WO2011088708A1 - 用于准分子激光角膜屈光手术的角膜中心定位方法 - Google Patents

用于准分子激光角膜屈光手术的角膜中心定位方法 Download PDF

Info

Publication number
WO2011088708A1
WO2011088708A1 PCT/CN2010/079506 CN2010079506W WO2011088708A1 WO 2011088708 A1 WO2011088708 A1 WO 2011088708A1 CN 2010079506 W CN2010079506 W CN 2010079506W WO 2011088708 A1 WO2011088708 A1 WO 2011088708A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
pupil
corneal
horizontal
vertical
Prior art date
Application number
PCT/CN2010/079506
Other languages
English (en)
French (fr)
Inventor
瞿佳
唐兆凯
刘党会
陈浩
陈世豪
Original Assignee
温州医学院
浙江温医雷赛医用激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州医学院, 浙江温医雷赛医用激光科技有限公司 filed Critical 温州医学院
Priority to US13/574,570 priority Critical patent/US20120303009A1/en
Publication of WO2011088708A1 publication Critical patent/WO2011088708A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00846Eyetracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea

Definitions

  • the present invention relates to a corneal center method for excimer laser corneal refractive surgery,
  • the horizontal offset and vertical offset models were established by measuring the diameter of the pupil at different brightness and the center of the pupil relative to the center of the apex of the cornea, and the established model data was input into the laser refractive surgery with the eye tracking system.
  • the pupil is the enclosed pore of the iris and is an important part of the human eye's optical system. Its main function is to maintain the stability of the light entering the fundus under different lighting conditions by changing the size. In addition, the size of the pupil also has a large effect on the depth of focus and total ocular aberration of the eye image.
  • the positioning and retention of the corneal ablation center is critical, especially in aberration-guided laser refractive surgery.
  • the treatment center passes the theoretical visual axis and the corneal apex.
  • the eye tracking system usually tracks the pupil (the center of the pupil), and the center of the pupil is different from the apex of the cornea. In some cases, this difference can be significant.
  • the current approach is to introduce a fixed amount of shifting to compensate for this difference. That is, the center of the pupil is tracked, but the treatment area is centered around the apex of the cornea near the visual axis.
  • the present invention discloses a corneal center positioning method for excimer laser corneal refractive surgery. It is characterized by the following steps:
  • the beneficial effects of the present invention are: establishing a horizontal offset and a vertical offset model by measuring the diameter of the pupil under different light brightness and the center of the pupil relative to the center of the apex of the cornea, and establishing The model data is input into a laser refractive surgery machine with an eye tracking system to dynamically track the pupil in the laser corneal refractive surgery, thereby reducing the tracking system error and significantly improving the laser corneal refractive surgery. Visual quality.
  • Figure 1 is a schematic diagram showing the relationship between the pupil, the cutting area, the pupil center, the cutting center, and the amount of movement;
  • Figure 2 is a schematic diagram of the AstraMax acquiring the eye, the Placido ring, and the pupil (front view);
  • Figure 3 shows the pupil image acquired by AstraMax
  • Figure 4 is an overlay of the diameter of the pupil collected by AstraMax and its center relative to the center of the apex of the cornea;
  • Figure 5 is a schematic diagram of a high-order polynomial model-horizontal shifting cardiac model (horizontal shifting heart volume versus pupil diameter curve);
  • Figure 6 is a schematic diagram of a linear model-vertical shift centroid model (vertical shifting heart volume versus pupil diameter curve);
  • the instrument for acquiring images selects the AstraMax three-dimensional corneal topographic map information processing system of the American Raytheon Company.
  • One of the advantages of the AstraMax 3D Corneal Topographic Information Processing System is its ability to capture and capture the eye at the same time. Placido can be acquired at the same time. The image of the ring and pupil, and can also change the level of illumination, stimulate the eye to change the size of the pupil, and its illumination setting is 0 ⁇ 255, which is very suitable for use in this method.
  • AstraMax The three-dimensional corneal topographic information processing system illumination system includes a Placido illumination target with a wavelength of 660 nm and infrared illumination with a wavelength of 875 nm.
  • the illumination level division of the six sampling points adopts the principle of exponential change, 0 ⁇ 255 is divided into 6 intervals, namely: 255, 92, 67, 56, 48, 44, 0, respectively.
  • the plane illuminance corresponding to the pupil is: 355, 133, 50, 18.8, 7.1, 2.66, 0lux, using AstraMax three-dimensional corneal topographic map information processing system at 355, 133, 50, Perform multiple tests at 18.8, 7.1, 2.66, 0lux lighting levels to obtain the corresponding eye, Placido
  • the image of the ring and the pupil calculate and record the horizontal shift center offsetX and the vertical shift amount offsetY of the pupil center relative to the vertex center of the corneal topography, and then draw the horizontal shift amount according to the obtained data.
  • offsetX and the vertical shift amount offsetY relative to the pupil diameter curve and use the 2nd or 3rd order polynomial to build the model, ie
  • the horizontal centering model and the vertical centering model are input to the laser machine, and then the eyeball tracking system of the laser machine is used to detect the pupil size and the center position of the patient's eye. Finally, the pupil size and the central position data detected by the eyeball tracking system are combined with the horizontal shift.
  • the heart model and the vertical shift model yield precise positional data at the center of the apex of the cornea.
  • the instantaneous pupil diameter data is used to calculate the dynamically variable horizontal and vertical movements, respectively, using the water translation and the vertical movement model.
  • the dynamically variable horizontal and vertical eccentricity described above will be used to compensate for changes in the center of the pupil relative to the apex of the cornea, i.e., dynamically variably track the pupil position and accurately maintain the center of the lesion at the center of the apex of the cornea (the visual axis).
  • the invention establishes a horizontal offset and a vertical offset model by measuring the diameter of the pupil under different light brightness and the center of the pupil relative to the center of the apex of the cornea, and inputs the established model data into the laser with the eye tracking system.
  • the optical surgery machine method can dynamically track the pupil in the laser corneal refractive surgery, thereby reducing the tracking system error and significantly improving the laser corneal refractive surgery. Visual quality.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Laser Surgery Devices (AREA)

Description

用于准分子激光角膜屈光手术的 角膜中心定位方法 技术领域
本发明涉及一种用于准分子激光角膜屈光手术的 角膜中心方法, 通过测量不同光亮度下瞳孔直径及瞳孔中心相对角膜顶点中心的移心量,建立水平偏移量和垂直偏移量模型,并将所建立的模型数据输入具有眼部追踪系统的激光屈光手术机器的方法,从而实现对激光角膜屈光手术中的瞳孔进行动态追踪。
背景技术
瞳孔是虹膜的围成的孔隙,是人眼光学系统的重要组成部分。其主要功能是通过改变大小维持不同照明环境下进入眼底光线的稳定。此外,瞳孔大小对眼睛成像的焦深及全眼像差也有很大的影响。
在激光屈光手术中,角膜切削中心的定位和保持是至关重要的,特别是在像差引导的激光屈光手术。激光屈光手术中,为了便于操作,通常假定治疗中心通过理论上的视轴和角膜顶点。然而,眼球跟踪系统通常跟踪的是瞳孔(瞳孔中心),而瞳孔中心与角膜顶点是有差别的,在某些情况下,这种差别可以十分显著。为了解决这个问题,当前的方法是采用引入一个固定的移心量来补偿这个差别。即追踪瞳孔中心,但治疗区以靠近视轴的角膜顶点为中心。然而,手术中间很多状态会发生改变:随周围照明不同瞳孔的大小会改变,注视方向不同造成的眼内光线差异也会影响瞳孔大小,还会由于紧张情绪导致交感神经受刺激扩张瞳孔,而且调节状态的改变也会明显改变瞳孔大小。瞳孔大小的改变进而会引起瞳孔中心位置的变化。
现有的研究显示,激光手术中瞳孔中心位置会随瞳孔大小变化而发生改变。Fay等(1992) 对散瞳过程中瞳孔中心的研究显示其变量可达0.7mm。Wilson等(1992)对5种不同照明条件下人眼瞳孔大小及 其中心位置的研究显示,瞳孔中心的位置随瞳孔大小发生改变,最大的改变量为0.6mm,约半数的被测者瞳孔中心位置的改变量与瞳孔大小具有线性关系,且左右眼的改变具有对称性。国人对Lasik术中瞳孔中心的研究[4]显示203例394眼中术中瞳孔中心位置均发生改变,右眼水平和垂直改变量为0.18mm、0.16 mm,左眼水平和垂直改变量为0.31、0.11mm。提示Lasik手术过程中双眼瞳孔中心发生显著性的改变。Yang等(2002)对暗视、昏暗、明视及散瞳条件下70例被测者瞳孔中心位置的研究显示,平均偏移改变量为0.133mm,最大改变量为0.6mm。Bara认为[6]忽视瞳孔中心移位可能在波前像差引导的屈光手术中导致不理想的结果Porter等(2006)对像差引导激光手术的研究显示,药物性散瞳引起的瞳孔中心的改变可达0.29±0.14mm,进而引起术眼高阶像差的增加,进而影响视觉质量。
这些研究结果提示, 使用固定移心补偿量的激光系统会引起激光手术切削误差,有时这种误差十分显著。尤其角膜激光手术中,术眼照度大约在600至2000勒克斯左右,和通常130至300勒克斯左右的室内检查的照明有很大差异,因而术中瞳孔大小及瞳孔中心位置和自然状态下有所不同。 所以,我们需要对不同照明环境下不同瞳孔大小时的瞳孔中心相对角膜顶点的位置进行研究,建立瞳孔大小和瞳孔中心位置关系的数学模型,以期以后应用到屈光手术临床,在对角膜切削时对其进行补偿校正。
技术问题
本发明的目的在于为克服现有技术的不足而提供一种能实时精确确定角膜顶点中心的用于准分子激光角膜屈光手术的 角膜中心定位方法。
技术解决方案
为实现上述目的,本发明公开了一种用于准分子激光角膜屈光手术的 角膜中心定位方法, 其特征在于包括以下步骤:
1 )设定一照明亮度;
2 )使用仪器同时获取 Placido 环、瞳孔的图像;
3 )记录瞳孔大小和瞳孔中心相对角膜地形图顶点中心的位置;
4 )计算并记录瞳孔中心相对角膜地形图顶点中心的水平移心量 offsetX 和垂直移心量 offsetY ;
5 )改变照明亮度,重复步骤 2 )至 4 ) 2 次以上;
有益效果
与现有技术相比,本发明的有益效果是:通过测量不同光亮度下瞳孔直径及瞳孔中心相对角膜顶点中心的移心量,建立水平偏移量和垂直偏移量模型、并将所建立的模型数据输入具有眼部追踪系统的激光屈光手术机器的方法,实现对激光角膜屈光手术中的瞳孔进行动态追踪,从而减少追踪系统误差,显著提高激光角膜屈光手术术后的 视觉质量 。
下面将结合附图及具体实施例对本发明做进一步的描述。
附图说明
图 1 为瞳孔、切削区、瞳孔中心、切削中心、移心量之间的关系示意图;
图 2 为 AstraMax 同时获取眼睛、 Placido 环、瞳孔的图像示意图(正面观);
图 3 为 AstraMax 采集的瞳孔图像;
图 4 为 AstraMax 采集的瞳孔直径及其中心相对角膜顶点中心移心量的叠加图;
图 5 为高阶多项式模型-水平移心量模型(水平移心量相对于瞳孔直径曲线)示意图;
图 6 为线性模型-垂直移心量模型(垂直移心量相对于瞳孔直径曲线)示意图;
本发明的最佳实施方式
在本具体实施例中,获取图像的仪器选用美国雷赛公司的 AstraMax 三维立体角膜地形图信息处理系统, AstraMax 三维立体角膜地形图信息处理系统的一个优点就是具有自定义获取抓拍能力,可以同时获取眼睛、 Placido 环及瞳孔的图像,并且还可以改变照明水平,刺激被测眼改变瞳孔大小,其照明设定值在 0~255 ,非常适合在本方法中使用。 AstraMax 三维立体角膜地形图信息处理系统照明系统包括波长为 660nm 的 Placido 照明视标和波长为 875nm 的红外波段照明。采用本方法要设置 2 个以上照明水平作为采样点,当然,采样点越多越精确,通常设置 4~10 个照明水平作为采样点为宜,本具体实施例中设置了 6 个照明水平采样点。根据 Weber-Fechner 法则当外界刺激呈几何级变化时,对应的生理反应呈算术级改变。因此,本具体实施例中 6 个采样点的照明水平划分采用指数变化的原则,在 0~255 划分 6 个区间,即: 255 、 92 、 67 、 56 、 48 、 44 、 0 ,分别对应瞳孔的平面照度为: 355 、 133 、 50 、 18.8 、 7.1 、 2.66 、 0lux ,用 AstraMax 三维立体角膜地形图信息处理系统分别在 355 、 133 、 50 、 18.8 、 7.1 、 2.66 、 0lux 的照明水平下进行多次测试,获取相应的眼睛、 Placido 环及瞳孔的图像,计算并记录瞳孔中心相对角膜地形图顶点中心的水平移心量 offsetX 和垂直移心量 offsetY ,然后根据所得数据分别绘制水平移心量 offsetX 和垂直移心量 offsetY 相对于瞳孔直径的曲线,并使用 2 阶或 3 阶多项式来建立模型,即
水平移心模型:
offsetX= a0+a1d + a2d2 + … (1)
垂直移心模型:
offsetY = b0+b1d+b2d2+… (2)
然后将水平移心模型和垂直移心模型输入至激光机器,再用激光机器的眼球追踪系统检测患者眼睛瞳孔大小及中心位置,最后根据眼球追踪系统检测所得的瞳孔大小及中心位置数据结合水平移心模型和垂直移心模型得出角膜顶点中心的精确位置数据。
在手术和眼睛追踪时,瞳孔直径和位置的数据被获取。即时的瞳孔直径数据用水平移心量和垂直移心量模型分别计算出动态可变的水平移心量和垂直移心量。上述动态可变的水平和垂直移心量将被用于补偿瞳孔中心相对角膜顶点中心的改变,即动态可变地追踪瞳孔位置并且精确地保持切削中心位于角膜顶点中心(视轴)。
本发明通过测量不同光亮度下瞳孔直径及瞳孔中心相对角膜顶点中心的移心量,建立水平偏移量和垂直偏移量模型、并将所建立的模型数据输入具有眼部追踪系统的激光屈光手术机器的方法,可以实现对激光角膜屈光手术中的瞳孔进行动态追踪,从而减少追踪系统误差,显著提高激光角膜屈光手术术后的 视觉质量 。
本发明的实施方式
工业实用性
序列表自由内容

Claims (2)

  1. 一种用于准分子激光角膜屈光手术的 角膜中心定位方法, 其特征在于包括以下步骤:
    1 )设定一照明亮度;
    2 )使用仪器同时获取 Placido 环、瞳孔的图像;
    3 )记录瞳孔大小和瞳孔中心相对角膜地形图顶点中心的位置;
    4 )计算并记录瞳孔中心相对角膜地形图顶点中心的水平移心量 offsetX 和垂直移心量 offsetY ;
    5 )改变照明亮度,重复步骤 2 )至 4 ) 2 次以上;
    6 )根据所得数据分别绘制水平移心量 offsetX 和垂直移心量 offsetY 相对于瞳孔直径的曲线;
    7 )使用 2 阶或 3 阶多项式来分别水平移心模型和垂直移心模型;
    8 )将水平移心模型和垂直移心模型输入至激光机器;
    9 )用激光机器的眼球追踪系统检测瞳孔大小及中心位置;
    10 )根据眼球追踪系统检测所得的瞳孔大小及中心位置数据结合水平移心模型和垂直移心模型得出角膜顶点中心的位置数据。
  2. 根据权利要求1所述的用于准分子激光角膜屈光手术的角膜中心定位方法,其特征在于:所述照明亮度值为0、44、48、56、255。
PCT/CN2010/079506 2010-01-22 2010-12-07 用于准分子激光角膜屈光手术的角膜中心定位方法 WO2011088708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/574,570 US20120303009A1 (en) 2010-01-22 2010-12-07 Cornea center positioning method for excimer laser keratomileusis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010102098A CN101810528A (zh) 2010-01-22 2010-01-22 用于准分子激光角膜屈光手术的角膜中心定位方法
CN201010102098.3 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011088708A1 true WO2011088708A1 (zh) 2011-07-28

Family

ID=42617998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079506 WO2011088708A1 (zh) 2010-01-22 2010-12-07 用于准分子激光角膜屈光手术的角膜中心定位方法

Country Status (3)

Country Link
US (1) US20120303009A1 (zh)
CN (1) CN101810528A (zh)
WO (1) WO2011088708A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101810528A (zh) * 2010-01-22 2010-08-25 温州医学院 用于准分子激光角膜屈光手术的角膜中心定位方法
WO2011139605A2 (en) * 2010-04-27 2011-11-10 Haddad Daniel S Dynamic real time active pupil centroid compensation
CN102429767B (zh) * 2011-08-25 2016-03-09 广东福地新视野光电技术有限公司 激光角膜热成形术系统
US20150011984A1 (en) * 2012-01-19 2015-01-08 Mohammad Abdelfattah Daif Corneal visual center localizer (or locator)
DE102012019474A1 (de) 2012-09-28 2014-04-03 Carl Zeiss Meditec Ag Vorrichtung zur verlässlichen Bestimmung biometrischer Messgrößen des gesamten Auges
CN103610511B (zh) * 2013-12-05 2015-06-03 天津开发区合普工贸有限公司 一种实验动物激光眼角膜切割装置
DE102015013237A1 (de) 2015-10-12 2017-04-13 Novartis Ag Zentriertechnik bei einem Schneidlaser für die refraktive Augenchirurgie
JP7083821B2 (ja) * 2016-06-17 2022-06-13 ソルボンヌ・ユニヴェルシテ 制御された光強度で対象物を照明するための装置および関連する方法
CN109431444A (zh) * 2018-12-12 2019-03-08 广州视景医疗软件有限公司 眼位偏差检查方法及眼位偏差地形图检查系统
ES2926361T3 (es) * 2018-12-21 2022-10-25 Tobii Ab Calibración continua basada en características de la pupila
CN111407506A (zh) * 2020-03-27 2020-07-14 东莞爱尔眼科医院有限公司 用于辅助眼部手术定位角膜中心的图像处理方法及装置
JP2021192164A (ja) * 2020-06-05 2021-12-16 株式会社Jvcケンウッド 視線検出装置、視線検出方法、及び視線検出プログラム
CN112493983B (zh) * 2020-12-02 2022-09-16 上海美沃精密仪器股份有限公司 一种间接实现分析人眼内外及全眼波前像差方法
CN113940812B (zh) * 2021-11-01 2024-02-27 朴俊杰 用于准分子激光角膜屈光手术的角膜中心定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011177A2 (en) * 2001-07-30 2003-02-13 Lasersight Technologies, Inc. Adaptive ablation centering for pupil dilation effects
US20050137586A1 (en) * 2003-12-23 2005-06-23 Gray Gary P. Hybrid eye tracking system and associated methods
CN1725992A (zh) * 2002-12-16 2006-01-25 俄亥俄州立大学 基于参数模型的消融手术系统和方法
US7083609B2 (en) * 2002-06-13 2006-08-01 Visx, Incorporated Corneal topography-based target warping
WO2008131909A1 (de) * 2007-04-25 2008-11-06 Wavelight Ag Vorrichtung, verfahren und steuerprogramm für die refraktive chirurgie
CN101810528A (zh) * 2010-01-22 2010-08-25 温州医学院 用于准分子激光角膜屈光手术的角膜中心定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504376B2 (en) * 2009-12-22 2016-11-29 Amo Wavefront Sciences, Llc Optical diagnosis using measurement sequence

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011177A2 (en) * 2001-07-30 2003-02-13 Lasersight Technologies, Inc. Adaptive ablation centering for pupil dilation effects
US7083609B2 (en) * 2002-06-13 2006-08-01 Visx, Incorporated Corneal topography-based target warping
CN1725992A (zh) * 2002-12-16 2006-01-25 俄亥俄州立大学 基于参数模型的消融手术系统和方法
US20050137586A1 (en) * 2003-12-23 2005-06-23 Gray Gary P. Hybrid eye tracking system and associated methods
WO2008131909A1 (de) * 2007-04-25 2008-11-06 Wavelight Ag Vorrichtung, verfahren und steuerprogramm für die refraktive chirurgie
CN101810528A (zh) * 2010-01-22 2010-08-25 温州医学院 用于准分子激光角膜屈光手术的角膜中心定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIA, ZHEREN ET AL.: "The shift of the pupil center relative to the coaxially sighted corneal reflex in Chinese myopic patients under photopic and mesopic conditions", JOURNAL OF WENZHOU MEDICAL COLLEGE, vol. 39, no. 3, May 2009 (2009-05-01), pages 246 - 249 *

Also Published As

Publication number Publication date
US20120303009A1 (en) 2012-11-29
CN101810528A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
WO2011088708A1 (zh) 用于准分子激光角膜屈光手术的角膜中心定位方法
Denniston et al. Oxford handbook of ophthalmology
JP2023022142A (ja) スクリーニング装置及び方法
Elliott et al. Effect of a cataract simulation on clinical and real world vision.
Cruz et al. Digital image processing measurement of the upper eyelid contour in Graves disease and congenital blepharoptosis
JP2020509790A5 (zh)
Apfelbaum et al. Considering apical scotomas, confusion, and diplopia when prescribing prisms for homonymous hemianopia
Marran et al. Lens induced aniso-accommodation
Freedman et al. Pupil size and the ablation zone in laser refractive surgery: considerations based on geometric optics
Kanellopoulos et al. Digital pupillometry and centroid shift changes after cataract surgery
Sahebjada et al. Assessment of macular parameter changes in patients with keratoconus using optical coherence tomography
Altınbay et al. Current approaches to low vision (re) habilitation
Li et al. Individualized visual reality training improves visual acuity and visual field defects in patients with glaucoma: a preliminary study report
Liu et al. Pupil centroid shift and cyclotorsion in bilateral wavefront-guided laser refractive surgery and the correlation between both eyes
Kong et al. Effects of orthokeratology on biological parameters and visual quality of adolescents with low-grade corneal astigmatism myopia.
Frith The eye in clinical practice
CN205126562U (zh) 后半规管良性阵发性位置性眩晕手法复位指示仪
Kelly et al. Temporal Eye–Hand Coordination During Visually Guided Reaching in 7-to 12-Year-Old Children With Strabismus
EP2916859B1 (en) Method of reducing adverse effects in a cancer patient undergoing treatment with a mek inhibitor
Kozak et al. Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review
Sasse et al. Influence of blurred vision, accommodation, and target laser settings on eye movements during LASIK
Titchener et al. Estimating phosphene locations using eye movements of suprachoroidal retinal prosthesis users
RU2532497C1 (ru) Способ прогнозирования регресса ii и iii стадии ретинопатии недоношенных после лазерной коагуляции сетчатки
Liping et al. Formation mechanism and clinical application of the dominant eye
Lan et al. Virtual Reality Assessment Reveals Myopic Regression After ICL Implantation in High Myopia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843748

Country of ref document: EP

Kind code of ref document: A1