WO2011089466A1 - Sensor device, input device, and game ball firing device - Google Patents

Sensor device, input device, and game ball firing device Download PDF

Info

Publication number
WO2011089466A1
WO2011089466A1 PCT/IB2010/001567 IB2010001567W WO2011089466A1 WO 2011089466 A1 WO2011089466 A1 WO 2011089466A1 IB 2010001567 W IB2010001567 W IB 2010001567W WO 2011089466 A1 WO2011089466 A1 WO 2011089466A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
sensor device
coil
signal
detection coil
Prior art date
Application number
PCT/IB2010/001567
Other languages
French (fr)
Japanese (ja)
Inventor
糸長 雅文
徳浩 位田
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010009406A external-priority patent/JP5635777B2/en
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011089466A1 publication Critical patent/WO2011089466A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F7/00Indoor games using small moving playing bodies, e.g. balls, discs or blocks
    • A63F7/22Accessories; Details
    • A63F7/24Devices controlled by the player to project or roll-off the playing bodies
    • A63F7/26Devices controlled by the player to project or roll-off the playing bodies electric or magnetic

Definitions

  • the present invention relates to a sensor device that detects a displacement amount or a position of a detection target object that is linearly displaced, an input device that uses the sensor device, and a game ball launch device that uses the input device.
  • Patent Document 1 includes a shift lever of an automobile as an object to be detected, and includes a magnet provided on a shift lever and a plurality of magnetoresistive elements arranged so as to correspond to each position of the shift lever.
  • the sensor device is described.
  • Each magnetoresistive element outputs a binary signal of “0” or “1” depending on the position of the magnet.
  • the combination of the output signals of these magnetoresistive elements causes the shift lever to The operation position, that is, the shift position can be identified.
  • the position of an operating body operated by a person is detected by a sensor device, and an input device using the detection output of the sensor device as an operation input, and a game ball (for example, with a force corresponding to the operation input input by the input device)
  • a game ball for example, with a force corresponding to the operation input input by the input device
  • Various game ball launching devices that launch pachinko balls are also provided (see, for example, Patent Document 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 7-2 7 8 7 2 0 (paragraph [0 0 1 6] — [0 0 3 2] and FIG. 1 to FIG. 9)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 3-1 5 9 3 8 6 (Refer to the eighth embodiment)
  • the shift position can be identified by the combination of output signals of the magnetoresistive elements.
  • the magnetoresistive elements are arranged according to the shift pattern. There was a need to change.
  • the present invention has been made in view of the above problems, and its object is to provide a sensor device capable of detecting the position of a detection target object regardless of the motion pattern of the detection target object that is linearly displaced.
  • An input device and a game ball launching device are also provided.
  • a detection coil arranged so that the winding axis direction is a predetermined linear direction, and winding according to the displacement of the detection target object so that the amount of insertion of the detection coil into the cylinder changes.
  • a conductive cylinder that is movably disposed in the axial direction, and a detection coil in accordance with the displacement of the conductive cylinder.
  • a signal output means for outputting a position signal proportional to the displacement of the object to be detected based on the change in conductance.
  • the invention of claim 2 is the invention of claim 1, wherein a plurality of detection coils and conductive cylinders are respectively arranged in one moving direction, and the signal output means is at least one detection coil. A position signal is output based on the change in inductance.
  • the invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the detection coil is wound, and a coil pobbin in which both ends in the winding axis direction of the detection coil are supported by the support means is provided.
  • the invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the detection coil, the conductive cylinder, the signal output means, and the conductive cylinder are supported and movable together with the conductive cylinder.
  • the movable body and the case each include guide means for guiding the movable body when the movable body is moved.
  • the invention of claim 5 is characterized in that, in the invention of claim 4, the case is provided with a stopper for restricting movement of the movable body by the contact of the movable body.
  • a seventh aspect of the present invention is directed to the sensor device according to any one of the first to sixth aspects, an operation unit that is operated by a human hand to displace the conductive cylinder of the sensor device, and a sensor. And a signal processing unit that converts a position signal output from the signal output means of the apparatus into an operation signal corresponding to the displacement and position of the operation unit.
  • the invention according to claim 8 is the invention according to claim 7, wherein the signal processing unit outputs an operation signal having a signal level corresponding to the position of the conductive cylinder on a one-to-one basis.
  • the correspondence relationship between the position in each section and the signal level of the operation signal is expressed by a linear relationship having different rates of change.
  • the invention of claim 9 is directed to the input device of claim 7 or 8, a launching unit for launching by applying an external force to the game ball, and a signal level of an operation signal input from the input device. And a control unit for controlling the magnitude of the external force applied to the game ball from the launch unit.
  • the external device to which the position signal is input is used to identify the position.
  • the threshold value By changing the threshold value, it is possible to cope with any operation pattern, and as a result, the detection part can be shared.
  • the output from the sensor device is a linear output, the operation of the detection target object can be constantly monitored, and as a result, the operation direction of the detection target object can be predicted. is there.
  • a plurality of detection means including the detection coil and the conductive cylinder, and the difference exceeds the predetermined reference range by comparing the detection results of the detection means.
  • position detection is performed based on the detection result of one detection means, even if one of the detection means fails, the remaining position can be detected by the remaining detection means, thus preventing erroneous detection. There is an effect that can be done.
  • the parallelism between the detection coil and the conductive cylinder is ensured, and the gap between the two is dispersed. Since it can be suppressed, the linearity of the coil output can be secured.
  • the movable body by providing the guide means on the case and the movable body, the movable body can be moved smoothly along the guide means, and rattling caused by disturbances such as vibrations. As a result, the fluctuation in the output of the detection coil caused by the above can be suppressed.
  • the movement of the movable body can be regulated within a predetermined range, and the movable body comes into contact with the stopper, and an excessive force is applied. Even when it is applied, this force is received by the movable body, so that there is an effect that the conductive cylinder can be prevented from being damaged without excessive force being applied to the conductive cylinder.
  • the sixth aspect of the invention by arranging the two detection units so that the moving directions of the conductive cylinders of the detection units intersect with each other, the position detection in the two directions intersecting each other from the detection results of the detection units. As a result, it is possible to provide a sensor device capable of detecting a position on a plane.
  • the signal level of the operation signal can be adjusted more finely in the former section.
  • FIG. 1 is an exploded perspective view showing a sensor device according to a first embodiment of the present invention.
  • FIG. 2 (a) is a perspective view of the above, and (b) is a perspective view of the cover with the cover removed.
  • FIG. 4 is an exploded perspective view showing Embodiment 2 of the sensor device according to the present invention.
  • FIG. 5A is a perspective view of the same, and FIG. 5B is a perspective view of the same with the cover removed.
  • FIG. 6 Same as above, (a) Front view with cover removed, (b) Cross section taken along line X2-X2, (c) Cross section taken along line X3-X3, (d) FIG. 4 is a sectional view taken along line X4-X4.
  • FIG. 7 is a block diagram showing a third embodiment of the input device and the game ball launcher according to the present invention.
  • FIG. 8] (a) to (c) are diagrams showing output characteristics of the input device in the same as above.
  • FIG. 9 is a perspective view of the above input device.
  • FIG. 10 is an exploded perspective view of the above input device.
  • Fig. 11 shows the input device.
  • (A) is a front view
  • (b) is a top view
  • (c) is a cross-sectional view taken along line AA in Fig. 11 (a).
  • the sensor device according to the present invention is a linear motion used for detecting a linear displacement amount of an object to be detected (for example, a shift lever of an automobile, an operation unit of an input device used for a game ball launching device to be described later).
  • This is a sensor device of the type.
  • FIG. 1 is an exploded perspective view of the sensor device of the first embodiment.
  • This sensor device accommodates two sets of coil blocks 2, a pipe block 3, a control board (signal output means) 4, and these. Case 1 is provided.
  • the case 1 is attached to the case body 10 so as to block the opening of the case body 10 having a vertically long rectangular box whose one surface (the upper surface in FIG. 1) is open and the case body 10. It is composed of 1 and 1.
  • the case body 10 is, for example, a synthetic resin molded product, and a rectangular box in which a connector (not shown) is inserted and connected to one end side of the case body 10 in the longitudinal direction (the lower side of FIG. 3B).
  • the connector connector 1 2 is provided on the body, and the connector port 1 2 is connected to the lower surface of the connector connector 1 2 (the surface opposite to the case body 10). (See Fig. 2 (a) and Fig. 2 (b)).
  • a vertically long rectangular opening window 1 O c is opened at the center of the bottom surface of the case body 10 (see FIG. 3 (d)).
  • Guide ribs 1 O a and 10 a protruding to the (cover 1 1 side) are provided along the longitudinal direction of the opening window 10 c.
  • stoppers 10 b and 10 b projecting upward are provided along the width direction of the opening window 10 c at both ends in the longitudinal direction of the opening window 10 c.
  • a plurality (four in this embodiment) of L-shaped connector terminals 5 are arranged side by side inside the connector connecting portion 12 2 such that one end thereof faces the connection port 1 2 a. (See Fig. 3 (c)), and the other end of each connector terminal 5 is soldered to a predetermined position on the control board 4 described later (Fig. 2 (b), Fig. 3 (a) and Fig. 3). 3 (see ⁇ ).
  • These connector terminals 5 are formed simultaneously with the case main body 10 together with the connector connecting portion 12.
  • the cover 1 1 is a synthetic resin molded product similar to the case body 10, and the case body 1 0 is opened. It is set to approximately the same size as the mouth dimension, and can be attached to the case body 10 by a method such as adhesion or ultrasonic welding.
  • a vertically long rectangular opening window 1 1 a is opened at the center of the cover 1 1 1, and both ends of the opening window 1 1 a in the width direction are below (case body 10 side).
  • Protruding ribs 11 b and 11 b are provided along the longitudinal direction of the opening window 11 a.
  • these ribs 11 b, 11 b are in contact with a movable body 30 of a pipe block 3 described later, and prevent the movable body 30 from rattling.
  • the coil block 2 includes a coil bobbin 20 made of a synthetic resin made of a straight cylindrical body, a detection coil 21 wound around a winding body 20 a provided on the right half of the coil bobbin 20, and A pair of coil terminals 2 2, 2 2 disposed on one end side of the coil bobbin 20 and electrically connected to both ends of the detection coil 21, and one end in the longitudinal direction of the coil bobbin 20 It consists of coil holder 2 3.
  • a guide portion 20 b having a diameter larger than that of the winding body portion 20 a is provided in about half of the left side of the coil bobbin 20.
  • each coil pobin 20 is supported by the case body 10 by the coil holder 1 3 and the coil terminals 2 2 and 2 2 provided on the other end of the coil pobin 20 are connected to the control board 4 Thus, the other end is also supported.
  • Each coil block 2 is arranged on both sides in the width direction of the case body 10 so that the longitudinal direction thereof is along the longitudinal direction of the case body 10 (FIGS. 2 (b) and 3). (See (a)).
  • the coil terminals 2 2, 2 2 and the coil holder 23 3 constitute a supporting means.
  • the pipe block 3 includes a movable body 30 that is movably disposed with respect to the coil block 2 housed in the case body 10, and conductive cylinders 3 1, 3 supported by the movable body 30. It consists of 1.
  • the movable body 30 is, for example, a synthetic resin molded product, and cylindrical holding bodies 3 O b and 30 b are integrally provided on both sides in the width direction of the rectangular plate-shaped movable body main body 30 a. ing.
  • the holding bodies 3 O b and 3 O b hold the conductive cylinder 31 at the intermediate portion in the longitudinal direction of the conductive cylinder 31 (see FIG. 1).
  • an oval through hole 30 d is provided at the center of the movable body 30 a, and a detection target object (not shown) such as a shift lever has one end on the side.
  • the movable body 30 can be attached in a state of being inserted into the through hole 30 d.
  • guides 10 a and 10 a provided on the case body 10 side are respectively provided on the lower surface of the movable body body 30 a (surface facing the bottom surface of the case body 10). Grooves 30 c and 30 c are provided.
  • the guide means is constituted by the guide ribs 10 a and 10 a, the guide grooves 30 c and 30 c, and the ribs 11 b and 11 b.
  • the conductive cylindrical body 3 "I is formed into a substantially cylindrical shape by interfacial bonding of two semi-cylindrical bodies bent from, for example, a thin aluminum plate, and the movable body 30 is connected via the holding body 30b. In the present embodiment, both are formed at the same time in order to improve the positional accuracy of the movable body 30 and the conductive cylinder 31.
  • the inner diameter of each conductive cylinder 31 is Is set to a size that is slightly larger than the outer diameter of the guide portion 20 b of the coil bobbin 20 and that does not interfere when the conductive cylinder 3 1 moves relative to the corresponding detection coil 21. .
  • the control board 4 is composed of a horizontally-long rectangular board-like printed circuit board 40, and through holes 41 are provided in the portions corresponding to the connector terminals 5 described above, and also correspond to the coil terminals 22. Each part has through holes 42 (see Fig. 1). Furthermore, electronic components such as a microcomputer are mounted on the printed circuit board 40. In this microcomputer, a position proportional to the displacement of the object to be detected based on the inductance change of the detection coil 21. A signal is created, and the created position signal is output to an external device (not shown) via the connector terminal 5.
  • the longitudinal dimension of the control board 4 is set to be approximately the same as the width dimension of the case body 10, and the case body 10 is closed in the form of a partial opening on one end side in the longitudinal direction of the case body 10. It is mounted (see Fig. 2 (b) and Fig. 3 (a)).
  • each coil block 2 and pipe block 3 are assembled in advance.
  • a coil holder is provided at each end of each coil pobbin 20.
  • the coil blocks 2, 2 and the pipe block 3 assembled together are accommodated in the case body 10 such that the coil blocks 2 are arranged along the longitudinal direction of the case body 10.
  • each coil holder 23 is fixed to the case main body 10 by a method such as bonding or ultrasonic welding.
  • each connector terminal 5 and each coil terminal 22 are fixed to the predetermined positions of the control board 4 by soldering (see FIG. 2 (b) and FIG. 3 (a)). .
  • the cover 11 is attached to the case body 10 so as to close the opening of the case body 10, the assembly of the sensor device is completed (see FIG. 2 (a)).
  • the guide grooves 30 c, 30 c of the movable body 30 engage with the guide ribs 10 a, 10 a of the corresponding case body 10, respectively,
  • the ribs 1 1 b and 11 b are in contact with the upper surface of the movable body 30. Accordingly, by providing the guide ribs 10 a, 10 a, the guide grooves 30 c, 30 c and the ribs 11 b, 11 b (guide means), a guide is provided when the movable body 30 is moved. It can be moved smoothly along the means, and output fluctuations of the detection coil 21 caused by rattling due to disturbances such as vibration can be suppressed.
  • a detection target object such as a shift lever attached to the movable body 30 or an operation unit of the input device is in a predetermined direction (a direction along the longitudinal direction of the opening window 1 1 a provided in the cover 11 1).
  • the moving object 30 moves in conjunction with the movement of the object to be detected.
  • the amount of insertion of the detection coils 2 1 and 2 1 inserted into the both conductive cylinders 3 1 and 3 1 by the movement of the both conductive cylinders 3 1 and 3 1 together with the movable body 30 As a result, the inductance of each detection coil 21 changes.
  • the control board 4 detects these inductance changes via the coil terminals 2 2 and 2 2, creates a position signal proportional to the displacement of the object to be detected based on the detected inductance changes, and then connects the connector terminal 5
  • the position signal is output to an external device via.
  • two sets of detection means composed of the detection coil 21 and the conductive cylinder 31 are provided, and the detection result of each detection means (that is, the inductance change of the detection coil 21) is obtained. By comparing, if the difference exceeds the predetermined reference range, it can be determined that one of the detection means has failed. Can do.
  • position detection is performed based on the detection result of one detection means, even if one detection means fails, position detection can be performed by the remaining detection means, so that erroneous detection can be prevented. .
  • stoppers 1 O b and 10 0 b are provided at both ends in the moving direction of the movable body 30 (the winding direction of the detection coil 21), and the movable body 30 is positioned at the end.
  • the end of the movable body 30 and one of the stoppers 1 Ob contact each other, so that the further movement of the movable body 30 is restricted. Therefore, even when an excessive force is applied to the end of the movable range, this force is received by the movable body 30, so that no excessive force is applied to each conductive cylinder 31, It is possible to prevent the damage to the cylindrical member 31.
  • the detection part (the coil block 2 and the pipe block 3) can be shared.
  • the detection part (the coil block 2 and the pipe block 3) can be shared.
  • the output from this sensor device a linear output, it is possible to constantly monitor the movement of the detection target object, and as a result, it is possible to predict the movement direction of the detection target object.
  • the coil bobbin 20 by supporting the coil bobbin 20 at both ends in the longitudinal direction (the winding axis direction of the detection coil 21), the parallelism between the detection coil 21 and the conductive cylinder 31 is ensured, and the gap between the two is secured. Variation of the coil can be suppressed, and the linearity of the coil output can be secured.
  • two detection coils 21 and two conductive cylinders 31 are provided (that is, two sets of detection means), but the number of these is not limited to this embodiment. There may be one, for example, or three or more. However, the number of detection coils 21 and the number of conductive cylinders 31 need to be the same. Further, the movable range of the movable body 30 may be set as appropriate according to the detection target object to be attached, and the shape of the apparatus may be other shapes as long as the position on the straight line can be detected.
  • FIG. 4 is an exploded perspective view of the sensor device according to the second embodiment.
  • the displacement direction of the detection target object is one direction
  • the displacement direction of the detection target object is two.
  • a sensor device when the direction, that is, the detection target object is displaced on a plane will be described.
  • Other basic configurations are the same as those in the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • illustration of the connector connection portion and the connector terminal is omitted, but in reality, a position signal proportional to the displacement of the detection target object is transmitted to the external device (not shown) via the connector terminal. ).
  • the sensor device of the present embodiment includes four sets of coil blocks 2, two sets of pipe blocks 3, a control board (signal output means) 4, and a case 1 for storing them. It is equipped with.
  • Case 1 has a rectangular box-shaped case body 10 whose one side (front surface in FIG. 4) is open, and a cover 1 which is attached to case body 10 so as to close the opening of case body 10. It consists of 1.
  • a rectangular opening window 1 O c is opened at the center of the bottom of the case body 10 (the rear face in FIG. 4).
  • the opening edge of the opening window 1 O c has a front (cover 1 1 side).
  • the guide ribs 10 a projecting to) are provided along the four sides.
  • the two opposing guide ribs 1 O a, 1 O a are set to the same height dimension (projection dimension from the case body 10), and adjacent guide ribs 1 O a, 10 a are set to different height dimensions.
  • Cover 1 1 is a synthetic resin molded product, similar to case body 10, and is set to approximately the same dimension as the opening dimension of case body 10, and the case body can be bonded or ultrasonically welded. Can be attached to 1 0. Further, a rectangular opening window 1 1 a is opened at the center of the cover 1 1 1, and the opening edge of the opening window 1 1 a protrudes rearward (case body 10 side). Ribs 1 1 b are provided along the four sides. Here, the two opposing ribs 1 1 b and 1 1 b are set to the same height (projecting dimension from the cover 1 1), and adjacent ribs 1 1 b and 1 1 b are set to different height dimensions.
  • the cover 1 1 has the ribs 1 1 b and 1 1 b having relatively small heights opposed to the guide ribs 1 O a and 10 a having relatively large heights on the case body 10 side. In this way, it is attached to the case body 10.
  • the rib 11 b is in contact with a movable body 30 of a pipe block 3 to be described later, and prevents the movable body 30 from rattling. .
  • the coil block 2 includes a coil pobbin 20, a detection coil 2 1 wound around the winding body 20 a of the coil pobbin 20, and a pair of coil terminals 2 2 electrically connected to both ends of the detection coil 2 1. , 2 2 and coil holder 1 2 3.
  • Each coil bobbin 20 is supported by the case body 10 at one end by the coil holder 1 3 and the coil terminals 2 2 and 2 2 provided at the other end of the coil bobbin 20 are connected to the control board 4 Thus, the other end is also supported.
  • Each coil block 2 is arranged so that its longitudinal direction is along the four sides of the case body 10 (see FIG. 5 (b) and FIG. 6 (a)).
  • the coil terminals 2 2, 2 2 and the coil holder 23 3 constitute a supporting means.
  • the pipe block 3 includes a movable body 30 and conductive cylinders 3 1 and 3 1 as in the first embodiment.
  • the movable body 30 is, for example, a synthetic resin molded product.
  • cylindrical holding bodies 3 O b and 30 b Is provided. These holding bodies 3 O b and 3 O b hold the conductive cylinder 31 at the intermediate portion in the longitudinal direction of the conductive cylinder 31 (see FIG. 4).
  • An oval through hole 30d is provided in the center, and one end side of a detection target object (not shown) such as a shift lever is movably disposed in the through hole 30d. It will be.
  • the through hole 30 d is a movable range of the detection target object in one direction.
  • guide grooves 30 c and 30 c that engage with the guide ribs 10 a and 10 a are provided on the lower surface of the movable body 30 a (the surface facing the bottom surface of the case body 10) ( (See Figure 6 (b) and Figure 6 (c)).
  • the guide means is constituted by the guide ribs 1 O a, 10 a, the guide grooves 30 c, 30 c, and the ribs 1 1 b, 1 1 b as in the first embodiment.
  • one detector is constituted by the two coil blocks 2 and 2 and one pipe block 3, and in this embodiment, two sets of detectors are provided. Since the conductive cylinder 31 is the same as that of the first embodiment, the description thereof is omitted here.
  • the control board 4 is made of a rectangular board-like printed board 40, and an opening window 40a is opened at the center of the printed board 40. Since other configurations are the same as those of the first embodiment, description thereof is omitted here.
  • each coil block 2 and pipe block 3 are assembled in advance.
  • the coil holders 23 are respectively attached to the ends of the coil bobbins 20.
  • the other detection unit is assembled.
  • each detector block is accommodated in the case body 10 so that each coil block 2 is along the two opposite sides of the case body 10, and each coil block 2 is further left in the case body 10.
  • the other detector is housed in the case body 10 along the two sides.
  • the two detection units are arranged at different height positions, and the moving direction of the movable body 30 of both detection units is set to a direction orthogonal to each other (FIGS. 5B and 6A). reference).
  • Each coil holder 23 is fixed to the case main body 10 by a method such as bonding or ultrasonic welding as in the first embodiment.
  • the control board 4 is accommodated in the case body 10 so that the opening of the case body 10 is closed, and each coil terminal 22 is soldered to the control board 4 (FIGS. 6B and 6). (See (c) and Figure 6 (d)).
  • the cover 11 is attached to the case body 10 so as to close the opening of the case body 10, the assembly of the sensor device is completed (see FIG. 5A).
  • one end of the detection target object is passed through the through holes 30 d and 30 d of the movable bodies 30 and 30 that are arranged orthogonal to each other.
  • the detection target object moves along both through holes 30 d and 30 d.
  • each guide groove 30 c. 30 c of the movable body 30 engages with the corresponding guide rib 10 0 a, 10 0 a of the corresponding case body 10, and the cover 1 1 ribs 1 1 b and 1 1 b are in contact with the upper surface of the movable body 30. Therefore, by providing the guide ribs 10 a, 10 a, the guide grooves 30 c, 30 c and the ribs 1 1 b, 1 1 b (guide means), the guide means can be used when the movable body 30 is moved. Move smoothly along In addition, fluctuations in the output of the detection coil 21 caused by rattling due to disturbances such as vibration can be suppressed.
  • the object to be detected such as a shift lever passed through the through holes 30 d, 30 d of both movable bodies 30, 30 is within a predetermined range (in this embodiment, the opening of the cover 11 1 If the object is moved within the range of the window 11a, the movable bodies 30 move in directions orthogonal to each other in conjunction with the movement of the detection target object.
  • the detection coil 21 inserted into each of the conductive cylinders 31 by moving the two conductive cylinders 31 and 31 supported by the movable body 30. As a result, the inductance of each detection coil 21 changes.
  • the control board 4 detects the inductance change of each detection coil 2 1 via the coil terminals 2 2 and 2 2, and provides position information proportional to the displacement of the detection target object based on each detected inductance change. calculate. Similarly, the control board 4 calculates position information proportional to the displacement of the detection target object for the other detection unit. After that, the control board 4 creates a position signal indicating the position in the X direction and the position in the Y direction of the object to be detected from these pieces of position information, and sends the created position signal to the outside via a connector connection (not shown). Output to the device.
  • two sets of detection units each including the detection coils 2 1 and 21 and the conductive cylinders 3 1 and 3 1 corresponding to the detection coils 2 1 and 2 1 are provided.
  • the movement direction of the conductive cylinders 3 1, 3 1 of one detection unit and the movement direction of the conductive cylinders 3 1, 3 1 of the other detection unit are set to directions orthogonal to each other. It is possible to provide a sensor device that can detect positions in two orthogonal directions from the detection results of each detector, and as a result, can detect the position on a plane.
  • the case where there are two detection coils 21 and two conductive cylinders 31 constituting each detection unit has been described as an example. However, these numbers are limited to the present embodiment.
  • the movable range of the movable body 30 may be appropriately set according to the detection target object to be attached, and the shape of the apparatus may be other shapes as long as the position on the plane can be detected.
  • FIG. 7 is a block diagram showing the game ball launching apparatus of the present embodiment.
  • This game ball launching device includes an input device W, a touch sensor 150, a control unit D, and a launching unit X.
  • the launch unit X is one that applies a striking force to a pachinko ball using a solenoid and fires, or an electromagnetic force that is applied to a pachinko ball using an electromagnet.
  • control unit D drives the launch unit X according to the operation input input from the input device W, and This adjusts the external force applied to the ball (the impact force of the solenoid and the electromagnetic force of the electromagnet).
  • the launch unit X and control part D are well known in the art, the detailed illustration and description of the configuration will be omitted.
  • the input device W includes the sensor device S of the first embodiment, the position signal output from the sensor device S, and the signal level (DC voltage) corresponding to the operation position of the operation unit 110 described later. And a signal processing unit H for converting into an operation signal.
  • the input device W includes a case 100, an operation unit 110, and a shaft 120 as shown in FIGS.
  • the vertical and horizontal directions and the front and rear directions of the input device W are defined in FIG.
  • the case 100 is made of a synthetic resin molded body, and is formed in a flat box shape having a substantially trapezoidal shape when viewed from above and below.
  • the case 100 is configured by vertically connecting an upper case 101 whose bottom surface is open and a lower case 102 whose top surface is open.
  • a narrow groove 103 extending in the left-right direction is provided in the up-down direction.
  • the sensor device S is a type that detects only one direction as described in the first embodiment, and the groove 103 of the upper case 101 overlaps with the opening window 1 1a in the center of the cover 1 1 in the vertical direction in the case 100.
  • the sensor device S is fixed to the upper case 101 by being screwed to each boss.
  • the operation unit 110 is a synthetic resin molded body having a substantially truncated pyramid shape as a whole, provided with a semi-cylindrical recess 11 1 1 on the upper surface, and a screw hole 1 12 passing through the center of the bottom surface of the recess 1 1 1. Become.
  • the surface of the operation unit 110 is coated with a conductive coating agent (for example, a conductive polymer).
  • the shaft 120 is made of metal, and a column-shaped shaft main body 121 and a male screw portion 122 protruding downward from the lower end side of the shaft main body 121 are integrally formed. In addition, a screw hole 121a opened on the upper surface is provided in the upper part of the shaft body 121.
  • the touch sensor 150 is a conventionally known capacitance type touch sensor, and as shown in FIG. 10, a sensor main body 151 in which a signal processing circuit (sensor circuit) is housed in a rectangular parallelepiped package, an electrode plate 152, The sensor body 151 and a flexible lead wire 153 for connecting the electrode plate 152 are provided.
  • the electrode plate 152 is made of an annular metal plate, and the male screw portion 122 of the shaft 120 is passed through the central hole 152a as will be described later.
  • the sensor body 151 is fixed to the upper bottom surface of the upper case 101 (see FIG. 11 (c)).
  • the input device is assembled in the following procedure. First, the operation unit 110 and the shaft 120 are fixed by screwing the screw 130 threaded through the screw insertion hole 1 1 2 of the operation unit 110 into the screw hole 121 a of the shaft body 121. Then, the shaft 120 is inserted into the groove 103 on the upper surface of the upper case 101 and the opening window 11a of the sensor device S, and the male screw portion 122 of the shaft 120 is passed through the hole 152a of the electrode plate 152 of the touch sensor 150. A nut 131 is screwed into the male threaded portion 122. Finally, by assembling the upper case 101 and the lower case 102, the assembly of the input device W is completed (see FIG. 9 and FIG. 11). In addition, illustration Is omitted, but the signal processing unit H is accommodated in the case 100.
  • the player's hand is connected to the operation unit 110.
  • Touch sensor 150 can detect touching.
  • the touch sensor 150 outputs a detection signal to the control unit D only when the player's hand is touching the operation unit 110.
  • the control unit D is applied to the pachinko ball as the signal level of the operation signal input from the input device W is higher (the operation amount of the operation unit 110 is larger). Drive the launcher X so that the external force (striking force and electromagnetic force) increases.
  • the external force (striking force and electromagnetic force) applied to the pachinko ball by the launching part X is not less than a predetermined lower limit value (a value sufficiently larger than zero).
  • a predetermined lower limit value a value sufficiently larger than zero.
  • the detection characteristic of the sensor device S (correspondence between the displacement position of the pipe block 3 and the detection value) does not have the above characteristic. Therefore, in the input device W of the present embodiment, the correspondence (output characteristics) between the operation amount (detected value) of the operation unit 110 detected by the sensor device S and the signal level of the operation signal output to the control unit D is expressed as a signal. Signal processing by processor H corrects the desired correspondence (output characteristics).
  • the operation unit 110 is operated (translated) from the reference position where the operation amount is zero to the limit position where the operation amount is maximum, and the signal processor H detects the detection value (detection signal of the detection signal) during that time.
  • the detected value data is obtained by performing AZD conversion on the signal level, and the detected value data is stored in a memory (not shown) in association with the operation amount of the operation unit 110 (the signal level of the operation signal) This process is called calibration.)
  • the signal processing unit H divides the detection value data into a plurality of sections, and the correspondence relationship between the detection value data and the signal level of the operation signal in each section has a linear relationship with different rates of change. Map the signal level of the operation signal as follows. FIG.
  • the horizontal axis represents the detection value of the sensor device S
  • the vertical axis represents the signal level of the operation signal.
  • the signal level of the operation signal changes linearly with a large slope when the detected value data Y ranges from 0 to Y1, and the detected value data ⁇ ranges from ⁇ 1 to ⁇ 2.
  • Signal level of the operation signal in the interval The signal level of the operation signal becomes constant when the detected value data Y is Y 2 or more.
  • the detected signal data level changes to linear with a constant slope when the detected value data Y is Y> 0 and Y ⁇ Y 3, and the detected value data ⁇ is ⁇ > ⁇
  • the signal level of the operation signal is constant in section 3.
  • the detected signal data ⁇ changes to linear with a constant slope in the interval where the detected value data ⁇ is> 0 and ⁇ ⁇ ⁇ ⁇ 4, and the detected value data ⁇ is ⁇ > ⁇
  • the signal level of the operation signal changes linearly with a larger slope.
  • the output characteristics (correspondence between the detected value data and the signal level of the operation signal) as shown in FIGS. 8 (a) to 8 (c) are stored in the memory of the signal processing unit H.
  • the signal processing unit H obtains the signal level data of the operation signal corresponding to the detection value data of the sensor device S with reference to the output characteristics stored in the memory, and performs DZ A conversion on the data. To output an analog operation signal to the control unit D.
  • the magnitude of the external force applied to the pachinko ball from the launch unit X increases rapidly near the lower limit of the operation amount of the operation unit 110, and then gradually increases as the operation amount of the operation unit 110 increases. Can be made. Even if the operation amount of the operation unit 110 is zero, as soon as the detection signal is output from the touch sensor 150, the control unit D drives the launch unit X to apply a predetermined external force to the pachinko ball. It doesn't matter.

Abstract

Provided is a sensor device that can detect the position of a linearly-displaceable object-to-be-detected regardless of the movement pattern thereof. The sensor device includes: a detection coil (21) arranged in a manner such that the axial direction of the coil is oriented in a predetermined linear direction; a conductive cylindrical element (31) arranged to be movable in the axial direction of the coil in accordance with the displacement of the object-to-be-detected and in a manner such that the amount by which the detection coil (21) is inserted into the cylinder can be changed; and a control board (4) that outputs a positional signal proportional to the displacement of the object-to-be-detected based on a change in the inductance of the detection coil (21), which change corresponds to the displacement of the conductive cylindrical element (31).

Description

明細書 センサ装置並びに入力装置、遊技球発射装置 技術分野  Description Sensor device and input device, game ball launcher Technical Field
本発明は、 直線的に変位する検出対象物体の変位量や位置などを検出するセンサ装置、 並びに当該センサ装置を用いた入力装置、 および当該入力装置を用いた遊技球発射装置に 関する。 背景技術  The present invention relates to a sensor device that detects a displacement amount or a position of a detection target object that is linearly displaced, an input device that uses the sensor device, and a game ball launch device that uses the input device. Background art
従来、 直線的に変位する検出対象物体の変位量や位置などを検出するセンサ装置として 種々のものが提供されている。 例えば、 特許文献 1には自動車のシフトレバ一を検出対象 物体とし、 シフトレバーに設けられたマグネットと、 上記シフトレバ一の各ポジションに 対応するようにして配置される複数の磁気抵抗素子とを備えたセンサ装置が記載されてい る。 各磁気抵抗素子は、 それぞれ上記マグネットの位置に応じて 「0」 または 「1」 の 2 値信号を出力するようになっており、 これらの磁気抵抗素子の出力信号の組み合わせによ つてシフトレバーの操作位置、 すなわち、 シフトポジションを識別できるようになつてい る。  2. Description of the Related Art Conventionally, various types of sensor devices that detect the displacement amount or position of a detection target object that is linearly displaced have been provided. For example, Patent Document 1 includes a shift lever of an automobile as an object to be detected, and includes a magnet provided on a shift lever and a plurality of magnetoresistive elements arranged so as to correspond to each position of the shift lever. The sensor device is described. Each magnetoresistive element outputs a binary signal of “0” or “1” depending on the position of the magnet. The combination of the output signals of these magnetoresistive elements causes the shift lever to The operation position, that is, the shift position can be identified.
ここで、 人が操作する操作体の位置をセンサ装置で検出し、 当該センサ装置の検出出力 を操作入力とする入力装置、 並びに当該入力装置で入力する操作入力に応じた力で遊技球 (例えば、 パチンコ玉) を発射する遊技球発射装置も種々提供されている (例えば、 特許 文献 2参照)。  Here, the position of an operating body operated by a person is detected by a sensor device, and an input device using the detection output of the sensor device as an operation input, and a game ball (for example, with a force corresponding to the operation input input by the input device) Various game ball launching devices that launch pachinko balls are also provided (see, for example, Patent Document 2).
【特許文献 1】 特開 2 0 0 7— 2 7 8 7 2 0号公報(段落 [ 0 0 1 6 ]— [ 0 0 3 2 ]、 及び、 第 1図一第 9図)  [Patent Document 1] Japanese Patent Application Laid-Open No. 2 0 0 7-2 7 8 7 2 0 (paragraph [0 0 1 6] — [0 0 3 2] and FIG. 1 to FIG. 9)
【特許文献 2】 特開 2 0 0 3— 1 5 9 3 8 6号公報 (第 8実施形態参照) 発明の開示  [Patent Document 2] Japanese Patent Application Laid-Open No. 2 0 0 3-1 5 9 3 8 6 (Refer to the eighth embodiment)
上述の特許文献 1に示したセンサ装置では、 各磁気抵抗素子の出力信号の組み合わせに よってシフトポジションを識別できるものではあるが、 シフトパターンが異なる場合には シフトパターンに合わせて磁気抵抗素子の配置を変更する必要があった。  In the sensor device shown in Patent Document 1 described above, the shift position can be identified by the combination of output signals of the magnetoresistive elements. However, if the shift patterns are different, the magnetoresistive elements are arranged according to the shift pattern. There was a need to change.
本発明は上記問題点に鑑みて為されたものであり、 その目的とするところは、 直線的に 変位する検出対象物体の動作パターンに関わらず当該検出対象物体の位置検出が可能なセ ンサ装置並びに入力装置、 遊技球発射装置を提供することにある。  The present invention has been made in view of the above problems, and its object is to provide a sensor device capable of detecting the position of a detection target object regardless of the motion pattern of the detection target object that is linearly displaced. An input device and a game ball launching device are also provided.
請求項 1の発明は、 巻軸方向が所定の直線方向となるように配置される検出コイルと、 当該検出コィルの筒内への挿入量が変化するように検出対象物体の変位に応じて巻軸方向 に移動自在に配置される導電性筒体と、 当該導電性筒体の変位に応じた検出コィルのィン ダクタンス変化に基づいて検出対象物体の変位に比例した位置信号を出力する信号出力手 段とを備えることを特徴とする。 According to the first aspect of the present invention, there is provided a detection coil arranged so that the winding axis direction is a predetermined linear direction, and winding according to the displacement of the detection target object so that the amount of insertion of the detection coil into the cylinder changes. A conductive cylinder that is movably disposed in the axial direction, and a detection coil in accordance with the displacement of the conductive cylinder. And a signal output means for outputting a position signal proportional to the displacement of the object to be detected based on the change in conductance.
請求項 2の発明は、 請求項 1の発明において、 検出コイルおよび導電性筒体は、 1つの 移動方向に対してそれぞれ複数配置されており、 信号出力手段は、 少なくとも何れか 1つ の検出コイルのィンダクタンス変化に基づいて位置信号を出力することを特徴とする。 請求項 3の発明は、 請求項 1又は 2の発明において、 検出コイルが巻回され、 当該検出 コィルの巻軸方向における両端部が支持手段により支持されるコイルポビンを備えること を特徴とする。  The invention of claim 2 is the invention of claim 1, wherein a plurality of detection coils and conductive cylinders are respectively arranged in one moving direction, and the signal output means is at least one detection coil. A position signal is output based on the change in inductance. The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the detection coil is wound, and a coil pobbin in which both ends in the winding axis direction of the detection coil are supported by the support means is provided.
請求項 4の発明は、 請求項 1〜 3の何れか 1項の発明において、 検出コイル、 導電性筒 体、 信号出力手段、 および、 導電性筒体を支持し当該導電性筒体とともに移動自在に配置 される可動体が少なくとも収納されるケースを備え、 可動体およびケースは、 可動体の移 動時に当該可動体をガイドするガイド手段をそれぞれ備えることを特徴とする。  The invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the detection coil, the conductive cylinder, the signal output means, and the conductive cylinder are supported and movable together with the conductive cylinder. The movable body and the case each include guide means for guiding the movable body when the movable body is moved.
請求項 5の発明は、 請求項 4の発明において、 ケースは、 可動体が当接することによつ て当該可動体の移動を規制するストッパーを備えることを特徴とする。  The invention of claim 5 is characterized in that, in the invention of claim 4, the case is provided with a stopper for restricting movement of the movable body by the contact of the movable body.
請求項 6の発明は、 請求項 1 ~ 5の何れか 1項の発明において、 検出コイルと、 当該検 出コイルに対応する導電性筒体とで構成される検出部を 2組備え、 各検出部は、 検出コィ ルに対する導電性筒体の移動方向が互いに交差するように配置されることを特徴とする。 請求項 7の発明は、上記目的を達成するために、請求項 1 ~ 6の何れかのセンサ装置と、 人の手で操作されてセンサ装置の導電性筒体を変位させる操作部と、 センサ装置の信号出 力手段から出力される位置信号を、 操作部の変位量や位置に対応した操作信号に変換する 信号処理部とを備えたことを特徴とする。  The invention of claim 6 is the invention of any one of claims 1 to 5, comprising two sets of detection parts each comprising a detection coil and a conductive cylinder corresponding to the detection coil, The parts are arranged so that the moving directions of the conductive cylinders relative to the detection coil intersect each other. In order to achieve the above object, a seventh aspect of the present invention is directed to the sensor device according to any one of the first to sixth aspects, an operation unit that is operated by a human hand to displace the conductive cylinder of the sensor device, and a sensor. And a signal processing unit that converts a position signal output from the signal output means of the apparatus into an operation signal corresponding to the displacement and position of the operation unit.
請求項 8の発明は、 請求項 7の発明において、 前記信号処理部は、 導電性筒体の位置と 一対一で対応した信号レベルの操作信号を出力するものであって、 前記位置を複数の区間 に分割するとともにそれぞれの区間における位置と操作信号の信号レベルとの対応関係が 互いに異なる変化率を有したリニァな関係で表されることを特徴とする。  The invention according to claim 8 is the invention according to claim 7, wherein the signal processing unit outputs an operation signal having a signal level corresponding to the position of the conductive cylinder on a one-to-one basis. In addition to being divided into sections, the correspondence relationship between the position in each section and the signal level of the operation signal is expressed by a linear relationship having different rates of change.
請求項 9の発明は、 上記目的を達成するために、 請求項 7又は 8の入力装置と、 遊技球 に外力を印加して発射する発射部と、 入力装置から入力される操作信号の信号レベルに応 じて発射部から遊技球に印加される外力の大きさを制御する制御部とを有することを特徴 とする。  In order to achieve the above object, the invention of claim 9 is directed to the input device of claim 7 or 8, a launching unit for launching by applying an external force to the game ball, and a signal level of an operation signal input from the input device. And a control unit for controlling the magnitude of the external force applied to the game ball from the launch unit.
請求項 1の発明によれば、 検出対象物体の変位に対応させたリニアな位置信号を出力す るように構成されているので、 この位置信号が入力される外部機器においてポジションを 識別するための閾値を変えることで任意の動作パターンに対応することができ、 その結果 検出部分の共通化が図れる。 また、 本センサ装置からの出力をリニア出力とすることによ つて、 検出対象物体の動作を常時モニターすることができ、 その結果検出対象物体の動作 方向を予測することも可能になるという効果がある。  According to the first aspect of the invention, since the linear position signal corresponding to the displacement of the detection target object is output, the external device to which the position signal is input is used to identify the position. By changing the threshold value, it is possible to cope with any operation pattern, and as a result, the detection part can be shared. In addition, since the output from the sensor device is a linear output, the operation of the detection target object can be constantly monitored, and as a result, the operation direction of the detection target object can be predicted. is there.
請求項 2の発明によれば、 検出コイルと導電性筒体とで構成される検出手段を 数備え ており、 各検出手段の検出結果を比較することによって、 その差が所定の基準範囲を超え ている場合には何れかの検出手段が故障していると判断できるから、 検出手段が故障した ままで使用し続けるのを防止することができる。 また、 1つの検出手段の検出結果に基づ いて位置検出を行う場合には、 何れかの検出手段が故障した場合でも残りの検出手段によ リ位置検出が可能であるから、 誤検出を防止することができるという効果がある。 According to the second aspect of the present invention, there are provided a plurality of detection means including the detection coil and the conductive cylinder, and the difference exceeds the predetermined reference range by comparing the detection results of the detection means. In this case, it can be determined that any of the detection means is broken, so that it is possible to prevent the detection means from continuing to be used with the failure. In addition, when position detection is performed based on the detection result of one detection means, even if one of the detection means fails, the remaining position can be detected by the remaining detection means, thus preventing erroneous detection. There is an effect that can be done.
請求項 3の発明によれば、 コイルポビンを検出コイルの巻軸方向における両端部で支持 することによって、 検出コイルと導電性筒体の並行度が確保され、 両者間のギャップのば らっきを抑えることができるから、 コイル出力のリニアリティが確保できるという効果が ある。  According to the invention of claim 3, by supporting the coil pobbins at both ends in the winding direction of the detection coil, the parallelism between the detection coil and the conductive cylinder is ensured, and the gap between the two is dispersed. Since it can be suppressed, the linearity of the coil output can be secured.
請求項 4の発明によれば、 ケースおよび可動体にガイド手段を設けることによって、 可 動体を移動させる際にガイド手段に沿ってスムーズに移動させることができ、 また振動な どの外乱によるがたつきによって生じる検出コイルの出力変動を抑えることができるとい う効果がある。  According to the invention of claim 4, by providing the guide means on the case and the movable body, the movable body can be moved smoothly along the guide means, and rattling caused by disturbances such as vibrations. As a result, the fluctuation in the output of the detection coil caused by the above can be suppressed.
請求項 5の発明によれば、 ストッパーを設けることによって、 可動体の移動を所定範囲 内に規制することができ、 またこのストッパーには可動体が当接するようになつており、 過度な力が加えられた場合でもこの力を可動体で受けることになるから、 導電性筒体には 過度な力が加わることがなく導電性筒体の破損を防止することができるという効果がある。 請求項 6の発明によれば、 各検出部の導電性筒体の移動方向が互いに交差するように両 検出部を配置することによって、 各検出部の検出結果から互いに交差する 2方向の位置検 出が可能であリ、 その結果平面上の位置検出が可能なセンサ装置を提供することができる という効果がある。  According to the invention of claim 5, by providing the stopper, the movement of the movable body can be regulated within a predetermined range, and the movable body comes into contact with the stopper, and an excessive force is applied. Even when it is applied, this force is received by the movable body, so that there is an effect that the conductive cylinder can be prevented from being damaged without excessive force being applied to the conductive cylinder. According to the sixth aspect of the invention, by arranging the two detection units so that the moving directions of the conductive cylinders of the detection units intersect with each other, the position detection in the two directions intersecting each other from the detection results of the detection units. As a result, it is possible to provide a sensor device capable of detecting a position on a plane.
請求項 7の発明によれば、 非接触式のセンサ装置で操作部の操作位置を検出しているた め、 経年劣化の少ない入力装置を提供することができるという効果がある。  According to the invention of claim 7, since the operation position of the operation unit is detected by the non-contact type sensor device, there is an effect that it is possible to provide an input device with little deterioration over time.
請求項 8の発明によれば、 例えば、 ある区間における変化率を他の区間の変化率よりも 小さくすれば、 前者の区間においては操作信号の信号レベルをよリ細かく調整することが できるという効果がある。  According to the invention of claim 8, for example, if the rate of change in a certain section is made smaller than the rate of change in other sections, the signal level of the operation signal can be adjusted more finely in the former section. There is.
請求項 9の発明によれば、 経年劣化の少ない遊技球発射装置を提供することができると いう効果がある。  According to the invention of claim 9, there is an effect that it is possible to provide a game ball launching device with little deterioration over time.
図面の簡単な説明 Brief Description of Drawings
【図 1】 本発明に係るセンサ装置の実施形態 1を示す分解斜視図である。  FIG. 1 is an exploded perspective view showing a sensor device according to a first embodiment of the present invention.
【図 2】 (a ) は同上の斜視図、 (b ) は同上からカバ一を取り外した状態の斜視図で のる。  [Fig. 2] (a) is a perspective view of the above, and (b) is a perspective view of the cover with the cover removed.
【図 3】 同上を示し、 (a ) はカバ一を取り外した状態の正面図、 (b ) は左側面図、 ( c ) は下面図、 (d ) は背面図、 (e ) は X 1— X 1断面図である。  [Figure 3] Same as above, (a) is a front view with the cover removed, (b) is a left side view, (c) is a bottom view, (d) is a rear view, and (e) is X 1 — X 1 sectional view.
【図 4】 本発明に係るセンサ装置の実施形態 2を示す分解斜視図である。  FIG. 4 is an exploded perspective view showing Embodiment 2 of the sensor device according to the present invention.
【図 5】 (a ) は同上の斜視図、 (b ) は同上からカバーを取り外した状態の斜視図で ある。 【図 6】 同上を示し、 (a) はカバ一を取り外した状態の正面図、 (b) は X 2— X 2 断面図、 (c) は X 3— X 3断面図、 (d) は X4— X 4断面図である。 5A is a perspective view of the same, and FIG. 5B is a perspective view of the same with the cover removed. [Fig.6] Same as above, (a) Front view with cover removed, (b) Cross section taken along line X2-X2, (c) Cross section taken along line X3-X3, (d) FIG. 4 is a sectional view taken along line X4-X4.
【図 7】 本発明に係る入力装置並びに遊技球発射装置の実施形態 3を示すプロック図 である。  FIG. 7 is a block diagram showing a third embodiment of the input device and the game ball launcher according to the present invention.
【図 8】(a) 〜(c) は同上における入力装置の出力特性を示す図である。  [Fig. 8] (a) to (c) are diagrams showing output characteristics of the input device in the same as above.
【図 9】 同上の入力装置の斜視図である。  FIG. 9 is a perspective view of the above input device.
【図 1 0】 同上の入力装置の分解斜視図である。  FIG. 10 is an exploded perspective view of the above input device.
【図 1 1】 同上の入力装置を示し、 (a) は正面図、 (b) は上面図、 (c) は同図 (a) の A— A線断面矢視図である。 発明を実施するための形態  Fig. 11 shows the input device. (A) is a front view, (b) is a top view, and (c) is a cross-sectional view taken along line AA in Fig. 11 (a). BEST MODE FOR CARRYING OUT THE INVENTION
(実施形態 1 )  (Embodiment 1)
まず、 本発明に係るセンサ装置の実施形態 1について図面を参照して説明する。 本発明 に係るセンサ装置は、 検出対象物体 (例えば自動車のシフトレバーや、 後述する遊技球発 射装置に用いる入力装置の操作部など) の直線的な変位量を検出するために用いられる直 動式のセンサ装置である。  First, Embodiment 1 of the sensor device according to the present invention will be described with reference to the drawings. The sensor device according to the present invention is a linear motion used for detecting a linear displacement amount of an object to be detected (for example, a shift lever of an automobile, an operation unit of an input device used for a game ball launching device to be described later). This is a sensor device of the type.
図 1は実施形態 1のセンサ装置の分解斜視図であり、 本センサ装置は、 2組のコイルブ ロック 2と、 パイプブロック 3と、 制御基板 (信号出力手段) 4と、 これらを収納するた めのケース 1とを備えている。  FIG. 1 is an exploded perspective view of the sensor device of the first embodiment. This sensor device accommodates two sets of coil blocks 2, a pipe block 3, a control board (signal output means) 4, and these. Case 1 is provided.
ケース 1は、 一面 (図 1中の上面) が開口する縦長の矩形箱状のケース本体 1 0と、 ケ —ス本体 1 0の開口を閉塞するように当該ケース本体 1 0に被着されるカバ一 1 1とで構 成されている。 ケース本体 1 0は、 例えば合成樹脂成形品であって、 ケース本体 1 0の長 手方向における一端側 (図 3 (b) の下側) には、 図示しないコネクタが差込接続される 矩形箱状のコネクタ接続部 1 2がー体に設けられており、 このコネクタ接続部 1 2の下面 (ケース本体 1 0と反対側の面)には、コネクタが差込接続される接続口 1 2 a (図 2 (a) および図 2 (b) 参照) が開口している。  The case 1 is attached to the case body 10 so as to block the opening of the case body 10 having a vertically long rectangular box whose one surface (the upper surface in FIG. 1) is open and the case body 10. It is composed of 1 and 1. The case body 10 is, for example, a synthetic resin molded product, and a rectangular box in which a connector (not shown) is inserted and connected to one end side of the case body 10 in the longitudinal direction (the lower side of FIG. 3B). The connector connector 1 2 is provided on the body, and the connector port 1 2 is connected to the lower surface of the connector connector 1 2 (the surface opposite to the case body 10). (See Fig. 2 (a) and Fig. 2 (b)).
また、 ケース本体 1 0の底面中央には縦長矩形状の開口窓 1 O cが開口しており (図 3 (d) 参照)、 この開口窓 1 0 cの幅方向における両端縁には、 上方 (カバ一 1 1側) に突 出するガイドリブ 1 O a, 1 0 aがそれぞれ開口窓 1 0 cの長手方向に沿って設けられて いる。 さらに、 開口窓 1 0 cの長手方向における両端縁には、 上方に突出するストッパー 1 0 b, 1 0 bがそれぞれ開口窓 1 0 cの幅方向に沿って設けられている。  In addition, a vertically long rectangular opening window 1 O c is opened at the center of the bottom surface of the case body 10 (see FIG. 3 (d)). Guide ribs 1 O a and 10 a protruding to the (cover 1 1 side) are provided along the longitudinal direction of the opening window 10 c. Further, stoppers 10 b and 10 b projecting upward are provided along the width direction of the opening window 10 c at both ends in the longitudinal direction of the opening window 10 c.
また、 コネクタ接続部 1 2の内部には、 複数 (本実施形態では 4本) の L字状のコネク タ端子 5が、 その一端側を接続口 1 2 aに臨ませる形で横並びに配置され (図 3 (c) 参 照)、さらに各コネクタ端子 5の他端側は、それぞれ後述の制御基板 4の所定位置に半田固 定される (図 2 (b)、 図 3 (a) および図 3 (Θ) 参照)。 なお、 これらのコネクタ端子 5は、 コネクタ接続部 1 2とともにケース本体 1 0と同時成形される。  In addition, a plurality (four in this embodiment) of L-shaped connector terminals 5 are arranged side by side inside the connector connecting portion 12 2 such that one end thereof faces the connection port 1 2 a. (See Fig. 3 (c)), and the other end of each connector terminal 5 is soldered to a predetermined position on the control board 4 described later (Fig. 2 (b), Fig. 3 (a) and Fig. 3). 3 (see Θ). These connector terminals 5 are formed simultaneously with the case main body 10 together with the connector connecting portion 12.
カバ一 1 1は、 ケース本体 1 0と同様に合成樹脂成形品であって、 ケース本体 1 0の開 口寸法と略同寸法に設定されており、 接着あるいは超音波溶接などの方法でケース本体 1 0に取り付けられるようになつている。 また、 カバ一 1 1の中央部には縦長矩形状の開口 窓 1 1 aが開口しており、 この開口窓 1 1 aの幅方向における両端縁には、 下方 (ケース 本体 1 0側) に突出するリブ 1 1 b , 1 1 bがそれぞれ開口窓 1 1 aの長手方向に沿って 設けられている。 ここに、 これらのリブ 1 1 b , 1 1 bは、 後述するパイプブロック 3の 可動体 3 0に当接し、 当該可動体 3 0のがたつきを防止するためのものである。 The cover 1 1 is a synthetic resin molded product similar to the case body 10, and the case body 1 0 is opened. It is set to approximately the same size as the mouth dimension, and can be attached to the case body 10 by a method such as adhesion or ultrasonic welding. In addition, a vertically long rectangular opening window 1 1 a is opened at the center of the cover 1 1 1, and both ends of the opening window 1 1 a in the width direction are below (case body 10 side). Protruding ribs 11 b and 11 b are provided along the longitudinal direction of the opening window 11 a. Here, these ribs 11 b, 11 b are in contact with a movable body 30 of a pipe block 3 described later, and prevent the movable body 30 from rattling.
コイルブロック 2は、 直状の円筒体からなる合成樹脂製のコイルポビン 2 0と、 コイル ボビン 2 0の右側の約半分に設けた巻胴部 2 0 aに巻回される検出コイル 2 1と、 コイル ボビン 2 0の一端側に配置され、 検出コイル 2 1の両端と電気的に接続される一対のコィ ル端子 2 2 , 2 2と、 コイルボビン 2 0の長手方向における一端部を支持するためのコィ ルホルダー 2 3とで構成される。 なお、 コイルボビン 2 0の左側の約半分には巻胴部 2 0 aよりも径の大きいガイド部 2 0 bが設けてある。 各コイルポビン 2 0は、 コイルホルダ 一 2 3によって一端側がケース本体 1 0に支持されるとともに、 コイルポビン 2 0の他端 側に設けたコイル端子 2 2 , 2 2が制御基板 4に接続されることで他端側も支持されるよ うになつている。 なお、 各コイルブロック 2は、 その長手方向がケース本体 1 0の長手方 向に沿うようにして、当該ケース本体 1 0の幅方向における両側にそれぞれ配置される(図 2 ( b ) および図 3 ( a ) 参照)。 ここに、 本実施形態では、 コイル端子 2 2 , 2 2と、 コ ィルホルダ一 2 3とで支持手段が構成されている。  The coil block 2 includes a coil bobbin 20 made of a synthetic resin made of a straight cylindrical body, a detection coil 21 wound around a winding body 20 a provided on the right half of the coil bobbin 20, and A pair of coil terminals 2 2, 2 2 disposed on one end side of the coil bobbin 20 and electrically connected to both ends of the detection coil 21, and one end in the longitudinal direction of the coil bobbin 20 It consists of coil holder 2 3. In addition, a guide portion 20 b having a diameter larger than that of the winding body portion 20 a is provided in about half of the left side of the coil bobbin 20. One end of each coil pobin 20 is supported by the case body 10 by the coil holder 1 3 and the coil terminals 2 2 and 2 2 provided on the other end of the coil pobin 20 are connected to the control board 4 Thus, the other end is also supported. Each coil block 2 is arranged on both sides in the width direction of the case body 10 so that the longitudinal direction thereof is along the longitudinal direction of the case body 10 (FIGS. 2 (b) and 3). (See (a)). Here, in the present embodiment, the coil terminals 2 2, 2 2 and the coil holder 23 3 constitute a supporting means.
パイプブロック 3は、 ケース本体 1 0に収納された上記のコイルブロック 2に対して移 動自在に配置される可動体 3 0と、 可動体 3 0に支持される導電性筒体 3 1 , 3 1とで構 成される。 可動体 3 0は、 例えば合成樹脂成形品であって、 矩形板状の可動体本体 3 0 a の幅方向における両側には、 筒状の保持体 3 O b , 3 0 bが一体に設けられている。 そし て、 これらの保持体 3 O b , 3 O bは、 それぞれ導電性筒体 3 1の長手方向における中間 部で当該導電性筒体 3 1を保持している (図 1参照)。また、可動体本体 3 0 aの中央部に は長円形状の揷通孔 3 0 dが設けられており、 シフトレバーのような検出対象物体 (図示 せず) が、 その一端側をこの揷通孔 3 0 dに挿通させた状態で可動体 3 0に取り付けられ るようになっている。 さらに、 可動体本体 3 0 aの下面 (ケース本体 1 0の底面と対向す る面) には、 ケース本体 1 0側に設けたガイドリブ 1 0 a , 1 0 aとそれぞれ係合するガ ィド溝 3 0 c , 3 0 cが設けられている。 ここに、 本実施形態では、 ガイドリブ 1 0 a , 1 0 aと、 ガイド溝 3 0 c, 3 0 cと、 リブ 1 1 b , 1 1 bとでガイド手段が構成されて いる。  The pipe block 3 includes a movable body 30 that is movably disposed with respect to the coil block 2 housed in the case body 10, and conductive cylinders 3 1, 3 supported by the movable body 30. It consists of 1. The movable body 30 is, for example, a synthetic resin molded product, and cylindrical holding bodies 3 O b and 30 b are integrally provided on both sides in the width direction of the rectangular plate-shaped movable body main body 30 a. ing. The holding bodies 3 O b and 3 O b hold the conductive cylinder 31 at the intermediate portion in the longitudinal direction of the conductive cylinder 31 (see FIG. 1). In addition, an oval through hole 30 d is provided at the center of the movable body 30 a, and a detection target object (not shown) such as a shift lever has one end on the side. The movable body 30 can be attached in a state of being inserted into the through hole 30 d. Further, guides 10 a and 10 a provided on the case body 10 side are respectively provided on the lower surface of the movable body body 30 a (surface facing the bottom surface of the case body 10). Grooves 30 c and 30 c are provided. Here, in this embodiment, the guide means is constituted by the guide ribs 10 a and 10 a, the guide grooves 30 c and 30 c, and the ribs 11 b and 11 b.
導電性筒体 3 "Iは、 例えば薄いアルミニウム板から曲成された 2つの半円筒体を界面 接合することで略筒状に形成され、上記の保持体 3 0 bを介して可動体 3 0に支持される。 また、 本実施形態では、 可動体 3 0と導電性筒体 3 1の位置精度を向上させるために両者 を同時成形している。 なお、 各導電性筒体 3 1の内径は、 コイルボビン 2 0のガイド部 2 0 bの外径よりも若干大きく且つ当該導電性筒体 3 1が対応する検出コイル 2 1に対して 移動する際に両者が干渉しない寸法に設定されている。 制御基板 4は、 横長の矩形板状のプリント基板 4 0からなリ、 上述の各コネクタ端子 5 に対応する部位にはそれぞれスルーホール 4 1が貫設され、 また各コイル端子 2 2に対応 する部位にはそれぞれスルーホール 4 2が貫設されている (図 1参照)。 さらに、 プリント 基板 4 0には、 マイクロコンピュータなどの電子部品も実装されており、 このマイクロコ ンピュ一タでは、 検出コイル 2 1のインダクタンス変化に基づいて上記の検出対象物体の 変位に比例した位置信号を作成し、 作成した位置信号をコネクタ端子 5を介して外部機器 (図示せず) に出力する。 なお、 制御基板 4の長手寸法はケース本体 1 0の幅寸法と略同 寸法に設定されており、 ケース本体 1 0の長手方向における一端側の一部開口を閉塞する 形でケース本体 1 0に取り付けられる (図 2 ( b ) および図 3 ( a ) 参照)。 The conductive cylindrical body 3 "I is formed into a substantially cylindrical shape by interfacial bonding of two semi-cylindrical bodies bent from, for example, a thin aluminum plate, and the movable body 30 is connected via the holding body 30b. In the present embodiment, both are formed at the same time in order to improve the positional accuracy of the movable body 30 and the conductive cylinder 31. Note that the inner diameter of each conductive cylinder 31 is Is set to a size that is slightly larger than the outer diameter of the guide portion 20 b of the coil bobbin 20 and that does not interfere when the conductive cylinder 3 1 moves relative to the corresponding detection coil 21. . The control board 4 is composed of a horizontally-long rectangular board-like printed circuit board 40, and through holes 41 are provided in the portions corresponding to the connector terminals 5 described above, and also correspond to the coil terminals 22. Each part has through holes 42 (see Fig. 1). Furthermore, electronic components such as a microcomputer are mounted on the printed circuit board 40. In this microcomputer, a position proportional to the displacement of the object to be detected based on the inductance change of the detection coil 21. A signal is created, and the created position signal is output to an external device (not shown) via the connector terminal 5. The longitudinal dimension of the control board 4 is set to be approximately the same as the width dimension of the case body 10, and the case body 10 is closed in the form of a partial opening on one end side in the longitudinal direction of the case body 10. It is mounted (see Fig. 2 (b) and Fig. 3 (a)).
次に、 本センサ装置の組立手順について説明する。 なお、 以下の説明では、 各コイルブ 口ック 2およびパイププロック 3が予め組み立てられているものとして説明する。 まず、 巻胴部 2 0 aに検出コイル 2 1が巻回された各コイルボビン 2 0をそれぞれ対応する導電 性筒体 3 1に揷通させた後、 各コイルポビン 2 0の端部にそれぞれコイルホルダ一 2 3を 取り付ける。 その後、 一体に組み付けられたコイルブロック 2 , 2およびパイプブロック 3を、 各コイルブロック 2がそれぞれケース本体 1 0の長手方向に沿って配置されるよう にケース本体 1 0に収納する。 なおこのとき、 各コイルホルダー 2 3は、 それぞれ接着あ るいは超音波溶接などの方法でケース本体 1 0に固着される。 さらに、 制御基板 4を所定 位置に配置した後、 各コネクタ端子 5および各コイル端子 2 2をそれぞれ制御基板 4の所 定位置に半田固定する (図 2 ( b ) および図 3 ( a ) 参照)。 そして最後に、 ケース本体 1 0の開口を閉塞する形でカバ一 1 1をケース本体 1 0に被着すると、 センサ装置の組み立 てが完了する (図 2 ( a ) 参照)。  Next, the assembly procedure of the sensor device will be described. In the following description, it is assumed that each coil block 2 and pipe block 3 are assembled in advance. First, after passing each coil bobbin 20 around which the detection coil 21 is wound around the winding body 20 a through the corresponding conductive cylinder 31, a coil holder is provided at each end of each coil pobbin 20. Install 1 2 3. Thereafter, the coil blocks 2, 2 and the pipe block 3 assembled together are accommodated in the case body 10 such that the coil blocks 2 are arranged along the longitudinal direction of the case body 10. At this time, each coil holder 23 is fixed to the case main body 10 by a method such as bonding or ultrasonic welding. Furthermore, after the control board 4 is arranged at a predetermined position, each connector terminal 5 and each coil terminal 22 are fixed to the predetermined positions of the control board 4 by soldering (see FIG. 2 (b) and FIG. 3 (a)). . Finally, when the cover 11 is attached to the case body 10 so as to close the opening of the case body 10, the assembly of the sensor device is completed (see FIG. 2 (a)).
なお、 この状態では、 可動体 3 0の各ガイド溝 3 0 c , 3 0 cはそれぞれ対応するケ一 ス本体 1 0のガイドリブ 1 0 a , 1 0 aと係合し、 またカバー 1 1のリブ 1 1 b , 1 1 b は可動体 3 0の上面に当接している。 したがって、 これらのガイドリブ 1 0 a , 1 0 a , ガイド溝 3 0 c , 3 0 cおよびリブ 1 1 b , 1 1 b (ガイド手段)を設けることによって、 可動体 3 0を移動させる際にガイド手段に沿ってスムーズに移動させることができ、 また 振動などの外乱によるがたつきによって生じる検出コイル 2 1の出力変動を抑えることが できる。  In this state, the guide grooves 30 c, 30 c of the movable body 30 engage with the guide ribs 10 a, 10 a of the corresponding case body 10, respectively, The ribs 1 1 b and 11 b are in contact with the upper surface of the movable body 30. Accordingly, by providing the guide ribs 10 a, 10 a, the guide grooves 30 c, 30 c and the ribs 11 b, 11 b (guide means), a guide is provided when the movable body 30 is moved. It can be moved smoothly along the means, and output fluctuations of the detection coil 21 caused by rattling due to disturbances such as vibration can be suppressed.
続けて、 本センサ装置の動作について説明する。 可動体 3 0に取着されたシフトレバ一 や入力装置の操作部のような検出対象物体 (図示せず) を所定方向 (カバー 1 1に設けた 開口窓 1 1 aの長手方向に沿う方向) に移動させると、 検出対象物体の移動に連動して可 動体 3 0が移動する。 このとき、 両導電性筒体 3 1 , 3 1が可動体 3 0とともに移動する ことによって、 両導電性筒体 3 1 , 3 1内にそれぞれ挿通される検出コイル 2 1 , 2 1の 挿入量が変化し、 その結果各検出コイル 2 1のインダクタンスが変化する。 そして、 制御 基板 4では、 コイル端子 2 2 , 2 2を介してこれらのインダクタンス変化を検出し、 検出 したインダクタンス変化に基づいて検出対象物体の変位に比例した位置信号を作成した後、 コネクタ端子 5を介して上記位置信号を外部機器に出力する。 ここにおいて、 本実施形態では、 検出コイル 2 1と導電性筒体 3 1とで構成される検出 手段を 2組備えており、 各検出手段の検出結果 (つまり検出コイル 2 1のインダクタンス 変化) を比較することによって、 その差が所定の基準範囲を超えている場合には一方の検 出手段が故障していると判断できるから、 検出手段が故障したままで使用し続けるのを防 止することができる。 また、 1つの検出手段の検出結果に基づいて位置検出を行う場合に は、一方の検出手段が故障した場合でも残りの検出手段により位置検出が可能であるから、 誤検出を防止することができる。 Next, the operation of this sensor device will be described. A detection target object (not shown) such as a shift lever attached to the movable body 30 or an operation unit of the input device is in a predetermined direction (a direction along the longitudinal direction of the opening window 1 1 a provided in the cover 11 1). When moved to, the moving object 30 moves in conjunction with the movement of the object to be detected. At this time, the amount of insertion of the detection coils 2 1 and 2 1 inserted into the both conductive cylinders 3 1 and 3 1 by the movement of the both conductive cylinders 3 1 and 3 1 together with the movable body 30 As a result, the inductance of each detection coil 21 changes. The control board 4 detects these inductance changes via the coil terminals 2 2 and 2 2, creates a position signal proportional to the displacement of the object to be detected based on the detected inductance changes, and then connects the connector terminal 5 The position signal is output to an external device via. Here, in the present embodiment, two sets of detection means composed of the detection coil 21 and the conductive cylinder 31 are provided, and the detection result of each detection means (that is, the inductance change of the detection coil 21) is obtained. By comparing, if the difference exceeds the predetermined reference range, it can be determined that one of the detection means has failed. Can do. In addition, when position detection is performed based on the detection result of one detection means, even if one detection means fails, position detection can be performed by the remaining detection means, so that erroneous detection can be prevented. .
また、 本実施形態では、 可動体 3 0の移動方向 (検出コイル 2 1の巻軸方向) における 両端にそれぞれストッパー 1 O b , 1 0 bを設けており、 可動体 3 0が端部に位置する状 態では当該可動体 3 0の端部と一方のストッパー 1 O bとが当接することで、 可動体 3 0 のそれ以上の移動が規制されるようになっている。 したがって、 可動範囲の端部において 過度な力が加えられた場合でも、 この力を可動体 3 0で受けることになるから各導電性筒 体 3 1には過度な力が加わることがなく、導電性筒体 3 1の破損を防止することができる。 而して、 本実施形態によれば、 シフトレバーのような検出対象物体の変位に対応させた リニァな位置信号を出力するように構成されているので、 この位置信号が入力される外部 機器においてポジションを識別するための閾値を変えることで任意の動作パターンに対応 することができ、 その結果検出部分 (コイルブロック 2およびパイプブロック 3 ) の共通 化が図れる。 また、 本センサ装置からの出力をリニア出力とすることによって、 検出対象 物体の動作を常時モニタ一することができ、 その結果検出対象物体の動作方向を予測する ことも可能になる。 さらに、 コイルボビン 2 0を長手方向 (検出コイル 2 1の巻軸方向) における両端部で支持することによって、 検出コイル 2 1と導電性筒体 3 1の並行度が確 保され、 両者間のギャップのばらつきを抑えることができるから、 コイル出力のリニアり ティが確保できる。  In the present embodiment, stoppers 1 O b and 10 0 b are provided at both ends in the moving direction of the movable body 30 (the winding direction of the detection coil 21), and the movable body 30 is positioned at the end. In this state, the end of the movable body 30 and one of the stoppers 1 Ob contact each other, so that the further movement of the movable body 30 is restricted. Therefore, even when an excessive force is applied to the end of the movable range, this force is received by the movable body 30, so that no excessive force is applied to each conductive cylinder 31, It is possible to prevent the damage to the cylindrical member 31. Thus, according to the present embodiment, since it is configured to output a linear position signal corresponding to the displacement of the detection target object such as a shift lever, in the external device to which this position signal is input By changing the threshold value for identifying the position, it is possible to cope with an arbitrary operation pattern, and as a result, the detection part (the coil block 2 and the pipe block 3) can be shared. In addition, by making the output from this sensor device a linear output, it is possible to constantly monitor the movement of the detection target object, and as a result, it is possible to predict the movement direction of the detection target object. Furthermore, by supporting the coil bobbin 20 at both ends in the longitudinal direction (the winding axis direction of the detection coil 21), the parallelism between the detection coil 21 and the conductive cylinder 31 is ensured, and the gap between the two is secured. Variation of the coil can be suppressed, and the linearity of the coil output can be secured.
なお、本実施形態では、検出コイル 2 1および導電性筒体 3 1を各 2個ずつ(すなわち、 検出手段を 2組) 設けているが、 これらの個数は本実施形態に限定されるものではなく、 例えば 1個ずつでもいいし、 3個以上であってもよい。 但し、 検出コイル 2 1と導電性筒 体 3 1の個数は同数であることを要する。 また、 可動体 3 0の可動範囲は取着される検出 対象物体に応じて適宜設定すればよく、 さらに装置の形状についても直線上の位置が検出 できるものであれば他の形状でもよい。  In this embodiment, two detection coils 21 and two conductive cylinders 31 are provided (that is, two sets of detection means), but the number of these is not limited to this embodiment. There may be one, for example, or three or more. However, the number of detection coils 21 and the number of conductive cylinders 31 need to be the same. Further, the movable range of the movable body 30 may be set as appropriate according to the detection target object to be attached, and the shape of the apparatus may be other shapes as long as the position on the straight line can be detected.
(実施形態 2 )  (Embodiment 2)
図 4は実施形態 2のセンサ装置の分解斜視図であり、 実施形態 1では検出対象物体の変 位方向が 1方向である場合について説明したが、 本実施形態では検出対象物体の変位方向 が 2方向、すなわち検出対象物体が平面上を変位する場合のセンサ装置について説明する。 なお、 その他の基本構成については実施形態 1と同様であり、 同一の構成要素には同一の 符号を付して説明は省略する。 また、 図 4〜図 6では、 コネクタ接続部およびコネクタ端 子の図示を省略しているが、 実際には検出対象物体の変位に比例した位置信号がコネクタ 端子を介して外部機器 (図示せず) に出力されるように構成されている。 本実施形態のセンサ装置は、 図 4に示すように 4組のコイルブロック 2と、 2組のパイ プブロック 3と、 制御基板 (信号出力手段) 4と、 これらを収納するためのケース 1とを 備えている。 FIG. 4 is an exploded perspective view of the sensor device according to the second embodiment. In the first embodiment, the case where the displacement direction of the detection target object is one direction has been described, but in this embodiment, the displacement direction of the detection target object is two. A sensor device when the direction, that is, the detection target object is displaced on a plane will be described. Other basic configurations are the same as those in the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted. In addition, in FIGS. 4 to 6, illustration of the connector connection portion and the connector terminal is omitted, but in reality, a position signal proportional to the displacement of the detection target object is transmitted to the external device (not shown) via the connector terminal. ). As shown in FIG. 4, the sensor device of the present embodiment includes four sets of coil blocks 2, two sets of pipe blocks 3, a control board (signal output means) 4, and a case 1 for storing them. It is equipped with.
ケース 1は、 一面 (図 4中の前面) が開口する矩形箱状のケース本体 1 0と、 ケース本 体 1 0の開口を閉塞するように当該ケース本体 1 0に被着されるカバ一 1 1とで構成され ている。 ケース本体 1 0の底面中央 (図 4中の後面) には矩形状の開口窓 1 O cが開口し ており、 この開口窓 1 O cの開口端縁には、 前方 (カバ一 1 1側) に突出するガイドリブ 1 0 aが 4辺に沿ってそれぞれ設けられている。 ここにおいて、 対向する 2つのガイドリ ブ 1 O a , 1 O aは、 それぞれ同じ高さ寸法 (ケース本体 1 0からの突出寸法) に設定さ れており、 且つ隣接するガイドリブ 1 O a , 1 0 aは互いに異なる高さ寸法に設定されて いる。  Case 1 has a rectangular box-shaped case body 10 whose one side (front surface in FIG. 4) is open, and a cover 1 which is attached to case body 10 so as to close the opening of case body 10. It consists of 1. A rectangular opening window 1 O c is opened at the center of the bottom of the case body 10 (the rear face in FIG. 4). The opening edge of the opening window 1 O c has a front (cover 1 1 side). The guide ribs 10 a projecting to) are provided along the four sides. Here, the two opposing guide ribs 1 O a, 1 O a are set to the same height dimension (projection dimension from the case body 10), and adjacent guide ribs 1 O a, 10 a are set to different height dimensions.
カバ一 1 1は、 ケース本体 1 0と同様に合成樹脂成形品であって、 ケース本体 1 0の開 口寸法と略同寸法に設定されており、 接着あるいは超音波溶接などの方法でケース本体 1 0に取り付けられるようになつている。 また、 カバ一 1 1の中央部には矩形状の開口窓 1 1 aが開口しており、 この開口窓 1 1 aの開口端縁には、 後方 (ケース本体 1 0側) に突 出するリブ 1 1 bが 4辺に沿ってそれぞれ設けられている。 ここにおいて、 対向する 2つ のリブ 1 1 b , 1 1 bは、 それぞれ同じ高さ寸法 (カバ一 1 1からの突出寸法) に設定さ れており、 且つ隣接するリブ 1 1 b , 1 1 bは互いに異なる高さ寸法に設定されている。 そして、 カバ一 1 1は、 相対的に高さ寸法の小さいリブ 1 1 b , 1 1 bがケース本体 1 0 側の相対的に高さ寸法の大きいガイドリブ 1 O a , 1 0 aに対向するようにしてケース本 体 1 0に被着される。 ここに、 上記のリブ 1 1 bは、 実施形態 1と同様に、 後述するパイ プブロック 3の可動体 3 0に当接し、 当該可動体 3 0のがたつきを防止するためのもので ある。  Cover 1 1 is a synthetic resin molded product, similar to case body 10, and is set to approximately the same dimension as the opening dimension of case body 10, and the case body can be bonded or ultrasonically welded. Can be attached to 1 0. Further, a rectangular opening window 1 1 a is opened at the center of the cover 1 1 1, and the opening edge of the opening window 1 1 a protrudes rearward (case body 10 side). Ribs 1 1 b are provided along the four sides. Here, the two opposing ribs 1 1 b and 1 1 b are set to the same height (projecting dimension from the cover 1 1), and adjacent ribs 1 1 b and 1 1 b are set to different height dimensions. The cover 1 1 has the ribs 1 1 b and 1 1 b having relatively small heights opposed to the guide ribs 1 O a and 10 a having relatively large heights on the case body 10 side. In this way, it is attached to the case body 10. Here, as in the first embodiment, the rib 11 b is in contact with a movable body 30 of a pipe block 3 to be described later, and prevents the movable body 30 from rattling. .
コイルブロック 2は、 コイルポビン 2 0と、 コイルポビン 2 0の巻胴部 2 0 aに巻回さ れる検出コイル 2 1と、 検出コイル 2 1の両端と電気的に接続される一対のコイル端子 2 2 , 2 2と、 コイルホルダ一 2 3とで構成される。 各コイルボビン 2 0は、 コイルホルダ 一 2 3によって一端側がケース本体 1 0に支持されるとともに、 コイルボビン 2 0の他端 側に設けたコイル端子 2 2 , 2 2が制御基板 4に接続されることで他端側も支持されるよ うになつている。 なお、 各コイルブロック 2は、 その長手方向がケース本体 1 0の 4辺に 沿うようにしてそれぞれ配置される (図 5 ( b ) および図 6 ( a ) 参照)。 ここに、 本実施 形態では、 実施形態 1と同様に、 コイル端子 2 2 , 2 2と、 コイルホルダ一 2 3とで支 持手段が構成されている。  The coil block 2 includes a coil pobbin 20, a detection coil 2 1 wound around the winding body 20 a of the coil pobbin 20, and a pair of coil terminals 2 2 electrically connected to both ends of the detection coil 2 1. , 2 2 and coil holder 1 2 3. Each coil bobbin 20 is supported by the case body 10 at one end by the coil holder 1 3 and the coil terminals 2 2 and 2 2 provided at the other end of the coil bobbin 20 are connected to the control board 4 Thus, the other end is also supported. Each coil block 2 is arranged so that its longitudinal direction is along the four sides of the case body 10 (see FIG. 5 (b) and FIG. 6 (a)). Here, in the present embodiment, as in the first embodiment, the coil terminals 2 2, 2 2 and the coil holder 23 3 constitute a supporting means.
パイプブロック 3は、 実施形態 1と同様に可動体 3 0と、 導電性筒体 3 1 , 3 1とで構 成される。 可動体 3 0は、 例えば合成樹脂成形品であって、 横長の矩形板状の可動体本体 3 0 aの長手方向における両端には、 筒状の保持体 3 O b , 3 0 bがー体に設けられてい る。 そして、 これらの保持体 3 O b , 3 O bは、 それぞれ導電性筒体 3 1の長手方向にお ける中間部で当該導電性筒体 3 1を保持している (図 4参照)。また、可動体本体 3 0 aの 中央部には、 長円形状の揷通孔 30 dが設けられており、 シフトレバーのような検出対象 物体 (図示せず) の一端側がこの揷通孔 30 d内を移動自在に配置されることになる。 す なわち、 この揷通孔 30 dが 1方向における検出対象物体の可動範囲となる。 さらに、 可 動体本体 30 aの下面 (ケース本体 1 0の底面と対向する面) には、 ガイドリブ 1 0 a, 1 0 aとそれぞれ係合するガイド溝 30 c, 30 cが設けられている (図 6 (b) および 図 6 (c) 参照)。 ここに、 本実施形態では、 実施形態 1と同様にガイドリブ 1 O a, 1 0 aと、ガイド溝 30 c, 30 cと、 リブ 1 1 b, 1 1 bとでガイド手段が構成されている。 また、 2つのコイルブロック 2, 2と、 1つのパイプブロック 3とで 1つの検出部が構成 され、 本実施形態では 2組の検出部を備えている。 なお、 導電性筒体 3 1については実施 形態 1と同様であるから、 ここでは説明を省略する。 The pipe block 3 includes a movable body 30 and conductive cylinders 3 1 and 3 1 as in the first embodiment. The movable body 30 is, for example, a synthetic resin molded product. At both ends in the longitudinal direction of a horizontally long rectangular plate-shaped movable body main body 30 a, cylindrical holding bodies 3 O b and 30 b Is provided. These holding bodies 3 O b and 3 O b hold the conductive cylinder 31 at the intermediate portion in the longitudinal direction of the conductive cylinder 31 (see FIG. 4). In addition, the movable body 3 0 a An oval through hole 30d is provided in the center, and one end side of a detection target object (not shown) such as a shift lever is movably disposed in the through hole 30d. It will be. In other words, the through hole 30 d is a movable range of the detection target object in one direction. Furthermore, guide grooves 30 c and 30 c that engage with the guide ribs 10 a and 10 a are provided on the lower surface of the movable body 30 a (the surface facing the bottom surface of the case body 10) ( (See Figure 6 (b) and Figure 6 (c)). Here, in the present embodiment, the guide means is constituted by the guide ribs 1 O a, 10 a, the guide grooves 30 c, 30 c, and the ribs 1 1 b, 1 1 b as in the first embodiment. . In addition, one detector is constituted by the two coil blocks 2 and 2 and one pipe block 3, and in this embodiment, two sets of detectors are provided. Since the conductive cylinder 31 is the same as that of the first embodiment, the description thereof is omitted here.
制御基板 4は、 矩形板状のプリント基板 40からなリ、 プリント基板 40の中央部には 開口窓 40 aが開口している。 なお、 その他の構成は実施形態 1と同様であるから、 ここ では説明を省略する。  The control board 4 is made of a rectangular board-like printed board 40, and an opening window 40a is opened at the center of the printed board 40. Since other configurations are the same as those of the first embodiment, description thereof is omitted here.
次に、 本センサ装置の組立手順について説明する。 なお、 以下の説明では、 各コイルブ ロック 2およびパイプブロック 3が予め組み立てられているものとして説明する。 まず、 巻胴部 20 aに検出コイル 21が巻回された各コイルボビン 20をそれぞれ対応する導電 性筒体 3 1に揷通させた後、 各コイルボビン 20の端部にそれぞれコイルホルダー 23を 取り付け、一方の検出部を組み立てる。また、同様にしてもう一方の検出部も組み立てる。 その後、 各コイルブロック 2がそれぞれケース本体 1 0の対向する 2辺に沿うようにして 一方の検出部をケース本体 1 0に収納し、 さらに各コイルブロック 2がそれぞれケース本 体 1 0の残りの 2辺に沿うようにしてもう一方の検出部をケース本体 1 0に収納する。 そ の結果、 両検出部は互いに異なる高さ位置に配置され、 さらに両検出部の可動体 30の移 動方向は互いに直交する方向に設定される (図 5 (b) および図 6 (a) 参照)。 なお、 各 コイルホルダ一 23は、 実施形態 1と同様に、 それぞれ接着あるいは超音波溶接などの方 法でケース本体 1 0に固着される。 さらに、 制御基板 4をケース本体 1 0の開口を閉塞す るようにしてケース本体 1 0に収納し、 各コイル端子 22をそれぞれ制御基板 4に半田固 定する (図 6 (b)、 図 6 (c) および図 6 (d) 参照)。 そして最後に、 ケース本体 1 0 の開口を閉塞する形でカバ一 1 1をケ一ス本体 1 0に被着すると、 センサ装置の組み立て が完了する (図 5 (a) 参照)。 ここにおいて、 本センサ装置に検出対象物体を取り付けた 状態では、 互いに直交する形で配置された可動体 30, 30の両揷通孔 30 d, 30 dに 検出対象物体の一端部が揷通された状態であり、 当該検出対象物体は両揷通孔 30 d, 3 0 dに沿って移動することになる。  Next, the assembly procedure of the sensor device will be described. In the following description, it is assumed that each coil block 2 and pipe block 3 are assembled in advance. First, after passing the coil bobbins 20 each having the detection coil 21 wound around the winding body 20a through the corresponding conductive cylinders 31, the coil holders 23 are respectively attached to the ends of the coil bobbins 20. Assemble one detector. Similarly, the other detection unit is assembled. After that, each detector block is accommodated in the case body 10 so that each coil block 2 is along the two opposite sides of the case body 10, and each coil block 2 is further left in the case body 10. The other detector is housed in the case body 10 along the two sides. As a result, the two detection units are arranged at different height positions, and the moving direction of the movable body 30 of both detection units is set to a direction orthogonal to each other (FIGS. 5B and 6A). reference). Each coil holder 23 is fixed to the case main body 10 by a method such as bonding or ultrasonic welding as in the first embodiment. Further, the control board 4 is accommodated in the case body 10 so that the opening of the case body 10 is closed, and each coil terminal 22 is soldered to the control board 4 (FIGS. 6B and 6). (See (c) and Figure 6 (d)). Finally, when the cover 11 is attached to the case body 10 so as to close the opening of the case body 10, the assembly of the sensor device is completed (see FIG. 5A). Here, in a state where the detection target object is attached to the sensor device, one end of the detection target object is passed through the through holes 30 d and 30 d of the movable bodies 30 and 30 that are arranged orthogonal to each other. In other words, the detection target object moves along both through holes 30 d and 30 d.
なお、 本実施形態でも実施形態 1と同様に、 可動体 30の各ガイド溝 30 c. 30 cが それぞれ対応するケース本体 1 0のガイドリブ 1 0 a, 1 0 aと係合し、 またカバー 1 1 のリブ 1 1 b, 1 1 bが可動体 30の上面に当接している。 したがって、 これらのガイド リブ 1 0 a, 1 0 a、 ガイド溝 30 c, 30 cおよびリブ 1 1 b, 1 1 b (ガイド手段) を設けることによって、 可動体 30を移動させる際にガイド手段に沿ってスムーズに移動 させることができ、 また振動などの外乱によるがたつきによって生じる検出コイル 2 1の 出力変動を抑えることができる。 In this embodiment, as in the first embodiment, each guide groove 30 c. 30 c of the movable body 30 engages with the corresponding guide rib 10 0 a, 10 0 a of the corresponding case body 10, and the cover 1 1 ribs 1 1 b and 1 1 b are in contact with the upper surface of the movable body 30. Therefore, by providing the guide ribs 10 a, 10 a, the guide grooves 30 c, 30 c and the ribs 1 1 b, 1 1 b (guide means), the guide means can be used when the movable body 30 is moved. Move smoothly along In addition, fluctuations in the output of the detection coil 21 caused by rattling due to disturbances such as vibration can be suppressed.
続けて、 本センサ装置の動作について説明する。 両可動体 3 0 , 3 0の揷通孔 3 0 d , 3 0 d内に揷通されたシフトレバーのような検出対象物体を所定の範囲内 (本実施形態で はカバ一 1 1の開口窓 1 1 aの範囲内) で移動させると、 検出対象物体の移動に連動して 各可動体 3 0が互いに直交する方向に移動する。 ここで、 一方の検出部では、 可動体 3 0 に支持された両導電性筒体 3 1 , 3 1が移動することによって、 各導電性筒体 3 1内に挿 通される検出コイル 2 1の挿入量が変化し、 その結果各検出コイル 2 1のインダクタンス が変化する。 そして、 制御基板 4では、 コイル端子 2 2 , 2 2を介して各検出コイル 2 1 のィンダクタンス変化を検出し、 検出した各ィンダクタンス変化に基づいて検出対象物体 の変位に比例した位置情報を算出する。 また、 制御基板 4は、 もう一方の検出部について も同様にして、 検出対象物体の変位に比例した位置情報を算出する。 その後、 制御基板 4 では、 これらの位置情報から検出対象物体の X方向の位置および Y方向の位置を示す位置 信号を作成し、 作成した位置信号をコネクタ接続部 (図示せず) を介して外部機器に出力 する。  Next, the operation of this sensor device will be described. The object to be detected such as a shift lever passed through the through holes 30 d, 30 d of both movable bodies 30, 30 is within a predetermined range (in this embodiment, the opening of the cover 11 1 If the object is moved within the range of the window 11a, the movable bodies 30 move in directions orthogonal to each other in conjunction with the movement of the detection target object. Here, in one of the detection units, the detection coil 21 inserted into each of the conductive cylinders 31 by moving the two conductive cylinders 31 and 31 supported by the movable body 30. As a result, the inductance of each detection coil 21 changes. The control board 4 detects the inductance change of each detection coil 2 1 via the coil terminals 2 2 and 2 2, and provides position information proportional to the displacement of the detection target object based on each detected inductance change. calculate. Similarly, the control board 4 calculates position information proportional to the displacement of the detection target object for the other detection unit. After that, the control board 4 creates a position signal indicating the position in the X direction and the position in the Y direction of the object to be detected from these pieces of position information, and sends the created position signal to the outside via a connector connection (not shown). Output to the device.
而して、 本実施形態によれば、 検出コイル 2 1, 2 1と、 各検出コイル 2 1 , 2 1に対 応ずる導電性筒体 3 1 , 3 1とで構成される検出部を 2組備え、 一方の検出部の導電性筒 体 3 1 , 3 1の移動方向と、 他方の検出部の導電性筒体 3 1 , 3 1の移動方向とを互いに 直交する方向に設定することによって、 各検出部の検出結果から直交する 2方向の位置検 出が可能であり、その結果平面上の位置検出が可能なセンサ装置を提供することができる。 なお、 本実施形態では、 各検出部を構成する検出コイル 2 1および導電性筒体 3 1が各 2個ずつの場合を例に説明したが、これらの個数は本実施形態に限定されるものではなく、 例えば 1個ずつでもいいし、 3個以上であってもよい。 但し、 検出コイル 2 1と導電性筒 体 3 1の個数は同数であることを要する。 また、 本実施形態においても、 可動体 3 0の移 動を規制するためのストッパーを設けてもよく、 実施形態 1と同様に導電性筒体 3 1の破 損を防止することができる。 さらに、 可動体 3 0の可動範囲は取着される検出対象物体に 応じて適宜設定すればよく、 また装置の形状についても平面上の位置を検出できるもので あれば他の形状でもよい。  Thus, according to the present embodiment, two sets of detection units each including the detection coils 2 1 and 21 and the conductive cylinders 3 1 and 3 1 corresponding to the detection coils 2 1 and 2 1 are provided. By setting the movement direction of the conductive cylinders 3 1, 3 1 of one detection unit and the movement direction of the conductive cylinders 3 1, 3 1 of the other detection unit to directions orthogonal to each other, It is possible to provide a sensor device that can detect positions in two orthogonal directions from the detection results of each detector, and as a result, can detect the position on a plane. In the present embodiment, the case where there are two detection coils 21 and two conductive cylinders 31 constituting each detection unit has been described as an example. However, these numbers are limited to the present embodiment. Instead, for example, it may be one by one, or three or more. However, the number of detection coils 21 and the number of conductive cylinders 31 need to be the same. Also in the present embodiment, a stopper for restricting the movement of the movable body 30 may be provided, and damage to the conductive cylindrical body 31 can be prevented as in the first embodiment. Furthermore, the movable range of the movable body 30 may be appropriately set according to the detection target object to be attached, and the shape of the apparatus may be other shapes as long as the position on the plane can be detected.
(実施形態 3 )  (Embodiment 3)
以下、 実施形態 1のセンサ装置を用いた入力装置、 並びに当該入力装置を用いた遊技球 発射装置の実施形態について説明する。  Hereinafter, an embodiment of an input device using the sensor device of Embodiment 1 and a game ball launching device using the input device will be described.
この種の遊技球発射装置は、 主に電動式パチンコ台におけるパチンコ玉 (遊技球) の発 射装置に用いられる。 図 7は本実施形態の遊技球発射装置を示すブロック図である。 この 遊技球発射装置は、 入力装置 W、 タツチセンサ 150、 制御部 D、 発射部 Xで構成される。 発射部 Xは、 例えばソレノィドを用いてパチンコ玉に打撃力を印加して発射するものや、 電磁石を用いてパチンコ玉に電磁力を印加して発射するものである。 また制御部 Dは、 入 力装置 Wから入力する操作入力に応じて発射部 Xを駆動するとともに発射部 Xからバチン コ玉に印加される外力 (ソレノイドの打撃力や電磁石の電磁力) を調整するものである。 ただし、 このような発射部 X並びに制御部 Dについては従来周知であるから詳細な構成の 図示並びに説明は省略する。 This type of game ball launcher is mainly used as a launcher for pachinko balls (game balls) on electric pachinko machines. FIG. 7 is a block diagram showing the game ball launching apparatus of the present embodiment. This game ball launching device includes an input device W, a touch sensor 150, a control unit D, and a launching unit X. For example, the launch unit X is one that applies a striking force to a pachinko ball using a solenoid and fires, or an electromagnetic force that is applied to a pachinko ball using an electromagnet. In addition, the control unit D drives the launch unit X according to the operation input input from the input device W, and This adjusts the external force applied to the ball (the impact force of the solenoid and the electromagnetic force of the electromagnet). However, since such launching part X and control part D are well known in the art, the detailed illustration and description of the configuration will be omitted.
入力装置 Wは、 図 7に示すように実施形態 1のセンサ装置 Sと、 センサ装置 Sから出力 される位置信号を、 後述する操作部 1 10の操作位置に対応した信号レベル (直流電圧) を 有する操作信号に変換する信号処理部 Hとを具備する。 また、 この入力装置 Wは、 図 9 ~ 図 1 1に示すようにケース 100、操作部 1 10、軸 120を具備している。なお、 以下の説明で は図 1 0において入力装置 Wの上下左右及び前後の各方向を定義する。  As shown in FIG. 7, the input device W includes the sensor device S of the first embodiment, the position signal output from the sensor device S, and the signal level (DC voltage) corresponding to the operation position of the operation unit 110 described later. And a signal processing unit H for converting into an operation signal. In addition, the input device W includes a case 100, an operation unit 110, and a shaft 120 as shown in FIGS. In the following description, the vertical and horizontal directions and the front and rear directions of the input device W are defined in FIG.
ケース 100は合成樹脂成形体からなり、 上下方向から見た形状が略台形であり且つ扁平 な箱型に形成されている。 このケース 100は下面が開放された上ケース 101 と、 上面が放 された下ケース 102とを上下方向に結合して構成されている。 上ケース 101の上面には、 左右方向に沿った幅細の溝孔 103が上下方向に貫設されている。  The case 100 is made of a synthetic resin molded body, and is formed in a flat box shape having a substantially trapezoidal shape when viewed from above and below. The case 100 is configured by vertically connecting an upper case 101 whose bottom surface is open and a lower case 102 whose top surface is open. On the upper surface of the upper case 101, a narrow groove 103 extending in the left-right direction is provided in the up-down direction.
センサ装置 Sは実施形態 1で説明した 1方向のみを検出するタイプであって、 上ケース 101 の溝孔 103がカバー 1 1中央の開口窓 1 1 aと上下方向において重なるようにケース 100内に収納される。 なお、 図示は省 B しているが上ケース 101の内底面から 4本のポス が下方へ突設され、 センサ装置 Sのケース本体 1 0側面に突設された 4つの取付片 1 O d がそれぞれ各ボスにねじ止めされることにより、 センサ装置 Sが上ケース 101に固定され る。  The sensor device S is a type that detects only one direction as described in the first embodiment, and the groove 103 of the upper case 101 overlaps with the opening window 1 1a in the center of the cover 1 1 in the vertical direction in the case 100. Stored. Although not shown in the figure, four posts project downward from the inner bottom surface of the upper case 101, and four mounting pieces 1 O d projecting from the case body 10 side surface of the sensor device S are provided. The sensor device S is fixed to the upper case 101 by being screwed to each boss.
操作部 110は、 全体が略角錐台形状であり、 上面に半円筒形の凹部 1 1 1が設けられ且つ 凹部 1 1 1の底面中央にねじ揷通孔 1 12が貫通した合成樹脂成形体からなる。 なお、 操作部 1 10 の表面は導電性を有するコーティング剤 (例えば、 導電性ポリマ一など) でコ一ティ ングされている。  The operation unit 110 is a synthetic resin molded body having a substantially truncated pyramid shape as a whole, provided with a semi-cylindrical recess 11 1 1 on the upper surface, and a screw hole 1 12 passing through the center of the bottom surface of the recess 1 1 1. Become. The surface of the operation unit 110 is coated with a conductive coating agent (for example, a conductive polymer).
軸 120は金属製であって、 円柱形状の軸本体 121 と、 軸本体 121の下端側より下方へ突 出する雄ねじ部 122とが一体に形成されている。 なお、 軸本体 121の上部には上面に開口 したねじ孔 121 aが設けられている。  The shaft 120 is made of metal, and a column-shaped shaft main body 121 and a male screw portion 122 protruding downward from the lower end side of the shaft main body 121 are integrally formed. In addition, a screw hole 121a opened on the upper surface is provided in the upper part of the shaft body 121.
タツチセンサ 150は従来周知の静電容量式のタツチセンサであって、 図 1 0に示すよう に直方体状のパッケージ内に信号処理回路 (センサ回路)が収納されたセンサ本体 151 と、 電極板 152と、 センサ本体 151 と電極板 152を接続する柔軟性のあるリード線 153とを備 えている。電極板 152は円環状の金属板からなり、後述するように中央の孔 152aに軸 120 の雄ねじ部 122が揷通される。 なお、 センサ本体 151は上ケース 101の上底面に固定され る (図 1 1 ( c ) 参照)。  The touch sensor 150 is a conventionally known capacitance type touch sensor, and as shown in FIG. 10, a sensor main body 151 in which a signal processing circuit (sensor circuit) is housed in a rectangular parallelepiped package, an electrode plate 152, The sensor body 151 and a flexible lead wire 153 for connecting the electrode plate 152 are provided. The electrode plate 152 is made of an annular metal plate, and the male screw portion 122 of the shaft 120 is passed through the central hole 152a as will be described later. The sensor body 151 is fixed to the upper bottom surface of the upper case 101 (see FIG. 11 (c)).
入力装置おば、 以下のような手順で組み立てられる。 まず、 操作部 110のねじ挿通孔 1 1 2に揷通されたビス 130を軸本体 121のねじ孔 121 aに螺合することで操作部 1 10と軸 120 を固定する。 そして、 上ケース 101上面の溝孔 103並びにセンサ装置 Sの開口窓 1 1 aに 軸 120を挿通し、軸 120の雄ねじ部 122をタツチセンサ 150の電極板 152の孔 152aに揷通 した後、当該雄ねじ部 122にナツト 131を螺合する。最後に、上ケース 101 と下ケース 102 を結合することにより、入力装置 Wの組立が完了する (図 9及び図 1 1参照)。 なお、 図示 は省略しているが、 ケース 100内に信号処理部 Hが収納される。 The input device is assembled in the following procedure. First, the operation unit 110 and the shaft 120 are fixed by screwing the screw 130 threaded through the screw insertion hole 1 1 2 of the operation unit 110 into the screw hole 121 a of the shaft body 121. Then, the shaft 120 is inserted into the groove 103 on the upper surface of the upper case 101 and the opening window 11a of the sensor device S, and the male screw portion 122 of the shaft 120 is passed through the hole 152a of the electrode plate 152 of the touch sensor 150. A nut 131 is screwed into the male threaded portion 122. Finally, by assembling the upper case 101 and the lower case 102, the assembly of the input device W is completed (see FIG. 9 and FIG. 11). In addition, illustration Is omitted, but the signal processing unit H is accommodated in the case 100.
ここで、 軸 120並びにビス 130を介して操作部 1 10表面の導電性コ一ティング層とタツ チセンサ 150の電極板 152とが電気的に接続されるので、 遊技者の手が操作部 110に触れ ていることをタツチセンサ 150で検出することができる。 なお、 タツチセンサ 150は遊技 者の手が操作部 1 10に触れているときにだけ制御部 Dに検出信号を出力する。  Here, since the conductive coating layer on the surface of the operation unit 110 and the electrode plate 152 of the touch sensor 150 are electrically connected via the shaft 120 and the screw 130, the player's hand is connected to the operation unit 110. Touch sensor 150 can detect touching. The touch sensor 150 outputs a detection signal to the control unit D only when the player's hand is touching the operation unit 110.
次に、 本実施形態の入力装置 W並びに遊技球発射装置の動作を説明する。 遊技者が操作 部 1 10を操作 (平行移動) するとその操作量 (変位位置) がセンサ装置 Sで検出され、 当 該操作量 (変位位置) に応じた信号レベル (直流電圧) の操作信号が入力装置 Wから制御 部 Dに入力される。制御部 Dは、タツチセンサ 150から検出信号が出力されているとき(遊 技者の手が操作部 110に触れているとき) に発射部 Xを駆動し、 タツチセンサ 150から検 出信号が出力されていないとき (遊技者の手が操作部 1 10に触れていないとき) には発射 部 Xを駆動しない。 そして、 タツチセンサ 150から検出信号が出力されていれば、 制御部 Dは入力装置 Wから入力される操作信号の信号レベルが高い (操作部 1 10の操作量が多い) ほど、 パチンコ玉に印加される外力 (打撃力や電磁力) が大きくなるように発射部 Xを駆 動する。  Next, operations of the input device W and the game ball launching device of the present embodiment will be described. When the player operates (translates) the operation unit 1 10, the operation amount (displacement position) is detected by the sensor device S, and an operation signal having a signal level (DC voltage) corresponding to the operation amount (displacement position) is detected. Input to control unit D from input device W. The control unit D drives the launch unit X when the detection signal is output from the touch sensor 150 (when the player's hand is touching the operation unit 110), and the detection signal is output from the touch sensor 150. When there is not (when the player's hand is not touching the operation unit 110), the launching unit X is not driven. If the detection signal is output from the touch sensor 150, the control unit D is applied to the pachinko ball as the signal level of the operation signal input from the input device W is higher (the operation amount of the operation unit 110 is larger). Drive the launcher X so that the external force (striking force and electromagnetic force) increases.
ところで、 遊技球発射装置の特徴として、 発射部 Xがパチンコ玉に印加する外力 (打 撃力や電磁力) は所定の下限値 (ゼロよりも十分に大きい値) 以上である方がよい。 つま リ、 パチンコ玉に印加される外力が前記下限値未満であると、 発射されたパチンコ玉がパ チンコ台の有効な位置まで届かずに無駄になってしまう(パチンコ台に回収されてしまう) からである。 したがって、 発射部 Xからパチンコ玉に印加される外力の大きさは、 操作部 1 10の操作量の下限付近で急激に増大し、 その後は操作部 1 10の操作量の増加に伴って緩 やかに増大することが望ましい。 しかしながら、 センサ装置 Sの検出特性 (パイプブロッ ク 3の変位位置と検出値の対応関係) は上述のような特性になっていない。 そこで本実施 形態の入力装置 Wでは、 センサ装置 Sで検出する操作部 1 10の操作量 (検出値) と制御部 Dに出力する操作信号の信号レベルとの対応関係 (出力特性) を、 信号処理部 Hによる信 号処理によって所望の対応関係 (出力特性) に補正している。  By the way, as a feature of the game ball launching device, it is better that the external force (striking force and electromagnetic force) applied to the pachinko ball by the launching part X is not less than a predetermined lower limit value (a value sufficiently larger than zero). In other words, if the external force applied to the pachinko ball is less than the lower limit, the fired pachinko ball will not reach the effective position of the pachinko machine and will be wasted (collected by the pachinko machine). Because. Therefore, the magnitude of the external force applied to the pachinko ball from the launch unit X increases rapidly near the lower limit of the operation amount of the operation unit 110, and then gradually decreases as the operation amount of the operation unit 110 increases. It is desirable to increase it. However, the detection characteristic of the sensor device S (correspondence between the displacement position of the pipe block 3 and the detection value) does not have the above characteristic. Therefore, in the input device W of the present embodiment, the correspondence (output characteristics) between the operation amount (detected value) of the operation unit 110 detected by the sensor device S and the signal level of the operation signal output to the control unit D is expressed as a signal. Signal processing by processor H corrects the desired correspondence (output characteristics).
例えば、 操作量がゼロの基準位置から操作量が最大となる限界位置まで操作部 1 10を操 作 (平行移動) し、 信号処理部 Hにおいて、 その間のセンサ装置 Sの検出値 (検出信号の 信号レベル) を A Z D変換して検出値データを取得するとともに当該検出値データを操作 部 1 10の操作量(操作信号の信号レベル) と対応付けてメモリ (図示せず)に記憶する (以 下、 この処理をキャリブレーションと呼ぶ。)。 そして、 信号処理部 Hは、 検出値データを 複数の区間に分割するとともにそれぞれの区間における検出値データと操作信号の信号レ ベルとの対応関係が互いに異なる変化率を有したリニアな関係となるように操作信号の信 号レベルをマッビングする。 図 8はマッピングによつて補正された出力特性を示し、 横軸 がセンサ装置 Sの検出値、縦軸が操作信号の信号レベルを表している。例えば、 図 8 ( a ) の出力特性では、 検出値データ Yが 0 ~ Y 1までの区間で操作信号の信号レベルが大きな 傾きでリニアに変化し、 検出値データ Υが Υ 1 ~ Υ 2までの区間で操作信号の信号レベル の傾きが緩やかになリ、 検出値データ Yが Y 2以上の区間で操作信号の信号レベルが一定 になる。 また図 8 ( b ) の出力特性では、 検出値データ Yが Y > 0且つ Y≤Y 3の区間で 操作信号の信号レベルが一定の傾きでリニァに変化し、 検出値データ Υが Υ > Υ 3の区間 で操作信号の信号レベルが一定になる。 さらに図 8 ( c ) の出力特性では、 検出値データ Υが Υ > 0且つ Υ≤ Υ 4の区間で操作信号の信号レベルが一定の傾きでリニァに変化し、 検出値データ Υが Υ > Υ 4の区間で操作信号の信号レベルがより大きな傾きでリニアに変 化する。 なお、 図 8 ( a ) 〜 (c ) に示すような出力特性 (検出値データと操作信号の信 号レベルとの対応関係) が信号処理部 Hのメモリに記憶されている。 For example, the operation unit 110 is operated (translated) from the reference position where the operation amount is zero to the limit position where the operation amount is maximum, and the signal processor H detects the detection value (detection signal of the detection signal) during that time. The detected value data is obtained by performing AZD conversion on the signal level, and the detected value data is stored in a memory (not shown) in association with the operation amount of the operation unit 110 (the signal level of the operation signal) This process is called calibration.) Then, the signal processing unit H divides the detection value data into a plurality of sections, and the correspondence relationship between the detection value data and the signal level of the operation signal in each section has a linear relationship with different rates of change. Map the signal level of the operation signal as follows. FIG. 8 shows the output characteristics corrected by the mapping. The horizontal axis represents the detection value of the sensor device S, and the vertical axis represents the signal level of the operation signal. For example, in the output characteristics shown in Fig. 8 (a), the signal level of the operation signal changes linearly with a large slope when the detected value data Y ranges from 0 to Y1, and the detected value data Υ ranges from Υ1 to Υ2. Signal level of the operation signal in the interval The signal level of the operation signal becomes constant when the detected value data Y is Y 2 or more. In the output characteristics of Fig. 8 (b), the detected signal data level changes to linear with a constant slope when the detected value data Y is Y> 0 and Y≤Y 3, and the detected value data Υ is Υ> Υ The signal level of the operation signal is constant in section 3. Furthermore, in the output characteristics of Fig. 8 (c), the detected signal data Υ changes to linear with a constant slope in the interval where the detected value data Υ is> 0 and 且 つ ≤ Υ 4, and the detected value data Υ is Υ> Υ In section 4, the signal level of the operation signal changes linearly with a larger slope. The output characteristics (correspondence between the detected value data and the signal level of the operation signal) as shown in FIGS. 8 (a) to 8 (c) are stored in the memory of the signal processing unit H.
そして、 信号処理部 Hにおいては、 メモリに記憶されている出力特性を参照してセンサ 装置 Sの検出値データに対応する操作信号の信号レベルのデータを取得し、 当該データを DZ A変換することでアナログの操作信号を制御部 Dに出力する。 これにより、 発射部 X からパチンコ玉に印加される外力の大きさを、 操作部 110の操作量の下限付近では急激に 増大し、 その後は操作部 110の操作量の増加に伴って緩やかに増大させることができる。 なお、 操作部 110の操作量がゼロであっても、 タツチセンサ 150から検出信号が出力され れば直ちに剁御部 Dが発射部 Xを駆動して所定の外力をパチンコ玉に印加するようにして も構わない。  The signal processing unit H obtains the signal level data of the operation signal corresponding to the detection value data of the sensor device S with reference to the output characteristics stored in the memory, and performs DZ A conversion on the data. To output an analog operation signal to the control unit D. As a result, the magnitude of the external force applied to the pachinko ball from the launch unit X increases rapidly near the lower limit of the operation amount of the operation unit 110, and then gradually increases as the operation amount of the operation unit 110 increases. Can be made. Even if the operation amount of the operation unit 110 is zero, as soon as the detection signal is output from the touch sensor 150, the control unit D drives the launch unit X to apply a predetermined external force to the pachinko ball. It doesn't matter.
以上、 本発明の特定の実施例を中心として説明されたが、 本発明の趣旨及び添付された 特許請求の範囲内で多様な変形、 変更又は修正が当該技術分野であり得、 よって、 前述の 説明及び図面は、 本発明の技術思想を限定するわけではなく、 本発明の例示するものと解 釈されるべきである。  While the present invention has been described above with reference to specific embodiments, various changes, modifications, and modifications within the spirit of the present invention and the scope of the appended claims may be included in the technical field. The description and drawings should not be construed as limiting the technical idea of the present invention but should be construed as illustrative of the present invention.

Claims

請求の範囲 The scope of the claims
【請求項 1】  [Claim 1]
巻軸方向が所定の直線方向となるように配置される検出コイルと、 当該検出コィルの筒 内への挿入量が変化するように検出対象物体の変位に応じて前記巻軸方向に移動自在に配 置される導電性筒体と、 当該導電性筒体の変位に応じた検出コイルのィンダクタンス変化 に基づいて検出対象物体の変位に比例した位置信号を出力する信号出力手段とを備えるこ とを特徴とするセンサ装置。  A detection coil arranged so that the winding axis direction is a predetermined linear direction, and freely movable in the winding axis direction according to the displacement of the detection target object so that the amount of insertion of the detection coil into the cylinder changes. A conductive cylinder disposed; and a signal output means for outputting a position signal proportional to the displacement of the object to be detected based on the change in the inductance of the detection coil in accordance with the displacement of the conductive cylinder. A sensor device.
【請求項 2】  [Claim 2]
前記検出コイルおよび導電性筒体は、 1つの移動方向に対してそれぞれ複数配置されて おり、 前記信号出力手段は、 少なくとも何れか 1つの前記検出コイルのインダクタンス変 化に基づいて前記位置信号を出力することを特徴とする請求項 1記載のセンサ装置。  A plurality of the detection coils and conductive cylinders are respectively arranged in one moving direction, and the signal output means outputs the position signal based on an inductance change of at least one of the detection coils. The sensor device according to claim 1, wherein:
【請求項 3】 [Claim 3]
前記検出コィルが巻回され、 当該検出コィルの巻軸方向における両端部が支持手段によ リ支持されるコイルボビンを備えることを特徴とする請求項 1又は 2記載のセンサ装置。  3. The sensor device according to claim 1, further comprising a coil bobbin around which the detection coil is wound, and both ends of the detection coil in the winding axis direction are supported by support means.
【請求項 4】 [Claim 4]
前記検出コイル、 導電性筒体、 信号出力手段、 および、 前記導電性筒体を支持し当該導 電性筒体とともに移動自在に配置される可動体が少なくとも収納されるケースを備え、 前 記可動体およびケースは、 前記可動体の移動時に当該可動体をガイドするガイド手段をそ れぞれ備えることを特徴とする請求項 1 ~ 3の何れか 1項に記載のセンサ装置。  The detection coil, the conductive cylinder, the signal output means, and a case that accommodates at least a movable body that supports the conductive cylinder and is movably disposed together with the conductive cylinder, 4. The sensor device according to claim 1, wherein the body and the case each include guide means for guiding the movable body when the movable body moves.
【請求項 5】  [Claim 5]
前記ケースは、 前記可動体が当接することによって当該可動体の移動を規制するストツ パーを備えることを特徴とする請求項 4記載のセンサ装置。  5. The sensor device according to claim 4, wherein the case includes a stopper that restricts the movement of the movable body when the movable body abuts.
【請求項 6】  [Claim 6]
前記検出コイルと、 当該検出コィルに対応する前記導電性筒体とで構成される検出部を 2組備え、 各検出部は、 前記検出コイルに対する前記導電性筒体の移動方向が互いに交差 するように配置されることを特徴とする請求項 1〜5の何れか 1項に記載のセンサ装置。  Two sets of detection units each including the detection coil and the conductive cylinder corresponding to the detection coil are provided so that the movement directions of the conductive cylinder with respect to the detection coil intersect each other. The sensor device according to any one of claims 1 to 5, wherein the sensor device is disposed on the surface.
【請求項 7】 [Claim 7]
請求項 1 ~ 6の何れかのセンサ装置と、 人の手で操作されてセンサ装置の導電性筒体を 変位させる操作部と、 センサ装置の信号出力手段から出力される位置信号を、 操作部の変 位量や位置に対応した操作信号に変換する信号処理部とを備えたことを特徴とする入力装 置。  A sensor device according to any one of claims 1 to 6, an operation unit that is operated by a human hand to displace the conductive cylindrical body of the sensor device, and a position signal output from a signal output means of the sensor device. An input device comprising: a signal processing unit that converts an operation signal corresponding to the amount and position of the displacement.
【請求項 8】  [Claim 8]
前記信号処理部は、 導電性筒体の位置と一対一で対応した信号レベルの操作信号を出力 するものであって、 前記位置を複数の区間に分割するとともにそれぞれの区間における位 置と操作信号の信号レベルとの対応関係が互いに異なる変化率を有したリニアな関係で表 されることを特徴とする請求項 7記載の入力装置。 【請求項 9】 The signal processing unit outputs an operation signal having a signal level one-to-one corresponding to the position of the conductive cylinder, and divides the position into a plurality of sections and positions and operation signals in the respective sections. 8. The input device according to claim 7, wherein the correspondence relationship with the signal level is expressed by a linear relationship having different rates of change. [Claim 9]
請求項 7又は 8の入力装置と、 遊技球に外力を印加して発射する発射部と、 入力装置か ら入力される操作信号の信号レベルに応じて発射部から遊技球に印加される外力の大きさ を制御する制御部とを有することを特徴とする遊技球発射装置。  The input device according to claim 7 or 8, a launching unit that fires by applying external force to the game ball, and an external force that is applied from the launching unit to the game ball according to a signal level of an operation signal input from the input device. A game ball launcher comprising: a control unit that controls a size of the game ball launcher.
PCT/IB2010/001567 2010-01-19 2010-06-29 Sensor device, input device, and game ball firing device WO2011089466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010009406A JP5635777B2 (en) 2009-04-28 2010-01-19 Sensor device, input device, game ball launch device
JP2010-009406 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011089466A1 true WO2011089466A1 (en) 2011-07-28

Family

ID=44307697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/001567 WO2011089466A1 (en) 2010-01-19 2010-06-29 Sensor device, input device, and game ball firing device

Country Status (1)

Country Link
WO (1) WO2011089466A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273001A (en) * 1987-04-30 1988-11-10 Makome Kenkyusho:Kk Displacement measuring instrument
JPH03165215A (en) * 1989-10-04 1991-07-17 Sarcos Group Mechano-electric displacement transducer
JPH1119283A (en) * 1997-07-03 1999-01-26 Sankyo Kk Pachinko game machine
JP2003154869A (en) * 2001-11-22 2003-05-27 Tokai Rika Co Ltd Shift device
JP2008076214A (en) * 2006-09-21 2008-04-03 Yamaha Corp Slide operation device
JP2008292376A (en) * 2007-05-25 2008-12-04 Panasonic Electric Works Co Ltd Displacement sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273001A (en) * 1987-04-30 1988-11-10 Makome Kenkyusho:Kk Displacement measuring instrument
JPH03165215A (en) * 1989-10-04 1991-07-17 Sarcos Group Mechano-electric displacement transducer
JPH1119283A (en) * 1997-07-03 1999-01-26 Sankyo Kk Pachinko game machine
JP2003154869A (en) * 2001-11-22 2003-05-27 Tokai Rika Co Ltd Shift device
JP2008076214A (en) * 2006-09-21 2008-04-03 Yamaha Corp Slide operation device
JP2008292376A (en) * 2007-05-25 2008-12-04 Panasonic Electric Works Co Ltd Displacement sensor

Similar Documents

Publication Publication Date Title
US11360321B2 (en) Lens moving apparatus
US11237352B2 (en) Lens moving apparatus and camera module and optical device including the same
US20190025926A1 (en) Feedback Systems for Input Devices
US10305359B2 (en) Anti-tilt electromagnetic motor
KR20150042681A (en) Camera module and portable electronic device including the same
JP6353504B2 (en) Electromagnetic drive module and camera device using the same
KR20140002381A (en) Camera module
JP6836923B2 (en) Electromagnetic drive assembly and lens drive device using it
US11303787B2 (en) Camera module having a reinforcing portion coupling a surface of a first circuit board and a terminal of a second circuit board
CN105137696A (en) Anti-shake apparatus of camera module and camera module
CN109425948B (en) Lens module
US11283974B2 (en) Lens driving unit, and camera module and optical apparatus including same
JP2006073481A5 (en)
JP5635777B2 (en) Sensor device, input device, game ball launch device
WO2011089466A1 (en) Sensor device, input device, and game ball firing device
EP3805831A2 (en) Optical element driving mechanism
US8210860B2 (en) Connector and device including the same
KR20230116759A (en) Lens moving unit and camera module having the same
JP2010153199A (en) Multidirectional input unit
KR102385409B1 (en) Lens moving unit
US7550896B1 (en) Piezoelectric actuator system with position detection function and method thereof
JP2005114641A (en) Acceleration sensor
KR102527721B1 (en) Actuator of camera module
JP6400795B1 (en) Printed circuit board
US20150138664A1 (en) Fpc assembly and disk drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843788

Country of ref document: EP

Kind code of ref document: A1