水滴と合体するため、より迅速に効率よく水滴が落下する。 Furthermore, the rinse agent is adhered to the surface of the article 3 to be cleaned by supplying the rinse agent contained in the water particles. Immediately after the rinsing agent is supplied or when water particles supplied at the same time adhere to the surface of the object 3 to be cleaned, the water droplets immediately spread and coalesce with the adjacent water droplets, so that the water droplets fall more quickly and efficiently.
 また、最終すすぎとして、水粒子だけでなくリンスイン水粒子に含まれる水分量だけ、全体としてすすぎの効果が高められる。 Also, as a final rinse, the effect of rinsing as a whole is enhanced by the amount of water contained in the rinse-in water particles as well as the water particles.
 なお、本実施の形態5では、水粒子発生装置は貯水部6の一部として、通常運転に使用する第1の加熱部9が併置され、原価を削減している。しかし、水蒸気を発生する構造であれば、この構成にする必要はない。例えば、別個に水蒸気を発生するデバイスを設けて、直接清浄水が別室19に供給されるようにしても構わない。 In the fifth embodiment, the water particle generator is provided with the first heating unit 9 used for normal operation as a part of the water storage unit 6 to reduce the cost. However, this structure is not necessary if the structure generates water vapor. For example, a device that generates water vapor separately may be provided so that clean water is directly supplied to the separate chamber 19.
 また水蒸気を発生する構造は、別室19と開閉扉とを併設し、給水部4および第1の加熱部9を併用してもよい。 Further, the structure for generating water vapor may be provided with a separate room 19 and an opening / closing door, and the water supply unit 4 and the first heating unit 9 may be used in combination.
 またリンス剤投入口12は、直接リンスイン水粒子発生装置の別室19に設けずに、給水される清浄水にリンス剤が溶解されてから別室19に供給してもよい。この場合、リンスイン水粒子は清浄水の水粒子である。 Further, the rinse agent inlet 12 may be supplied to the separate chamber 19 after the rinse agent is dissolved in the clean water supplied without being directly provided in the separate chamber 19 of the rinse-in water particle generator. In this case, the rinse-in water particles are clean water particles.
 また、リンスイン水粒子発生装置とリンス剤投入部11とが一体型であってもよい。水粒子を発生するのに使用する水にリンス剤が溶解していれば、どのような方式を適用しても構わない。 Further, the rinse-in water particle generator and the rinse agent charging unit 11 may be integrated. Any method may be applied as long as the rinsing agent is dissolved in the water used to generate the water particles.
 さらに、供給直後に水蒸気があたる箇所および水蒸気が発生する装置内の構成材料は、耐熱温度が100℃以上のものを使用することが望ましい。 Furthermore, it is desirable to use a material having a heat resistant temperature of 100 ° C. or more as a constituent material in the apparatus where the water vapor is applied immediately after the supply and the water vapor is generated.
 (実施の形態6)
 図15は、本発明の実施の形態6の食器洗浄装置の立面図である。本発明の実施の形態6では、実施の形態1~5と同じ構成要素には同一符号を附し、その詳細な説明は省略する。
(Embodiment 6)
FIG. 15 is an elevation view of the tableware washing apparatus according to the sixth embodiment of the present invention. In the sixth embodiment of the present invention, the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 食器洗浄装置は、洗浄槽1の底部に別室38と、別室38に霧状の水粒子を発生する水粒子発生装置である超音波振動子20と、水位検知センサー39とを備えている。別室38の片側の壁面は、上部が開放されている。別室38の底面から水位検知センサー39の高さまで、開閉扉40が設置されている。 The dishwasher includes a separate chamber 38 at the bottom of the cleaning tank 1, an ultrasonic vibrator 20 that is a water particle generator that generates mist-like water particles in the separate chamber 38, and a water level detection sensor 39. The upper surface of the wall surface on one side of the separate chamber 38 is open. An opening / closing door 40 is installed from the bottom surface of the separate chamber 38 to the height of the water level detection sensor 39.
 開閉扉40を境に、別室41が別室38に隣接して設けられている。別室41には、底面から別室38に設置された水位検知センサー39の高さまでの間に水粒子加熱部42が設置されている。別室38と別室41との上部は、開閉扉40の上部にある開放部により繋がり、内部の空気が自由に行き来できる。 A separate room 41 is provided adjacent to the separate room 38 with the opening / closing door 40 as a boundary. In the separate chamber 41, a water particle heating unit 42 is installed between the bottom surface and the height of the water level detection sensor 39 installed in the separate chamber 38. The upper part of the separate room 38 and the separate room 41 is connected by the open part in the upper part of the opening / closing door 40, and internal air can freely come and go.
 さらに、別室38には、給水弁14の切り替えによって、給水部4から清浄水を給水する経路43が接続されている。開閉扉40を開けることにより、別室41にも清浄水が流れ込む。 Furthermore, a path 43 for supplying clean water from the water supply unit 4 by switching the water supply valve 14 is connected to the separate room 38. By opening the opening / closing door 40, clean water also flows into the separate chamber 41.
 また、別室38の近傍に位置する洗浄槽1の一部にリンス剤投入部11と、別室38内に連結したリンス剤投入口12とが設置されている。さらに、別室38と洗浄槽1内とは開閉扉44によって連通されている。 Also, a rinse agent charging part 11 and a rinse agent charging port 12 connected to the inside of the separate chamber 38 are installed in a part of the cleaning tank 1 located in the vicinity of the separate chamber 38. Further, the separate chamber 38 and the cleaning tank 1 are communicated with each other by an opening / closing door 44.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態6の食器洗浄装置の動作は、本実施の形態5の最終直前のすすぎまでと同じであるので、最終回のすすぎ開始からの動作を説明する。 The operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus according to the sixth embodiment is the same as that until the final rinse in the fifth embodiment, the operation from the final rinse start will be described.
 実施の形態5と同様に、最終直前のすすぎまでが終了すると、給水弁14が開き経路43を経て清浄水が、開閉扉40が開いた状態の別室38、および別室41に給水され、水位検知センサー39が水位を検知するまで給水される。 As in the fifth embodiment, when the last rinse is completed, the water supply valve 14 is opened and the clean water is supplied to the separate chamber 38 and the separate chamber 41 with the open / close door 40 opened through the passage 43, and the water level is detected. Water is supplied until the sensor 39 detects the water level.
 その後、水位の検知により、給水弁14が閉じて給水が終了すると、開閉扉40が閉じ、別室38と別室41とを遮る。次に、リンス剤投入口12から別室38内に貯留した清浄水に適量のリンス剤が投入される。そして超音波振動子20と別室41の水粒子加熱部42とが作動し、開閉扉44が開く。次に超音波振動子20の作動によって、別室38に貯水したリンス剤を含む水がリンスイン水粒子として開いた開閉扉44を介して洗浄槽1に供給される。リンスイン水粒子は、被洗浄物3の表面に密に付着し、被洗浄物3全体を均一に親水性に処理する。5分程度の所定の時間が経過すると、排水部5が作動し、別室38内のリンス剤を含む残水が排水される。 After that, when the water supply valve 14 is closed and the water supply is finished by detecting the water level, the opening / closing door 40 is closed and the separate room 38 and the separate room 41 are blocked. Next, an appropriate amount of rinse agent is charged into the clean water stored in the separate chamber 38 from the rinse agent inlet 12. Then, the ultrasonic transducer 20 and the water particle heating unit 42 in the separate chamber 41 are operated, and the open / close door 44 is opened. Next, by the operation of the ultrasonic vibrator 20, the water containing the rinse agent stored in the separate chamber 38 is supplied to the cleaning tank 1 through the open / close door 44 opened as rinse-in water particles. The rinse-in water particles adhere closely to the surface of the article to be cleaned 3 and uniformly treat the entire article to be cleaned 3 to be hydrophilic. When a predetermined time of about 5 minutes elapses, the drainage section 5 is activated, and the remaining water containing the rinse agent in the separate chamber 38 is drained.
 次に、残水が全て排水された後、開閉扉40が開き、別室41において加熱されていた熱水が別室38に流れ込む。超音波振動子20によって、高温の水粒子が発生し、開閉扉44を介して洗浄槽1内に供給される。供給された高温の水粒子は、被洗浄物3の表面にそのまま付着する、あるいは空間に浮遊していたリンスイン水粒子と合体して大きくなり、迅速かつ確実に被洗浄物3の表面に付着する。この高温の水粒子の供給は、所定時間が経過した後、赤外線センサーなどにより被洗浄物3の表面温度が70℃に到達したことを検知すると停止する。すなわち水粒子加熱部42と、超音波振動子20の作動が停止する。別室38および別室41の残水が、排水部5によって排水され、最終回のすすぎが終了する。 Next, after all the remaining water is drained, the opening / closing door 40 opens, and the hot water heated in the separate room 41 flows into the separate room 38. High-temperature water particles are generated by the ultrasonic vibrator 20 and supplied to the cleaning tank 1 through the open / close door 44. The supplied high-temperature water particles adhere to the surface of the object to be cleaned 3 as they are, or are combined with the rinse-in water particles floating in the space to increase in size, and quickly and reliably adhere to the surface of the object to be cleaned 3. . The supply of the high-temperature water particles is stopped when it is detected that the surface temperature of the object to be cleaned 3 has reached 70 ° C. by an infrared sensor or the like after a predetermined time has elapsed. That is, the operations of the water particle heating unit 42 and the ultrasonic transducer 20 are stopped. The remaining water in the separate chamber 38 and the separate chamber 41 is drained by the drainage section 5, and the final rinse is completed.
 続く乾燥工程は、実施の形態1と同様に送風ファンによる省エネ乾燥コースによって行われ、食器洗浄装置の運転が終了する。乾燥後の被洗浄物3は、乾燥直前にリンスイン水粒子と高温の水粒子とによって、最終直前すすぎにおいて付着していた汚れた水滴が大幅に低減している。そのため乾燥後に残る水滴跡の個数が、低減される。仮に水滴跡が残ったとしても、循環水を使用した際に見られるような汚れ起因の白くて目立つ水滴跡ではなく、被洗浄物3の美しい仕上がりが得られる。 The subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed. The to-be-cleaned object 3 after drying is greatly reduced in dirty water droplets adhering immediately before the final rinse due to rinse-in water particles and high-temperature water particles immediately before drying. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, not the white and conspicuous water droplet traces caused by dirt as seen when circulating water is used, but a beautiful finish of the article to be cleaned 3 is obtained.
 また、最終回のすすぎにおいて使用する水量は、従来方式より大幅に削減できる。また、被洗浄物3の温度が70℃以上に到達しているため、送風のみの省エネ乾燥コースによる消費電力が削減される。さらに、最終回のすすぎにおける高温の水粒子は、被洗浄物3のすみずみまで行き渡り、効率の高い除菌効果が期待できる。 Also, the amount of water used in the final rinse can be greatly reduced compared to the conventional method. Moreover, since the temperature of the to-be-cleaned object 3 has reached 70 degreeC or more, the power consumption by the energy-saving drying course only of ventilation is reduced. Furthermore, the high-temperature water particles in the final rinsing are distributed throughout the object to be cleaned 3, and a highly efficient sterilization effect can be expected.
 このように、本実施の形態6では、本実施の形態5においても説明したように、リンス剤を水粒子に含ませて供給している。そのため、噴射水に比べてリンス剤の使用量が大幅に削減される。そして環境負荷と、ランニングコストとが低減される。 Thus, in the sixth embodiment, as described in the fifth embodiment, the rinsing agent is included in the water particles and supplied. Therefore, the amount of the rinse agent used is greatly reduced compared to the jet water. And environmental burden and running cost are reduced.
 さらに、リンス剤が水粒子内に含まれて供給されることにより、被洗浄物3のすみずみまでリンス剤が付着される。リンス剤が付着された直後、もしくは同時期に供給される水粒子が被洗浄物3の表面に付着した際、即時に濡れ広がり、隣の水滴と合体できる。そのため、より迅速に効率よく水滴が落下される。 Furthermore, when the rinse agent is supplied while being contained in the water particles, the rinse agent adheres to every corner of the article 3 to be cleaned. Immediately after the rinsing agent is attached or when water particles supplied at the same time adhere to the surface of the article 3 to be cleaned, the particles immediately wet and spread, and can merge with adjacent water droplets. As a result, water droplets fall more quickly and efficiently.
 また、最終すすぎとして、水粒子だけでなくリンスイン水粒子に含まれる水分量だけ、全体としてすすぎ効果が高められる。また、粒径が水蒸気より大きなミストの形態によりリンスイン水粒子、および高温の水粒子が供給される。そのため、短時間に被洗浄物3の表面に付着される水量が多く、それだけ水滴落下効率、およびすすぎ性能が高くなる。 Also, as a final rinse, the rinse effect as a whole is enhanced not only by water particles but also by the amount of water contained in the rinse-in water particles. Also, rinse-in water particles and high-temperature water particles are supplied in the form of a mist having a particle size larger than that of water vapor. Therefore, the amount of water that adheres to the surface of the article 3 to be cleaned in a short time is large, and the water drop dropping efficiency and the rinsing performance are increased accordingly.
 さらに、リンスイン水粒子用の装置と、水粒子発生用の装置とを1台によって併用している。そのため、製造コストが大幅に削減される。また、リンスイン水粒子用の装置と水粒子発生用の装置、それらの装置の電源、および制御部13を設けるスペースが半分ですむため、食器洗浄装置のコンパクト化につながる。 Furthermore, a device for rinsing-in water particles and a device for water particle generation are used together by one unit. Therefore, the manufacturing cost is greatly reduced. Further, since the space for installing the rinse-in water particle device, the water particle generating device, the power source of these devices, and the control unit 13 can be halved, the dishwasher can be made compact.
 なお、本実施の形態6では、水粒子発生装置を貯水部6の一部として、通常運転に使用する加熱手段を併用することにより、製造原価が削減される。しかし、水蒸気を発生する構造であれば、上述の構成にする必要はなく、例えば別個に水蒸気を発生するデバイスを設け、直接清浄水がデバイス内に供給されるようにしてもよい。 In the sixth embodiment, the manufacturing cost is reduced by using the water particle generator as a part of the water storage unit 6 and the heating means used for normal operation. However, as long as the structure generates water vapor, it is not necessary to use the above-described configuration. For example, a device that generates water vapor may be provided separately so that clean water is directly supplied into the device.
 また水蒸気を発生する構造は、別室38と開閉扉とを併設し、給水部4および第1の加熱部9を併用してもよい。 Further, the structure for generating water vapor may be provided with a separate chamber 38 and an opening / closing door, and the water supply unit 4 and the first heating unit 9 may be used in combination.
 また、リンス剤投入口12は直接、リンスイン水粒子発生装置の別室38に供給されずに、給水される水に溶解させてから別室38に供給されてもよい。さらに、リンスイン水粒子発生装置とリンス剤投入部11とは一体型であってもよい。水粒子を発生するのに使用する水に、リンス剤が溶解していれば、どのようなリンス剤の投入方式であってもよい。 Further, the rinse agent inlet 12 may not be directly supplied to the separate chamber 38 of the rinse-in water particle generator, but may be supplied to the separate chamber 38 after being dissolved in the supplied water. Furthermore, the rinse-in water particle generator and the rinse agent charging unit 11 may be integrated. As long as the rinse agent is dissolved in the water used to generate water particles, any type of rinse agent may be used.
 (実施の形態7)
 図16は、本発明の実施の形態7の食器洗浄装置の立面図である。本発明の実施の形態7では、実施の形態1~6と同じ構成要素については同一の符号を附し、その詳細な説明は省略する。
(Embodiment 7)
FIG. 16 is an elevation view of the tableware washing apparatus according to the seventh embodiment of the present invention. In the seventh embodiment of the present invention, the same components as those in the first to sixth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図16の食器洗浄装置において、リンスイン水粒子発生箇所46は開閉扉45と、貯水部6の第1の加熱部9と、霧状の水粒子を発生する超音波振動子20と、リンスイン水粒子発生箇所46内の水位を検知する水位検知センサー47とが備えられている。 In the dishwashing apparatus of FIG. 16, the rinse-in water particle generation point 46 includes an open / close door 45, the first heating unit 9 of the water storage unit 6, the ultrasonic vibrator 20 that generates mist-like water particles, and the rinse-in water particles. A water level detection sensor 47 for detecting the water level in the generation location 46 is provided.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態7の食器洗浄装置の動作は、本実施の形態5の最終直前のすすぎまでは同じであるので、最終回のすすぎ開始からの動作を説明する。 The operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus of the seventh embodiment is the same until the last rinse immediately before the fifth embodiment, the operation from the last rinse start will be described.
 実施の形態5と同様に、最終直前のすすぎが終了すると、開閉扉45が閉じ、貯水部6内においてリンスイン水粒子発生箇所46が個室化される。次に、給水弁14が開き、経路15を介して洗浄槽1内に清浄水が給水される。次にリンス剤投入口12が開き、清浄水が給水口16からリンスイン水粒子発生箇所46に流れ込む途中において、リンス剤が混入される。必要量のリンス剤が投入されると、リンス剤投入口12が閉じ、リンス剤の注入が完了する。 As in the fifth embodiment, when the last rinse is completed, the opening / closing door 45 is closed, and the rinse-in water particle generation point 46 is made into a private room in the water storage section 6. Next, the water supply valve 14 is opened, and clean water is supplied into the cleaning tank 1 through the path 15. Next, the rinse agent inlet 12 is opened, and the rinse agent is mixed while clean water flows from the water supply port 16 to the rinse-in water particle generation portion 46. When the required amount of rinse agent is charged, the rinse agent inlet 12 is closed, and the injection of the rinse agent is completed.
 また、リンスイン水粒子発生箇所46において貯水された洗浄水の水位が、水位検知センサー47により検知されると給水弁14が閉じ、給水が完了する。次に第1の加熱部9および超音波振動子20が作動し、リンスイン水粒子発生箇所46に貯留したリンス剤を含む洗浄水が加熱されながらリンスイン水粒子が発生する。 Further, when the water level of the cleaning water stored in the rinse-in water particle generation point 46 is detected by the water level detection sensor 47, the water supply valve 14 is closed and the water supply is completed. Next, the 1st heating part 9 and the ultrasonic transducer | vibrator 20 act | operate, and rinse-in water particle | grains generate | occur | produce while the washing water containing the rinse agent stored in the rinse-in water particle generation | occurrence | production location 46 being heated.
 リンスイン水粒子発生箇所46は、洗浄槽1内にカバーもなく設置されているため、発生したリンスイン水粒子は、そのまま洗浄槽1に5分程度、供給される。所定時間が経過した後、超音波振動子20および第1の加熱部9が停止し、リンスイン水粒子の供給が終了する。 Since the rinse-in water particle generation point 46 is installed in the cleaning tank 1 without a cover, the generated rinse-in water particles are supplied to the cleaning tank 1 as it is for about 5 minutes. After a predetermined time has elapsed, the ultrasonic transducer 20 and the first heating unit 9 are stopped, and the supply of rinse-in water particles is completed.
 この際、洗浄槽1内に供給されたリンスイン水粒子は、被洗浄物3および洗浄槽1の壁面に付着し、付着面についた水滴を成長により落下させる。そしてリンスイン水粒子は、被洗浄物3の表面に密に付着し、表面をむらなく親水性に処理する。また超音波振動子20の作動時間は、第1の加熱部9が作動した直後から5分程度である。そのため、リンスイン水粒子は40℃~50℃に加温されていて、被洗浄物3の表面への付着とともに被洗浄物3を顕熱によって加温する。 At this time, the rinse-in water particles supplied into the cleaning tank 1 adhere to the object to be cleaned 3 and the wall surface of the cleaning tank 1, and the water droplets on the adhesion surface are dropped by growth. The rinse-in water particles adhere closely to the surface of the article 3 to be cleaned and treat the surface to be hydrophilic evenly. The operating time of the ultrasonic transducer 20 is about 5 minutes immediately after the first heating unit 9 is operated. Therefore, the rinse-in water particles are heated to 40 ° C. to 50 ° C., and the object to be cleaned 3 is heated by sensible heat as it adheres to the surface of the object to be cleaned 3.
 次に、リンスイン水粒子の供給が終了する直前、もしくは直後に、給水弁14と経路27とを介して清浄水が、混合水粒子発生装置25の内部に必要量給水される。 Next, immediately before or after the supply of the rinse-in water particles is completed, a necessary amount of clean water is supplied into the mixed water particle generator 25 through the water supply valve 14 and the passage 27.
 次に混合水粒子発生部28のスイッチがONになり、混合水粒子発生部28の温度が所定温度に達すると給水ポンプ30が駆動し、混合水粒子発生装置25内に貯水された清浄水は混合水粒子発生部28へ圧送される。圧送された清浄水は、内壁が高温になった細いヒーター管を通過しながら一部は沸騰して水蒸気に、一部はリンス剤を含む水蒸気でない高温の水粒子になり、混合水粒子供給口29から洗浄槽1内へ供給される。この際、供給された水蒸気とリンス剤を含む水蒸気でない高温の水粒子であるミストからなる第2の混合水粒子は、被洗浄物3の表面にそのまま付着する。あるいは第2の混合水粒子は、空間に浮遊していたリンスイン水粒子と合体して大きくなり、迅速かつ確実に被洗浄物3の表面に付着する。 Next, the switch of the mixed water particle generating unit 28 is turned on, and when the temperature of the mixed water particle generating unit 28 reaches a predetermined temperature, the feed water pump 30 is driven, and the clean water stored in the mixed water particle generating device 25 is The mixed water particle generation unit 28 is pumped. The purified water that has been pumped passes through a thin heater tube with a high inner wall, partially boiling to become water vapor, and partly becoming high-temperature water particles that do not contain water containing a rinsing agent. 29 is supplied into the cleaning tank 1. At this time, the second mixed water particles made of mist, which is high-temperature water particles that are not water vapor containing the supplied water vapor and rinse agent, adhere to the surface of the object to be cleaned 3 as they are. Alternatively, the second mixed water particles are combined with the rinse-in water particles floating in the space and become large, and quickly and reliably adhere to the surface of the object to be cleaned 3.
 所定時間が経過した後、赤外線センサーなどにより被洗浄物3の表面温度が70℃に到達したことを検知すると、給水ポンプ30と混合水粒子発生部28とが停止する。そして開閉扉45が開き、リンスイン水粒子発生箇所46に貯水していた残水が、貯水部6に流れ込む。 When a predetermined time has passed and the surface temperature of the article to be cleaned 3 has reached 70 ° C. using an infrared sensor or the like, the feed water pump 30 and the mixed water particle generating unit 28 are stopped. Then, the open / close door 45 is opened, and the remaining water stored in the rinse-in water particle generation point 46 flows into the water storage unit 6.
 次に、排水部5が作動し、貯水部6の残水と混合水粒子発生装置25内の残水とが排水され、最終回のすすぎが終了する。 Next, the drainage section 5 is operated, the residual water in the water storage section 6 and the residual water in the mixed water particle generator 25 are drained, and the final rinse is completed.
 このように、本実施の形態7では、水粒子すすぎの直前に被洗浄物3の表面にリンスイン水粒子が密にむらなく付着し、表面全体を親水性に処理している。そのため、第2の混合水粒子が付着した際、第2の混合水粒子は濡れ広がる。さらに、リンスイン水粒子の水分量も加わって、水滴の成長と合体、落下の効率が高くなる。 As described above, in the seventh embodiment, the rinse-in water particles adhere to the surface of the article to be cleaned 3 evenly just before rinsing with water particles, and the entire surface is treated to be hydrophilic. Therefore, when the second mixed water particles adhere, the second mixed water particles spread out. In addition, the water content of the rinse-in water particles is added to increase the efficiency of water droplet growth, coalescence, and dropping.
 さらに、リンス剤の使用量は循環水における使用量に比較して大幅に削減できるため、環境負荷が低減され、ランニングコストも削減される。 Furthermore, since the amount of rinsing agent used can be significantly reduced compared to the amount used in circulating water, the environmental load is reduced and the running cost is also reduced.
 また、水粒子すすぎに第2の混合水粒子が使用されることにより、水蒸気と水蒸気でない高温の水粒子の利点が得られる。またリンスイン水粒子発生箇所46は、瞬間沸騰型のため、駆動直後から少ない消費電力により大量の水粒子が供給される。そのため、短時間での被洗浄物3の加温、効率のよい潜熱による除菌、さらにすすぎ効率の向上といった種々の効果が得られる。 Also, the use of the second mixed water particles for rinsing the water particles provides the advantage of high temperature water particles that are not water vapor and water vapor. Moreover, since the rinse-in water particle generation | occurrence | production location 46 is an instantaneous boiling type, a large amount of water particles are supplied with little power consumption immediately after driving. Therefore, various effects such as heating of the article 3 to be cleaned in a short time, sterilization by efficient latent heat, and improvement of rinsing efficiency can be obtained.
 続く乾燥工程は、実施の形態1と同様に送風ファンによる省エネ乾燥コースにより行われ、食器洗浄装置の運転が終了する。乾燥後の被洗浄物3は、乾燥直前に、リンスイン水粒子と第2の混合水粒子とによって、付着していた汚れた水滴が大幅に低減されている。そのため、乾燥後に残る水滴跡の個数が低減される。仮に水滴跡が残ったとしても、循環水を使用した際に見られるような汚れ起因の白くて目立つ水滴跡ではなく、美しい仕上がりが得られる。 The subsequent drying process is performed by the energy saving drying course by the blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed. The object to be cleaned 3 after drying has drastically reduced dirty water droplets adhering thereto by the rinse-in water particles and the second mixed water particles immediately before drying. Therefore, the number of water droplet traces remaining after drying is reduced. Even if a water droplet trace remains, it is not a white and conspicuous water droplet trace caused by dirt as seen when circulating water is used, but a beautiful finish is obtained.
 また、最終回のすすぎにおいて使用される水量、および消費電力は、従来方式より大幅に削減される。被洗浄物3の温度は、70℃以上に到達しているため、省エネ乾燥コースによる消費電力が削減される。さらに、最終回のすすぎ時、高温の水粒子がすみずみまで行き渡り、高い除菌効果が期待できる。 Also, the amount of water and power consumption used in the final rinse are greatly reduced compared to the conventional method. Since the temperature of the object to be cleaned 3 has reached 70 ° C. or higher, power consumption by the energy saving drying course is reduced. Furthermore, at the time of the final rinse, high-temperature water particles spread throughout the entire area, and a high sterilization effect can be expected.
 なお本実施の形態7では、リンスイン水粒子発生装置を貯水部6の一部として利用され、通常運転に使用する第1の加熱部9が併用されている。そのためリンスイン水粒子発生装置用の加熱部は必要なく、原価が削減されている。しかし、リンスイン水粒子発生装置は、貯水部6と別に設けても構わない。またリンスイン水粒子発生装置は、混合水粒子発生装置25と併設、あるいは一体構成にしてもよい。 In the seventh embodiment, the rinse-in water particle generator is used as a part of the water storage unit 6, and the first heating unit 9 used for normal operation is used in combination. Therefore, the heating part for the rinse-in water particle generator is not necessary, and the cost is reduced. However, the rinse-in water particle generator may be provided separately from the water storage unit 6. The rinse-in water particle generator may be provided together with the mixed water particle generator 25 or may be integrated.
 また本実施の形態7では、リンスイン水粒子発生装置に覆いがなく、洗浄槽1内にむき出しになっている。しかし、最終回のすすぎが開始する時点において、複数回のすすぎによって、供給口からリンスイン水粒子発生装置までの経路31は十分にすすがれている。そのため、リンスイン水粒子発生装置に給水される清浄水が汚れ、リンスイン水粒子による被洗浄物3表面への汚れの付着が懸念されるレベルとはならない。しかも、仮にすすぎが不十分であったとしても、最も汚れが貯まる循環水の通過する洗浄槽1の底部、および側面の内部に設置された循環水の経路27において高温になった循環水に溶解する汚れ量に比べれば、まったく懸念するレベルではない。また、仮にすすぎが不十分であり、リンスイン水粒子が多少の汚れを含んだとしても、後に続く清浄な混合水粒子、特に蒸留水による水道水よりも清浄な水蒸気の供給によって、汚れは十分に流し落とされる。 Further, in the seventh embodiment, the rinse-in water particle generator is not covered and is exposed in the cleaning tank 1. However, when the final rinse starts, the path 31 from the supply port to the rinse-in water particle generator is sufficiently rinsed by multiple rinses. Therefore, the clean water supplied to the rinse-in water particle generator is not at a level at which the clean water is contaminated and the dirt 3 adheres to the surface of the article 3 to be cleaned due to the rinse-in water particles. Moreover, even if the rinsing is insufficient, it is dissolved in the circulating water that has become hot in the path 27 of the circulating water that is installed at the bottom and side of the washing tank 1 through which the circulating water that accumulates most dirt passes. Compared to the amount of dirt to be done, it is not a level of concern at all. In addition, even if the rinse is insufficient and the rinse-in water particles contain some dirt, the supply of water vapor that is cleaner than the tap water by the subsequent clean mixed water particles, especially distilled water, is sufficient for the dirt. Washed away.
 また、リンス剤の供給方法については、上記に限定されない。リンス剤の供給管がリンスイン水粒子発生装置に連結されてもよいし、リンス剤が直接、装置内の貯水箇所に投入されてもよい。さらに、供給直後に水蒸気があたる箇所および水蒸気が発生する装置内の構成材料は、耐熱温度が100℃以上のものを使用することが望ましい。 Further, the method of supplying the rinse agent is not limited to the above. The rinsing agent supply pipe may be connected to the rinsing-in water particle generator, or the rinsing agent may be introduced directly into the water storage location in the apparatus. Furthermore, it is desirable to use a material having a heat-resistant temperature of 100 ° C. or more as a constituent material in a device where water vapor is applied immediately after supply and in the apparatus in which water vapor is generated.
 (実施の形態8)
 図17は、本発明の実施の形態8の食器洗浄装置の立面図である。本発明の実施の形態8では、実施の形態1~7と同じ構成要素には同一符号を附し、その詳細な説明は省略する。
(Embodiment 8)
FIG. 17 is an elevation view of the tableware washing apparatus according to the eighth embodiment of the present invention. In the eighth embodiment of the present invention, the same components as those in the first to seventh embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図17において、洗浄槽1の底部に混合水粒子発生装置25が設置されている。混合水粒子発生装置25の詳細構造は、図6の通りである。また、経路27において給水弁14から混合水粒子発生装置25までの間にリンス剤投入口12が接続されている。さらに、混合水粒子発生装置25は底部に排水部5と繋がる排水経路48が設けられている。 In FIG. 17, a mixed water particle generator 25 is installed at the bottom of the cleaning tank 1. The detailed structure of the mixed water particle generator 25 is as shown in FIG. Further, the rinse agent inlet 12 is connected between the water supply valve 14 and the mixed water particle generator 25 in the path 27. Furthermore, the mixed water particle generator 25 is provided with a drainage path 48 connected to the drainage unit 5 at the bottom.
 以上のように構成された食器洗浄装置において、以下その動作を説明する。本実施の形態8の食器洗浄装置の動作は、本実施の形態1および7と同様の動作によって洗浄工程から最終直前のすすぎまで行うため、最終回のすすぎを説明する。最終直前のすすぎが終了すると、給水弁14とリンス剤投入口12とが開く。そして経路27を介して適量の清浄水とリンス剤とが、混合水粒子発生装置25の内部に供給される。 The operation of the dishwasher configured as described above will be described below. Since the operation of the dishwashing apparatus of the eighth embodiment is performed from the cleaning step to the last rinse immediately after the same operation as in the first and seventh embodiments, the final rinse will be described. When the last rinse is completed, the water supply valve 14 and the rinse agent inlet 12 are opened. An appropriate amount of clean water and a rinsing agent are supplied into the mixed water particle generator 25 through the path 27.
 次に、混合水粒子発生部28のスイッチがONになり、混合水粒子発生部28の温度が所定温度に達すると給水ポンプ30が駆動し、混合水粒子発生装置25内に貯水されたリンス剤を含む清浄水が混合水粒子発生部28へ圧送される。圧送された清浄水は、内壁が高温になった細いヒーター管を通過しながら一部は水蒸気に、一部はリンス剤を含む高温のリンスイン水粒子になり、混合水粒子供給口29から洗浄槽1内へ供給される。この際、供給された水蒸気とリンスイン水粒子とからなる第2の混合水粒子は、被洗浄物3の表面にそのまま付着する。あるいは洗浄槽1内において水蒸気とリンスイン水粒子とが合体して自重が大きくなり、迅速かつ確実に被洗浄物3の表面に付着する。 Next, when the switch of the mixed water particle generating unit 28 is turned on and the temperature of the mixed water particle generating unit 28 reaches a predetermined temperature, the feed water pump 30 is driven, and the rinse agent stored in the mixed water particle generating device 25 The clean water containing is pumped to the mixed water particle generator 28. The purified water that has been pumped passes through a thin heater pipe whose inner wall is at a high temperature, partly becomes water vapor, and part becomes high-temperature rinse-in water particles containing a rinse agent, and the washing tank is supplied from the mixed water particle supply port 29. 1 is supplied. At this time, the second mixed water particles composed of the supplied water vapor and rinse-in water particles adhere to the surface of the object to be cleaned 3 as they are. Alternatively, the water vapor and the rinse-in water particles are combined in the cleaning tank 1 to increase their own weight, and quickly and reliably adhere to the surface of the object to be cleaned 3.
 この際、被洗浄物3に付着したリンスイン水粒子は、自身が高い親水性を持つため、付着直後に接触角が小さくなる。そしてリンスイン水粒子は、周囲のリンスイン水粒子、水蒸気の結露水、および最終直前すすぎにおいて付着していた水滴と合体する。リンスイン水粒子は、被洗浄物3の表面に濡れ広がるとともに、大きな水滴を形成して被洗浄物3の表面から落下する。これによって、最終直前すすぎにおいて付着していた水滴に含まれる汚れ成分、およびスケール成分が被洗浄物3の表面から除去される。そして次の乾燥工程において、水滴跡の発生が防止される。 At this time, since the rinse-in water particles adhering to the article 3 to be cleaned have high hydrophilicity, the contact angle becomes small immediately after adhering. The rinse-in water particles coalesce with the surrounding rinse-in water particles, the condensed water of the water vapor, and the water droplets attached in the last rinse. The rinse-in water particles wet and spread on the surface of the article to be cleaned 3 and form large water droplets and fall from the surface of the article to be cleaned 3. As a result, the dirt component and the scale component contained in the water droplets adhered in the rinse immediately before the final are removed from the surface of the article 3 to be cleaned. And in the next drying process, generation | occurrence | production of a water drop trace is prevented.
 このように、リンスイン水粒子が水蒸気と同じ装置により同時に供給されることにより、短時間に汚れ成分等が除去される。そして、より確実に被洗浄物3の表面が親水性に処理される。またリンスイン水粒子と水蒸気とが同時に供給されると、水蒸気だけを供給するより短時間により多くの水分量が与えられるため、水滴の成長と落下とが効率よく行われる。さらに、水蒸気の潜熱による効率のよい除菌と、より沸騰温度に近い温度によって高温化したリンスイン水粒子の顕熱による除菌との双方の効果が得られる。 As described above, the rinse-in water particles are simultaneously supplied by the same apparatus as the water vapor, so that the dirt components and the like are removed in a short time. And the surface of the to-be-washed | cleaned material 3 is processed to hydrophilic property more reliably. Further, when the rinse-in water particles and the water vapor are supplied simultaneously, a larger amount of water is given in a shorter time than when only the water vapor is supplied, so that the water droplets grow and drop efficiently. Furthermore, both effects of efficient sterilization by latent heat of water vapor and sterilization by sensible heat of rinse-in water particles heated to a temperature closer to the boiling temperature can be obtained.
 また、リンスイン水粒子発生装置が別個に設けられなくてよいため、製造原価が大幅に削減される。さらに、リンスイン水粒子発生装置と水蒸気を発生させる装置、それらの装置の電源、および制御部13を設けるスペースが半分ですむため、食器洗浄装置のコンパクト化が図れる。 Also, since the rinse-in water particle generator does not have to be provided separately, the manufacturing cost is greatly reduced. Furthermore, since the space for installing the rinse-in water particle generating device and the device for generating water vapor, the power source of these devices, and the control unit 13 can be halved, the dishwasher can be made compact.
 さらに、使用水量が少量ですむ水粒子でありながら、すすぎ効果が高い。また、除菌性能と加温速度とも高いため、噴射水すすぎに比較して消費電力、水量、加温時間の全てが削減される。 Furthermore, the rinsing effect is high even though the amount of water used is small. Moreover, since both the sterilization performance and the heating speed are high, all of the power consumption, the amount of water, and the heating time are reduced as compared with the rinsing with the jet water.
 次に、第2の混合水粒子の供給を開始してから所定時間が経過した後、赤外線センサーなどにより被洗浄物3の表面温度が70℃に到達したことを検知すると、給水ポンプ30と混合水粒子発生部28の作動が停止する。そして混合水粒子発生装置25内の残水が、排水経路48を介して排水部5から排水され、最終回のすすぎが終了する。このように水粒子すすぎは、乾燥工程の直前に水粒子発生装置が被洗浄物3の表面温度を70℃以上にするまで行われる。 Next, after a predetermined time has elapsed from the start of the supply of the second mixed water particles, when it is detected that the surface temperature of the article to be cleaned 3 has reached 70 ° C. by an infrared sensor or the like, it is mixed with the water supply pump 30. The operation of the water particle generator 28 is stopped. Then, the remaining water in the mixed water particle generator 25 is drained from the drainage part 5 through the drainage path 48, and the final rinse is completed. In this way, the water particle rinsing is performed until the water particle generator sets the surface temperature of the article to be cleaned 3 to 70 ° C. or more immediately before the drying step.
 続く乾燥工程は、実施の形態1と同様に送風ファンによる省エネ乾燥コースによって行われ、食器洗浄装置の運転が終了する。乾燥後の被洗浄物3は、乾燥直前にリンスイン水粒子と水蒸気とによって付着していた汚れた水滴が大幅に低減されている。そのため乾燥後に残る水滴跡の個数が、低減される。仮に水滴跡が残ったとしても、循環水を使用した際に見られるような汚れ起因の白くて目立つ水滴跡ではないため、被洗浄物3の美しい仕上がりが得られる。また、最終回のすすぎにおいて被洗浄物3の温度が70℃以上に到達しているため、省エネ乾燥コースによる消費電力の削減効果が得られる。すなわち、加熱部により被洗浄物3を加熱することなく、送風部の駆動のみにより被洗浄物3の乾燥が行なわれる。 The subsequent drying process is performed by an energy saving drying course using a blower fan as in the first embodiment, and the operation of the dishwashing apparatus is completed. In the object to be cleaned 3 after drying, dirty water droplets adhering to the rinse-in water particles and water vapor immediately before drying are greatly reduced. Therefore, the number of water droplet traces remaining after drying is reduced. Even if water droplet traces remain, they are not white and conspicuous water droplet traces caused by dirt as seen when circulating water is used, so that a beautiful finish of the article to be cleaned 3 can be obtained. In addition, since the temperature of the object to be cleaned 3 has reached 70 ° C. or higher in the final rinse, an effect of reducing power consumption by the energy saving drying course can be obtained. That is, the object to be cleaned 3 is dried only by driving the air blowing unit without heating the object to be cleaned 3 by the heating unit.
 なお、リンス剤の投入方法は上記に限定されない。たとえば、リンス剤が混合水粒子発生装置25内に直接供給されてもよい。またリンス剤投入部11が、混合水粒子発生装置25と一体化されてもよい。すなわち、第2の混合水粒子に使用する清浄水にリンス剤が溶解している状態が作られる方式であればよい。 Note that the method of charging the rinse agent is not limited to the above. For example, the rinse agent may be directly supplied into the mixed water particle generator 25. Further, the rinsing agent charging unit 11 may be integrated with the mixed water particle generator 25. That is, any method may be used as long as the rinse agent is dissolved in the clean water used for the second mixed water particles.
 また、混合水粒子発生部28へのスケール堆積が防止されるために、浄水フィルター26が備えられている。しかし、前処理において混合水粒子発生部28に送る前の清浄水がいったん70℃以上に加熱され、スケール成分が析出されたり、定期的にスケール成分除去剤が使用されてもよい。 Further, a water purification filter 26 is provided in order to prevent scale accumulation on the mixed water particle generating unit 28. However, the clean water before being sent to the mixed water particle generating unit 28 in the pretreatment may be once heated to 70 ° C. or higher to cause the scale component to precipitate or the scale component removing agent to be used periodically.
 また、望ましくは、混合水粒子発生装置25内に洗浄中の汚れ成分が入り込まないように、混合水粒子供給口29は洗浄槽1の底部より側面に設置されたほうがよい。さらに、通常の家庭用食器洗い機の洗浄槽1の大きさであれば、混合水粒子供給口29は1箇所でも十分に洗浄槽1のすみずみまで第2の混合水粒子を供給できる。しかし、より確実に効率的に処理するために混合水粒子供給口29は複数個にしてもよい。また、混合水粒子供給口29の設置箇所は洗浄槽1の底部、および側面に限らず、上部など他の箇所に設けても構わない。例えば、混合水粒子供給口29が噴射ノズルに複数設けられ、回転させながら第2の混合水粒子が供給される構成にしてもよい。また、供給直後に水蒸気があたる箇所、および水蒸気が発生する装置内の構成材料は、耐熱温度が100℃以上のものを使用することが望ましい。 Desirably, the mixed water particle supply port 29 should be installed on the side surface from the bottom of the cleaning tank 1 so that dirt components being cleaned do not enter the mixed water particle generator 25. Furthermore, if it is the size of the washing tank 1 of a normal household dishwasher, the mixed water particle supply port 29 can sufficiently supply the second mixed water particles throughout the washing tank 1 even at one location. However, a plurality of mixed water particle supply ports 29 may be provided for more reliable and efficient treatment. Moreover, the installation location of the mixed water particle supply port 29 is not limited to the bottom and side surfaces of the cleaning tank 1 and may be provided at other locations such as the top. For example, a plurality of mixed water particle supply ports 29 may be provided in the injection nozzle, and the second mixed water particles may be supplied while rotating. Further, it is desirable to use a material having a heat-resistant temperature of 100 ° C. or higher as the location where water vapor is applied immediately after the supply and the constituent material in the apparatus where the water vapor is generated.
 本発明の食器洗浄装置は、特に家庭用および業務用の食器洗浄装置、各種産業用の食器洗浄乾燥装置等の用途に適用できる。 The tableware washing apparatus of the present invention can be applied to uses such as household and commercial dishwashing apparatuses and various industrial dishwashing and drying apparatuses.
1  洗浄槽
2  食器カゴ
3  被洗浄物
4  給水部
5  排水部
6  貯水部
7  洗浄ポンプ
8  洗浄ノズル
9  第1の加熱部
10  水粒子発生装置(水粒子発生器)
11  リンス剤投入部
12  リンス剤投入口
13  制御部
14  給水弁
15,17,23,27,31,43  経路
16  給水口
18  水粒子放出口
19,38,41  別室
20  超音波振動子(水粒子発生器)
21  第2の加熱部
22,37,39,47  水位検知センサー
24,35,40,44,45  開閉扉
25  混合水粒子発生装置(水粒子発生器)
26  浄水フィルター
28  混合水粒子発生部
29  混合水粒子供給口
30  給水ポンプ
32  汚れセンサー
33  汚れ量が多い時のシーケンス(洗浄工程中にリンス剤が洗浄水に溶解されるようにしたシーケンス)
34  汚れ量が少ない時のシーケンス(最終回のすすぎ以外のすすぎ工程においてリンス剤が洗浄水に溶解されるようにしたシーケンス)
36  水粒子発生箇所
42  水粒子加熱部
46  リンスイン水粒子発生箇所
48  排水経路
DESCRIPTION OF SYMBOLS 1 Washing tank 2 Tableware basket 3 Object to be cleaned 4 Water supply part 5 Drainage part 6 Water storage part 7 Washing pump 8 Washing nozzle 9 First heating part 10 Water particle generator (water particle generator)
DESCRIPTION OF SYMBOLS 11 Rinse agent injection | throwing-in part 12 Rinsing agent injection | throwing-in port 13 Control part 14 Water supply valve 15,17,23,27,31,43 Path | route 16 Water supply port 18 Water particle discharge port 19,38,41 Separate chamber 20 Ultrasonic vibrator (water particle Generator)
21 2nd heating part 22,37,39,47 Water level detection sensor 24,35,40,44,45 Open / close door 25 Mixed water particle generator (water particle generator)
26 Water purification filter 28 Mixed water particle generation unit 29 Mixed water particle supply port 30 Water supply pump 32 Dirt sensor 33 Sequence when the amount of dirt is large (sequence in which the rinse agent is dissolved in the washing water during the washing process)
34 Sequence when the amount of dirt is small (sequence in which the rinse agent is dissolved in the washing water in the rinsing process other than the final rinse)
36 Water particle generation point 42 Water particle heating section 46 Rinse water particle generation point 48 Drainage route

Claims (11)

  1. 洗浄工程と複数回のすすぎを行うすすぎ工程とを有する食器洗浄装置であって、
    被洗浄物を収容するための洗浄槽と、
    前記洗浄槽に清浄水を供給する給水部と、
    前記洗浄槽に貯水された洗浄水を圧送する洗浄ポンプと、
    前記洗浄ポンプと接続するとともに前記洗浄水を前記被洗浄物に噴射する洗浄ノズルと、
    前記洗浄槽内に設けられるとともに前記洗浄水または前記清浄水の水蒸気からミストの大きさの水粒子を発生させる水粒子発生装置とを備え、
    前記洗浄工程と前記すすぎ工程とのどちらかの工程においてリンス剤が前記洗浄槽内に供給されるとともに、前記リンス剤の供給以降の最終回のすすぎにおいて、前記被洗浄物に前記水粒子を付着させる水粒子すすぎが行われることを特徴とする食器洗浄装置。
    A dishwashing apparatus having a washing step and a rinsing step for rinsing a plurality of times,
    A cleaning tank for storing the objects to be cleaned;
    A water supply unit for supplying clean water to the washing tank;
    A cleaning pump for pumping cleaning water stored in the cleaning tank;
    A cleaning nozzle connected to the cleaning pump and spraying the cleaning water onto the object to be cleaned;
    A water particle generator that is provided in the cleaning tank and generates water particles of mist size from the water of the cleaning water or the clean water;
    In one of the cleaning step and the rinsing step, a rinsing agent is supplied into the cleaning tank, and the water particles adhere to the object to be cleaned in the final rinse after the rinsing agent is supplied. A dishwashing apparatus characterized by rinsing water particles.
  2. 前記洗浄工程中に前記リンス剤が前記洗浄水に投入されることを特徴とする請求項1に記載の食器洗浄装置。 2. The dishwashing apparatus according to claim 1, wherein the rinse agent is poured into the washing water during the washing step.
  3. 前記すすぎ工程の最終直前のすすぎにおいて、前記リンス剤が前記洗浄水に投入されることを特徴とする請求項1に記載の食器洗浄装置。 2. The dishwashing apparatus according to claim 1, wherein the rinse agent is poured into the washing water in the last rinsing immediately before the rinsing step.
  4. 前記水粒子発生装置は前記リンス剤を含む前記洗浄水または前記清浄水の前記水粒子であるリンスイン水粒子を発生させ、前記リンス剤の供給が前記最終回のすすぎにおいて前記水粒子発生装置が駆動する直前または駆動する時に行なわれることを特徴とする請求項1に記載の食器洗浄装置。 The water particle generator generates rinse-in water particles that are the water particles of the cleaning water or the clean water containing the rinse agent, and the water particle generator is driven when the rinse agent is supplied in the final rinse. The dishwashing apparatus according to claim 1, wherein the dishwashing apparatus is performed immediately before or when the dish is driven.
  5. 前記水粒子発生装置は、前記洗浄水を貯める貯水部に備えられ前記洗浄水を加熱する第1の加熱部であり、前記第1の加熱部が前記洗浄水を沸騰させ前記水粒子を発生させることを特徴とする請求項1に記載の食器洗浄装置。 The water particle generator is a first heating unit that is provided in a water storage unit that stores the cleaning water and that heats the cleaning water, and the first heating unit boils the cleaning water to generate the water particles. The tableware washing apparatus according to claim 1.
  6. 前記水粒子発生装置は、前記清浄水を加熱する第2の加熱部であり、前記第2の加熱部が前記清浄水を沸騰させ前記水粒子を発生させることを特徴とする請求項1に記載の食器洗浄装置。 The said water particle generator is a 2nd heating part which heats the said clean water, The said 2nd heating part boils the said clean water, and generates the said water particle. Dishwashing equipment.
  7. 前記水粒子発生装置は超音波振動子または噴霧ノズルにより前記水粒子を発生させることを特徴とする請求項1に記載の食器洗浄装置。 2. The dishwashing apparatus according to claim 1, wherein the water particle generator generates the water particles by an ultrasonic vibrator or a spray nozzle.
  8. 前記水粒子発生装置は、前記清浄水を沸騰させて発生させた前記水蒸気と前記ミストとから構成される第1の混合水粒子を前記洗浄槽に供給することを特徴とする請求項1に記載の食器洗浄装置。 The said water particle generator supplies the 1st mixed water particle comprised from the said water vapor | steam generated by boiling the said clean water and the said mist to the said washing tank, The Claim 1 characterized by the above-mentioned. Dishwashing equipment.
  9. 前記水粒子発生装置は、瞬間沸騰型の水粒子加熱部と、前記第1の混合水粒子を前記洗浄槽内に供給する水粒子供給口へ前記清浄水を送る給水ポンプとを備えたことを特徴とする請求項8に記載の食器洗浄装置。 The water particle generator includes an instantaneous boiling water particle heating unit, and a water supply pump that sends the clean water to a water particle supply port that supplies the first mixed water particles into the cleaning tank. The tableware washing apparatus according to claim 8, wherein
  10. 前記水粒子発生装置は、前記洗浄水を沸騰させて発生させた水蒸気と前記リンス剤を含む前記清浄水を沸騰させて発生させた前記ミストとから構成される第2の混合水粒子を、前記洗浄槽内に供給することを特徴とする請求項4に記載の食器洗浄装置。 The water particle generating device includes second mixed water particles composed of water vapor generated by boiling the wash water and the mist generated by boiling the clean water containing the rinse agent. The dish washing apparatus according to claim 4, wherein the dish washing apparatus is supplied into a washing tank.
  11. 前記すすぎ工程の後に少なくとも送風部により前記被洗浄物の乾燥を行う乾燥工程を備え、前記水粒子すすぎは前記乾燥工程の直前に前記水粒子発生装置が前記被洗浄物の表面温度を70℃以上にするまで行われ、前記第1の加熱部により前記被洗浄物を加熱することなく前記送風部の駆動のみにより前記被洗浄物の乾燥を行うことを特徴とする請求項5に記載の食器洗浄装置。 After the rinsing step, a drying step of drying the object to be cleaned by at least a blower unit is provided, and the water particle rinsing device has a surface temperature of the object to be cleaned of 70 ° C. or more immediately before the drying step. 6. The dishwashing according to claim 5, wherein the object to be cleaned is dried only by driving the blower unit without heating the object to be cleaned by the first heating unit. apparatus.
PCT/JP2011/000123 2010-01-19 2011-01-13 Dish washing device WO2011089868A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800063096A CN102711579A (en) 2010-01-19 2011-01-13 Dish washing device
KR1020127019083A KR20120125257A (en) 2010-01-19 2011-01-13 Dish washing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010008770 2010-01-19
JP2010-008770 2010-01-19
JP2010078432A JP2011167496A (en) 2010-01-19 2010-03-30 Dishwasher
JP2010-078432 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011089868A1 true WO2011089868A1 (en) 2011-07-28

Family

ID=44306671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000123 WO2011089868A1 (en) 2010-01-19 2011-01-13 Dish washing device

Country Status (4)

Country Link
JP (1) JP2011167496A (en)
KR (1) KR20120125257A (en)
CN (1) CN102711579A (en)
WO (1) WO2011089868A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053797A1 (en) * 2011-10-11 2013-04-18 BSH Bosch und Siemens Hausgeräte GmbH Water-bearing household appliance with an atomisation device and method for operation thereof
JP2014012097A (en) * 2012-07-05 2014-01-23 Panasonic Corp Dishwasher
WO2022146305A1 (en) * 2020-12-30 2022-07-07 Arcelik Anonim Sirketi A dishwasher providing disinfection

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394884B2 (en) * 2014-11-06 2018-09-26 Toto株式会社 Water discharge device
DE102017212313A1 (en) * 2017-07-19 2019-01-24 BSH Hausgeräte GmbH Household dishwasher and method for operating a household dishwasher
JP7209141B2 (en) * 2018-07-13 2023-01-20 パナソニックIpマネジメント株式会社 dish dryer
KR102084181B1 (en) * 2018-11-20 2020-03-04 한국지역난방공사 Absorptive dehumidifying dish wash-dryer using outside heat
KR102247957B1 (en) * 2020-09-16 2021-05-04 주식회사 프라임 Household dishwasher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732756B2 (en) * 1988-09-29 1995-04-12 三菱電機株式会社 dishwasher
JPH08206053A (en) * 1994-10-14 1996-08-13 Asahi Denka Kogyo Kk Method and device for supplying detergent to dishwasher
JP2004089527A (en) * 2002-09-02 2004-03-25 Zojirushi Corp Dishwasher
JP2007244447A (en) * 2006-03-14 2007-09-27 Winterhalter Japan Co Ltd Dishwasher

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321366B2 (en) * 2004-06-07 2009-08-26 パナソニック株式会社 dishwasher

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732756B2 (en) * 1988-09-29 1995-04-12 三菱電機株式会社 dishwasher
JPH08206053A (en) * 1994-10-14 1996-08-13 Asahi Denka Kogyo Kk Method and device for supplying detergent to dishwasher
JP2004089527A (en) * 2002-09-02 2004-03-25 Zojirushi Corp Dishwasher
JP2007244447A (en) * 2006-03-14 2007-09-27 Winterhalter Japan Co Ltd Dishwasher

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053797A1 (en) * 2011-10-11 2013-04-18 BSH Bosch und Siemens Hausgeräte GmbH Water-bearing household appliance with an atomisation device and method for operation thereof
JP2014012097A (en) * 2012-07-05 2014-01-23 Panasonic Corp Dishwasher
WO2022146305A1 (en) * 2020-12-30 2022-07-07 Arcelik Anonim Sirketi A dishwasher providing disinfection

Also Published As

Publication number Publication date
JP2011167496A (en) 2011-09-01
CN102711579A (en) 2012-10-03
KR20120125257A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2011089868A1 (en) Dish washing device
RU2516800C2 (en) Water-conductive household appliance such as dishwashing or washing machine
US9131826B2 (en) Method for disinfecting conduit systems of a water-conducting appliance and such a household appliance
KR20170081473A (en) Dishwasher and Control Method of the dish washer
KR101481566B1 (en) Controlling method for dishwasher
KR20100023168A (en) Dishwasher and controlling method for the same
RU2500332C2 (en) Method of washing for conveyance household appliance, in particular dishwasher
KR20170081477A (en) Dishwasher and Control Method of the dish washer
CN111345761A (en) Dish washing machine
JP2007244447A (en) Dishwasher
KR101202062B1 (en) Dish washer having steam generator and the controlling method thereof
CA2717338C (en) Dishwasher and method for cleaning wash ware
RU2503397C2 (en) Method of washing in water-using household appliance
JP6579368B2 (en) Washing machine
KR101396999B1 (en) The controlling method for dishwasher
KR100757538B1 (en) Structure and method of a rinse of tableware washer for a restaurant
JPH1156735A (en) Dish washer
JP2017023985A (en) Washer
JP2003265394A (en) Dish washer
KR100463826B1 (en) Dish washer for a eating house
JP2017070882A (en) Washer
CN112932377A (en) Tableware cleaning method for household environment-friendly dish washing machine
KR20130091877A (en) The method of removing remainder in commercial steam convection oven before drying
JP2008229224A (en) Dishwasher
JP6593577B2 (en) Washing machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006309.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127019083

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734476

Country of ref document: EP

Kind code of ref document: A1