WO2011088743A1 - Flake material having different properties on its front and back sides and preparing method thereof - Google Patents

Flake material having different properties on its front and back sides and preparing method thereof Download PDF

Info

Publication number
WO2011088743A1
WO2011088743A1 PCT/CN2011/000081 CN2011000081W WO2011088743A1 WO 2011088743 A1 WO2011088743 A1 WO 2011088743A1 CN 2011000081 W CN2011000081 W CN 2011000081W WO 2011088743 A1 WO2011088743 A1 WO 2011088743A1
Authority
WO
WIPO (PCT)
Prior art keywords
polar solvent
sodium
dissolved
continuous phase
dispersed phase
Prior art date
Application number
PCT/CN2011/000081
Other languages
French (fr)
Chinese (zh)
Inventor
杨振忠
梁福鑫
刘继广
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Publication of WO2011088743A1 publication Critical patent/WO2011088743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • Sheet material having different properties on front and back surfaces and preparation method thereof
  • the invention belongs to the technical field of materials, and relates to a sheet material having different properties on the front and back surfaces and a preparation method thereof.
  • a Pickering emulsion such an emulsion is referred to as a Pickering emulsion.
  • a Pickering emulsion Unlike the emulsifying mechanism of traditional surfactants and polymer emulsifiers, although solid particles do not reduce the interfacial tension [E. Vignati, R. Piazza, TP Lockhart. Langmuir 2003, 19, 6650-6656.], the solid particles have High emulsifying ability and excellent stability of the Pickering emulsion, which is related to the type and size of the particles [BP Binks, S. 0. Lumsdon. Langmuir 2001, 17, 4540-4547].
  • the Pickering property of the solid particles can be combined with the ability to reduce the surface tension, which greatly enhances the emulsifying ability and emulsion stability.
  • people began to study micro- or nano-particles (Janus) with dual properties (hydrophilic/hydrophobic) on the surface. The results show that Janus particles can better reduce surface tension at the oil-water interface compared to Pickering particles [BP Binks, PDI Fletcher. Langmuir 2001, 17, 4708-4710], playing a better emulsification [N. Glaser, DJ Adams, A. Boker, G. Krausch. Langmuir 2006, 22, 5227-5229.].
  • the Janus structure sheet material is blended with two polymers which are compatible with the materials on both sides of the sheet in a certain processing mode, and the inorganic material is obtained.
  • Imitation shell structure or imitation fish scale structure alternately organic layered [ZY Tang, NA Kotov, S. Magonov, B. Ozturk. Nature mater, 2003, 2, 413-418; P. Podsiadlo, AK Kaushik and NA Kotov Science, 2007, 318, 80-83; LJ Bonderer, AR Studart, LJ Gauckler. Science, 2008, 319, 1069-1073; E. Munch, ME Launey and RO Ritchie.
  • this layered hybrid structural material not only improves the mechanical properties of the material, but also alternates the hybridization of the two organic layers into a material.
  • Functionalization provides a wider range of spaces, such as the choice of hydrophobic and oleophobic organic materials to provide a layered material with high barrier properties.
  • Such materials which can improve the mechanical properties of materials (such as strengthening and toughening) and material functionalization (such as barrier properties), will play an important role in the controllable preparation of high-strength, high-toughness biomimetic materials and noise-reducing damping materials.
  • the Janus structure sheet material is widely composed and may be composed of an inorganic material or an organic material, or even composed of an inorganic material and an organic material, and the Janus structure sheet material may have a pore structure or may have no pores. structure.
  • the Janus structure sheet material is not only tunable in composition and properties, but also has a controllable microstructure and size.
  • the Janus structure sheet material having different compositions, structures and properties can be designed according to practical application requirements.
  • the Janus structure sheet material has a thickness greater than 5 nm and less than 50 ⁇ m ; and the Janus structure sheet material has a size greater than 50 nm and less than 500 ⁇ m.
  • the composition ratio of the sides of the Janus structure sheet material is adjustable from 1:100 to 100:1.
  • the different surfaces of the Janus structure sheet material have different responses to electricity, magnetism, light, etc., and thus can be used in the material field;
  • the Janus structure sheet material has an emulsification property in an organic, inorganic dispersed phase or a different organic dispersed phase.
  • the inorganic sheet composite has a different orientation at the interface.
  • the present invention provides a Janus structure sheet material having different properties on the front and back surfaces, including a substrate and a different material composition on the front and back surfaces of the substrate; wherein the material on the front surface of the substrate is at least one a layer; the material on the reverse surface of the substrate is at least one layer;
  • the material on the front and back surfaces of the substrate is selected from any one of two types of materials: a material obtained by compounding an inorganic material with an organic chemical group, and an organic material.
  • the inorganic material is selected from the group consisting of Si0 2 ,
  • n an integer of 0 ⁇ 121
  • the organic material is selected from the group consisting of urea-formaldehyde resins, Melamine resin, polyacrylonitrile, epoxy resin, phenolic resin, polyamide, polyurea, polysulfonamide, polyurethane, polyester, polyoxypropylene, polydimethylsilane, polyisobutylene polystyrene, polybutadiene , polyisoprene, gum arabic, sodium alginate, agar, sodium polyphosphate, sodium polysilicate, Carboxymethylcellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolysate of ethylene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene methyl ether-maleic anhydride copolymer
  • the copolymer of acrylic acid or methacrylic acid and styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile refers specifically to Any of the following copolymers: a copolymer of acrylic acid as a comonomer copolymerized with any of the following comonomers: styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, Copolymers of isobutylene, acrylate, methacrylate and acrylonitrile; or methacrylic acid as a comonomer copolymerized with any of the following comonomers: styrene, ethylene, vinyl alcohol, vinyl acetate , methacrylamide, isobutylene, acrylate, methacrylate and acrylonitrile.
  • the polymer formed by the polycondensation reaction of the polyvinylbenzenesulfonic acid with polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin or casein specifically refers to any one of the following copolymers: polyvinylbenzene
  • the above-mentioned front and back surfaces have different properties of the Janus structure sheet material, the thickness is 5 ⁇ - 50 ⁇ , and the length and width are both 50 ⁇ - 500 ⁇ ; the material on the front surface of the substrate and the bottom surface of the substrate are The weight ratio of the material on the substrate is 1:100-100:1; the Janus structure sheet material having different properties on the front and back surfaces has a porous structure; the porous structure has a pore diameter of 1 to 50 nm.
  • the method for preparing the above-mentioned front and back surfaces having different properties of the sheet material is obtained by materializing the emulsion oil-water interface, that is, by chemical reaction or physical adsorption at the interface between the discontinuous phase droplets and the continuous phase of the emulsion.
  • the method forms a layer of inorganic material, organic material and inorganic and organic composite material, and the spherical shell layer may be continuous or discontinuous.
  • continuous shells they can be ground into pieces.
  • the size of the fragments can be achieved by controlling the grinding process.
  • the thickness of the fragments can be achieved by controlling the concentration of the reactants.
  • the shell can be used directly as a shell.
  • the above-mentioned sheet material is used, and it can be further used for grinding.
  • the thickness and size of the sheet are related to conditions such as the concentration of the reactant.
  • the preparation process of the Janus structure sheet material having the dual properties described above may be prepared in a one-step process or a multi-step process.
  • the multi-step preparation method refers to further reacting or depositing other substances on the inner surface, or the outer surface, or the inner and outer surfaces of the shell layer after forming the primary shell layer, thereby obtaining a sheet-like material having different inner and outer surface properties.
  • the following describes in detail various methods 1 to 6 of the present invention for preparing Janus structure sheet materials having different properties on the front and back surfaces:
  • the method 1 is as follows: 1) or step ⁇ ):
  • Step 1) dispersing a dispersed phase composed of a dispersed phase reactant, a coupling agent and a non-polar solvent under an action of an emulsifier in a continuous phase composed of a continuous phase reactant and a polar solvent to form an emulsion.
  • a dispersed phase composed of a dispersed phase reactant, a coupling agent and a non-polar solvent under an action of an emulsifier in a continuous phase composed of a continuous phase reactant and a polar solvent to form an emulsion.
  • an acid or a base is added, and the reactant dissolved in the continuous phase and the dispersed phase is dispersed in the dispersion.
  • the phase reacts with the interface of the continuous phase to directly form a Janus structure sheet material having different properties on the front and back surfaces; wherein the viscosity of the non-polar solvent in the dispersed phase is lower than that in the continuous phase a viscosity of the polar solvent, a volume ratio of the dispersed phase to the continuous phase is less than 5 and more than 0.5, and a reaction temperature is not lower than a melting point of the non-polar solvent and the polar solvent, and is not higher than a boiling point of the non-polar solvent and the polar solvent;
  • An acid or a base is added under the condition of a pH of 2-10, and the reactant dissolved in the continuous phase and the dispersed phase reacts at the interface of the dispersed phase and the continuous phase, on the surface of the dispersed phase droplet Forming a core-shell structure product having a continuous shell layer of a Janus structure, removing the core in the core-shell structure product having the continuous shell layer of the Janus structure, and pulverizing to obtain a Janus structure sheet material having different properties on the front and back surfaces;
  • the viscosity of the non-polar solvent in the dispersed phase is higher than the viscosity of the polar solvent in the continuous phase, and the volume ratio of the dispersed phase to the continuous phase is greater than 0 and less than 5, and the temperature of the reaction is not Lower than the melting point of the non-polar solvent and the polar solvent, and not higher than the boiling points of the non-polar solvent and the polar solvent;
  • the method 2 includes the following steps:
  • the ABC triblock copolymer is placed in an emulsion, and the A chain segment and the C segment of the ABC triblock copolymer are respectively distributed toward the aqueous phase and the oil phase under the induction of the dispersed phase and the continuous phase solvent, in the ultraviolet Under the condition of light irradiation or temperature of 50-100 ° C, the B segment in the ABC triblock copolymer undergoes in-situ polymerization at the interface of the emulsion, and the B segment is obtained as the intermediate layer of the shell, A a hollow microsphere having a Janus structural shell layer on both sides of the middle layer of the shell layer respectively, and pulverizing to obtain a Janus structure sheet material having different properties on the front and back surfaces;
  • the method 3 includes the following steps 1) to 2):
  • step 1) is any one of the following steps a) to b):
  • Step 2) if the decomposition temperature of the initiator is lower than the temperature of the polycondensation reaction, the radical polymerization reaction monomer is first subjected to radical polymerization to obtain a primary shell layer, and then the unpolymerized polycondensation sheet is initiated.
  • the body or prepolymer undergoes a polycondensation reaction outside the primary shell layer to form hollow microspheres having a Janus structure shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained; if the initiator is decomposed
  • the monomer or prepolymer which initiates the polycondensation reaction is subjected to a polycondensation reaction to obtain a primary shell layer; and the unrepolymerized radical reactive monomer is further induced in the primary shell layer.
  • a radical polymerization reaction occurs on the inner side to form hollow microspheres having a Janus structural shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained.
  • the method 4 includes the following steps 1) to 2): Wherein the step 1) is any one of the following steps a) to (f): Step a): dissolving the inorganic reactant in a non-polar solvent as a dispersed phase under the action of an emulsifier Forming an emulsion in a continuous phase composed of a polar solvent in which a monomer or prepolymer of a polycondensation reaction is dissolved;
  • the phase is dispersed in a continuous phase composed of a polar solvent to form an emulsion;
  • Step 0 Dispersing a polar solvent as a dispersed phase under the action of an emulsifier, radical polymerization of a radically polymerizable monomer dissolved in an inorganic reactant, dissolved in a nonpolar solvent, and dissolved in a nonpolar solvent Forming an emulsion in a continuous phase composed of a non-polar solvent of an initiator;
  • Step 2) first, the inorganic reactant is subjected to a sol-gel reaction at the interface between the dispersed phase and the continuous phase to obtain a primary shell layer, and then the monomer or prepolymer of the polycondensation reaction which is not polymerized is in the primary shell.
  • a polycondensation reaction occurs on the outer side of the layer to form hollow microspheres having a Janus structural shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained.
  • the method 5 includes the following steps 1) to 3):
  • step 1) is any one of the following steps a) to d):
  • the polymer is phase-separated and deposited at the interface between the dispersed phase and the continuous phase to form a crosslinked
  • the step 2) is the following steps a') or b') :
  • Step a' adding a prepolymer of a monomer or a resin dissolved in the continuous phase solvent to the reaction system of the step 1) to carry out a polycondensation reaction, forming a new shell on the outer side of the primary shell layer a layer forming hollow microspheres having a Janus structural shell;
  • Step b') further adding a polymer having an opposite charge to the polymer obtained in the step 1) to the reaction system of the step 1), so that the polymer obtained in the step 1) is opposite to the one described
  • the charged polymer undergoes electrostatic attraction, forming a new shell layer outside the primary shell layer to form hollow microspheres having a Janus shell layer;
  • Step 3) pulverizing the hollow microspheres having the Janus structural shell layer obtained in the step 2) to obtain the Janus structure sheet material having different properties on the front and back surfaces;
  • the method 6 includes the following steps 1) to 2):
  • step 1) is any one of the following steps a) to b):
  • Step 2) The step 1) raising the temperature of the reaction system causes the radical polymerizable monomer dissolved in the polar solvent to be polymerized at the emulsion interface to obtain hollow spheres having different compositions and properties on both sides, crushing or The Janus structure sheet material having different properties on the front and back surfaces is obtained without pulverization.
  • the structure of the dispersed phase reactant is X n MR m , preferably ethyl orthosilicate; wherein M is Si, Ti, Sn, A1 or Zr; X is Na, Mg or K , n is 0, 1 or 2; R is Cl, OS0 4 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 CH 2 CH 2 CH 3 or S0 4 , m is 1, 2, 3 Or 4; the non-polar solvent is selected from at least one of an aromatic hydrocarbon, a paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, an aliphatic hydrocarbon, and ethyl acetate, preferably toluene; the coupling Agent
  • the A block is a hydrophilic polymer segment selected from the group consisting of polyoxyethylene, polymaleic anhydride, polymethyl methacrylate and polyacrylic acid.
  • B block is a reactive olefin or alkyne polymer segment selected from polyacetylene, polybutadiene or polyisoprene
  • C block is a hydrophobic polymer segment, selected At least one of polyoxypropylene, polyoxybutylene, polystyrene, polyolefin, and polysiloxane
  • the solvent as the dispersed phase and the continuous phase are respectively selected from mutually incompatible polarities a solvent and a non-polar solvent; wherein the non-polar solvent is at least one selected from the group consisting of aromatic hydrocarbons, paraffin wax, n-hexane, carbon tetrachloride, chloroform, cyclohexane, dichloromethan
  • the monomer or prepolymer of the polycondensation reaction is selected from the group consisting of acrylonitrile, vinyl acetate, urea resin (urea-formaldehyde prepolymer), melamine resin (melamine-formaldehyde prepolymer), phenolic Resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine resin with molecular weight of 200-2000, molecular weight 200-2000 polypropylene glycol modified melamine resin, polyvinyl alcohol modified urea formaldehyde resin, resorcin modified urea resin, hydroquinone modified urea formaldehyde resin, phenol modified urea resin, phenol and melamine copolymerization Modified urea-
  • the inorganic reactant has a structural formula of X n MR m: wherein M is Si, Ti,
  • Sn, A1 or Zr X is Na, Mg or K, n is 0, 1 or 2; R is Cl, OS0 4 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 CH 2 CH 2 CH 3 or S0 4 , m is 1, 2, 3 or 4; or
  • the emulsifier is used in an amount of 1% by weight of the initial
  • the temperature is 60 -90 ° C, preferably 70 ° C
  • the reaction time is 0.5-72 hours, preferably 2-16 hours
  • the molar ratio of the monomer of the radical polymerization reaction to the initiator is 10: 1-1000 : 1; preferably 50: 1: 500: 1
  • the temperature of the radical polymerization is 20-90 ° C
  • the reaction time is 0.5-72 hours, preferably 2-16 hours.
  • the prepolymer of the monomer or the resin dissolved in the continuous phase solvent in the step 1) a) is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin (urea-formaldehyde prepolymer), Melamine resin (melamine-formaldehyde prepolymer), phenolic resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, molecular weight 200 ⁇ 2000 Polyethylene glycol modified melamine resin, polypropylene glycol modified melamine resin with molecular weight of 200 ⁇ 2000, polyvinyl alcohol modified urea formaldehyde resin, resorcin modified urea resin, hydroquinone modification Urea-formaldehyde resin, phenol-modified urea-formalde
  • the continuous phase reactant and the dispersed phase reactant in step 1) b) are each selected from the group consisting of diamines, polyamines, glycols, polyols, dihydric phenols, polyhydric phenols, dibasic acid chlorides, polyacid chlorides, and binary At least one of a sulfonyl chloride, a polysulfonyl chloride, a diisocyanate, a polyisocyanate, a bischloroformate, an epoxy resin prepolymer, and an organosiloxane prepolymer;
  • the dispersed phase free radical polymerizable monomer in the step 1) c) is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid.
  • Tert-butyl ester isobutyl methacrylate, ethyl cinnamic acid acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl silane, vinyl butyl ester At least one of isobutylene or vinyl acetate, divinylbenzene, ethylene glycol dimethacrylate and diallyl terephthalate;
  • the dispersed phase polymer and the continuous phase polymer forming the primary shell layer in step 1) d) are each selected from the group consisting of polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, casein, gum arabic, sodium alginate, agar, Sodium polyphosphate, sodium polysilicate, carboxymethyl cellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, vinyl methyl ether-butylene Sodium salt hydrolysate of dianhydride copolymer, sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate , methacrylate or acrylonitrile copolymerization At least one of a copolymer
  • the monomer or resin prepolymer dissolved in the continuous phase solvent in step 2) a') is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin (urea-formaldehyde prepolymer), melamine resin (melamine).
  • Formaldehyde prepolymer phenolic resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified molecular weight of 200 ⁇ 2000 melamine resin, polypropylene glycol modified melamine resin with molecular weight of 200 ⁇ 2000, polyvinyl alcohol modified urea-formaldehyde resin, resorcinol modified urea-formaldehyde resin, hydroquinone modified urea-formaldehyde resin, phenol modification Urea-formaldehyde resin, phenol and melamine copolymerization modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and melamine copolymerization modified
  • the polymer having opposite charge to the polymer obtained in the step 2) b) is selected from the group consisting of polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, casein, gum arabic, sodium alginate, agar , sodium polyphosphate, sodium polysilicate, carboxymethyl cellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, vinyl methyl ether-cis-butane Sodium salt hydrolysate of enedic anhydride copolymer, sodium salt hydrolysate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylic acid a copolymer obtained by copolymerization of an ester, a methacrylate or an acrylonitrile
  • the temperature is 60-90 ° C, preferably 70 ° C
  • the time is 0.5-72 hours, preferably 2-16 hours
  • the pH is 2-10
  • the stirring speed is 50- 16000r/min, preferably 150-12000r/min
  • the molar ratio of the reactive phase reactant to the continuous phase reactant reactive functional group is 1:1;
  • Is 60-90 ° C, preferably 70 ° C, time is 0.5-72 hours, preferably 2-16 hours, stirring speed is 50-16000r / min, preferably 150-12000r / min;
  • the molar fraction ratio of the dispersed phase radical polymerizable monomer to the initiator is 10: 1-1000: 1; preferably 50: 1-500: 1 , the temperature is 20-90 ° C, the time is 0.5-72 hours, preferably 2-16 hours;
  • Step 1) The pH of the reaction system described in d) is 2-10;
  • the temperature is 60-90 ° C, preferably 70 ° C
  • the time is 0.5-72 hours, preferably 2-16 hours
  • the pH is 2-10
  • the stirring speed is 50.
  • - 16000r / min preferably 150-12000r / min
  • the pH of the reaction system described in step 2) b') is 2-10;
  • the emulsifier is selected from the group consisting of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer, a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, and a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer.
  • the dispersed phase solvent is at least one selected from the group consisting of aromatic hydrocarbons, paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and ethyl acetate;
  • the continuous phase solvent is at least one selected from the group consisting of water, ethylene glycol, propylene glycol, glycerin, tetrahydrofuran, and N, N-dimethylformamide.
  • the radical polymerizable monomer dissolved in the non-polar solvent is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, and methacrylic acid Ester, tert-butyl methacrylate, isobutyl methacrylate, methacrylic acid, ethyl cinnamate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl At least one of silane, vinyl butyl ester, isobutylene or vinyl acetate, divinyl benzene, ethylene glycol dimethacrylate and diallyl terephthalate; said dissolving in a non-polar solvent
  • the radical polymerization initiator is selected from the group consisting of azobisisobutyronitrile, azobisisoheptanenitrile, dibenzo
  • the radically polymerizable monomer dissolved in a polar solvent is selected from the group consisting of acrylamide, hydrazine, hydrazine- At least one of dimethyl bis acrylamide, acrylic acid, methacrylic acid, vinyl alcohol, hydrazine-hydroxymethyl acrylamide;
  • the radical polymerization initiator dissolved in a polar solvent is selected from the group consisting of potassium persulfate and sulfuric acid Iron, ammonium persulfate, a mixture of persulfate and thiosulfate, a mixture of persulfate and sulfite, a mixture of persulfate and fatty amine or a persulfate and fatty diamine
  • At least one of the components of the composition preferably at least one of potassium persul
  • the complex coacervation reaction utilizes electrostatic attraction between two or more water-soluble polymer molecules having opposite charges, and the formed agglomerates are phase-separated in the aqueous phase and A method of depositing at the interface and forming a polymer after cross-linking and solidification.
  • the thickness of the Janus structure sheet material can be controlled by changing the amount of the reactant.
  • the pulverization method is various commonly used pulverization methods.
  • Can The size of the Janus structure sheet material can be adjusted from 50 nm to 500 ⁇ m by controlling the ball mill or colloid mill grinding time and the grinding method, preferably 50 ⁇ to 100 ⁇ .
  • the emulsion includes a type emulsion of a normal phase emulsion, an inverse emulsion, a microemulsion, a reverse phase microemulsion, and the like.
  • the low temperature grinding temperature ranges from 0 °C to 170 °C.
  • Figure 1 is a silica prepared on Example 1 of the present invention having an amine group on one side and a phenyl group on the other side.
  • Figure 2 is a scanning electron micrograph of a Janus sheet material of a silicon dioxide having an epoxy group on one side and a phenyl group on the other side prepared in Example 2 of the present invention.
  • Example 3 is a photograph showing the emulsification performance of a sheet material of Janus structure having different properties on both sides prepared in Example 3 of the present invention.
  • the left side is a system without a Janus sheet
  • the right side is a system emulsified after adding a Janus sheet. .
  • Example 4 is a scanning electron micrograph of a sheet material of Janus structure having different properties on both sides prepared in Example 3 of the present invention, and the embedded figure is the sulfonated polystyrene pellet adsorbed on the Janus aramid side of Example 3. Scanning electron micrograph of a 30 nm) Janus structure sheet material.
  • Fig. 5 is a scanning electron micrograph of a porous Janus structure sheet material prepared in Example 4 of the present invention, and the inlaid photograph is a transmission photograph of the porous Janus structure sheet material of Example 4 of the present invention.
  • Fig. 6 is a transmission electron micrograph of a porous Janus structure sheet material prepared in Example 5 of the present invention.
  • Fig. 7 is a scanning electron micrograph of an organic Janus structure sheet material having an amine group on one side and a pentadecyl group on the other side prepared in Example 6 of the present invention.
  • Figure 8 is a scanning electron micrograph of a urea-formaldehyde resin/polystyrene Janus sheet material prepared in Example 8 of the present invention.
  • Figure 9 is a scanning electron micrograph of a silica/melamine resin Janus sheet material prepared in Example 11 of the present invention.
  • Figure 10 is a scanning electron micrograph of a polystyrene/silica Janus sheet material prepared in Example 14 of the present invention.
  • Figure 11 is a scanning electron micrograph of a polydivinylbenzene/silica Janus sheet material Janus sheet material prepared in Example 15 of the present invention.
  • Figure 12 is a scanning electron micrograph of a uric acid/melamine resin Janus sheet material prepared in Example 16 of the present invention.
  • Figure 13 is a scanning electron micrograph of a polyethylene glycol modified urea-formaldehyde resin/gelatin Janus sheet material prepared in Example 17 of the present invention.
  • Figure 14 is a scanning electron micrograph of a polyurethane/urea resin Janus sheet material prepared in Example 18 of the present invention.
  • Figure 15 is a scanning electron micrograph of an epoxy resin/polyvinylpyrrolidone Janus sheet material prepared in Example 19 of the present invention.
  • Figure 16 is a scanning electron micrograph of a polystyrene/urea resin Janus sheet material prepared in Example 20 of the present invention.
  • Figure 17 is a scanning of the polydivinylbenzene/gelatin Janus sheet material prepared in Example 21 of the present invention. Electron micrograph.
  • Figure 18 is a scanning electron micrograph of gelatin / sodium alginate Janus sheet material prepared in Example 22 of the present invention.
  • Figure 19 is a scanning electron micrograph of a polyacrylamide/polystyrene Janus sheet material prepared in Example 23 of the present invention.
  • Figure 20 is a scanning electron micrograph of a polymethyl methacrylate/polystyrene layered material modified with a silica sheet material prepared in Example 1 of the present invention.
  • Figure 21 is a polarizing microscope photograph of the emulsion prepared from the Janus sheet material provided in Example 1.
  • Figure 22 is a photograph of a silica Janus sheet having an amine group on one side and a phenyl group on the other side in the oil-water separation process in Example 1 of the present invention.
  • the invention is further illustrated by the following specific examples, but the invention is not limited to the following examples.
  • concentrations described in the following examples are all mass percent concentrations unless otherwise specified.
  • the compounds described in the following examples are commercially available from commercially available sources unless otherwise stated.
  • the ethylene-maleic anhydride copolymer has a weight average molecular weight of 200 to 20,000 in the sodium salt hydrolyzate of the ethylene-maleic anhydride copolymer, and is commercially available from Aldrich as CAS: 31959-78-1, vinyl methyl
  • the ethylene methyl ether-maleic anhydride copolymer has a weight average molecular weight of 600 to 300,000, which is commercially available from Aldrich, CAS: 25087-06-3.
  • isobutylene-maleic anhydride copolymer can be prepared according to the following literature method: Deng Cuiping, Yan Yincheng, Research on copolymerization of isobutylene-maleic anhydride, Petrochemical, 1990, 11, 739-744, the average weight of the copolymer of acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile The molecular weight is 500-100,000, which can be purchased directly from commercial sources, or prepared according to the methods in the following literature or books: Chen Jun, Ren Tianrui, Yu Songrui, etc., Acrylic Copolymer Synthesis and dispersion of powders, Journal of Process Engineering, 2009, 6, 1204-1209; Yanrui Xuan, water-soluble polymer,
  • Example 1 Using Method 1 to prepare a silica with a amide group on one side and a phenyl group on the other side Janus sheet material
  • the machine was emulsified by shearing at 100 rpm for 10 min, and the obtained emulsion was transferred to a three-necked flask in a water bath at 70 ° C, and mechanically stirred for 12 hours to discharge, directly obtaining an amine group on one side and a phenyl side on the other side.
  • Different Janus structure sheet materials An electron micrograph of the material is shown in Figure 1.
  • the material has a thickness of 200-400 nm and a length and a width of 2-10 ⁇ m ; the weight ratio of the material on the front surface of the substrate to the aminopropyl group and the material on the opposite surface of the substrate (which is a phenyl group) is 2: 1;
  • the material has a porous structure with a pore diameter of 5-7 nm.
  • the Janus structure sheet material having the amine side on one side and the other side of the phenyl group on the other side can be used to emulsify paraffin wax (melting point 52-54 ° C) / water system to prepare the preparation.
  • Paraffin The continuous phase, the water is the emulsion of the continuous phase, the specific method is as follows: 20 g of paraffin is heated to 70 ° C to melt, 0.5 g of the Janus piece with an amine group on one side and a phenyl group on the other side The material was added to 50 mL of water at 70 ° C and dispersed uniformly.
  • FIG. 21 is a polarizing microscope photograph of the emulsion, and the Janus sheet is seen from the figure. The material acts as an emulsifier.
  • a sheet of Janus structure having an amine group on one side and a different side on the other side of the phenyl group can be used to induce the preparation of polymethyl methacrylate (PMMA) / polystyrene (PS).
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • the layered material is as follows: 180 g of polymethyl methacrylate (weight average molecular weight of 80,000 to 150,000), 180 g of polystyrene (weight average molecular weight of 100,000 to 200,000), and 40 g of the obtained sheet prepared in this example
  • the material was added to a twin-screw mixer, and kneaded at 50 ° C for 10 min at 210 ° C, and then extruded to obtain a silica sheet-like material modified polymethyl methacrylate / polystyrene.
  • Layered material is a polymethyl methacrylate / silica / polystyrene / silica alternating layer structure. An electron micrograph of the material is shown in Figure 20.
  • the Janus structure sheet material with the amine side on one side and the other side of the phenyl group on the other side can be used for the separation of oil and water by the method.
  • the specific method is as follows: Take 0.2g of the preparation sheet prepared in this example. The material was emulsified into 10 ml of toluene and 5 mL of water to form a stable emulsion. The aqueous phase was dyed orange with methyl orange to distinguish the oil-water two phases. The continuous phase water was able to flow out through the glass sand, and the toluene was prepared in this example.
  • the droplet formed under the action of the stabilization due to its large size, cannot flow through the pores at the bottom of the glass sand, still in the separation column, and then the glass jar is used to smash the Janus sheet stable oil droplets in the separation column, and the toluene can pass through the glass.
  • the bottom of the sand flows out, and the Janus piece remains in the separation column, thereby achieving separation of the oil-water two phases of the emulsion and recovery of the Janus piece.
  • the results obtained are shown in Figure 22.
  • the oil-water two-phase separation of the Janus stable emulsion makes the Janus tablet more advantageous than molecular emulsifiers in tertiary oil recovery, wastewater treatment, and splash cleaning.
  • the material has a thickness of 100-300 and a width of l- ⁇ ; the weight ratio of the material (which is an epoxy group) on the front surface of the substrate to the material (which is a phenyl group) on the reverse surface of the substrate is 1 : 1
  • the material has a thickness of 50-100 nm, a length and a width of 200 ⁇ - 5 ⁇ ; a material on the front surface of the substrate (which is an amine propyl group) and a weight of a material (which is a phenyl group) on the reverse surface of the substrate.
  • the ratio is 1:1.
  • the sodium salt hydrolyzate aqueous solution of the styrene-maleic anhydride copolymer used in this example was prepared as follows: 100 mL of toluene was added to a three-necked flask, oxygen was removed by nitrogen for 30 min, and 10 g of styrene and 10 g of maleic anhydride were added. The mixture was stirred and dissolved at room temperature, and O. lg azobisisobutyronitrile was added as an initiator, and the reaction was carried out at 90 ° C for 3 h.
  • the product was washed with suction at room temperature, and the obtained white powder was vacuum dried at 60 ° C to obtain a styrene-maleic anhydride copolymer; 10 g of the styrene-maleic anhydride copolymer was placed in a single-mouth bottle, and 5 g of hydrogen was added.
  • HSMA aqueous solution styrene-maleic anhydride copolymer
  • Example 4 Using Method 1 to prepare a porous silica with an amine group on one side and a phenyl group on the other side Janus sheet material
  • the material has a thickness of 200-500 nm, a length and a width of l- ⁇ ; a material on the front surface of the substrate (which is an amine propyl group) and a weight of a material (which is a phenyl group) on the reverse surface of the substrate.
  • the ratio is 1:1.
  • the Janus structure sheet material with different side properties has a sheet thickness of 200 nm.
  • the above-mentioned sheet material was repeatedly washed with water and ethanol, and the surfactant was washed away to obtain a porous Janus structure sheet material.
  • An electron micrograph of the material is shown in Figure 6.
  • the material has a thickness of 50-80 nm, a length and a width of 300 ⁇ - 5 ⁇ ; a material on the front surface of the substrate (which is an amine propyl group) and a material on the reverse surface of the substrate (which is an octadecyl group).
  • the weight ratio is 2:1; the material has a porous structure with a pore diameter of 5-7 nm.
  • Example 6 An organic Janus structure sheet material having a polyoxypropylene segment on one side and a polyethylene glycol segment on the other side was prepared by the second method.
  • polyethylene glycol-polybutadiene-polyoxypropylene triblock copolymer weight average molecular weight 500-20000, polyoxypropylene is a hydrophobic segment, polyethylene glycol is a hydrophilic segment, polybutan
  • the olefin is a reactive segment) dispersed in 100 mL of deionized water to obtain an aqueous solution of a glycol-butadiene-polyoxypropylene triblock copolymer, and 20 mL of decane is added to the above aqueous solution, followed by emulsification for 10 min to obtain The emulsion was stabilized, and the emulsion was irradiated with ultraviolet light for 30 minutes to obtain hollow microspheres of Janus structure.
  • the emulsion was freeze-dried and then ground into a sheet at a low temperature to obtain a polyoxypropylene segment on one side and a polyethylene glycol chain on the other side. Segment of the organic Janus structure sheet material.
  • An electron micrograph of the material is shown in Figure 7.
  • the material has a thickness of 30-200 nm and a length and a width of 200 ⁇ - 5 ⁇ ; the weight ratio of the material (which is polyethylene glycol) on the front surface of the substrate to the material (polyoxypropylene) on the reverse surface of the substrate is 1 : 1.
  • Example 7 An organic Janus structure sheet material having a polystyrene chain on one side and a polymethyl methacrylate chain on the other side was prepared by the second method.
  • styrene-butadiene-methyl methacrylate amphiphilic triblock graft polymer weight average molecular weight 2000-0000, CAS: 25053-09-2, purchased from Sigma, where hydrophilic polymer
  • the segment is polymethyl methacrylate, the reactive olefin or alkyne polymer segment is polybutadiene, the hydrophobic polymer segment is the polystyrene segment in the block copolymer
  • 50mL In the non-polar solvent n-hexane, 10 mL of a 0.01% by weight aqueous solution of potassium persulfate was added to the above solution, and emulsified by ultrasonication for 10 min to obtain a stable emulsion, and the temperature was raised to 70 ° C.
  • the Janus structure was hollow. Microspheres.
  • the emulsion was freeze-dried and then ground at a low temperature to obtain a Janus structure sheet material having a polystyrene chain on one side and a polymethyl methacrylate chain on the other side.
  • the material has a thickness of 20-50 nm, a length and a width of 100 ⁇ - 2 ⁇ ; a weight of the material on the front surface of the substrate (polystyrene) and a material on the opposite surface of the substrate (polymethyl methacrylate). The ratio is 1:1.
  • Example 8 Preparation of urea-formaldehyde resin by method three / polystyrene Janus sheet material
  • O. lg initiator used in the reaction of the reaction system was carried out at 30 ° C for 12 h under the protection of nitrogen.
  • the potassium persulfate and the O. lg initiator sodium bisulphite initiate a free radical polymerization reaction to obtain a styrene polymer, and then raise the reaction temperature to 70 ° C to cause the urea-formaldehyde prepolymer to undergo a polycondensation reaction, and continue the reaction for 8 hours.
  • the emulsion was cooled by ice water, suction filtered, and vacuum dried to obtain a urea-formaldehyde resin/polystyrene composite polymer hollow microsphere.
  • the hollow microspheres were ground to a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the urea-formaldehyde resin/polystyrene composite.
  • An electron micrograph of the material is shown in Figure 8.
  • the material has a thickness of 30-60 nm, a length and a width of 500 ⁇ - 5 ⁇ ; a weight ratio of a material (which is polystyrene) on the front surface of the substrate to a material (a urethane resin) on the reverse surface of the substrate is 3 : 2.
  • the urea-formaldehyde prepolymer aqueous solution is prepared according to the following method: 240 g of urea and 500 g of a 37% by mass aqueous formaldehyde solution are added to a three-necked flask equipped with a reflux condenser, and mechanically dissolved and dissolved. Adding triethanolamine to adjust the pH of the system to 8, heating to 70 ° C, holding the reaction for 1 h to obtain a viscous liquid, and adding 1000 g of water to dilute to obtain a stable urea-formaldehyde prepolymer aqueous solution.
  • Example 9 Preparation of melamine resin by using Method 3 / Polybutadiene Janus sheet material
  • step 2) Under the protection of nitrogen, the reaction system of step 1) is reacted at 30 ° C for 12 h, using O. lg initiator potassium persulfate and O. lg initiator sodium hydrogen sulfite to initiate free radical polymerization to obtain polybutadiene.
  • Polymer then raise the reaction temperature to 70 ° C, the melamine-formaldehyde prepolymer is polycondensed, continue the reaction for 8h, the emulsion is cooled by ice water, suction filtration, vacuum drying, to obtain melamine resin / polybutadiene Composite polymer hollow microspheres.
  • the hollow microspheres are ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the melamine resin/polybutadiene composite.
  • the material has a thickness of 20-100 nm and a length and a width of 100 ⁇ - 2 ⁇ ; the weight ratio of the material on the front surface of the substrate (which is a melamine resin) to the material on the reverse surface of the substrate (which is polybutadiene) is 3: 2.
  • the melamine-formaldehyde prepolymer aqueous solution is prepared according to the following method: 110 g of melamine and 500 g of 37% aqueous formaldehyde solution are added to a three-necked flask equipped with a reflux condenser, mechanically stirred to dissolve, and triethanolamine is added to adjust the pH of the system. 8, heated to 70 ° C, the reaction was incubated for 1 h to obtain a viscous liquid, and then diluted with 1000 g of water to obtain a stable aqueous solution of melamine-formaldehyde prepolymer.
  • the urea-formaldehyde prepolymer aqueous solution used was prepared in accordance with the method of Example 6.
  • the material has a thickness of 20-60 nm and a length and a width of 100-800 nm; the weight ratio of the material (which is polystyrene) on the front surface of the substrate to the material (for the urethane resin) on the reverse surface of the substrate is 1 : 1.
  • the material has a thickness of 100-500 nm, a length and a width of 300 ⁇ - 5 ⁇ ; a material on the front surface of the substrate (which is silica) and a material on the reverse surface of the substrate (the weight ratio of the melamine resin is 1: 10.
  • Example 12 Preparation of Titanium Dioxide / Urea Resin by Method 4 Janus Sheet Material
  • the material has a thickness of 50-200 nm and a length and a width of 400 ⁇ - 10 ⁇ ; the weight ratio of the material (which is titanium dioxide) on the front surface of the substrate to the material (for the urethane resin) on the reverse surface of the substrate is 1:3. .
  • Aqueous formaldehyde prepolymer aqueous solution was prepared according to the method provided in Example 6.
  • the material has a thickness of 60-380 nm, a length and a width of 500 ⁇ - 10 ⁇ ; a weight ratio of a material (as silica) on the front surface of the substrate to a material (for urea-formaldehyde resin) on the reverse surface of the substrate is 2: 5.
  • the material has a thickness of 100-400 nm and a length and a width of l- ⁇ ; the weight ratio of the material (which is silicon dioxide) on the front surface of the substrate to the material (polystyrene) on the reverse surface of the substrate is 2 : 5.
  • the material has a thickness of 40-200 nm, a length and a width of 300 ⁇ - 8 ⁇ ; a weight ratio of a material (which is silicon dioxide) on the front surface of the substrate to a material (polydivinylbenzene) on the reverse surface of the substrate. It is 1:1.
  • Disperse the solvent solvent n-hexane use a high-speed shear emulsifier to shear emulsified lOmin at 12000r/min, transfer the obtained emulsion to a three-necked bottle in a 50°C water bath, and mix it with mechanical agitation, then take 20g of mass concentration to 5 % of the aqueous solution of the resin prepolymer urea-formaldehyde prepolymer dissolved in the continuous phase solvent water, dissolved in 2 g of sodium chloride, adjusted to pH 6 with 1 M hydrochloric acid, slowly dropped into the above emulsion, lOmin was added dropwise After completion, 50 ° C constant temperature polycondensation reaction for 1 h, slowly adjust the pH of the system to 3.5 with 1M hydrochloric acid, continue the polycondensation reaction for 4 h, in dispersion a water-insoluble polycondensate of a crosslinked three-dimensional network structure is formed at the interface between the phase
  • the hollow microspheres obtained in the step 2) are ground into pieces at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the urea/melamine composite.
  • An electron micrograph of the material is shown in Figure 12.
  • the material has a thickness of 30-100 nm, a length and a width of 200 ⁇ - 10 ⁇ ; a weight ratio of a material on the front surface of the substrate (for urea-formaldehyde resin) to a material on the opposite surface of the substrate (melamine resin) is 1: 1.
  • the sodium salt hydrolyzate aqueous solution of the styrene-maleic anhydride copolymer used is prepared according to the method provided in Example 4, and the melamine-formaldehyde prepolymer aqueous solution is prepared according to the method provided in Example 5.
  • a urea-formaldehyde prepolymer aqueous solution was prepared according to the method provided in Example 6.
  • the polycondensate obtained in step 1) and the gelatin molecule are electrostatically attracted, and a new shell layer is formed on the outer side of the primary shell layer obtained in the step 1).
  • the capsule shell layer is initially cross-linked and solidified, and then the emulsion is suction filtered and vacuum dried to obtain a polyethylene glycol-modified urine aldehyde resin/gelatin composite polymer hollow microsphere.
  • the hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polyethylene glycol modified urethane tree/gelatin composite. An electron micrograph of the material is shown in Figure 13.
  • the material has a thickness of 50 nm to 200 nm, a length and a width of 200 ⁇ - 5 ⁇ ; a material on the front surface of the substrate (polyethylene glycol modified urethane resin) and a material on the reverse surface of the substrate (gelatin)
  • the weight ratio is 3:1.
  • the polyethylene glycol modified urea-formaldehyde prepolymer aqueous solution used is prepared as follows: 240 g of urea, 50 g of polyethylene glycol and 450 g of 37% aqueous formaldehyde solution are added to a three-necked flask equipped with a reflux condenser. , mechanical stirring and dissolution, adding triethanolamine to adjust the pH value of 8, to 70 ° C, the reaction reaction for 1 h to obtain a viscous liquid, and then adding 1000 g of water to dilute, to obtain a stable polyethylene glycol modified urea-formaldehyde prepolymerization Aqueous solution.
  • the weight ratio of the material (which is a urethane resin) on the front surface of the substrate to the material (which is a urea-formaldehyde resin) on the reverse surface of the substrate is 3:2.
  • a 37% aqueous solution of formaldehyde was reacted for 3 hours to crosslink and cure the capsule shell.
  • the emulsion was cooled by ice water, filtered, and vacuum dried to obtain an epoxy resin/polyvinylpyrrolidone composite polymer hollow microsphere.
  • the hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the epoxy resin/polyvinylpyrrolidone composite.
  • An electron micrograph of the material is shown in Figure 15. Among them, an aqueous solution of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer was prepared in accordance with the method provided in Example 3.
  • the material has a thickness of 30-200 nm, a length and a width of 300 ⁇ - 10 ⁇ ; a weight ratio of a material (which is an epoxy resin) on the front surface of the substrate to a material (for polyvinylpyrrolidone) on the reverse surface of the substrate is 40 : 1.
  • the emulsion was transferred and emulsified for 10 min, and the emulsion was transferred to a three-necked flask equipped with a reflux condenser in a constant temperature water bath at 70 ° C, and mechanically uniformly stirred. To the emulsion was added dropwise O.
  • initiator potassium persulfate (dispersed phase radical polymerization)
  • a 20g aqueous solution having a mass ratio of monomeric styrene to divinylbenzene and an initiator of 150:1) reacted at 70 ° C for 8 hours under the protection of nitrogen, the initiator initiates free radical polymerization of the dispersed phase
  • the monomer undergoes radical polymerization to form a polymer, and the polymer is phase-separated and deposited at the interface between the dispersed phase and the continuous phase to form a crosslinked three-dimensional network polymer shell, that is, a primary shell layer;
  • the hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polystyrene/urea resin composite.
  • a urea-formaldehyde prepolymer aqueous solution was prepared in accordance with the method provided in Example 6.
  • An electron micrograph of the material is shown in Figure 16.
  • the material has a thickness of 50-300 nm, a length and a width of 500 ⁇ - 15 ⁇ ; a weight ratio of a material (which is polystyrene) on the front surface of the substrate to a material (which is a urea-formaldehyde resin) on the reverse surface of the substrate is 3: 2.
  • the initiator initiates radical polymerization of the free-radical polymerization monomer of the dispersed phase to form a polymer, which produces a phase Separating and depositing at the interface between the dispersed phase and the continuous phase to form a crosslinked three-dimensional network polymer shell layer, that is, a primary shell layer;
  • the new shell layer continue to coagulate reaction lh; the system is placed in an ice water bath, and then added 2mL 37% aqueous formaldehyde solution for 3h, the capsule shell layer cross-linking solidified, the emulsion is cooled by ice water, suction filtration, vacuum drying , obtaining polydivinylbenzene/gelatin composite polymer hollow microspheres.
  • the hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polydivinylbenzene/gelatin composite. An electron micrograph of the material is shown in Figure 17.
  • the material has a thickness of 30-100 nm, a length and a width of 500 ⁇ - 5 ⁇ ; a weight ratio of a material (for polydivinylbenzene ) on the front surface of the substrate to a material (for gelatin) on the reverse surface of the substrate is 5 : 1.
  • Example 22 Preparation of gelatin / sodium alginate using Method 5 Janus sheet material
  • the system was placed in an ice water bath, then 1 mL of 37% aqueous formaldehyde solution was added and reacted for 3 hours to preliminarily crosslink and cure the capsule shell.
  • the emulsion was cooled with ice water, suction filtered, and vacuum dried to obtain a gelatin/alginate nanocomposite hollow microsphere.
  • the hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the gelatin/alginate nano composite. An electron micrograph of the material is shown in Figure 18.
  • the material has a thickness of 30-150 nm, a length and a width of 500 ⁇ - 5 ⁇ ; a weight ratio of a material (as gelatin) on the front surface of the substrate to a material (in the form of sodium alginate) on the opposite surface of the substrate is 1:1. .
  • an aqueous solution of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer used was prepared in accordance with the method provided in Example 3.
  • step 2) The emulsion obtained in step 1) is reacted under mechanical stirring in a 40 ° C water bath for 12 h, and then the emulsion is cooled by ice water, suction filtered, vacuum dried, and the polyacrylamide/polystyrene composite is directly obtained.
  • Example 24 Preparation of Crosslinked Polyacrylamide/Crosslinked Polystyrene Janus Sheet Material by Method 6 1) Take 5 g of free radical polymerizable monomer acrylamide dissolved in polar solvent water, 0.5 g dissolved in polar solvent water Free radical polymerization initiator ferrous sulfate, O.
  • lg free radical polymerizable monomer in polar solvent water ⁇ , ⁇ -dimethyl bis acrylamide, lg emulsifier cetyl trimethyl bromide ( CTAB) was added to 200g of polar solvent water and mixed well as an aqueous phase; 2g of free radical polymerizable monomer divinylbenzene dissolved in non-polar solvent decane, 2g dissolved in non-polar solvent decane Free radical polymerization monomer styrene, 2g soluble in non-polar
  • the free radical polymerization initiator in solvent decane is dissolved in 50 g of non-polar solvent decane as an oil phase; the aqueous phase is added to the oil phase, and the emulsion is sheared at 12000 rpm using a high-speed shear emulsifier.
  • step 2) The emulsion obtained in step 1) is reacted under mechanical stirring in a 40 ° C water bath for 6 h, and the emulsion is cooled with ice water, suction filtered, and vacuum dried to obtain crosslinked polyacrylamide/crosslinking.
  • the front and back sides of the polystyrene composite have different compositions of Janus structure sheet materials.
  • the material has a thickness of 50-200 nm, a length and a width of 500 ⁇ - 10 ⁇ ; a material on the front surface of the substrate (which is a cross-linked polyacrylamide) and a material on the opposite surface of the substrate (which is a cross-linked polystyrene)
  • the weight ratio is 5:2.
  • Example 25 Preparation of Polymethyl Methacrylate / Polyvinyl Alcohol by Method Six Janus Sheet Material
  • the material has a thickness of 50-300 nm, a length and a width of 500 ⁇ - 10 ⁇ ; a weight of the material on the front surface of the substrate (polymethyl methacrylate) and a material on the opposite surface of the substrate (polyvinyl alcohol). The ratio is 2: 1.
  • the invention prepares the spherical shell by materializing the emulsion oil-water interface, that is, forming inorganic materials, organic materials and inorganic and organic composite hollow microspheres by chemical reaction or physical adsorption at the interface between the discontinuous phase and the continuous phase of the emulsion.
  • Hollow microspheres having different inner and outer surface structures or compositions; the shell layer may be continuous or discontinuous.
  • the shell layer may be continuous or discontinuous.
  • the size of the fragments can be achieved by controlling the grinding process.
  • the thickness of the fragments can be achieved by controlling the concentration of the reactants.
  • the shell can be used directly as a shell.
  • the above-mentioned sheet material is used, and it can be further used for grinding.
  • the thickness and size of the sheet are related to conditions such as the concentration of the reactant.
  • a sheet material can also be prepared as a Janus structure sheet material having a cell structure, and both sides of the sheet material have different cell structures due to differences in structure and composition.
  • the method is a universal preparation method for preparing a sheet material having different properties on the front and back surfaces on a large scale.
  • the Janus sheet material provided by the invention has important application value in many fields due to its different composition and properties on both sides.
  • Janus sheet replaces ordinary polymer inorganic filler and polymer blending compatibilizer
  • Janus sheet material can simultaneously combine inorganic filler and polymer blending compatibilizer, which is beneficial to the formation of layered polymer, and It plays a role in increasing polymer compatibility and enhancing toughening.
  • Janus sheet material can also be used to prepare emulsions instead of traditional surfactants as emulsifiers, and because Janus sheet materials are different from molecular surfactants, Janus sheet materials can be used as emulsifiers. Special types of emulsions such as ultra-concentrated emulsions are obtained, which are of great significance in practical application and theoretical research.

Abstract

Disclosed are flake materials having different properties on its front and back sides (also known as Janus structure) and the preparing method thereof. In the preparing method, hollow sphere of non-organic, organic and non-organic/organic composite material is formed by materializing the oil-water boundary of emulsion, that is, by means of chemical reaction or physical absorption occurred at the interface between disperse phase and continuous phase of the emulsion, so as to prepare inner and outer surface structure of a spherical shell or construct different micro hollow spheres. Said flakes with Janus structure can then be obtained by cracking. A widely adaptive method for massive preparing the flakes with Janus structure is also provided. The flake material of this invention is of great practical value in many fields due to its different composition and properties on the front and back sides.

Description

正反表面具有不同性质的片状材料及其制备方法 技术领域  Sheet material having different properties on front and back surfaces and preparation method thereof
本发明属于材料技术领域,涉及一种正反表面具有不同性质的片状材料及其制 备方法。  The invention belongs to the technical field of materials, and relates to a sheet material having different properties on the front and back surfaces and a preparation method thereof.
背景技术 Background technique
具有特殊微结构材料的可控制备一直是新材料研究的一个重要内容。 自 1991 年德国 de Gennes首次用 Janus—词表述无机物颗粒的表面同时具有的不同化学性 质以来, 表面具有双重性质的微观颗粒的研究成为具有特殊微结构材料领域的研究 热点。 表面同时具有双重性质 (亲水 /疏水) 的微米或纳米颗粒 (Janus) 赋予微米 或纳米颗粒两种不同甚至相反 (极性 /非极性, 正电荷 /负电荷等) 的性质, 这种正 反表面具有不同性质的 Janus片状材料将会为解决纳米材料的功能化和分散性这一 微纳米材料应用瓶颈提供有效途径, 更重要的是将产生新性质, 对促进新材料的发 展起重要作用。 发展双重性质集于一体的颗粒 (Janus) 由此成为近年研究的热点。  Controllable preparation with special microstructured materials has always been an important part of new material research. Since 1991, when De Gennes first used Janus to express the different chemical properties of the surface of inorganic particles, the study of microscopic particles with dual properties on the surface has become a research hotspot in the field of special microstructure materials. Micro- or nano-particles (Janus) with dual properties (hydrophilic/hydrophobic) on the surface impart different or even opposite properties (polar/non-polar, positive/negative charge, etc.) to micro or nano particles. The Janus sheet material with different properties on the reverse surface will provide an effective way to solve the bottleneck of the application of micro-nano materials, which is functional and dispersive of nano-materials. More importantly, it will produce new properties and play an important role in promoting the development of new materials. effect. The development of a dual-integrated particle (Janus) has become a hot topic in recent years.
早在一个世纪前, Pickering 发现固体颗粒具有稳定油 /水乳液的作用 [S. U. As early as a century ago, Pickering discovered that solid particles have a stabilizing oil/water emulsion [S. U.
Pickering. J. Chem. Soc. 1907, 91, 2001-2021.] ,这样的乳液被称为 Pickering乳液。与 传统表面活性剂和聚合物乳化剂的乳化机理不同, 虽然固体颗粒并不降低界面张力 [E. Vignati, R. Piazza, T. P. Lockhart. Langmuir 2003 , 19, 6650-6656.], 但是固体 颗粒具有很高的乳化能力并且 Pickering乳液具有极好的稳定性,这种稳定性与颗粒 的种类和尺寸有关 [B. P. Binks, S. 0. Lumsdon. Langmuir 2001 , 17, 4540-4547]。 如 果能够使固体颗粒的一部分表面亲水, 而另一部分表面同时亲油, 就可以将固体颗 粒的 Pickering性质与降低表面张力的能力有机结合起来,大大强化其乳化能力和乳 液稳定性。 上世纪九十年代, 人们开始研究表面同时具有双重性质 (亲水 /疏水)的微 米或纳米颗粒 (Janus) 。 结果表明: 与 Pickering颗粒相比, Janus颗粒在油水界面 能更好地降低表面张力 [B.P. Binks, P. D. I. Fletcher. Langmuir 2001, 17, 4708-4710], 发挥更好的乳化作用 [N. Glaser, D. J. Adams, A. Boker, G. Krausch. Langmuir 2006, 22, 5227-5229.]。 Pickering. J. Chem. Soc. 1907, 91, 2001-2021.], such an emulsion is referred to as a Pickering emulsion. Unlike the emulsifying mechanism of traditional surfactants and polymer emulsifiers, although solid particles do not reduce the interfacial tension [E. Vignati, R. Piazza, TP Lockhart. Langmuir 2003, 19, 6650-6656.], the solid particles have High emulsifying ability and excellent stability of the Pickering emulsion, which is related to the type and size of the particles [BP Binks, S. 0. Lumsdon. Langmuir 2001, 17, 4540-4547]. If a part of the surface of the solid particles can be made hydrophilic while the other part is simultaneously lipophilic, the Pickering property of the solid particles can be combined with the ability to reduce the surface tension, which greatly enhances the emulsifying ability and emulsion stability. In the 1990s, people began to study micro- or nano-particles (Janus) with dual properties (hydrophilic/hydrophobic) on the surface. The results show that Janus particles can better reduce surface tension at the oil-water interface compared to Pickering particles [BP Binks, PDI Fletcher. Langmuir 2001, 17, 4708-4710], playing a better emulsification [N. Glaser, DJ Adams, A. Boker, G. Krausch. Langmuir 2006, 22, 5227-5229.].
在 Janus颗粒的基础上, 近年来, 人们开始关注正反表面具有不同性质 (Janus) 的片状结构材料。 这是因为球形颗粒具有球性对称性, 而 Janus结构片状材料将表 现出显著的各向异性, 进而容易取向, 可起到多重协同作用, 如增强、 反射光和热 辐射、 提高气体阻隔性能等, 因此在油水乳化剂、 表面活性剂、 泡沫稳定剂、 润湿 齐 U、 防雾材料、 阻隔材料等方面有着潜在的广泛应用前景。 例如利用 Janus结构片 状材料两面与聚合物相容性的不同, Janus 结构片状材料与两种分别与片两侧材料 相容性好的聚合物在一定的加工模式下共混, 将得到无机与有机层状交替杂化的仿 贝壳结构或仿鱼鳞结构 [Z. Y. Tang, N. A. Kotov, S. Magonov, B. Ozturk. Nature mater, 2003 , 2, 413-418; P. Podsiadlo, A. K. Kaushik and N. A. Kotov. Science, 2007, 318, 80-83; L. J. Bonderer, A. R. Studart, L. J. Gauckler. Science, 2008, 319, 1069-1073; E. Munch, M. E. Launey and R. O. Ritchie. Science, 2008, 322, 1516-1520], 并且 这种层状杂化结构材料不但提高了材料的力学性能, 而且两种有机层的交替杂化为 材料的功能化提供了更为广泛的空间, 例如分别选择疏水和疏油的有机材料则可以 得到具有高阻隔性能的层状材料。 这种既可以提高材料力学性能 (如增强增韧) , 又可以实现材料功能化 (如阻隔性能) 的材料在高强高韧仿生材料、 降噪阻尼材料 的可控制备中必将发挥重要作用。 On the basis of Janus granules, in recent years, attention has been paid to sheet-like structural materials having different properties (Janus) on the front and back surfaces. This is because the spherical particles have spherical symmetry, and the Janus structure sheet material will exhibit significant anisotropy, which is easy to orient, and can play multiple synergistic effects, such as enhancement, reflected light and heat radiation, and improved gas barrier properties. Etc., therefore, it has potential application prospects in oil-water emulsifiers, surfactants, foam stabilizers, wetness, anti-fog materials, barrier materials and the like. For example, the Janus structure sheet material is blended with two polymers which are compatible with the materials on both sides of the sheet in a certain processing mode, and the inorganic material is obtained. Imitation shell structure or imitation fish scale structure alternately organic layered [ZY Tang, NA Kotov, S. Magonov, B. Ozturk. Nature mater, 2003, 2, 413-418; P. Podsiadlo, AK Kaushik and NA Kotov Science, 2007, 318, 80-83; LJ Bonderer, AR Studart, LJ Gauckler. Science, 2008, 319, 1069-1073; E. Munch, ME Launey and RO Ritchie. Science, 2008, 322, 1516-1520], and this layered hybrid structural material not only improves the mechanical properties of the material, but also alternates the hybridization of the two organic layers into a material. Functionalization provides a wider range of spaces, such as the choice of hydrophobic and oleophobic organic materials to provide a layered material with high barrier properties. Such materials, which can improve the mechanical properties of materials (such as strengthening and toughening) and material functionalization (such as barrier properties), will play an important role in the controllable preparation of high-strength, high-toughness biomimetic materials and noise-reducing damping materials.
目前, 相关的研究处于刚刚开始的起步状态, 报道很少。现有的制备方法 [J. R. Link, M. J. Sailor. PNAS. 2003 , 100, 10607-10610; J. R. Dorvee, A. M. Derfus, S. N. Bhatia, M. J. Sailor. Nature Mater. 2004, 3, 896-899]具有很大的局限性, 从原理 上就决定了其难以批量制备。 尽管 Janus结构片状材料表现出了独特的性能和诱人 的广泛应用前景, 但是实现片状材料组成和结构的可控制备和大量制备仍未解决, 这也成为其应用的最大瓶颈。  At present, the relevant research is in its infancy, and there are few reports. Existing preparation methods [JR Link, MJ Sailor. PNAS. 2003, 100, 10607-10610; JR Dorvee, AM Derfus, SN Bhatia, MJ Sailor. Nature Mater. 2004, 3, 896-899] have great limitations Sexuality, in principle, determines that it is difficult to prepare in batches. Although the Janus structural sheet material exhibits unique properties and attractive application prospects, the controllable preparation and mass preparation of the sheet material composition and structure remain unresolved, which is also the biggest bottleneck for its application.
发明公开 Invention disclosure
本发明的目的是提供一种正反表面具有不同性质的片状材料及其制备方法。 这种 Janus结构片状材料组成广泛, 可以由无机材料构成, 也可以由有机材料 构成, 甚至由无机材料与有机材料复合构成, 并且该 Janus结构片状材料可以具有 孔道结构, 也可以不具有孔道结构。 该 Janus结构片状材料不但组成与性质可调, 而且其微观结构与尺寸可控, 可以根据实际应用需要设计制备具有不同组成、 结构 和性质的 Janus结构片状材料。 该 Janus结构片状材料的厚度大于 5nm小于 50μιη; 所述 Janus结构片状材料尺寸大于 50nm小于 500μιη。该 Janus结构片状材料两侧组 成比例从 1 : 100到 100: 1可调。 该 Janus结构片状材料的不同表面对电、 磁、 光 等具有不同的响应, 因而可用于材料领域; 该 Janus结构片状材料在有机、 无机分 散相或不同的有机分散相中具有乳化性质, 以及该无机物片状复合材料在界面处具 有不同的取向。 It is an object of the present invention to provide a sheet material having different properties on the front and back surfaces and a method of producing the same. The Janus structure sheet material is widely composed and may be composed of an inorganic material or an organic material, or even composed of an inorganic material and an organic material, and the Janus structure sheet material may have a pore structure or may have no pores. structure. The Janus structure sheet material is not only tunable in composition and properties, but also has a controllable microstructure and size. The Janus structure sheet material having different compositions, structures and properties can be designed according to practical application requirements. The Janus structure sheet material has a thickness greater than 5 nm and less than 50 μm ; and the Janus structure sheet material has a size greater than 50 nm and less than 500 μm. The composition ratio of the sides of the Janus structure sheet material is adjustable from 1:100 to 100:1. The different surfaces of the Janus structure sheet material have different responses to electricity, magnetism, light, etc., and thus can be used in the material field; the Janus structure sheet material has an emulsification property in an organic, inorganic dispersed phase or a different organic dispersed phase. And the inorganic sheet composite has a different orientation at the interface.
本发明提供的正反表面具有不同性质的 Janus结构片状材料, 包括基底以及位 于所述基底正反两表面上不同的材料组成; 其中, 所述位于所述基底正表面上的材 料至少为一层; 所述位于所述基底反表面上的材料至少为一层;  The present invention provides a Janus structure sheet material having different properties on the front and back surfaces, including a substrate and a different material composition on the front and back surfaces of the substrate; wherein the material on the front surface of the substrate is at least one a layer; the material on the reverse surface of the substrate is at least one layer;
所述位于所述基底正反两表面的材料选自下述两类材料中的任意一种:由无机 材料与有机化学基团复合而成的材料和有机材料。  The material on the front and back surfaces of the substrate is selected from any one of two types of materials: a material obtained by compounding an inorganic material with an organic chemical group, and an organic material.
上述正反表面具有不同性质的 Janus结构片状材料中,所述无机材料选自 Si02In the above-mentioned front and back surface having different properties of the Janus structure sheet material, the inorganic material is selected from the group consisting of Si0 2 ,
Ti02、Sn02、Zr02和 A1203中的至少一种;所述有机化学基团的结构通式为 R-CnH2n, 其中, n=0〜 121的整数, R为- OH、 - H2、 HS-、- SCN、 - HCO H2、 CI-、 H2(CH2)2 H-、 (CH3)2-C(Br)-C(0)- H -、 -S03、 -Ph-SOCl2、 -Ph-S03、 2, 3-环氧丙氧基、 甲基丙烯 酰氧基、 (CH2)3-Sx-、 -(CH2)nCH3、 CH2=CH-或 Ph-; Ti0 2, Sn0 2, Zr0 2 and A1 2 0 3 at least one; structural formula of the organic chemical groups are RC n H 2n, where, n = an integer of 0~ 121, R is - OH, - H 2 , HS-, - SCN, - HCO H 2 , CI-, H 2 (CH 2 ) 2 H-, (CH 3 ) 2 -C(Br)-C(0)- H -, -S0 3 -Ph-SOCl 2 , -Ph-S0 3 , 2, 3-epoxypropoxy, methacryloyloxy, (CH 2 ) 3 -S x -, -(CH 2 ) n CH 3 , CH 2 =CH- or Ph- ;
所述 (CH2)3-SX-中, x=l〜4的整数; 所述 -(CH2)nCH3中, n=0〜127的整数; 所述有机材料选自脲醛树脂、 蜜胺树脂、 聚丙烯腈、 环氧树脂、 酚醛树脂、 聚 酰胺、 聚脲、 聚磺酰胺、 聚氨酯、 聚酯、 聚氧丙烯、 聚二甲基硅烷、 聚异丁烯聚苯 乙烯、聚丁二烯、聚异戊二烯、阿拉伯胶、海藻酸钠、琼脂、聚磷酸钠、聚硅酸钠、 羧甲基纤维素、 苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马来酸酐共聚物的钠 盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯-马来酸酐共聚 物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲 基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚乙 烯基苯磺酸与聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶或酪蛋白发生复凝聚反应 而生成的聚合物和聚乙烯基苯磺酸钠与聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶 或酪蛋白发生复凝聚反应而生成的聚合物。 本发明中, 所述丙烯酸或甲基丙烯酸与 苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙 烯酸酯或丙烯腈共聚而得的共聚物具体是指下述共聚物中的任意一种: 丙烯酸作为 一种共聚单体与下述任意一种共聚单体共聚而得的共聚物:苯乙烯、乙烯、乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯和丙烯腈; 或者甲 基丙烯酸作为一种共聚单体与下述任意一种共聚单体共聚而得的共聚物: 苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯和 丙烯腈。 所述聚乙烯基苯磺酸与聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶或酪蛋 白发生复凝聚反应而生成的聚合物具体是指下述共聚物中的任意一种: 聚乙烯基苯 磺酸与如下任意一种聚合物发生复凝聚反应而生成的聚合物: 聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶和酪蛋白。 聚乙烯基苯磺酸钠与如下任意一种聚合物发生复 凝聚反应而生成的聚合物: 聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶和酪蛋白。 In the (CH 2 ) 3 -S X -, an integer of x = 1 to 4; in the -(CH 2 ) n CH 3 , an integer of n = 0 to 127; the organic material is selected from the group consisting of urea-formaldehyde resins, Melamine resin, polyacrylonitrile, epoxy resin, phenolic resin, polyamide, polyurea, polysulfonamide, polyurethane, polyester, polyoxypropylene, polydimethylsilane, polyisobutylene polystyrene, polybutadiene , polyisoprene, gum arabic, sodium alginate, agar, sodium polyphosphate, sodium polysilicate, Carboxymethylcellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolysate of ethylene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene methyl ether-maleic anhydride copolymer a sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile And the resulting copolymer, polyvinylbenzene sulfonic acid and polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin or casein recombination reaction to form a polymer and sodium polyvinylbenzene sulfonate and polyvinylpyridin A polymer formed by re-coagulation of bromo, polyvinylpyrrolidone, gelatin or casein. In the present invention, the copolymer of acrylic acid or methacrylic acid and styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile refers specifically to Any of the following copolymers: a copolymer of acrylic acid as a comonomer copolymerized with any of the following comonomers: styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, Copolymers of isobutylene, acrylate, methacrylate and acrylonitrile; or methacrylic acid as a comonomer copolymerized with any of the following comonomers: styrene, ethylene, vinyl alcohol, vinyl acetate , methacrylamide, isobutylene, acrylate, methacrylate and acrylonitrile. The polymer formed by the polycondensation reaction of the polyvinylbenzenesulfonic acid with polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin or casein specifically refers to any one of the following copolymers: polyvinylbenzene A polymer formed by a re-coagulation reaction of a sulfonic acid with any of the following polymers: polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, and casein. A polymer formed by a polycondensation reaction of sodium polyvinylbenzenesulfonate with any of the following polymers: polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, and casein.
上述正反表面具有不同性质的 Janus结构片状材料, 厚度为 5ηιη-50μιη, 长和 宽均为 50ηιη-500μιη; 所述位于所述基底正表面上的材料与所述位于所述所基底反 表面上的材料的重量比为 1 : 100-100: 1; 所述正反表面具有不同性质的 Janus结构 片状材料具有多孔结构; 所述多孔结构的孔径为 l-50nm。 The above-mentioned front and back surfaces have different properties of the Janus structure sheet material, the thickness is 5 ηηη - 50 μιη, and the length and width are both 50 ηιη - 500 μιη ; the material on the front surface of the substrate and the bottom surface of the substrate are The weight ratio of the material on the substrate is 1:100-100:1; the Janus structure sheet material having different properties on the front and back surfaces has a porous structure; the porous structure has a pore diameter of 1 to 50 nm.
本发明提供的制备上述正反表面具有不同性质的片状材料的方法,是通过将乳 液油水界面材料化, 即在乳状液的非连续相液滴和连续相的界面通过化学反应或物 理吸附等方法形成一层无机材料、 有机材料和无机与有机复合材料, 球壳壳层可以 是连续的, 也可以是不连续的。 对于连续的壳层, 可以将其研磨成碎片, 碎片大小 可以通过控制研磨工艺手段来实现, 碎片厚度可以通过控制反应物浓度等条件来实 现; 对于非连续的壳层, 其壳层直接可以作为前述的片状材料使用, 也可以进一步 研磨使用, 片层厚度和大小与反应物浓度等条件有关。  The method for preparing the above-mentioned front and back surfaces having different properties of the sheet material is obtained by materializing the emulsion oil-water interface, that is, by chemical reaction or physical adsorption at the interface between the discontinuous phase droplets and the continuous phase of the emulsion. The method forms a layer of inorganic material, organic material and inorganic and organic composite material, and the spherical shell layer may be continuous or discontinuous. For continuous shells, they can be ground into pieces. The size of the fragments can be achieved by controlling the grinding process. The thickness of the fragments can be achieved by controlling the concentration of the reactants. For non-continuous shells, the shell can be used directly as a shell. The above-mentioned sheet material is used, and it can be further used for grinding. The thickness and size of the sheet are related to conditions such as the concentration of the reactant.
上述表面具有双重性质的 Janus结构片状材料的制备过程可以是一步法制备, 也可以是多步法制备。 多步法制备是指在形成初级壳层后, 进一步在壳层内表面, 或外表面, 或内外表面同时反应或沉积其它物质, 从而得到内外表面性质不同的片 状材料。 下面详细叙述本发明提供的各种制备正反表面具有不同性质的 Janus结构 片状材料的方法一至方法六:  The preparation process of the Janus structure sheet material having the dual properties described above may be prepared in a one-step process or a multi-step process. The multi-step preparation method refers to further reacting or depositing other substances on the inner surface, or the outer surface, or the inner and outer surfaces of the shell layer after forming the primary shell layer, thereby obtaining a sheet-like material having different inner and outer surface properties. The following describes in detail various methods 1 to 6 of the present invention for preparing Janus structure sheet materials having different properties on the front and back surfaces:
所述方法一为如下步骤 1 ) 或步骤 Γ ) :  The method 1 is as follows: 1) or step Γ):
步骤 1 ) : 将由溶于分散相反应物、 偶联剂和非极性溶剂组成的分散相在乳化 剂的作用下分散于由连续相反应物和极性溶剂构成的连续相中形成乳液, 在 pH值 为 2-10 的条件下, 加入酸或碱, 所述溶于连续相和分散相的反应物在所述分散 相与所述连续相的界面发生反应, 直接形成所述正反表面具有不同性质的 Janus结 构片状材料; 其中, 所述分散相中所述非极性溶剂的粘度低于所述连续相中所述极 性溶剂的粘度, 所述分散相与所述连续相的体积比小于 5大于 0.5, 反应的温度不 低于所述非极性溶剂和所述极性溶剂的熔点, 且不高于所述非极性溶剂和所述极性 溶剂的沸点; Step 1): dispersing a dispersed phase composed of a dispersed phase reactant, a coupling agent and a non-polar solvent under an action of an emulsifier in a continuous phase composed of a continuous phase reactant and a polar solvent to form an emulsion. Under the condition of pH 2-10, an acid or a base is added, and the reactant dissolved in the continuous phase and the dispersed phase is dispersed in the dispersion. The phase reacts with the interface of the continuous phase to directly form a Janus structure sheet material having different properties on the front and back surfaces; wherein the viscosity of the non-polar solvent in the dispersed phase is lower than that in the continuous phase a viscosity of the polar solvent, a volume ratio of the dispersed phase to the continuous phase is less than 5 and more than 0.5, and a reaction temperature is not lower than a melting point of the non-polar solvent and the polar solvent, and is not higher than a boiling point of the non-polar solvent and the polar solvent;
步骤 Γ ): 将由溶有分散相反应物、偶联剂和非极性溶剂组成的分散相在乳化 剂的作用下分散于由连续相反应物和极性溶剂构成的连续相中形成乳液, 在 pH值 为 2-10 的条件下, 加入酸或碱, 所述溶于连续相和分散相的反应物在所述分散 相与所述连续相的界面发生反应, 在所述分散相液滴表面形成具有 Janus结构连续 壳层的核壳结构产物, 去除所述具有 Janus结构连续壳层的核壳结构产物中的核, 粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料; 其中, 所述分散相 中所述非极性溶剂的粘度高于所述连续相中所述极性溶剂的粘度, 所述分散相与所 述连续相的体积比大于 0小于 5, 反应的温度不低于所述非极性溶剂和所述极性溶 剂的熔点, 且不高于所述非极性溶剂和所述极性溶剂的沸点;  Step Γ): dispersing a dispersed phase composed of a dispersed phase reactant, a coupling agent and a non-polar solvent under an action of an emulsifier in a continuous phase composed of a continuous phase reactant and a polar solvent to form an emulsion. An acid or a base is added under the condition of a pH of 2-10, and the reactant dissolved in the continuous phase and the dispersed phase reacts at the interface of the dispersed phase and the continuous phase, on the surface of the dispersed phase droplet Forming a core-shell structure product having a continuous shell layer of a Janus structure, removing the core in the core-shell structure product having the continuous shell layer of the Janus structure, and pulverizing to obtain a Janus structure sheet material having different properties on the front and back surfaces; The viscosity of the non-polar solvent in the dispersed phase is higher than the viscosity of the polar solvent in the continuous phase, and the volume ratio of the dispersed phase to the continuous phase is greater than 0 and less than 5, and the temperature of the reaction is not Lower than the melting point of the non-polar solvent and the polar solvent, and not higher than the boiling points of the non-polar solvent and the polar solvent;
所述方法二包括如下步骤:  The method 2 includes the following steps:
将 ABC三嵌段共聚物置于乳液中,在分散相和连续相溶剂的诱导下,所述 ABC 三嵌段共聚物中的 A链段和 C链段分别朝向水相和油相分布,在紫外光照射或温度 为 50-100°C的条件下, 所述 ABC三嵌段共聚物中的 B链段在所述乳液的界面发生 原位聚合反应,得到 B链段为壳层中间层、 A链段和 C链段分别在所述壳层中间层 两侧的具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料;  The ABC triblock copolymer is placed in an emulsion, and the A chain segment and the C segment of the ABC triblock copolymer are respectively distributed toward the aqueous phase and the oil phase under the induction of the dispersed phase and the continuous phase solvent, in the ultraviolet Under the condition of light irradiation or temperature of 50-100 ° C, the B segment in the ABC triblock copolymer undergoes in-situ polymerization at the interface of the emulsion, and the B segment is obtained as the intermediate layer of the shell, A a hollow microsphere having a Janus structural shell layer on both sides of the middle layer of the shell layer respectively, and pulverizing to obtain a Janus structure sheet material having different properties on the front and back surfaces;
所述方法三包括如下步骤 1 ) 至步骤 2) :  The method 3 includes the following steps 1) to 2):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 b) 中的任意一种:  Wherein the step 1) is any one of the following steps a) to b):
步骤 a) : 在乳化剂的作用下, 将溶于非极性溶剂的自由基聚合反应单体溶于 非极性溶剂做为分散相分散于溶有缩聚反应的单体或预聚物的极性溶剂构成的连 续相中形成乳液, 所述引发剂溶于所述分散相溶剂或连续相溶剂中;  Step a): dissolving the radical polymerization monomer dissolved in the non-polar solvent in a non-polar solvent under the action of an emulsifier as a dispersed phase dispersed in the pole of the monomer or prepolymer in which the polycondensation reaction is dissolved Forming an emulsion in a continuous phase composed of a solvent, the initiator being dissolved in the dispersed phase solvent or the continuous phase solvent;
步骤 b) : 在乳化剂的作用下, 将溶有缩聚反应的单体或预聚物的极性溶剂构 成的分散相分散于溶有溶于非极性溶剂的自由基聚合反应单体的非极性溶剂构成 的连续性中形成乳液, 所述引发剂溶于所述分散相溶剂或连续相溶剂中相中;  Step b): Dispersing a dispersed phase composed of a polar solvent in which a polycondensation reaction monomer or a prepolymer is dissolved in a non-polar solvent-soluble radical polymerization monomer under the action of an emulsifier Forming an emulsion in the continuity of the polar solvent, the initiator being dissolved in the phase of the dispersed phase solvent or the continuous phase solvent;
步骤 2) : 若所述引发剂的分解温度低于缩聚反应的温度, 则先引发所述自由 基聚合反应单体进行自由基聚合反应, 得到初级壳层, 再引发未聚合的所述缩聚单 体或预聚物在初级壳层外侧发生缩聚反应, 形成具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料; 若所述引发剂的分 解温度高于缩聚反应的温度, 则先引发所述缩聚反应的单体或预聚物进行缩聚反应, 得到初级壳层; 再引发未聚合的所述自由基反应单体在所述在初级壳层内侧发生自 由基聚合反应, 形成具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具 有不同性质的 Janus结构片状材料。  Step 2): if the decomposition temperature of the initiator is lower than the temperature of the polycondensation reaction, the radical polymerization reaction monomer is first subjected to radical polymerization to obtain a primary shell layer, and then the unpolymerized polycondensation sheet is initiated. The body or prepolymer undergoes a polycondensation reaction outside the primary shell layer to form hollow microspheres having a Janus structure shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained; if the initiator is decomposed When the temperature is higher than the temperature of the polycondensation reaction, the monomer or prepolymer which initiates the polycondensation reaction is subjected to a polycondensation reaction to obtain a primary shell layer; and the unrepolymerized radical reactive monomer is further induced in the primary shell layer. A radical polymerization reaction occurs on the inner side to form hollow microspheres having a Janus structural shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained.
所述方法四包括如下步骤 1 ) 至步骤 2) : 其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 f) 中的任意一种: 步骤 a) : 在乳化剂的作用下, 将无机反应物溶于非极性溶剂做为分散相分散 于溶有缩聚反应的单体或预聚物的极性溶剂构成的连续相中形成乳液; The method 4 includes the following steps 1) to 2): Wherein the step 1) is any one of the following steps a) to (f): Step a): dissolving the inorganic reactant in a non-polar solvent as a dispersed phase under the action of an emulsifier Forming an emulsion in a continuous phase composed of a polar solvent in which a monomer or prepolymer of a polycondensation reaction is dissolved;
步骤 b) : 在乳化剂的作用下, 将溶有缩聚反应的单体或预聚物的极性溶剂做 为分散相分散于由溶有无机反应物的非极性溶剂构成的连续相中形成乳液;  Step b): dispersing a polar solvent in which the polycondensation reaction monomer or prepolymer is dissolved as a dispersed phase in a continuous phase composed of a nonpolar solvent in which an inorganic reactant is dissolved, by an emulsifier Emulsion
步骤 c) : 在乳化剂的作用下, 将无机反应物溶于非极性溶剂做为分散相分散 于由溶于极性溶剂的自由基聚合单体、 溶于极性溶剂的自由基聚合引发剂和极性溶 剂构成的连续相中形成乳液;  Step c): dissolving the inorganic reactant in a non-polar solvent under the action of an emulsifier as a dispersed phase dispersed in a radical polymerization polymerization of a radically polymerizable monomer dissolved in a polar solvent and dissolved in a polar solvent Forming an emulsion in a continuous phase composed of a solvent and a polar solvent;
步骤 d) : 在乳化剂的作用下, 将由溶于极性溶剂的自由基聚合单体、 溶于极 性溶剂的自由基聚合引发剂和极性溶剂构成的分散相分散于溶有无机反应物的非 极性溶剂构成的连续相中形成乳液;  Step d): Dispersing a dispersed phase composed of a radical polymerizable monomer dissolved in a polar solvent, a radical polymerization initiator dissolved in a polar solvent, and a polar solvent in the dissolved inorganic reactant under the action of an emulsifier Forming an emulsion in a continuous phase composed of a non-polar solvent;
步骤 e) : 在乳化剂的作用下, 将无机反应物、 溶于非极性溶剂的自由基聚合 单体和溶于非极性溶剂的自由基聚合引发剂溶解在非极性溶剂做为分散相分散于 极性溶剂构成的连续相中形成乳液;  Step e): dissolving the inorganic reactant, the radical polymerizable monomer dissolved in the non-polar solvent, and the radical polymerization initiator dissolved in the non-polar solvent in a non-polar solvent as a dispersion under the action of an emulsifier The phase is dispersed in a continuous phase composed of a polar solvent to form an emulsion;
步骤 0 : 在乳化剂的作用下, 将极性溶剂做为分散相分散于由溶有无机反应 物、 溶于非极性溶剂的自由基聚合单体和溶于非极性溶剂的自由基聚合引发剂的非 极性溶剂构成的连续相中形成乳液;  Step 0: Dispersing a polar solvent as a dispersed phase under the action of an emulsifier, radical polymerization of a radically polymerizable monomer dissolved in an inorganic reactant, dissolved in a nonpolar solvent, and dissolved in a nonpolar solvent Forming an emulsion in a continuous phase composed of a non-polar solvent of an initiator;
步骤 2) : 先将所述无机反应物在分散相和连续相的界面发生溶胶凝胶反应得 到初级壳层, 再引发未聚合的所述缩聚反应的单体或预聚物在所述初级壳层外侧发 生缩聚反应, 形成具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具有 不同性质的 Janus结构片状材料。  Step 2): first, the inorganic reactant is subjected to a sol-gel reaction at the interface between the dispersed phase and the continuous phase to obtain a primary shell layer, and then the monomer or prepolymer of the polycondensation reaction which is not polymerized is in the primary shell. A polycondensation reaction occurs on the outer side of the layer to form hollow microspheres having a Janus structural shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained.
所述方法五包括如下步骤 1 ) 至步骤 3 ) :  The method 5 includes the following steps 1) to 3):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 d) 中的任意一种:  Wherein the step 1) is any one of the following steps a) to d):
步骤 a): 在乳化剂的作用下, 将分散相溶剂分散于连续相溶剂中形成乳液, 加 入溶于所述连续相溶剂中的单体或树脂的预聚物进行缩聚反应, 在分散相和连续相 界面处生成交联立体网状结构的非水溶性缩聚物, 即形成初级壳层;  Step a): dispersing the dispersed phase solvent in the continuous phase solvent to form an emulsion under the action of an emulsifier, adding a monomer or a resin prepolymer dissolved in the continuous phase solvent to carry out a polycondensation reaction, in the dispersed phase and Forming a water-insoluble polycondensate of a crosslinked three-dimensional network structure at a continuous phase interface, that is, forming a primary shell layer;
步骤 b): 在乳化剂的作用下, 将分散相反应物溶于分散相溶剂中分散于连续相 溶剂中形成乳液, 加入溶于所述连续相溶剂中的连续相反应物, 所述分散相反应物 和所述连续相反应物在分散相和连续相界面处发生缩聚或加聚反应, 形成初级壳层; 步骤 c): 在乳化剂的作用下, 将分散相自由基聚合单体溶于分散相溶剂中分散 于连续相溶剂中形成乳液, 引发剂溶于分散相和 /或连续相中, 所述引发剂引发所述 分散相自由基聚合单体发生自由基聚合反应形成聚合物, 所述聚合物产生相分离沉 积在所述分散相和所述连续相的界面处, 形成交联的立体网络聚合物壳层, 即为初 级壳层;  Step b): dispersing the dispersed phase reactant in the solvent of the dispersed phase in the solvent of the continuous phase to form an emulsion under the action of the emulsifier, adding a continuous phase reactant dissolved in the solvent of the continuous phase, the dispersed phase The reactant and the continuous phase reactant undergo polycondensation or polyaddition reaction at the interface between the dispersed phase and the continuous phase to form a primary shell layer; Step c): Dissolving the dispersed phase radical polymerizable monomer under the action of an emulsifier Dispersing a solvent in a dispersion phase to form an emulsion in a continuous phase solvent, the initiator is dissolved in a dispersed phase and/or a continuous phase, and the initiator initiates radical polymerization of the dispersed phase radical polymerization monomer to form a polymer. The polymer is phase-separated and deposited at the interface between the dispersed phase and the continuous phase to form a crosslinked three-dimensional network polymer shell layer, that is, a primary shell layer;
步骤 d): 在乳化剂的作用下, 将溶有分散相聚合物的分散相有机溶剂分散于连 续相溶剂中形成乳液, 所述连续相溶剂中溶有带有与所述分散相聚合物相反电荷的 连续相聚合物, 所述分散相聚合物和所述连续相聚合物在分散相和连续相的界面处 发生静电吸引作用, 形成初级壳层; 所述步骤 2) 为下述步骤 a')或 b'): Step d): dispersing the dispersed phase organic solvent in which the dispersed phase polymer is dissolved in the continuous phase solvent to form an emulsion under the action of an emulsifier, wherein the continuous phase solvent is dissolved in the opposite phase to the dispersed phase polymer a charge continuous phase polymer, the dispersed phase polymer and the continuous phase polymer electrostatically attract at the interface between the dispersed phase and the continuous phase to form a primary shell layer; The step 2) is the following steps a') or b') :
步骤 a'): 向所述步骤 1 ) 的反应体系中再加入溶于所述连续相溶剂中的单体或 树脂的预聚物进行缩聚反应,在所述初级壳层的外侧形成新的壳层,形成具有 Janus 结构壳层的中空微球; Step a') : adding a prepolymer of a monomer or a resin dissolved in the continuous phase solvent to the reaction system of the step 1) to carry out a polycondensation reaction, forming a new shell on the outer side of the primary shell layer a layer forming hollow microspheres having a Janus structural shell;
步骤 b'): 向所述步骤 1 ) 的反应体系中再加入与步骤 1 ) 得到的聚合物带有相 反电荷的聚合物, 使所述步骤 1 ) 中得到的聚合物与所述带有相反电荷的聚合物发 生静电吸引作用, 于所述初级壳层外侧形成新的壳层, 形成具有 Janus结构壳层的 中空微球; Step b') : further adding a polymer having an opposite charge to the polymer obtained in the step 1) to the reaction system of the step 1), so that the polymer obtained in the step 1) is opposite to the one described The charged polymer undergoes electrostatic attraction, forming a new shell layer outside the primary shell layer to form hollow microspheres having a Janus shell layer;
步骤 3 ) : 将所述步骤 2)所得具有 Janus结构壳层的中空微球粉碎后得到所述 正反表面具有不同性质的 Janus结构片状材料;  Step 3): pulverizing the hollow microspheres having the Janus structural shell layer obtained in the step 2) to obtain the Janus structure sheet material having different properties on the front and back surfaces;
所述方法六包括如下步骤 1 ) 至步骤 2) :  The method 6 includes the following steps 1) to 2):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 b) 中的任意一种:  Wherein the step 1) is any one of the following steps a) to b):
步骤 a): 在乳化剂的作用下, 将溶于非极性溶剂的自由基聚合单体、溶于非极 性溶剂的自由基聚合引发剂溶于非极性溶剂中作为分散相分散于由溶于极性溶剂 的自由基聚合单体、 溶于极性溶剂的自由基聚合引发剂和极性溶剂组成的分散相中 形成乳液;  Step a): dissolving the radical polymerizable monomer dissolved in the non-polar solvent and the radical polymerization initiator dissolved in the non-polar solvent in a non-polar solvent as a dispersed phase by the action of the emulsifier Forming an emulsion in a dispersed phase composed of a radical polymerizable monomer dissolved in a polar solvent, a radical polymerization initiator dissolved in a polar solvent, and a polar solvent;
步骤 b) : 在乳化剂的作用下, 将溶于极性溶剂的自由基聚合单体、 溶于极性 溶剂的自由基聚合引发剂溶于极性溶剂中作为分散相分散于由溶于非极性溶剂的 自由基聚合单体、 溶于非极性溶剂的自由基聚合引发剂和非极性溶剂组成的分散相 中形成乳液;  Step b): dissolving the radical polymerizable monomer dissolved in the polar solvent and the radical polymerization initiator dissolved in the polar solvent in a polar solvent as a dispersed phase by dispersing in the action of the emulsifier Forming an emulsion in a dispersed phase composed of a radical polymerizable monomer of a polar solvent, a radical polymerization initiator dissolved in a non-polar solvent, and a non-polar solvent;
步骤 2) : 将步骤 1 ) 反应体系升高温度引发所述溶于极性溶剂中的自由基聚 合单体在乳液界面聚合, 得到正反两面具有不同组成和性质壳层的中空球, 粉碎或 不经粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料。  Step 2): The step 1) raising the temperature of the reaction system causes the radical polymerizable monomer dissolved in the polar solvent to be polymerized at the emulsion interface to obtain hollow spheres having different compositions and properties on both sides, crushing or The Janus structure sheet material having different properties on the front and back surfaces is obtained without pulverization.
其中,  among them,
所述方法一中, 所述分散相反应物的结构通式为 XnMRm, 优选正硅酸乙酯; 其中, M为 Si、 Ti、 Sn、 A1或 Zr; X为 Na、 Mg或 K, n为 0、 1或 2; R为 Cl、 OS04、 OCH3、 OCH2CH3、 OCH(CH3)2、 OCH2CH2CH2CH3或 S04, m为 1、 2、 3 或 4; 所述非极性溶剂选自芳香烃、 石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种,优选甲苯;所述偶联剂为
Figure imgf000007_0001
In the first method, the structure of the dispersed phase reactant is X n MR m , preferably ethyl orthosilicate; wherein M is Si, Ti, Sn, A1 or Zr; X is Na, Mg or K , n is 0, 1 or 2; R is Cl, OS0 4 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 CH 2 CH 2 CH 3 or S0 4 , m is 1, 2, 3 Or 4; the non-polar solvent is selected from at least one of an aromatic hydrocarbon, a paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, an aliphatic hydrocarbon, and ethyl acetate, preferably toluene; the coupling Agent
Figure imgf000007_0001
(C2H50)3-Si-(CH2)3-Sx-(CH2)3-Si-(OC2H5)3
Figure imgf000007_0002
H2n-M(R2)P(R3)2-P;其中, M为 Si、 Ti、 Sn、 Zr或 Al; m、 n、 p和 x均为整数, 0 n 127, 优选 n为 0-17的整数, 0 m 3, 0^p^2; l ^x^4; R2、 R3均选自 Cl、 CH3、 OCxH2x+1或 OC2H4OCH3; 所述 OCxH2x+1中, x=l-20的整数, 优选 x为 1-4的整数; 所述 选自 H、 脂肪烷 基、苯基、 乙烯基、氨基、 CN、 HCO H2 Cl、 H2(CH2)2 H 2, 3-环氧丙氧基、 甲基丙烯酰氧基或巯基;所述乳化剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、乙 烯 -马来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯 -马来酸酐共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯 醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚 而得的共聚物、聚乙烯基苯磺酸、聚乙烯基苯磺酸钠、 OP-5、 OP- 10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷 基磺酸钠、 十二烷基苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至 少一种;所述乳化剂的用量为初始乳液重量的 1%〜20%,具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述酸选自盐酸、 硫酸和硝酸中的 至少一种, 所述碱选自氢氧化钠、 氢氧化钾和氨水中的至少一种; 所述分散相反应 物和连续相反应物均占反应体系的总重的百分比为大于 0小于 80%,具体为 10-20%、 10-30%、 20-40% 30-60%或 40-50%。
(C 2 H 5 0)3-Si-(CH 2 ) 3 -S x -(CH 2 ) 3 -Si-(OC 2 H 5 ) 3 or
Figure imgf000007_0002
H 2n -M(R 2 ) P (R 3 ) 2-P; wherein M is Si, Ti, Sn, Zr or Al; m, n, p and x are integers, 0 n 127, preferably n is 0 An integer of -17, 0 m 3, 0^p^2; l ^x^4; R 2 and R 3 are each selected from Cl, CH 3 , OC x H 2x+1 or OC 2 H 4 OCH 3 ; In OC x H 2x+1 , x = an integer of 1-20, preferably x is an integer from 1 to 4; the selected from H, fatty alkyl, phenyl, vinyl, amino, CN, HCO H 2 Cl, H 2 (CH 2 ) 2 H 2, 3-epoxypropoxy, methacryloxy or decyl; the emulsifier is selected from the sodium salt hydrolyzate of styrene-maleic anhydride copolymer, ethylene-ma a sodium salt hydrolyzate of an anhydride copolymer, a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer, a sodium salt hydrolyzate of an isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid and styrene, Copolymerization of ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile Copolymer, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, dodecyl At least one of sodium sulfate, sodium lauryl sulfonate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, and sodium dioctyl sulfonate; the emulsifier The amount is 1% to 20%, specifically 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20% of the weight of the initial emulsion; The acid is selected from at least one of hydrochloric acid, sulfuric acid and nitric acid, and the base is selected from at least one of sodium hydroxide, potassium hydroxide and ammonia; the dispersed phase reactant and the continuous phase reactant both account for the reaction The percentage of the total weight of the system is greater than 0 and less than 80%, specifically 10-20%, 10-30%, 20-40% 30-60% or 40-50%.
所述方法二中,其中,所述 ABC三嵌段共聚物中, A嵌段为亲水聚合物链段, 选自聚氧乙烯、 聚马来酸酐、 聚甲基丙烯酸甲酯和聚丙烯酸中的至少一种; B嵌段 为具有反应活性的烯烃或炔烃聚合物链段,选自聚联乙炔、聚丁二烯或聚异戊二烯; C嵌段为疏水聚合物链段, 选自聚氧丙烯、 聚氧丁烯、 聚苯乙烯、 聚烯烃和聚硅氧 烷中的至少一种; 所述乳液中, 作为分散相和连续相的溶剂分别选自互不相溶的极 性溶剂和非极性溶剂; 其中非极性溶剂选自芳香烃、 石蜡、 正己烷、 四氯化碳、 氯 仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种; 所述极性溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基甲酰胺中的至少一种; 所述紫 外光照射步骤中, 时间为 5〜60分钟。  In the method 2, wherein, in the ABC triblock copolymer, the A block is a hydrophilic polymer segment selected from the group consisting of polyoxyethylene, polymaleic anhydride, polymethyl methacrylate and polyacrylic acid. At least one of; B block is a reactive olefin or alkyne polymer segment selected from polyacetylene, polybutadiene or polyisoprene; C block is a hydrophobic polymer segment, selected At least one of polyoxypropylene, polyoxybutylene, polystyrene, polyolefin, and polysiloxane; in the emulsion, the solvent as the dispersed phase and the continuous phase are respectively selected from mutually incompatible polarities a solvent and a non-polar solvent; wherein the non-polar solvent is at least one selected from the group consisting of aromatic hydrocarbons, paraffin wax, n-hexane, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and ethyl acetate; The polar solvent is at least one selected from the group consisting of water, ethylene glycol, propylene glycol, glycerin, tetrahydrofuran, and N,N-dimethylformamide; and the ultraviolet light irradiation step has a time of 5 to 60 minutes.
所述方法三中, 所述缩聚反应的单体或预聚物选自丙烯腈、 醋酸乙烯酯、脲醛 树脂 (尿素-甲醛预聚物) 、 蜜胺树脂 (三聚氰胺-甲醛预聚物) 、 酚醛树脂 (苯酚- 甲醛预聚物) 、 三聚氰胺改性脲醛树脂、 聚乙二醇改性脲醛树脂、 聚丙二醇改性脲 醛树脂、 分子量为 200-2000的聚乙二醇改性的蜜胺树脂、 分子量为 200-2000的聚 丙二醇改性的蜜胺树脂、 聚乙烯醇改性脲醛树脂、 间苯二酚改性脲醛树脂、 对苯二 酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和三聚氰胺共聚改性脲醛树脂、 聚乙烯 醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰胺共聚改性脲醛树脂、 间苯二 酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺树脂和聚乙烯醇改性蜜胺树脂 中的至少一种; 所述引发剂选自过硫酸锂 -三乙基铝、 过硫酸锂 -三乙基硼、 过硫酸 锂 -三乙基铅、 过氧化氢-亚铁盐、 过硫酸盐-亚硫酸氢钠、 过氧化二苯甲酰、 偶单二 异丁腈、 过硫酸盐、 过氧化二异丙苯、 异丙苯过氧化氢和特丁基异丙苯中的至少一 种; 所述乳化剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马来酸酐共聚物 的钠盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯-马来酸酐 共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚 乙烯基苯磺酸、聚乙烯基苯磺酸钠、OP-5、OP-10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷基磺酸钠、 十二烷基 苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至少一种; 所述乳化剂 的用量为初始乳液重量的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述非极性溶剂选自芳香烃、 石蜡、 四氯化碳、 氯 仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种, 优选十八烷; 所述溶于 非极性溶剂的自由基聚合反应单体选自苯乙烯、 丁二烯、 异戊二烯、 甲基丙烯酸甲 酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁酯、 甲基丙烯酸异丁酯、 甲基丙烯酸肉桂酸乙基酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸叔丁酯、 环氧丙烯、 乙烯基丁酯、 异丁烯或醋酸乙烯酯、 二乙烯基苯、 二甲基丙烯酸乙二醇 酯和对苯二甲酸二烯丙酯中的至少一种; 所述极性溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基甲酰胺中的至少一种; 所述自由基聚合反应的单 体与所述引发剂的摩尔份数比为 10: 1-1000: 1; 优选 50: 1: 500: 1; 所述自由基 聚合反应的温度为 20-90°C, 反应的时间为 0.5-72小时, 优选 2-16小时; 所述缩聚 反应的温度为 60-90°C, 反应的时间为 0.5-72小时, 优选 2-16小时; In the third method, the monomer or prepolymer of the polycondensation reaction is selected from the group consisting of acrylonitrile, vinyl acetate, urea resin (urea-formaldehyde prepolymer), melamine resin (melamine-formaldehyde prepolymer), phenolic Resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine resin with molecular weight of 200-2000, molecular weight 200-2000 polypropylene glycol modified melamine resin, polyvinyl alcohol modified urea formaldehyde resin, resorcin modified urea resin, hydroquinone modified urea formaldehyde resin, phenol modified urea resin, phenol and melamine copolymerization Modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymer modified urea-formaldehyde resin, resorcinol and melamine copolymer modified urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymer modified urea-formaldehyde resin, resorcinol modified melamine resin And at least one of a polyvinyl alcohol-modified melamine resin; the initiator is selected from the group consisting of lithium persulfate-triethylaluminum, lithium persulfate-triethylboron, lithium persulfate-triethyllead, Hydrogen peroxide-ferrous salt, persulphate-sodium bisulfite, dibenzoyl peroxide, even diisobutyronitrile, persulphate, dicumyl peroxide, cumene hydroperoxide and tert-butyl iso At least one of propylbenzene; the emulsifier is selected from the group consisting of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer, a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, and a vinyl methyl ether-butylene a sodium salt hydrolyzate of an acid anhydride copolymer, a sodium salt hydrolyzate of an isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, Copolymer obtained by copolymerization of methacrylate or acrylonitrile, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton At least X-100, sodium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, and sodium dioctyl sulfonate One kind; the emulsifier is used in an amount of 1% to 20% by weight of the initial emulsion Specifically, it is 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%; the non-polar solvent is selected from the group consisting of aromatic hydrocarbons, At least one of paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and ethyl acetate, preferably octadecane; The radical polymerization monomer of the non-polar solvent is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, t-butyl methacrylate, Isobutyl methacrylate, ethyl cinnamate acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, vinyl butyl ester, isobutylene or vinyl acetate, divinyl At least one of benzene, ethylene glycol dimethacrylate and diallyl terephthalate; the polar solvent is selected from the group consisting of water, ethylene glycol, propylene glycol, glycerol, tetrahydrofuran and N, N At least one of dimethylformamide; a molar ratio of the monomer of the radical polymerization reaction to the initiator: 10: 1-1000: 1; preferably 50: 1: 500: 1; The temperature of the radical polymerization reaction is 20-90 ° C, the reaction time is 0.5-72 hours, preferably 2-16 hours; the temperature of the polycondensation reaction is 60-90 ° C, and the reaction time is 0.5-72 hours. , preferably 2-16 hours;
所述方法四中, 所述无机反应物的结构通式为 XnMRm: 其中, M为 Si、 Ti、In the fourth method, the inorganic reactant has a structural formula of X n MR m: wherein M is Si, Ti,
Sn、 A1或 Zr; X为 Na、 Mg或 K, n为 0、 1或 2; R为 Cl、 OS04、 OCH3、 OCH2CH3、 OCH(CH3)2、 OCH2CH2CH2CH3或 S04, m为 1、 2、 3或 4;或
Figure imgf000009_0001
Sn, A1 or Zr; X is Na, Mg or K, n is 0, 1 or 2; R is Cl, OS0 4 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 CH 2 CH 2 CH 3 or S0 4 , m is 1, 2, 3 or 4; or
Figure imgf000009_0001
(C2H50)3-Si-(CH2)3-Sx-(CH2)3-Si-(OC2H5)3
Figure imgf000009_0002
H2n-M(R2)P(R3)2-P: 其中, M为 Si、 Ti、 Sn、 Zr或 Al; m、 n、 p和 x均为整数, 0 n 127, 优选 n为 0-17的整数, 0 ^m^3 , 0^p^2; l ^x^4; R2、 R3均选自 Cl、 CH3、 OCxH2x+1或 OC2H4OCH3中 的一种或几种; 所述 OCxH2x+1中, x=l-20的整数, 优选 X为 1-4的整数; 所述 选自 H、脂肪烷基、苯基、 乙烯基、氨基、 CN、 NHCONH2、 Cl、 NH2(CH2)2NH、 2, 3-环氧丙氧基、 甲基丙烯酰氧基或巯基; 所述缩聚反应的单体或预聚物选自脲醛树 月旨 (尿素-甲醛预聚物) 、 蜜胺树脂 (三聚氰胺-甲醛预聚物) 、 酚醛树脂 (苯酚-甲 醛预聚物) 、 三聚氰胺改性脲醛树脂、 聚乙二醇改性脲醛树脂、 聚丙二醇改性脲醛 树脂、 分子量为 200〜2000的聚乙二醇改性的蜜胺树脂、 分子量为 200〜2000的聚 丙二醇改性的蜜胺树脂、 聚乙烯醇改性脲醛树脂、 间苯二酚改性脲醛树脂、 对苯二 酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和三聚氰胺共聚改性脲醛树脂、 聚乙烯 醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰胺共聚改性脲醛树脂、 间苯二 酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺树脂和聚乙烯醇改性蜜胺树脂 中的至少一种; 所述溶于非极性溶剂的自由基聚合单体选自苯乙烯、 丁二烯、 异戊 二烯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁酯、 甲基丙烯酸异丁酯、 甲基丙烯酸、 肉桂酸乙基酯、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯 酸丁酯、 丙烯酸叔丁酯、 环氧丙烯、 二甲基硅烷、 乙烯基丁酯、 异丁烯或醋酸乙烯 酯, 二乙烯基苯、 二甲基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的至少一种; 所 述溶于非极性溶剂的自由基聚合引发剂选自偶氮二异丁腈、 偶氮二异庚腈、 过氧化 二苯甲酰、 过氧化氢异丙苯、 过氧化十二酰、 过氧化二碳酸而异丙酯、 过氧化二碳 酸二环己酯、 过氧化二苯甲酰 /N, N-二甲基苯胺氧化还原引发体系、 萘酸盐与过氧 化二苯甲酰氧化还原引发体系中的至少一种; 所述非极性溶剂选自芳香烃、 石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种; 所述溶于 极性溶剂的自由基聚合单体选自丙烯酰胺、 丙烯酸、 甲基丙烯酸、 乙烯醇、 N-羟甲 基丙烯酰胺中的至少一种; 所述溶于极性溶剂的自由基聚和引发剂选自过硫酸钾、 过硫酸铵、 过硫酸盐与硫代硫酸盐或亚硫酸盐组成的氧化还原引发体系、 过硫酸盐 与脂肪胺或脂肪二胺组成的氧化还原引发体系中的至少一种; 所述极性溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基甲酰胺中的至少一种所述乳化 剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯 -马来酸酐共聚物的钠盐水 解物、丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚乙烯基苯磺酸、 聚乙烯基苯磺酸钠、 OP-5、 OP-10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷基磺酸钠、 十二烷基苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至少一种; 所述乳化剂的用量为初 始乳液重量的 1%〜20%,具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述缩聚反应中, 温度为 60-90°C, 优选 70°C, 反应的时间为 0.5-72 小时, 优选 2-16 小时; 所述自由基聚合反应的单体与所述引发剂的摩尔份数比为 10: 1-1000: 1; 优选 50: 1: 500: 1; 所述自由基聚合反应的温度为 20-90 °C, 反 应的时间为 0.5-72小时, 优选 2-16小时。
(C 2 H 5 0) 3 -Si-(CH 2 ) 3 -S x -(CH 2 ) 3 -Si-(OC 2 H 5 ) 3 ,
Figure imgf000009_0002
H 2n -M(R 2 ) P (R 3 ) 2-P: wherein M is Si, Ti, Sn, Zr or Al; m, n, p and x are integers, 0 n 127, preferably n is 0 An integer of -17, 0 ^m^3 , 0^p^2; l ^x^4 ; R 2 and R 3 are all selected from Cl, CH 3 , OC x H 2x+1 or OC 2 H 4 OCH 3 One or more of the above; in the OC x H 2x+1 , an integer of x = 1-20, preferably X is an integer of 1-4; the selected from the group consisting of H, a fatty alkyl group, a phenyl group, a vinyl group, Amino, CN, NHCONH 2 , Cl, NH 2 (CH 2 ) 2 NH, 2, 3-epoxypropoxy, methacryloxy or decyl; the monomer or prepolymer of the polycondensation reaction is selected from Urea-formaldehyde (urea-formaldehyde prepolymer), melamine resin (melamine-formaldehyde prepolymer), phenolic resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin , polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine resin with molecular weight of 200~2000, polypropylene glycol modified melamine resin with molecular weight of 200~2000, polyvinyl alcohol modified urea-formaldehyde resin, m-benzene Diphenol modified urea-formaldehyde resin, hydroquinone modified urea-formaldehyde tree , phenol modified urea-formaldehyde resin, phenol and melamine copolymer modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymer modified urea-formaldehyde resin, resorcinol and melamine copolymer modified urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymerization modified urea-formaldehyde At least one of a resin, a resorcinol-modified melamine resin, and a polyvinyl alcohol-modified melamine resin; the radically polymerizable monomer dissolved in the non-polar solvent is selected from the group consisting of styrene, butadiene, and Pentadiene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, methacrylic acid, ethyl cinnamate, methyl acrylate, Ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl silane, vinyl butyl acrylate, isobutylene or vinyl acetate, divinyl benzene, ethylene glycol dimethacrylate and p-phenylene At least one of diallyl formate; the radical polymerization initiator dissolved in the non-polar solvent is selected from the group consisting of azobisisobutyronitrile, azobisisoheptanenitrile, dibenzoyl peroxide, and Hydrogen cumene hydroperoxide, dodecyl peroxide, isopropyl diperoxide and isopropyl ester, dicyclohexyl peroxydicarbonate, dibenzoyl peroxide / N, N-dimethylaniline redox initiation system, At least one of a naphthate and a dibenzoyl peroxide redox initiating system; the non-polar solvent is selected from the group consisting of aromatic hydrocarbons, paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, and aliphatic hydrocarbons And at least one of ethyl acetate; the radically polymerizable monomer dissolved in the polar solvent is at least one selected from the group consisting of acrylamide, acrylic acid, methacrylic acid, vinyl alcohol, and N-methylol acrylamide; The radical polymerization initiator in the polar solvent is selected from the group consisting of potassium persulfate, ammonium persulfate, persulfate and thiosulfate or sulfite redox initiation system, persulfate At least one of redox initiation systems consisting of a fatty amine or a fatty diamine; the polar solvent being selected from the group consisting of water, ethylene glycol, propylene glycol, glycerol, tetrahydrofuran, and N, N-dimethylformamide At least one of the emulsifiers is selected from the group consisting of sodium salt hydrolysates of styrene-maleic anhydride copolymers, sodium salt hydrolysates of ethylene-maleic anhydride copolymers, and ethylene methyl ether-maleic anhydride copolymers. Sodium salt hydrolysate, sodium salt hydrolysate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate Or a copolymer of acrylonitrile copolymerized, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, At least one of sodium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, and sodium dioctyl sulfonate; The emulsifier is used in an amount of 1% by weight of the initial emulsion. 20%, specifically 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%; in the polycondensation reaction, the temperature is 60 -90 ° C, preferably 70 ° C, the reaction time is 0.5-72 hours, preferably 2-16 hours; the molar ratio of the monomer of the radical polymerization reaction to the initiator is 10: 1-1000 : 1; preferably 50: 1: 500: 1; the temperature of the radical polymerization is 20-90 ° C, and the reaction time is 0.5-72 hours, preferably 2-16 hours.
所述方法五中, 步骤 1 ) a) 中所述溶于连续相溶剂中的单体或树脂的预聚物 均选自丙烯腈、 醋酸乙烯酯、 脲醛树脂(尿素-甲醛预聚物) 、 蜜胺树脂(三聚氰胺 -甲醛预聚物) 、 酚醛树脂 (苯酚-甲醛预聚物) 、 三聚氰胺改性脲醛树脂、 聚乙二 醇改性脲醛树脂、 聚丙二醇改性脲醛树脂、 分子量为 200〜2000的聚乙二醇改性的 蜜胺树脂、 分子量为 200〜2000的聚丙二醇改性的蜜胺树脂、 聚乙烯醇改性脲醛树 脂、 间苯二酚改性脲醛树脂、 对苯二酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和 三聚氰胺共聚改性脲醛树脂、 聚乙烯醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和 三聚氰胺共聚改性脲醛树脂、 间苯二酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改 性蜜胺树脂和聚乙烯醇改性蜜胺树脂中的至少一种;  In the method 5, the prepolymer of the monomer or the resin dissolved in the continuous phase solvent in the step 1) a) is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin (urea-formaldehyde prepolymer), Melamine resin (melamine-formaldehyde prepolymer), phenolic resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, molecular weight 200~2000 Polyethylene glycol modified melamine resin, polypropylene glycol modified melamine resin with molecular weight of 200~2000, polyvinyl alcohol modified urea formaldehyde resin, resorcin modified urea resin, hydroquinone modification Urea-formaldehyde resin, phenol-modified urea-formaldehyde resin, phenol and melamine copolymerization modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymerization At least one of a urea resin, a resorcinol modified melamine resin, and a polyvinyl alcohol modified melamine resin;
步骤 1 ) b) 中所述连续相反应物和分散相反应物均选自二元胺、 多元胺、 二 元醇、多元醇、二元酚、多元酚、二元酰氯、多元酰氯、二元磺酰氯、多元磺酰氯、 二异氰酸酯、 多异氰酸酯、 二氯甲酸酯、 环氧树脂预聚物和有机硅氧烷预聚体中的 至少一种;  The continuous phase reactant and the dispersed phase reactant in step 1) b) are each selected from the group consisting of diamines, polyamines, glycols, polyols, dihydric phenols, polyhydric phenols, dibasic acid chlorides, polyacid chlorides, and binary At least one of a sulfonyl chloride, a polysulfonyl chloride, a diisocyanate, a polyisocyanate, a bischloroformate, an epoxy resin prepolymer, and an organosiloxane prepolymer;
步骤 1 ) c) 中所述分散相自由基聚合单体选自苯乙烯、 丁二烯、 异戊二烯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁酯、 甲基丙 烯酸异丁酯、 甲基丙烯酸肉桂酸乙基酯、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸叔丁酯、 环氧丙烯、 二甲基硅烷、 乙烯基丁酯、 异丁烯或醋酸乙烯酯, 二乙 烯基苯、 二甲基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的至少一种;  The dispersed phase free radical polymerizable monomer in the step 1) c) is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid. Tert-butyl ester, isobutyl methacrylate, ethyl cinnamic acid acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl silane, vinyl butyl ester At least one of isobutylene or vinyl acetate, divinylbenzene, ethylene glycol dimethacrylate and diallyl terephthalate;
步骤 1 ) d) 中所述形成初级壳层的分散相聚合物和连续相聚合物均选自聚乙 烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶、 酪蛋白、 阿拉伯胶、 海藻酸钠、 琼脂、 聚 磷酸钠、 聚硅酸钠、 羧甲基纤维素、 苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯- 马来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异 丁烯 -马来酸酐共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得 的共聚物、 聚乙烯基苯磺酸 (钠) 、 聚乙烯吡啶丁基溴和聚乙烯吡咯烷酮中的至少 一种; The dispersed phase polymer and the continuous phase polymer forming the primary shell layer in step 1) d) are each selected from the group consisting of polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, casein, gum arabic, sodium alginate, agar, Sodium polyphosphate, sodium polysilicate, carboxymethyl cellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, vinyl methyl ether-butylene Sodium salt hydrolysate of dianhydride copolymer, sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate , methacrylate or acrylonitrile copolymerization At least one of a copolymer, polyvinylbenzenesulfonic acid (sodium), polyvinylpyridinium bromide, and polyvinylpyrrolidone;
步骤 2) a' ) 中所述溶于连续相溶剂中的单体或树脂预聚物均选自丙烯腈、 醋 酸乙烯酯、 脲醛树脂 (尿素-甲醛预聚物) 、 蜜胺树脂 (三聚氰胺-甲醛预聚物) 、 酚醛树脂 (苯酚-甲醛预聚物) 、 三聚氰胺改性脲醛树脂、 聚乙二醇改性脲醛树脂、 聚丙二醇改性脲醛树脂、 聚乙二醇改性的分子量为 200〜2000的蜜胺树脂、 聚丙二 醇改性的分子量为 200〜2000的蜜胺树脂、 聚乙烯醇改性脲醛树脂、 间苯二酚改性 脲醛树脂、 对苯二酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和三聚氰胺共聚改性 脲醛树脂、 聚乙烯醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰胺共聚改性 脲醛树脂、 间苯二酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺树脂和聚乙 烯醇改性蜜胺树脂中的至少一种;  The monomer or resin prepolymer dissolved in the continuous phase solvent in step 2) a') is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin (urea-formaldehyde prepolymer), melamine resin (melamine). Formaldehyde prepolymer), phenolic resin (phenol-formaldehyde prepolymer), melamine modified urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified molecular weight of 200~ 2000 melamine resin, polypropylene glycol modified melamine resin with molecular weight of 200~2000, polyvinyl alcohol modified urea-formaldehyde resin, resorcinol modified urea-formaldehyde resin, hydroquinone modified urea-formaldehyde resin, phenol modification Urea-formaldehyde resin, phenol and melamine copolymerization modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymerization modified urea-formaldehyde resin, m-benzene At least one of a diphenol-modified melamine resin and a polyvinyl alcohol-modified melamine resin;
步骤 2) b' ) 中所述与步骤 1 ) 得到的聚合物带有相反电荷的聚合物选自聚乙 烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶、 酪蛋白、 阿拉伯胶、 海藻酸钠、 琼脂、 聚 磷酸钠、 聚硅酸钠、 羧甲基纤维素、 苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯- 马来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异 丁烯 -马来酸酐共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得 的共聚物、 聚乙烯基苯磺酸、 聚乙烯基苯磺酸钠、 聚乙烯吡啶丁基溴和聚乙烯吡咯 烷酮中的至少一种;  The polymer having opposite charge to the polymer obtained in the step 2) b) is selected from the group consisting of polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, casein, gum arabic, sodium alginate, agar , sodium polyphosphate, sodium polysilicate, carboxymethyl cellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, vinyl methyl ether-cis-butane Sodium salt hydrolysate of enedic anhydride copolymer, sodium salt hydrolysate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylic acid a copolymer obtained by copolymerization of an ester, a methacrylate or an acrylonitrile, at least one of polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, polyvinylpyridinium bromide and polyvinylpyrrolidone;
步骤 1 ) a) 中所述缩聚反应中, 温度为 60-90°C, 优选 70°C, 时间为 0.5-72 小时,优选 2- 16小时, pH值为 2- 10,搅拌转速为 50- 16000r/min,优选 150-12000r/min; 步骤 1 ) b) 中所述缩聚或加聚反应中, 分散相反应物与所述连续相反应物反 应官能团的摩尔份数比为 1 : 1; 温度为 60-90°C, 优选 70°C, 时间为 0.5-72小时, 优选 2-16小时, 搅拌速度为 50-16000r/min, 优选 150-12000r/min;  In the polycondensation reaction in the step 1) a), the temperature is 60-90 ° C, preferably 70 ° C, the time is 0.5-72 hours, preferably 2-16 hours, the pH is 2-10, and the stirring speed is 50- 16000r/min, preferably 150-12000r/min; in the polycondensation or polyaddition reaction in step 1) b), the molar ratio of the reactive phase reactant to the continuous phase reactant reactive functional group is 1:1; Is 60-90 ° C, preferably 70 ° C, time is 0.5-72 hours, preferably 2-16 hours, stirring speed is 50-16000r / min, preferably 150-12000r / min;
步骤 1 ) c) 中所述自由基聚合反应中, 所述分散相自由基聚合单体与所述引 发剂的摩尔份数比为 10: 1-1000: 1; 优选 50: 1-500: 1, 温度为 20-90°C, 时间为 0.5-72小时, 优选 2-16小时;  In the radical polymerization reaction in the step 1) c), the molar fraction ratio of the dispersed phase radical polymerizable monomer to the initiator is 10: 1-1000: 1; preferably 50: 1-500: 1 , the temperature is 20-90 ° C, the time is 0.5-72 hours, preferably 2-16 hours;
步骤 1 ) d) 中所述反应体系的 pH值为 2-10;  Step 1) The pH of the reaction system described in d) is 2-10;
步骤 2) a' ) 中所述缩聚反应中, 温度为 60-90°C, 优选 70°C, 时间为 0.5-72 小时,优选 2- 16小时, pH值为 2- 10,搅拌转速为 50- 16000r/min,优选 150-12000r/min; 步骤 2) b' ) 中所述反应体系的 pH值为 2-10;  In the polycondensation reaction in the step 2) a'), the temperature is 60-90 ° C, preferably 70 ° C, the time is 0.5-72 hours, preferably 2-16 hours, the pH is 2-10, and the stirring speed is 50. - 16000r / min, preferably 150-12000r / min; the pH of the reaction system described in step 2) b') is 2-10;
所述乳化剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马来酸酐共聚物 的钠盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯-马来酸酐 共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚 乙烯基苯磺酸、聚乙烯基苯磺酸钠、OP-5、OP-10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷基磺酸钠、 十二烷基 苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至少一种; 所述乳化剂 的用量为初始乳液重量的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; The emulsifier is selected from the group consisting of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer, a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, and a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer. a sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile Copolymer, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, dodecyl At least one of sodium sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, and sodium dioctyl sulfonate; the emulsifier The amount is from 1% to 20% by weight of the initial emulsion, specifically 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20% ;
所述分散相溶剂选自芳香烃、 石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂 肪烃和乙酸乙酯中的至少一种;  The dispersed phase solvent is at least one selected from the group consisting of aromatic hydrocarbons, paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and ethyl acetate;
所述连续相溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基 甲酰胺中的至少一种。  The continuous phase solvent is at least one selected from the group consisting of water, ethylene glycol, propylene glycol, glycerin, tetrahydrofuran, and N, N-dimethylformamide.
所述方法六中, 所述溶于非极性溶剂的自由基聚合单体选自苯乙烯、 丁二烯、 异戊二烯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁 酯、 甲基丙烯酸异丁酯、 甲基丙烯酸、 肉桂酸乙基酯、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸叔丁酯、 环氧丙烯、 二甲基硅烷、 乙烯基丁酯、 异丁烯或醋酸 乙烯酯,二乙烯基苯、二甲基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的至少一种; 所述溶于非极性溶剂的自由基聚合引发剂选自偶氮二异丁腈、 偶氮二异庚腈、 过氧 化二苯甲酰、 过氧化氢异丙苯、 过氧化十二酰、 过氧化二碳酸而异丙酯、 过氧化二 碳酸二环己酯、 过氧化二苯甲酰 /N, N-二甲基苯胺氧化还原引发体系、 萘酸盐与过 氧化二苯甲酰氧化还原引发体系中的至少一种;所述非极性溶剂选自芳香烃、石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种; 所述溶于 极性溶剂的自由基聚合单体选自丙烯酰胺、 Ν,Ν-二甲基双丙烯酰胺、 丙烯酸、 甲基 丙烯酸、 乙烯醇、 Ν-羟甲基丙烯酰胺中的至少一种; 所述溶于极性溶剂的自由基聚 合引发剂选自过硫酸钾、 硫酸亚铁、 过硫酸铵、 由过硫酸盐与硫代硫酸盐组成的混 合物、 由过硫酸盐与亚硫酸盐组成的混合物、 由过硫酸盐与脂肪胺组成的混合物或 由过硫酸盐与脂肪二胺组成的混合物中的至少一种, 优选过硫酸钾和硫酸亚铁中的 至少一种; 所述极性溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 Ν, Ν-二 甲基甲酰胺中的至少一种,优选水;所述乳化剂选自苯乙烯-马来酸酐共聚物的钠盐 水解物、 乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的 钠盐水解物、异丁烯 -马来酸酐共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或 丙烯腈共聚而得的共聚物、 聚乙烯基苯磺酸、 聚乙烯基苯磺酸钠、 ΟΡ-5、 ΟΡ-10、 Span20 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷 基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化胺(CTAB ) 和珀酸二辛酯磺酸钠中的至少一种;所述乳化剂的用量为初始乳液重量的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述自 由基聚合单体与所述自由基聚合引发剂的摩尔份数比为 10: 1-1000: 1;优选 50: 1: 500: 1; 所述自由基聚合反应的温度为 20-90°C, 反应的时间为 0.5-72小时, 优选 2-16小时;所述自由基聚合单体在乳液体系中的浓度为 0.01%-90%,优选 0.1%-30%。  In the method 6, the radical polymerizable monomer dissolved in the non-polar solvent is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, and methacrylic acid Ester, tert-butyl methacrylate, isobutyl methacrylate, methacrylic acid, ethyl cinnamate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl At least one of silane, vinyl butyl ester, isobutylene or vinyl acetate, divinyl benzene, ethylene glycol dimethacrylate and diallyl terephthalate; said dissolving in a non-polar solvent The radical polymerization initiator is selected from the group consisting of azobisisobutyronitrile, azobisisoheptanenitrile, dibenzoyl peroxide, cumene hydroperoxide, dodecyl peroxide, peroxydicarbonate and isopropyl ester, At least one of dicyclohexyl peroxydicarbonate, dibenzoyl peroxide/N,N-dimethylaniline redox initiation system, naphthate and dibenzoyl peroxide redox initiation system; The non-polar solvent is selected from the group consisting of aromatic hydrocarbons and stones. At least one of carbon tetrachloride, chloroform, cyclohexane, dichloromethane, an aliphatic hydrocarbon, and ethyl acetate; the radically polymerizable monomer dissolved in a polar solvent is selected from the group consisting of acrylamide, hydrazine, hydrazine- At least one of dimethyl bis acrylamide, acrylic acid, methacrylic acid, vinyl alcohol, hydrazine-hydroxymethyl acrylamide; the radical polymerization initiator dissolved in a polar solvent is selected from the group consisting of potassium persulfate and sulfuric acid Iron, ammonium persulfate, a mixture of persulfate and thiosulfate, a mixture of persulfate and sulfite, a mixture of persulfate and fatty amine or a persulfate and fatty diamine At least one of the components of the composition, preferably at least one of potassium persulfate and ferrous sulfate; the polar solvent is selected from the group consisting of water, ethylene glycol, propylene glycol, glycerol, tetrahydrofuran and hydrazine, hydrazine-dimethyl At least one of the formamides is preferably water; the emulsifier is selected from the group consisting of sodium salt hydrolysates of styrene-maleic anhydride copolymers, sodium salt hydrolysates of ethylene-maleic anhydride copolymers, vinyl methyl ethers - Maleic anhydride Sodium salt hydrolysate of polymer, sodium salt hydrolysate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, nail Copolymer obtained by copolymerization of acrylate or acrylonitrile, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, cesium-5, ΟΡ-10, Span20 Span60, Span80, Tween20, Tween60, Tween80, Triton X- 100, sodium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide (CTAB) and sodium dioctyl sulfonate At least one; the emulsifier is used in an amount of 1% to 20% by weight of the initial emulsion, specifically 1% to 15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%; the molar fraction ratio of the radical polymerizable monomer to the radical polymerization initiator is 10: 1-1000: 1; preferably 50: 1: 500: 1; The temperature of the radical polymerization is 20-90 ° C, and the reaction time is 0.5-72 hours, preferably 2-16 hours; the radical polymerizable monomer is Concentration of the solution in the system from 0.01% to 90%, preferably 0.1% to 30%.
上述方法一至方法六中,所述复凝聚反应是利用两种或多种带有相反电荷的水 溶性聚合物分子之间发生静电相互吸引作用, 形成的凝聚物在水相中发生相分离并 在界面处沉积, 经交联固化后生成聚合物的方法。 上述每种方法中, 可通过改变反 应物的量控制 Janus结构片状材料的厚度。 粉碎的方法为各种常用的粉碎方法。 可 通过控制球磨机或胶体磨研磨时间和研磨方式, 使 Janus 结构片状材料的尺寸从 50nm到 500μιη可调, 优选 50ηιη〜100μιη。 所述乳液包括正相乳液、 反相乳液、 微 乳液、 反相微乳液等类型乳液。 所述低温研磨温度的范围为 0°C-170°C。 In the above method 1 to method 6, the complex coacervation reaction utilizes electrostatic attraction between two or more water-soluble polymer molecules having opposite charges, and the formed agglomerates are phase-separated in the aqueous phase and A method of depositing at the interface and forming a polymer after cross-linking and solidification. In each of the above methods, the thickness of the Janus structure sheet material can be controlled by changing the amount of the reactant. The pulverization method is various commonly used pulverization methods. Can The size of the Janus structure sheet material can be adjusted from 50 nm to 500 μm by controlling the ball mill or colloid mill grinding time and the grinding method, preferably 50 ηηη to 100 μηη. The emulsion includes a type emulsion of a normal phase emulsion, an inverse emulsion, a microemulsion, a reverse phase microemulsion, and the like. The low temperature grinding temperature ranges from 0 °C to 170 °C.
附图说明 DRAWINGS
图 1为本发明实施例 1制备得到的一侧带有胺基,另一侧带有苯基的二氧化硅 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a silica prepared on Example 1 of the present invention having an amine group on one side and a phenyl group on the other side.
Janus片状材料的扫描电镜照片。 Scanning electron micrograph of Janus sheet material.
图 2为本发明实施例 2制备得到的一侧带有环氧基,另一侧带有苯基的二氧化 硅 Janus片状材料的扫描电镜照片。  Figure 2 is a scanning electron micrograph of a Janus sheet material of a silicon dioxide having an epoxy group on one side and a phenyl group on the other side prepared in Example 2 of the present invention.
图 3为本发明实施例 3制备得到的两侧性质不同的 Janus结构片状材料在甲苯 /水中的乳化性能照片, 左侧为未加 Janus片的体系, 右侧为加入 Janus片后乳化的 体系。  3 is a photograph showing the emulsification performance of a sheet material of Janus structure having different properties on both sides prepared in Example 3 of the present invention. The left side is a system without a Janus sheet, and the right side is a system emulsified after adding a Janus sheet. .
图 4为本发明实施例 3制备得到的两侧性质不同的 Janus结构片状材料的扫描 电镜照片,内嵌的图为实施例 3的 Janus片胺基一侧吸附磺化聚苯乙烯小球 (30nm) 的 Janus结构片状材料的扫描电镜照片。  4 is a scanning electron micrograph of a sheet material of Janus structure having different properties on both sides prepared in Example 3 of the present invention, and the embedded figure is the sulfonated polystyrene pellet adsorbed on the Janus aramid side of Example 3. Scanning electron micrograph of a 30 nm) Janus structure sheet material.
图 5为本发明实施例 4制备得到的多孔的 Janus结构片状材料的扫描电镜照片, 内嵌的图为本发明实施例 4的多孔的 Janus结构片状材料的透射照片。  Fig. 5 is a scanning electron micrograph of a porous Janus structure sheet material prepared in Example 4 of the present invention, and the inlaid photograph is a transmission photograph of the porous Janus structure sheet material of Example 4 of the present invention.
图 6为本发明实施例 5制备得到的多孔的 Janus结构片状材料的透射电镜照片。 图 7为本发明实施例 6制备得到的一侧带有胺基,另一侧带有二十五烷基的有 机 Janus结构片状材料的扫描电镜照片。  Fig. 6 is a transmission electron micrograph of a porous Janus structure sheet material prepared in Example 5 of the present invention. Fig. 7 is a scanning electron micrograph of an organic Janus structure sheet material having an amine group on one side and a pentadecyl group on the other side prepared in Example 6 of the present invention.
图 8为本发明实施例 8制备得到的脲醛树脂 /聚苯乙烯 Janus片状材料的扫描电 镜照片。  Figure 8 is a scanning electron micrograph of a urea-formaldehyde resin/polystyrene Janus sheet material prepared in Example 8 of the present invention.
图 9为本发明实施例 11制备得到的二氧化硅 /蜜胺树脂 Janus片状材料的扫描 电镜照片。  Figure 9 is a scanning electron micrograph of a silica/melamine resin Janus sheet material prepared in Example 11 of the present invention.
图 10为本发明实施例 14制备得到的聚苯乙烯 /二氧化硅 Janus片状材料的扫描 电镜照片。  Figure 10 is a scanning electron micrograph of a polystyrene/silica Janus sheet material prepared in Example 14 of the present invention.
图 11为本发明实施例 15制备得到的聚二乙烯基苯 /二氧化硅 Janus片状材料 Janus片状材料的扫描电镜照片。  Figure 11 is a scanning electron micrograph of a polydivinylbenzene/silica Janus sheet material Janus sheet material prepared in Example 15 of the present invention.
图 12为本发明实施例 16制备得到的脲酸 /蜜胺树脂 Janus片状材料的扫描电镜 照片。  Figure 12 is a scanning electron micrograph of a uric acid/melamine resin Janus sheet material prepared in Example 16 of the present invention.
图 13为本发明实施例 17制备得到的聚乙二醇改性脲醛树脂 /明胶 Janus片状材 料的扫描电镜照片。  Figure 13 is a scanning electron micrograph of a polyethylene glycol modified urea-formaldehyde resin/gelatin Janus sheet material prepared in Example 17 of the present invention.
图 14为本发明实施例 18制备得到的聚氨酯 /脲醛树脂 Janus片状材料的扫描电 镜照片。  Figure 14 is a scanning electron micrograph of a polyurethane/urea resin Janus sheet material prepared in Example 18 of the present invention.
图 15为本发明实施例 19制备得到的环氧树脂 /聚乙烯吡咯烷酮 Janus片状材料 的扫描电镜照片。  Figure 15 is a scanning electron micrograph of an epoxy resin/polyvinylpyrrolidone Janus sheet material prepared in Example 19 of the present invention.
图 16为本发明实施例 20制备得到的聚苯乙烯 /脲醛树脂 Janus片状材料的扫描 电镜照片。  Figure 16 is a scanning electron micrograph of a polystyrene/urea resin Janus sheet material prepared in Example 20 of the present invention.
图 17为本发明实施例 21制备得到的聚二乙烯基苯 /明胶 Janus片状材料的扫描 电镜照片。 Figure 17 is a scanning of the polydivinylbenzene/gelatin Janus sheet material prepared in Example 21 of the present invention. Electron micrograph.
图 18为本发明实施例 22制备得到的明胶 /海藻酸纳 Janus片状材料的扫描电镜 照片。  Figure 18 is a scanning electron micrograph of gelatin / sodium alginate Janus sheet material prepared in Example 22 of the present invention.
图 19为本发明实施例 23制备得到的聚丙烯酰胺 /聚苯乙烯 Janus片状材料的扫 描电镜照片。  Figure 19 is a scanning electron micrograph of a polyacrylamide/polystyrene Janus sheet material prepared in Example 23 of the present invention.
图 20为本发明实施例 1制备得到的二氧化硅片状材料改性的聚甲基丙烯酸甲 酯 /聚苯乙烯层状材料的扫描电镜图片。  Figure 20 is a scanning electron micrograph of a polymethyl methacrylate/polystyrene layered material modified with a silica sheet material prepared in Example 1 of the present invention.
图 21为实施例 1提供的 Janus片状材料制备所得乳液的偏光显微镜照片。 图 22为本发明实施例 1中一侧带有胺基、 另一侧带有苯基的二氧化硅 Janus 片用于油水分离过程的图片。  Figure 21 is a polarizing microscope photograph of the emulsion prepared from the Janus sheet material provided in Example 1. Figure 22 is a photograph of a silica Janus sheet having an amine group on one side and a phenyl group on the other side in the oil-water separation process in Example 1 of the present invention.
实施发明的最佳方式 The best way to implement the invention
下面结合具体实施例对本发明作进一步说明, 但本发明并不限于以下实施例。 下述实施例中所述浓度如无特别说明, 均为质量百分浓度。 下述实施例中所述化合 物如无特别说明, 均能从公开商业途径购买得到。其中, 乙烯-马来酸酐共聚物的钠 盐水解物中, 乙烯 -马来酸酐共聚物的重均分子量为 200-20000, 购自 Aldrich公司 出品的 CAS: 31959-78-1产品, 乙烯甲基醚 -顺丁烯二酸酐共聚物的钠盐水解物中, 乙烯甲基醚-顺丁烯二酸酐共聚物的重均分子量为 600-30000, 购自 Aldrich公司, CAS: 25087-06-3 , 异丁烯-马来酸酐共聚物的钠盐水解物中, 异丁烯-马来酸酐共聚 物可按照下述文献方法制备: 邓翠萍, 戚银城, 异丁烯-马来酸酐共聚反应的研究, 石油化工, 1990, 11, 739-744,所述丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得 的共聚物的重均分子量为 500-100000, 可直接从商业途径购买得到, 或按照下述文 献或书籍中的方法进行制备: 陈军, 任天瑞, 吁松瑞等, 丙烯酸类共聚物分散剂的 合成及其分散性能, 过程工程学报, 2009, 6, 1204-1209; 严瑞瑄, 水溶性高分子, 化学工业出版社, 1998, 179-222页。  The invention is further illustrated by the following specific examples, but the invention is not limited to the following examples. The concentrations described in the following examples are all mass percent concentrations unless otherwise specified. The compounds described in the following examples are commercially available from commercially available sources unless otherwise stated. Wherein, the ethylene-maleic anhydride copolymer has a weight average molecular weight of 200 to 20,000 in the sodium salt hydrolyzate of the ethylene-maleic anhydride copolymer, and is commercially available from Aldrich as CAS: 31959-78-1, vinyl methyl In the sodium salt hydrolyzate of the ether-maleic anhydride copolymer, the ethylene methyl ether-maleic anhydride copolymer has a weight average molecular weight of 600 to 300,000, which is commercially available from Aldrich, CAS: 25087-06-3. In the sodium salt hydrolysate of isobutylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer can be prepared according to the following literature method: Deng Cuiping, Yan Yincheng, Research on copolymerization of isobutylene-maleic anhydride, Petrochemical, 1990, 11, 739-744, the average weight of the copolymer of acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile The molecular weight is 500-100,000, which can be purchased directly from commercial sources, or prepared according to the methods in the following literature or books: Chen Jun, Ren Tianrui, Yu Songrui, etc., Acrylic Copolymer Synthesis and dispersion of powders, Journal of Process Engineering, 2009, 6, 1204-1209; Yanrui Xuan, water-soluble polymer, Chemical Industry Press, 1998, pages 179-222.
实施例 1、 利用方法一制备一侧带有胺基、另一侧带有苯基的二氧化硅 Janus 片状材料  Example 1. Using Method 1 to prepare a silica with a amide group on one side and a phenyl group on the other side Janus sheet material
取 10g反应物正硅酸乙酯、 2g偶联剂氨丙基三乙氧基硅烷和 lg偶联剂苯基三 乙氧基硅烷加入到 25g非极性溶剂甲苯中, 充分混合后作为油相。取 2.5g乳化剂十 二烷基硫酸钠加到 50g极性溶剂水中,将其 pH值用 2mol/L盐酸调至 3,作为水相; 将油相加入到水相中, 使用高速剪切乳化机以 lOOOOrpm剪切乳化 10min, 将所得 乳液转移至 70°C水浴中的三口瓶中, 机械搅拌反应 12小时出料, 直接得到一侧带 有胺基、 另一侧带有苯基两侧性质不同的 Janus结构片状材料。 该材料的电镜照片 如图 1所示。 该材料的厚度为 200-400nm, 长和宽均为 2-10μιη; 位于基底正表面上 的材料为氨丙基基团与位于基底反表面上的材料 (为苯基基团) 的重量比为 2: 1; 该材料具有多孔结构, 孔径为 5-7nm。 Take 10g of reactant tetraethyl orthosilicate, 2g of coupling agent aminopropyltriethoxysilane and lg coupling agent phenyltriethoxysilane to 25g of non-polar solvent toluene, fully mixed as oil phase . 2.5 g of emulsifier sodium lauryl sulfate was added to 50 g of polar solvent water, and the pH was adjusted to 3 with 2 mol/L hydrochloric acid as an aqueous phase; the oil phase was added to the aqueous phase, and high-speed shear emulsification was used. The machine was emulsified by shearing at 100 rpm for 10 min, and the obtained emulsion was transferred to a three-necked flask in a water bath at 70 ° C, and mechanically stirred for 12 hours to discharge, directly obtaining an amine group on one side and a phenyl side on the other side. Different Janus structure sheet materials. An electron micrograph of the material is shown in Figure 1. The material has a thickness of 200-400 nm and a length and a width of 2-10 μm ; the weight ratio of the material on the front surface of the substrate to the aminopropyl group and the material on the opposite surface of the substrate (which is a phenyl group) is 2: 1; The material has a porous structure with a pore diameter of 5-7 nm.
利用该实施例制备所得一侧带有胺基、 另一侧带有苯基两侧性质不同的 Janus 结构片状材料, 可用来乳化石蜡 (熔点 52-54°C ) /水体系, 从而得到制备石蜡为非 连续相, 水为连续相的乳液, 其具体方法为: 取 20g石蜡加热至 70°C使其融化, 将 0. 5g所述一侧带有胺基、 另一侧带有苯基的 Janus片材料加入到 50mL 70°C的水中 并分散均匀。 将融化的石蜡加入到上述水溶液中, 12000r/min强力剪切 5min, 得到 石蜡为非连续相, 水为连续相的乳液, 图 21 为该乳液的偏光显微镜照片, 由图可 知, 该 Janus片状材料起到乳化剂作用。 The Janus structure sheet material having the amine side on one side and the other side of the phenyl group on the other side can be used to emulsify paraffin wax (melting point 52-54 ° C) / water system to prepare the preparation. Paraffin The continuous phase, the water is the emulsion of the continuous phase, the specific method is as follows: 20 g of paraffin is heated to 70 ° C to melt, 0.5 g of the Janus piece with an amine group on one side and a phenyl group on the other side The material was added to 50 mL of water at 70 ° C and dispersed uniformly. The melted paraffin is added to the above aqueous solution, and is strongly sheared at 12000 r/min for 5 min to obtain a paraffin wax as a discontinuous phase, and water is a continuous phase emulsion. FIG. 21 is a polarizing microscope photograph of the emulsion, and the Janus sheet is seen from the figure. The material acts as an emulsifier.
利用该实施例制备所得一侧带有胺基、 另一侧带有苯基两侧性质不同的 Janus 结构片状材料, 可用来诱导制备聚甲基丙烯酸甲酯 (PMMA) /聚苯乙烯 (PS) 层 状材料, 具体方法如下: 取 180g聚甲基丙烯酸甲酯 (重均分子量 80000-150000均 可) , 180g聚苯乙烯 (重均分子量 100000-200000均可)和 40g该实施例制备所得 片状材料加入到双螺杆混合机中, 在 210°C下, 采用 50r/min的转速混炼 10min, 然 后挤出, 得到二氧化硅片状材料改性的聚甲基丙烯酸甲酯 /聚苯乙烯层状材料。该层 状材料结构呈聚甲基丙烯酸甲酯 /二氧化硅 /聚苯乙烯 /二氧化硅交替层状结构。 该材 料的电镜照片如图 20所示。  Using this example, a sheet of Janus structure having an amine group on one side and a different side on the other side of the phenyl group can be used to induce the preparation of polymethyl methacrylate (PMMA) / polystyrene (PS). The layered material is as follows: 180 g of polymethyl methacrylate (weight average molecular weight of 80,000 to 150,000), 180 g of polystyrene (weight average molecular weight of 100,000 to 200,000), and 40 g of the obtained sheet prepared in this example The material was added to a twin-screw mixer, and kneaded at 50 ° C for 10 min at 210 ° C, and then extruded to obtain a silica sheet-like material modified polymethyl methacrylate / polystyrene. Layered material. The layered material structure is a polymethyl methacrylate / silica / polystyrene / silica alternating layer structure. An electron micrograph of the material is shown in Figure 20.
利用该实施例制备所得一侧带有胺基、 另一侧带有苯基两侧性质不同的 Janus 结构片状材料, 可用于油水分离, 其具体方法如下: 取 0.2g该实施例制备所得片状 材料将 10mL甲苯和 5mL水乳化成稳定的乳液,水相用甲基橙染成橙色以便于区分 油水两相, 连续相水能够经过玻璃砂流出, 而甲苯在该实施例制备所得片状材料的 稳定作用下形成的液滴, 由于尺寸大而无法通过玻璃砂底部的孔流出, 仍在分离柱 中, 然后用玻璃棒将分离柱中 Janus片稳定的油滴捣碎, 则甲苯能够经过玻璃砂底 流出, 而 Janus片仍保留在分离柱中, 从而实现了乳液的油水两相的分离和 Janus 片的回收。所得结果如图 22所示。该 Janus片稳定的乳液所具有的这一油水两相易 于分离的特点, 使 Janus片在三次采油、 污水处理、 溅洒污染物清理等方面的应用 与分子乳化剂相比更具优势。  The Janus structure sheet material with the amine side on one side and the other side of the phenyl group on the other side can be used for the separation of oil and water by the method. The specific method is as follows: Take 0.2g of the preparation sheet prepared in this example. The material was emulsified into 10 ml of toluene and 5 mL of water to form a stable emulsion. The aqueous phase was dyed orange with methyl orange to distinguish the oil-water two phases. The continuous phase water was able to flow out through the glass sand, and the toluene was prepared in this example. The droplet formed under the action of the stabilization, due to its large size, cannot flow through the pores at the bottom of the glass sand, still in the separation column, and then the glass jar is used to smash the Janus sheet stable oil droplets in the separation column, and the toluene can pass through the glass. The bottom of the sand flows out, and the Janus piece remains in the separation column, thereby achieving separation of the oil-water two phases of the emulsion and recovery of the Janus piece. The results obtained are shown in Figure 22. The oil-water two-phase separation of the Janus stable emulsion makes the Janus tablet more advantageous than molecular emulsifiers in tertiary oil recovery, wastewater treatment, and splash cleaning.
实施例 2、 方法一制备带有环氧基和苯基的二氧化硅 Janus片状材料  Example 2 Method 1 Preparation of silica with epoxy group and phenyl group Janus sheet material
1 )取 6g反应物正硅酸乙酯、 0.5g偶联剂环氧丙基三甲氧基硅烷、 0.5g偶联剂 苯基三乙氧基硅烷、 6g乳化剂 Span80和 lg乳化剂 Tween80加入到 60g非极性溶 剂甲苯中, 充分混合后作为油相。 取 50g极性溶剂水作为水相。  1) 6g of reactant tetraethyl orthosilicate, 0.5g of coupling agent epoxypropyltrimethoxysilane, 0.5g of coupling agent phenyltriethoxysilane, 6g of emulsifier Span80 and lg emulsifier Tween80 are added to 60 g of non-polar solvent toluene was mixed well and used as an oil phase. 50 g of polar solvent water was taken as the aqueous phase.
2) 将水相加入到油相中, 使用高速剪切乳化机以 lOOOOrpm剪切乳化 2min 将所得反相乳液转移至 80°C水浴中的三口瓶中, 机械搅拌反应 24小时出料, 直接 得到一侧带有环氧基, 另一侧带有苯基两侧性质不同的 Janus结构片状材料。 该材 料的电镜照片如图 2所示。 该材料的厚度为 100-300 长和宽均为 l-ΙΟμιη; 位于 基底正表面上的材料 (为环氧基团) 与位于基底反表面上的材料 (为苯基基团) 的 重量比为 1 : 1  2) Adding the aqueous phase to the oil phase, using a high-speed shear emulsifier to shear emulsification at 100 rpm for 2 min, transferring the obtained inverse emulsion to a three-necked flask in a water bath of 80 ° C, and mechanically stirring the reaction for 24 hours to directly obtain The one side has an epoxy group, and the other side has a Janus structure sheet material having different properties on both sides of the phenyl group. An electron micrograph of the material is shown in Figure 2. The material has a thickness of 100-300 and a width of l-ΙΟμιη; the weight ratio of the material (which is an epoxy group) on the front surface of the substrate to the material (which is a phenyl group) on the reverse surface of the substrate is 1 : 1
实施例 3、 方法一制备一侧带有胺基、 另一侧带有苯基的二氧化硅 Janus片状 材料  Example 3 Method 1 Preparation of a silica with an amine group on one side and a phenyl group on the other side Janus sheet material
1 )取 5g反应物正硅酸乙酯、 lg偶联剂胺基三甲氧基硅烷和 lg偶联剂苯基三 甲氧基硅烷加入到 25g70°C的非极性溶剂石蜡(熔点 52-54°C )中, 70°C下充分混合 4小时, 作为油相。 取 15§10^%的苯乙烯 -马来酸酐共聚物的钠盐水解物水溶液作 为乳化剂, 加到 75g极性溶剂水中, 将其 pH值用 2mol/L盐酸调至 2, 加热到 70 V, 作为水相。 1) Take 5g of reactant tetraethyl orthosilicate, lg coupling agent aminotrimethoxysilane and lg coupling agent phenyltrimethoxysilane to 25g of 70 ° C non-polar solvent paraffin (melting point 52-54 ° In C), it was thoroughly mixed at 70 ° C for 4 hours as an oil phase. Taking 15 § 10% of the sodium salt hydrolyzate solution of the styrene-maleic anhydride copolymer As an emulsifier, it was added to 75 g of polar solvent water, and its pH was adjusted to 2 with 2 mol/L hydrochloric acid, and heated to 70 V as an aqueous phase.
2) 将油相加入到水相中, 在 70°C下使用高速剪切乳化机以 lOOOOrpm剪切乳 化 10min,将所得乳液转移至 70°C水浴中的三口瓶中,机械搅拌反应 12小时出料。 将乳液用水稀释后经胶体磨磨碎, 再反复用水和己烷洗涤, 以除去表面活性剂和石 蜡, 从而得到一侧带有胺基, 另一侧带有苯基 Janus结构片状材料。 该材料的电镜 照片如图 3和图 4所示。 该材料的厚度为 50-100nm, 长和宽均为 200ηιη-5μιη; 位 于基底正表面上的材料(为胺丙基基团)与位于基底反表面上的材料(为苯基基团) 的重量比为 1 : 1。 2) The oil phase was added to the water phase, and the emulsion was shear emulsified at 100 ° C for 10 min at 70 ° C using a high-speed shear emulsifier. The obtained emulsion was transferred to a three-necked flask in a 70 ° C water bath, and mechanically stirred for 12 hours. material. The emulsion was diluted with water, ground by a colloid mill, and washed with water and hexane repeatedly to remove the surfactant and paraffin, thereby obtaining an amine group on one side and a phenyl Janus structure sheet on the other side. Electron micrographs of this material are shown in Figures 3 and 4. The material has a thickness of 50-100 nm, a length and a width of 200 ηιη - 5 μιη ; a material on the front surface of the substrate (which is an amine propyl group) and a weight of a material (which is a phenyl group) on the reverse surface of the substrate. The ratio is 1:1.
该实施例中所用苯乙烯 -马来酸酐共聚物的钠盐水解物水溶液是按照如下方法 制备而得: 在三口瓶中加入 lOOmL 甲苯, 通氮气除氧 30min, 加入 10g苯乙烯和 10g马来酸酐, 室温下搅拌溶解, 加入 O. lg偶氮二异丁腈作为引发剂, 90°C恒温反 应 3h。 产物在室温下抽滤洗涤, 得到的白色粉末在 60°C下真空干燥后, 得到苯乙 烯 -马来酸酐共聚物; 取 10g该苯乙烯-马来酸酐共聚物于单口瓶中, 加入 5g氢氧化 钠和 90mL去离子水, 磁力搅拌并在 90°C下水解 4-6h, 得到浅黄色透明粘稠溶液, 得到水解的苯乙烯-马来酸酐共聚物水溶液 (HSMA水溶液) , 即苯乙烯-马来酸酐 共聚物的钠盐水解物的水溶液, 其质量百分浓度为 10%。  The sodium salt hydrolyzate aqueous solution of the styrene-maleic anhydride copolymer used in this example was prepared as follows: 100 mL of toluene was added to a three-necked flask, oxygen was removed by nitrogen for 30 min, and 10 g of styrene and 10 g of maleic anhydride were added. The mixture was stirred and dissolved at room temperature, and O. lg azobisisobutyronitrile was added as an initiator, and the reaction was carried out at 90 ° C for 3 h. The product was washed with suction at room temperature, and the obtained white powder was vacuum dried at 60 ° C to obtain a styrene-maleic anhydride copolymer; 10 g of the styrene-maleic anhydride copolymer was placed in a single-mouth bottle, and 5 g of hydrogen was added. Sodium oxide and 90 mL of deionized water, magnetically stirred and hydrolyzed at 90 ° C for 4-6 h to obtain a pale yellow transparent viscous solution to obtain a hydrolyzed aqueous solution of styrene-maleic anhydride copolymer (HSMA aqueous solution), ie styrene - An aqueous solution of a sodium salt hydrolyzate of a maleic anhydride copolymer having a mass percent concentration of 10%.
实施例 4、用方法一制备一侧带有胺基,另一侧带有苯基的多孔二氧化硅 Janus 片状材料  Example 4: Using Method 1 to prepare a porous silica with an amine group on one side and a phenyl group on the other side Janus sheet material
1 )取 5g反应物正硅酸乙酯、 lg偶联剂氨基三甲氧基硅烷和 lg偶联剂苯基三 乙氧基硅烷加入到非极性溶剂 70°C的石蜡 (熔点 52-54°C ) 中, 70°C下充分混合 4 小时, 作为油相。取 15g l0wt%的苯乙烯-马来酸酐共聚物的钠盐水解物水溶液作为 乳化剂, 加到 75g极性溶剂水中, 将其 pH值用 2mol/L盐酸调至 7, 加热到 70°C, 作为水相。 其中, 苯乙烯 -马来酸酐共聚物的钠盐水解物的水溶液是按照实施例 3 提供的方法制备的。  1) Take 5g of reactant tetraethyl orthosilicate, lg coupling agent aminotrimethoxysilane and lg coupling agent phenyltriethoxysilane to paraffin wax (melting point 52-54°) at 70 °C in non-polar solvent In C), mix well at 70 ° C for 4 hours as an oil phase. 15 g of 10% by weight of a sodium salt hydrolyzate aqueous solution of styrene-maleic anhydride copolymer was added as an emulsifier to 75 g of polar solvent water, and the pH was adjusted to 7 with 2 mol/L hydrochloric acid, and heated to 70 ° C. As the water phase. Among them, an aqueous solution of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer was prepared in accordance with the method provided in Example 3.
2) 将油相加入到水相中, 在 70°C下使用高速剪切乳化机以 lOOOOrpm剪切乳 化 10min,将所得乳液转移至 70°C水浴中的三口瓶中,机械搅拌反应 12小时出料。 将乳液用水稀释后经胶体磨磨碎, 用水和己烷洗涤分别洗涤三次, 在用乙醇作溶剂 回流 24h, 除去表面活性剂, 得到本发明提供的一侧带有胺基, 另一侧带有苯基的 多孔二氧化硅 Janus结构片状材料。 该材料的电镜照片如图 5所示。 该材料的厚度 为 200-500nm, 长和宽均为 l-ΙΟμιη; 位于基底正表面上的材料(为胺丙基基团)与 位于基底反表面上的材料 (为苯基基团) 的重量比为 1 : 1。  2) The oil phase was added to the water phase, and the emulsion was shear emulsified at 100 ° C for 10 min at 70 ° C using a high-speed shear emulsifier. The obtained emulsion was transferred to a three-necked flask in a 70 ° C water bath, and mechanically stirred for 12 hours. material. The emulsion was diluted with water, ground by a colloid mill, washed three times with water and hexane, and refluxed with ethanol as a solvent for 24 hours to remove the surfactant, and the side provided by the present invention was provided with an amine group and the other side was provided with benzene. A porous silica Janus structure sheet material. An electron micrograph of the material is shown in Figure 5. The material has a thickness of 200-500 nm, a length and a width of l-ΙΟμιη; a material on the front surface of the substrate (which is an amine propyl group) and a weight of a material (which is a phenyl group) on the reverse surface of the substrate. The ratio is 1:1.
实施例 5、用方法一制备一侧带有胺基, 另一侧带有十八烷基的多孔二氧化硅 Janus片状材料=  Example 5, using Method 1 to prepare porous silica with an amine group on one side and octadecyl on the other side Janus sheet material =
1 ) 取 3g反应物正硅酸乙酯, lg偶联剂氨基三乙氧基硅烷和 0.5g偶联剂十八 烷基三乙氧基硅烷加入到非极性溶剂甲苯中, 充分混合后作为油相。取 2.5g乳化剂 十二烷基硫酸钠加到 50g极性溶剂水中, 将其 pH值用 2mol/L盐酸调至 2, 作为水 相。 2) 将油相加入到水相中, 使用高速剪切乳化机以 lOOOOrpm剪切乳化 10min, 将所得乳液转移至 70°C水浴中的三口瓶中, 机械搅拌反应 12小时出料, 直接得到 两侧性质不同的 Janus结构片状材料, 片层厚度 200纳米。 1) Take 3g of reactant tetraethyl orthosilicate, lg coupling agent aminotriethoxysilane and 0.5g coupling agent octadecyltriethoxysilane to be added to the non-polar solvent toluene, and mix well Oil phase. 2.5 g of an emulsifier sodium lauryl sulfate was added to 50 g of polar solvent water, and the pH was adjusted to 2 with 2 mol/L hydrochloric acid as an aqueous phase. 2) Adding the oil phase to the water phase, using a high-speed shear emulsifier to shear emulsification at 100 rpm for 10 min, transferring the obtained emulsion to a three-necked flask in a 70 ° C water bath, mechanically stirring the reaction for 12 hours, and directly obtaining two The Janus structure sheet material with different side properties has a sheet thickness of 200 nm.
上述片状材料用水和乙醇反复洗涤, 洗去表面活性剂, 得到多孔的 Janus结构 片状材料。 该材料的电镜照片如图 6所示。 该材料的厚度为 50-80nm, 长和宽均为 300ηιη-5μιη; 位于基底正表面上的材料 (为胺丙基基团) 与位于基底反表面上的材 料 (为十八烷基基团) 的重量比为 2: 1; 该材料具有多孔结构, 孔径为 5-7nm。  The above-mentioned sheet material was repeatedly washed with water and ethanol, and the surfactant was washed away to obtain a porous Janus structure sheet material. An electron micrograph of the material is shown in Figure 6. The material has a thickness of 50-80 nm, a length and a width of 300 ηιη - 5 μιη; a material on the front surface of the substrate (which is an amine propyl group) and a material on the reverse surface of the substrate (which is an octadecyl group). The weight ratio is 2:1; the material has a porous structure with a pore diameter of 5-7 nm.
实施例 6、 用方法二制备一侧带有聚氧丙烯链段, 另一侧带有聚乙二醇链段的 有机 Janus结构片状材料  Example 6. An organic Janus structure sheet material having a polyoxypropylene segment on one side and a polyethylene glycol segment on the other side was prepared by the second method.
将 0.2g聚乙二醇-聚丁二烯-聚氧丙烯三嵌段共聚物 (重均分子量 500-20000, 聚氧丙烯为疏水链段, 聚乙二醇为亲水链段, 聚丁二烯为具有反应活性的链段) 分 散于 lOOmL去离子水中, 得到乙二醇-丁二烯-聚氧丙烯三嵌段共聚物的水溶液, 向 上述水溶液中加入 20mL癸烷, 超声乳化 10min, 得到稳定乳液, 用紫外光照射乳 液 30min后得到 Janus结构中空微球, 将上述乳液冷冻干燥后低温研磨成片, 即得 到一侧带有聚氧丙烯链段, 另一侧带有聚乙二醇链段的有机 Janus结构片状材料。 该材料的电镜照片如图 7所示。该材料的厚度为 30-200nm,长和宽均为 200ηιη-5μιη; 位于基底正表面上的材料(为聚乙二醇)与位于基底反表面上的材料(为聚氧丙烯) 的重量比为 1 : 1。 0.2g polyethylene glycol-polybutadiene-polyoxypropylene triblock copolymer (weight average molecular weight 500-20000, polyoxypropylene is a hydrophobic segment, polyethylene glycol is a hydrophilic segment, polybutan The olefin is a reactive segment) dispersed in 100 mL of deionized water to obtain an aqueous solution of a glycol-butadiene-polyoxypropylene triblock copolymer, and 20 mL of decane is added to the above aqueous solution, followed by emulsification for 10 min to obtain The emulsion was stabilized, and the emulsion was irradiated with ultraviolet light for 30 minutes to obtain hollow microspheres of Janus structure. The emulsion was freeze-dried and then ground into a sheet at a low temperature to obtain a polyoxypropylene segment on one side and a polyethylene glycol chain on the other side. Segment of the organic Janus structure sheet material. An electron micrograph of the material is shown in Figure 7. The material has a thickness of 30-200 nm and a length and a width of 200 ηιη - 5 μιη ; the weight ratio of the material (which is polyethylene glycol) on the front surface of the substrate to the material (polyoxypropylene) on the reverse surface of the substrate is 1 : 1.
实施例 7、 用方法二制备一侧带有聚苯乙烯链, 另一侧带有聚甲基丙烯酸甲酯 链的有机 Janus结构片状材料  Example 7. An organic Janus structure sheet material having a polystyrene chain on one side and a polymethyl methacrylate chain on the other side was prepared by the second method.
将 0.1苯乙烯-丁二烯-甲基丙烯酸甲酯双亲性三嵌段接枝聚合物 (重均分子量 为 2000-50000, CAS: 25053-09-2, 购自 Sigma公司, 其中亲水聚合物链段为聚甲 基丙烯酸甲酯, 具有反应活性的烯烃或炔烃聚合物链段为聚丁二烯, 疏水聚合物链 段为该嵌段共聚物中的聚苯乙烯链段) 溶于 50mL非极性溶剂正己烷中, 向上述溶 液中加入 10mL质量百分浓度为 0.01%的过硫酸钾水溶液, 超声乳化 10min, 得到 稳定乳液, 升高温度至 70°C, 反应 8h后得到 Janus结构中空微球。 将上述乳液冷 冻干燥后低温研磨成片, 得到一侧带有聚苯乙烯链, 另一侧带有聚甲基丙烯酸甲酯 链的 Janus结构片状材料。 该材料的厚度为 20-50nm, 长和宽均为 100ηιη-2μιη; 位 于基底正表面上的材料 (为聚苯乙烯) 与位于基底反表面上的材料 (为聚甲基丙烯 酸甲酯) 的重量比为 1 : 1。 0.1 styrene-butadiene-methyl methacrylate amphiphilic triblock graft polymer (weight average molecular weight 2000-0000, CAS: 25053-09-2, purchased from Sigma, where hydrophilic polymer The segment is polymethyl methacrylate, the reactive olefin or alkyne polymer segment is polybutadiene, the hydrophobic polymer segment is the polystyrene segment in the block copolymer) dissolved in 50mL In the non-polar solvent n-hexane, 10 mL of a 0.01% by weight aqueous solution of potassium persulfate was added to the above solution, and emulsified by ultrasonication for 10 min to obtain a stable emulsion, and the temperature was raised to 70 ° C. After 8 h of reaction, the Janus structure was hollow. Microspheres. The emulsion was freeze-dried and then ground at a low temperature to obtain a Janus structure sheet material having a polystyrene chain on one side and a polymethyl methacrylate chain on the other side. The material has a thickness of 20-50 nm, a length and a width of 100 ηιη - 2 μιη ; a weight of the material on the front surface of the substrate (polystyrene) and a material on the opposite surface of the substrate (polymethyl methacrylate). The ratio is 1:1.
实施例 8、 用方法三制备脲醛树脂 /聚苯乙烯 Janus片状材料  Example 8. Preparation of urea-formaldehyde resin by method three / polystyrene Janus sheet material
1 )取 10g自由基聚合反应单体苯乙烯和 5g自由基聚合反应单体二乙烯基苯加 入到 100g非极性溶剂十八烷中,混合均匀后加入到含有 O. lg引发剂过硫酸钾、 O. lg 引发剂亚硫酸氢钠、 10g乳化剂 tween80及 200g质量百分浓度为 5%的缩聚反应的 预聚物尿素 -甲醛预聚体的水溶液组成的混合液中, 在室温下该体系高速剪切乳化 lOmin, 将乳液转移至 30°C恒温水浴中的装有回流冷凝管的三口瓶中, 机械均匀搅 拌, 用 1M的盐酸将体系 pH值调至 5;  1) Take 10g of free radical polymerization monomer styrene and 5g of free radical polymerization monomer divinylbenzene is added to 100g of non-polar solvent octadecane, mixed uniformly and then added to O. lg initiator potassium persulfate , O. lg initiator sodium hydrogen sulfite, 10 g emulsifier tween 80 and 200 g of a 5% polycondensation reaction prepolymer urea-formaldehyde prepolymer aqueous solution mixture, at room temperature High-speed shear emulsification lOmin, the emulsion was transferred to a three-necked flask equipped with a reflux condenser in a constant temperature water bath at 30 ° C, mechanically stirred uniformly, and the pH of the system was adjusted to 5 with 1 M hydrochloric acid;
2) 在氮气的保护下, 将步骤 1 ) 反应体系于 30°C反应 12h, 所用 O. lg引发剂 过硫酸钾和 O. lg引发剂亚硫酸氢钠引发自由基聚合反应得到苯乙烯聚合物,然后升 高反应温度至 70°C, 使尿素-甲醛预聚体发生缩聚反应, 继续反应 8h, 将乳液采用 冰水降温后抽滤, 真空干燥, 得到脲醛树脂 /聚苯乙烯复合聚合物中空微球。将上述 中空微球在低温下研磨成片,得到脲醛树脂 /聚苯乙烯复合的正反两面具有不同组成 的 Janus结构片状材料。该材料的电镜照片如图 8所示。该材料的厚度为 30-60nm, 长和宽均为 500ηιη-5μιη; 位于基底正表面上的材料(为聚苯乙烯)与位于基底反表 面上的材料 (为尿醛树脂) 的重量比为 3 : 2。 2)。 O. lg initiator used in the reaction of the reaction system was carried out at 30 ° C for 12 h under the protection of nitrogen. The potassium persulfate and the O. lg initiator sodium bisulphite initiate a free radical polymerization reaction to obtain a styrene polymer, and then raise the reaction temperature to 70 ° C to cause the urea-formaldehyde prepolymer to undergo a polycondensation reaction, and continue the reaction for 8 hours. The emulsion was cooled by ice water, suction filtered, and vacuum dried to obtain a urea-formaldehyde resin/polystyrene composite polymer hollow microsphere. The hollow microspheres were ground to a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the urea-formaldehyde resin/polystyrene composite. An electron micrograph of the material is shown in Figure 8. The material has a thickness of 30-60 nm, a length and a width of 500 ηιη - 5 μιη ; a weight ratio of a material (which is polystyrene) on the front surface of the substrate to a material (a urethane resin) on the reverse surface of the substrate is 3 : 2.
该方法中, 尿素 -甲醛预聚体水溶液是按照下述方法制备而得: 在装有回流冷 凝管的三口瓶中加入 240g尿素和 500g质量百分浓度为 37%的甲醛水溶液, 机械搅 拌溶解, 加入三乙醇胺调节体系 pH值至 8, 加热至 70°C, 保温反应 l h得粘稠液 体, 加入 1000g水稀释, 得到稳定的尿素-甲醛预聚体水溶液。  In the method, the urea-formaldehyde prepolymer aqueous solution is prepared according to the following method: 240 g of urea and 500 g of a 37% by mass aqueous formaldehyde solution are added to a three-necked flask equipped with a reflux condenser, and mechanically dissolved and dissolved. Adding triethanolamine to adjust the pH of the system to 8, heating to 70 ° C, holding the reaction for 1 h to obtain a viscous liquid, and adding 1000 g of water to dilute to obtain a stable urea-formaldehyde prepolymer aqueous solution.
实施例 9、 用方法三制备蜜胺树脂 /聚丁二烯 Janus片状材料  Example 9. Preparation of melamine resin by using Method 3 / Polybutadiene Janus sheet material
1 )取 10g自由基聚合反应单体丁二烯和 5g自由基聚合反应单体二乙烯基苯加 入到 100g非极性溶剂正己烷中, 混合均匀后加入到由 O. lg引发剂过硫酸钾、 O. lg 引发剂亚硫酸氢钠、 5g乳化剂十二烷基硫酸钠和 200g质量百分浓度为 5%的缩聚反 应的预聚物三聚氰胺-甲醛预聚体水溶液组成的混合液中,在室温下该体系高速剪切 乳化 lOmin, 将乳液转移至 30°C恒温水浴中的装有回流冷凝管的三口瓶中, 机械均 匀搅拌。 用 1M的盐酸将体系 pH值调至 5;  1) taking 10g of free radical polymerization monomer butadiene and 5g of free radical polymerization monomer divinylbenzene is added to 100g of non-polar solvent n-hexane, mixed uniformly and then added to the potassium persulfate by O. lg initiator , O. lg initiator sodium hydrogen sulfite, 5 g emulsifier sodium lauryl sulfate and 200 g of a 5% by weight polycondensation prepolymer melamine-formaldehyde prepolymer aqueous solution, in The system was emulsified at high speed for 10 min at room temperature, and the emulsion was transferred to a three-necked flask equipped with a reflux condenser in a constant temperature water bath at 30 ° C, and mechanically stirred uniformly. Adjust the pH of the system to 5 with 1M hydrochloric acid;
2) 在氮气的保护下, 将步骤 1 ) 反应体系于 30°C反应 12h, 所用 O. lg引发剂 过硫酸钾和 O. lg引发剂亚硫酸氢钠引发自由基聚合反应得到聚丁二烯聚合物,然后 升高反应温度至 70°C, 使三聚氰胺-甲醛预聚体发生缩聚反应, 继续反应 8h, 将乳 液采用冰水降温后抽滤, 真空干燥, 得到蜜胺树脂 /聚丁二烯复合聚合物中空微球。 将上述中空微球在低温下研磨成片,即得到蜜胺树脂 /聚丁二烯复合的正反两面具有 不同组成的 Janus结构片状材料。该材料的厚度为 20-100nm,长和宽均为 100ηιη-2μιη; 位于基底正表面上的材料(为密胺树脂)与位于基底反表面上的材料(为聚丁二烯) 的重量比为 3 : 2。 2) Under the protection of nitrogen, the reaction system of step 1) is reacted at 30 ° C for 12 h, using O. lg initiator potassium persulfate and O. lg initiator sodium hydrogen sulfite to initiate free radical polymerization to obtain polybutadiene. Polymer, then raise the reaction temperature to 70 ° C, the melamine-formaldehyde prepolymer is polycondensed, continue the reaction for 8h, the emulsion is cooled by ice water, suction filtration, vacuum drying, to obtain melamine resin / polybutadiene Composite polymer hollow microspheres. The hollow microspheres are ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the melamine resin/polybutadiene composite. The material has a thickness of 20-100 nm and a length and a width of 100 ηιη - 2 μιη ; the weight ratio of the material on the front surface of the substrate (which is a melamine resin) to the material on the reverse surface of the substrate (which is polybutadiene) is 3: 2.
该方法中, 三聚氰胺-甲醛预聚体水溶液是按照下述方法制备的: 在装有回流 冷凝管的三口瓶中加入 110g三聚氰胺和 500g的 37%甲醛水溶液, 机械搅拌溶解, 加入三乙醇胺调节体系 pH为 8, 加热至 70°C, 保温反应 l h得粘稠液体, 然后加 入 1000g水稀释, 得到稳定的三聚氰胺-甲醛预聚体水溶液。  In the method, the melamine-formaldehyde prepolymer aqueous solution is prepared according to the following method: 110 g of melamine and 500 g of 37% aqueous formaldehyde solution are added to a three-necked flask equipped with a reflux condenser, mechanically stirred to dissolve, and triethanolamine is added to adjust the pH of the system. 8, heated to 70 ° C, the reaction was incubated for 1 h to obtain a viscous liquid, and then diluted with 1000 g of water to obtain a stable aqueous solution of melamine-formaldehyde prepolymer.
实施例 10、 用方法三制备聚苯乙烯 /脲醛树脂 Janus片状材料  Example 10 Preparation of Polystyrene / Urea Resin by Method 3 Janus Sheet Material
1 )取 10g自由基聚合反应单体苯乙烯和 O. lg引发剂过氧化苯甲酸特丁酯加入 到 100g非极性溶剂甲苯中, 混合均匀后加入到由 5g 乳化剂 Tween80和 200g质量 百分浓度为 5%的缩聚反应的预聚物尿素-甲醛预聚体水溶液组成的混合液中, 在室 温下该体系高速剪切乳化 lOmin, 将乳液转移至 50°C恒温水浴中的装有回流冷凝管 的三口瓶中, 机械均匀搅拌。 用 1M的盐酸将体系 pH值调至 4;  1) Take 10g of free radical polymerization monomer styrene and O. lg initiator butyl benzoate peroxide added to 100g of non-polar solvent toluene, mixed uniformly and then added to 5g emulsifier Tween80 and 200g mass% In a mixture of 5% polycondensation prepolymer urea-formaldehyde prepolymer aqueous solution, the system was emulsified at high speed for 10 min at room temperature, and the emulsion was transferred to a 50 ° C constant temperature water bath with reflux condensation. In the three-necked tube of the tube, the machine is evenly stirred. Adjust the pH of the system to 4 with 1M hydrochloric acid;
2)在氮气的保护下, 50°C反应 2h, 使尿素-甲醛预聚体发生缩聚反应, 然后升 高反应温度至 90°C,引发剂过氧化苯甲酸特丁酯引发自由基聚合发应得聚苯乙烯聚 合物, 继续反应 8h。 将乳液采用冰水降温后抽滤, 真空干燥, 即得到聚苯乙烯 /脲 醛树脂复合聚合物中空微球。 将上述中空微球在低温下研磨成片, 即得到聚苯乙烯 /脲醛树脂复合的正反两面具有不同组成的 Janus结构片状材料。 该方法中, 所用尿 素 -甲醛预聚体水溶液是按照实施例 6方法制备。该材料的厚度为 20-60nm, 长和宽 均为 100-800nm; 位于基底正表面上的材料 (为聚苯乙烯) 与位于基底反表面上的 材料 (为尿醛树脂) 的重量比为 1 : 1。 2) Under the protection of nitrogen, react at 50 °C for 2 h, the polycondensation reaction of urea-formaldehyde prepolymer is carried out, then the reaction temperature is raised to 90 °C, and the initiator is initiated by free radical polymerization of tert-butyl peroxybenzoate. Polystyrene Compound, continue to react for 8h. The emulsion was cooled by ice water, suction filtered, and vacuum dried to obtain a polystyrene/urea resin composite polymer hollow microsphere. The hollow microspheres are ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polystyrene/urea resin composite. In this method, the urea-formaldehyde prepolymer aqueous solution used was prepared in accordance with the method of Example 6. The material has a thickness of 20-60 nm and a length and a width of 100-800 nm; the weight ratio of the material (which is polystyrene) on the front surface of the substrate to the material (for the urethane resin) on the reverse surface of the substrate is 1 : 1.
实施例 11、 用方法四制备二氧化硅 /蜜胺树脂 Janus片状材料  Example 11 Preparation of Silica/Melamine Resin by Method 4 Janus Sheet Material
1 ) 取 2g无机反应物正硅酸乙酯和 0.5g无机反应物氨丙基三乙氧基硅烷加入 到 100g非极性溶剂甲苯中, 混合均匀后加入到由 8g乳化剂 Triton X-100和 200g 质量百分浓度为 5%的缩聚反应的预聚物三聚氰胺 -甲醛预聚体水溶液组成的混合液 中, 在室温下该体系高速剪切乳化 10min, 将乳液转移至 25 °C恒温水浴中的装有回 流冷凝管的三口瓶中, 机械均匀搅拌。 用 1M的盐酸将体系 pH值调至 5 ;  1) 2 g of the inorganic reactant tetraethyl orthosilicate and 0.5 g of the inorganic reactant aminopropyltriethoxysilane were added to 100 g of non-polar solvent toluene, uniformly mixed and added to 8 g of emulsifier Triton X-100 and 200g of a 5% polycondensation prepolymer melamine-formaldehyde prepolymer aqueous solution mixture was mixed at room temperature for 10 min at high speed, and the emulsion was transferred to a constant temperature water bath at 25 °C. In a three-necked flask equipped with a reflux condenser, the machine was evenly stirred. The pH of the system was adjusted to 5 with 1M hydrochloric acid;
2) 在氮气的保护下, 25 °C反应 8h, 然后升高反应温度至 70°C, 使三聚氰胺- 甲醛预聚体发生缩聚反应, 继续反应 8h, 将乳液采用冰水降温后抽滤, 真空干燥, 即得到二氧化硅 /蜜胺树脂复合中空微球。将上述中空微球在低温下研磨成片, 即得 到二氧化硅 /蜜胺树脂复合的正反两面具有不同组成的 Janus结构片状材料。 该材料 的电镜照片如图 9 所示。 该方法中, 三聚氰胺 -甲醛预聚体水溶液是按照实施例 7 方法制备的。 该材料的厚度为 100-500nm, 长和宽均为 300ηιη-5μιη; 位于基底正表 面上的材料(为二氧化硅)与位于基底反表面上的材料(为密胺树脂的重量比为 1 : 10。 2) Under the protection of nitrogen, react at 25 °C for 8h, then increase the reaction temperature to 70 °C, the polycondensation reaction of melamine-formaldehyde prepolymer is carried out, continue the reaction for 8h, and the emulsion is cooled by ice water and then filtered. Vacuum Drying gives a silica/melamine resin composite hollow microsphere. The hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the silica/melamine resin composite. An electron micrograph of the material is shown in Figure 9. In this method, a melamine-formaldehyde prepolymer aqueous solution was prepared in accordance with the method of Example 7. The material has a thickness of 100-500 nm, a length and a width of 300 ηιη - 5 μιη ; a material on the front surface of the substrate (which is silica) and a material on the reverse surface of the substrate (the weight ratio of the melamine resin is 1: 10.
实施例 12、 用方法四制备二氧化钛 /脲醛树脂 Janus片状材料  Example 12: Preparation of Titanium Dioxide / Urea Resin by Method 4 Janus Sheet Material
1 ) 取 5g无机反应物钛酸四丁酯和 0.5g无机反应物氨丙基三乙氧基硅烷加入 到 50g非极性溶剂癸烷中, 混合均匀后加入到由 5g乳化剂 OplO和 100g质量百分 浓度为 5%的缩聚反应的预聚物尿素-甲醛预聚体水溶液组成的混合液中, 在室温下 该体系高速剪切乳化 lOmin, 将乳液转移至 25 °C恒温水浴中的装有回流冷凝管的三 口瓶中, 机械均匀搅拌, 用 1M的盐酸将体系 pH值调至 5 ;  1) Take 5g of inorganic reactant tetrabutyl titanate and 0.5g of inorganic reactant aminopropyltriethoxysilane, add to 50g of non-polar solvent decane, mix well and add to the mass of 5g emulsifier OplO and 100g In a mixture of 5% polycondensation prepolymer urea-formaldehyde prepolymer aqueous solution, the system was emulsified at high speed for 10 min at room temperature, and the emulsion was transferred to a constant temperature water bath at 25 °C. The three bottles of the reflux condenser were mechanically stirred uniformly, and the pH of the system was adjusted to 5 with 1 M hydrochloric acid;
2) 在氮气的保护下, 25 °C反应 8h, 然后升高反应温度至 70°C, 使尿素 -甲醛 预聚体发生缩聚反应, 继续反应 8h, 将乳液采用冰水降温后抽滤, 真空干燥, 即得 到二氧化钛 /脲醛树脂复合中空微球。将上述中空微球在低温下研磨成片, 即得到二 氧化钛 /脲醛树脂复合的正反两面具有不同组成的 Janus结构片状材料。 该方法中, 尿素 -甲醛预聚体水溶液是按照实施例 6 提供的方法制备的。 该材料的厚度为 50-200nm, 长和宽均为 400ηιη-10μιη; 位于基底正表面上的材料 (为二氧化钛) 与 位于基底反表面上的材料 (为尿醛树脂) 的重量比为 1 : 3。 2) Under the protection of nitrogen, react at 25 °C for 8h, then increase the reaction temperature to 70 °C, and make the urea-formaldehyde prepolymer undergo polycondensation reaction, continue the reaction for 8h, then use the ice water to cool down, then filter, vacuum Drying, that is, a titanium dioxide/urea resin composite hollow microsphere is obtained. The hollow microspheres are ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the titanium dioxide/urea resin composite. In this method, a urea-formaldehyde prepolymer aqueous solution was prepared in accordance with the method provided in Example 6. The material has a thickness of 50-200 nm and a length and a width of 400 ηιη - 10 μιη ; the weight ratio of the material (which is titanium dioxide) on the front surface of the substrate to the material (for the urethane resin) on the reverse surface of the substrate is 1:3. .
实施例 13、 用方法四制备二氧化硅 /脲醛树脂 Janus片状材料  Example 13. Preparation of Silica/Urea Resin by Method 4 Janus Sheet Material
1 ) 取 5g无机反应物正硅酸乙酯和 lg无机反应物氨丙基三乙氧基硅烷加入到 1) Take 5g of inorganic reactant tetraethyl orthosilicate and lg inorganic reactant aminopropyltriethoxysilane to
50g非极性溶剂环己烷中, 混合均匀后将其加入到由 5g乳化剂 OplO和 100g质量 百分浓度为 5%的缩聚反应的预聚物尿素-甲醛预聚体水溶液组成的混合液中, 在室 温下该体系高速剪切乳化 lOmin, 将乳液转移至 25 °C恒温水浴中的装有回流冷凝管 的三口瓶中, 机械均匀搅拌, 用 1M的盐酸将乳液体系 pH值调至 6; 50 g of non-polar solvent cyclohexane, uniformly mixed and added to a mixture of 5 g of emulsifier OplO and 100 g of a 5% polycondensation prepolymer urea-formaldehyde prepolymer aqueous solution. At room temperature, the system is emulsified at high speed for 10 minutes, and the emulsion is transferred to a 25 ° C constant temperature water bath equipped with a reflux condenser. In the three-necked bottle, the machine is evenly stirred, and the pH of the emulsion system is adjusted to 6 with 1M hydrochloric acid;
2) 在氮气的保护下, 25 °C反应 8h, 然后升高反应温度至 70°C, 使尿素 -甲醛 预聚体发生缩聚反应, 继续反应 8h, 将乳液采用冰水降温后抽滤, 真空干燥, 得到 二氧化硅 /脲醛树脂复合中空微球。将上述中空微球在低温下研磨成片, 得到二氧化 硅 /脲醛树脂复合的正反两面具有不同组成的 Janus结构片状材料。 该方法中, 尿素 2) Under the protection of nitrogen, react at 25 °C for 8h, then increase the reaction temperature to 70 °C, and make the urea-formaldehyde prepolymer undergo polycondensation reaction, continue the reaction for 8h, then use the ice water to cool down, then filter, vacuum Drying gave silica/urea resin composite hollow microspheres. The hollow microspheres were ground to a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the silica/urea resin composite. In this method, urea
-甲醛预聚体水溶液是按照实施例 6提供的方法制备的。该材料的厚度为 60-380nm, 长和宽均为 500ηιη-10μιη; 位于基底正表面上的材料 (为二氧化硅) 与位于基底反 表面上的材料 (为脲醛树脂) 的重量比为 2: 5。 - Aqueous formaldehyde prepolymer aqueous solution was prepared according to the method provided in Example 6. The material has a thickness of 60-380 nm, a length and a width of 500 ηιη - 10 μιη ; a weight ratio of a material (as silica) on the front surface of the substrate to a material (for urea-formaldehyde resin) on the reverse surface of the substrate is 2: 5.
实施例 14、 用方法四制备二氧化硅 /聚苯乙烯 Janus片状材料  Example 14. Preparation of Silica/Polystyrene by Method 4 Janus Sheet Material
1 )取 5g无机反应物正硅酸乙酯、 lg无机反应物胺丙基三甲氧基硅烷、 3g 自 由基聚合单体苯乙烯加入到 10g非极性溶剂甲苯中, 充分混合后作为油相; 取 80g 水和 5g十二烷基硫酸钠作为水相;  1) taking 5g of inorganic reactant tetraethyl orthosilicate, lg inorganic reactant aminopropyltrimethoxysilane, 3g of free-radical polymerizable monomer styrene into 10g of non-polar solvent toluene, fully mixed as an oil phase; Taking 80 g of water and 5 g of sodium lauryl sulfate as an aqueous phase;
2) 将水相加入到油相中, 使用高速剪切乳化机以 12000rpm剪切乳化 2min, 形成乳液, 在室温下机械搅拌 8h, 然后转移至 80°C水浴中的三口瓶中, 在机械搅 拌下继续反应 8小时出料。 将乳液采用冰水降温后抽滤, 真空干燥, 然后在低温下 研磨成片, 得到聚苯乙烯 /二氧化硅复合的正反两面具有不同组成的 Janus结构片状 材料。 该材料的电镜照片如图 10所示。 该材料的厚度为 100-400nm, 长和宽均为 l-ΙΟμιη; 位于基底正表面上的材料(为二氧化硅) 与位于基底反表面上的材料(为 聚苯乙烯) 的重量比为 2: 5。  2) Add the aqueous phase to the oil phase, use a high-speed shear emulsifier to shear emulsifie at 12000 rpm for 2 min to form an emulsion, mechanically stir at room temperature for 8 h, then transfer to a three-neck bottle in a water bath at 80 ° C for mechanical agitation. The reaction was continued for 8 hours. The emulsion was cooled with ice water, filtered under vacuum, dried in a vacuum, and then ground at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polystyrene/silica composite. An electron micrograph of the material is shown in Figure 10. The material has a thickness of 100-400 nm and a length and a width of l-ΙΟμιη; the weight ratio of the material (which is silicon dioxide) on the front surface of the substrate to the material (polystyrene) on the reverse surface of the substrate is 2 : 5.
实施例 15、 用方法四制备二氧化硅 /聚二乙烯基苯 Janus片状材料  Example 15. Preparation of Silica/Polydivinylbenzene by Method 4 Janus Sheet Material
1 )取 3g无机反应物正硅酸乙酯、 lg无机反应物胺丙基三甲氧基硅烷、 2g 自 由基聚合单体苯乙烯加入到 20g非极性溶剂癸烷中, 充分混合后作为油相; 取 100g 水和 5g OplO为水相;  1) Take 3g of inorganic reactant tetraethyl orthosilicate, lg inorganic reactant aminopropyltrimethoxysilane, 2g of free-radically polymerizable monomer styrene, add to 20g of non-polar solvent decane, mix well and use as oil phase Take 100g water and 5g OplO as the water phase;
2) 将水相加入到油相中, 使用高速剪切乳化机以 12000rpm剪切乳化 2min, 形成乳液, 在室温下机械搅拌 8h, 然后转移至 70°C水浴中的三口瓶中, 在机械搅 拌下继续反应 2小时出料。 将乳液采用冰水降温后抽滤, 真空干燥, 然后在低温下 研磨成片, 得到聚二乙烯基苯烯 /二氧化硅复合的正反两面具有不同组成的 Janus结 构片状材料。 该材料的电镜照片如图 11所示。 该材料的厚度为 40-200nm, 长和宽 均为 300ηιη-8μιη; 位于基底正表面上的材料(为二氧化硅)与位于基底反表面上的 材料 (为聚二乙烯基苯) 的重量比为 1 : 1。 2) Add the aqueous phase to the oil phase, use a high-speed shear emulsifier to shear emulsifie at 12000 rpm for 2 min to form an emulsion, mechanically stir at room temperature for 8 h, then transfer to a three-neck bottle in a 70 ° C water bath for mechanical agitation. The reaction was continued for 2 hours. The emulsion was cooled with ice water, filtered under vacuum, dried in a vacuum, and then ground to a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polydivinyl phenylene/silica composite. An electron micrograph of the material is shown in Figure 11. The material has a thickness of 40-200 nm, a length and a width of 300 ηιη - 8 μιη ; a weight ratio of a material (which is silicon dioxide) on the front surface of the substrate to a material (polydivinylbenzene) on the reverse surface of the substrate. It is 1:1.
实施例 16、 用方法五制备脲酸 /蜜胺树脂 Janus片状材料  Example 16: Preparation of Urea/Melamine Resin by Method 5 Janus Sheet Material
1 )取 2g质量百分浓度为 10%的苯乙烯-马来酸酐共聚物的钠盐水解物水溶液 作为乳化剂, 加入到 20g连续相溶剂水中, 用 1M盐酸调节其 pH值至 5, 加入 10g 分散相溶剂正己烷, 使用高速剪切乳化机以 12000r/min剪切乳化 lOmin, 将所得乳 液转移至 50°C水浴中的三口瓶中, 机械搅拌混匀后, 取 20g质量百分浓度为 5%的 溶于连续相溶剂水中的树脂预聚物尿素-甲醛预聚物的水溶液,加入 2g氯化钠溶解, 用 1M盐酸调节溶液的 pH值至 6, 缓慢滴入上述乳液中, lOmin滴加完毕, 50°C恒 温缩聚反应 lh后用 1M盐酸缓慢调节体系 pH值至 3.5, 继续缩聚反应 4h, 在分散 相和连续相界面处生成交联立体网状结构的非水溶性缩聚物, 得到初级壳层;1) 2 g of a 10% by mass aqueous solution of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer is used as an emulsifier, added to 20 g of continuous phase solvent water, and the pH is adjusted to 5 with 1 M hydrochloric acid, and 10 g is added. Disperse the solvent solvent n-hexane, use a high-speed shear emulsifier to shear emulsified lOmin at 12000r/min, transfer the obtained emulsion to a three-necked bottle in a 50°C water bath, and mix it with mechanical agitation, then take 20g of mass concentration to 5 % of the aqueous solution of the resin prepolymer urea-formaldehyde prepolymer dissolved in the continuous phase solvent water, dissolved in 2 g of sodium chloride, adjusted to pH 6 with 1 M hydrochloric acid, slowly dropped into the above emulsion, lOmin was added dropwise After completion, 50 ° C constant temperature polycondensation reaction for 1 h, slowly adjust the pH of the system to 3.5 with 1M hydrochloric acid, continue the polycondensation reaction for 4 h, in dispersion a water-insoluble polycondensate of a crosslinked three-dimensional network structure is formed at the interface between the phase and the continuous phase to obtain a primary shell layer;
2)向步骤 1 )的反应体系中再加入 20g质量百分浓度为 5%的溶于连续相溶剂 水中的树脂预聚物三聚氰胺-甲醛预聚物的水溶液, 向其中加入 2g氯化钠溶解, 将 其缓慢滴入上述乳液中, 2min滴加完毕, 50°C恒温缩聚反应 6h, 将乳液采用冰水 降温后抽滤, 真空干燥, 得到脲酸 /蜜胺复合聚合物中空微球; 2) further adding 20 g of a 5% by mass aqueous solution of a resin prepolymer melamine-formaldehyde prepolymer dissolved in a continuous phase solvent water to the reaction system of the step 1), and adding 2 g of sodium chloride to dissolve therein, It is slowly dripped into the above emulsion, and the addition is completed in 2 minutes, and the polycondensation reaction is carried out at 50 ° C for 6 hours. The emulsion is cooled by ice water, filtered under vacuum, and dried under vacuum to obtain a hollow microsphere of urea/melamine composite polymer;
3 ) 将步骤 2) 所得中空微球在低温下研磨成片, 得到脲酸 /蜜胺复合的正反两 面具有不同组成的 Janus结构片状材料。该材料的电镜照片如图 12所示。该材料的 厚度为 30-100nm, 长和宽均为 200ηιη-10μιη; 位于基底正表面上的材料(为脲醛树 脂) 与位于基底反表面上的材料 (为蜜胺树脂) 的重量比为 1 : 1。 3) The hollow microspheres obtained in the step 2) are ground into pieces at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the urea/melamine composite. An electron micrograph of the material is shown in Figure 12. The material has a thickness of 30-100 nm, a length and a width of 200 ηιη - 10 μιη ; a weight ratio of a material on the front surface of the substrate (for urea-formaldehyde resin) to a material on the opposite surface of the substrate (melamine resin) is 1: 1.
该方法中, 所用苯乙烯-马来酸酐共聚物的钠盐水解物水溶液是按照实施例 4 提供的方法制备而得,三聚氰胺 -甲醛预聚体水溶液是按照实施例 5提供的方法制备 而得, 尿素 -甲醛预聚体水溶液是按照实施例 6提供的方法制备而得。  In this method, the sodium salt hydrolyzate aqueous solution of the styrene-maleic anhydride copolymer used is prepared according to the method provided in Example 4, and the melamine-formaldehyde prepolymer aqueous solution is prepared according to the method provided in Example 5. A urea-formaldehyde prepolymer aqueous solution was prepared according to the method provided in Example 6.
实施例 17、 用方法五制备聚乙二醇改性的尿醛树脂 /明胶 Janus片状材料 Example 17. Preparation of Polyethylene Glycol Modified Urea Resin by Method 5 / Gelatin Janus Sheet Material
1 )取 0.5g乳化剂十二烷基硫酸钠, 加入到 20g连续相溶剂水中, 用 1M盐酸 调节其 pH值至 4, 加入 10g分散相溶剂熔点为 25-28°C的石蜡, 使体系温度保持在1) Take 0.5g of emulsifier sodium lauryl sulfate, add to 20g of continuous phase solvent water, adjust the pH value to 4 with 1M hydrochloric acid, add 10g of paraffin wax with a melting point of 25-28 °C in the dispersed phase solvent, and make the system temperature maintain at
50°C, 使用高速剪切乳化机以 12000r/min剪切乳化 5min, 将所得乳液转移至 50°C 水浴中的三口瓶中, 机械搅拌至匀得到乳液后, 取 20g质量百分浓度为 3%的溶于 连续相溶剂水中的树脂的预聚物聚乙二醇改性的尿素-甲醛预聚体水溶液, 加入 2g 氯化钠溶解, 用 1M盐酸调节溶液 pH值至 6, 将其缓慢滴入上述乳液中, lOmin滴 加完毕, 50°C恒温缩聚反应 lh后用 1M盐酸缓慢调节体系 pH值至 3.5, 继续缩聚 反应 6h, 在分散相和连续相界面处生成交联立体网状的非水溶性缩聚物, 即得到初 级壳层; 50 ° C, using a high-speed shear emulsifier at 12000r / min shear emulsification for 5min, the resulting emulsion was transferred to a three-necked bottle in a 50 ° C water bath, mechanically stirred until the emulsion was obtained, taking 20g of mass concentration of 3 % prepolymer of a resin dissolved in continuous phase solvent water, polyethylene glycol modified urea-formaldehyde prepolymer aqueous solution, dissolved in 2g of sodium chloride, adjusted to pH 6 with 1M hydrochloric acid, slowly drip Into the above emulsion, lOmin is added dropwise, constant temperature polycondensation reaction at 50 °C for 1 h, slowly adjust the pH of the system to 3.5 with 1M hydrochloric acid, continue the polycondensation reaction for 6 h, and form a cross-linked three-dimensional network at the interface between the dispersed phase and the continuous phase. a water-soluble polycondensate, that is, a primary shell layer;
2)取 0.2g带有相反电荷的聚合物明胶溶于 50°C的 20g二次水中,将该明胶水 溶液滴加入上述步骤 1 ) 的三口瓶中, 使其与乳液混合均匀; 再向该体系中缓慢滴 加质量百分浓度为 10%的醋酸水溶液调节体系的 pH值至 3, 此时明胶分子与十二 烷基硫酸钠在油水界面处发生复凝聚形成壳层, 继续进行凝聚反应 lh; 将该体系置 于冰水浴中, 然后加入 2mL 37%的甲醛水溶液反应 3h, 步骤 1 )所得缩聚物与该明 胶分子发生静电吸引作用, 于步骤 1 ) 所得初级壳层外侧形成新的壳层, 使胶囊壳 层初步交联固化, 再将乳液抽滤, 真空干燥, 得到聚乙二醇改性的尿醛树脂 /明胶复 合聚合物中空微球。 将上述中空微球在低温下研磨成片, 得到聚乙二醇改性尿醛树 月旨 /明胶复合的正反两面具有不同组成的 Janus结构片状材料。 该材料的电镜照片如 图 13所示。该材料的厚度为 50nm-200nm, 长和宽均为 200ηιη-5μιη; 位于基底正表 面上的材料 (为聚乙二醇改性的尿醛树脂) 与位于基底反表面上的材料 (为明胶) 的重量比为 3 : 1。 2) taking 0.2 g of the oppositely charged polymer gelatin dissolved in 20 g of secondary water at 50 ° C, and adding the gelatin aqueous solution to the three-necked bottle of the above step 1) to uniformly mix with the emulsion; Slowly adding a 10% aqueous solution of acetic acid to adjust the pH of the system to 3, at which time the gelatin molecule and the sodium lauryl sulfate recombine at the oil-water interface to form a shell layer, and continue the condensation reaction for 1 hour; The system is placed in an ice water bath, and then added with 2 mL of 37% aqueous formaldehyde solution for 3 h. The polycondensate obtained in step 1) and the gelatin molecule are electrostatically attracted, and a new shell layer is formed on the outer side of the primary shell layer obtained in the step 1). The capsule shell layer is initially cross-linked and solidified, and then the emulsion is suction filtered and vacuum dried to obtain a polyethylene glycol-modified urine aldehyde resin/gelatin composite polymer hollow microsphere. The hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polyethylene glycol modified urethane tree/gelatin composite. An electron micrograph of the material is shown in Figure 13. The material has a thickness of 50 nm to 200 nm, a length and a width of 200 ηηη - 5 μιη ; a material on the front surface of the substrate (polyethylene glycol modified urethane resin) and a material on the reverse surface of the substrate (gelatin) The weight ratio is 3:1.
其中,所用聚乙二醇改性的尿素 -甲醛预聚体水溶液是按照如下方法制备而得: 在装有回流冷凝管的三口瓶中加入 240g尿素, 50g聚乙二醇和 450g 37%的甲醛水 溶液, 机械搅拌溶解, 加入三乙醇胺调节体系 pH值为 8, 加热至 70°C, 保温反应 l h得粘稠液体, 然后加入 lOOOg水稀释, 得稳定的聚乙二醇改性的尿素-甲醛预聚 体水溶液。 Wherein, the polyethylene glycol modified urea-formaldehyde prepolymer aqueous solution used is prepared as follows: 240 g of urea, 50 g of polyethylene glycol and 450 g of 37% aqueous formaldehyde solution are added to a three-necked flask equipped with a reflux condenser. , mechanical stirring and dissolution, adding triethanolamine to adjust the pH value of 8, to 70 ° C, the reaction reaction for 1 h to obtain a viscous liquid, and then adding 1000 g of water to dilute, to obtain a stable polyethylene glycol modified urea-formaldehyde prepolymerization Aqueous solution.
实施例 18、 用方法五制备聚氨酯 /脲醛树脂 Janus片状材料  Example 18, Preparation of Polyurethane / Urea-Formaldehyde Resin by Method 5 Janus Sheet Material
1 ) 取 20g分散相反应物甲苯二异氰酸酯和 10g分散相反应物二甲苯二异氰酸 酯加入到 200g分散相溶剂熔点 50〜52°C的石蜡中, 混合均匀后将其加入到由 10g 乳化剂 tween80 和 600g 连续相溶剂水组成的混合液中, 在 70°C下将该体系以 12000r/min的转速高速剪切乳化 10min, 然后将乳液转移至 70 °C恒温水浴中的三口 瓶中, 机械搅拌, 向乳液中缓慢滴加 20g连续相反应物三乙烯四胺后反应 lh;  1) 20 g of the dispersed phase reactant toluene diisocyanate and 10 g of the dispersed phase reactant xylene diisocyanate are added to 200 g of the dispersed phase solvent melting point 50 to 52 ° C in paraffin, mixed uniformly and then added to 10 g of emulsifier tween 80 and In a mixture of 600g continuous phase solvent water, the system was emulsified at high speed at 12000r/min for 10min at 70°C, and then transferred to a three-neck bottle in a constant temperature water bath at 70 °C, mechanically stirred. To the emulsion, slowly adding 20 g of the continuous phase reactant triethylenetetramine and reacting for 1 h;
2) 然后向该体系滴加溶于连续相溶剂水中的树脂预聚物质量百分浓度为 5% 的尿素-甲醛预聚体的水溶液 400g, 并用 1M盐酸调节溶液 pH值至 3, 继续反应 5h 后, 将该乳液采用冰水降温后抽滤, 真空干燥, 得到聚氨酯 /脲醛树脂复合聚合物中 空微球。将上述中空微球在低温下研磨成片,得到聚氨酯 /脲醛树脂复合的正反两面 具有不同组成的 Janus结构片状材料。 该材料的电镜照片如图 14所示。 其中, 所述 尿素 -甲醛预聚体水溶液是按照实施例 6提供的方法制备的。 该材料的厚度为  2) Then, 400 g of a urea-formaldehyde prepolymer having a resin prepolymer concentration of 5% in a continuous phase solvent water was added dropwise to the system, and the pH of the solution was adjusted to 3 with 1 M hydrochloric acid, and the reaction was continued for 5 hours. Thereafter, the emulsion was cooled with ice water, suction filtered, and vacuum dried to obtain a polyurethane/urea resin composite polymer hollow microsphere. The hollow microspheres were ground to a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polyurethane/urea resin composite. An electron micrograph of the material is shown in Figure 14. Wherein the urea-formaldehyde prepolymer aqueous solution was prepared according to the method provided in Example 6. The thickness of the material is
30-100nm, 长和宽均为 500ηιη-10μιη; 位于基底正表面上的材料 (为聚氨酯树脂) 与位于基底反表面上的材料 (为脲醛树脂) 的重量比为 3 : 2。 30-100 nm, both length and width are 500 ηιη-10 μιη ; the weight ratio of the material (which is a urethane resin) on the front surface of the substrate to the material (which is a urea-formaldehyde resin) on the reverse surface of the substrate is 3:2.
实施例 19、 用方法五制备环氧树脂 /聚乙烯吡咯烷酮 Janus片状材料  Example 19 Preparation of Epoxy Resin / Polyvinylpyrrolidone by Method 5 Janus Sheet Material
1 ) 取 20g分散相反应物环氧树脂 (重均分子量 340-3000) 加入到 100g分散 相溶剂环己烷中, 混合均匀后将其加入到由 10g浓度为 10%的作为乳化剂的苯乙烯 -马来酸酐共聚物的水溶液、 lg连续相反应物乙二胺 (环氧树脂和乙二胺的反应官 能团的摩尔比为 1 : 1 ) 和 590g水组成的混合液中, 在 60°C下将该体系高速剪切以 400r/min的转速乳化 5min, 然后将乳液转移至 60°C恒温水浴中的三口瓶中, 机械 搅拌, 该分散相反应物和连续相反应物在分散相和连续相界面处发生缩聚反应 8小 时, 反应完毕形成初级壳层;  1) 20 g of the dispersed phase reactant epoxy resin (weight average molecular weight 340-3000) was added to 100 g of the dispersed phase solvent cyclohexane, and after mixing, it was added to 10 g of 10% styrene as an emulsifier. An aqueous solution of maleic anhydride copolymer, a mixture of lg continuous phase reactant ethylenediamine (molar ratio of reactive functional groups of epoxy resin and ethylenediamine: 1:1) and 590 g of water, at 60 ° C The system was emulsified at 400 r/min for 5 min at high speed, then the emulsion was transferred to a three-necked flask in a 60 ° C constant temperature water bath, mechanically stirred, and the dispersed phase reactant and continuous phase reactant were in the dispersed phase and the continuous phase. A polycondensation reaction occurs at the interface for 8 hours, and the reaction is completed to form a primary shell layer;
2) 取 0.5g与步骤 1 ) 所得初级壳层聚合物带有相反电荷的聚合物聚乙烯吡咯 烷酮(重均分子量 6000-98000)溶于 50°C的 20g水中, 将该水溶液滴加入上述步骤 2) 0.5 g of the first shell polymer obtained in the step 1) and the oppositely charged polymer polyvinylpyrrolidone (weight average molecular weight 6000-98000) are dissolved in 20 g of water at 50 ° C, and the aqueous solution is added dropwise to the above steps.
1 )的三口瓶中,使其与乳液混合均匀; 再向该体系中缓慢滴加质量百分浓度为 10% 的醋酸水溶液调节体系的 pH值至 4, 此时聚乙烯吡咯烷酮与苯乙烯-马来酸酐共聚 物的水溶液在油水界面处由于静电吸引作用发生复凝聚反应在步骤 1 ) 所得初级壳 层外侧形成新的壳层,继续凝聚反应 lh;将该体系置于冰水浴中,然后加入 2mL 37% 的甲醛水溶液, 反应 3h, 使胶囊壳层交联固化, 将乳液采用冰水降温后抽滤, 真空 干燥, 得到环氧树脂 /聚乙烯吡咯烷酮复合聚合物中空微球。将上述中空微球在低温 下研磨成片, 得到环氧树脂 /聚乙烯吡咯烷酮复合的正反两面具有不同组成的 Janus 结构片状材料。 该材料的电镜照片如图 15所示。 其中, 苯乙烯 -马来酸酐共聚物的 钠盐水解物的水溶液是按照实施例 3提供的方法制备的。该材料的厚度为 30-200nm, 长和宽均为 300ηιη-10μιη; 位于基底正表面上的材料 (为环氧树脂) 与位于基底反 表面上的材料 (为聚乙烯吡咯烷酮) 的重量比为 40: 1。 1) The three-necked bottle is mixed with the emulsion evenly; then slowly add a 10% by mass aqueous solution of acetic acid to the system to adjust the pH of the system to 4, at this time polyvinylpyrrolidone and styrene-ma The aqueous solution of the anhydride anhydride copolymer undergoes a re-agglomeration reaction at the oil-water interface due to electrostatic attraction. A new shell layer is formed on the outer side of the primary shell layer obtained in the step 1), and the condensation reaction is continued for 1 hour; the system is placed in an ice water bath, and then 2 mL is added. A 37% aqueous solution of formaldehyde was reacted for 3 hours to crosslink and cure the capsule shell. The emulsion was cooled by ice water, filtered, and vacuum dried to obtain an epoxy resin/polyvinylpyrrolidone composite polymer hollow microsphere. The hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the epoxy resin/polyvinylpyrrolidone composite. An electron micrograph of the material is shown in Figure 15. Among them, an aqueous solution of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer was prepared in accordance with the method provided in Example 3. The material has a thickness of 30-200 nm, a length and a width of 300 ηιη - 10 μιη ; a weight ratio of a material (which is an epoxy resin) on the front surface of the substrate to a material (for polyvinylpyrrolidone) on the reverse surface of the substrate is 40 : 1.
实施例 20、 用方法五制备聚苯乙烯 /脲醛树脂 Janus片状材料  Example 20 Preparation of Polystyrene / Urea-Formaldehyde Resin by Method 5 Janus Sheet Material
1 )取 10g分散相自由基聚合单体苯乙烯和 5g分散相自由基聚合单体二乙烯基 苯加入到 100g分散相溶剂十八烷中,混合均匀后将其加入到由 10g 乳化剂 tweenSO 和 290g水组成的混合液中, 在 70 °C的恒温水浴将该体系以 12000r/min的转速高速 剪切乳化 lOmin, 将乳液转移至 70°C恒温水浴中的装有回流冷凝管的三口瓶中, 机 械均匀搅拌, 向该乳液滴加含有 O. lg引发剂过硫酸钾(分散相自由基聚合单体苯乙 烯和二乙烯基苯的质量之和与引发剂的质量比为 150: 1 ) 的 20g水溶液, 在氮气的 保护下, 于 70°C反应 8h, 该引发剂引发分散相自由基聚合单体发生自由基聚合反 应形成聚合物, 该聚合物产生相分离沉积在分散相和连续相的界面处, 形成交联 的立体网络聚合物壳层, 即初级壳层; 1) Take 10g of dispersed phase radical polymerizable monomer styrene and 5g of dispersed phase radical polymerizable monomer divinyl Benzene was added to 100 g of the dispersed phase solvent octadecane, mixed uniformly, and added to a mixture of 10 g of emulsifier tweenSO and 290 g of water, and the system was heated at a speed of 12000 r/min in a constant temperature water bath at 70 °C. The emulsion was transferred and emulsified for 10 min, and the emulsion was transferred to a three-necked flask equipped with a reflux condenser in a constant temperature water bath at 70 ° C, and mechanically uniformly stirred. To the emulsion was added dropwise O. lg initiator potassium persulfate (dispersed phase radical polymerization) A 20g aqueous solution having a mass ratio of monomeric styrene to divinylbenzene and an initiator of 150:1), reacted at 70 ° C for 8 hours under the protection of nitrogen, the initiator initiates free radical polymerization of the dispersed phase The monomer undergoes radical polymerization to form a polymer, and the polymer is phase-separated and deposited at the interface between the dispersed phase and the continuous phase to form a crosslinked three-dimensional network polymer shell, that is, a primary shell layer;
2) 然后向步骤 1 ) 所得反应体系中再滴加溶于连续相溶剂水中质量百分浓度 为 5%的树脂预聚物尿素 -甲醛预聚体水溶液 200g, 并用 1M盐酸调节溶液 pH值至 3, 继续缩聚反应 4h, 反应完毕在步骤 1 ) 所得初级壳层的外侧形成新的壳层, 将 乳液采用冰水降温后抽滤,真空干燥,得到聚苯乙烯 /脲醛树脂复合聚合物中空微球。 将上述中空微球在低温下研磨成片,得到聚苯乙烯 /脲醛树脂复合的正反两面具有不 同组成的 Janus结构片状材料。 其中, 尿素 -甲醛预聚体水溶液是按照实施例 6提供 的方法制备的。 该材料的电镜照片如图 16所示。 该材料的厚度为 50-300nm, 长和 宽均为 500ηιη-15μιη; 位于基底正表面上的材料 (为聚苯乙烯) 与位于基底反表面 上的材料 (为脲醛树脂) 的重量比为 3 : 2。 2) Then, to the reaction system obtained in the step 1), 200 g of a resin prepolymer urea-formaldehyde prepolymer aqueous solution dissolved in a continuous phase solvent water of 5% by weight is added dropwise, and the pH of the solution is adjusted to 3 with 1 M hydrochloric acid. The polycondensation reaction is continued for 4 hours, and a new shell layer is formed on the outer side of the primary shell layer obtained in the step 1). The emulsion is cooled by ice water, suction filtered, and vacuum dried to obtain a polystyrene/urea resin composite polymer hollow microsphere. . The hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polystyrene/urea resin composite. Among them, a urea-formaldehyde prepolymer aqueous solution was prepared in accordance with the method provided in Example 6. An electron micrograph of the material is shown in Figure 16. The material has a thickness of 50-300 nm, a length and a width of 500 ηιη - 15 μιη ; a weight ratio of a material (which is polystyrene) on the front surface of the substrate to a material (which is a urea-formaldehyde resin) on the reverse surface of the substrate is 3: 2.
实施例 21、 用方法五制备聚二乙烯基苯 /明胶 Janus片状材料  Example 21: Preparation of Polydivinylbenzene / Gelatin by Method 5 Janus Sheet Material
1 )取 lg分散性相自由基聚合单体二乙烯基苯加入到 10g分散相溶剂十八酸中, 混合均匀后将其加入到含有 lg乳化剂十二烷基硫酸钠的 30g水中, 在 50°C的恒温 水浴将该体系以 12000r/min的转速高速剪切乳化 10min,将乳液转移至 70°C恒温水 浴中的装有回流冷凝管的三口瓶中, 机械均匀搅拌, 向该乳液滴加含有 O. lg引发剂 过硫酸钾的 5g水溶液, 在氮气的保护下, 70°C反应 5h, 该引发剂引发分散相自由 基聚合单体发生自由基聚合反应形成聚合物, 该聚合物产生相分离沉积在分散相和 连续相的界面处, 形成交联的立体网络聚合物壳层, 即初级壳层;  1) Take lg disperse phase free radical polymerization monomer divinylbenzene is added to 10g of the dispersed phase solvent octadecanoic acid, mix well and then add it to 30g water containing lg emulsifier sodium lauryl sulfate, at 50 The system was emulsified by high-speed water bath at °C for 10 min at a speed of 12000 r/min. The emulsion was transferred to a three-necked flask equipped with a reflux condenser in a constant temperature water bath at 70 ° C. The machine was uniformly stirred and added to the emulsion. 5 g of an aqueous solution containing 0.5 g of potassium persulfate under the protection of nitrogen at 70 ° C for 5 h, the initiator initiates radical polymerization of the free-radical polymerization monomer of the dispersed phase to form a polymer, which produces a phase Separating and depositing at the interface between the dispersed phase and the continuous phase to form a crosslinked three-dimensional network polymer shell layer, that is, a primary shell layer;
2)将 0.2g带有相反电荷的聚合物明胶溶于 50°C的 20g二次水中,将该明胶水 溶液滴加入上述步骤 1 ) 的三口瓶中, 使其与乳液混合均匀; 再向该体系中缓慢滴 加 10%的醋酸水溶液调节体系的 pH值为 3, 此时明胶分子与十二烷基硫酸钠在油 水界面处由于静电吸引作用发生复凝聚反应在步骤 1 ) 所得初级壳层外侧形成新的 壳层, 继续凝聚反应 lh; 将该体系置于冰水浴中, 然后加入 2mL 37%的甲醛水溶 液反应 3h, 使胶囊壳层交联固化, 将乳液采用冰水降温后抽滤, 真空干燥, 得到聚 二乙烯基苯 /明胶复合聚合物中空微球。将上述中空微球在低温下研磨成片, 得到聚 二乙烯基苯 /明胶复合的正反两面具有不同组成的 Janus结构片状材料。 该材料的电 镜照片如图 17所示。 该材料的厚度为 30-100nm, 长和宽均为 500ηιη-5μιη; 位于基 底正表面上的材料 (为聚二乙烯基苯) 与位于基底反表面上的材料 (为明胶) 的重 量比为 5: 1。 2) 0.2 g of the oppositely charged polymer gelatin is dissolved in 20 g of secondary water at 50 ° C, and the gelatin aqueous solution is added dropwise to the three-necked bottle of the above step 1) to be uniformly mixed with the emulsion; Slowly adding 10% aqueous solution of acetic acid to adjust the pH of the system to 3. The gelatin molecule and sodium lauryl sulfate form a complex coacervation reaction at the oil-water interface due to electrostatic attraction at the outer side of the primary shell obtained in step 1). The new shell layer, continue to coagulate reaction lh; the system is placed in an ice water bath, and then added 2mL 37% aqueous formaldehyde solution for 3h, the capsule shell layer cross-linking solidified, the emulsion is cooled by ice water, suction filtration, vacuum drying , obtaining polydivinylbenzene/gelatin composite polymer hollow microspheres. The hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the polydivinylbenzene/gelatin composite. An electron micrograph of the material is shown in Figure 17. The material has a thickness of 30-100 nm, a length and a width of 500 ηιη - 5 μιη ; a weight ratio of a material (for polydivinylbenzene ) on the front surface of the substrate to a material (for gelatin) on the reverse surface of the substrate is 5 : 1.
实施例 22、 用方法五制备明胶 /海藻酸纳 Janus片状材料  Example 22: Preparation of gelatin / sodium alginate using Method 5 Janus sheet material
1 )取 10g质量百分浓度为 10%的苯乙烯-马来酸酐共聚物的水解物钠盐(该水 解物同时起到乳化剂和分散相反应物的作用) 的水溶液加入 80g连续相溶剂水混合 均匀, 向其中加入 20g分散相溶剂熔点 50〜52°C的石蜡, 使用高速剪切乳化机以 12000r/min的转速剪切乳化 lOmin得均匀稳定的乳液,将其转移至 70°C恒温水浴中 的三口瓶中, 机械搅拌; 取 lg连续相聚合物明胶溶于 70°C的 90g二次水中, 将该 明胶水溶液滴加入上述的三口瓶中, 使其与乳液混合均匀; 再向该体系中缓慢滴加 质量百分浓度为 10%的醋酸水溶液调节体系的 pH值为 3, 此时明胶分子与苯乙烯- 马来酸酐共聚物的水解物分子在油水界面处由于静电吸引作用发生复凝聚形成微 胶囊的壳层, 继续凝聚反应 lh, 形成初级壳层; 1) 10 g of a 10% by mass concentration of a hydrolyzate sodium salt of a styrene-maleic anhydride copolymer (this water) The aqueous solution of the emulsifier and the dispersed phase reactant is added to 80 g of the continuous phase solvent water to be uniformly mixed, and 20 g of the paraffin wax having a melting point of 50 to 52 ° C of the dispersed phase solvent is added thereto, and the high-speed shear emulsifier is used for 12000 rpm. /min speed emulsified lOmin to obtain a uniform and stable emulsion, transferred to a three-necked bottle in a constant temperature water bath of 70 ° C, mechanically stirred; take lg continuous phase polymer gelatin dissolved in 70g of secondary water at 70 ° C, The gelatin aqueous solution is added dropwise to the above three-necked bottle to be uniformly mixed with the emulsion; and the aqueous solution of 10% by mass of acetic acid is slowly added dropwise to the system to adjust the pH of the system to 3, and the gelatin molecule and The hydrolyzate molecule of the styrene-maleic anhydride copolymer recombines at the oil-water interface due to electrostatic attraction to form a shell layer of the microcapsule, and continues to coagulate for 1 h to form a primary shell layer;
2) 然后取 lg带有相反电荷的聚合物海藻酸钠溶于 70°C的 20g水中, 将该水 溶液滴加入上述步骤 1 ) 的三口瓶中, 使其与乳液混合均匀; 再向该体系中缓慢滴 加 10%的氨水溶液调节体系的 pH值为 10, 继续凝聚反应 lh,此时海藻酸钠与明胶 由于静电吸引作用发生复凝聚反应在步骤 1 ) 所得初级壳层外侧形成新的壳层; 将 该体系置于冰水浴中, 然后加入 lmL 37% 的甲醛水溶液, 反应 3h, 使胶囊壳层初 步交联固化。将乳液采用冰水降温后抽滤, 真空干燥, 得到明胶 /海藻酸纳复合聚合 物中空微球。将上述中空微球在低温下研磨成片, 得到明胶 /海藻酸纳复合的正反两 面具有不同组成的 Janus结构片状材料。该材料的电镜照片如图 18所示。该材料的 厚度为 30-150nm, 长和宽均为 500ηιη-5μιη; 位于基底正表面上的材料 (为明胶) 与位于基底反表面上的材料 (为海藻酸纳) 的重量比为 1 : 1。 2) Then take lg of the oppositely charged polymer sodium alginate dissolved in 20g of water at 70 ° C, the aqueous solution is added dropwise to the three-necked bottle of the above step 1), and it is evenly mixed with the emulsion; Slowly add 10% aqueous ammonia solution to adjust the pH value of the system to 10, and continue the coagulation reaction for 1 h. At this time, the agglomeration reaction of sodium alginate and gelatin due to electrostatic attraction will form a new shell on the outer side of the primary shell obtained in step 1). The system was placed in an ice water bath, then 1 mL of 37% aqueous formaldehyde solution was added and reacted for 3 hours to preliminarily crosslink and cure the capsule shell. The emulsion was cooled with ice water, suction filtered, and vacuum dried to obtain a gelatin/alginate nanocomposite hollow microsphere. The hollow microspheres were ground into a sheet at a low temperature to obtain a Janus structure sheet material having different compositions on both sides of the gelatin/alginate nano composite. An electron micrograph of the material is shown in Figure 18. The material has a thickness of 30-150 nm, a length and a width of 500 ηιη - 5 μιη ; a weight ratio of a material (as gelatin) on the front surface of the substrate to a material (in the form of sodium alginate) on the opposite surface of the substrate is 1:1. .
该方法中,所用苯乙烯 -马来酸酐共聚物的钠盐水解物的水溶液是按照实施例 3 提供的方法制备而得。  In this method, an aqueous solution of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer used was prepared in accordance with the method provided in Example 3.
实施例 23、 用方法六制备聚丙烯酰胺 /聚苯乙烯 Janus片状材料  Example 23, Preparation of Polyacrylamide by Method Six / Polystyrene Janus Sheet Material
1 )取 2g溶于极性溶剂水中的自由基聚合单体丙烯酰胺单体、 0.3g溶于极性溶 剂水中的自由基聚合引发剂硫酸亚铁加入到 50g极性溶剂水中, 充分混合后作为水 相; 取 2g溶于非极性溶剂癸烷中的自由基聚合单体苯乙烯、 5g乳化剂 Span80、 lg 溶于非极性溶剂癸烷中的自由基聚合引发剂过氧化氢异丙苯溶于 200g癸烷中为油 相; 将水相加入到油相中, 使用高速剪切乳化机以 12000rpm剪切乳化 2min, 形成 乳液;  1) 2 g of a radical polymerizable monomer acrylamide monomer dissolved in polar solvent water, 0.3 g of a free radical polymerization initiator ferrous sulfate dissolved in a polar solvent water, added to 50 g of polar solvent water, and sufficiently mixed Aqueous phase; take 2g of free radical polymerizable monomer styrene dissolved in non-polar solvent decane, 5g emulsifier Span80, lg free radical polymerization initiator cumene dissolved in non-polar solvent decane Dissolved in 200 g of decane as an oil phase; the aqueous phase was added to the oil phase, and emulsified by shearing at 12000 rpm for 2 min using a high speed shear emulsifier to form an emulsion;
2) 将步骤 1 ) 所得乳液在机械搅拌下在 40°C水浴中反应 12h后出料, 将乳液 采用冰水降温后抽滤, 真空干燥, 直接得到聚丙烯酰胺 /聚苯乙烯复合的正反两面具 有不同组成的 Janus结构片状材料。该材料的电镜照片如图 19所示。该材料的厚度 为 50-200nm, 长和宽均为 1-15μιη; 位于基底正表面上的材料 (为聚丙烯酰胺) 与 位于基底反表面上的材料 (为聚苯乙烯) 的重量比为 1 : 1。 2) The emulsion obtained in step 1) is reacted under mechanical stirring in a 40 ° C water bath for 12 h, and then the emulsion is cooled by ice water, suction filtered, vacuum dried, and the polyacrylamide/polystyrene composite is directly obtained. A Janus structure sheet material having different compositions on both sides. An electron micrograph of the material is shown in Figure 19. The material has a thickness of 50-200 nm and a length and a width of 1-15 μm ; the weight ratio of the material (as polyacrylamide) on the front surface of the substrate to the material (polystyrene) on the reverse surface of the substrate is 1 : 1.
实施例 24、 用方法六制备交联聚丙烯酰胺 /交联聚苯乙烯 Janus片状材料 1 )取 5g溶于极性溶剂水中的自由基聚合单体丙烯酰胺、 0.5g溶于极性溶剂水 中的自由基聚合引发剂硫酸亚铁、 O. lg溶于极性溶剂水中的自由基聚合单体 Ν,Ν- 二甲基双丙烯酰胺、 lg乳化剂十六烷基三甲基溴化胺 (CTAB) 加入到 200g极性 溶剂水中, 充分混合后作为水相; 取 2g溶于非极性溶剂癸烷中的自由基聚合单体 二乙烯基苯、 2g溶于非极性溶剂癸烷中的自由基聚合单体苯乙烯、 2g溶于非极性 溶剂癸烷中的自由基聚合引发剂过氧化氢异丙苯溶于 50g 非极性溶剂癸烷中作为 油相; 将水相加入到油相中, 使用高速剪切乳化机以 12000rpm剪切乳化 2min, 形 成乳液; 2) 将步骤 1 ) 所得乳液在机械搅拌下在 40°C水浴中反应 6h出料, 将乳液 采用冰水降温后抽滤,真空干燥直接得到交联聚丙烯酰胺 /交联聚苯乙烯复合的正反 两面具有不同组成的 Janus结构片状材料。 该材料的厚度为 50-200nm, 长和宽均为 500ηιη-10μιη; 位于基底正表面上的材料 (为交联聚丙烯酰胺) 与位于基底反表面 上的材料 (为交联聚苯乙烯) 的重量比为 5 : 2。 Example 24, Preparation of Crosslinked Polyacrylamide/Crosslinked Polystyrene Janus Sheet Material by Method 6 1) Take 5 g of free radical polymerizable monomer acrylamide dissolved in polar solvent water, 0.5 g dissolved in polar solvent water Free radical polymerization initiator ferrous sulfate, O. lg free radical polymerizable monomer in polar solvent water Ν, Ν-dimethyl bis acrylamide, lg emulsifier cetyl trimethyl bromide ( CTAB) was added to 200g of polar solvent water and mixed well as an aqueous phase; 2g of free radical polymerizable monomer divinylbenzene dissolved in non-polar solvent decane, 2g dissolved in non-polar solvent decane Free radical polymerization monomer styrene, 2g soluble in non-polar The free radical polymerization initiator in solvent decane is dissolved in 50 g of non-polar solvent decane as an oil phase; the aqueous phase is added to the oil phase, and the emulsion is sheared at 12000 rpm using a high-speed shear emulsifier. 2min, forming an emulsion; 2) The emulsion obtained in step 1) is reacted under mechanical stirring in a 40 ° C water bath for 6 h, and the emulsion is cooled with ice water, suction filtered, and vacuum dried to obtain crosslinked polyacrylamide/crosslinking. The front and back sides of the polystyrene composite have different compositions of Janus structure sheet materials. The material has a thickness of 50-200 nm, a length and a width of 500 ηιη - 10 μιη; a material on the front surface of the substrate (which is a cross-linked polyacrylamide) and a material on the opposite surface of the substrate (which is a cross-linked polystyrene) The weight ratio is 5:2.
实施例 25、 用方法六制备聚甲基丙烯酸甲酯 /聚乙烯醇 Janus片状材料  Example 25: Preparation of Polymethyl Methacrylate / Polyvinyl Alcohol by Method Six Janus Sheet Material
1 ) 取 10g溶于非极性溶剂甲苯中的自由基聚合单体甲基丙烯酸甲酯、 O. lg溶 于非极性溶剂甲苯中的自由基聚合引发剂偶氮二异丁腈加入到 60g非极性溶剂甲苯 中, 充分混合后作为油相; 取 5g溶于极性溶剂水中的自由基聚合单体乙烯醇、 2g 乳化剂十二烷基苯磺酸钠、 O. lg溶于极性溶剂水中的自由基聚合引发剂过硫酸钾溶 于 150g 极性溶剂水中为水相; 将油相加入到水相中, 使用高速剪切乳化机以 12000rpm剪切乳化 5min, 形成乳液; 2) 将步骤 1 ) 所得乳液在机械搅拌下在 70 °C水浴中反应 8h 出料, 将乳液采用冰水降温后抽滤, 真空干燥直接得到聚甲基丙 烯酸甲酯 /聚乙烯醇复合的正反两面具有不同组成的 Janus结构片状材料。 该材料的 厚度为 50-300nm, 长和宽均为 500ηιη-10μιη; 位于基底正表面上的材料(为聚甲基 丙烯酸甲酯) 与位于基底反表面上的材料 (为聚乙烯醇) 的重量比为 2: 1。 1) 10 g of a radical polymerization monomer methyl methacrylate dissolved in a non-polar solvent toluene, O. lg is dissolved in a non-polar solvent toluene, a free radical polymerization initiator azobisisobutyronitrile is added to 60 g In the non-polar solvent toluene, fully mixed as an oil phase; take 5g of free radical polymerizable monomer vinyl alcohol dissolved in polar solvent water, 2g of emulsifier sodium dodecylbenzene sulfonate, O. lg dissolved in polarity The free radical polymerization initiator in solvent water is dissolved in 150 g of polar solvent water to form an aqueous phase; the oil phase is added to the aqueous phase, and the emulsion is sheared and emulsified at 12000 rpm for 5 minutes using a high speed shear emulsifier to form an emulsion; 2) Step 1) The obtained emulsion is reacted under a mechanical stirring in a water bath at 70 ° C for 8 hours, and the emulsion is cooled by ice water, suction filtered, and vacuum dried to directly obtain the front and back sides of the polymethyl methacrylate/polyvinyl alcohol composite. Different composition of the Janus structure sheet material. The material has a thickness of 50-300 nm, a length and a width of 500 ηιη - 10 μιη ; a weight of the material on the front surface of the substrate (polymethyl methacrylate) and a material on the opposite surface of the substrate (polyvinyl alcohol). The ratio is 2: 1.
工业应用 Industrial application
本发明通过将乳液油水界面材料化,即在乳状液的非连续相和连续相的界面通 过化学反应或物理吸附等方法形成无机材料、 有机材料和无机与有机复合材料中空 微球, 制备球壳内外表面结构或组成不同的中空微球; 壳层可以是连续的, 也可以 是不连续的。 对于连续的壳层, 可以将其研磨成碎片, 碎片大小可以通过控制研磨 工艺手段来实现, 碎片厚度可以通过控制反应物浓度等条件来实现; 对于非连续的 壳层, 其壳层直接可以作为前述的片状材料使用, 也可以进一步研磨使用, 片层厚 度和大小与反应物浓度等条件有关。 此类片状材料也可以制备成具有孔道结构的 Janus结构片状材料,并且片状材料两侧由于结构和组成不同具有不同的孔道结构。 该方法是一种普适性可大规模制备正反表面具有不同性质的片状材料的制备方法。  The invention prepares the spherical shell by materializing the emulsion oil-water interface, that is, forming inorganic materials, organic materials and inorganic and organic composite hollow microspheres by chemical reaction or physical adsorption at the interface between the discontinuous phase and the continuous phase of the emulsion. Hollow microspheres having different inner and outer surface structures or compositions; the shell layer may be continuous or discontinuous. For continuous shells, they can be ground into pieces. The size of the fragments can be achieved by controlling the grinding process. The thickness of the fragments can be achieved by controlling the concentration of the reactants. For non-continuous shells, the shell can be used directly as a shell. The above-mentioned sheet material is used, and it can be further used for grinding. The thickness and size of the sheet are related to conditions such as the concentration of the reactant. Such a sheet material can also be prepared as a Janus structure sheet material having a cell structure, and both sides of the sheet material have different cell structures due to differences in structure and composition. The method is a universal preparation method for preparing a sheet material having different properties on the front and back surfaces on a large scale.
本发明提供的 Janus片状材料, 由于其正反两面具有不同的组成和性质, 可以 在许多领域具有重要的应用价值。 例如将 Janus片代替普通的聚合物无机填料和聚 合物共混相容剂, Janus片材料能够同时兼具无机填料和聚合物共混相容剂的作用, 有利于层状聚合物的形成, 并起到增加聚合物相容性和增强增韧的作用。 另外, 由 于两侧亲水亲油性质的不同, Janus 片材料还可以应用于代替传统表面活性剂作为 乳化剂制备乳液, 并且由于 Janus片材料与分子表面活性剂不同, Janus片材料作为 乳化剂可得到超浓乳液等特殊类型乳液, 在实际应用和理论研究方面都很有意义。  The Janus sheet material provided by the invention has important application value in many fields due to its different composition and properties on both sides. For example, Janus sheet replaces ordinary polymer inorganic filler and polymer blending compatibilizer, and Janus sheet material can simultaneously combine inorganic filler and polymer blending compatibilizer, which is beneficial to the formation of layered polymer, and It plays a role in increasing polymer compatibility and enhancing toughening. In addition, due to the difference in hydrophilic and lipophilic properties on both sides, Janus sheet material can also be used to prepare emulsions instead of traditional surfactants as emulsifiers, and because Janus sheet materials are different from molecular surfactants, Janus sheet materials can be used as emulsifiers. Special types of emulsions such as ultra-concentrated emulsions are obtained, which are of great significance in practical application and theoretical research.

Claims

权利要求 Rights request
1、 正反表面具有不同性质的 Janus结构片状材料, 包括基底以及位于所述基 底正反两表面上不同的材料组成; 其特征在于: 所述位于所述基底正表面上的材料 至少为一层; 所述位于所述基底反表面上的材料至少为一层; 1. A Janus structure sheet material having different properties on the front and back surfaces, comprising a substrate and a different material composition on the front and back surfaces of the substrate; wherein: the material on the front surface of the substrate is at least one a layer; the material on the reverse surface of the substrate is at least one layer;
所述位于所述基底正反两表面的材料选自下述两类材料中的任意一种:由无机 材料与有机化学基团复合而成的材料和有机材料。  The material on the front and back surfaces of the substrate is selected from any one of two types of materials: a material obtained by compounding an inorganic material with an organic chemical group, and an organic material.
2、根据权利要求 1所述的材料,其特征在于:所述无机材料选自 Si02、 Ti02、 Sn02、 Zr02和 A1203中的至少一种; 2, the material according to claim 1, wherein: said inorganic material is selected from Si0 2, Ti0 2, Sn0 2 , Zr0 2 and at least one of A1 2 0 3;
所述有机化学基团的结构通式为 R-CnH2n,其中, n=0〜121的整数, R为 -OH、The structural formula of the organic chemical group is RC n H 2n , wherein an integer of n=0 to 121, R is -OH,
- H2、 HS -、 -SCN - HCO H2 Cl-、 H2(CH2)2 H- (CH3)2-C(Br)-C(0)- H- -S03、 -Ph-SOCl2、 -Ph-S03、 2, 3-环氧丙氧基、甲基丙烯酰氧基、 (CH2)3-Sx-、 -(CH2)nCH3、 CH2=CH-或 Ph-; - H 2 , HS -, -SCN - HCO H 2 Cl-, H 2 (CH 2 ) 2 H- (CH 3 ) 2 -C(Br)-C(0)- H- -S0 3 , -Ph- SOCl 2 , -Ph-S0 3 , 2, 3-epoxypropoxy, methacryloxy, (CH 2 ) 3 -S x -, -(CH 2 ) n CH 3 , CH 2 =CH- Or Ph-;
所述 (CH2)3-SX-中, x=l〜4的整数; 所述 -(CH2)nCH3中, n=0〜127的整数, 优 选 0-17的整数; In the (CH 2 ) 3 -S X -, an integer of x = 1 to 4; in the -(CH 2 ) n CH 3 , an integer of n = 0 to 127, preferably an integer of 0-17;
所述有机材料选自脲醛树脂、 蜜胺树脂、 聚丙烯腈、 环氧树脂、 酚醛树脂、 聚 酰胺、 聚脲、 聚磺酰胺、 聚氨酯、 聚酯、 聚氧丙烯、 聚二甲基硅烷、 聚异丁烯聚苯 乙烯、聚丁二烯、聚异戊二烯、阿拉伯胶、海藻酸钠、琼脂、聚磷酸钠、聚硅酸钠、 羧甲基纤维素、 苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马来酸酐共聚物的钠 盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯-马来酸酐共聚 物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲 基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚乙 烯基苯磺酸与聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶或酪蛋白发生复凝聚反应 而生成的聚合物和聚乙烯基苯磺酸钠与聚乙烯吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶 或酪蛋白发生复凝聚反应而生成的聚合物。  The organic material is selected from the group consisting of urea-formaldehyde resin, melamine resin, polyacrylonitrile, epoxy resin, phenolic resin, polyamide, polyurea, polysulfonamide, polyurethane, polyester, polyoxypropylene, polydimethylsilane, poly Isobutylene polystyrene, polybutadiene, polyisoprene, gum arabic, sodium alginate, agar, sodium polyphosphate, sodium polysilicate, carboxymethyl cellulose, sodium styrene-maleic anhydride copolymer a salt hydrolyzate, a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer, a sodium salt hydrolyzate of an isobutylene-maleic anhydride copolymer, acrylic acid or Copolymer of methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile, polyvinylbenzenesulfonic acid and polyvinylpyridine a polymer formed by re-coagulation of butyl bromide, polyvinylpyrrolidone, gelatin or casein, sodium polyvinyl benzene sulfonate, polyvinylpyridinium bromide, polyvinylpyrrolidone, Complex coacervation polymer produced by a reaction occurring gum or casein.
3、 根据权利要求 1或 2所述的材料, 其特征在于: 所述正反表面具有不同性 质的 JA JS结构片状材料中, 厚度为 5ηιη-50μιη, 长和宽均为 50ηιη-500μιη, 具体 为 100ηιη-500μιη、 80ηιη-400μιη、 50ηιη-300μιη、 50ηιη-100μιη、 800ηηι-500μηι 或 500ηιη-500μιη; 所述位于所述基底正表面上的材料与所述位于所述所基底反表面上 的材料的重量比为 1 : 100-100: 1, 具体为 10-90: 90-10、 20-80: 80-20、 30-70: 70-30、 40-60: 60-40或 50: 50; 所述正反表面具有不同性质的 Janus结构片状材料 具有多孔结构; 所述多孔结构的孔径为 l-50nm。  The material according to claim 1 or 2, wherein: the JA JS structure sheet material having different properties on the front and back surfaces has a thickness of 5 ηηη - 50 μιη, and a length and a width of 50 ηιη - 500 μιη, specifically 100 ι η η 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Weight ratio 1: 100-100: 1, specifically 10-90: 90-10, 20-80: 80-20, 30-70: 70-30, 40-60: 60-40 or 50: 50; The Janus structure sheet material having different properties on the front and back surfaces has a porous structure; the porous structure has a pore diameter of 1 to 50 nm.
4、一种制备权利要求 1-3任一所述正反表面具有不同性质的 Janus结构片状材 料的方法, 为方法一至方法六中的任意一种, 其中:  A method for producing a Janus structured sheet material having different properties on the front and back surfaces according to any one of claims 1 to 3, which is any one of methods 1 to 6, wherein:
所述方法一为如下步骤 1 ) 或步骤 Γ ) :  The method 1 is as follows: 1) or step Γ):
步骤 1 ) : 将由溶有分散相反应物、 偶联剂和非极性溶剂组成的分散相在乳化 剂的作用下分散于由连续相反应物和极性溶剂构成的连续相中形成乳液, 在 pH值 为 2-10的条件下,加入酸或碱,所述溶于连续相和分散相的反应物在所述分散相与 所述连续相的界面发生反应, 直接形成所述正反表面具有不同性质的 Janus结构片 状材料; 其中, 所述分散相中所述非极性溶剂的粘度低于所述连续相中所述极性溶 剂的粘度, 所述分散相与所述连续相的体积比小于 5大于 0.5, 反应的温度不低于 所述非极性溶剂和所述极性溶剂的熔点, 且不高于所述非极性溶剂和所述极性溶剂 的沸点; Step 1): dispersing a dispersed phase composed of a dispersed phase reactant, a coupling agent and a non-polar solvent under an action of an emulsifier in a continuous phase composed of a continuous phase reactant and a polar solvent to form an emulsion. pH value An acid or a base is added under the condition of 2-10, and the reactant dissolved in the continuous phase and the dispersed phase reacts at the interface of the dispersed phase and the continuous phase, and the direct formation of the front and back surfaces has different properties. a Janus structure sheet material; wherein a viscosity of the non-polar solvent in the dispersed phase is lower than a viscosity of the polar solvent in the continuous phase, and a volume ratio of the dispersed phase to the continuous phase is less than 5 is greater than 0.5, the temperature of the reaction is not lower than the melting point of the non-polar solvent and the polar solvent, and not higher than the boiling point of the non-polar solvent and the polar solvent;
步骤 Γ ): 将由溶有分散相反应物、偶联剂和非极性溶剂组成的分散相在乳化 剂的作用下分散于由连续相反应物和极性溶剂构成的连续相中形成乳液, 在 pH值 为 2-10的条件下,加入酸或碱,所述溶于连续相和分散相的反应物在所述分散相与 所述连续相的界面发生反应, 在所述分散相液滴表面形成具有 Janus结构连续壳层 的核壳结构产物, 去除所述具有 Janus结构连续壳层的核壳结构产物中的核, 粉碎 后得到所述正反表面具有不同性质的 Janus结构片状材料; 其中, 所述分散相中所 述非极性溶剂的粘度高于所述连续相中所述极性溶剂的粘度, 所述分散相与所述连 续相的体积比大于 0小于 5, 反应的温度不低于所述非极性溶剂和所述极性溶剂的 熔点, 且不高于所述非极性溶剂和所述极性溶剂的沸点;  Step Γ): dispersing a dispersed phase composed of a dispersed phase reactant, a coupling agent and a non-polar solvent under an action of an emulsifier in a continuous phase composed of a continuous phase reactant and a polar solvent to form an emulsion. An acid or a base is added under the condition of a pH of 2-10, and the reactant dissolved in the continuous phase and the dispersed phase reacts at the interface of the dispersed phase and the continuous phase, on the surface of the dispersed phase droplet Forming a core-shell structure product having a continuous shell layer of a Janus structure, removing the core in the core-shell structure product having the continuous shell layer of the Janus structure, and pulverizing to obtain a Janus structure sheet material having different properties on the front and back surfaces; The viscosity of the non-polar solvent in the dispersed phase is higher than the viscosity of the polar solvent in the continuous phase, and the volume ratio of the dispersed phase to the continuous phase is greater than 0 and less than 5, and the temperature of the reaction is not Lower than the melting point of the non-polar solvent and the polar solvent, and not higher than the boiling points of the non-polar solvent and the polar solvent;
所述方法二包括如下步骤:  The method 2 includes the following steps:
将 ABC三嵌段共聚物置于乳液中,在分散相和连续相溶剂的诱导下,所述 ABC 三嵌段共聚物中的 A链段和 C链段分别朝向水相和油相分布,在紫外光照射或温度 为 50-100°C的条件下, 所述 ABC三嵌段共聚物中的 B链段在所述乳液的界面发生 原位聚合反应,得到 B链段为壳层中间层、 A链段和 C链段分别在所述壳层中间层 两侧的具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料;  The ABC triblock copolymer is placed in an emulsion, and the A chain segment and the C segment of the ABC triblock copolymer are respectively distributed toward the aqueous phase and the oil phase under the induction of the dispersed phase and the continuous phase solvent, in the ultraviolet Under the condition of light irradiation or temperature of 50-100 ° C, the B segment in the ABC triblock copolymer undergoes in-situ polymerization at the interface of the emulsion, and the B segment is obtained as the intermediate layer of the shell, A a hollow microsphere having a Janus structural shell layer on both sides of the middle layer of the shell layer respectively, and pulverizing to obtain a Janus structure sheet material having different properties on the front and back surfaces;
所述方法三包括如下步骤 1 ) 至步骤 2) :  The method 3 includes the following steps 1) to 2):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 b) 中的任意一种:  Wherein the step 1) is any one of the following steps a) to b):
步骤 a) : 在乳化剂的作用下, 将溶于非极性溶剂的自由基聚合反应单体溶于 非极性溶剂做为分散相分散于溶有缩聚反应的单体或预聚物的极性溶剂构成的连 续相中形成乳液, 所述引发剂溶于所述分散相溶剂或连续相溶剂中;  Step a): dissolving the radical polymerization monomer dissolved in the non-polar solvent in a non-polar solvent under the action of an emulsifier as a dispersed phase dispersed in the pole of the monomer or prepolymer in which the polycondensation reaction is dissolved Forming an emulsion in a continuous phase composed of a solvent, the initiator being dissolved in the dispersed phase solvent or the continuous phase solvent;
步骤 b) : 在乳化剂的作用下, 将溶有缩聚反应的单体或预聚物的极性溶剂构 成的分散相分散于溶有溶于非极性溶剂的自由基聚合反应单体的非极性溶剂构成 的连续性中形成乳液, 所述引发剂溶于所述分散相溶剂或连续相溶剂中相中;  Step b): Dispersing a dispersed phase composed of a polar solvent in which a polycondensation reaction monomer or a prepolymer is dissolved in a non-polar solvent-soluble radical polymerization monomer under the action of an emulsifier Forming an emulsion in the continuity of the polar solvent, the initiator being dissolved in the phase of the dispersed phase solvent or the continuous phase solvent;
步骤 2) : 若所述引发剂的分解温度低于缩聚反应的温度, 则先引发所述自由 基聚合反应单体进行自由基聚合反应, 得到初级壳层, 再引发未聚合的所述缩聚单 体或预聚物在初级壳层外侧发生缩聚反应, 形成具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料; 若所述引发剂的分 解温度高于缩聚反应的温度, 则先引发所述缩聚反应的单体或预聚物进行缩聚反应, 得到初级壳层; 再引发未聚合的所述自由基反应单体在所述在初级壳层内侧发生自 由基聚合反应, 形成具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具 有不同性质的 Janus结构片状材料。 所述方法四包括如下步骤 1 ) 至步骤 2) : Step 2): if the decomposition temperature of the initiator is lower than the temperature of the polycondensation reaction, the radical polymerization reaction monomer is first subjected to radical polymerization to obtain a primary shell layer, and then the unpolymerized polycondensation sheet is initiated. The body or prepolymer undergoes a polycondensation reaction outside the primary shell layer to form hollow microspheres having a Janus structure shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained; if the initiator is decomposed When the temperature is higher than the temperature of the polycondensation reaction, the monomer or prepolymer which initiates the polycondensation reaction is subjected to a polycondensation reaction to obtain a primary shell layer; and the unrepolymerized radical reactive monomer is further induced in the primary shell layer. A radical polymerization reaction occurs on the inner side to form hollow microspheres having a Janus structural shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained. The method 4 includes the following steps 1) to 2):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 f) 中的任意一种:  Wherein, the step 1) is any one of the following steps a) to f):
步骤 a) : 在乳化剂的作用下, 将无机反应物溶于非极性溶剂做为分散相分散 于溶有缩聚反应的单体或预聚物的极性溶剂构成的连续相中形成乳液;  Step a): dissolving the inorganic reactant in a non-polar solvent under the action of an emulsifier; forming a dispersion in a continuous phase composed of a polar solvent in which the dispersed phase is dispersed in the monomer or prepolymer in which the polycondensation reaction is dissolved;
步骤 b) : 在乳化剂的作用下, 将溶有缩聚反应的单体或预聚物的极性溶剂做 为分散相分散于由溶有无机反应物的非极性溶剂构成的连续相中形成乳液;  Step b): dispersing a polar solvent in which the polycondensation reaction monomer or prepolymer is dissolved as a dispersed phase in a continuous phase composed of a nonpolar solvent in which an inorganic reactant is dissolved, by an emulsifier Emulsion
步骤 c) : 在乳化剂的作用下, 将无机反应物溶于非极性溶剂做为分散相分散 于由溶于极性溶剂的自由基聚合单体、 溶于极性溶剂的自由基聚合引发剂和极性溶 剂构成的连续相中形成乳液;  Step c): dissolving the inorganic reactant in a non-polar solvent under the action of an emulsifier as a dispersed phase dispersed in a radical polymerization polymerization of a radically polymerizable monomer dissolved in a polar solvent and dissolved in a polar solvent Forming an emulsion in a continuous phase composed of a solvent and a polar solvent;
步骤 d) : 在乳化剂的作用下, 将由溶于极性溶剂的自由基聚合单体、 溶于极 性溶剂的自由基聚合引发剂和极性溶剂构成的分散相分散于溶有无机反应物的非 极性溶剂构成的连续相中形成乳液;  Step d): Dispersing a dispersed phase composed of a radical polymerizable monomer dissolved in a polar solvent, a radical polymerization initiator dissolved in a polar solvent, and a polar solvent in the dissolved inorganic reactant under the action of an emulsifier Forming an emulsion in a continuous phase composed of a non-polar solvent;
步骤 e) : 在乳化剂的作用下, 将无机反应物、 溶于非极性溶剂的自由基聚合 单体和溶于非极性溶剂的自由基聚合引发剂溶解在非极性溶剂做为分散相分散于 极性溶剂构成的连续相中形成乳液;  Step e): dissolving the inorganic reactant, the radical polymerizable monomer dissolved in the non-polar solvent, and the radical polymerization initiator dissolved in the non-polar solvent in a non-polar solvent as a dispersion under the action of an emulsifier The phase is dispersed in a continuous phase composed of a polar solvent to form an emulsion;
步骤 f) : 在乳化剂的作用下, 将极性溶剂做为分散相分散于由溶有无机反应 物、 溶于非极性溶剂的自由基聚合单体和溶于非极性溶剂的自由基聚合引发剂的非 极性溶剂构成的连续相中形成乳液;  Step f): Dispersing a polar solvent as a dispersed phase in a radically polymerized monomer dissolved in an inorganic reactant, dissolved in a nonpolar solvent, and free radical dissolved in a nonpolar solvent under the action of an emulsifier Forming an emulsion in a continuous phase composed of a non-polar solvent of a polymerization initiator;
步骤 2) : 先将所述无机反应物在分散相和连续相的界面发生溶胶凝胶反应得 到初级壳层, 再引发未聚合的所述缩聚反应的单体或预聚物在所述初级壳层外侧发 生缩聚反应, 形成具有 Janus结构壳层的中空微球, 粉碎后得到所述正反表面具有 不同性质的 Janus结构片状材料。  Step 2): first, the inorganic reactant is subjected to a sol-gel reaction at the interface between the dispersed phase and the continuous phase to obtain a primary shell layer, and then the monomer or prepolymer of the polycondensation reaction which is not polymerized is in the primary shell. A polycondensation reaction occurs on the outer side of the layer to form hollow microspheres having a Janus structural shell layer, and after pulverization, a Janus structure sheet material having different properties on the front and back surfaces is obtained.
所述方法五包括如下步骤 1 ) 至步骤 3 ) :  The method 5 includes the following steps 1) to 3):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 d) 中的任意一种:  Wherein the step 1) is any one of the following steps a) to d):
步骤 a): 在乳化剂的作用下, 将分散相溶剂分散于连续相溶剂中形成乳液, 加 入溶于所述连续相溶剂中的单体或树脂的预聚物进行缩聚反应, 在分散相和连续相 界面处生成交联立体网状结构的非水溶性缩聚物, 即形成初级壳层;  Step a): dispersing the dispersed phase solvent in the continuous phase solvent to form an emulsion under the action of an emulsifier, adding a monomer or a resin prepolymer dissolved in the continuous phase solvent to carry out a polycondensation reaction, in the dispersed phase and Forming a water-insoluble polycondensate of a crosslinked three-dimensional network structure at a continuous phase interface, that is, forming a primary shell layer;
步骤 b): 在乳化剂的作用下, 将分散相反应物溶于分散相溶剂中分散于连续相 溶剂中形成乳液, 加入溶于所述连续相溶剂中的连续相反应物, 所述分散相反应物 和所述连续相反应物在分散相和连续相界面处发生缩聚或加聚反应, 形成初级壳层; 步骤 c): 在乳化剂的作用下, 将分散相自由基聚合单体溶于分散相溶剂中分散 于连续相溶剂中形成乳液, 引发剂溶于分散相和 /或连续相中, 所述引发剂引发所述 分散相自由基聚合单体发生自由基聚合反应形成聚合物, 所述聚合物产生相分离沉 积在所述分散相和所述连续相的界面处, 形成交联的立体网络聚合物壳层, 即为初 级壳层;  Step b): dispersing the dispersed phase reactant in the solvent of the dispersed phase in the solvent of the continuous phase to form an emulsion under the action of the emulsifier, adding a continuous phase reactant dissolved in the solvent of the continuous phase, the dispersed phase The reactant and the continuous phase reactant undergo polycondensation or polyaddition reaction at the interface between the dispersed phase and the continuous phase to form a primary shell layer; Step c): Dissolving the dispersed phase radical polymerizable monomer under the action of an emulsifier Dispersing a solvent in a dispersion phase to form an emulsion in a continuous phase solvent, the initiator is dissolved in a dispersed phase and/or a continuous phase, and the initiator initiates radical polymerization of the dispersed phase radical polymerization monomer to form a polymer. The polymer is phase-separated and deposited at the interface between the dispersed phase and the continuous phase to form a crosslinked three-dimensional network polymer shell layer, that is, a primary shell layer;
步骤 d): 在乳化剂的作用下, 将溶有分散相聚合物的分散相有机溶剂分散于连 续相溶剂中形成乳液, 所述连续相溶剂中溶有带有与所述分散相聚合物相反电荷的 连续相聚合物, 所述分散相聚合物和所述连续相聚合物在分散相和连续相的界面处 发生静电吸引作用, 形成初级壳层; Step d): dispersing the dispersed phase organic solvent in which the dispersed phase polymer is dissolved in the continuous phase solvent to form an emulsion under the action of an emulsifier, wherein the continuous phase solvent is dissolved in the opposite phase to the dispersed phase polymer a charged continuous phase polymer, the dispersed phase polymer and the continuous phase polymer at the interface of the dispersed phase and the continuous phase Electrostatic attraction occurs to form a primary shell layer;
所述步骤 2) 为下述步骤 a')或 b'): The step 2) is the following steps a') or b') :
步骤 a'): 向所述步骤 1 ) 的反应体系中再加入溶于所述连续相溶剂中的单体或 树脂的预聚物进行缩聚反应,在所述初级壳层的外侧形成新的壳层,形成具有 Janus 结构壳层的中空微球; Step a') : adding a prepolymer of a monomer or a resin dissolved in the continuous phase solvent to the reaction system of the step 1) to carry out a polycondensation reaction, forming a new shell on the outer side of the primary shell layer a layer forming hollow microspheres having a Janus structural shell;
步骤 b'): 向所述步骤 1 ) 的反应体系中再加入与步骤 1 ) 得到的聚合物带有相 反电荷的聚合物, 使所述步骤 1 ) 中得到的聚合物与所述带有相反电荷的聚合物发 生静电吸引作用, 于所述初级壳层外侧形成新的壳层, 形成具有 Janus结构壳层的 中空微球; Step b') : further adding a polymer having an opposite charge to the polymer obtained in the step 1) to the reaction system of the step 1), so that the polymer obtained in the step 1) is opposite to the one described The charged polymer undergoes electrostatic attraction, forming a new shell layer outside the primary shell layer to form hollow microspheres having a Janus shell layer;
步骤 3 ) : 将所述步骤 2)所得具有 Janus结构壳层的中空微球粉碎后得到所述 正反表面具有不同性质的 Janus结构片状材料;  Step 3): pulverizing the hollow microspheres having the Janus structural shell layer obtained in the step 2) to obtain the Janus structure sheet material having different properties on the front and back surfaces;
所述方法六包括如下步骤 1 ) 至步骤 2) :  The method 6 includes the following steps 1) to 2):
其中, 所述步骤 1 ) 为下述步骤 a) 至步骤 b) 中的任意一种:  Wherein the step 1) is any one of the following steps a) to b):
步骤 a): 在乳化剂的作用下, 将溶于非极性溶剂的自由基聚合单体、溶于非极 性溶剂的自由基聚合引发剂溶于非极性溶剂中作为分散相分散于由溶于极性溶剂 的自由基聚合单体、 溶于极性溶剂的自由基聚合引发剂和极性溶剂组成的分散相中 形成乳液;  Step a): dissolving the radical polymerizable monomer dissolved in the non-polar solvent and the radical polymerization initiator dissolved in the non-polar solvent in a non-polar solvent as a dispersed phase by the action of the emulsifier Forming an emulsion in a dispersed phase composed of a radical polymerizable monomer dissolved in a polar solvent, a radical polymerization initiator dissolved in a polar solvent, and a polar solvent;
步骤 b ) : 在乳化剂的作用下, 将溶于极性溶剂的自由基聚合单体、 溶于极性 溶剂的自由基聚合引发剂溶于极性溶剂中作为分散相分散于由溶于非极性溶剂的 自由基聚合单体、 溶于非极性溶剂的自由基聚合引发剂和非极性溶剂组成的分散相 中形成乳液;  Step b): dissolving the radical polymerizable monomer dissolved in the polar solvent and the radical polymerization initiator dissolved in the polar solvent in a polar solvent as a dispersed phase by dispersing in the action of the emulsifier Forming an emulsion in a dispersed phase composed of a radical polymerizable monomer of a polar solvent, a radical polymerization initiator dissolved in a non-polar solvent, and a non-polar solvent;
步骤 2) : 将步骤 1 ) 反应体系升高温度引发所述溶于极性溶剂中的自由基聚 合单体在乳液界面聚合, 得到正反两面具有不同组成和性质壳层的中空球, 粉碎或 不经粉碎后得到所述正反表面具有不同性质的 Janus结构片状材料。  Step 2): The step 1) raising the temperature of the reaction system causes the radical polymerizable monomer dissolved in the polar solvent to be polymerized at the emulsion interface to obtain hollow spheres having different compositions and properties on both sides, crushing or The Janus structure sheet material having different properties on the front and back surfaces is obtained without pulverization.
5、 根据权利要求 4所述的方法, 其特征在于: 所述方法一中, 所述分散相反 应物的结构通式为 XnMRm, 优选正硅酸乙酯; 其中, M为 Si、 Ti、 Sn、 A1或 Zr; X为 Na、 Mg或 K, n为 0、 1或 2; R为 Cl、 OS04、 OCH3、 OCH2CH3、 OCH(CH3)2、 OCH2CH2CH2CH3或 S04, m为 1、 2、 3或 4; 所述非极性溶剂选自芳香烃、 石蜡、 四氯化碳、氯仿、环己烷、二氯甲烷、脂肪烃和乙酸乙酯中的至少一种,优选甲苯; 所述偶联剂为
Figure imgf000029_0001
(C2H50)3-Si-(CH2)3-Sx-(CH2)3-Si-(OC2H5)3或 RiC„H2n-M(R2)p(R3)2-p; 其中, M为 Si、 Ti、 Sn、 Zr或 Al; m、 n、 p和 x均为整数, 0^η^ 127, 优选 n为 0-17的整数, 0 m 3, 0^p^2; l ^x^4; R2、 R3均选自 Cl、 CH3、 OCxH2x+1或 OC2H4OCH3 ; 所述 OCxH2x+1中, x=l-20的整数, 优选 x为 1-4的整数; 所述 选自 H、 脂肪烷基、 苯基、 乙烯基、 氨基、 CN、 HCO H2、 Cl、 H2(CH2)2 H 2, 3-环氧丙氧基、 甲基丙烯酰氧基或巯基; 所述乳化剂选自苯 乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯甲 基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯 -马来酸酐共聚物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁 烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚乙烯基苯磺酸、 聚乙 烯基苯磺酸钠、 OP-5、 OP- 10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100, 十二烷基硫酸钠、 十二烷基磺酸钠、 十二烷基苯磺酸钠、 十六烷基三 甲基溴化胺和珀酸二辛酯磺酸钠中的至少一种; 所述乳化剂的用量为初始乳液重量 的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述酸选自盐酸、 硫酸和硝酸中的至少一种, 所述碱选自氢氧化钠、 氢氧化 钾和氨水中的至少一种; 所述分散相反应物和连续相反应物均占反应体系的总重的 百分比为大于 0小于 80%, 具体为 10-20%、 10-30%、 20-40% 30-60%或 40-50%; 所述方法二中,其中,所述 ABC三嵌段共聚物中, A嵌段为亲水聚合物链段, 选自聚氧乙烯、 聚马来酸酐、 聚甲基丙烯酸甲酯和聚丙烯酸中的至少一种; B嵌段 为具有反应活性的烯烃或炔烃聚合物链段,选自聚联乙炔、聚丁二烯或聚异戊二烯; C嵌段为疏水聚合物链段, 选自聚氧丙烯、 聚氧丁烯、 聚苯乙烯、 聚烯烃和聚硅氧 烷中的至少一种; 所述乳液中, 作为分散相和连续相的溶剂分别选自互不相溶的极 性溶剂和非极性溶剂; 其中非极性溶剂选自芳香烃、 石蜡、 正己烷、 四氯化碳、 氯 仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种; 所述极性溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基甲酰胺中的至少一种; 所述紫 外光照射步骤中, 时间为 5〜60分钟;
The method according to claim 4, wherein in the method 1, the structural formula of the dispersed phase reactant is X n MR m , preferably tetraethyl orthosilicate; wherein M is Si, Ti, Sn, A1 or Zr; X is Na, Mg or K, n is 0, 1 or 2; R is Cl, OS0 4 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 CH 2 CH 2 CH 3 or S0 4 , m is 1, 2, 3 or 4; the non-polar solvent is selected from the group consisting of aromatic hydrocarbons, paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and acetic acid At least one of ethyl esters, preferably toluene; the coupling agent is
Figure imgf000029_0001
(C 2 H 5 0) 3 -Si-(CH 2 ) 3 -S x -(CH 2 ) 3 -Si-(OC 2 H 5 ) 3 or RiC„H 2n -M(R 2 )p(R 3 Wherein M is Si, Ti, Sn, Zr or Al; m, n, p and x are integers, 0^η^ 127, preferably n is an integer from 0-17, 0 m 3, 0 ^p^2 ; l ^x^4 ; R 2 and R 3 are each selected from Cl, CH 3 , OC x H 2x+1 or OC 2 H 4 OCH 3 ; in the OC x H 2x+1 , x= An integer of from 1 to 20, preferably x is an integer from 1 to 4; the selected from the group consisting of H, aliphatic alkyl, phenyl, vinyl, amino, CN, HCO H 2 , Cl, H 2 (CH 2 ) 2 H 2 a 3-glycidoxy group, a methacryloyloxy group or a decyl group; the emulsifier is selected from the group consisting of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer, and a sodium salt hydrolysate of an ethylene-maleic anhydride copolymer. a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer, a sodium salt hydrolyzate of an isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, Methacrylamide, isobutyl Copolymer obtained by copolymerization of olefin, acrylate, methacrylate or acrylonitrile, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween 60, Tween 80, Triton X-100, sodium lauryl sulfate, sodium lauryl sulfonate, sodium dodecylbenzene sulfonate, cetyltrimethylammonium bromide and dioctyl sulfonate At least one of sodium; the emulsifier is used in an amount of 1% to 20% by weight of the initial emulsion, specifically 1% to 15%, 5-15%, 5-10%, 10-20%, 5% And 8%, 10%, 15% or 20%; the acid is at least one selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid, and the base is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide and ammonia water; The percentage of the total weight of the reaction phase reactant and the continuous phase reactant in the reaction system is greater than 0 and less than 80%, specifically 10-20%, 10-30%, 20-40% 30-60% or 40-50 In the method 2, wherein, in the ABC triblock copolymer, the A block is a hydrophilic polymer segment selected from the group consisting of polyoxyethylene, polymaleic anhydride, polymethyl methacrylate, and poly Propylene At least one of; B block is a reactive olefin or alkyne polymer segment selected from polyacetylene, polybutadiene or polyisoprene; C block is a hydrophobic polymer segment, And at least one selected from the group consisting of polyoxypropylene, polyoxybutylene, polystyrene, polyolefin, and polysiloxane; wherein the solvent as the dispersed phase and the continuous phase in the emulsion is respectively selected from mutually incompatible polar groups a solvent and a non-polar solvent; wherein the non-polar solvent is at least one selected from the group consisting of aromatic hydrocarbons, paraffin wax, n-hexane, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and ethyl acetate; The polar solvent is at least one selected from the group consisting of water, ethylene glycol, propylene glycol, glycerin, tetrahydrofuran, and N, N-dimethylformamide; and the ultraviolet light irradiation step is 5 to 60 minutes. ;
所述方法三中, 所述缩聚反应的单体或预聚物选自丙烯腈、 醋酸乙烯酯、脲醛 树脂、 蜜胺树脂、 酚醛树脂、 三聚氰胺改性脲醛树脂、 聚乙二醇改性脲醛树脂、 聚 丙二醇改性脲醛树脂、 分子量为 200-2000 的聚乙二醇改性的蜜胺树脂、 分子量为 200-2000的聚丙二醇改性的蜜胺树脂、 聚乙烯醇改性脲醛树脂、 间苯二酚改性脲醛 树脂、 对苯二酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和三聚氰胺共聚改性脲醛 树脂、 聚乙烯醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰胺共聚改性脲醛 树脂、 间苯二酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺树脂和聚乙烯醇 改性蜜胺树脂中的至少一种; 所述引发剂选自过硫酸锂 -三乙基铝、 过硫酸锂 -三乙 基硼、 过硫酸锂 -三乙基铅、 过氧化氢-亚铁盐、 过硫酸盐-亚硫酸氢钠、 过氧化二苯 甲酰、 偶单二异丁腈、 过硫酸盐、 过氧化二异丙苯、 异丙苯过氧化氢和特丁基异丙 苯中的至少一种; 所述乳化剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马 来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异丁 烯 -马来酸酐共聚物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得 的共聚物、聚乙烯基苯磺酸、聚乙烯基苯磺酸钠、 OP-5、 OP-10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷 基磺酸钠、 十二烷基苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至 少一种;所述乳化剂的用量为初始乳液重量的 1%〜20%,具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述非极性溶剂选自芳香烃、石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种, 优选十八 烷; 所述溶于非极性溶剂的自由基聚合反应单体选自苯乙烯、 丁二烯、 异戊二烯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁酯、 甲基丙 烯酸异丁酯、 甲基丙烯酸肉桂酸乙基酯、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸叔丁酯、 环氧丙烯、 乙烯基丁酯、 异丁烯或醋酸乙烯酯、 二乙烯基苯、 二甲 基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的至少一种; 所述极性溶剂选自水、 乙 二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基甲酰胺中的至少一种; 所述自由 基聚合反应的单体与所述引发剂的摩尔份数比为 10: 1-1000: 1; 优选 50: 1: 500: 1 ; 所述自由基聚合反应的温度为 20-90°C, 反应的时间为 0.5-72小时, 优选 2-16 小时;所述缩聚反应的温度为 60-90°C,反应的时间为 0.5-72小时,优选 2-16小时; 所述方法四中, 所述无机反应物的结构通式为 XnMRm: 其中, M为 Si、 Ti、 Sn、 A1或 Zr; X为 Na、 Mg或 K, n为 0、 1或 2; R为 Cl、 OS04、 OCH3、 OCH2CH3、 OCH(CH3)2、 OCH2CH2CH2CH3或 S04, m为 1、 2、 3或 4;或
Figure imgf000031_0001
In the third method, the monomer or prepolymer of the polycondensation reaction is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin, melamine resin, phenolic resin, melamine modified urea-formaldehyde resin, and polyethylene glycol modified urea-formaldehyde resin. , polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine resin with molecular weight of 200-2000, polypropylene glycol modified melamine resin with molecular weight of 200-2000, polyvinyl alcohol modified urea-formaldehyde resin, m-benzene Diphenol modified urea-formaldehyde resin, hydroquinone modified urea-formaldehyde resin, phenol-modified urea-formaldehyde resin, phenol and melamine copolymer modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymer modified urea-formaldehyde resin, resorcinol and melamine copolymerization At least one of a urea-formaldehyde resin, a resorcinol, and a polyvinyl alcohol copolymer-modified urea-formaldehyde resin, a resorcinol-modified melamine resin, and a polyvinyl alcohol-modified melamine resin; the initiator is selected from the group consisting of lithium persulfate - triethyl aluminum, lithium persulfate - triethyl boron, lithium persulfate - triethyl lead, hydrogen peroxide - ferrous salt, persulfate - sodium hydrogen sulfite, dibenzoyl peroxide, even two At least one of butyronitrile, persulfate, dicumyl peroxide, cumene hydroperoxide, and tert-butyl cumene; the emulsifier is selected from the sodium salt hydrolyzate of a styrene-maleic anhydride copolymer a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer, a sodium salt hydrolyzate of an isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid Copolymer copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile, polyvinylbenzenesulfonic acid, polyvinylbenzenesulfonic acid Sodium, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, sodium lauryl sulfate, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate At least one of cetyltrimethylammonium bromide and sodium dioctyl sulfonate; the emulsifier is used in an amount of from 1% to 20% by weight of the initial emulsion, specifically from 1% to 15% 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%; The solvent is at least one selected from the group consisting of aromatic hydrocarbons, paraffin wax, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, aliphatic hydrocarbons and ethyl acetate, preferably octadecane; The radical polymerization monomer is selected from the group consisting of styrene, butadiene, isoprene, Methyl methacrylate, ethyl methacrylate, butyl methacrylate, tert-butyl methacrylate, isobutyl methacrylate, ethyl cinnamate methacrylate, methyl acrylate, ethyl acrylate, acrylic acid At least one of butyl ester, tert-butyl acrylate, propylene oxide, vinyl butyl acrylate, isobutylene or vinyl acetate, divinyl benzene, ethylene glycol dimethacrylate and diallyl terephthalate The polar solvent is selected from at least one of water, ethylene glycol, propylene glycol, glycerin, tetrahydrofuran, and N, N-dimethylformamide; the monomer of the radical polymerization reaction and the initiation The molar ratio of the agent is 10: 1-1000: 1; preferably 50: 1: 500: 1; the temperature of the radical polymerization is 20-90 ° C, and the reaction time is 0.5-72 hours, preferably 2 -16 hours; the temperature of the polycondensation reaction is 60-90 ° C, and the reaction time is 0.5-72 hours, preferably 2-16 hours; in the fourth method, the inorganic reactant has the structural formula X n MR m: where M is Si, Ti, Sn, A1 or Zr; X is Na, Mg or K, n is 0, 1 or 2; R is Cl, OS0 4 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , OCH 2 CH 2 CH 2 CH 3 or S0 4 , m is 1, 2, 3 or 4; or
Figure imgf000031_0001
(C2H50)3-Si-(CH2)3-Sx-(CH2)3-Si-(OC2H5)3 RiCn H2n-M(R2)p(R3)2-p: 其中, M为 Si、 Ti、 Sn、 Zr或 Al; m、 n、 p和 x均为整数, 0 n 127, 优选 n为 0-17的整数, 0 m 3, 0^p^2; l ^x^4; R2、 R3均选自 Cl、 CH3、 OCxH2x+1或 OC2H4OCH3中 的一种或几种; 所述 OCxH2x+1中, x=l-20的整数, 优选 X为 1-4的整数; 所述 选自 H、脂肪烷基、苯基、 乙烯基、氨基、 CN、 NHCONH2、 Cl、 NH2(CH2)2NH、 2, 3-环氧丙氧基、 甲基丙烯酰氧基或巯基; 所述缩聚反应的单体或预聚物选自脲醛树 月旨、 蜜胺树脂、 酚醛树脂、 三聚氰胺改性脲醛树脂、 聚乙二醇改性的脲醛树脂、 聚 丙二醇改性脲醛树脂、 分子量为 200〜2000的聚乙二醇改性的蜜胺树脂、 分子量为 200〜2000的聚丙二醇改性的蜜胺树脂、 聚乙烯醇改性脲醛树脂、 间苯二酚改性脲 醛树脂、 对苯二酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和三聚氰胺共聚改性脲 醛树脂、 聚乙烯醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰胺共聚改性脲 醛树脂、 间苯二酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺树脂和聚乙烯 醇改性蜜胺树脂中的至少一种; 所述溶于非极性溶剂的自由基聚合单体选自苯乙烯、 丁二烯、 异戊二烯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙 烯酸叔丁酯、 甲基丙烯酸异丁酯、 甲基丙烯酸、 肉桂酸乙基酯、 丙烯酸甲酯、 丙烯 酸乙酯、 丙烯酸丁酯、 丙烯酸叔丁酯、 环氧丙烯、 二甲基硅烷、 乙烯基丁酯、 异丁 烯或醋酸乙烯酯, 二乙烯基苯、 二甲基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的 至少一种; 所述溶于非极性溶剂的自由基聚合引发剂选自偶氮二异丁腈、 偶氮二异 庚腈、过氧化二苯甲酰、过氧化氢异丙苯、过氧化十二酰、过氧化二碳酸而异丙酯、 过氧化二碳酸二环己酯、 过氧化二苯甲酰 /N, N-二甲基苯胺氧化还原引发体系、 萘 酸盐与过氧化二苯甲酰氧化还原引发体系中的至少一种; 所述非极性溶剂选自芳香 烃、石蜡、 四氯化碳、氯仿、环己烷、二氯甲烷、脂肪烃和乙酸乙酯中的至少一种; 所述溶于极性溶剂的自由基聚合单体选自丙烯酰胺、丙烯酸、甲基丙烯酸、乙烯醇、 N-羟甲基丙烯酰胺中的至少一种; 所述溶于极性溶剂的自由基聚和引发剂选自过硫 酸钾、 过硫酸铵、 过硫酸盐与硫代硫酸盐或亚硫酸盐组成的氧化还原引发体系、 过 硫酸盐与脂肪胺或脂肪二胺组成的氧化还原引发体系中的至少一种; 所述极性溶剂 选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基甲酰胺中的至少一种 所述乳化剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马来酸酐共聚物的钠 盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯-马来酸酐共聚 物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲 基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚乙 烯基苯磺酸、聚乙烯基苯磺酸钠、 OP-5、 OP-10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷基磺酸钠、 十二烷基 苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至少一种; 所述乳化剂 的用量为初始乳液重量的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述缩聚反应中, 温度为 60-90°C, 优选 70°C, 反应 的时间为 0.5-72小时, 优选 2-16小时; 所述自由基聚合反应的单体与所述引发剂 的摩尔份数比为 10: 1-1000: 1; 优选 50: 1: 500: 1; 所述自由基聚合反应的温度 为 20-90°C, 反应的时间为 0.5-72小时, 优选 2-16小时。 所述方法五中, 步骤 a) 中, 所述溶于连续相溶剂中的单体或树脂的预聚物均 选自丙烯腈、 醋酸乙烯酯、 脲醛树脂、 蜜胺树脂、 酚醛树脂、 三聚氰胺改性脲醛树 月旨、 聚乙二醇改性脲醛树脂、 聚丙二醇改性脲醛树脂、 分子量为 200〜2000的聚乙 二醇改性的蜜胺树脂、 分子量为 200〜2000的聚丙二醇改性的蜜胺树脂、 聚乙烯醇 改性脲醛树脂、 间苯二酚改性脲醛树脂、 对苯二酚改性脲醛树脂、 苯酚改性脲醛树 月旨、 苯酚和三聚氰胺共聚改性脲醛树脂、 聚乙烯醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰胺共聚改性脲醛树脂、 间苯二酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺树脂和聚乙烯醇改性蜜胺树脂中的至少一种; (C 2 H 5 0)3-Si-(CH 2 )3-S x -(CH 2 )3-Si-(OC 2 H 5 ) 3 RiC n H 2n -M(R 2 ) p (R 3 ) 2- p: where M is Si, Ti, Sn, Zr or Al; m, n, p and x are integers, 0 n 127, preferably n is an integer from 0 to 17, 0 m 3, 0^p^ 2; l ^x^4; R 2 and R 3 are each selected from one or more of Cl, CH 3 , OC x H 2x+1 or OC 2 H 4 OCH 3 ; the OC x H 2x+1 Wherein x is an integer from 1 to 20, preferably X is an integer from 1 to 4; the selected from the group consisting of H, aliphatic alkyl, phenyl, vinyl, amino, CN, NHCONH 2 , Cl, NH 2 (CH 2 ) 2 NH, 2, 3-epoxypropoxy, methacryloxy or fluorenyl; the monomer or prepolymer of the polycondensation reaction is selected from the group consisting of urea formaldehyde, melamine resin, phenolic resin, melamine modification Urea-formaldehyde resin, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine resin with molecular weight of 200~2000, polypropylene glycol modified melamine with molecular weight of 200~2000 Resin, polyvinyl alcohol modified urea-formaldehyde resin, resorcinol-modified urea-formaldehyde resin, hydroquinone-modified urea-formaldehyde resin, phenol-modified urea-formaldehyde tree , phenol and melamine copolymerization modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymerization modified urea-formaldehyde resin, resorcinol At least one of a modified melamine resin and a polyvinyl alcohol-modified melamine resin; the radically polymerizable monomer dissolved in the non-polar solvent is selected from the group consisting of styrene, butadiene, isoprene, methyl Methyl acrylate, ethyl methacrylate, butyl methacrylate, tert-butyl methacrylate, isobutyl methacrylate, methacrylic acid, ethyl cinnamate, methyl acrylate, ethyl acrylate, butyl acrylate Ester, tert-butyl acrylate, propylene oxide, dimethyl silane, vinyl butyl acrylate, isobutylene or vinyl acetate, divinyl benzene, ethylene glycol dimethacrylate and diallyl terephthalate At least one of; the radical polymerization initiator dissolved in the non-polar solvent is selected from the group consisting of azobisisobutyronitrile, azobisisoheptanenitrile, dibenzoyl peroxide, cumene hydroperoxide, and oxygen Dodecyl, peroxydicarbonate and isopropyl ester, dicyclohexyl peroxydicarbonate, dibenzoyl peroxide/N,N-dimethylaniline redox initiation system, naphthate and diphenyl peroxide At least one of a formyl redox initiation system; the non-polar solvent is selected from at least one of an aromatic hydrocarbon, a paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, an aliphatic hydrocarbon, and ethyl acetate. The radically polymerizable monomer dissolved in a polar solvent is at least one selected from the group consisting of acrylamide, acrylic acid, methacrylic acid, vinyl alcohol, and N-methylol acrylamide; The radical polymerization initiator is selected from the group consisting of potassium persulfate, ammonium persulfate, a redox initiation system consisting of a persulfate and a thiosulfate or a sulfite, a redox initiation consisting of a persulfate with a fatty amine or a fatty diamine. At least one of the systems; the polar solvent is at least one selected from the group consisting of water, ethylene glycol, propylene glycol, glycerol, tetrahydrofuran, and N, N-dimethylformamide The emulsifier is selected from the group consisting of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer, a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, and a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer. a sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile Copolymer, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, dodecyl At least one of sodium sulfate, sodium dodecylsulfonate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, and sodium dioctylsulfonate; the emulsifier The amount is from 1% to 20% by weight of the initial emulsion, specifically 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%; In the polycondensation reaction, the temperature is 60-90 ° C, preferably 70 ° C, and the reaction time is 0.5-72 hours, preferably 2-16 hours; The molar ratio of the monomer of the radical polymerization reaction to the initiator is 10: 1-1000: 1; preferably 50: 1: 500: 1; the temperature of the radical polymerization reaction is 20-90 ° C, The reaction time is from 0.5 to 72 hours, preferably from 2 to 16 hours. In the method 5, in the step a), the prepolymer of the monomer or resin dissolved in the continuous phase solvent is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin, melamine resin, phenolic resin, melamine modified Urea-formaldehyde, polyethylene glycol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine resin with molecular weight of 200~2000, polypropylene glycol modified with molecular weight of 200~2000 Melamine resin, polyvinyl alcohol modified urea-formaldehyde resin, resorcinol-modified urea-formaldehyde resin, hydroquinone-modified urea-formaldehyde resin, phenol-modified urea-formaldehyde resin, phenol and melamine copolymerized urea-formaldehyde resin, polyvinyl alcohol and Melamine copolymerization modified urea-formaldehyde resin, resorcinol and melamine copolymerization modified urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymerization modified urea-formaldehyde resin, resorcinol-modified melamine resin and polyvinyl alcohol-modified melamine At least one of the resins;
步骤 b ) 中, 所述连续相反应物和分散相反应物均选自二元胺、 多元胺、 二元 醇、 多元醇、 二元酚、 多元酚、 二元酰氯、 多元酰氯、 二元磺酰氯、 多元磺酰氯、 二异氰酸酯、 多异氰酸酯、 二氯甲酸酯、 环氧树脂预聚物和有机硅氧烷预聚体中的 至少一种;  In step b), the continuous phase reactant and the dispersed phase reactant are each selected from the group consisting of a diamine, a polyamine, a glycol, a polyol, a dihydric phenol, a polyhydric phenol, a dibasic acid chloride, a polyacid chloride, a disulfide. At least one of an acid chloride, a polysulfonyl chloride, a diisocyanate, a polyisocyanate, a bischloroformate, an epoxy resin prepolymer, and an organosiloxane prepolymer;
步骤 c) 中, 所述分散相自由基聚合单体选自苯乙烯、 丁二烯、 异戊二烯、 甲 基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁酯、 甲基丙烯 酸异丁酯、 甲基丙烯酸肉桂酸乙基酯、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙 烯酸叔丁酯、 环氧丙烯、 二甲基硅烷、 乙烯基丁酯、 异丁烯或醋酸乙烯酯, 二乙烯 基苯、 二甲基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的至少一种;  In the step c), the dispersed phase radical polymerizable monomer is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and methacrylic acid. Butyl ester, isobutyl methacrylate, ethyl cinnamic acid acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl silane, vinyl butyl ester, At least one of isobutylene or vinyl acetate, divinylbenzene, ethylene glycol dimethacrylate and diallyl terephthalate;
步骤 d) 中, 所述形成初级壳层的分散相聚合物和连续相聚合物均选自聚乙烯 吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶、 酪蛋白、 阿拉伯胶、 海藻酸钠、 琼脂、 聚磷 酸钠、 聚硅酸钠、 羧甲基纤维素、 苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马 来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异丁 烯 -马来酸酐共聚物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得 的共聚物、 聚乙烯基苯磺酸、 聚乙烯基苯磺酸钠、 聚乙烯吡啶丁基溴和聚乙烯吡咯 烷酮中的至少一种; 步骤 a' )中, 所述溶于连续相溶剂中的单体或树脂预聚物均选自丙烯腈、醋酸 乙烯酯、 脲醛树脂、 蜜胺树脂、 酚醛树脂、 三聚氰胺改性脲醛树脂、 聚乙二醇改性 脲醛树脂、 聚丙二醇改性脲醛树脂、 聚乙二醇改性的分子量为 200〜2000的蜜胺树 月旨、 聚丙二醇改性的分子量为 200〜2000的蜜胺树脂、 聚乙烯醇改性脲醛树脂、 间 苯二酚改性脲醛树脂、 对苯二酚改性脲醛树脂、 苯酚改性脲醛树脂、 苯酚和三聚氰 胺共聚改性脲醛树脂、 聚乙烯醇和三聚氰胺共聚改性脲醛树脂、 间苯二酚和三聚氰 胺共聚改性脲醛树脂、 间苯二酚和聚乙烯醇共聚改性脲醛树脂、 间苯二酚改性蜜胺 树脂和聚乙烯醇改性蜜胺树脂中的至少一种; In the step d), the dispersed phase polymer and the continuous phase polymer forming the primary shell layer are selected from the group consisting of polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, casein, gum arabic, sodium alginate, agar, poly Sodium phosphate, sodium polysilicate, carboxymethyl cellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, vinyl methyl ether-butylene a sodium salt hydrolyzate of an acid anhydride copolymer, a sodium salt hydrolyzate of an isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, a copolymer obtained by copolymerizing methacrylate or acrylonitrile, at least one of polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, polyvinylpyridinium bromide and polyvinylpyrrolidone; In the step a'), the monomer or resin prepolymer dissolved in the continuous phase solvent is selected from the group consisting of acrylonitrile, vinyl acetate, urea formaldehyde resin, melamine resin, phenolic resin, melamine modified urea resin, polyethyl b Diol modified urea-formaldehyde resin, polypropylene glycol modified urea-formaldehyde resin, polyethylene glycol modified melamine tree with molecular weight of 200~2000, polypropylene glycol modified melamine resin with molecular weight of 200~2000, polyethylene Alcohol-modified urea-formaldehyde resin, resorcinol-modified urea-formaldehyde resin, hydroquinone-modified urea-formaldehyde resin, phenol-modified urea-formaldehyde resin, phenol and melamine copolymerization modified urea-formaldehyde resin, polyvinyl alcohol and melamine copolymerization modified urea-formaldehyde resin, Hydroquinone and melamine copolymerized at least one of urea-formaldehyde resin, resorcinol and polyvinyl alcohol copolymer-modified urea-formaldehyde resin, resorcinol-modified melamine resin and polyvinyl alcohol-modified melamine resin;
步骤 b' ) 中, 所述与步骤 1 )得到的聚合物带有相反电荷的聚合物选自聚乙烯 吡啶丁基溴、 聚乙烯吡咯烷酮、 明胶、 酪蛋白、 阿拉伯胶、 海藻酸钠、 琼脂、 聚磷 酸钠、 聚硅酸钠、 羧甲基纤维素、 苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马 来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异丁 烯 -马来酸酐共聚物的钠盐水解物、 丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得 的共聚物、 聚乙烯基苯磺酸、 聚乙烯基苯磺酸钠、 聚乙烯吡啶丁基溴和聚乙烯吡咯 烷酮中的至少一种;  In the step b'), the polymer having an opposite charge to the polymer obtained in the step 1) is selected from the group consisting of polyvinylpyridinium bromide, polyvinylpyrrolidone, gelatin, casein, gum arabic, sodium alginate, agar, Sodium polyphosphate, sodium polysilicate, carboxymethyl cellulose, sodium salt hydrolysate of styrene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, vinyl methyl ether-butylene Sodium salt hydrolysate of dianhydride copolymer, sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate a copolymer obtained by copolymerizing methacrylate or acrylonitrile, at least one of polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, polyvinylpyridinium bromide and polyvinylpyrrolidone;
步骤 a) 所述缩聚反应中, 温度为 60-90°C, 优选 70°C, 时间为 0.5-72小时, 优选 2-16小时, pH值为 2-10, 搅拌转速为 50-16000r/min, 优选 150-12000r/min; 步骤 b)所述缩聚或加聚反应中, 分散相反应物与所述连续相反应物反应官能 团的摩尔份数比为 1 : 1; 温度为 60-90°C, 优选 70°C, 时间为 0.5-72小时, 优选 2-16小时, 搅拌速度为 50-16000r/min, 优选 150-12000r/min;  Step a) In the polycondensation reaction, the temperature is 60-90 ° C, preferably 70 ° C, the time is 0.5-72 hours, preferably 2-16 hours, the pH is 2-10, and the stirring speed is 50-16000r/min. Preferably, in the polycondensation or polyaddition reaction of step b), the molar ratio of the reactive phase reactant to the continuous phase reactant reactive functional group is 1:1; the temperature is 60-90 ° C , preferably 70 ° C, the time is 0.5-72 hours, preferably 2-16 hours, the stirring speed is 50-16000r / min, preferably 150-12000r / min;
步骤 c) 中所述自由基聚合反应中, 所述分散相自由基聚合单体与所述引发剂 的摩尔份数比为 10: 1-1000: 1; 优选 50: 1-500: 1, 温度为 20-90°C, 时间为 0.5-72 小时, 优选 2-16小时;  In the radical polymerization reaction in the step c), the molar fraction ratio of the dispersed phase radical polymerizable monomer to the initiator is 10: 1-1000: 1; preferably 50: 1-500: 1, temperature 20-90 ° C, time is 0.5-72 hours, preferably 2-16 hours;
步骤 d) 中, 所述反应体系的 pH值为 2-10;  In step d), the pH of the reaction system is 2-10;
步骤 a' ) 所述缩聚反应中, 温度为 60-90°C, 优选 70°C, 时间为 0.5-72小时, 优选 2-16小时, pH值为 2-10, 搅拌转速为 50-16000r/min, 优选 150-12000r/min; 步骤 b' ) 所述反应体系的 pH值为 2-10;  Step a') In the polycondensation reaction, the temperature is 60-90 ° C, preferably 70 ° C, the time is 0.5-72 hours, preferably 2-16 hours, the pH is 2-10, and the stirring speed is 50-16000r/ Min, preferably 150-12000r/min; step b') the pH of the reaction system is 2-10;
所述乳化剂选自苯乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯-马来酸酐共聚物 的钠盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、 异丁烯-马来酸酐 共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或丙烯腈共聚而得的共聚物、 聚 乙烯基苯磺酸、聚乙烯基苯磺酸钠、OP-5、OP-10、 Span20、 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷基硫酸钠、 十二烷基磺酸钠、 十二烷基 苯磺酸钠、 十六烷基三甲基溴化胺和珀酸二辛酯磺酸钠中的至少一种; 所述乳化剂 的用量为初始乳液重量的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%;  The emulsifier is selected from the group consisting of a sodium salt hydrolyzate of a styrene-maleic anhydride copolymer, a sodium salt hydrolyzate of an ethylene-maleic anhydride copolymer, and a sodium salt hydrolyzate of a vinyl methyl ether-maleic anhydride copolymer. a sodium salt hydrolyzate of isobutylene-maleic anhydride copolymer, acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile Copolymer, polyvinylbenzenesulfonic acid, sodium polyvinylbenzenesulfonate, OP-5, OP-10, Span20, Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, dodecyl At least one of sodium sulfate, sodium dodecylsulfonate, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide, and sodium dioctylsulfonate; the emulsifier The amount is from 1% to 20% by weight of the initial emulsion, specifically 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%;
所述分散相溶剂选自芳香烃、 石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂 肪烃和乙酸乙酯中的至少一种; The dispersed phase solvent is selected from the group consisting of aromatic hydrocarbons, paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane, and fat. At least one of an aliphatic hydrocarbon and an ethyl acetate;
所述连续相溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 N, N-二甲基 甲酰胺中的至少一种; 所述方法六中, 所述溶于非极性溶剂的自由基聚合单体选自苯乙烯、 丁二烯、 异戊二烯、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲基丙烯酸叔丁 酯、 甲基丙烯酸异丁酯、 甲基丙烯酸、 肉桂酸乙基酯、 丙烯酸甲酯、 丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸叔丁酯、 环氧丙烯、 二甲基硅烷、 乙烯基丁酯、 异丁烯或醋酸 乙烯酯,二乙烯基苯、二甲基丙烯酸乙二醇酯和对苯二甲酸二烯丙酯中的至少一种; 所述溶于非极性溶剂的自由基聚合引发剂选自偶氮二异丁腈、 偶氮二异庚腈、 过氧 化二苯甲酰、 过氧化氢异丙苯、 过氧化十二酰、 过氧化二碳酸而异丙酯、 过氧化二 碳酸二环己酯、 过氧化二苯甲酰 /N, N-二甲基苯胺氧化还原引发体系、 萘酸盐与过 氧化二苯甲酰氧化还原引发体系中的至少一种;所述非极性溶剂选自芳香烃、石蜡、 四氯化碳、 氯仿、 环己烷、 二氯甲烷、 脂肪烃和乙酸乙酯中的至少一种; 所述溶于 极性溶剂的自由基聚合单体选自丙烯酰胺、 Ν,Ν-二甲基双丙烯酰胺、 丙烯酸、 甲基 丙烯酸、 乙烯醇、 Ν-羟甲基丙烯酰胺中的至少一种; 所述溶于极性溶剂的自由基聚 合引发剂选自过硫酸钾、 硫酸亚铁、 过硫酸铵、 由过硫酸盐与硫代硫酸盐组成的混 合物、 由过硫酸盐与亚硫酸盐组成的混合物、 由过硫酸盐与脂肪胺组成的混合物或 由过硫酸盐与脂肪二胺组成的混合物中的至少一种, 优选过硫酸钾和硫酸亚铁中的 至少一种; 所述极性溶剂选自水、 乙二醇、 丙二醇、 丙三醇、 四氢呋喃和 Ν, Ν-二 甲基甲酰胺中的至少一种,优选水;所述乳化剂选自苯乙烯-马来酸酐共聚物的钠盐 水解物、 乙烯 -马来酸酐共聚物的钠盐水解物、 乙烯甲基醚-顺丁烯二酸酐共聚物的 钠盐水解物、异丁烯 -马来酸酐共聚物的钠盐水解物、丙烯酸或甲基丙烯酸与苯乙烯、 乙烯、 乙烯醇、 醋酸乙烯酯、 甲基丙烯酰胺、 异丁烯、 丙烯酸酯、 甲基丙烯酸酯或 丙烯腈共聚而得的共聚物、 聚乙烯基苯磺酸、 聚乙烯基苯磺酸钠、 ΟΡ-5、 ΟΡ-10、 Span20 Span60、 Span80、 Tween20、 Tween60、 Tween80、 Triton X-100、 十二烷 基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化胺(CTAB) 和珀酸二辛酯磺酸钠中的至少一种;所述乳化剂的用量为初始乳液重量的 1%〜20%, 具体为 1%-15%、 5-15%、 5-10%、 10-20%、 5%、 8%、 10%、 15%或 20%; 所述自 由基聚合单体与所述自由基聚合引发剂的摩尔份数比为 10: 1-1000: 1;优选 50: 1: 500: 1; 所述自由基聚合反应的温度为 20-90°C, 反应的时间为 0.5-72小时, 优选 2-16小时;所述自由基聚合单体在乳液体系中的浓度为 0.01%-90%,优选 0.1%-30%。  The continuous phase solvent is selected from at least one of water, ethylene glycol, propylene glycol, glycerin, tetrahydrofuran and N, N-dimethylformamide; in the method 6, the solution is dissolved in a non-polar solvent The radical polymerizable monomer is selected from the group consisting of styrene, butadiene, isoprene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, t-butyl methacrylate, and butyl methacrylate. Ester, methacrylic acid, ethyl cinnamate, methyl acrylate, ethyl acrylate, butyl acrylate, tert-butyl acrylate, propylene oxide, dimethyl silane, vinyl butyl acrylate, isobutylene or vinyl acetate, At least one of vinyl benzene, ethylene glycol dimethacrylate, and diallyl terephthalate; the radical polymerization initiator dissolved in the non-polar solvent is selected from the group consisting of azobisisobutyronitrile, Azobisisoheptanenitrile, dibenzoyl peroxide, cumene hydroperoxide, dodecyl peroxide, isopropyl peroxydicarbonate, dicyclohexyl peroxydicarbonate, diphenyl peroxide Acyl/N, N-dimethylaniline redox At least one of a hair system, a naphthate and a dibenzoyl peroxide redox initiating system; the non-polar solvent is selected from the group consisting of aromatic hydrocarbons, paraffin, carbon tetrachloride, chloroform, cyclohexane, dichloromethane At least one of an aliphatic hydrocarbon and an ethyl acetate; the radically polymerizable monomer dissolved in a polar solvent is selected from the group consisting of acrylamide, hydrazine, hydrazine-dimethylbisacrylamide, acrylic acid, methacrylic acid, and vinyl alcohol. At least one of hydrazine-hydroxymethyl acrylamide; the radical polymerization initiator dissolved in a polar solvent is selected from the group consisting of potassium persulfate, ferrous sulfate, ammonium persulfate, and persulfate and thiosulfate a mixture of the composition, a mixture of persulfate and sulfite, a mixture of persulfate and fatty amine or a mixture of persulfate and fatty diamine, preferably potassium persulfate and sulfuric acid At least one of ferrous iron; the polar solvent is at least one selected from the group consisting of water, ethylene glycol, propylene glycol, glycerol, tetrahydrofuran, and hydrazine, hydrazine-dimethylformamide, preferably water; Agent selected from benzene Sodium salt hydrolysate of ethylene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene-maleic anhydride copolymer, sodium salt hydrolyzate of ethylene methyl ether-maleic anhydride copolymer, isobutylene-maleic anhydride copolymerization Copolymer of sodium salt hydrolysate, acrylic acid or methacrylic acid copolymerized with styrene, ethylene, vinyl alcohol, vinyl acetate, methacrylamide, isobutylene, acrylate, methacrylate or acrylonitrile, poly Vinyl benzene sulfonic acid, sodium polyvinylbenzene sulfonate, hydrazine-5, hydrazine-10, Span20 Span60, Span80, Tween20, Tween60, Tween80, Triton X-100, sodium lauryl sulfate, dodecyl sulfonate At least one of sodium, sodium dodecylbenzenesulfonate, cetyltrimethylammonium bromide (CTAB) and sodium dioctyl sulfonate; the emulsifier is used as the initial emulsion weight 1% to 20%, specifically 1%-15%, 5-15%, 5-10%, 10-20%, 5%, 8%, 10%, 15% or 20%; the radical polymerization The molar fraction ratio of the monomer to the radical polymerization initiator is 10: 1-1000: 1; preferably 50: 1: 500: 1; The temperature of the radical polymerization reaction is 20-90 ° C, the reaction time is 0.5-72 hours, preferably 2-16 hours; the concentration of the radical polymerizable monomer in the emulsion system is 0.01%-90%, preferably 0.1%-30%.
PCT/CN2011/000081 2010-01-21 2011-01-19 Flake material having different properties on its front and back sides and preparing method thereof WO2011088743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010034394.4 2010-01-21
CN2010100343944A CN102133802B (en) 2010-01-21 2010-01-21 Flaky material with front and back surfaces having different properties and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2011088743A1 true WO2011088743A1 (en) 2011-07-28

Family

ID=44293793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000081 WO2011088743A1 (en) 2010-01-21 2011-01-19 Flake material having different properties on its front and back sides and preparing method thereof

Country Status (2)

Country Link
CN (1) CN102133802B (en)
WO (1) WO2011088743A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046291A (en) * 2018-09-12 2018-12-21 潘钕 The preparation method of resin sorbent based on compound diatomite
IT201800006709A1 (en) * 2018-06-27 2019-12-27 Method of manufacturing Janus particles and their cosmetic application.
CN110756132A (en) * 2019-10-31 2020-02-07 大连理工大学 Preparation method of core-shell magnetic microspheres
GB2609582A (en) * 2021-09-24 2023-02-08 Univ Jiangsu Preparation method of circular nanosheet with high-density sites, and use of circular nanosheet in adsorption of blood lead

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516466B (en) * 2011-12-27 2013-06-26 江苏华夏制漆科技有限公司 Water-resistant and weather-resistant polyester polyurethane-polyacrylate aqueous dispersion and preparation method thereof
CN103204508B (en) * 2013-04-12 2015-09-30 中国科学院化学研究所 Janus nano material with double properties and preparation method thereof
CN104209505B (en) * 2013-05-30 2016-06-29 中国科学院化学研究所 Metal Janus nano-particle and preparation method thereof
CN104788688B (en) * 2015-04-10 2017-06-09 中国科学院化学研究所 A kind of chip solid emulsifying agent of unsymmetric structure and preparation method thereof
CN106242273B (en) * 2016-08-05 2019-04-12 郭迎庆 A kind of preparation method of automatically cleaning tube glass
CN106496604A (en) * 2016-10-20 2017-03-15 辽宁大学 The preparation method of polymer Janus nanometer sheets PtBMA/PAM
CN106582429B (en) * 2016-10-28 2018-08-14 浙江大学 Hydrophobic Janus particles of hydrogel-and preparation method thereof
CN107961767A (en) * 2017-11-09 2018-04-27 同济大学 A kind of adsorbent of aminodithioformic acid functionalization and preparation method and application
CN108096997B (en) * 2017-11-24 2020-09-01 浙江大学 Absorption liquid for wet dust removal process in high-temperature plasma coal cracking acetylene preparation process and application
CN108049241B (en) * 2017-11-30 2020-09-11 湖北大学 Preparation method of shape memory Janus material with energy conversion effect
CN108837810B (en) * 2018-05-04 2021-02-12 江苏大学 Preparation method and application of dual-functional Bernoulli molecular imprinting adsorbent
CN108822302B (en) * 2018-06-20 2020-08-14 同济大学 Janus nano-particle and preparation method and application thereof
CN108893025B (en) * 2018-06-22 2021-04-23 东营市银丰进出口有限公司 Formaldehyde-removing water-based paint and preparation and application thereof
CN109364833B (en) * 2018-09-25 2021-04-09 西北大学 Method for preparing two-sided nanoparticles
CN111774017B (en) * 2020-07-10 2021-11-16 清华大学 Phase change microcapsule based on polymer shell and manufacturing method thereof
CN111957330B (en) * 2020-08-24 2023-03-31 中北大学 Heteropoly acid/C with JANUS amphoteric characteristic 3 N 4 Catalyst preparation method and application thereof
CN113443634B (en) * 2021-07-15 2022-11-29 辽宁大学 Pickering super emulsifier silicon dioxide nano net and preparation method thereof
CN114191854B (en) * 2021-12-29 2023-07-25 杭州撒拉弗科技有限公司 Polyether modified organosiloxane emulsion defoamer and preparation method thereof
CN115261003B (en) * 2022-08-16 2023-06-06 长江大学 Amphiphilic Janus sheet material and preparation method and application thereof
CN117379324B (en) * 2023-12-07 2024-03-29 铂臻(广州)生物科技有限公司 Oil control concealer composition and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125673A1 (en) * 2007-04-17 2008-10-23 Stichting Dutch Polymer Institute Polymeric material comprising multiple cavities
CN101323713A (en) * 2007-06-15 2008-12-17 中国科学院化学研究所 Inorganic sheet composite material with surface having double property and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125673A1 (en) * 2007-04-17 2008-10-23 Stichting Dutch Polymer Institute Polymeric material comprising multiple cavities
CN101323713A (en) * 2007-06-15 2008-12-17 中国科学院化学研究所 Inorganic sheet composite material with surface having double property and preparation thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN MINGWEI ET AL.: "Preparation and Characterization of Janus Particles.", POLYMER BULLETIN. 7TH EDITION. PART 1. PREPARATION OF JANUS PARTICLE., July 2009 (2009-07-01) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800006709A1 (en) * 2018-06-27 2019-12-27 Method of manufacturing Janus particles and their cosmetic application.
WO2020002217A3 (en) * 2018-06-27 2020-02-06 Intercos S.P.A. Cosmetic composition based on janus particles
CN109046291A (en) * 2018-09-12 2018-12-21 潘钕 The preparation method of resin sorbent based on compound diatomite
CN110756132A (en) * 2019-10-31 2020-02-07 大连理工大学 Preparation method of core-shell magnetic microspheres
GB2609582A (en) * 2021-09-24 2023-02-08 Univ Jiangsu Preparation method of circular nanosheet with high-density sites, and use of circular nanosheet in adsorption of blood lead
GB2609582B (en) * 2021-09-24 2024-04-24 Univ Jiangsu Preparation method of circular nanosheet with high-density sites, and use of circular nanosheet in adsorption of blood lead

Also Published As

Publication number Publication date
CN102133802B (en) 2013-08-14
CN102133802A (en) 2011-07-27

Similar Documents

Publication Publication Date Title
WO2011088743A1 (en) Flake material having different properties on its front and back sides and preparing method thereof
JP5096486B2 (en) Micro capsule
Jang et al. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding
TW572912B (en) Processes for preparing impact modifier powders
JP2009542879A (en) Microcapsules modified with polyelectrolytes
CN1300179C (en) Process for preparing monodispersity shell/core composite granular emulsion by using nano silicon dioxide microsphere coated by polystyrene
Yin et al. Hollow microspheres with covalent‐bonded colloidal and polymeric shell by Pickering emulsion polymerization
CN104072659A (en) Magnetic resin microspheres and preparation method thereof
JP4790305B2 (en) Microcapsule and manufacturing method thereof
CN105153750A (en) Wear-resistant surface modified calcium carbonate filler and preparation method thereof
JP3706304B2 (en) Solid surface materials obtained from aqueous latex dispersions of thermoplastic polymers
Xu et al. Controllable preparation of epoxy‐functionalized magnetic polymer latexes with different morphologies by modified miniemulsion polymerization
Li et al. A facile fabrication of amphiphilic Janus and hollow latex particles by controlling multistage emulsion polymerization
CN103359746A (en) Double-layer hollow silica nanosphere and preparation method thereof
CN104788688B (en) A kind of chip solid emulsifying agent of unsymmetric structure and preparation method thereof
CN1978471A (en) Nano modified PVC resin and its synthesizing method
JP3531314B2 (en) Moisture proof paper
CN104987755A (en) Modified calcium carbonate with good mildew-resistant and insect-preventing effects and preparation method thereof
CN104927401A (en) Modified calcium carbonate and preparation method thereof
Yu et al. GRAFTING OF POLYSTYRENE ONTO A NANOMETER SILICA SURFACE BY MICROEMULSION POLYMERIZATION.
CN105038318A (en) Modified calcium carbonate filler with favorable sound absorption and sound insulation effects and preparation method thereof
WO2014191300A1 (en) Method for the generation of semi-crystalline hybrid particles by liquid-solid assembly
YUAN et al. Synthesis and characterization of polystyrene/nanosilica organic-inorganic hybrid
Wang et al. Dispersion behavior of core–shell silica-polymer nanoparticles
Xu et al. A Mesostructure Multivariant‐Assembly Reinforced Ultratough Biomimicking Superglue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734325

Country of ref document: EP

Kind code of ref document: A1