WO2011088747A1 - 电能增生装置 - Google Patents

电能增生装置 Download PDF

Info

Publication number
WO2011088747A1
WO2011088747A1 PCT/CN2011/000088 CN2011000088W WO2011088747A1 WO 2011088747 A1 WO2011088747 A1 WO 2011088747A1 CN 2011000088 W CN2011000088 W CN 2011000088W WO 2011088747 A1 WO2011088747 A1 WO 2011088747A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
rechargeable battery
electric energy
electrically connected
power
Prior art date
Application number
PCT/CN2011/000088
Other languages
English (en)
French (fr)
Inventor
单专年
Original Assignee
Shan Zhuannian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010002685A external-priority patent/CN101789678A/zh
Priority claimed from CN201110006465A external-priority patent/CN102306939A/zh
Application filed by Shan Zhuannian filed Critical Shan Zhuannian
Publication of WO2011088747A1 publication Critical patent/WO2011088747A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a charging device for a rechargeable battery. Background technique
  • a battery also called a secondary battery, is an electrical device that stores the obtained electrical energy in the form of chemical energy and converts chemical energy into electrical energy.
  • the battery is an important electrical component.
  • the existing battery has a relatively short service life, and the battery used in an electric vehicle has a service life of only a few years.
  • the battery also has high requirements in terms of maintenance and maintenance. If the maintenance is improper, the battery is easily damaged, and the service life is greatly shortened, thereby increasing the user's use cost, and the used battery is easily polluted by the environment. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a power accumulating device having a simple structure and a small volume, which is capable of charging a rechargeable battery of an electric appliance.
  • the technical solution adopted by the present invention is: a power accumulating device, which is used together with a rechargeable battery as a power source of the electric energy accelerating device;
  • the electric energy accelerating device includes a storage circuit, a power accumulating circuit, and an oscillating circuit , boost circuit and rectification filter circuit;
  • An electric energy accelerating circuit comprising at least one set of magnetic core coils and a rectifying circuit respectively electrically connected to the output ends of the respective sets of magnetic core coils; each set of magnetic core coils comprising a primary coil generating an alternating magnetic field and an inductive primary coil generating an intersection a secondary coil that generates an induced current by changing a magnetic field, wherein the primary coils of each set of core coils are sequentially connected in series, wherein the input ends of the first set of primary coils are electrically connected to the positive pole of the rechargeable battery; the input ends of the respective rectifier circuits are corresponding to The secondary coil of the magnetic core coil is electrically connected, and the output end is electrically connected in parallel with the energy storage circuit; the oscillation circuit is electrically connected to the output end of the last set of primary coils of the electric energy accelerating circuit; the boosting circuit, the input thereof The end is electrically connected to the output end of the oscillating circuit, and is configured to boost the voltage outputted by the oscillating circuit and output the voltage, and the
  • the energy storage circuit is a capacitor, and the output ends of each of the rectifying circuits of the electric energy accelerating circuit are connected to both ends of the capacitor.
  • the number of magnetic core coils is four.
  • the above-mentioned electric power accelerating device further includes a one-way conducting device that allows only current to flow from the positive pole of the rechargeable battery to the electric energy accelerating circuit, and the input end of the one-way conducting device is electrically connected to the positive pole of the rechargeable battery The output is electrically connected to the input of the first set of primary coils.
  • the one-way pass device is a diode.
  • the above-mentioned electric energy accelerating device further includes a voltage limiting protection circuit for cutting off power supply of the rechargeable battery to the energy storage circuit when the output voltage of the rechargeable battery is higher than a set value, and the voltage limiting protection circuit is connected in series Between the anode of the rechargeable battery and the input of the unidirectional device.
  • the boosting circuit is a step-up transformer, the primary coil of the step-up transformer is connected to the output end of the oscillating circuit, and the secondary coil is connected to the input end of the rectifying and filtering circuit.
  • the oscillating circuit is an integrated circuit or a circuit composed of discrete components.
  • the oscillating circuit outputs a sine wave AC signal with a frequency of 66 kHz.
  • the beneficial effects of the invention are simple structure, small volume and high electric energy utilization rate.
  • the self-charging of the rechargeable battery can be realized, which not only supplements the energy consumed, but also can be added to the original s level.
  • FIG. 1 is a schematic block diagram of a power regeneration device in accordance with an embodiment of the present invention.
  • FIG. 2 is a circuit schematic diagram of a power regeneration device in accordance with an embodiment of the present invention.
  • the power proliferation device of the present invention is used in combination with a rechargeable battery using an electric appliance,
  • the utility model comprises: a storage circuit 1, a power accumulating circuit 2, an oscillating circuit 3, a boosting circuit 4 and a rectifying and filtering circuit 5.
  • the energy storage circuit 1 is connected in parallel with the rechargeable battery 8.
  • the tank circuit 1 is a capacitor C1.
  • the power accumulating circuit 2 includes at least one set of magnetic core coils and a rectifying circuit 22 electrically connected to the output ends of the respective sets of magnetic core coils.
  • Each set of core coils includes a primary coil 211 that generates an alternating magnetic field, a secondary coil 212 that induces an alternating magnetic field generated by the primary coil 211 to generate an induced current, and an EE-type magnetic core, the primary coil 211 and the secondary coil. 212 is wound on the EE core.
  • the number of core coils is four.
  • the primary coils of each set of core coils are connected in series, wherein the input ends of the first set of primary coils are electrically connected to the positive pole of the rechargeable battery 8; the input ends of the respective rectifier circuits 22 and the corresponding secondary coils of the set of core coils 212 is electrically connected, and the output terminal is electrically connected in parallel with the capacitor C1.
  • the rectifier circuit 22 can be a bridge stack.
  • the input of the oscillating circuit 3 is electrically connected to the output of the last set of primary coils of the power accretion circuit, and the output is electrically coupled to the input of the booster circuit 4.
  • the oscillating circuit 3 can be composed of two stages of oscillation, wherein the first stage oscillating output frequency is a positive half wave signal of 33 Hz, and the second stage oscillating process processes the positive half wave signal of the first stage oscillating output, the positive half wave The signal is converted to a 66KHz sine wave AC signal.
  • the oscillating circuit 3 can be an integrated circuit, such as IC2 in Figure 2, or consist of discrete components.
  • the boosting circuit 4 boosts the voltage output from the oscillating circuit 3 and outputs it.
  • the output voltage of the boosting circuit 4 is greater than the current output voltage of the rechargeable battery 8. For example, when the current output voltage of the rechargeable battery is 12V, the output voltage of the booster circuit 4 is 16V, and when the current output voltage of the rechargeable battery is 48V, the output voltage of the booster circuit 4 is 56V.
  • the booster circuit 4 can be composed of a step-up transformer T1.
  • the primary winding of the step-up transformer T1 is connected to the output of the oscillating circuit 3, and the secondary winding is connected to the input of the rectifying and filtering circuit .5.
  • the output of the rectifying and filtering circuit 5 is electrically connected to the rechargeable battery 8 to charge the rechargeable battery.
  • the power regeneration device of the present invention further includes a voltage limiting protection circuit 6 and a unidirectional conduction device 7.
  • the voltage limiting protection circuit 6 is connected in series between the anode of the rechargeable battery 8 and the input terminal of the unidirectional conduction device 7, and the voltage limiting protection circuit 6 can be constituted by an integrated circuit IC1.
  • the output of the one-way pass device 7 is electrically coupled to the input of the first set of primary coils.
  • the voltage limiting protection circuit 6 cuts off the power supply of the rechargeable battery to the energy storage circuit 1 when the output voltage of the rechargeable battery 8 is higher than the set value, thereby causing the power regeneration device to stop working, and the rectifying and filtering circuit 5 stops charging the rechargeable battery 8 .
  • the unidirectional pass device 7 only allows current to flow from the positive pole of the rechargeable battery 8 The power propagation circuit flows in the direction.
  • the one-way pass device 7 can employ a diode.
  • the rechargeable battery 8 serves as a power source for the present power accelerating device.
  • the rechargeable battery 8 can be a battery, a mobile phone rechargeable battery, or the like.
  • the current output voltage of the rechargeable battery 8 is more than 80% of the rated voltage.
  • the rechargeable battery 8 charges the capacitor C1 as a storage circuit.
  • the electric energy accretion circuit 2, the oscillating circuit 3, the boosting circuit 4 and the rectifying and filtering circuit 5 are electrically operated.
  • the oscillating circuit 3 changes the current flowing through the primary coil of the electric power accretion circuit 2, and the current induced by the secondary coil of the electric power accelerating circuit 2 is rectified by the rectifying circuit 22 and fed back to both ends of the capacitor C1. And stored in capacitor C1.
  • the feedback power can supplement about 90% of the power consumed by the entire device, and the remaining 10% is provided by the rechargeable battery 8, so the rechargeable battery 8 consumes very little energy.
  • the oscillating circuit 3 outputs a sine wave AC signal with a frequency of 66 kHz, resulting in extremely low power consumption.
  • the current outputted by the rectifying and filtering circuit 5 charges the rechargeable battery 8 , and the voltage limiting protection circuit 6 cuts off the power supply of the rechargeable battery to the capacitor C1 when the output voltage of the rechargeable battery 8 is higher than the set value, so that the power accelerating device stops working.
  • the rectifying filter circuit 5 stops charging the rechargeable battery 8.
  • the set value is greater than or equal to the rated voltage of the rechargeable battery. For example, when the rated voltage of the rechargeable battery 8 is 12V, the set value can be set to 13V.
  • the invention In the process of utilizing electric energy, the invention not only supplements the consumed electric energy, but also can be added to the original level. According to the inspection report issued by Jiangsu Yancheng Product Quality Supervision and Inspection Institute in 2010, it is proved that when the input voltage (point A in Figure 2) is 12 ⁇ 0.5 V and the input current is 78 ⁇ lmA, the output voltage (in Figure 2) The point B) is 48 ⁇ 1V, and the output current is 1A, which realizes the power proliferation and self-charging for the rechargeable battery. Industrial applicability
  • the invention has the advantages of simple structure, small volume and high electric energy utilization rate.
  • the self-charging of the rechargeable battery can be realized, which not only supplements the energy consumed, but also can be added to the original Level.

Description

电能增生装置 技术领域
本发明涉及一种可充电电池的充电装置。 背景技术
随着全球能源形势的日益紧张,节能与环保受到世界各国越来越多的重 视。 蓄电池也称二次电池,是将所获得的电能以化学能的形式贮存并可将化学 能转化为电能的一种电学装置。
蓄电池是重要的电气元件。 现有的蓄电池的使用寿命都比较短, 像电动车 所使用的蓄电池, 使用寿命仅有几年左右。 而且, 蓄电池在保养和维护方面也 有着较高的要求, 如果保养维护不当, 蓄电池很容易损坏, 进而使用寿命被大 大缩短,从而增加了用户的使用成本,而且废旧的蓄电池容易对环境造成污染。 发明内容
本发明所要解决的技术问题在于提供一种结构简单、 体积小的电能增生装 置, 其能够对用电器的可充电电池充电。
本发明所采用的技术方案是: 一种电能增生装置, 与可充电电池配合使用, 该可充电电池作为该电能增生装置的动力源;该电能增生装置包括储能电路、电能 增生电路、 振荡电路、 升压电路和整流滤波电路; 其中:
储能电路, 与可充电电池并联连接;
电能增生电路, 包括至少一组磁芯线圈以及分别与各组磁芯线圈的输出端电 连接的整流电路;每组磁芯线圈包括一个产生交变磁场的初级线圈和一个感应初级 线圈产生的交变磁场而产生感应电流的次级线圈,各组磁芯线圈的初级线圈依次串 联,其中第一组初级线圈的输入端电连接于可充电电池的正极;各整流电路的输入 端与所对应的那组磁芯线圈的次级线圈电连接, 输出端与储能电路并联电连接; 振荡电路, 其输入端与电能增生电路的最后一组初级线圈的输出端电连接; 升压电路, 其输入端与振荡电路的输出端电连接, 用于将振荡电路输出的电 压升压后输出, 升压电路的输出电压大于可充电电池的当前输出电压值; 整流滤波电路, 其输入端与升压电路的输出端电连接, 输出端与可充电电池 电连接, 向该可充电电池充电。
上述的电能增生装置, 其中, 储能电路为一电容器, 电能增生电路的各所述 整流电路的输出端均并接在该电容器的两端。
上述的电能增生装置, 其中, 磁芯线圈的数量为四组。
上述的电能增生装置, 其中, 还包括一仅允许电流由可充电电池的正极向所 述电能增生电路方向流动的单向导通器件,该单向导通器件的输入端与可充电电池 的正极电连接,输出端与第一组初级线圈的输入端电连接。该单向导通器件为二极 管。
上述的电能增生装置, 其中, 还包括一在可充电电池的输出电压高于设定值 时切断可充电电池向所述储能电路的供电的限压保护电路,限压保护电路串接在所 述可充电电池的正极与所述单向导通器件的输入端之间。
上述的电能增生装置, 其中, 升压电路为一升压变压器, 该升压变压器的原 线圈与所述振荡电路的输出端连接, 副线圈与所述整流滤波电路的输入端连接。
上述的电能增生装置, 其中, 振荡电路为一集成电路, 或者是由分立元件组 成的电路。 振荡电路输出频率为 66KHz的正弦波交流信号。
上述的电能增生装置, 其中, 可充电电池的当前输出电压为额定电压的 80% 以上。
本发明的有益的效果是, 结构简单, 体积小, 电能利用率高, 在利用能源 的过程中, 可实现可充电电池的自充电, 不但对所消耗的能源有补充, 而且能 补充到原有的水平。 附图概述
下面结合附图对本发明作进一步说明。
图 1是根据本发明一实施例的电能增生装置的原理框图。
图 2是根据本发明一实施例的电能增生装置的电路原理图。 本发明的最佳实施方式
参考图 1和图 2。本发明的电能增生装置与用电器的可充电电池配合使用,其 包括: 储能电路 1、 电能增生电路 2、 振荡电路 3、 升压电路 4和整流滤波电路 5。 其中, 储能电路 1与可充电电池 8并联连接。 在图 2所示出的实施例中, 储 能电路 1为一电容器 Cl。
电能增生电路 2包括至少一组磁芯线圈以及分别与各组磁芯线圈的输出端电 连接的整流电路 22。每组磁芯线圈包括一个产生交变磁场的初级线圈 211、一个感 应初级线圈 211产生的交变磁场而产生感应电流的次级线圈 212以及一个 EE型磁 芯, 该初级线圈 211和次级线圈 212均绕制在该 EE型磁芯上。 在一种较佳实施方 式中, 磁芯线圈的数量为四组。各组磁芯线圈的初级线圈依次串联, 其中第一组初 级线圈的输入端电连接于可充电电池 8的正极; 各整流电路 22的输入端与所对应 的那组磁芯线圈的次级线圈 212电连接, 输出端与电容器 C1并联电连接。 整流电 路 22可采用桥堆。
振荡电路 3的输入端与电能增生电路的最后一组初级线圈的输出端电连接, 输出端与升压电路 4的输入端电连接。 该振荡电路 3可由两级振荡构成, 其中, 第 一级振荡输出频率为 33 Hz的正半波信号, 第二级振荡对第一级振荡输出的正半 波信号进行处理, 将该正半波信号转变为 66KHz的正弦波交流信号。 振荡电路 3 可以是一集成电路, 如图 2中的 IC2, 或由分立元件组成。
升压电路 4将振荡电路 3输出的电压升压后输出, 升压电路 4的输出电压大 于可充电电池 8 的当前输出电压值。 例如, 当可充电电池的当前输出电压为 12V 时, 升压电路 4的输出电压为 16V, 当可充电电池的当前输出电压为 48V时, 升 压电路 4的输出电压为 56V。 升压电路 4可由一升压变压器 Tl组成。 该升压变压 器 T1的原线圈与振荡电路 3的输出端连接, 副线圈与整流滤波电路.5的输入端连 接。
整流滤波电路 5的输出端与可充电电池 8电连接, 向该可充电电池充电。 优选地, 本发明的电能增生装置还包括一限压保护电路 6 以及一单向导通器 件 7。限压保护电路 6串接在可充电电池 8的正极与单向导通器件 7的输入端之间, 限压保护电路 6可由一集成电路 IC1构成。单向导通器件 7的输出端与第一组初级 线圈的输入端电连接。限压保护电路 6在可充电电池 8的输出电压高于设定值时切 断可充电电池向储能电路 1的供电,从而使电能增生装置停止工作,整流滤波电路 5停止向可充电电池 8充电。单向导通器件 7仅允许电流由可充电电池 8的正极向 电能增生电路方向流动。 单向导通器件 7可采用二极管。
本发明与可充电电池配合使用时, 该可充电电池 8作为本电能增生装置的动 力源。可充电电池 8可以是蓄电池、 手机充电电池等。 在一种优选方案中, 可充电 电池 8的当前输出电压为额定电压的 80%以上。 起始时, 可充电电池 8对作为储 能电路的电容器 C1进行充电。 电能增生电路 2、 振荡电路 3、 升压电路 4和整流 滤波电路 5得电工作。 随着振荡电路 3的工作, 振荡电路 3使流过电能增生电路 2 的初级线圈的电流产生变化, 电能增生电路 2 的次级线圈感应的电流经整流电路 22整流后反馈到电容器 C1的两端, 并存储于电容器 C1中。 该反馈的电能可补充 整个装置所消耗的电能的 90%左右, 其余 10%的耗能由可充电电池 8提供, 因此 可充电电池 8的耗能极小。 振荡电路 3输出频率为 66KHZ的正弦波交流信号, 所 产生的功耗极小。整流滤波电路 5输出的电流向可充电电池 8充电, 限压保护电路 6在可充电电池 8的输出电压高于设定值时切断可充电电池向电容器 C1的供电, 使电能增生装置停止工作,整流滤波电路 5停止向可充电电池 8充电。该设定值大 于等于可充电电池的额定电压, 例如, 当可充电电池 8的额定电压为 12V时, 该 设定值可设为 13V。
本发明在利用电能的过程中, 不但对所消耗的电能有补充, 而且能补充到 原有的水平。 根据江苏省盐城市产品质量监督检验所 2010年出具的检验报告, 证 明当输入电压 (图 2中的 A点) 为 12 ± 0. 5V、 输入电流为 78 ± lmA时, 输出电压 (图 2中的 B点) 为 48± 1V、 输出电流为 1A, 实现了电能增生、 为可充电电池自 充电的目的。 工业应用性
本发明的有益效果在于: 结构简单, 体积小, 电能利用率高, 在利用能源 的过程中, 可实现可充电电池的自充电, 不但对所消耗的能源有补充, 而且能 补充到原有的水平。

Claims

权 利 要 求
1. 一种电能增生装置, 与可充电电池配合使用, 该可充电电池作为该电能增 生装置的动力源; 其特征在于, 该电能增生装置包括储能电路、 电能增生电路、 振 荡电路、 升压电路和整流滤波电路; 其中:
储能电路, 与所述可充电电池并联连接;
电能增生电路, 包括至少一组磁芯线圈以及分别与各组磁芯线圈的输出端电 连接的整流电路;每组磁芯线圈包括一个产生交变磁场的初级线圈和一个感应所述 初级线圈产生的交变磁场而产生感应电流的次级线.圈,各组磁芯线圈的初级线圈依 次串联,其中第一组初级线圈的输入端电连接于所述可充电电池的正极;各整流电 路的输入端与所对应的那组磁芯线圈的次级线圈电连接,输出端与所述储能电路并 联电连接;
振荡电路, 其输入端与电能增生电路的最后一组初级线圈的输出端电连接; 升压电路, 其输入端与所述振荡电路的输出端电连接, 用于将振荡电路输出 的电压升压后输出, 所述升压电路的输出电压大于可充电电池的当前输出电压值; 整流滤波电路, 其输入端与所述升压电路的输出端电连接, 输出端与可充电 电池电连接, 向该可充电电池充电。
2. 如权利要求 1所述的电能增生装置, 其特征在于, 所述储能电路为一电容 器, 电能增生电路的各所述整流电路的输出端均并接在该电容器的两端。
3. 如权利要求 1所述的电能增生装置, 其特征在于, 所述磁芯线圈的数量为 四组。
4. 如权利要求 1所述的电能增生装置, 其特征在于, 还包括一仅允许电流由 可充电电池的正极向所述电能增生电路方向流动的单向导通器件,该单向导通器件 的输入端与所述可充电电池的正极电连接,输出端与第一组初级线圈的输入端电连 接。
5. 如权利要求 4所述的电能增生装置, 其特征在于, 所述单向导通器件为二. 极管。
6. 如权利要求 4所述的电能增生装置, 其特征在于, 还包括一在所述可充电 电池的输出电压高于设定值时切断可充电电池向所述储能电路的供电的限压保护 电路,所述限压保护电路串接在所述可充电电池的正极与所述单向导通器件的镩入- 端之间。
7. 如权利要求 1所述的电能增生装置, 其特征在于, 所述升压电路为一升压 变压器, 该升压变压器的原线圈与所述振荡电路的输出端连接, 副线圈与所述整流 滤波电路的输入端连接。
8. 如权利要求 1所述的电能增生装置, 其特征在于, 所述振荡电路为一集成 电路, 或者是由分立元件组成的电路。
9. 如权利要求 1所述的电能增生装置, 其特征在于, 所述振荡电路输出频率 为 66KHz的正弦波交流信号。
10. 如权利要求 1所述的电能增生装置, 其特征在于, 所述可充电电池的当前 输出电压为额定电压的 80%以上。
PCT/CN2011/000088 2010-01-22 2011-01-19 电能增生装置 WO2011088747A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010002685.5 2010-01-22
CN201010002685A CN101789678A (zh) 2010-01-22 2010-01-22 电能增生装置
CN201110006465A CN102306939A (zh) 2011-01-13 2011-01-13 电能增生装置
CN201110006465.4 2011-01-13

Publications (1)

Publication Number Publication Date
WO2011088747A1 true WO2011088747A1 (zh) 2011-07-28

Family

ID=44306395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000088 WO2011088747A1 (zh) 2010-01-22 2011-01-19 电能增生装置

Country Status (1)

Country Link
WO (1) WO2011088747A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217735A1 (en) * 2001-05-08 2004-11-04 Ehsan Chitsazan Interleaved switching lead-acid battery equalizer
CN101369741A (zh) * 2008-07-09 2009-02-18 南京航空航天大学 用于对串联连接的储能器单元进行电压均衡的装置和方法
DE102008023291A1 (de) * 2008-05-13 2009-11-19 Clean Mobile Ag Elektrisches Leichtfahrzeug mit elektrischer Energieversorgungseinheit und Verfahren zum Laden und Entladen von Akkumulatoren eines elektrischen Leichtfahrzeugs
CN101764421A (zh) * 2010-01-15 2010-06-30 中国科学院电工研究所 一种用于电动汽车电池组的均衡设备
CN101789678A (zh) * 2010-01-22 2010-07-28 单专年 电能增生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217735A1 (en) * 2001-05-08 2004-11-04 Ehsan Chitsazan Interleaved switching lead-acid battery equalizer
DE102008023291A1 (de) * 2008-05-13 2009-11-19 Clean Mobile Ag Elektrisches Leichtfahrzeug mit elektrischer Energieversorgungseinheit und Verfahren zum Laden und Entladen von Akkumulatoren eines elektrischen Leichtfahrzeugs
CN101369741A (zh) * 2008-07-09 2009-02-18 南京航空航天大学 用于对串联连接的储能器单元进行电压均衡的装置和方法
CN101764421A (zh) * 2010-01-15 2010-06-30 中国科学院电工研究所 一种用于电动汽车电池组的均衡设备
CN101789678A (zh) * 2010-01-22 2010-07-28 单专年 电能增生装置

Similar Documents

Publication Publication Date Title
Chae et al. 3.3 kW on board charger for electric vehicle
TW201201494A (en) Power conversion device
TW200840179A (en) Hybrid green uninterruptible power system and bi-directional converter module and power conversion method thereof
JP5735137B2 (ja) 交流電機電気自動車用誘導子の電力回収装置
CN107222100B (zh) 一种集成Buck-Boost和LLC电路的单级LED驱动电路
CN106685242B (zh) 单级交流至直流转换器
TW201104404A (en) Switching converter circuit and power supply
CN110829878A (zh) 一种新型双向ac/dc变换器
JP5735138B2 (ja) 直流電機電気自動車用誘導子の電力回収装置
CN106535402A (zh) 一种单级单开关降压式漏感能量利用的led驱动电路
TWI413336B (zh) 雙向換流裝置及其直流供電系統
TW201220665A (en) Single-phase PFC AC-DC power converter
CN206099369U (zh) 一种新型光伏离并网的逆变装置
WO2011088747A1 (zh) 电能增生装置
CN203278680U (zh) 一种高频双分裂整流变压器
CN203282063U (zh) 小型多功能电焊机
CN2896685Y (zh) 高频大功率脉冲直流电源
CN201956713U (zh) 电能增生装置
CN201975840U (zh) 交流电机电动车用感应器电能量回收装置
CN108011538B (zh) 小功率高频双向ac-dc单管变换器及无线充电方法
CN208986675U (zh) Ups装置
CN110808638A (zh) 一种高频大功率输出的电磁感应控制电路
CN206850536U (zh) 一种简单实用的无线传能充电器
CN202059199U (zh) 直流电机电动车用感应器电能量回收装置
CN102306939A (zh) 电能增生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734329

Country of ref document: EP

Kind code of ref document: A1