WO2011088713A1 - 保护组嵌套的实现方法、以太网保护切换的方法及系统 - Google Patents

保护组嵌套的实现方法、以太网保护切换的方法及系统 Download PDF

Info

Publication number
WO2011088713A1
WO2011088713A1 PCT/CN2010/079768 CN2010079768W WO2011088713A1 WO 2011088713 A1 WO2011088713 A1 WO 2011088713A1 CN 2010079768 W CN2010079768 W CN 2010079768W WO 2011088713 A1 WO2011088713 A1 WO 2011088713A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
segment
ipg1
ipg2
protection switching
Prior art date
Application number
PCT/CN2010/079768
Other languages
English (en)
French (fr)
Inventor
敖婷
魏月华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/574,237 priority Critical patent/US8971175B2/en
Priority to EP10843753.4A priority patent/EP2528263B1/en
Publication of WO2011088713A1 publication Critical patent/WO2011088713A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0096Channel splitting in point-to-point links

Definitions

  • the present invention relates to the field of data communications, and in particular, to a method for implementing protection group nesting, and a method and system for implementing Ethernet protection switching based on protection group nesting. Background technique
  • PBB-TE Provider Backbone Bridge Traffic Engineering
  • TAI traffic engineering service instances
  • This end-to-end protection scheme not only protects the switching time, but also involves too many nodes to protect its intermediate links and nodes. Therefore, the PBB-TE segment protection is introduced, namely: at PBB.
  • the section of the TE tunnel is specially configured with a protection section to protect the working section.
  • the working section and the protection section form an IPG (Infrastructure Protection Group).
  • FIG. 1 there is a working segment and one or several protection segments in a protection group. Normally, when no fault is detected on the working segment, all traffic protected by the PBB-TE segment protection group is forwarded from the working segment; but once there is a fault in this working segment, the PBB-TE segment protection group
  • SEB Segment Edge Bridge
  • SEB1 and SEB2 The endpoint (SEB, Segment Edge Bridge) is shown in SEB1 and SEB2 in Figure 1. If the SEB can detect the fault in time, the SEB will trigger the forwarding table update, and modify the egress port of the forwarding table corresponding to the TESI protected by the IPG of the protection domain to the egress port corresponding to the protection segment on the SEB, thereby switching the traffic.
  • the SEB here can be a backbone boundary bridge (BEB, Backbone Edge Bridge) on the PBB-TE tunnel, or It is the backbone core bridge (BCB, Backbone Core Bridge) on the PBB-TE tunnel.
  • BEB Backbone Edge Bridge
  • BCB Backbone Core Bridge
  • the protection switching technology has been established in the IEEE standards organization, project number 802.1Qbf.
  • the project not only supports 1:1 PBB-TE segment protection, but also supports M:l PBB-TE segment protection, ie: A M: 1 PBB-TE segment protection group is protected by one working segment and M segments The segment is composed, and M is greater than 1, and the working segment is protected by the M protection segments.
  • the existing protection switching technology can greatly improve the reliability of the system.
  • FIG. 2 is a schematic diagram of the PBB-TE segment and its fault detection mechanism.
  • both ends SEB1 and SEB2 of the segment can be specifically BEB or BCB;
  • the bridge device SIB in the middle of the segment can be specifically BCB;
  • a member segment refers to a working segment or a protection segment of a protection group.
  • the working segment refers to the segment through which traffic flows during normal operation, as shown in Figure 5.
  • the protection segment refers to the segment that carries the traffic after detecting the failure of the working segment or the switching of the management command that received the handover, as shown in Figure 5.
  • the segment refers to the LAN and MAC trunk between a series of PNP ports and PNP ports, as shown in Figure 5.
  • the SEB is used to terminate the two endpoints.
  • the SEB can be a BEB device in a PBB-TE network or a BCB device, as shown in Figure 5.
  • the bridge device in the middle of the segment is the SIB.
  • Port indicates working segment: indicates protection segment
  • IPG traffic switching refers to: If the previous set of TESI traffic protected by the IPG goes through the working segment, when the IPG traffic switching is performed, the TESI traffic of the previous working segment is redirected from the walking working segment to the walking protection segment; or If the previous set of TESI traffic protected by the IPG is in the protection segment, when the IPG traffic switching is performed, the TESI traffic of the previous protection segment is redirected from the protection segment to the working segment.
  • the redirection is generally implemented by modifying the egress port corresponding to the corresponding entry in the forwarding table.
  • the main purpose of the present invention is to provide a method for implementing protection group nesting, a method and system for implementing Ethernet protection switching, and protecting a key protection path by nesting protection groups, thereby achieving network saving. Resources, improve the effectiveness of network resource utilization.
  • IPGs segment protection groups
  • TESI traffic engineering service instance
  • the method further includes: sharing a two-segment endpoint port (SEP) of one IPG with a SEP or a segment intermediate port (SIP) of another IPG to share a carrier network port (PNP).
  • SEP segment endpoint port
  • SIP segment intermediate port
  • PNP carrier network port
  • a method for implementing Ethernet protection switching based on protection group nesting includes: when multiple IPGs that protect the same TESI detect the TESI fault, only one IPG of the plurality of nested IPGs performs protection switching The plurality of IPGs are nested protection groups.
  • the only one IPG performs protection switching, including: IPG1 when protection switching occurs, IPG1 The protection switching is not performed; or, when IPG1 has protection switching, IPG2 does not perform protection switching.
  • the IPG1 performs the protection switching, and the protection switching is performed by the IPG1 when the working segment and the protection segment of the IPG2 are faulty, or the other part of the IPG1 member segment fails.
  • the other part of the segment is the part of IPG1 that is not included in the IPG2 part.
  • the only one IPG performing protection switching includes: performing IPG3 to implement only one IPG to perform protection switching;
  • the constructing IPG3 includes: starting with an endpoint (SEB) of the segment protection group of the IPG1, working segment of the IPG1 via the working segment of the IPG1 and the working segment of the IPG2; starting along the SEB of the IPG1, via The working segment of IPG1 and the protection segment via IPG2 act as protection segment 1 of IPG3; the protection segment along IPG1 is used as protection segment 2 of IPG3.
  • SEB endpoint
  • a system for implementing Ethernet protection switching based on protection group nesting comprising: a protection switching execution unit, where multiple IPGs for protecting the same TESI detect the TESI fault, in multiple nested IPGs Only one IPG performs protection switching; wherein the multiple IPGs are nested protection groups.
  • the protection switching execution unit is further configured to: when the multiple IPGs are two and are respectively IPG1 and IPG2, when the protection switching occurs in the IPG2, the IPG1 does not perform the protection switching; or, when the protection switching occurs in the IPG1, IPG2 does not perform protection switching.
  • the protection switching execution unit is further configured to perform protection switching by the IPG1 when the working segment and the protection segment in the IPG2 are faulty, or when other parts of the IPG1 member segment are faulty; wherein, the IPG1 member segment The other part is the part of IPG1 that is not included in the IPG2 part.
  • the protection switching execution unit is further configured to perform only one IPG execution protection by constructing IPG3 when the multiple IPGs are two and are respectively IPG1 and IPG2. Switch
  • the constructing IPG3 includes: starting along the SEB of the IPG1, working through the working segment of the IPG1 and the working segment via the IPG2 as the working segment of the IPG3; starting along the SEB of the IPG1, via the working segment of the IPG1, and via the IPG2
  • the protection segment acts as the protection segment 1 of IPG3; the protection segment along IPG1 acts as the protection segment 2 of IPG3.
  • One aspect of the present invention constructs a nested protection group, that is, multiple IPGs that protect the same TESI are nested protection groups; wherein, two SEPs of one IPG share a PNP with another SEP or SIP of an IPG.
  • a nested protection group that is, multiple IPGs that protect the same TESI are nested protection groups; wherein, two SEPs of one IPG share a PNP with another SEP or SIP of an IPG.
  • multiple TSGs that are protected by the same TESI detect the TESI fault, only one IPG of the multiple nested IPGs performs protection switching.
  • multiple IPGs are nested protection groups.
  • the present invention protects the key sections of the same TESI, and only one IPG of the plurality of IPGs performs protection switching. Therefore, the present invention can fully utilize the existing Network resources focus on important road sections and can greatly improve network reliability and fault recovery capabilities.
  • Figure 1 is a schematic diagram of the protection of the existing PBB-TE segment
  • FIG. 2 is a schematic diagram of the PBB-TE segment and its fault detection mechanism
  • FIG. 3 is a schematic diagram of a network topology structure of an existing protection group
  • FIG. 4 is a schematic diagram of a network topology structure superimposed by a protection group according to the present invention.
  • FIG. 5 is a schematic diagram of a conventional PBB-TE working segment, a protection segment, a SEB, an SIB, and the like;
  • FIG. 6 is a schematic diagram of Example 1 of the present invention.
  • FIG. 7 is a schematic illustration of Example 2 of the present invention. detailed description
  • the basic idea of the invention is: On the one hand, multiple IPGs that protect the same TESI are embedded A set of protection groups; wherein, the two SEPs of one IPG share the same PNP as the SEP or SIP of another IPG. On the other hand, when multiple TSGs that protect the same TESI detect the TESI fault, only one IPG of the multiple nested IPGs performs protection switching; where, multiple IPGs are nested protection groups.
  • the method further includes: sharing the two SEPs of one IPG with the SEP or SIP of another IPG.
  • a method for implementing Ethernet protection switching based on protection group nesting includes: when multiple TSGs that protect the same TESI detect the TESI fault, only one IPG of the multiple nested IPGs performs protection switching. Among them, multiple IPGs are nested protection groups.
  • multiple IPGs are nested protection groups.
  • IPG1 and IPG2 when there are two IPGs, they can be recorded as IPG1 and IPG2, respectively.
  • IPG1 when there are two IPGs, they can be recorded as IPG1 and IPG2, respectively.
  • only one IPG performs protection switching, including: IPG1 does not perform protection switching when IPG2 protection switching occurs; or IPG2 does not perform protection switching when IPG1 protection switching occurs.
  • only one IPG performs the protection switching, and further includes: when the working segment and the protection segment in the IPG2 fail, or when other parts of the IPG1 member segment fail, the protection switching is performed by the IPG1; wherein, the IPG1 member segment The other part is the part of IPG1 that is not included in the IPG2 part.
  • IPG1 and IPG2 when there are two IPGs, they can be recorded as IPG1 and IPG2, respectively. At this time, only one IPG performs protection switching, which specifically includes: By constructing IPG3, only one IPG performs protection switching.
  • constructing IPG3 specifically includes: starting along the SEB of IPG1, via IPG1
  • the working segment and the working segment via IPG2 act as the working segment of IPG3; it will start along the SEB of IPG1, the working segment via IPG1 and the protection segment via IPG2 as the protection segment 1 of IPG3; the protection segment along IPG1 will be used as IPG3 Protection segment 2.
  • the present invention protects important part paths by protecting the nesting of the protection group, thereby improving the utilization and reliability of network resources.
  • the architecture of the protection group nested in the protection switching implementation of the present invention and its implementation method are described below.
  • FIG. 3 is a schematic diagram of a network topology structure of an existing protection group
  • FIG. 4 is a schematic diagram of a network topology structure superimposed by the protection group of the present invention. Comparing FIG. 4 and FIG. 3, the two protections in FIG. 4 are as shown in FIG. 4 .
  • the group protects the same set of TESIs, and this TESI is the key path mentioned above.
  • protection group nesting refers to: a protection group IPG1 and another protection group IPG2 have a part of nesting.
  • the specific topology is shown in Figure 4, that is: a certain segment of IPG2 coincides with a part of a segment of IPG1.
  • both IPG1 and IPG2 can be either a 1: 1 protection group or an M: 1 protection group.
  • a nested protection group refers to a group of protection groups with certain associations, that is, multiple nested protection groups protect the same set of TESIs. Therefore, each protection group that needs to be nested ensures the coordination of the handover when protection switching occurs. Coordination and reconciliation means: Although each nested protection group protects the same set of TESIs, if there is a link failure in this group of TESIs, each protection group can detect the link failure, but the current protection switching is performed. There is only one protection group, and other protection groups do not perform protection switching.
  • IPG1 and IPG2 shown in Figure 4 assume that IPG1 does not switch when IPG2 switches. IPG1 traffic switching occurs only when both the working segment and the protection segment in IPG2 fail, or other parts of the IPG1 member segment fail.
  • the other part of the IPG1 member segment refers to the part that is not included in IPG2, that is, the other part of the Ethernet path protected by IPG1 that does not overlap with IPG2.
  • the present invention provides a method for implementing such protection group nesting to protect the same set of TESI.
  • a new protection group IPG3 needs to be introduced based on the original IPG1 and the original IPG2.
  • the purpose of the IPG3 is to ensure that the protection switching of the nested protection groups IPG1 and IPG2 is coordinated when the protection switching occurs. It should be noted here that: After IPG3 is introduced, IPG1 is replaced, and fault detection and protection switching are performed by IPG2 and IPG3.
  • the working segment and the protection segment are re-determined between the two endpoint SEBs of the original IPG1 to form a new protection group IPG3.
  • This part of the IPG1 working segment and the IPG2 working segment starts from the SEB of IPG1 as the working segment of IPG3; the IPG3 is protected by the IPG1 working segment and the IPG2 protection segment.
  • Segment 1; IPG1 protection segment acts as protection segment 2 of IPG3, in which protection segment 1 has a higher priority than protection segment 2, ie: traffic is preferentially switched to protection segment 1 when protection switching occurs.
  • IPG3 After IPG3 is actually configured, once both protection groups IPG2 and IPG3 detect faults, they are switched at the same time, except that IPG3 switches to protection segment 1, due to protection segment 1 and The outbound port corresponding to the working segment is the same. Therefore, from the perspective of IPG1, the traffic is still forwarded on the working segment, that is, IPG1 does not switch, and only IPG2 is switched. Therefore, when a certain fault is detected, only one IPG implements protection switching.
  • IPG2 configures MA on the working and protection segments in its own group and configures CCM for fault detection.
  • IPG2 and IPG3 are used to detect the working segments and protection segments in their own groups, and when traffic switching is required, the protection switching is performed independently.
  • Example 1 The invention is illustrated by way of example below.
  • Example 1 The invention is illustrated by way of example below.
  • Example 1 The invention is illustrated by way of example below.
  • IPG2 is nested in the working segment of IPG1, but the implementation of the present invention is not only applicable to IPG2 nested on the working segment of IPG1, but also nested on the protection segment of IPG1, namely: ABCD can be the working segment of IPG 1, or it can be the protection segment of IPG1.
  • the example 1 is exemplified by IPG2 nested on the working segment of IPG1.
  • IPG2 there are working segments A-B-C-D and protection segments A-F-D that protect the working segments, they form protection group IPG1; work segments A-B and protection segments A-E-B that protect the working segments, they form protection group IPG2.
  • IPG1 and IPG2 share the same SEB at one end.
  • IPG1 and IPG2 share Bridge A.
  • IPG1 and IPG2 are not limited to 1 : 1 PBB-TE segmentation protection, but can also be M:l PBB-TE segmentation protection. This example is shown in Figure 6. Both are illustrated with an example of 1:1.
  • the working process between IPG1 and IPG2 is as follows: When the working segment AB fails, IPG2 switches, and the traffic flowing into IPG2 is switched to the protection segment AEB; only when the working segment and the protection segment of IPG2 fail at the same time, or BCD (here Including the node B, C), if a failure occurs, the IPG1 switches, and the traffic flowing into the IPG1 is switched to the protection segment AFD.
  • BCD here Including the node B, C
  • connectivity detection is first performed, and the connectivity detection includes the following contents:
  • MAI A and D at both ends of MA1 send CCM packets to each other according to A-E-B-C-D.
  • MA2 A and D at both ends of MA2 send connectivity reports to the CCM packets at the opposite end of the ABCD.
  • MA3 A and B at both ends perform connectivity detection according to the ACM inter-directional peer CCM 4 message.
  • MA4 A and B at both ends send a CCM packet to the peer end to detect connectivity.
  • MA5 A and D at both ends follow A-F-D.
  • the CCM 4 message is sent to the peer to perform connectivity detection.
  • both ⁇ 2 and ⁇ 4 detect faults.
  • the working segments of their respective protection groups are perceived to be faulty. Therefore, protection switching occurs between IPG3 and IPG2.
  • the protection switching occurs, and the traffic is switched to its protection segment ⁇ - ⁇ - ⁇ , that is, for the SEB of the two ends, ⁇ , the protection switching is to
  • the TESI of the protection group protection is modified to be the egress port corresponding to the protection segment of the corresponding entry in the forwarding table.
  • the egress port is modified to be the egress port A3 corresponding to the protection segment.
  • the egress port is modified to be the egress port B2 corresponding to its protection segment.
  • a protection switch occurs, and the traffic is switched to the protection segment 1 with a higher priority, that is, on the AEBCD.
  • the protection switching is The TESI protected by the protection group is modified to the egress port corresponding to the corresponding protection entry in the forwarding table.
  • the egress port is also modified to the egress port A3 corresponding to the protection segment 1;
  • the protection switching occurs, but the outgoing port of the traffic does not change. Therefore, from the perspective of IPG1, no protection switching occurs.
  • indicates SEP port
  • indicates SIP port
  • SEP and SIP are both PNP
  • Port; II indicates the bridge; the SEB of the two ends of the segment may be specifically BEB or BCB; the bridge device SIB in the middle of the segment may be specifically BCB; ⁇ indicates the CCM of MA1; V ⁇ indicates the CCM of MA2; W indicates the CCM of MA3; CCM of MA4; VV represents the CCM of MA5.
  • IPG2 is nested in the working segment of IPG1, but the implementation of the present invention is applicable not only to IPG2 but also to the working segment of IPG1, or to the protection segment of IPG1, namely:
  • the ABCD can be the working segment of IPG 1, or it can be the protection segment of IPG1.
  • Example 2 takes IPG2 nested on the working segment of IPG1 as an example.
  • IPG1 there are working segments A-B-C-D and protection segments A-F-D that protect the working segment, they form protection group IPG1; work segment B-C and protection segment B-E-C that protects the working segment, they form protection group IPG2.
  • IPG1 and IPG2 do not have a common node on the endpoint SEB at both ends.
  • IPG1 and IPG2 are not limited to 1 : 1 PBB-TE segmentation protection, but also M: 1 PBB-TE segmentation protection. This example is shown in Figure 7. Both are illustrated with an example of 1:1.
  • the working process between IPG1 and IPG2 is: When the working segment BC fails, IPG2 sends Switching, switching the traffic flowing into IPG2 to the protection segment BEC; only when the working segment and the protection segment of IPG2 fail at the same time, or AB (here includes node B), CD (including node C here) fails, IPG1 switches, and the traffic flowing into IPG1 is switched to the protection segment AFD.
  • AB here includes node B
  • CD including node C here
  • connectivity detection is first performed, and the connectivity detection includes the following contents:
  • MAI A and D at both ends of MA1 send a CCM packet to the peer end to perform connectivity detection according to A-B-E-C-D.
  • MA2 A and D at both ends of MA2 send a CCM message to the peer end to detect connectivity in the A-B-C-D.
  • MA3 The B and C at both ends send CCM packets to the peer end to perform connectivity detection.
  • MA4 B and C at both ends send CCM packets to the peer end to perform connectivity detection.
  • MA5 A and D at both ends follow A-F-D.
  • the CCM 4 message is sent to the peer to perform connectivity detection.
  • A-B-C-D is regarded as a working segment of a new protection group IPG3, A-B-E-C-D is used as the protection segment of IPG3, and A-F-D is used as protection segment 2 of IPG3.
  • the working segment of IPG2 is still B-C and the protection segment is B-E-C. Each different segment uses its corresponding MA for fault detection.
  • both MA2 and MA4 detect faults.
  • IPG3 and IPG2 the working segments of their respective protection groups are perceived to be faulty. Therefore, both IPG3 and IPG2 have protection switching.
  • a protection switch occurs, and the traffic is switched to its protection segment BEC, that is, for the B of both ends of the SEB, For example, if the fault of the working segment in the protection group is detected, it needs to be switched to the protection segment to protect the egress port corresponding to the protection segment.
  • B the egress port corresponding to the protection segment is still B2;
  • the outbound port corresponding to the protection segment is still C2.
  • protection switching also occurs, and the traffic is switched to the protection segment 1 with high priority, that is, on the ABECD, for the A and D of the SEB at both ends, the protection switching It is the corresponding egress port.
  • the egress port of the working segment and protection segment 1 on A is the same A1; for D, the outbound interface of the working segment and protection segment 1 on D is the same D1, so for A and D, a protection switch has occurred, but the outgoing port of the traffic has not changed. Therefore, from the perspective of IPG1, no protection switching has taken place.
  • indicates the SEP port
  • U indicates the SIP port
  • SEP and SIP are both PNP.
  • I I means bridge; the two ends of the segment SEB can be specifically BEB or BCB; the bridge device SIB in the middle of the segment can be specifically BCB; ⁇ represents the CCM of MA1;
  • a system for implementing Ethernet protection switching based on protection group nesting includes: When the switching execution unit is configured to detect a TESI fault by multiple IPGs that are protected by the same TESI, only one IPG of the plurality of nested IPGs performs protection switching; wherein, the multiple IPGs are nested protection groups.
  • IPG1 does not perform protection switching when IPG2 performs protection switching; or IPG2 does not perform protection switching when IPG1 occurs protection switching .
  • the protection switching execution unit is further configured to perform protection switching by IPG1 when the working segment and the protection segment in the IPG2 fail, or when other parts of the IPG1 member segment fail; wherein, the other part of the IPG1 member segment is Segments in IPG1 are not included in the IPG2 section.
  • the protection switching execution unit is further used for two IPGs and is respectively IPG1 and
  • IPG2 In the case of IPG2, by constructing IPG3, only one IPG performs protection switching.
  • constructing the IPG3 specifically includes: starting along the SEB of the IPG1, working through the working segment of the IPG1 and the working segment via the IPG2 as the working segment of the IPG3; starting along the SEB of the IPG1, working through the IPG1 and protecting via the IPG2
  • the segment acts as the protection segment 1 of IPG3; the protection segment along IPG1 is used as the protection segment 2 of IPG3.
  • SEP refers to the segment endpoint port, represented by a Segment Endpoint Port
  • PNP refers to the carrier network port, represented by the Provider Network Port
  • SIP refers to the middle port of the segment, represented by the Segment Intermediate Port
  • MA refers to maintenance joint i or , as indicated by Maintenance Association.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种保护组嵌套的实现方法以及一种基于保护组嵌套实现以太网保护切换的方法,其中,基于保护组嵌套实现以太网保护切换的方法包括:对同一流量工程服务实例(TESI)进行保护的多个分段保护组(IPG)检测到所述TESI故障时,多个嵌套的IPG中仅有一个IPG执行保护切换。本发明还公开了一种基于保护组嵌套实现以太网保护切换的系统,该系统包括:保护切换执行单元,用于对同一TESI进行保护的多个IPG检测到所述TESI故障时,多个嵌套的IPG中仅有一个IPG执行保护切换。采用本发明的方法及系统,通过保护组的嵌套来实现对重点保护路径的保护,能达到节约网络资源,提高网络资源利用率的效果。

Description

保护组嵌套的实现方法、 以太网保护切换的方法及系统 技术领域
本发明涉及数据通讯领域, 尤其涉及一种保护组嵌套的实现方法、 以 及一种基于保护组嵌套实现以太网保护切换的方法及系统。 背景技术
随着运营商级以太网的概念的提出, 为了使以太网达到电信级别标准, 对以太网的保护、 倒换提出了更高的要求。 现有的支持流量工程的运营商 骨干桥接技术 ( PBB-TE, Provider Backbone Bridge Traffic Engineering )保 护倒换技术中, 目前支持的是对流量工程服务实例 (TESI ) 的保护, 即一 种端到端的隧道保护。 但是, 这种端到端的保护方案不但保护倒换时间较 长, 而且牵涉的节点太多, 无法实现对其中间链路和节点的保护, 因此, 随即引入了 PBB-TE段保护, 即:在 PBB-TE隧道的一段工作段专门配置保 护段对这段工作段加以保护, 工作段和保护段组成分段保护组 IPG ( Infrastructure Protection Group )。
如图 1 所示, 即一个保护组内有一条工作段和一条或若干条保护段。 正常情况下, 当工作段上没有检测到故障, 则所有受到该 PBB-TE段保护 组保护的流量从该工作段上转发; 但一旦这段工作段有故障发生时, PBB-TE段保护组的端点 (SEB, Segment Edge Bridge ), 如图 1中的 SEB1 和 SEB2所示。 SEB能及时检测到该故障, 则 SEB会触发转发表更新, 将 受到该保护域 IPG保护的 TESI对应的转发表的出端口修改为保护段在该 SEB 上所对应的出端口, 从而将流量切换到保护段上, 实现了对工作段的 保护, 保证网络流量的正常转发, 提高了网络的可靠性。 这里的 SEB可以 是 PBB-TE隧道上的骨干边界桥 ( BEB, Backbone Edge Bridge ), 也可以使 是 PBB-TE隧道上的骨干核心桥 ( BCB, Backbone Core Bridge )。 目前该保 护切换技术已经在 IEEE标准组织中立项, 项目号为 802.1Qbf。 该项目不仅 支持的是 1 : 1的 PBB-TE段保护, 而且还支持 M:l的 PBB-TE段保护, 即: 一个 M: 1的 PBB-TE段保护组由一条工作段和 M条保护段组成, 且 M大 于 1 , 由 M条保护段保护这一条工作段。 现有的保护切换技术可以大大提 高系统的可靠性。
图 2为 PBB-TE段及其故障检测机制示意图,图 2中,段的两端点 SEB1 和 SEB2都可以具体为 BEB或 BCB;段中间的桥设备 SIB可以具体为 BCB;
SEB1上 SEP1; SEB2上 SEP2;包括 SEP1和 SEP2在内的 PNP端口都以 表示; 表示 SIP端口。
以下对现有技术中涉及的名称说明如下:
成员段是指一个保护组的工作段或者保护段。
工作段是指在正常工作时流量所经过的那一段, 如图 5所示。
保护段是指当检测到工作段故障或收到切换的管理命令发生切换后承 载流量的那一段, 如图 5所示。
段是指一系列 PNP端口和 PNP端口之间的 LAN以及 MAC中继组成, 如图 5所示。
SEB是用于终结段的两个端点, SEB可以是 PBB-TE网络中的 BEB设 备, 也可以是 BCB设备, 如图 5所示。 段中间的桥设备为 SIB。
中, 表示 SEP端口, 表示 SIP端口, SEP和 SIP都是 PNP
端口 表示工作段: 表示保护段
Figure imgf000004_0001
4 * 表示 TESI;段的两端点 SEB可以具体为 BEB或 BCB;段中间的 桥设备 SIB可以具体为 BCB。 IPG流量切换是指: 如果之前的一组受该 IPG保护的 TESI流量走工作 段, 则执行 IPG流量切换时, 将之前走工作段的 TESI流量从走工作段重定 向为走保护段;或者,如果之前的一组受该 IPG保护的 TESI流量走保护段, 则执行 IPG流量切换时,将之前走保护段的 TESI流量从走保护段重定向为 走工作段。这里的重定向一般是通过修改 TESI对应在转发表中的相应表项 的出端口来实现的。
然而, 很多情况下为任何一条工作段都配置多条保护段进行保护不太 现实, 因为这可能受到像网络资源等条件的限制。 如果可以考虑对于特别 重要的一部分路径做重点保护, 并通过保护组的嵌套来实现对该重点保护 路径的保护, 能达到节约网络资源, 提高网络资源利用率的效果, 但是目 前并未存在达到该效果的实现方案。 发明内容
有鉴于此, 本发明的主要目的在于提供一种保护组嵌套的实现方法、 实现以太网保护切换的方法及系统, 通过保护组的嵌套来实现对重点保护 路径的保护, 能达到节约网络资源, 提高网络资源利用率的效果。
为达到上述目的, 本发明的技术方案是这样实现的:
一种保护组嵌套的实现方法, 将对同一流量工程服务实例 (TESI )进 行保护的多个分段保护组(IPG )作为嵌套的保护组。
其中, 该方法还包括: 将一个 IPG的两个段端点端口 (SEP )与另一个 IPG的 SEP或段中间端口 ( SIP )共享运营商网络端口 ( PNP )。
一种基于保护组嵌套实现以太网保护切换的方法, 该方法包括: 对同 一 TESI进行保护的多个 IPG检测到所述 TESI故障时, 多个嵌套的 IPG中 仅有一个 IPG执行保护切换; 其中, 所述多个 IPG为嵌套的保护组。
其中, 所述多个 IPG为两个时, 分别为 IPG1和 IPG2;
所述仅有一个 IPG执行保护切换包括: IPG2发生保护切换时, IPG1 不执行保护切换; 或者, IPG1发生保护切换时, IPG2不执行保护切换。 其中, 所述仅有一个 IPG执行保护切换进一步包括: IPG2中的工作段 和保护段均发生故障时、 或 IPG1成员段的其他部分发生故障时, 由 IPG1 执行保护切换; 其中, 所述 IPG1成员段的其他部分为 IPG1中的段所不包 括在 IPG2的部分。
其中, 所述多个 IPG为两个时, 分别为 IPG1和 IPG2;
所述仅有一个 IPG执行保护切换包括: 通过构造 IPG3 , 实现仅有一个 IPG执行保护切换;
其中, 所述构造 IPG3包括: 将沿着 IPG1的分段保护组的端点(SEB ) 开始, 经由 IPG1的工作段和经由 IPG2的工作段作为 IPG3的工作段; 将沿 着 IPG1的 SEB开始, 经由 IPG1的工作段和经由 IPG2的保护段作为 IPG3 的保护段 1 ; 将沿着 IPG1的保护段作为 IPG3的保护段 2。
一种基于保护组嵌套实现以太网保护切换的系统, 该系统包括: 保护 切换执行单元, 用于对同一 TESI进行保护的多个 IPG检测到所述 TESI故 障时, 多个嵌套的 IPG中仅有一个 IPG执行保护切换; 其中,所述多个 IPG 为嵌套的保护组。
其中, 所述保护切换执行单元, 进一步用于所述多个 IPG为两个且分 别为 IPG1和 IPG2的情况下, IPG2发生保护切换时, IPG1不执行保护切 换; 或者, IPG1发生保护切换时, IPG2不执行保护切换。
其中, 所述保护切换执行单元, 进一步用于 IPG2中的工作段和保护段 均发生故障时、 或 IPG1成员段的其他部分发生故障时, 由 IPG1执行保护 切换; 其中, 所述 IPG1成员段的其他部分为 IPG1中的段所不包括在 IPG2 的部分。
其中, 所述保护切换执行单元, 进一步用于所述多个 IPG为两个且分 别为 IPG1和 IPG2的情况下, 通过构造 IPG3 , 实现仅有一个 IPG执行保护 切换;
其中, 所述构造 IPG3包括: 将沿着 IPG1的 SEB开始, 经由 IPG1的 工作段和经由 IPG2的工作段作为 IPG3的工作段; 将沿着 IPG1的 SEB开 始, 经由 IPG1的工作段和经由 IPG2的保护段作为 IPG3的保护段 1 ; 将沿 着 IPG1的保护段作为 IPG3的保护段 2。
本发明一方面构造嵌套的保护组,即:对同一 TESI进行保护的多个 IPG 为嵌套的保护组; 其中, 将一个 IPG的两个 SEP与另一个 IPG的 SEP或 SIP共享 PNP。另一方面,对同一 TESI进行保护的多个 IPG检测到该 TESI 故障时, 多个嵌套的 IPG中仅有一个 IPG执行保护切换; 其中, 多个 IPG 为嵌套的保护组。
本发明与现有技术相比,由于多个 IPG是对同一 TESI这种重点路段进 行保护, 而且多个 IPG中仅有一个 IPG执行保护切换, 因此, 釆用本发明, 能充分利用现有的网络资源对重要路段进行重点保护, 并能极大的提高网 络的可靠性和故障恢复能力。 附图说明
图 1为现有 PBB-TE段保护的示意图;
图 2为 PBB-TE段及其故障检测机制示意图;
图 3为现有保护组的网络拓朴结构示意图;
图 4为本发明保护组叠加的网络拓朴结构示意图;
图 5为现有 PBB-TE工作段、 保护段、 SEB、 SIB等概念的示意图; 图 6为本发明实例 1的示意图;
图 7为本发明实例 2的示意图。 具体实施方式
本发明的基本思想是: 一方面, 对同一 TESI进行保护的多个 IPG为嵌 套的保护组; 其中, 将一个 IPG的两个 SEP与另一个 IPG的 SEP或 SIP共 享同样的 PNP。另一方面,对同一 TESI进行保护的多个 IPG检测到该 TESI 故障时, 多个嵌套的 IPG中仅有一个 IPG执行保护切换; 其中, 多个 IPG 为嵌套的保护组。
下面结合附图对技术方案的实施作进一步的详细描述。
一种保护组嵌套的实现方法,将对同一 TESI进行保护的多个 IPG作为 嵌套的保护组。
这里, 该方法还包括: 将一个 IPG的两个 SEP与另一个 IPG的 SEP或 SIP共享 PNP。
一种基于保护组嵌套实现以太网保护切换的方法, 该方法包括: 对同 一 TESI进行保护的多个 IPG检测到该 TESI故障时 , 多个嵌套的 IPG中仅 有一个 IPG执行保护切换。 其中, 多个 IPG为嵌套的保护组。
这里,对同一 TESI进行保护的多个 IPG之间存在嵌套的部分;多个 IPG 为嵌套的保护组。
这里, 多个 IPG为两个时, 可以分别记为 IPG1和 IPG2。 此时, 仅有 一个 IPG执行保护切换具体包括: IPG2发生保护切换时, IPG1不执行保护 切换; 或者, IPG1发生保护切换时, IPG2不执行保护切换。
这里, 仅有一个 IPG执行保护切换进一步包括: IPG2中的工作段和保 护段均发生故障时、 或 IPG1成员段的其他部分发生故障时, 由 IPG1执行 保护切换; 其中, 所述 IPG1成员段的其他部分为 IPG1中的段所不包括在 IPG2的部分。
这里, 多个 IPG为两个时, 可以分别记为 IPG1和 IPG2。 此时, 仅有 一个 IPG执行保护切换具体包括: 通过构造 IPG3 , 实现仅有一个 IPG执行 保护切换。
其中, 构造 IPG3具体包括: 将沿着 IPG1的 SEB开始, 经由 IPG1的 工作段和经由 IPG2的工作段作为 IPG3的工作段; 将沿着 IPG1的 SEB开 始, 经由 IPG1的工作段和经由 IPG2的保护段作为 IPG3的保护段 1 ; 将沿 着 IPG1的保护段作为 IPG3的保护段 2。
综上所述, 本发明通过保护组嵌套对重要部分路径进行重点保护, 提 高了网路资源的利用率和可靠性。 以下对本发明的保护切换实现方案所涉 及的保护组嵌套的架构及其实现方法进行阐述。
如图 3所示为现有保护组的网络拓朴结构示意图, 如图 4所示为本发 明保护组叠加的网络拓朴结构示意图, 对比图 4和图 3可知: 图 4中的 2 个保护组是对同一组 TESIs进行保护,这段 TESI即为上述所提到的重点路 径。
所谓保护组嵌套指: 某个保护组 IPG1和另一个保护组 IPG2有一部分 的嵌套, 具体拓朴结构如图 4所示, 即: IPG2中的某一段和 IPG1 中某一 段的一部分重合。
这里, IPG1和 IPG2均可以是 1 : 1保护组, 也可以是 M: 1保护组。 这里, 嵌套的保护组是指一组有一定关联关系的保护组, 即: 所嵌套 的多个保护组对同一组 TESIs进行保护。 因此, 需要嵌套了的各个保护组 在发生保护切换时保证切换的协调统一。 协调统一是指: 虽然嵌套了的各 个保护组对同一组 TESIs进行保护时, 如果这组 TESIs存在链路故障, 则 各个保护组都能检测到该链路故障, 但是, 当前执行保护切换的保护组只 有一个, 其他保护组不执行保护切换。 例如, 如图 4所示的 IPG1和 IPG2, 假设当 IPG2发生切换时,希望 IPG1不切换的。只有当 IPG2中的工作段和 保护段均发生故障, 或 IPG1成员段的其他部分发生故障, 才发生 IPG1流 量切换。 其中, IPG1成员段的其他部分指不包括在 IPG2的部分, 即: IPG1 所保护的以太网路径中, 与 IPG2不重叠的其他部分。
以上主要针对保护组嵌套的架构进行阐述, 以下主要针对基于保护组 嵌套实现以太网保护切换的方法进行阐述。
为了实现上述保护组嵌套的架构, 本发明提供了实现这种保护组嵌套 保护同一组 TESI的方法。如图 4所示,为了 IPG1和 IPG2能对同一组 TESI 进行保护,需要在原 IPG1和原 IPG2的基础上,引入一个新的保护组 IPG3。 引入 IPG3的目的就是为了使嵌套保护组 IPG1和 IPG2对同一组 TESI保护 时, 嵌套了的 IPG1和 IPG2在发生保护切换时, 保证保护切换的协调统一。 这里需要指出的是: 引入 IPG3后, 替代了 IPG1 , 由 IPG2和 IPG3进行故 障检测和保护切换。
具体来说, 在原 IPG1 的两个端点 SEB之间重新确定其工作段和保护 段, 形成一个新的保护组 IPG3。 由 IPG1的 SEB开始经 IPG1的工作段并 经过 IPG2的工作段的这部分段作为 IPG3的工作段; 由 IPG1的 SEB开始 经 IPG1的工作段并经过 IPG2的保护段的这部分段作为 IPG3的保护段 1 ; IPG1的保护段作为 IPG3的保护段 2,其中保护段 1的优先级比保护段 2的 优先级高, 即: 在发生保护切换时将优先将流量切换到保护段 1 上。 IPG3 工作段和保护段的各个段分别配置 MA进行 CCM的检测。这里需要指出的 是: 实际上配置了 IPG3之后, 一旦两个保护组 IPG2, IPG3均检测到故障 时, 它们是同时发生切换的, 只不过 IPG3在切换到保护段 1时, 由于保护 段 1和工作段对应的出端口是一样的, 因此, 从 IPG1的角度来看, 流量仍 然在工作段上进行转发, 即 IPG1没有发生切换, 只有 IPG2发生了切换。 从而实现了在检测到某一故障时, 只有一个 IPG实现保护切换。
IPG2在自己组内的工作段和保护段上分别配置 MA, 并配置 CCM进 行故障检测。
通过 IPG2和 IPG3各自进行自己组内工作段、 保护段的检测, 需要进 行流量切换的时候, 分别独立的进行保护切换。
以下对本发明进行举例阐述。 实例 1 :
如图 6所示, 在 PBB-TE网络中, 其中有 A、 B、 C、 D、 E、 F桥设备 以及他们之间的链接组成一组保护组群。其中 {A-B-C-D, A-F-D}形成 IPG1 , {A-B, A-E-B}形成 IPG2。 这里, IPG2是嵌套在 IPG1的工作段嵌套, 但本 发明的实现方案不仅适用于 IPG2嵌套在 IPG1的工作段上, 也可以嵌套在 IPG1的保护段上, 即: 图 6中的 A-B-C-D可以是 IPG 1的工作段, 也可以 是 IPG1的保护段。
这里, 实例 1以 IPG2嵌套在 IPG1的工作段上为例。 例如, 有工作段 A-B-C-D以及保护该工作段的保护段 A-F-D , 他们组成保护组 IPG1; 工作 段 A-B以及保护该工作段的保护段 A-E-B, 他们组成保护组 IPG2。 同时, IPG1和 IPG2在一端共有同一个 SEB。如图 6所示, IPG1和 IPG2共有桥 A。 另外 IPG1和 IPG2不局限于 1 : 1的 PBB-TE分段保护, 还可以是 M:l的 PBB-TE分段保护。 本实例如图 6所示, 均釆用了 1 : 1的例子来说明。
IPG1和 IPG2之间的工作过程为: 当工作段 A-B发生故障时 , IPG2发 生切换, 将流入 IPG2的流量切换到保护段 A-E-B上; 只有当 IPG2的工作 段和保护段同时故障, 或者 B-C-D (这里包括了节点 B, C )、 发生故障, 则由 IPG1发生切换, 将流入 IPG1的流量切换到保护段 A-F-D上。
为了实现上述保护功能需先进行连通性检测, 该连通性检测包括以下 内容:
1、 如图 6所示, 配置 5个不同的 MA, 分别用来检测不同路径的连通 性情况:
MAI : MA1两端的 A、 D按照 A-E-B-C-D互向对端发 CCM报文进行 连通性检测。
MA2: MA2两端的 A、 D按照 A-B-C-D互向对端发 CCM报文进行连 通性检测。 MA3 :两端的 A、B按照 A-E-B互向对端发 CCM 4艮文进行连通性检测。
MA4: 两端的 A、 B按照 A-B互向对端发 CCM报文进行连通性检测。
MA5: 两端的 A、 D按照 A-F-D。 互向对端发 CCM 4艮文进行连通性检 测。
2、 这里将 A-B-C-D看作一个新保护组 IPG3的工作段, A-E-B-C-D作 为 IPG3的保护段 1 , A-F-D作为 IPG3的保护段 2, 其中保护段 1的优先级 pi要高于保护段 2的优先级 p2 ( pl<p2 ), 即 IPG3成了一个 M:l的保护组 (本实施例中 M=2 )。 IPG2的工作段仍然为 Α-Β, 保护段为 Α-Ε-Β。 各个 不同的段利用其对应的 ΜΑ进行故障检测。
从而 ,当 Α-Β段出现故障时 , ΜΑ2、 ΜΑ4均检测有故障出现,对于 IPG3 和 IPG2而言,均感知到其各自保护组的工作段出现故障,因此 IPG3和 IPG2 都要发生保护切换。 对于 IPG2来说, 由于检测到工作段发生故障, 因此发 生保护切换,将流量切换到其保护段 Α-Ε-Β上,即对于其两端点 SEB的 Α, Β来说, 保护切换就是将该保护组保护的 TESI在转发表中对应的相应表项 出端口修改为其保护段所对应的出端口, 对于 Α来说, 出端口修改为其保 护段对应的出端口 A3; 对于 B来说, 出端口修改为其保护段对应的出端口 B2。 对于 IPG3来说, 由于检测到工作段发生故障, 因此发生保护切换, 将 流量切换到优先级高的保护段 1上, 即 A-E-B-C-D上, 对于其两端点 SEB 的 A和 D来说, 保护切换就是将该保护组保护的 TESI在转发表中对应的 相应表项出端口修改为其保护段所对应的出端口, 对于 A来说, 出端口也 是修改为保护段 1对应的出端口 A3; 对于 D来说, 由于工作段和保护段 1 在 D上的出接口是同一个 D1 , 因此对于 D来说, 发生了保护切换, 但流 量的出端口并没有改变。 因此从 IPG1的角度来看, 并没有发生保护切换。
而对于 A-E-B和 A-B同时故障, 或者 B-C故障, 或者 C-D故障, 对于 IPG3来说, 其检测到的是工作段和保护段 1均故障, 因此此时将切换到保 护优先级较低, 但仍工作正常的保护段 2上, 即 A节点将相应的受保护的 TESI在转发表中对应的表项出端口更新为 A2, D节点将相应的受保护的 TESI在转发表中对应的表项出端口更新为 D2。 从而实现了在 IPG2无法实 现保护时, 由 IPG1来做保护切换。
图 6中, ^表示 SEP端口, □表示 SIP端口, SEP和 SIP都是 PNP
端口; I I表示桥; 段的两端点 SEB可以具体为 BEB或 BCB; 段中间 的桥设备 SIB可以具体为 BCB; Ψ 表示 MA1的 CCM; V Ψ 表示 MA2的 CCM; W 表示 MA3的 CCM; ^表示 MA4 的 CCM; V V表示 MA5的 CCM。
实例 2:
如图 7所示, 在 PBB-TE网络中, 有八、 B、 C、 D、 E、 F这些桥设备 以及他们之间的链接组成一组保护组群。其中 {A-B-C-D, A-F-D}形成 IPG1 , {B-C , B-E-C}形成 IPG2。 这里, IPG2是嵌套在 IPG1的工作段嵌套, 但本 发明的实现方案不仅适用于 IPG2可以嵌套在 IPG1的工作段上, 也可以嵌 套在 IPG1的保护段上, 即: 图 7中的 A-B-C-D可以是 IPG 1的工作段, 也 可以是 IPG1的保护段。
这里, 实例 2以 IPG2嵌套在 IPG1的工作段上为例。 例如, 有工作段 A-B-C-D以及保护该工作段的保护段 A-F-D , 他们组成保护组 IPG1; 工作 段 B-C以及保护该工作段的保护段 B-E-C, 他们组成保护组 IPG2。 同时, IPG1和 IPG2在两端的端点 SEB上都没有共同节点。 另外 IPG1和 IPG2不 局限于 1 : 1的 PBB-TE分段保护, 还可以是 M: 1的 PBB-TE分段保护。 本实例如图 7所示, 均釆用了 1 : 1的例子来说明。
IPG1和 IPG2之间的工作过程为: 当工作段 B-C发生故障时, IPG2发 生切换, 将流入 IPG2的流量切换到保护段 B-E-C上; 只有当 IPG2的工作 段和保护段同时故障, 或者 A-B (这里包括了节点 B )、 C-D (这里包括了 节点 C )发生故障, 则由 IPG1发生切换, 将流入 IPG1的流量切换到保护 段 A-F-D上。
为了实现上述保护功能需先进行连通性检测, 该连通性检测包括以下 内容:
1、 如图 7所示, 配置 5个不同的 MA, 分别用来检测不同路径的连通 性情况:
MAI : MA1两端的 A、 D按照 A-B-E-C-D互向对端发 CCM报文进行 连通性检测。
MA2: MA2两端的 A、 D按照 A-B-C-D互向对端发 CCM报文进行连 通性检测。
MA3 :两端的 B、 C按照 B-E-C互向对端发 CCM报文进行连通性检测。
MA4: 两端的 B、 C按照 B-C互向对端发 CCM报文进行连通性检测。
MA5: 两端的 A、 D按照 A-F-D。 互向对端发 CCM 4艮文进行连通性检 测。
2、 这里将 A-B-C-D看作一个新的保护组 IPG3的工作段, A-B-E-C-D 作为 IPG3的保护段 1 , A-F-D作为 IPG3的保护段 2。 其中保护段 3的优先 级 pi要高于保护段 2的优先级 p2 ( pl<p2 ) , 即 IPG3是 Μ: 1的保护组(本 实例中 M=2 )。 IPG2的工作段仍然为 B-C, 保护段为 B-E-C。 各个不同的段 利用其对应的 MA进行故障检测。
从而,当 B-C段出现故障时, MA2、 MA4均检测有故障出现,对于 IPG3 和 IPG2而言,均感知到其各自保护组的工作段出现故障,因此 IPG3和 IPG2 都发生保护切换。 对于 IPG2来说, 由于检测到工作段发生故障, 因此发生 保护切换, 将流量切换到其保护段 B-E-C上, 即对于其两端点 SEB的 B, C 来说, 检测到其保护组中的工作段故障, 则需切换到保护段上, 保护切 保护段所对应的出端口, 对于 B来说, 其保护段对应的出端口仍为 B2; 对 于 C来说, 其保护段对应的出端口仍为 C2。 对于 IPG3来说, 由于检测到 工作段发生故障, 因此也发生保护切换, 将流量切换到优先级高的保护段 1 上, 即 A-B-E-C-D上, 对于其两端点 SEB的 A和 D来说, 保护切换就是 所对应的出端口, 对于 A来说, 工作段和保护段 1在 A上的出端口是同一 个 A1 ;对于 D来说, 由于工作段和保护段 1在 D上的出接口是同一个 D1 , 因此对于 A和 D来说, 都发生了一次保护切换, 但流量的出端口并没有改 变。 因此从 IPG1的角度来看, 并没有发生保护切换。
而对于 B-E-C和 B-C同时故障, 或者 A-B故障, 或者 C-D故障, 对于 IPG1来说, 其检测到的是工作段和保护段 1均故障, 因此此时将切换到保 护优先级较低, 但仍工作正常的保护段 2上, 即 A节点将相应的受保护的 TESI在转发表中对应的表项出端口更新为 A2, D节点将相应的受保护的 TESI在转发表中对应的表项出端口更新为 D2 , 从而实现了在 IPG2无法实 现保护时, 由 IPG1来做保护切换。
图 7中, ^表示 SEP端口, U表示 SIP端口, SEP和 SIP都是 PNP
端口; I I表示桥; 段的两端点 SEB可以具体为 BEB或 BCB; 段中间 的桥设备 SIB可以具体为 BCB; Ψ 表示 MA1的 CCM;
表示 MA2的 CCM; 表示 MA3的 CCM; V V表示 MA4 的 CCM; V V表示 MA5的 CCM。
一种基于保护组嵌套实现以太网保护切换的系统, 该系统包括: 保护 切换执行单元,用于对同一 TESI进行保护的多个 IPG检测到 TESI故障时, 多个嵌套的 IPG中仅有一个 IPG执行保护切换; 其中, 多个 IPG为嵌套的 保护组。
这里,保护切换执行单元进一步用于多个 IPG为两个且分别为 IPG1和 IPG2的情况下, IPG2发生保护切换时, IPG1不执行保护切换; 或者, IPG1 发生保护切换时, IPG2不执行保护切换。
这里,保护切换执行单元进一步用于 IPG2中的工作段和保护段均发生 故障时、 或 IPG1成员段的其他部分发生故障时, 由 IPG1执行保护切换; 其中,所述 IPG1成员段的其他部分为 IPG1中的段所不包括在 IPG2的部分。
这里,保护切换执行单元进一步用于多个 IPG为两个且分别为 IPG1和
IPG2的情况下, 通过构造 IPG3 , 实现仅有一个 IPG执行保护切换。
其中, 构造 IPG3具体包括: 将沿着 IPG1的 SEB开始, 经由 IPG1的 工作段和经由 IPG2的工作段作为 IPG3的工作段; 将沿着 IPG1的 SEB开 始, 经由 IPG1的工作段和经由 IPG2的保护段作为 IPG3的保护段 1 ; 将沿 着 IPG1的保护段作为 IPG3的保护段 2。
以上文字和各图中涉及的中英文注释说明如下:
SEP指段端点端口, 以 Segment Endpoint Port表示;
PNP指运营商网络端口, 以 Provider Network Port表示;
SIP指段中间端口, 以 Segment Intermediate Port表示;
MA指维护联合 i或 , 以 Maintenance Association表示。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种保护组嵌套的实现方法, 其特征在于, 将对同一流量工程服务 实例 (TESI )进行保护的多个分段保护组(IPG )作为嵌套的保护组。
2、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 将一个 IPG的两个段端点端口 ( SEP )与另一个 IPG的 SEP或段中间端口 ( SIP ) 共享运营商网络端口 (PNP )。
3、 一种基于保护组嵌套实现以太网保护切换的方法, 其特征在于, 该 方法包括: 对同一 TESI进行保护的多个 IPG检测到所述 TESI故障时, 多 个嵌套的 IPG中仅有一个 IPG执行保护切换; 其中, 所述多个 IPG为嵌套 的保护组。
4、根据权利要求 3所述的方法,其特征在于,所述多个 IPG为两个时, 分别为 IPG1和 IPG2;
所述仅有一个 IPG执行保护切换包括: IPG2发生保护切换时, IPG1 不执行保护切换; 或者, IPG1发生保护切换时, IPG2不执行保护切换。
5、 根据权利要求 4所述的方法, 其特征在于, 所述仅有一个 IPG执行 保护切换进一步包括: IPG2 中的工作段和保护段均发生故障时、 或 IPG1 成员段的其他部分发生故障时, 由 IPG1执行保护切换; 其中, 所述 IPG1 成员段的其他部分为 IPG1中的段所不包括在 IPG2的部分。
6、根据权利要求 3所述的方法,其特征在于,所述多个 IPG为两个时, 分别为 IPG1和 IPG2;
所述仅有一个 IPG执行保护切换包括: 通过构造 IPG3 , 实现仅有一个 IPG执行保护切换;
其中, 所述构造 IPG3包括: 将沿着 IPG1的分段保护组的端点(SEB ) 开始, 经由 IPG1的工作段和经由 IPG2的工作段作为 IPG3的工作段; 将沿 着 IPG1的 SEB开始, 经由 IPG1的工作段和经由 IPG2的保护段作为 IPG3 的保护段 1 ; 将沿着 IPG1的保护段作为 IPG3的保护段 2。
7、 一种基于保护组嵌套实现以太网保护切换的系统, 其特征在于, 该 系统包括: 保护切换执行单元, 用于对同一 TESI进行保护的多个 IPG检测 到所述 TESI故障时,多个嵌套的 IPG中仅有一个 IPG执行保护切换;其中, 所述多个 IPG为嵌套的保护组。
8、根据权利要求 7所述的系统, 其特征在于, 所述保护切换执行单元, 进一步用于所述多个 IPG为两个且分别为 IPG1和 IPG2的情况下, IPG2发 生保护切换时, IPG1不执行保护切换; 或者, IPG1发生保护切换时, IPG2 不执行保护切换。
9、根据权利要求 8所述的系统, 其特征在于, 所述保护切换执行单元, 进一步用于 IPG2中的工作段和保护段均发生故障时、 或 IPG1成员段的其 他部分发生故障时, 由 IPG1执行保护切换; 其中, 所述 IPG1成员段的其 他部分为 IPG1中的段所不包括在 IPG2的部分。
10、 根据权利要求 7所述的系统, 其特征在于, 所述保护切换执行单 元, 进一步用于所述多个 IPG为两个且分别为 IPG1和 IPG2的情况下, 通 过构造 IPG3 , 实现仅有一个 IPG执行保护切换;
其中, 所述构造 IPG3包括: 将沿着 IPG1的 SEB开始, 经由 IPG1的 工作段和经由 IPG2的工作段作为 IPG3的工作段; 将沿着 IPG1的 SEB开 始, 经由 IPG1的工作段和经由 IPG2的保护段作为 IPG3的保护段 1 ; 将沿 着 IPG1的保护段作为 IPG3的保护段 2。
PCT/CN2010/079768 2010-01-21 2010-12-14 保护组嵌套的实现方法、以太网保护切换的方法及系统 WO2011088713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/574,237 US8971175B2 (en) 2010-01-21 2010-12-14 Method for implementing protection group overlay, and method and system for ethernet protection switching
EP10843753.4A EP2528263B1 (en) 2010-01-21 2010-12-14 Method for implementing protection group overlay, and method and system for ethernet protection switching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010001658.6 2010-01-21
CN201010001658.6A CN102136898B (zh) 2010-01-21 2010-01-21 保护组嵌套的实现方法、以太网保护切换的方法及系统

Publications (1)

Publication Number Publication Date
WO2011088713A1 true WO2011088713A1 (zh) 2011-07-28

Family

ID=44296560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079768 WO2011088713A1 (zh) 2010-01-21 2010-12-14 保护组嵌套的实现方法、以太网保护切换的方法及系统

Country Status (4)

Country Link
US (1) US8971175B2 (zh)
EP (1) EP2528263B1 (zh)
CN (1) CN102136898B (zh)
WO (1) WO2011088713A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350293B2 (ja) * 2010-02-26 2013-11-27 株式会社日立製作所 ネットワークシステム
US9935900B2 (en) * 2014-10-16 2018-04-03 Electronics And Telecommunications Research Institute Method for providing protection switching service in virtual tenant network and controller therefor
CN115174363B (zh) * 2022-07-05 2024-04-12 云合智网(上海)技术有限公司 多保护组集合快速切换方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073251A1 (en) * 2003-02-12 2004-08-26 Nortel Networks Limited Nested protection switching in a mesh connected communications network
CN1661984A (zh) * 2004-02-25 2005-08-31 华为技术有限公司 复用段环链路在自动交换光网络中的处理方法
CN1825844A (zh) * 2005-02-21 2006-08-30 华为技术有限公司 光网络中扩散链路状态信息的实现方法
CN101599862A (zh) * 2009-06-30 2009-12-09 中兴通讯股份有限公司 传送多协议标签交换环网保护维护实体组配置方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514478A (ja) * 1997-08-22 2001-09-11 ノーテル・ネットワークス・リミテッド 保護スイッチングのトリガ生成
US20080019264A1 (en) * 2006-07-20 2008-01-24 Alcatel System and method for maintaining state synchronization in redundant IMA group protection switching
CN101192990A (zh) * 2006-11-30 2008-06-04 华为技术有限公司 一种mpls网络中实现快速重路由的方法及设备及系统
US8411690B2 (en) * 2007-02-27 2013-04-02 Cisco Technology, Inc. Preventing data traffic connectivity between endpoints of a network segment
CN101431466B (zh) * 2007-11-09 2011-04-06 华为技术有限公司 快速重路由方法及标签交换路由器
US8259590B2 (en) * 2007-12-21 2012-09-04 Ciena Corporation Systems and methods for scalable and rapid Ethernet fault detection
US8477769B2 (en) * 2008-05-13 2013-07-02 Verizon Patent And Licensing Inc. Flexible shared mesh protection services for intelligent TDM-based optical transport networks
CA2744272A1 (en) * 2008-11-28 2010-06-03 Nortel Networks Limited In-band signalling for point-point packet protection switching
US8243743B2 (en) * 2009-04-09 2012-08-14 Ciena Corporation In-band signaling for point-multipoint packet protection switching
US8665709B2 (en) * 2009-06-09 2014-03-04 Ciena Corporation Use of 1:1 protection state machine for load sharing and alternative protection schemes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073251A1 (en) * 2003-02-12 2004-08-26 Nortel Networks Limited Nested protection switching in a mesh connected communications network
CN1661984A (zh) * 2004-02-25 2005-08-31 华为技术有限公司 复用段环链路在自动交换光网络中的处理方法
CN1825844A (zh) * 2005-02-21 2006-08-30 华为技术有限公司 光网络中扩散链路状态信息的实现方法
CN101599862A (zh) * 2009-06-30 2009-12-09 中兴通讯股份有限公司 传送多协议标签交换环网保护维护实体组配置方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2528263A4 *

Also Published As

Publication number Publication date
EP2528263A1 (en) 2012-11-28
US20120294141A1 (en) 2012-11-22
CN102136898A (zh) 2011-07-27
US8971175B2 (en) 2015-03-03
EP2528263B1 (en) 2018-11-14
EP2528263A4 (en) 2015-10-21
CN102136898B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
US9509591B2 (en) Technique for dual homing interconnection between communication networks
WO2009082825A1 (en) Interworking an ethernet ring network and an ethernet network with traffic engineered trunks
WO2009018760A1 (fr) Procede et dispositif de protection de reseau
WO2009138036A1 (zh) 以太网业务传送中转发表的更新方法、设备和系统
WO2011022910A1 (zh) 一种以太网路径保护的切换方法及系统
WO2009036705A1 (fr) Procédé de détection de panne d&#39;interface et équipement de nœud de réseau
WO2009056034A1 (fr) Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp
WO2008028382A1 (fr) Procédé et appareil pour exécuter une détection de liaison, conversion de stratégie d&#39;acheminement de bout en bout
JP2009524332A (ja) リング・ネットワークのvpls障害保護
WO2012028029A1 (zh) 一种切换方法及系统
WO2011120297A1 (zh) 虚拟专用局域网业务的保护方法、系统、pe和ce
CN102118301B (zh) 隧道保护方法及装置
WO2012171378A1 (zh) 解决vpls接入l3故障切换导致断流的方法及路由器
JP5521035B2 (ja) イーサネットの一部のセグメント保護の共同検出方法及びシステム
WO2012162946A1 (zh) 一种报文处理方法及系统
WO2010031295A1 (zh) 一种以太网故障恢复的控制方法
WO2012142888A1 (zh) 基于多协议标签交换网络的隧道组保护实现方法及装置
WO2011017900A1 (zh) 一种以太网隧道分段保护方法及系统
WO2012146097A1 (zh) Vpls网络和以太环网的倒换方法及装置
WO2008132203A2 (en) Recovering from a failure in a communications network
EP2448190B1 (en) Local protection method of ethernet tunnel and sharing node of work sections of protection domain
US20130003532A1 (en) Protection switching method and system
WO2011011934A1 (zh) 一种以太网隧道分段保护方法和装置
WO2011088713A1 (zh) 保护组嵌套的实现方法、以太网保护切换的方法及系统
WO2011017892A1 (zh) 一种对通信流量实现负载分担的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010843753

Country of ref document: EP