WO2011087347A1 - Sistema y método para medir la presión arterial por sus efectos - Google Patents

Sistema y método para medir la presión arterial por sus efectos Download PDF

Info

Publication number
WO2011087347A1
WO2011087347A1 PCT/MX2010/000003 MX2010000003W WO2011087347A1 WO 2011087347 A1 WO2011087347 A1 WO 2011087347A1 MX 2010000003 W MX2010000003 W MX 2010000003W WO 2011087347 A1 WO2011087347 A1 WO 2011087347A1
Authority
WO
WIPO (PCT)
Prior art keywords
arterial
pressure
diastolic
period
systolic
Prior art date
Application number
PCT/MX2010/000003
Other languages
English (en)
French (fr)
Inventor
Jesús BUSTILLOS CEPEDA
Original Assignee
Hemodinamics, S.A. De Cv.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2010341901A priority Critical patent/AU2010341901B2/en
Priority to CA2786248A priority patent/CA2786248A1/en
Application filed by Hemodinamics, S.A. De Cv. filed Critical Hemodinamics, S.A. De Cv.
Priority to CN201080061312.3A priority patent/CN102711598B/zh
Priority to KR1020127021258A priority patent/KR101690250B1/ko
Priority to RU2012134385/14A priority patent/RU2535909C2/ru
Priority to EP10843299.8A priority patent/EP2524646B1/en
Priority to US12/866,854 priority patent/US10653325B2/en
Priority to JP2012548905A priority patent/JP5698765B2/ja
Priority to PCT/MX2010/000003 priority patent/WO2011087347A1/es
Priority to BR112012017251A priority patent/BR112012017251B8/pt
Publication of WO2011087347A1 publication Critical patent/WO2011087347A1/es
Priority to MX2012007315A priority patent/MX2012007315A/es
Priority to IL220930A priority patent/IL220930A/en
Priority to HK13102432.7A priority patent/HK1175090A1/zh
Priority to IL239883A priority patent/IL239883A/en
Priority to AU2015249117A priority patent/AU2015249117B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02208Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the Korotkoff method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method

Definitions

  • the present invention is related to the systems, procedures and instruments designed in the field of medicine and Biomedical Engineering and which are used in medicine to measure arterial blood pressure, and more particularly, it is related to a system, and method for measuring with method indirect diastolic blood pressure from the effects of the diastolic period of the arterial cycle.
  • Blood pressure It is the force exerted by blood on the wall of the arteries, to measure said pressure, the unit of force exerted by the blood is divided between the area unit of the wall of the artery, and The resulting measure is the unit of pressure, for example, mmHg or pass them.
  • the arterial blood force is the pressure exerted by the blood on the wall of the artery, and the measurement is the result of the unit of blood pressure multiplied by the unit area of the wall of the arterial segment, its units are dynes or Newton.
  • the cardiac cycle is the set of events related to blood flow that must occur from the beginning of a heartbeat to the beginning of the next.
  • Each heartbeat includes two main stages in the ventricles: Systole and ventricular diastole.
  • the term diastole is synonymous with muscle relaxation.
  • blood pressure increases and decreases in the heart and arterial system. The variation of the pressure in the artery occurs in two stages; the time of systolic blood pressure that is short and a longer time pertaining to diastolic blood pressure.
  • the arterial cycle is the unit of variation of the repetitive physical properties of the artery as a function of time, composed of the events of blood flow and arterial wall in a period of greater blood movement called systolic and a period of time with less blood movement called diastolic
  • systolic a period of greater blood movement
  • diastolic a period of time with less blood movement
  • systolic blood pressure is the highest pressure of the two phases and has blood flow throughout the phase; while the diastolic blood pressure is the lower pressure of the two phases and its blood flow does not always last the total diastolic time of the arterial cycle.
  • Obliterate Clog or close a duct or cavity.
  • Measurement of arterial diastolic pressure by means of arterial Obliteration by application of gradual external contact force It is the action of applying gradual external contact force until obliterating an artery to measure the force that blood exerts on the arterial wall in the diastolic period.
  • Desobstruir Remove something that obstructs it.
  • Measurement of arterial diastolic pressure by means of arterial unblocking by removing gradual external contact force It is the action of removing gradual external contact force until unblocking an artery to measure the force that blood exerts on the arterial wall in the diastolic period.
  • Measurable artery Arterial segment on which one operates to know the measure of a magnitude.
  • Measurable artery In this invention, arterial segment on which it operates to know the measure of pressure that the blood exerts on the unit area of its wall.
  • Parameter It is the numerical value or fixed data that is considered in the study or analysis of an issue.
  • a parameter is the sample of the manifestations of blood flow and arterial wall without being affected by external force applied, values that will be taken into account to calculate the systolic and diastolic blood pressure.
  • Blood pressure can be measured in an invasive (direct) way that is not relevant in this document or non-invasively (indirectly).
  • the time of the cessation of sounds indicates the free passage of the pulse wave; in other words at the moment of the disappearance of the sounds the mini bad blood pressure within the artery predomtes over the pressure in the cuff. It follows that the manometric figures at this time correspond to the minimal blood pressure ... "
  • the timing of the cessation of sounds indicates the free passage of the pulse wave; that is, at the time of the disappearance of the sounds, the minimum blood pressure within the artery predominates over the pressure on the bracelet. It follows that the manometric reading at this time corresponds to the minimum blood pressure.
  • systolic blood pressure and diastolic blood pressure are obtained by identifying the region where there is then a rapid increase and a decrease in pulse width.
  • the average blood pressure is located at the point of maximum oscillation.
  • the instruments used to observe arterial manifestations described by Korotkoff are stethoscope, pressure sensor, flow sensor and sphygmomanometer in relation to a manometer, to determine blood pressure.
  • the measurement is made by observing the manifestations described above by Korotkoff in his doctoral thesis.
  • the measurement of blood pressure is governed by the Korotkoff method in which to measure blood pressure the following steps are performed: 1 the humeral artery is pressed against the humeral bone by means of the pneumatic sleeve; 2 the moment when the applied pressure closes the arterial flow is detected; 3 Once the artery has been occluded, they stop observing the manifestations of pulse waves and pressure is applied beyond the point of occlusion; 4 Then the pressure in the cuff is reduced by opening a valve located on the insufflation knob; 5 the reappearance of the pulsatile blood flow through the partially compressed artery produces Korotkoff sounds (sounds produced by the arterial pulse wave caused by systolic pressure when the partially occluded artery is found); 6 The pressure level on the cuff when the first Korotkoff sound appears indicates the systolic blood pressure, also called "Korotkoff noise phase I" and is the maximum pressure generated by the pulse wave during each cardiac cycle; 7 Continuously
  • Phase I indicates that the vessel pressure has exceeded the external pressure, being an abrupt, loud and progressively intense sound corresponding to the systolic blood pressure.
  • Phase II the sound is clearer, more intense and prolonged.
  • Phase III the sound continues loud and clear, although a murmur begins to be perceived that indicates its next disappearance.
  • Phase IV there is a sudden loss of sound intensity that is markedly turned off with a continuous murmur; Sometimes it is the last thing heard some authors determine in this phase the diastolic blood pressure.
  • Phase V total disappearance of the sound when the laminar flow is restored.
  • the World Health Organization recommends that in this phase the artery pressure be measured! diastolic
  • the oscillometric procedure is the measurement from the oscillations of the amplitude by the change of the pressure inside a force application means. It also depends on Korotkoff's observations to measure blood pressure, as the name implies, uses the oscillometer which is an electronic device based on the analysis of the pulse wave.
  • the person's arm is compressed by an inflatable condensation cuff, such that the measurement is based on the amplitude of pressure change in the cuff, so when said cuff is inflated over systolic pressure, the amplitude suddenly becomes larger with periods of rest or rest of the pulse through occlusion , that is, very close to systolic pressure.
  • the cuff pressure is reduced, the increase in pulse in amplitude reaches a maximum and decreases rapidly, the diastolic pressure index is taken where this transition begins. Therefore, systolic blood pressure and diastolic blood pressure are obtained by identifying the region where there is a rapid increase and immediately afterwards there is a decrease in the amplitude of systolic pulses.
  • diastolic blood pressure is defined, such as: "the lowest value of the two blood pressure values, corresponding to blood pressure when the heart is in diastole or rest.”
  • the present invention aims to solve some of the following problems of the auscultatory method (classical method); the indirect method of measuring Von Riva Rocci Recklinghaus arterial blood force: That in its publication to the letter it says: "The instrument that I have developed manometrically measures the force required to stop the progression of the pulse wave, sphygmomanometry is performed in one of the large branches of the aortic artery, over the humeral artery, which is a
  • Riva Rocci did not determine the measurement of diastolic blood pressure with an indirect method.
  • Korotkoff refers to the artery producing short tones whose appearance indicates part of the pulse wave, writes "... follow the manometric reading " referring to the continuation of the phenomenon of deflation and thus the decrease in pressure applied to the arm by the bracelet and that the first tone that appears complete in relation to the previous ones corresponds to the maximum pressure.
  • the maximum pressure is the result of the measurement of the external force with the appearance of the first complete tone after a confirmed occlusion and release of force by deflation.
  • the diastolic blood pressure is determined from arterial manifestations by the relationship between the strength of the bracelet and the artery with systolic blood pressure! and not the diastolic blood pressure at its real value.
  • this novel SYSTEM AND METHOD FOR MEASURING ARTERIAL PRESSURE BY ITS EFFECTS performs the measurement of diastolic blood pressure and systolic from the manifestations that the artery produces in the systolic and diastolic period respectively of the arterial cycle.
  • the arterial cycle is defined as the unit of repetitive physical variation of the artery as a function of time, composed of the events of blood flow and arterial wall that are defined in two periods; the first period with a short time, greater movement and greater blood pressure, called the period of systolic blood pressure; the second period with more time than the previous period, less movement and lower blood pressure called the diastolic blood pressure period.
  • the present invention performs the measurement of diastolic blood pressure from the observation of the manifestations of blood flow and the wall arterial that emanate or are eliminated in the diastolic period of the arterial cycle by applying gradual contact force and measurement on the measurable artery.
  • the present invention additionally provides a method for indirectly measuring systolic blood pressure in the systolic period of the arterial cycle and without affecting the pressure overload caused by ventricular ejections after occlusion of the artery;
  • systolic blood pressure is further measured from the effects that emanate or are eliminated by obliterating the artery by applying increasing external contact force, recording and measuring the manifestations that flow, the arterial wall and the manometer generate in the systolic period of the arterial cycle at the time of equalizing the external force applied with the force of the blood on the arterial wall.
  • Another object of the present invention is to provide a method that is capable of measuring diastolic blood pressure with an indirect method with sensitivity and specificity.
  • Another object of the present invention is to provide a system and method for measuring blood pressure for its effects that is capable of measuring systolic blood pressure for its effects in the systolic period of the arterial cycle and diastolic blood pressure for its effects on diastolic period of the arterial cycle with indirect method.
  • Another object of the present invention is to provide a MEASUREMENT AND DETECTION MEANS OF THE DIASTOLIC AND SYSTOLIC PERIOD OF THE ARTERIAL CYCLE
  • the advantages of this invention are given by measuring for the first time in history the Diastolic Blood Pressure indirectly by its effects and with this we can indirectly measure the blood pressure that the artery has at the moment the heart starts the Ventricular ejection and this pressure the heart has to overcome in each beat to empty its ventricular blood content to the arterial system, this will lead us to improve the diagnosis and treatment of a large number of arterial and heart diseases, mainly heart failure diseases.
  • Another advantage of this inventive measuring system is to provide health sciences with a procedure and instrument to measure indirect diastolic blood pressure because it is relevant for humans because "For every 20 mmHg increase in systolic pressure or 10 mmHg of diastolic pressure, the risk of death from heart disease or stroke is doubled in a human. "
  • An artery is composed of 3 elements Wall, internal cross-sectional area and blood fluid.
  • the arterial system has its origin in the connection of the aortic valve with the left ventricle and ends in the capillaries.
  • the arterial distention energy that distributes 40% of the volume entered in 0.2 seconds, generated by ventricular ejection and adaptive response of the artery
  • the arterial contraction energy that distributes 60% of the remaining volume in 0.6 seconds, generated by the potential elastic energy of the arterial wall.
  • the ventricular ejection is cyclic and affects the entire blood volume in the arterial system from the aorta to the capillary depending on the pressure wave velocity.
  • the arterial cycle is defined as: A continuous phenomenon, in which the variation of movement of periodic physical quantities in the artery is executed. Due to the energy of arterial distention generated by ventricular ejection and adaptive response of the artery in a rapid phase (distention or filling; 25% of the duration of the arterial cycle). And the energy of arterial contraction generated by the potential elastic energy of the slow-moving arterial wall (contraction or emptying; 75% of the duration of the arterial cycle). The slow drop in pressure in the emptying phase is suddenly interrupted by the start of the filling phase and the rapid increase in pressure, which starts the process again.
  • the arteries experience a rapid increase in volume until they reach a maximum pressure point (rapid or distension phase), as an adaptation response to the increase in blood volume, and a slow decrease in pressure drop ( slow or contraction phase), in which it performs the highest percentage of volume distribution by elastic recovery and capillary resistance response.
  • a maximum pressure point rapid or distension phase
  • a slow decrease in pressure drop slow or contraction phase
  • Figures 1 to 6 show schematically the different phases of arterial manifestations that occur when an external contact force is applied on a measurable artery.
  • Figure 1 shows the first phase of arterial manifestations, in which there is no involvement of diastolic and systolic blood pressure.
  • Figure 2 shows the second phase of arterial manifestations, in which there is already a condition only of systolic blood pressure.
  • Figure 3 shows the third phase of arterial manifestations, diastolic pre-occlusion or expiration of diastolic flow pressure at occlusive external force.
  • Figure 4 shows the fourth phase of arterial manifestations, in which there is occlusion of the flow with diastolic blood pressure and only a condition of the flow with systolic pressure.
  • Figure 5 shows the fifth phase of arterial manifestations, in which there is systolic blood pressure and diastolic occlusion, pre-occlusive systolic phase.
  • Figure 6 shows the sixth phase of arterial manifestations, in which there is complete occlusion of systolic and diastolic arterial flow.
  • Figure 7 shows an arterial cycle in normal physiological conditions with the characteristics detected by a blood flow sensor.
  • Figure 8 shows a flow curve in the different phases generated by the effect of blood flow in the systolic and diastolic periods when applying an external force.
  • Figure 9 Graph for measuring diastolic blood pressure with indirect oscillometric method
  • Figure 10 Diastolic and systolic blood pressure measurement graph with indirect oscillometric method and with the diastolic blood pressure measurement system with indirect method.
  • Figure 11 is a block schematic of the electronic device for measuring diastolic arterial blood pressure by its effects.
  • Figure 12 is a perspective view of a block schematic showing the function of an electronic device when measuring diastolic blood pressure.
  • FIGURES 1 to 6 show the various phases that occur when arterial manifestations occur when an increasing external contact force is applied to the artery, which described below:
  • the blood flow or volume of the artery is not affected, referring to the lower blood flow or volume 120 of the artery and the greater blood flow or volume 125 of the artery, where an indicator of applied force or pressure 130 It is "zero."
  • the greater blood flow 125 of the artery occurs in the lesser time 135 during the greater force and pressure of the blood fluid of the systolic period 105 occupying 25% of the arterial cycle 115.
  • the lesser blood flow 120 of the artery occurs in time greater 140 during the force and lower pressure of the blood fluid of the diastolic period 10 occupying 75% of the arterial cycle 115.
  • FIGURE 2 of the accompanying drawings a second phase 200 is shown that corresponds to the involvement of the forces of the systolic period 105 of the arterial cycle 115, the blood forces of the diastolic period 110 being unaffected.
  • Figure 2 shows it shows the second phase 200 in which there is already an affectation of the blood flow or volume of the artery, showing that the force or pressure applied 145 has a certain magnitude over a defined area 150 recorded in the force indicator 130 with a value of "20 ".
  • the greater blood flow or volume 125 of the artery shows manifestations because the flow of the systolic period 105 changes, where these manifestations refer among others to a sound 155 captured with sensors.
  • the lower blood flow or volume 120 shows no changes.
  • a third phase 300 is shown affecting the systolic 105 and diastolic 110 periods of the arterial cycle 115 (pre-occlusive diastolic pressure), in said third phase 300 the pressure is affected major and minor of the corresponding periods.
  • the applied force or pressure 145 has a magnitude over the defined area 150 recorded in the force indicator 130 with a value of "40".
  • the greater blood flow or volume 125 shows manifestations because the systolic period 105 changes, where these manifestations refer to a sound 155.
  • the lower blood flow 120 presents manifestations because the volume is affected in the diastolic period 110.
  • FIGURE 4 of the accompanying drawings a fourth phase 400 is shown, in which there is a diastolic and systolic blood pressure condition, being considered as the complete diastolic occlusion phase.
  • the applied force or pressure 145 has a magnitude over the defined area 150 recorded in the force indicator 130 with a value of "60".
  • the major blood flow 125 shows manifestations because the force reduced the space where the artery is housed in the systolic period 105, where these manifestations refer among others to a sound 155, which is produced in this phase by vibrations, turbulence and intermittent collision of the arterial wall.
  • the lower blood flow or volume 120 disappears along with its manifestations because the pressure or force applied 145 has been equalized with the blood pressure or force in the diastolic period 1 0, at which time the lower or diastolic blood pressure is determined in the arterial segment
  • FIGURE 5 of the accompanying drawings a fifth phase is shown
  • the applied force or pressure 145 has a magnitude over the defined area 150 recorded in the force indicator 130 with a value of "80".
  • the greater blood flow or volume 125 shows manifestations because the systolic period 105 changes, where these manifestations refer among others to a sound 155, which is produced at this stage by intermittent vibrations, turbulence and collision of the arterial wall, which It is diminished compared to the fourth phase 400 diastolic occlusion stage.
  • the lower blood flow or volume 120 continues without manifestations because the pressure or force applied 145 is greater than the pressure or force of the blood in the diastolic period 1 10.
  • FIGURE 6 of the accompanying drawings a sixth phase 600 is shown in which there is a complete systolic and diastolic occlusion.
  • said sixth phase 600 the applied force or pressure 145 has a magnitude over the defined area 150 recorded in the force indicator 130 with a value of "100".
  • the greater blood flow or volume 125 has no manifestations because the pressure or force applied 145 has been equalized with the force or pressure of the blood in the systolic period 105, where these manifestations disappear completely, at which time the blood pressure is determined major or systolic in the arterial segment.
  • an arterial cycle 700 is shown in normal physiological conditions, with the characteristics detected by a blood flow motion sensor.
  • the arterial cycle 700 is represented in its entirety and is composed of a phase of distension and a higher blood pressure corresponding to the systolic period 705, in which the left ventricle ejects a blood volume to the arterial system, where the arteries experience a rapid increase of volume distended until reaching a maximum pressure point as an adaptation response to said increase in blood volume, this phenomenon is called the adaptability phase 710 and ends in the distension limit phase 715 in which the pressure and flow rate blood levels reach the maximum magnitude in the arterial cycle 700.
  • the final systolic phase 720 is continued in which the blood pressure decreases and ends at the origin of the initial diastolic phase 725 which manifests a sharp decrease in blood flow movement, in this point starts the 730 diastolic period of the 700 arterial cycle and corresponds to a slow decrease in the ca gives pressure and occupies 75% of the total cycle time of said arterial 700.
  • the diastolic period 730 is made up of three phases, of which, a first phase that corresponds to the initial diastolic phase 725 and is continued with an alpha 735 hemodynamic package consisting of the same as the other hemodynamic packages in parietal tension, pressure, flow and blood velocity with a given magnitude, which, to recognize them, apply the letters of the Greek alphabet alpha a of greater magnitude, and in descending order of magnitude the letters beta, gamma, delta are applied.
  • Said hemodynamic packet alpha 735 is joined by low amplitude frequencies 740 to a hemodynamic packet beta 745.
  • the diastolic period 730 ends in the sudden interruption of a hemodynamic packet or a phase of low frequencies. due to the sudden appearance of the distension phase 710 of the systolic period 705 of the arterial cycle 700.
  • FIGS. 1 A 6 there is shown a flow curve 800 in the different phases generated by the effect of the arterial manifestations that were described above. in FIGS. 1 A 6.
  • the first phase 100 is shown without involvement by the external contact force showing the greater blood flow 125 corresponding to the systolic period 105 and the lower blood flow 120 corresponding to the diastolic period 110;
  • the second phase 200 with a force condition, where only the greater blood flow 125 corresponding to the systolic period 105 is affected and the lower blood flow 120 corresponding to the diastolic period 110 remains unaffected;
  • the third phase 300 manifestations are observed because the major blood flow 125 corresponding to the systolic period 105 changes and the lower blood flow 120 corresponding to the diastolic period 110 is also affected; manifestations of change in the major blood flow 125 corresponding to the systolic period 105 are shown in the fourth stage 400, while the minor blood flow
  • FIG. 9 From the accompanying drawings a graph of the signal from a pressure sensor is shown; where, after occluding the artery, pressure was released by recording the signal and a superior graph is shown showing the time as a function of the pressure in millimeters of mercury and a lower graph of the time as a function of the amplitude of the pressure wave 3, in both graphs the wave is observed to determine the systolic blood pressure of the systolic period of the arterial cycle 3, the appearance is observed of the diastolic blood pressure wave in the diastolic period of the arterial cycle 4; first supramaximal wave 2, second supramaximal wave 1.
  • FIG. 10 This graph shows the measurement of diastolic and systolic blood pressure with an indirect oscillometric method 4, compared to the diastolic blood pressure measurement system with indirect method 2, and a processed flow sensor signal graph 1 is observed.
  • a bar graph of the arterial flow signal 2 which shows, the systolic period 11, and the diastolic period 12, before a quantity of applied force, shows the moment to measure the diastolic blood pressure with the diastolic pressure measurement system with indirect method in the diastolic period of the arterial cycle 5, moment to measure the systolic blood pressure with the diastolic pressure measurement system with method indirect in the diastolic period of the arterial cycle 6, range of ocilometric systolic blood pressure measurement 7 , pressure range for ocilometric diastolic blood pressure 8.
  • an electronic device for processing, analysis and registration of arterial manifestation 2000 consists of 6 units, a first main processing card unit 2050 , a second pressure sensor card unit 2100, a third flow sensor card unit 2150, a fourth phonogram sensor card unit 2200 a fifth laser sensor card unit 2250, a sixth vibration sensor card unit 2300 where said 2000 electronic card includes additional 2350 cards, 2400 input or output ports, 2450 memory, 2500 display output, 2550 power port.
  • FIGURE 12 of the accompanying drawings shows a schematic of the block operation of the elements for measuring blood pressure including the internal elements of the electronic device for processing, analysis and recording of arterial manifestation 2000.
  • the pressure sensor 2600 By applying an external pressure on the artery, the pressure sensor 2600 produces and sends a signal to said card 2100, in parallel to the information received by the flow sensor 2650 and sends to said card 2150.
  • Said cards 2150 and 2100 they condition and send the signals to the main processing card 2050, where they are identified because each arterial manifestation is represented by a specific signal on said electronic card 2050, the signal corresponding to the Detection of an arterial manifestation is compared with the signal from the 2100 pressure sensor card to emit the measured value of arterial diastolic pressure.
  • the pressure sensor 2600 produces and sends a signal to said card 2100, in parallel to the information received by the sensor in use, which can be sensor of phonogram 2700, laser sensor 2750, and sensor of vibration 2800 and sends to the corresponding card 2200, 2250, 2300 that at the same time said cards 2200, 2250, 2300 and 2100 condition and send the signals to the main processing card 2050 where they are identified because each arterial manifestation is represented by a specific signal on said electronic card 2050, the signal corresponding to the detection of an arterial manifestation is compared with the signal from the pressure sensor card 2100 to emit the arterial diastolic pressure measurement value.
  • the present invention is shaped by a six phase and three means method; the PROCEDURE FOR MEASURING DIASTOLIC ARTERIAL PRESSURE (MIPAD), which directs the activities of a first MEDIUM THAT APPLIES FORCE OF EXTERNAL CONTACT GRADUAL MEASURE
  • ApFGM a second medium ARTERIAL MANIFESTATION SENSOR (SMA) and a third one that is a MEASUREMENT AND DETECTION MEANS OF THE DIASTOLIC AND SYSTOLIC PERIOD OF THE ARTERIAL CYCLE (MDCA).
  • the system and method for measuring blood pressure by its effects allows the measurement of systolic blood pressure without overpressure due to heartbeats generated after arterial occlusion.
  • the present invention relates to a system and method for measuring blood pressure for its effects and additionally systolic blood pressure measurement, both measurements are made from the observations to the ARTERIAL MANIFESTATION (MA), also called MANIFESTATION OF THE ARTERIAL CYCLE (MCA) and are defined as the physical properties of the blood fluid and arterial wall with or without affection of force on the artery;
  • the ARTERIAL MANIFESTATION of the blood fluid are the duration of the systolic and diastolic period of the arterial cycle, changes in pressure, changes in the movement of the flow, changes in velocity, changes in temperature, changes in volume, viscosity changes, mass and density changes;
  • ARTERIAL MANIFESTATION from the arterial wall are time periods, changes in the cross-sectional area or arterial segment, changes in diameter, changes in perimeter, changes in length, changes in parietal tension, changes in vibrations .
  • the system and method to measure blood pressure by its effects comprises a means with the function of pressing the artery, this medium is called "MEANS THAT APPLIES FORCE OF GRADUAL EXTERNAL CONTACT MEASUREMENT” which is defined as a device intended to apply force over the measurable artery gradually and measured in order to obliterate it and know the magnitude of the force applied, said medium is one of those commonly used in the state of the art and preferably is a bracelet attached to a pressure sensor, being able to be in another modality of tip or pinza; a means to detect arterial manifestations called “ARTERIAL MANIFESTATION SENSOR” defined as a means that when placed in a measurable arterial segment, allows to detect and emit the magnitude of some arterial manifestation in the time corresponding to a systolic period and the diastolic period of the arterial cycle; In this mode, said medium is a flow sensor that records and emits signals of blood movement in the measurable arterial segment and has the modalities of pressure sensor, laser sensor, vibration sensor
  • a medium that receives the magnitude of the arterial manifestation emitted by the arterial manifestation Sensor and the magnitude of the pressure sensor to emit the value of blood pressure measurement in the systolic period and in the diastolic period of the arterial cycle, to said medium It is called MEASURING MEASUREMENT AND DETECTION OF THE DIASTOLIC AND SYSTOLIC PERIOD OF THE ARTERIAL CYCLE, in this modality we use an "ELECTRONIC DEVICE FOR PROCESSING ANALYSIS AND REGISTRATION OF ARTERIAL MANIFESTATION"; comprising a central circuit board in a complex and variable form electronic equipment with structural modality to adapt to the structure of various measuring instruments for the same purpose, as well as the programming of the cards for the general interaction of the electronic device.
  • a motherboard with critical subsystems such as; ports, connectors, system memory, sound card, flow sensor card and pressure sensor card with the modalities of laser sensor card, vibration sensor card, phonogram sound sensor card and main processing card, the latter is in which the signals received from the pressure sensor are processed with oscillometry or compared to the flow sensor with the following modalities of the laser sensor, vibration sensor and sound sensor of the phonogram to record and emit a systolic or diastolic pressure value from the arterial manifestation of the systolic period and diastolic period of the arterial cycle, said medium has the modality of being mechanical by means of a graduated dial with indicators that move in response to pressure waves and decompression.
  • a method to detect the arterial manifestation corresponding to the pressure of the systolic period and the pressure of the diastolic period of the arterial cycle said method is called a PROCEDURE FOR MEASURING THE INDASTECT METHOD OF DIASTOLIC ARTERIAL PRESSURE is defined as a procedure to identify and differentiate the systolic period and the diastolic period of the arterial cycle from the manifestations that the measurable artery generates with or without application of external contact force, in order to obtain the measurement of diastolic blood pressure by matching the external force applied on the artery with the force that the blood exerts on the arterial wall by obliteration of the artery in the diastolic period of the arterial cycle with the arterial de-obstruction modality in said period of the arterial cycle; additionally the measurement of systolic blood pressure without affecting the pressure overload due to heartbeats after arterial occlusion and in the systolic period of the arterial cycle.
  • the integral development of the system and method for measuring blood pressure by its effects includes the following; FIRST PHASE: The MEASURING MEANS OF EXTERNAL GRADUAL MEASURED CONTACT FORCE (ApFGM) and the arterial manifestation sensor are placed on the measurable artery, the latter detects the arterial manifestations and sends them to the MEASUREMENT AND SYSTOLIC PERIOD OF THE DIASTOLIC PERIOD OF THE ARTERIAL CYCLE
  • MDCA the MDCA analyzes and differentiates arterial manifestations, determining high and low magnitudes as a function of time with a cyclic character, establishing that an arterial manifestation that contains a high magnitude and a low one as a function of time is called the arterial cycle; of the arterial cycle a differentiation of the magnitude of the manifestations is made as a function of time, a greater magnitude is obtained with a shorter duration that is called the systolic period and an arterial manifestation with a smaller magnitude and with a longer duration than the one denominated diastolic period of the arterial cycle; with the MEDIUM THAT APPLIES GRADUAL EXTERNAL CONTACT FORCE MEASUREMENT (ApFGM) contact force is applied external, to the extent of not affecting systolic blood pressure and blood flow, this phase ends before affecting systolic blood flow with external force.
  • ApFGM MEDIUM THAT APPLIES GRADUAL EXTERNAL CONTACT FORCE MEASUREMENT
  • SECOND PHASE Continue applying gradual and measured external contact force in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, until detecting the arterial manifestations corresponding to the systolic period that vary with With respect to the physical properties that it presented in the FIRST PHASE, the arterial manifestations of the diastolic period continue similar to the FIRST PHASE, because only the systolic period of the arterial cycle is affected by the external contact force applied.
  • THIRD PHASE Gradual and measured external contact force continues to be applied, in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, until detecting that the arterial manifestations corresponding to the diastolic period they vary with respect to the physical properties they presented in the FIRST PHASE, because the amount of force applied has come to affect the arterial blood flow in the diastolic period of the arterial cycle and the blood flow of the systolic period continues to be affected;
  • This third phase is also called the diastolic pre-occlusion phase because it is detected before the artery in the diastolic period undergoes obliteration and ends just before the total obliteration of the diastolic period of the arterial cycle.
  • FOURTH PHASE Continue applying gradual and measured external contact force in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, until detecting that the arterial manifestations corresponding to the diastolic period disappear because The external contact force applied obliterates the artery in the diastolic period of the arterial cycle preventing blood flow during this period, at this time the DIASTOLIC BLOOD PRESSURE is measured by equalization of the force applied in the measurable artery with the magnitude of the force that the blood exerts on the wall of the artery from the arterial manifestations characteristic of the disappearance of the blood flow corresponding to the diastolic period of the arterial cycle.
  • FIFTH PHASE Continue applying gradual and measured external contact force in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, detecting that the artery in time corresponding to the diastolic period continues with obliteration and in the systolic arterial period the flow decreases significantly with respect to the FOURTH PHASE, this fifth phase is also called the systolic pre-occlusion phase; because it ends just before the artery in the systolic period undergoes obliteration.
  • SIXTH PHASE Continue applying gradual and measured external contact force in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, detecting that the arterial manifestations of the arterial cycle in its systolic period disappear in full because the artery undergoes total obliteration.
  • the SYSTOLIC ARTERIAL PRESSURE is measured by equalizing the force applied in the measurable artery with the magnitude of the force exerted by the blood on the wall of the artery without overpressure due to the heartbeats generated after arterial occlusion.
  • a PROCEDURE FOR MEASURING THE INDASTECT METHOD OF DIASTOLIC ARTERIAL PRESSURE (MIPAD) that directs the activities of a MEDIUM THAT APPLIES GRADUAL EXTERNAL CONTACT FORCE (ApFGM) which in this modality is a bracelet attached to a pressure sensor; an ARTERIAL MANIFESTATION SENSOR (SMA) which in this mode is a flow sensor;
  • a MEASUREMENT AND DETECTION MEANS OF THE DIASTOLIC AND SYSTOLIC PERIOD OF THE ARTERIAL CYCLE (MDCA) which in this mode is a MOTHER ELECTRONIC CARD that basically operates, as seen in Figure 13, in two loops and two subsystems, a first loop and subsystem 3190 control and measurement of blood pressure and a second loop and subsystem 30 0 to collect, condition and analyze the data of the signal received from the SMA 3020 arterial manifestation sensor.
  • the measurement of diastolic and systolic blood pressure from the diastolic and systolic periods respectively of an arterial cycle is performed, said measurements are developed by the PROCEDURE FOR MEASURING DIASTOLIC ARTERIAL PRESSURE (MIPAD) WITH INDIRECT METHOD which directs the activities of the ApFGM, SMA and MDCA media until obtaining the measurement of diastolic blood pressure and additionally systolic blood pressure in the systolic period without overpressure due to the heartbeats generated after arterial occlusion.
  • MIPAD MEASURING DIASTOLIC ARTERIAL PRESSURE
  • INDIRECT METHOD directs the activities of the ApFGM, SMA and MDCA media until obtaining the measurement of diastolic blood pressure and additionally systolic blood pressure in the systolic period without overpressure due to the heartbeats generated after arterial occlusion.
  • the system and method for measuring blood pressure for its effects with the integration of mipad, apfgm, sma and mdca comprises the following phases.
  • the cuff attached to a pressure sensor is placed on the measurable artery, which by means of a transducer performs the function of measuring the pressure applied to the cuff during the entire measurement process and at the end distal (in the direction of the hand) of the measurable artery arranged after the cuff is placed the flow sensor (SMA) which has a transducer with the function of capturing arterial manifestations and transforming them into electrical signal to be sent along with the signal which sends the pressure sensor to the electronic mother board (MDCA).
  • ApFGM pressure sensor
  • SMA flow sensor
  • the programming of the motherboard in the second loop (as seen in Figure 13) or subsystem consists of the passage of the electrical signal through a band pass filter 3030, from the resulting signal the absolute values 3040 are obtained and a signal scaling 3050 for conditioning, finally the signal passes through a low pass filter 3060 and proceeds to the data analysis, the second loop and subsystem 3010 collects data on the variation of blood movement delimiting the systolic period and the 3070 diastolic period of the arterial cycle and measures any variation in each of these more specific periods
  • the processing consists of a differentiation of the signal from its amplitude and frequency with which signals of high and low magnitudes are recorded as a function of time with Cyclic character, from the results of said analysis and differentiation is established, that a unit of arterial manifestations contains a magnitude d high and a low magnitude
  • SECOND MIPAD PHASE Continue applying gradual external contact force and measure in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, until detecting the arterial manifestations corresponding to the systolic period that vary With respect to the physical properties that it presented in the FIRST PHASE and the arterial manifestations of the diastolic period continue similar to the FIRST PHASE because only the systolic period of the arterial cycle is affected by the force of external contact applied.
  • THIRD MIPAD PHASE Gradual and measured external contact force continues to be applied in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, until detecting that the arterial manifestations corresponding to the diastolic period they vary with respect to the physical properties they presented in the FIRST PHASE because the amount of force applied has come to affect the arterial blood flow in the diastolic period of the arterial cycle and the blood flow of the systolic period continues to be affected;
  • This third phase is also called the diastolic pre-occlusion phase because it is detected before the artery in the diastolic period undergoes obliteration and ends just before the total obliteration of the diastolic period of the arterial cycle.
  • FOURTH PHASE IPAD Continue applying gradual and measured external contact force in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE. Variation samples are provided every millisecond and its amplitudes are reviewed and compared until detecting that the arterial manifestations corresponding to the diastolic period disappear finding a range of minimum or zero amplitude 3080 because the applied external contact force obliterates the artery in the diastolic period of the arterial cycle preventing that in this period there is blood flow , when finding this value, an interruption 3090 is activated in which we take the pressure value found in the first loop and first subsystem 3120, this value is stored in memory 3100 and corresponds to the value of the DIASTOLIC PRESSURE by force equalization applied in the measurable artery with the magnitu d of the force that the blood exerts on the wall of the artery from the arterial manifestations characteristic of the disappearance of the blood flow corresponding to
  • the search continues in the third phase until this value 3200 of the fourth phase is found while the arterial manifestations of the systolic period remain present because the force of the blood in said period exceeds the contact force applied externally.
  • FIFTH MIPAD PHASE Continue applying gradual external contact force and measure in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, detecting that the artery in time corresponding to the diastolic period continues with obliteration and in the systolic arterial period the flow decreases significantly with respect to the FOURTH PHASE, Once stored the value of the diastolic pressure is continued with the measurement and the second subsystem continues to collect data from the 3130 blood variation, this fifth phase is also called the systolic pre-occlusion phase; because it ends just before the artery in the systolic period undergoes obliteration.
  • SIXTH MIPAD PHASE Continue applying gradual and measured external contact force in addition to recording and analyzing the manifestations of the systolic period and the diastolic period of the arterial cycle with the means used in the FIRST PHASE, now analyzing the systolic period of the arterial cycle where the samples of the variations are reviewed and compared, to detect that the arterial manifestations of the arterial cycle in its systolic period disappear in their totality finding a range of minimum or zero amplitude value 3140 because the artery undergoes total obliteration, once this value is found 3180 corresponds at systolic pressure and is stored and displayed on a screen along with the value of the diastolic pressure 3160. If the variation in the amplitude of the signal in the systolic period does not reach the minimum or zero range, the search continues until it is found this value 3210
  • the SYSTOLIC ARTERIAL PRESSURE is measured by equalizing the force applied in the measurable artery with the magnitude of the force exerted by the blood on the wall of the artery in the systolic period without overpressure due to the heartbeat generated after arterial occlusion.
  • the system first checks whether there are at least three values equal to zero or with a minimum range in the diastolic period 3080 and second, at least three values equal to zero or With a minimum range in the systolic period 3140, then the decision is made to set the value or data found in the pressure sensor 3120, 3180 and determines the value of the diastolic and systolic pressure.
  • the iPad using a pressure sensor and the oscillometric method as SMA; record and analyze the signals; the pressure oscillation signal of the systolic period of the arterial cycle in this phase disappears, leaving only supramaximal pressure oscillation signals; because the pressure applied externally at this time overcomes the pressure that the blood exerts on the arterial wall, however the pulse wave in the adjacent artery transmits to the apparatus that applies gradual external contact force measured the supramaximal arterial pulse waves detected with the pressure sensor, which are considered as the minimum or zero reference value or range.
  • SIXTH MIPAD PHASE SYSTOLIC ARTERIAL PRESSURE is measured by equalizing the force applied in the measurable artery with the magnitude of the force that the blood exerts on the wall of the artery.
  • the diastolic blood pressure can be measured using an ARTERIAL DESOBSTRUCTION METHOD (MDA) with an indirect method in this new system and method to measure the blood pressure by its effects, by removing gradual external contact force to the previously occluded artery until the force that the blood exerts on the arterial wall in the diastolic period of the arterial cycle overcomes the applied external force.
  • MDA ARTERIAL DESOBSTRUCTION METHOD
  • FIRST PHASE MDA With an electronic device for processing analysis and registration of arterial manifestation record and analyze the signals of the card of an arterial manifestation sensor and the card of an apparatus that applies measured gradual external contact force. Place the arterial manifestation sensor and the device that applies gradual external contact force measured on the measurable artery, apply force on the measurable artery until obliterated.
  • THIRD PHASE MDA Continue removing gradual external force measurement applied to the measurable artery, and record and analyze the signals in the same manner as in the FIRST PHASE ARTERIAL DESOBSTRUCTION including its additional form with the pressure sensor and oscillometric method until the arterial manifestations are detected corresponding to the fact that the arterial blood flow in the diastolic period of the arterial cycle has exceeded the application of external force and at this time the DIASTOLIC ARTERIAL PRESSURE capable of overcoming the external contact force applied on the artery is measured.
  • the arterial manifestation sensor is a pressure sensor and the method to use the oscillometric; record and analyze the signals with said electronic device of the FIRST PHASE from the pressure sensor because in the oscillation signal of the pressure sensor the signal of the apparatus that applies measured external contact force is included, in this phase the sensors are detected Blood pressure oscillations corresponding to the appearance of the diastolic blood pressure of the arterial cycle and DIASTOLIC BLOOD PRESSURE is measured because the external force applied to the measurable artery has expired upon detecting the appearance of an oscillation in the diastolic period attached to the existing one of the systolic period of the arterial cycle;
  • the same measurement of diastolic blood pressure can be reached in this third phase of arterial obstruction with the identification of the following arterial manifestations using the following sensors.
  • the phonogram or flow sensor detect; the appearance of the second sound or blood flow of the diastolic period of the arterial cycle, detect the disappearance of intermittent collisions of the arterial wall detect the appearance of the blood flow velocity of the diastolic period of the arterial cycle, detect the appearance of wall vibrations in the diastolic period of the arterial cycle, detect changes in the density of the frequency spectrum in the diastolic period of a cycle arterial, detect the variation of the diameter or volume of the artery in the diastolic period of an arterial cycle. ; With a temperature sensor; detect the variation of the temperature in the diastolic period of the arterial cycle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

El sistema y método para medir Ia presión arterial por sus efectos, se conforma por un procedimiento de seis fases y tres medios; el procedimiento para medir con método indirecto Ia presión arterial diastólica dirige las actividades de un primer medio que aplica fuerza de contacto externa gradual medida, un segundo medio sensor de manifestación arterial que registra Ia manifestación arterial y el tercero que es un medio de medición y detección del periodo diastólico y sistólico del ciclo arterial para generar el valor de Ia presión arterial diastólica con método indirecto. De forma adicional se mide Ia presión arterial sistólica sin sobrepresión por los latidos cardiacos generados posteriores a Ia oclusión arterial.

Description

SISTEMA Y METODO PARA MEDIR LA PRESIÓN ARTERIAL POR SUS EFECTOS
CAMPO DE LA INVENCION
La presente invención está relacionada con los sistemas, procedimientos e instrumentos diseñados en el campo de medicina e Ingeniería Biomédica y que son utilizados en la medicina para medir presión sanguínea arterial, y más particularmente, está relacionada con un sistema, y procedimiento para medir con método indirecto la presión arterial diastólica a partir de los efectos del periodo diastólico del ciclo arterial.
ANTECEDENTES DE LA INVENCION La presión arterial: Es la fuerza que ejerce la sangre sobre la pared de las arterias, para medir dicha presión, la unidad de fuerza que ejerce la sangre se divide entre la unidad de área de la pared de la arteria, y la medida resultante es la unidad de presión, por ejemplo, mmHg o paséales.
La fuerza sanguínea arterial es la presión que ejerce la sangre en la pared de la arteria, y la medida es la resultante de la unidad de presión sanguínea multiplicada por la unidad de área de la pared del segmento arterial sus unidades son dinas o Newton.
El ciclo cardiaco es el conjunto de eventos relacionados con el flujo de sangre que debe ocurrir desde el comienzo de un latido del corazón hasta el comienzo del siguiente. Cada latido del corazón incluye dos etapas principales en los ventrículos: La sístole y la diástole ventricular. El término diástole es sinónimo de relajación muscular. A lo largo del ciclo cardíaco, la presión arterial aumenta y disminuye en el corazón y el sistema arterial. La variación de la presión en la arteria se presenta en dos tiempos; el tiempo de la presión arterial sistólica que es corto y un tiempo más largo perteneciente a la presión arterial diastólica.
El ciclo arterial es la unidad de variación de las propiedades físicas repetitivas de la arteria en función del tiempo, compuesta por los eventos del flujo sanguíneo y pared arterial en un periodo de mayor movimiento sanguíneo llamado sistólico y un periodo de tiempo con menor movimiento sanguíneo llamado diastólico. Como se demostró en la tesis "EL CICLO ARTERIAL" Universidad Autónoma de Tamaulipas, México., Facultad de Medicina de Tampico para adquirir el grado de Maestría en Ciencias con Especialidad en Urgencias Medicas del Autor Jesús Bustillos Cepeda documento no publicado por tramites de la solicitud de patente. En relación a la cantidad de presión de la arteria en las fases sistólica y diastólica, la presión arterial sistólica es la presión mayor de las dos fases y tiene flujo sanguíneo en toda la fase; mientras que la presión arterial diastólica es la presión menor de las dos fases y su flujo sanguíneo no siempre dura el total del tiempo diastólico del ciclo arterial.
Obliterar: Obstruir o cerrar un conducto o cavidad.
Medición de presión diastólica arterial mediante la Obliteración arterial por aplicación de fuerza de contacto externa gradual: Es la acción de aplicar fuerza de contacto externa gradual hasta obliterar una arteria para medir la fuerza que la sangre ejerce sobre la pared arterial en el periodo diastólico.
Desobstruir: Quitar a algo lo que lo obstruye.
Medición de presión diastólica arterial mediante la desobstrucción arterial al quitar fuerza de contacto externa gradual: Es la acción de quitar fuerza de contacto externa gradual hasta desobstruir una arteria para medir la fuerza que la sangre ejerce sobre la pared arterial en el periodo diastólico.
Arteria medible: Segmento arterial sobre la cual se opera para conocer la medida de una magnitud.
Arteria medible: En este invento; segmento arterial sobre la cual se opera para conocer la medida de presión que la sangre ejerce sobre la unidad de área de su pared.
Parámetro: Es el valor numérico o dato fijo que se considera en el estudio o análisis de una cuestión.
En la presente solicitud un parámetro es la muestra de las manifestaciones del flujo sanguíneo y pared arterial sin ser afectados por fuerza externa aplicada, valores que se tendrán en cuenta para hacer el cálculo de presión arterial sistólica y diastólica.
La presión arterial puede ser medida de forma invasiva (directa) que en este documento no es relevante o de forma no invasiva (indirecta).
La medición de la presión arterial diastólica y sistólica con método indirecto es esencial en éste invento y en el estado de la técnica dicha medición se realiza con el método auscultatorio y el método oscilométrico que tienen su origen descripción y fundamentos científicos en los siguientes hechos históricos: Método auscultatorio (método clásico!:
1 8 9 6: Desarrollo del método indirecto de medición de fuerza sanguínea por Von Riva Rocci Recklinghaus. Que en su publicación a la letra dice "...el instrumento que he desarrollado mide manométricamente la fuerza requerida para detener la progresión de la onda del pulso, la esfigmomanometría se realiza en una de las ramas grandes de la arteria aorta, sobre la arteria humeral, que es una continuación directa de la axilar, de tal manera que la medición estima la carga total en un punto muy cercano a la aorta, podría decirse que casi dentro de la misma..."
1 9 0 5: Se perfecciona la técnica de Von Riva Rocci Recklinghaus con adición de la auscultación por un Cirujano ruso, Nikolai Sergeyevich Korotkoff, quien en su tesis doctoral en la Academia Imperial de Medicina Militar de San Petersburgo en 1905; describió los sonidos oídos con un estetoscopio colocado sobre la arteria braquial debajo del brazalete de Von Riva Rocci Recklinghaus durante deflación lenta. Que a la letra en traducción de Ruso al Ingles dice "...The cuff of Riva - Rocci is placed on the middle third of the upper arm; the pressure within the cuffis quickly raised up to complete cessation of circulation below the cuff. Then, letting the mercury of the manometer fall one listens to the artery just below the cuff with a children's stethoscope. At fírst no sounds are heard. With the falling of the mercury in the manometer down to a certain height, the first short tones appear; their appearance indicates the passage ofpart of the pulse wave underthe cuff. It follows that the manometric figure at which the first tone appears corresponds to the maximal pressure. With the further fall of the mercury in the manometer one hears the systolic compression murmurs, which pass again into tones (second). Finally, all sounds disappear. The time of the cessation of sounds indicates the free passage of the pulse wave; in other words at the moment of the disappearance of the sounds the minimal blood pressure within the artery predominates over the pressure in the cuff. It follows that the manometric figures at this time correspond to the minimal blood pressure..."
Traducción al español (El brazalete de Von Riva Rocci Recklinghaus se coloca en el tercio medio del brazo; la presión dentro del brazalete se eleva rápidamente hasta el cese completo de la circulación debajo del brazalete. Entonces, permitiendo la caída del mercurio del manómetro se escucha en la arteria, un poco debajo del brazalete, con un estetoscopio pediátrico. Al principio no se oye ningún sonido. Al caer el mercurio en el manómetro abajo de cierta altura, los primeros tonos cortos aparecen; su aspecto indica el paso de la parte de la onda del pulso por debajo del brazalete. Sigue la lectura manométrica en la cual el primer tono que aparece corresponde a la presión máxima. Con la baja ulterior del mercurio en el manómetro uno oye los murmullos sistólicos de la compresión, que pasan otra vez en tonos (en segundo lugar). Finalmente, todos los sonidos desaparecen. El momento de la cesación de sonidos indica el paso libre de la onda del pulso; es decir en el momento de la desaparición de los sonidos la presión arterial mínima dentro de la artería predomina sobre la presión en el brazalete. Sigue que la lectura manométrica en este tiempo corresponde a la presión arterial mínima.
Método oscilométrico:
1 9 4 0 Reporte del concepto de "auto monitoreo" y sus diferencias con las determinaciones de presión arterial en consulta (Ayman y Goldshine); 1 9 6 9 Demostración teórica del principio oscilométrico (Posey); 1 9 7 0 Aplicaciones de la oscilometría en la clínica (MAPA y AMPA); El método oscilométrico es empleado por la mayoría de los dispositivos automatizado no invasivos. Un miembro y su vasculatura están comprimidos en un brazo por una manga de condensación inflable. El principio de la medida simplificado del método oscilométrico es una medida de la amplitud de cambio de presión en la manga, como la manga es inflada sobre la presión sistólica, la amplitud se hace más grande de repente con los descansos del pulso a través de la oclusión. Esto es muy cerca de la presión sistólica. Cuando la presión de la manga se reduce, el aumento de la pulsación en amplitud alcanza un máximo y entonces disminuye rápidamente. El índice de presión arterial diastólica se toma donde esta transición empieza. Por consiguiente, la presión de la sangre sistólica y la presión de sangre diastólica se obtienen identificando la región donde hay entonces respectivamente un aumento rápido y una disminución en la amplitud de los pulsos. La presión arterial media se localiza en el punto de oscilación máxima.
Los instrumentos que se utilizan para observar manifestaciones arteriales descritos por Korotkoff son estetoscopio, sensor de presión, sensor de flujo y esfigmomanómetro en relación con un manómetro, para determinar la presión arterial. En los métodos para medir la presión arterial en el estado de la técnica, la medición se hace mediante las observaciones de las manifestaciones descritas anteriormente por Korotkoff en su tesis doctoral. En el estado de la técnica la medición de la presión arterial es regida por el método de Korotkoff en el cual para medir la presión arterial se realizan los siguientes pasos: 1 se presiona la arteria humeral contra el hueso humeral mediante el manguito neumático; 2 se detecta el momento en que la presión aplicada cierra el flujo arterial; 3 Una vez que la arteria ha sido ocluida, se dejan de observar las manifestaciones de las ondas del pulso y se aplica presión más allá del punto de oclusión; 4 Después se reduce la presión en el brazalete abriendo una válvula que se encuentra en la perilla de insuflación; 5 la reaparición del flujo sanguíneo pulsátil a través de la arteria parcialmente comprimida produce los sonidos de Korotkoff (sonidos que produce la onda de pulso arterial causada por la presión sistólica al encontrarse la arteria parcialmente ocluida); 6 El nivel de presión en el brazalete cuando aparece el primer sonido de Korotkoff indica la presión arterial sistólica, también llamada "fase I de los ruidos de Korotkoff" y es la presión máxima generada por la onda de pulso durante cada ciclo cardíaco; 7 Se continua reduciendo la presión aplicada sobre la arteria, al desaparecer los sonidos de Korotkoff permanentemente, indica la magnitud de la presión arterial diastólica, porque la restauración del flujo sanguíneo laminar en la arteria elimina los ruidos de Korotkoff, dicha eliminación de ruidos se observa en la fase V de la clasificación de los ruidos de Korotkoff. En el estado de la técnica se clasifica por fases los cinco ruidos de Korotkoff:
Fase I: indica que la presión del vaso ha sobrepasado la presión externa, siendo un sonido abrupto, alto y progresivamente intenso correspondiendo a la presión arterial sistólica.
Fase II: el sonido es más claro, intenso y prolongado.
Fase III: el sonido continúa alto y claro, aunque empieza a percibirse un murmullo que indica su próxima desaparición.
Fase IV: hay una pérdida brusca de la intensidad del sonido que se hace marcadamente apagado con un murmullo continuo; en ocasiones es lo último que se escucha algunos autores determinan en esta fase la presión arterial diastólica.
Fase V: desaparición total del sonido al restablecerse el flujo laminar. La Organización Mundial de la Salud recomienda que en esta fase se mida la presión artería! diastólica. El procedimiento oscilométrico es la medida a partir de las oscilaciones de la amplitud por el cambio de la presión en el interior de un medio de aplicación de fuerza. También depende de las observaciones de Korotkoff para medir la presión arterial, como su nombre lo indica, utiliza el oscilómetro que es un aparato electrónico basado en el análisis de la onda de pulso. En dicho método oscilométrico, el brazo de la persona está comprimido por un brazalete de condensación inflable, de tal suerte que la medición se basa en la amplitud de cambio de presión en el brazalete, por lo que cuando dicho brazalete es inflado sobre la presión sistólica, la amplitud se hace más grande de repente con los periodos de descanso o reposo del pulso a través de la oclusión, esto es, muy cerca de la presión sistólica. Cuando la presión del brazalete se reduce, el aumento de la pulsación en amplitud alcanza un máximo y disminuye rápidamente, el índice de presión diastólica se toma en donde empieza esta transición. Por consiguiente, la presión de la sangre sistólica y la presión de sangre diastólica se obtienen identificando la región en donde hay un aumento rápido e inmediatamente después hay una disminución en la amplitud de los pulsos sistólicos.
Con la evidencia científica de los antecedentes, se observa que los procedimientos y aparatos en el estado de la técnica para medir de manera indirecta la presión arterial sanguínea, solo se logra medir en dos momentos la presión arterial sistólica; uno la presión sistólica de la sangre al vencer la fuerza aplicada sobre la arteria medible, dos la presión que tiene el brazalete cuando ya no es capaz de afectar la presión sistólica de la sangre, a esta presión dos le llaman presión diastólica arterial, lo cual es falso; la medición de presión arterial sistólica con el método de Korotkoff, si determina la presión arterial sistólica, pero con el error de la sobre carga de presión que los latidos cardiacos posteriores a la oclusión generaron en la arteria ocluida; el segundo fenómeno de la presión sistólica que de manera incorrecta se le conoce como presión arterial diastólica, determinada con los métodos e instrumentos del estado de la técnica, dicha medición consiste en medir la presión que el brazalete aplica al brazo, en el momento que desaparezcan los sonidos de Korotkoff porque la presión aplicada con el brazalete, se reduce a grado que ya no afecta al flujo sanguíneo de la onda mayor de pulso sistólico, permitiendo que el flujo sanguíneo arterial sistólico de turbulento pase a laminar y por lo tanto no produzca manifestaciones (ruidos de Korotkoff); a pesar de ser un fenómeno evidentemente de la presión arterial sistólica, comúnmente se ha determinado que esta medición corresponde a la presión arterial diastólica.
En el estado de la técnica se define presión arterial diastólica, como: "el valor más bajo de los dos valores de presión arterial sanguínea, correspondiente a la presión arterial sanguínea cuando el corazón está en diástole o reposo".
Por lo anterior puede observarse que en el estado de la técnica los procedimientos y aparatos para medir la presión arterial sanguínea de forma no invasiva; presentan un gran inconveniente intentan medir la presión diastólica arterial indirecta pero no lo logran, por lo cual el estado de la técnica presenta una laguna científica ¡no hay método ni instrumentos que midan la presión arterial diastólica con método indirecto! porque "lo existente para medir la presión arterial diastólica en el estado de la técnica, son métodos e instrumentos para medir la menor fuerza de contacto externa aplicada con un medio sobre la arteria en el momento en que la presión arterial sistólica va no es capaz de provocar los ruidos de Korotkoff que se producen por las vibraciones de la pared arterial y turbulencias del flujo sanguíneo pertenecientes a la presión arterial sistólica". Aunado a lo anterior, con los instrumentos y procedimientos encontrados en el estado de la técnica tenemos que la única forma de medir la presión arterial diastólica es utilizando un método invasivo (catéter intra- arterial).
La presente invención tiene como objetivo resolver algunos de los siguientes problemas del método auscultatorio (método clásico); el método indirecto de medición de Fuerza sanguínea arterial de Von Riva Rocci Recklinghaus: Que en su publicación a la letra dice: "El instrumento que he desarrollado mide manométricamente la fuerza requerida para detener la progresión de la onda del pulso, la esfigmomanometría se realiza en una de las ramas grandes de la arteria aorta, sobre la arteria humeral, que es una
continuación directa de la axilar, de tal manera que la medición estima la carga total en un punto muy cercano a la aorta, podría decirse que casi dentro de la misma"...
Observaciones ai principio de Von Riva Rocci: Bajo condiciones normales en la arteria existe un flujo con presión y fuerza determinada momento antes de la eyección ventricular, llamado presión diastólica, ¡presión que Von Riva Rocci ignora en su descripción! dicha presión diastólica sanguínea arterial, es interrumpida bruscamente por el volumen de sangre que en un corto tiempo el corazón eyecta a la arteria generando una fuerza y presión arterial mayor, provocando una expansión de la arteria llamada onda del pulso arterial. La aportación científica tecnológica de Von Riva Rocci Recklinghaus es un instrumento y un procedimiento para medir manométricamente la fuerza requerida para detener la progresión de la onda del pulso refiriéndose a la fuerza o presión sistólica ya que esta es la que genera dicha onda.
Por lo anterior surge el problema, Riva Rocci no determinó la medición de la presión arterial diastólica con método indirecto.
Posteriormente se perfecciona la técnica de Von Riva Rocci Recklinghaus con adición de la auscultación por el Cirujano Ruso, Nikolai Sergeyevich Korotkoff, al describir en su tesis doctoral: "...Con la baja ulterior del mercurio en el manómetro uno oye los murmullos sistóíicos de la compresión, que pasan otra vez en tonos (en segundo lugar). Finalmente, todos los sonidos desaparecen. El momento de la cesación de sonidos indica el paso libre de la onda del pulso; es decir en el momento de la desaparición de los sonidos la presión arterial mínima dentro de la arteria predomina sobre la presión en el brazalete. Sigue que la lectura manométríca en este tiempo corresponde a la presión arterial mínima."
Korotkoff se refiere a la arteria produciendo tonos cortos que su aspecto indica parte de la onda del pulso, escribe "...sigue la lectura manométríca..." refiriéndose a que continua con el fenómeno de deflación y con ello la disminución de presión aplicada al brazo por el brazalete y que el primer tono que aparece completo en relación a los anteriores corresponde a la presión máxima. Como se observa en la descripción la presión máxima es el resultado de la medición de la fuerza externa con la aparición del primer tono completo posterior a una oclusión confirmada y liberación de fuerza por deflación. En esta técnica no se contempla el fenómeno de que en el tiempo para observar la oclusión deben pasar varios ciclos cardiacos sin manifestación de tono y que cada ciclo cardiaco genera un volumen definido para la extremidad superior de la arteria humeral la cual deberá permitir el paso de fluido para la irrigación del brazo, antebrazo y mano. Sin embargo por la oclusión arterial dada por el brazalete, al no permitir el paso del flujo sanguíneo, genera incremento del volumen y presión en el segmento arterial ubicado antes del segmento de oclusión arterial, causando que al medir la fuerza externa guiados por la aparición del primer tono de Korotkoff, la magnitud de la presión sanguínea presenta alteración por la sobre carga sanguínea, debida a las eyecciones ventriculares posteriores a la oclusión arterial. Por lo anterior surge el problema: ¿Cómo medir la presión arterial sistólica con método indirecto sin afección de la sobrecarga de presión, causa de las eyecciones ventriculares posteriores a la oclusión de la arteria?
En la descripción del fenómeno de los tonos para determinar la presión diastólica con método indirecto, Nikolai Sergeyevich Korotkoff afirma "... Con la baja ulterior del mercurio en el manómetro uno ove los murmullos sistólicos de la compresión, que pasan otra vez en tonos (en segundo lugar). Finalmente, todos los sonidos desaparecen. El momento de la cesación de sonidos indica el paso libre de la onda del pulso: es decir en el momento de la desaparición de los sonidos la presión arterial mínima dentro de la arteria predomina sobre la presión en el brazalete Sigue que la lectura manométricas en este tiempo corresponden a la presión arterial mínima. " Y tiene razón al decir, que los sonidos que desaparecen al final por deflación del brazalete son sonidos sistólicos, debido a que el pulso es el efecto provocado por la expansión de la arteria en consecuencia de la eyección del ventrículo durante la sístole cardiaca. La fuerza que aplica el brazalete es por reducción del volumen en dirección concéntrica y las fuerzas a medir menor y mayor de la arteria están en dirección excéntrica. Entonces la Fuerza externa al ocluir la arteria y después liberar la oclusión progresivamente por deflación primero dejara de afectar la fuerza que genera el volumen menor de la arteria y por ultimo al caer más la fuerza aplicada extema por la deflación dejará de afectar la fuerza mayor o sistólica la cual emitirá los últimos tonos que Korotkoff describió, al desaparecer los tonos, ¡se determina la presión arterial diastólica a partir de manifestaciones arteriales por la relación entre la fuerza del brazalete y la arteria con presión arterial sistólica! y no la presión diastólica arterial en su valor real.
Lo anterior demuestra por lógica que la medición de la presión menor o diastólica con el método de Korotkoff se mide a partir de los efectos de la presión sistólica arterial.
Por tal motivo Surge un problema ¿Cómo medir la presión arterial diastólica con método indirecto a partir de los efectos generados por ella y no por los efectos que produzca la presión arterial sistólica?
BREVE DESCRIPCION DE LA INVENCION
Con el propósito de suprimir los problemas de los procedimientos y aparatos encontrados en el estado de la técnica para medir la presión arterial diastólica con método indirecto, este novedoso SISTEMA Y METODO PARA MEDIR LA PRESIÓN ARTERIAL POR SUS EFECTOS realiza la medición de la presión arterial diastólica y sistólica a partir de las manifestaciones que la arteria produce en el periodo sistólico y diastólico respectivamente del ciclo arterial. El ciclo arterial se define como la unidad de variación física repetitiva de la arteria en función del tiempo, compuesta por los eventos del flujo sanguíneo y pared arterial que se definen en dos periodos; el primer periodo con tiempo corto, mayor movimiento y mayor presión sanguínea, llamado periodo de presión arterial sistólica; el segundo periodo con tiempo mayor al anterior periodo, menor movimiento y menor presión sanguínea llamado periodo de presión arterial diastólica.
Para resolver el primer problema: ¿Cómo medir presión arterial diastólica con método indirecto a partir de los efectos generados por ella y no por los efectos que produce la presión arterial sistólica?
La presente invención realiza la medición de presión arterial sanguínea diastólica a partir de la observación de las manifestaciones del flujo sanguíneo y de la pared arterial que emanen o se eliminen en el periodo diastólico del ciclo arterial por aplicar fuerza de contacto gradual y medida sobre la arteria medible.
Para resolver el segundo problema: ¿Cómo determinar la presión arterial sistólica con método indirecto sin afección de la sobrecarga de presión sanguínea causa de las eyecciones ventriculares posteriores a la oclusión de la arteria?
La presente invención proporciona de forma adicional un procedimiento para medir con método indirecto la presión arterial sistólica en el periodo sistólico del ciclo arterial y sin afección de la sobrecarga de presión causa de las eyecciones ventriculares posteriores a la oclusión de la arteria; en este novedoso invento se mide adicionalmente la presión arterial sistólica a partir de los efectos que emanen o se eliminen al obliterar la arteria por aplicar fuerza de contacto externa creciente, registrar y medir las manifestaciones que el flujo, la pared arterial y el manómetro generen en el periodo sistólico del ciclo arterial al momento de igualar la fuerza externa aplicada con la fuerza de la sangre sobre la pared arterial.
Objetos del sistema y método para medir la presión arterial por sus efectos Teniendo en cuenta que no existe en el estado de la técnica un método e instrumentos capaces de medir la presión arterial diastólica con método indirecto, es un objeto de la presente invención proporcionar un sistema y método para medir la presión arterial por sus efectos sumamente sencillo y altamente eficaz para medir la presión arterial diastólica con método indirecto.
Otro objeto más de la presente invención es proveer un procedimiento que sea capaz de medir con sensibilidad y especificidad la presión arterial diastólica con método indirecto.
Otro objeto más de la presente invención es proveer un sistema y método para medir la presión arterial por sus efectos que sea capaz de medir la presión arterial sistólica por sus efectos en el periodo sistólico del ciclo arterial y la presión arterial diastólica por sus efectos en el periodo diastólico del ciclo arterial con método indirecto.
Es todavía un objeto más de la presente invención el proveer un procedimiento para medir la presión arterial diastólica por los efectos que la presión arterial diastólica genere mediante la aplicación de fuerza de contacto externa con un MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA, observando los fenómenos que produzca el flujo sanguíneo y la pared arterial con un SENSOR DE MANIFESTACIÓN ARTERIAL siendo estos dos elementos la fuente de información de datos para un MEDIO DE MEDICIÓN Y DETECCION DEL PERIODO DIASTÓLICO Y SISTÓLICO DEL CICLO ARTERIAL que discrimina los periodos diastólico y sistólico en un ciclo arterial para determinar la presión arterial diastólica y sistólica respectivamente por sus efectos.
Otro objeto más de la presente invención es proveer un MEDIO DE MEDICIÓN Y DETECCION DEL PERIODO DIASTÓLICO Y SISTÓLICO DEL CICLO ARTERIAL
que en una modalidad es una tarjeta electrónica madre que discrimina los periodos diastólico y sistólico en un ciclo arterial para determinar la presión arterial diastólica y sistólica respectivamente por sus efectos. De modo adicional es todavía un objeto más de la presente invención el proveer un procedimiento que sea capaz de medir con mayor exactitud la presión arterial sistólica sin la sobre presión que generan los latidos cardiacos posteriores a la oclusión de la arteria medible. Efectos ventajosos de esta invención:
Las ventajas de esta invención se dan al medir por primera vez en la historia la Presión Arterial Diastólica de forma indirecta por sus efectos y con esto podremos medir con método indirecto la presión de la sangre que tiene la arteria en el momento que el corazón inicia la eyección ventricular y dicha presión el corazón tiene que vencer en cada latido para vaciar su contenido sanguíneo ventricular al sistema arterial, esto nos llevará a mejorar el diagnostico y tratamiento de un gran número de enfermedades arteriales y del corazón, principalmente las enfermedades de insuficiencia cardiaca. Otra ventaja de este inventivo sistema de medición es aportar a las ciencias de la salud un procedimiento e instrumento para medir la presión arterial diastólica indirecta ya que para el humano es relevante debido a que "Por cada aumento de 20 mmHg de presión sistólica ó 10 mmHg de presión diastólica, se duplica en un humano, el riesgo de muerte por enfermedad cardíaca o ataque cerebral."
Fundamento científico: En el estado de la técnica y postulados de la tesis "EL CICLO ARTERIAL" Universidad Autónoma de Tamaulipas, México., Facultad de Medicina de Tampico para adquirir el grado de Maestría en Ciencias con Especialidad en Urgencias Medicas del Autor Jesús Bustillos Cepeda documento no publicado por trámites de la solicitud del presente patente. "Una arteria se compone de 3 elementos Pared, área de sección transversal interna y fluido sanguíneo. El sistema arterial tiene su origen en la conexión de la válvula aórtica con el ventrículo izquierdo y termina en los capilares. En condiciones ideales y básales del sistema arterial existen dos tipos de energía de distribución sanguínea. La energía de distención arterial que distribuye el 40% del volumen ingresado en 0.2 segundos, generada por la eyección ventricular y respuesta de adaptabilidad de la arteria. Y la energía de contracción arterial que distribuye el 60 % del volumen restante en 0.6 segundos, generada por la energía potencial elástica de la pared arterial. La eyección ventricular es cíclica y afecta a todo el volumen sanguíneo en el sistema arterial desde la aorta al capilar en función de la velocidad de onda de presión". Por lo anteriormente dicho y con referencia a la citada tesis se postula que: "La eyección ventricular cíclica genera respuestas arteriales cíclicas" y un ciclo arterial siempre es producido como respuesta a una eyección ventricular efectiva del ciclo cardiaco. Por lo anterior se define el ciclo arterial como: Un fenómeno continuo, en el cual se ejecuta la variación de movimiento de magnitudes físicas periódicas en la arteria. Debido a la energía de distención arterial generada por la eyección ventricular y respuesta de adaptabilidad de la arteria en una fase rápida (distención ó llenado; 25 % del tiempo de duración del ciclo arterial). Y la energía de contracción arterial generada por la energía potencial elástica de la pared arterial en fase lenta (contracción ó vaciamiento; 75 % del tiempo de duración del ciclo arterial). La caída lenta de la presión en la fase de vaciamiento es interrumpida de forma súbita por el inicio de la fase de llenado y por el incremento rápido de presión, con lo cual vuelve a iniciar el proceso. Durante un ciclo arterial completo, las arterias experimentan un incremento rápido de volumen hasta llegar a un punto máximo de presión (fase rápida o de distención), como respuesta de adaptación al incremento de volumen sanguíneo, y un descenso lento de la caída de presión (fase lenta o de contracción), en la cual realiza el mayor porcentaje de distribución de volumen por recuperación elástica y respuesta de la resistencia capilar.
BREVE DESCRIPCION DE LAS FIGURAS Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, la invención de un dispositivo electrónico para medir la presión sanguínea arterial indirecta; tanto por su organización, así como por su método de operación, conjuntamente con otros objetos y ventajas de la misma, se comprenderán mejor en la siguiente descripción detallada en relación con las figuras que se acompañan:
Las Figuras 1 a 6 muestran de manera esquemática las diferentes fases de las manifestaciones arteriales que ocurren al aplicar una fuerza externa de contacto sobre una arteria medible.
La Figura 1 muestra la primera fase de las manifestaciones arteriales, en la cual no hay afección de la presión arterial diastólica y sistólica.
La Figura 2 muestra la segunda fase de las manifestaciones arteriales, en la cual ya hay afección únicamente de la presión arterial sistólica.
La Figura 3 muestra la tercera fase de las manifestaciones arteriales, pre- oclusión diastólica ó vencimiento de la presión del flujo diastólico a fuerza externa oclusiva.
La Figura 4 muestra la cuarta fase de las manifestaciones arteriales, en la cual hay oclusión del flujo con presión arterial diastólica y solo afección del flujo con presión sistólica.
La Figura 5 muestra la quinta fase de las manifestaciones arteriales, en la cual hay afección de la presión arterial sistólica y oclusión diastólica, fase pre-oclusiva sistólica.
La Figura 6 muestra la sexta fase de las manifestaciones arteriales, en la cual hay oclusión completa del flujo arterial sistólico y diastólico.
La Figura 7 muestra un ciclo arterial en condiciones fisiológicas normales con las características detectadas por un sensor de flujo sanguíneo.
La Figura 8 muestra una curva de flujo en las diferentes fases generadas por el efecto del flujo sanguíneo en los períodos sistólico y diastólico al aplicar una fuerza externa.
Figura 9 Gráfica para medición de presión arterial diastólica con método indirecto oscilométrico Figura 10 Gráfica de medición de presión arterial diastólica y sistólica con método indirecto oscilométrico y con el sistema de medición de presión arterial diastólica con método indirecto.
La Figura 11 es un esquemático en bloques del dispositivo electrónico para medir presión sanguínea arterial diastólica por sus efectos.
La Figura 12 es una vista en perspectiva de un esquemático en bloques que muestra la función de un dispositivo electrónico al medir la presión arterial diastólica.
La Figura 13 Esquemático general de la programación de la tarjeta madre. Descripción detallada de la invención
Haciendo referencia específica a los dibujos que se acompañan, y más específicamente a las FIGURAS 1 A 6, en ellas se muestran las diversas fases que ocurren al presentarse las manifestaciones arteriales cuando se aplica una fuerza de contacto externa creciente a la arteria, las cuales se describen a continuación:
En la FIGURA 1 de los dibujos que se acompañan se muestra una primera fase
100 sin afección de los periodos sistólico 105 y periodo diastólico 110 del ciclo arterial 115, en la que no hay afección causada por una fuerza externa sobre las fuerzas del flujo sanguíneo ni sobre las fuerzas de la pared arterial. En dicha primera fase 100 no se afecta el flujo o volumen sanguíneo de la arteria, refiriéndose al flujo o volumen sanguíneo menor 120 de la arteria y al flujo o volumen sanguíneo mayor 125 de la arteria, en donde un indicador de fuerza o presión aplicada 130 está en "cero". El flujo sanguíneo mayor 125 de la arteria se presenta en el tiempo menor 135 durante la fuerza y presión mayor del fluido sanguíneo del periodo sistólico 105 ocupando el 25% del ciclo arterial 115. El flujo sanguíneo menor 120 de la arteria se presenta en el tiempo mayor 140 durante la fuerza y presión menor del fluido sanguíneo del periodo diastólico 10 ocupando el 75% del ciclo arterial 115.
En la FIGURA 2 de los dibujos que se acompañan, se muestra una segunda fase 200 que corresponde a la afección de las fuerzas del periodo sistólico 105 del ciclo arterial 115, quedando sin afección las fuerzas sanguíneas del periodo diastólico 110. En la Figura 2 se muestra la segunda fase 200 en la que ya hay afección del flujo o volumen sanguíneo de la arteria, mostrándose que la fuerza o presión aplicada 145 tiene una cierta magnitud sobre un área definida 150 registrada en el indicador de fuerza 130 con un valor de "20". El flujo o volumen sanguíneo mayor 125 de la arteria presenta manifestaciones porque cambia el flujo del periodo sistólico 105, en donde dichas manifestaciones se refieren entre otros a un sonido 155 captado con sensores. El flujo o volumen sanguíneo menor 120 no presenta cambios.
En la FIGURA 3 de los dibujos que se acompañan, se muestra una tercera fase 300 con afección de los periodos sistólico 105 y diastólico 110 del ciclo arterial 115 (pre-oclusiva de la presión diastólica), en dicha tercera fase 300 se afectan la presión mayor y menor de los periodos correspondientes. En esta tercera fase 300 la fuerza o presión aplicada 145 tiene una magnitud sobre el área definida 150 registrada en el indicador de fuerza 130 con un valor de "40". El flujo o volumen sanguíneo mayor 125 presenta manifestaciones porque cambia el periodo sistólico 105, en donde dichas manifestaciones se refieren a un sonido 155. El flujo sanguíneo menor 120 presenta manifestaciones porque es afectado el volumen en el periodo diastólico 110.
En la FIGURA 4 de los dibujos que se acompañan se muestra una cuarta fase 400, en la cual hay afección de la presión arterial diastólica y sistólica, considerándose como la fase de oclusión diastólica completa. En dicha cuarta fase 400 la fuerza o presión aplicada 145 tiene una magnitud sobre el área definida 150 registrada en el indicador de fuerza 130 con un valor de "60". El flujo sanguíneo mayor 125 presenta manifestaciones porque la fuerza redujo el espacio donde se aloja la arteria en el periodo sistólico 105, en donde dichas manifestaciones se refieren entre otros a un sonido 155, el cual es producido en esta fase por las vibraciones, turbulencias y colisión intermitentes de la pared arterial. El flujo o volumen sanguíneo menor 120 desaparece junto con sus manifestaciones porque se ha igualado la presión o fuerza aplicada 145 con la presión o fuerza de la sangre en el periodo diastólico 1 0, momento en el cual se determina la presión sanguínea menor o diastólica en el segmento arterial.
En la FIGURA 5 de los dibujos que se acompañan, se muestra una quinta fase
500 en la cual hay afección de la presión arterial sistólica, oclusión diastólica y disminución del flujo sanguíneo en relación con la fase mostrada en la figura 5, considerándose como la fase pre-oclusiva sistólica. En dicha quinta fase 500 la fuerza o presión aplicada 145 tiene una magnitud sobre el área definida 150 registrada en el indicador de fuerza 130 con un valor de "80". El flujo o volumen sanguíneo mayor 125 presenta manifestaciones porque cambia el periodo sistólico 105, en donde dichas manifestaciones se refieren entre otros a un sonido 155, el cual es producido en esta etapa por las vibraciones, turbulencias y colisión intermitentes de la pared arterial, que se encuentra disminuido en comparación a la cuarta fase 400 etapa de oclusión diastólica. El flujo o volumen sanguíneo menor 120 continúa sin manifestaciones porque la presión o fuerza aplicada 145 es mayor que la presión o fuerza de la sangre en el periodo diastólico 1 10.
En la FIGURA 6 de los dibujos que se acompañan, se muestra una sexta fase 600 en la cual hay una oclusión sistólica y diastólica completa. En dicha sexta fase 600 la fuerza o presión aplicada 145 tiene una magnitud sobre el área definida 150 registrada en el indicador de fuerza 130 con un valor de "100". El flujo o volumen sanguíneo mayor 125 no presenta manifestaciones porque se ha igualado la presión o fuerza aplicada 145 con la fuerza o presión de la sangre en el periodo sistólico 105, en donde dichas manifestaciones desaparecen totalmente, momento en el cual se determina la presión sanguínea mayor o sistólica en el segmento arterial.
A manera de entender un ciclo arterial, hacemos ahora referencia más específica a la FIGURA 7 de los dibujos que se acompañan, en ella se muestra un ciclo arterial 700 en condiciones fisiológicas normales, con las características detectadas por un sensor de movimiento de flujo sanguíneo. El ciclo arterial 700 se representa en su totalidad y se compone por un fase de distensión y una mayor presión arterial correspondiente al periodo sistólico 705, en el cual el ventrículo izquierdo eyecta un volumen sanguíneo al sistema arterial, en donde las arterias experimentan un incremento rápido de volumen distendiéndose hasta llegar a un punto máximo de presión como respuesta de adaptación a dicho incremento de volumen sanguíneo, a este fenómeno se le llama fase de adaptabilidad 710 y termina en la fase limite de distensión 715 en la que la presión y velocidad del flujo sanguíneo alcanzan la máxima magnitud en el ciclo arterial 700. Se continua con la fase final sistólica 720 en la que la presión sanguínea disminuye y termina en el origen de la fase inicial diastólica 725 que manifiesta una disminución brusca en el movimiento de flujo sanguíneo, en este punto inicia el periodo diastólico 730 del ciclo arterial 700 y corresponde a un descenso lento en la caída de presión y ocupa un 75% del tiempo total de dicho ciclo arterial 700.
El periodo diastólico 730 se conforma de tres fases, de las cuales, una primera fase que corresponde con la fase inicial diastólica 725 y se continua con un paquete hemodinámico alfa 735 que consiste al igual que los demás paquetes hemodinámicos en tensión parietal, presión, flujo y velocidad sanguínea con magnitud determinada, los cuales, para reconocerlos, se aplican las letras del alfabeto griego alfa a de mayor magnitud, y en orden decreciente de magnitud se aplican las letras beta, gama, delta. Dicho paquete hemodinámico alfa 735 se une mediante frecuencias de baja amplitud 740 a un paquete hemodinámico beta 745. El periodo diastólico 730 termina en la interrupción brusca de un paquete hemodinámico o de una fase de frecuencias bajas por la brusca aparición de la fase de distensión 710 del periodo sistólico 705 del ciclo arterial 700.
Haciendo referencia más específica a los dibujos que se acompañan, y más específicamente a la FIGURA 8 de los dibujos que se acompañan, en ella se muestra una curva de flujo 800 en las diferentes fases generadas por el efecto de las manifestaciones arteriales que fueron descritas anteriormente en las FIGURAS 1 A 6. En dicha curva de flujo 800 se muestra la primera fase 100 sin afección por la fuerza externa de contacto mostrando el flujo sanguíneo mayor 125 correspondiente al periodo sistólico 105 y el flujo sanguíneo menor 120 correspondiente al periodo diastólico 110; la segunda fase 200 con afección de fuerza, en donde únicamente se afecta el flujo sanguíneo mayor 125 correspondiente al periodo sistólico 105 y queda sin ser afectado el flujo sanguíneo menor 120 correspondiente al periodo diastólico 110; en la tercera fase 300 se observan manifestaciones porque cambia el flujo sanguíneo mayor 125 correspondiente al periodo sistólico 105 y también se ve afectado el flujo sanguíneo menor 120 correspondiente al periodo diastólico 110; en la cuarta etapa 400 se muestran manifestaciones de cambio en el flujo sanguíneo mayor 125 correspondiente al periodo sistólico 105, mientras que el flujo sanguíneo menor 120 desaparece junto con sus manifestaciones, momento en el cual se determina la presión sanguínea menor o díastólica; en la quinta etapa 500 se muestran manifestaciones en el cambio del flujo sanguíneo mayor 125 correspondiente al periodo sistólico 105, que se ve disminuido en gran proporción, mientras que el flujo sanguíneo menor 120 continua ocluido; y, en la sexta etapa 600 no se presentan manifestaciones en el cambio de flujo sanguíneo mayor 125 del periodo sistólico 105, ya que se ha igualado la presión o fuerza de contacto externa con la presión o fuerza del flujo de sangre de dicho periodo sistólico 105, momento en el cual se determina la presión sanguínea mayor o sistólica, en donde el flujo sanguíneo menor 120 del periodo diastólico 110 permanece ocluido.
Figura 9 De los dibujos que se acompañan se muestra una gráfica de la señal de un sensor de presión; donde después de ocluir la arteria se liberó presión registrando la señal y se observa una gráfica superior que muestra el tiempo en función a la presión en milímetros de mercurio y una gráfica inferior de el tiempo en función de la amplitud de la onda de presión 3, en ambas gráficas se observa la onda para determinar la presión arterial sistólica del periodo sistólico del ciclo arterial 3, se observa la aparición de la onda de presión arterial diastólica en el periodo diastólico del ciclo arterial 4; primer onda supramaximal 2, segunda onda supramaximal 1.
Figura 10 En esta gráfica se muestra la medición de presión arterial diastólica y sistólica con método indirecto oscilométrico 4, en comparación con el sistema de medición de presión arterial diastólica con método indirecto 2, y se observa una gráfica de señal de sensor de flujo 1 procesada que muestra el periodo sistólico 11 , y el periodo diastólico 2, ante una cantidad de fuerza aplicada;, una gráfica en barras de la señal de flujo arterial 2, que muestra, el periodo sistólico 11 , y el periodo diastólico 12, ante una cantidad de fuerza aplicada, muestra el momento para medir la presión arterial diastólica con el sistema de medición de presión diastólica con método indirecto en el periodo diastólico del ciclo arterial 5, momento para medir la presión arterial sistólica con el sistema de medición de presión diastólica con método indirecto en el periodo diastólico del ciclo arterial 6, rango de medición de presión arterial sistólica ocilométrica 7, rango de presión para presión arterial diastólica ocilométrica 8.
Por otro lado, haciendo ahora referencia a la FIGURA 11 de los dibujos que se acompañan, en ella se muestra un dispositivo electrónico para procesamiento, análisis y registro de manifestación arterial 2000, se conforma de 6 unidades, una primera unidad tarjeta de procesamiento principal 2050, una segunda unidad tarjeta del sensor de presión 2100, una tercera unidad tarjeta del sensor de flujo 2150, una cuarta unidad tarjeta del sensor del fonograma 2200 una quinta unidad tarjeta del sensor láser 2250, una sexta unidad tarjeta de sensor de vibración 2300 donde dicha tarjeta electrónica 2000 incluye tarjetas adicionales 2350, puertos de entrada o salida 2400, memoria 2450, salida en pantalla 2500, puerto de alimentación 2550.
Haciendo ahora referencia más específica a la FIGURA 12 de los dibujos que se acompañan, en ella se muestra un esquemático del funcionamiento en bloques de los elementos para medir la presión arterial incluyendo los elementos internos del dispositivo electrónico para procesamiento, análisis y registro de manifestación arterial 2000. Al aplicar una presión externa sobre la arteria el sensor de presión 2600 produce y envía una señal a dicha tarjeta 2100, en paralelo a la información que recibe el sensor de flujo 2650 y envía a la dicha tarjeta 2150. Dichas tarjetas 2150 y 2100 acondicionan y envían las señales a la tarjeta de procesamiento principal 2050, en donde son identificadas debido a que cada manifestación arterial es representada por una señal específica en dicha tarjeta electrónica 2050, la señal correspondiente a la detección de una manifestación arterial es comparada con la señal de la tarjeta del sensor de presión 2100 para emitir el valor de medición de presión diastólica arterial.
Se sigue el mismo curso anteriormente descrito en el caso de los demás sensores y tarjetas. Al aplicar una presión externa sobre la arteria el sensor de presión 2600 produce y envía una señal a dicha tarjeta 2100, en paralelo a la información que recibe el sensor en uso que puede ser sensor del fonograma 2700, sensor de láser 2750, y sensor de vibración 2800 y envía a la tarjeta correspondiente 2200, 2250, 2300 que a la vez dichas tarjetas 2200, 2250, 2300 y 2100 acondicionan y envían las señales a la tarjeta de procesamiento principal 2050 en donde son identificadas debido a que cada manifestación arterial es representada por una señal especifica en dicha tarjeta electrónica 2050, la señal correspondiente a la detección de una manifestación arterial es comparada con la señal de la tarjeta del sensor de presión 2100 para emitir el valor de medición de presión diastólica arterial.
La presente invención se conforma por un procedimiento de seis fases y tres medios; el PROCEDIMIENTO PARA MEDIR CON METODO INDIRECTO LA PRESIÓN ARTERIAL DIASTÓLICA (MIPAD), que dirige las actividades de un primer MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA
(ApFGM), un segundo medio SENSOR DE MANIFESTACIÓN ARTERIAL (SMA) y un tercero que es un MEDIO DE MEDICIÓN Y DETECCION DEL PERIODO DIASTÓLICO Y SISTÓLICO DEL CICLO ARTERIAL (MDCA).
De forma adicional el sistema y método para medir la presión arterial por sus efectos permite medir la presión arterial sistólica sin sobrepresión por los latidos cardiacos generados posteriores a la oclusión arterial.
Tal como se indicó anteriormente, la presente invención se refiere a un sistema y método para medir la presión arterial por sus efectos y adicionalmente medición de presión arterial sistólica, ambas mediciones se realizan a partir de las observaciones a la MANIFESTACION ARTERIAL (MA), también llamada MANIFESTACION DEL CICLO ARTERIAL (MCA) y se definen como las propiedades físicas del fluido sanguíneo y pared arterial con o sin afección de fuerza sobre la arteria; la MANIFESTACION ARTERIAL del fluido sanguíneo son el tiempo de duración de periodo sistólico y diastólico del ciclo arterial, cambios en la presión, cambios del movimiento del flujo, cambios de velocidad, cambios de temperatura, cambios de volumen, cambios de viscosidad, cambios de masa y densidad; y la MANIFESTACION ARTERIAL a partir de la pared arterial son tiempo de duración de los periodos, cambios en el área de sección transversal o de segmento arterial, cambios en diámetro, cambios en perímetro, cambios en longitud, cambios en tensión parietal, cambios en vibraciones.
El sistema y método para medir la presión arterial por sus efectos comprende un medio con la función de presionar la arteria, a dicho medio se le llama "MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA" el cual se define como un dispositivo destinado a aplicar fuerza sobre la arteria medible de manera gradual y medida con la finalidad de obliterarla y conocer la magnitud de la fuerza aplicada, dicho medio es de los comúnmente utilizados en el estado de la técnica y de preferencia es un brazalete unido a un sensor de presión, pudiendo ser en otra modalidad de punta o pinza; un medio para detectar manifestaciones arteriales llamado "SENSOR DE MANIFESTACIÓN ARTERIAL" definido como un medio que al ser colocado en un segmento arterial medible, permite detectar y emitir la magnitud de alguna manifestación arterial en el tiempo correspondiente a un periodo sistólico y al periodo diastólico del ciclo arterial; en esta modalidad dicho medio es un sensor de flujo que registra y emite señales del movimiento sanguíneo en el segmento arterial medible y tiene las modalidades de sensor de presión, sensor láser, sensor de vibración y sensor sonoro del fonograma. Un medio que recibe la magnitud de la manifestación arterial emitida por el Sensor de manifestación arterial y la magnitud del sensor de presión para emitir el valor de medición de presión arterial en el periodo sistólico y en el periodo diastólico del ciclo arterial, a dicho medio se le llama MEDIO DE MEDICIÓN Y DETECCION DEL PERIODO DIASTÓLICO Y SISTÓLICO DEL CICLO ARTERIAL, en esta modalidad utilizamos un "DISPOSITIVO ELECTRÓNICO PARA PROCESAMIENTO ANÁLISIS Y REGISTRO DE MANIFESTACIÓN ARTERIAL"; que comprende una placa central de circuitos en un equipo electrónico complejo y de forma variable con modalidad estructural para adaptarse a la estructura de diversos instrumentos de medición con el mismo fin, así como la programación de las tarjetas para la interacción general del dispositivo electrónico. Se compone por una tarjeta madre con los subsistemas críticos tales como; puertos, conectores, memoria del sistema, tarjeta de sonido, tarjeta del sensor de flujo y tarjeta del sensor de presión con las modalidades de tarjeta de sensor láser, tarjeta del sensor de vibraciones, tarjeta del sensor sonoro del fonograma y tarjeta principal de procesamiento, esta última es en la cual las señales recibidas del sensor de presión son procesadas con oscilometría ó comparadas con el sensor de flujo con las siguientes modalidades del sensor láser, sensor de vibración y sensor sonoro del fonograma para registrar y emitir un valor de presión sistólica o diastólica a partir de la manifestación arterial del periodo sistólico y periodo diastólico del ciclo arterial, dicho medio tiene la modalidad de ser mecánico mediante una carátula graduada con indicadores que se muevan en respuesta a ondas de presión y descompresión. Un método para detectar la manifestación arterial correspondiente a la presión del periodo sistólico y a la presión del periodo diastólico del ciclo arterial, dicho método se llama PROCEDIMIENTO PARA MEDIR CON METODO INDIRECTO LA PRESIÓN ARTERIAL DIASTÓLICA se define como procedimiento para identificar y diferenciar el periodo sistólico y el periodo diastólico del ciclo arterial a partir de las manifestaciones que la arteria medible genere con o sin aplicación de fuerza de contacto externa, con la finalidad de obtener la medición de presión arterial diastólica al igualar la fuerza extema aplicada sobre la arteria con la fuerza que la sangre ejerce sobre la pared arterial por obliteración de la arteria en el periodo diastólico del ciclo arterial con la modalidad de desobstrucción arterial en dicho periodo del ciclo arterial; adicionalmente la medición de la presión arterial sistólica sin afección de la sobrecarga de presión por los latidos cardiacos posteriores a la oclusión arterial y en el periodo sistólico del ciclo arterial. El desarrollo integral del sistema y método para medir la presión arterial por sus efectos comprende lo siguiente; PRIMERA FASE: Se coloca sobre la arteria medible el MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA (ApFGM) y el sensor de manifestación arterial, este último detecta las manifestaciones arteriales y las envía al MEDIO DE MEDICIÓN Y DETECCION DEL PERIODO DIASTÓLICO Y SISTÓLICO DEL CICLO ARTERIAL
(MDCA); el MDCA analiza y diferencia las manifestaciones arteriales, determinando magnitudes altas y bajas en función del tiempo con carácter cíclico, estableciendo que una manifestación arterial que contiene una magnitud alta y una baja en función del tiempo se denomina ciclo arterial; del ciclo arterial se realiza una diferenciación de la magnitud de las manifestaciones en función del tiempo, se obtiene una mayor magnitud con menor tiempo de duración que se denomina periodo sistólico y una manifestación arterial con menor magnitud y con mayor tiempo de duración a la que se denomina periodo diastólico del ciclo arterial; con el MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA (ApFGM) se aplica fuerza de contacto externa, hasta el límite de no afectar la presión y flujo sanguíneo arterial sistólico, esta fase termina antes de afectar con la fuerza externa el flujo sanguíneo sistólico.
SEGUNDA FASE: Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, hasta detectar las manifestaciones arteriales correspondientes al periodo sistólico que varían con respecto a las propiedades físicas que presentaba en la PRIMERA FASE, las manifestaciones arteriales del periodo diastólico continúan similares a la PRIMERA FASE, porque solo el periodo sistólico del ciclo arterial es afectado por la fuerza de contacto externa aplicada.
TERCERA FASE: Se continua aplicando fuerza de contacto externa gradual y medida, además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, hasta detectar que las manifestaciones arteriales correspondientes al periodo diastólico varían con respecto a las propiedades físicas que presentaban en la PRIMERA FASE, porque la cantidad de fuerza aplicada ha llegado a afectar el flujo sanguíneo arterial en el periodo diastólico del ciclo arterial y el flujo sanguíneo del periodo sistólico continua siendo afectado; ésta tercera fase también se llama fase de pre-oclusión diastólica porque se detecta antes de que la arteria en el periodo diastólico sufra obliteración y termina momento antes de la obliteración total del periodo diastólico del ciclo arterial. CUARTA FASE: Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, hasta detectar que las manifestaciones arteriales correspondientes al periodo diastólico desaparecen porque la fuerza de contacto externa aplicada oblitera la arteria en el periodo diastólico del ciclo arterial impidiendo que en este periodo haya flujo sanguíneo, en este momento SE MIDE LA PRESIÓN ARTERIAL DIASTÓLICA por igualación de la fuerza aplicada en la arteria medible con ia magnitud de la fuerza que la sangre ejerce sobre la pared de la arteria a partir de las manifestaciones arteriales propias del la desaparición del flujo sanguíneo correspondiente al periodo diastólico del ciclo arterial. En tanto que las manifestaciones arteriales del periodo sistólico continúan presentes porque la fuerza de la sangre en dicho periodo supera la fuerza de contacto aplicada externamente. QUINTA FASE Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, detectar que la arteria en el tiempo correspondiente al periodo diastólico continua con obliteración y en el periodo arterial sistólico el flujo disminuye de forma significativa con respecto a la CUARTA FASE, esta quinta fase también se llama fase de pre-oclusión sistólica; porque termina momento antes de que la arteria en el periodo sistólico sufra obliteración.
SEXTA FASE Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, detectar que las manifestaciones arteriales del ciclo arterial en su periodo sistólico desaparecen en su totalidad porque la arteria sufre obliteración total.
Adicionalmente en esta sexta fase, al detectarse la desaparición de las manifestaciones arteriales del periodo sistólico del ciclo arterial SE MIDE LA PRESIÓN ARTERIAL SISTÓLICA por igualación de la fuerza aplicada en la arteria medible con la magnitud de la fuerza que la sangre ejerce sobre la pared de la arteria sin sobrepresión por los latidos cardiacos generados posteriores a la oclusión arterial.
Es una modalidad para medir la presión arterial diastólica en este novedoso sistema y método para medir la presión arterial por sus efectos la desobstrucción arterial, por quitar fuerza de contacto externa gradual a la arteria previamente ocluida hasta permitir que la fuerza que la sangre ejerce sobre la pared arterial en el periodo diastólico del ciclo arterial venza la fuerza externa aplicada.
En una modalidad preferida de la invención esta se conforma por un PROCEDIMIENTO PARA MEDIR CON METODO INDIRECTO LA PRESIÓN ARTERIAL DIASTÓLICA (MIPAD) que dirige las actividades de un MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA (ApFGM) que en esta modalidad es un brazalete unido a un sensor de presión; un SENSOR DE MANIFESTACIÓN ARTERIAL (SMA) que en esta modalidad es un sensor de flujo; un MEDIO DE MEDICIÓN Y DETECCION DEL PERIODO DIASTÓLICO Y SISTÓLICO DEL CICLO ARTERIAL (MDCA) que en esta modalidad es una TARJETA ELECTRÓNICA MADRE que opera básicamente, como se ve en la figura 13, en dos bucles y dos subsistemas, un primer bucle y subsistema 3190 de control y medición de la presión arterial y un segundo bucle y subsistema 30 0 para recopilar, acondicionar y analizar los datos de la señal recibida del sensor de manifestación arterial SMA 3020.
En esta modalidad de la invención se realiza la medición de la presión arterial diastólica y sistólica a partir de los periodos diastólico y sistólico respectivamente de un ciclo arterial, dichas mediciones se desarrollan por el PROCEDIMIENTO PARA MEDIR CON METODO INDIRECTO LA PRESIÓN ARTERIAL DIASTÓLICA (MIPAD) que dirige las actividades de los medios ApFGM, SMA y MDCA hasta obtener la medición de la presión arterial diastólica y de manera adicional la presión arterial sistólica en el periodo sistólico sin sobrepresión por los latidos cardiacos generados posteriores a la oclusión arterial.
El procedimiento que a continuación se detalla utiliza de manera preferente como un MEDIO QUE APLICA FUERZA DE CONTACTO EXTERNA GRADUAL MEDIDA (ApFGM) un brazalete unido a un sensor de presión; y como SENSOR DE MANIFESTACIÓN ARTERIAL (SMA) que en esta modalidad es un sensor de flujo, sin embargo en otras modalidades se pueden utilizar como ApFGM cualquier dispositivo o medio que permita aplicar presión tales como una punta o una pinza y como SMA cualquier dispositivo o medio que permita detectar y medir cambios en la presión, cambios del movimiento del flujo, cambios de velocidad, cambios de temperatura, cambios de volumen, cambios de viscosidad, cambios de masa y densidad; así como cambios en el área de sección transversal o de segmento arterial, cambios en diámetro, cambios en perímetro, cambios en longitud, cambios en tensión parietal, cambios en vibraciones.
En esta modalidad el sistema y método para medir la presión arterial por sus efectos con la integración del mipad, apfgm, sma y mdca comprende las siguientes fases.
PRIMERA FASE MIPAD: En esta modalidad se coloca sobre la arteria medible el brazalete unido a un sensor de presión (ApFGM) el cual mediante un transductor realiza la función de medir la presión aplicada en el brazalete durante todo el proceso de medición y en el extremo distal (en dirección a la mano) de la arteria medible dispuesto después del brazalete se coloca el sensor de flujo (SMA) el cual tiene un transductor con la función de captar las manifestaciones arteriales y transformarlas en señal eléctrica para ser enviadas junto con la señal que envía el sensor de presión a la tarjeta electrónica Madre (MDCA). Dicha MDCA filtra y analiza para muestreo y digitalización las señales recibidas del transductor de flujo, las ganancias y rangos de operación de la señal son revisados y ajustados en este momento para ser enviadas al controlador y ahí realizar el procesamiento. La programación de la tarjeta madre en el segundo bucle (como se ve en la figura 13) ó subsistema consiste en el paso de la señal eléctrica por un filtro pasa banda 3030, de la señal resultante se obtienen los valores absolutos 3040 y se realiza un escalamiento de la señal 3050 para su acondicionamiento, por último la señal pasa por un filtro pasa bajos 3060 y se procede al análisis de datos, el segundo bucle y subsistema 3010 recopila datos de la variación del movimiento de la sangre delimitando el periodo sistólico y el periodo diastóiico 3070 del ciclo arterial y mide cualquier variación en cada uno de estos periodos más específico el procesamiento consiste en una diferenciación de la señal a partir de su amplitud y frecuencia con lo cual se registran señales de magnitudes altas y bajas en función del tiempo con carácter cíclico, de los resultados de dicho análisis y diferenciación se establece, que una unidad de manifestaciones arteriales contiene una magnitud alta y una magnitud baja de señales que se repiten en función del tiempo y a esta unidad se le denomina ciclo arterial; el ciclo arterial se integra por una mayor magnitud con menor tiempo de duración que se denomina periodo sistólico y una manifestación arterial con menor magnitud y con mayor tiempo de duración a la que se denomina periodo diastóiico del ciclo arterial; con el brazalete (ApFG ) localizado en el brazo del paciente a cierta velocidad durante todo el proceso de medición de la presión. Se aplica fuerza de contacto externa, hasta el límite de no afectar la presión y flujo sanguíneo arterial sistólico, esta fase termina antes de afectar con la fuerza externa el flujo sanguíneo sistólico.
SEGUNDA FASE MIPAD: Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastóiico del ciclo arterial con los medios utilizados en la PRIMERA FASE, hasta detectar las manifestaciones arteriales correspondientes al periodo sistólico que varían con respecto a las propiedades físicas que presentaba en la PRIMERA FASE y las manifestaciones arteriales del periodo diastóiico continúan similares a la PRIMERA FASE porque solo el periodo sistólico del ciclo arterial es afectado por la fuerza de contacto externa aplicada.
TERCERA FASE MIPAD: Se continua aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastóiico del ciclo arterial con los medios utilizados en la PRIMERA FASE, hasta detectar que las manifestaciones arteriales correspondientes al periodo diastóiico varían con respecto a las propiedades físicas que presentaban en la PRIMERA FASE porque la cantidad de fuerza aplicada ha llegado a afectar el flujo sanguíneo arterial en el periodo diastólico del ciclo arterial y el flujo sanguíneo del periodo sistólico continua siendo afectado; ésta tercera fase también se llama fase de pre-oclusión diastólica porque se detecta antes de que la arteria en el periodo diastólico sufra obliteración y termina momento antes de la obliteración total del periodo diastólico del ciclo arterial.
CUARTA FASE IPAD: Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, Las muestras de las variaciones se proporcionan cada milisegundo y sus amplitudes son revisadas y comparadas hasta detectar que las manifestaciones arteriales correspondientes al periodo diastólico desaparecen encontrando un rango de amplitud mínima o cero 3080 porque la fuerza de contacto externa aplicada oblitera la arteria en el periodo diastólico del ciclo arterial impidiendo que en este periodo haya flujo sanguíneo, al encontrar este valor se activa una interrupción 3090 en la que tomamos el valor de presión que se encuentre en el primer bucle y primer subsistema 3120, este valor es almacenado en memoria 3100 y corresponde al valor de la PRESIÓN DIASTÓLICA por igualación de la fuerza aplicada en la arteria medible con la magnitud de la fuerza que la sangre ejerce sobre la pared de la arteria a partir de las manifestaciones arteriales propias del la desaparición del flujo sanguíneo correspondiente al periodo diastólico del ciclo arterial. Si la variación de la amplitud de la señal en el periodo diastólico no llega al rango mínimo o cero, la búsqueda continúa en la tercera fase hasta que se encuentre este valor 3200 de la cuarta fase en tanto que las manifestaciones arteriales del periodo sistólico continúan presentes porque la fuerza de la sangre en dicho periodo supera la fuerza de contacto aplicada externamente.
QUINTA FASE MIPAD: Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, detectar que la arteria en el tiempo correspondiente al periodo diastólico continua con obliteración y en el periodo arterial sistólico el flujo disminuye de forma significativa con respecto a la CUARTA FASE, Una vez almacenado el valor de la presión diastólica se prosigue con la medición y el segundo subsistema continua recopilando datos de la variación de la sangre 3130, esta quinta fase también se llama fase de pre-oclusión sistólica; porque termina momento antes de que la arteria en el periodo sistólico sufra obliteración.
SEXTA FASE MIPAD: Continuar aplicando fuerza de contacto externa gradual y medida además de registrar y analizar las manifestaciones del periodo sistólico y del periodo diastólico del ciclo arterial con los medios utilizados en la PRIMERA FASE, ahora analizando el periodo sistólico de ciclo arterial en donde las muestras de las variaciones son revisadas y comparadas, detectar que las manifestaciones arteriales del ciclo arterial en su periodo sistólico desaparecen en su totalidad encontrando un rango de valor de amplitud mínimo o cero 3140 porque la arteria sufre obliteración total, una vez encontrado este valor 3180 corresponde a la presión sistólica y es almacenado y desplegado en una pantalla junto con el valor de la presión diastólica 3160. Si la variación de la amplitud de la señal en el periodo sistólico no llega al rango mínimo o cero, la búsqueda continúa hasta que se encuentre este valor 3210
Este proceso tarda alrededor de 1 a 2 minutos cuando ya está colocado el brazalete y el transductor en el brazo. Una vez encontradas las dos presiones el sistema regresa al inicio de los dos bucles 3220 y se prepara para una nueva medición.
Adicionalmente en esta sexta fase, al detectarse la desaparición de las manifestaciones arteriales del periodo sistólico del ciclo arterial SE MIDE LA PRESIÓN ARTERIAL SISTÓLICA por igualación de la fuerza aplicada en la arteria medible con la magnitud de la fuerza que la sangre ejerce sobre la pared de la arteria en el periodo sistólico sin sobrepresión por los latidos cardiacos generados posteriores a la oclusión arterial.
Durante la fase de evaluación de la medición del valor de la presión diastólica, el sistema comprueba primero si hay al menos tres valores ¡guales a cero o con un rango mínimo en el periodo diastólico 3080 y segundo, al menos tres valores iguales a cero o con un rango mínimo en el periodo sistólico 3140, entonces la decisión se hace para fijar el valor o dato que se encuentre en el sensor de presión 3120, 3180 y determina el valor de la presión diastólica y sistólica. Para la primer interrupción 3090 en (a toma del valor de almacenamiento del sensor de presión, utilizamos el primer valor de los tres encontrados en el periodo diastólico iguales a cero y después se toma el primer valor de los tres iguales a cero en el periodo sistólico para la segunda interrupción 3150, que toma del valor del sensor de presión en este momento. En una modalidad alternativa, adicionalmente en esta sexta fase el IPAD utilizando como SMA un sensor de presión y el método oscilométrico; registrar y analizar las señales; la señal de oscilación de presión del periodo sistólico del ciclo arterial en esta fase desaparece quedando solo señales de oscilación de presión supramaximales; porque la presión aplicada extema en este momento vence la presión que la sangre ejerce sobre la pared arterial, sin embargo la onda de pulso en la arteria adyacente transmite al aparato que aplica fuerza de contacto externa gradual medida las ondas de pulso arterial supramaximales detectadas con el sensor de presión, las cuales se consideran como el valor o rango mínimo de referencia o cero. En esta SEXTA FASE MIPAD SE MIDE LA PRESIÓN ARTERIAL SISTÓLICA por igualación de la fuerza aplicada en la arteria medible con la magnitud de la fuerza que la sangre ejerce sobre la pared de la arteria.
Con los diferentes SMA es necesario predefinir un valor o rango de referencia mínimo o cero para cada uno de los SMA.
En una modalidad alternativa se puede medir la presión arterial diastólica empleado un MÉTODO DÉ DESOBSTRUCCIÓN ARTERIAL (MDA) con método indirecto en este novedoso sistema y método para medir la presión arterial por sus efectos, por quitar fuerza de contacto externa gradual a la arteria previamente ocluida hasta permitir que la fuerza que la sangre ejerce sobre la pared arterial en el periodo diastólico del ciclo arterial venza la fuerza externa aplicada.
PRIMERA FASE MDA: Con un dispositivo electrónico para procesamiento análisis y registro de manifestación arterial registrar y analizarlas señales de la tarjeta de un sensor de manifestación arterial y la tarjeta de un aparato que aplica fuerza de contacto externa gradual medida. Colocar el sensor de manifestación arterial y el aparato que aplica fuerza de contacto externa gradual medida sobre la arteria medible, aplicar fuerza sobre la arteria medible hasta obliterarla.
Adicionalmente en esta fase de desobstrucción arterial en caso de que el sensor de manifestación arterial sea un sensor de presión y el método oscilométrico, registrar y analizarlas señales solo de éste sensor porque en la señal de oscilación del sensor de presión se incluye la señal de la manifestación arterial del periodo sistólico y diastólico del ciclo arterial y del aparato que aplica fuerza de contacto externa gradual medida. SEGUNDA FASE MDA: Quitar fuerza externa gradual medida aplicada sobre la arteria medible, registrar y analizar las señales de la misma manera que en la PRIMERA FASE DESOBSTRUCCIÓN ARTERIAL: incluyendo su forma adicional con el sensor de presión y método oscilométrico hasta detectar las manifestaciones arteriales correspondientes a que el flujo sanguíneo arterial sistólico a superado la aplicación de fuerza externa.
TERCERA FASE MDA: Continuar quitando fuerza externa gradual medida aplicada sobre la arteria medible, y registrar y analizar las señales de la misma manera que en la PRIMERA FASE DESOBSTRUCCIÓN ARTERIAL incluyendo su forma adicional con el sensor de presión y método oscilométrico hasta detectar las manifestaciones arteriales correspondientes a que el flujo sanguíneo arterial en el periodo diastólico del ciclo arterial a superado la aplicación de fuerza externa y en este momento SE MIDE LA PRESIÓN ARTERIAL DIASTÓLICA capaz de vencer la fuerza de contacto externa aplicada sobre la arteria.
Adicionalmente en esta fase en caso de que el sensor de manifestación arterial sea un sensor de presión y el método a utilizar el oscilométrico; registrar y analizar las señales con dicho dispositivo electrónico de la PRIMERA FASE a partir del sensor de presión porque en la señal de oscilación del sensor de presión se incluye la señal del aparato que aplica fuerza de contacto externa gradual medida, en esta fase son detectadas las oscilaciones de la presión arterial correspondiente a la aparición de la presión arterial diastólica del ciclo arterial y se MIDE LA PRESIÓN ARTERIAL DIASTÓLICA porque a vencido la fuerza externa aplicada en la arteria medible al detectar la aparición de una oscilación en el periodo diastólico anexa a la existente del periodo sistólico del ciclo arterial;
Opcionalmente se puede llegar a la misma medición de la presión arterial diastólica en esta tercera fase desobstrucción arterial con la identificación de las siguientes manifestaciones arteriales utilizando los siguientes sensores.
Con el fonograma o sensor de flujo detectar; la aparición del segundo sonido o flujo sanguíneo del periodo diastólico del ciclo arterial, detectar la desaparición de colisiones intermitentes de la pared arterial detectar la aparición de la velocidad de flujo sanguíneo del periodo diastólico del ciclo arterial, detectar la aparición de las vibraciones de la pared arterial en el periodo diastólico del ciclo arterial, detectar cambios en la densidad del espectro de frecuencias en el periodo diastólico de un ciclo arterial, detectar la variación del diámetro o volumen de la arteria en el periodo diastólico de un ciclo arterial. ; Con un sensor de temperatura; detectar la variación de la temperatura en el periodo diastólico del ciclo arterial.

Claims

REIVINDICACIONES
1. Un sistema de medición de presión arterial con método indirecto, que comprende:
un medio de aplicación de fuerza de contacto externa a una arteria medible; un sensor de manifestación arterial que registra la manifestación que produce el flujo sanguíneo y la pared arterial antes, durante y después de recibir fuerza de contacto externa por el medio de aplicación de fuerza de contacto externa, durante el proceso de obliteración arterial;
un medio de medición y detección que a partir de los valores registrados por los dos medios antes mencionados determina los periodos sistólico y diastólico del ciclo arterial y con lo cual realiza la medición de la presión arterial diastólica y sistólica al detectar o no las manifestaciones de la arteria en el periodo correspondiente del ciclo arterial por el sensor de manifestación arterial e igualar la fuerza de contacto aplicada externa en la arteria medible a la fuerza necesaria para ocluirla en el periodo correspondiente.
2. El sistema de medición de presión arterial diastólica con método indirecto de conformidad con la reivindicación 1 en donde la medición de la presión arterial diastólica se realiza en la oclusión de la arteria en el periodo diastólico antes de la oclusión total de la arteria.
3. El sistema de medición de presión arterial diastólica con método indirecto de conformidad con alguna de las reivindicaciones anteriores en donde la medición de la presión sistólica se realiza en la oclusión de la arteria en el periodo sistólico.
4. El sistema de medición de presión arterial diastólica con método indirecto de conformidad con alguna de las reivindicaciones anteriores en donde el medio de aplicación de fuerza de contacto externa aplica fuerza de manera gradual y medible.
5. El sistema de medición de presión arterial diastólica con método indirecto de conformidad con alguna de las reivindicaciones anteriores en donde el medio de aplicación de fuerza de contacto externa es un brazalete inflable o una pinza o una punta.
6. El sistema de medición de presión arterial diastólica con método indirecto de conformidad con alguna de las reivindicaciones anteriores en donde el sensor de manifestación arterial comprende uno sensor capaz de medir alguna de las siguientes manifestaciones arteriales: sonido o flujo sanguíneo, colisiones intermitentes de la pared arterial velocidad de flujo sanguíneo, vibraciones de la pared arterial, densidad del espectro de frecuencias, la variación del diámetro o volumen de la arteria, la variación de la temperatura
7. El sistema de medición de presión arterial diastólica con método indirecto de conformidad con alguna de las reivindicaciones anteriores en donde el medio de medición y detección comprende
8. Un Sistema para medir la presión arterial con método indirecto de conformidad con alguna de las reivindicaciones anteriores en donde el sensor de manifestación arterial detecta las manifestaciones del flujo sanguíneo y pared arterial en el periodo diastólico y el periodo sistólico del ciclo arterial.
9. Sistema para medir la presión arterial usando según alguna de las cláusulas anteriores caracterizado además porque comprende una placa central de circuitos en un equipo electrónico complejo o capaz de adaptarse a la estructura de diversos instrumentos de medición con el mismo fin, así como la programación de las tarjetas para la interacción general del dispositivo electrónico, dicho dispositivo se compone por una tarjeta madre con los subsistemas críticos tales como; puertos, conectores, memoria del sistema, al menos una tarjeta para un sensor de manifestación arterial, una tarjeta de sensor de presión y tarjeta principal de procesamiento en la cual las señales recibidas del sensor de manifestación arterial y las recibidas del sensor de presión del medio de aplicación de fuerza son procesadas con oscilometría ó comparadas para registrar y emitir un valor de presión sistólica o diastólica a partir de la detección o no de la manifestación arterial en el periodo sistólico o en el periodo diastólico del ciclo arterial.
10. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores en donde además comprende un medio de despliegue de datos que puede consistir en un medio mecánico mediante una carátula graduada con indicadores que se muevan en respuesta a ondas de presión y descompresión.
11. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores en donde la tarjeta para el sensor de manifestación arterial comprende una de las siguientes tarjetas: de sonido, sensor de flujo, sensor de presión, sensor láser, sensor de vibraciones, sensor sonoro del fonograma.
12. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores en donde la tarjeta principal recibe la señal eléctrica de salida del sensor de manifestación arterial y del sensor de presión las muestrea y digitaliza para ser enviadas al controlador y ahí realizar el procesamiento, en donde las ganancias y los rangos de operación de la señal son revisados y ajustados en este momento también.
13. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque con la insuflación del brazalete y la recolección y análisis de datos el segundo bucle y subsistema recopila datos de variación de la sangre y delimita el periodo sistólico y el periodo diastólico del ciclo arterial y mide cualquier variación en cada uno de estos periodos.
14. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque las muestras de las variaciones del segundo bucle y segundo subsistema se proporcionan cada milisegundo y sus amplitudes son revisadas y comparadas hasta que en el periodo diastólico del ciclo arterial encontremos el rango de amplitud mínima o cero y al encontrarla tomamos el valor de presión que se encuentre en el primer bucle y primer subsistema, este valor es almacenado en memoria y corresponde al valor de la presión diastólica.
15. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque si la variación de la amplitud de la señal en el periodo diastólico no llega al rango mínimo o cero, la búsqueda continúa hasta que se encuentre este valor.
16. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque una vez almacenado el valor de la presión diastólica en la memoria se prosigue con la medición y el segundo bucle y segundo subsistema continua recopilando datos de la variación de la sangre ahora analizando el periodo sistólico de ciclo arterial en donde las muestras de las variaciones son revisadas y comparadas hasta encontrar un valor con un rango de amplitud mínima o cero, una vez encontrado este valor corresponde a la presión sistólica y es almacenado en memoria y desplegado en pantalla junto con el valor de la presión diastólica.
17. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque si la variación de la amplitud de la señal en el periodo sistólico no llega al mínimo o cero, la búsqueda continúa hasta que se encuentre este valor.
18. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque durante la fase de evaluación de la medición del valor de la presión diastólica, el sistema comprueba primero si hay al menos dos valores con un rango mínimo o igual a cero en el periodo diastólico del ciclo arterial, entonces la decisión se hace para fijar el valor o dato que se encuentre en el sensor de presión y determina el valor de la presión diastólica utilizando una interrupción que toma el valor del sensor de presión, utilizando para la activación de la interrupción el primero de los dos valores encontrados en el periodo diastólico del ciclo arterial con un rango mínimo o igual a cero.
19. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado porque durante la fase de evaluación de la medición del valor de la presión sistólica, el sistema comprueba primero si hay al menos dos valores con un rango mínimo o igual a cero en el periodo sistólico del ciclo arterial, entonces la decisión se hace para fijar el valor o dato que se encuentre en el sensor de presión y determina el valor de la presión sistólica utilizando una interrupción que toma el valor del sensor de presión, utilizando para la activación de la interrupción el primero de los dos valores encontrados en periodo sistólico con un rango mínimo o igual a cero.
20. Sistema para medir la presión arterial de conformidad con alguna de las reivindicaciones anteriores caracterizado además porque sensor de manifestación arterial detecta y el medio de detección de ciclo arterial traduce en señales eléctricas (análogas y digitales) u oscilaciones la aparición o eliminación de la manifestación arterial del periodo diastólico o sistólico del ciclo arterial.
21. Método para medir la presión arterial por obliteración el cual comprende las siguientes etapas:
i. obtener un ciclo arterial diferenciando el periodo sistólico y diastólico;
ii. aplicar una fuerza externa sobre la arteria y registrar la manifestación arterial de cada periodo;
iii. aumentar la fuerza aplicada externa hasta igualarle con la presión que tiene la arteria en el periodo del ciclo arterial que se desea medir, y
vi. medir la presión arterial deseada dentro del ciclo arterial deseado.
22. Método para medir la presión arterial diastólica por desobstrucción el cual comprende las siguientes etapas:
i. aplicar una fuerza externa sobre la arteria hasta ocluirla;
ii. liberar la fuerza aplicada externa hasta igualarle con la presión que tiene la arteria en el periodo diastólico del ciclo arterial y
iii. al detectarse la manifestación arterial propia del periodo diastólico del ciclo arterial medir la presión arterial diastólica.
23. Método para medir la presión según la cláusula 21 en donde la etapa i. se obtiene mediante un sensor de manifestación arterial a partir de las manifestaciones arteriales sin afección del flujo sanguíneo ni pared arterial por fuerzas externas.
24. Método para medir la presión según la clausula 23 en donde además la etapa iii comprende aumentar la fuerza aplicada sobre la arteria hasta afectar el flujo sanguíneo y pared arterial del periodo sistólico del ciclo arterial, registrar las manifestaciones arteriales del periodo sistólico.
25. Método para medir la presión según la cláusula 24 en donde además la etapa iii comprende aumentar la fuerza aplicada sobre la arteria hasta afectar el flujo sanguíneo y pared arterial del periodo diastólico del ciclo arterial, registrar dos manifestaciones arteriales una del periodo sistólico y otra del periodo diastólico.
26. Método para medir la presión según la cláusula 25 en donde la etapa iii además comprende aumentar la fuerza aplicada hasta igualar la fuerza de contacto aplicada externamente sobre la arteria con la presión que tiene la presión arterial en el periodo del ciclo arterial y registrar la manifestación arterial la cual consiste en la desaparición del flujo sanguíneo en el periodo del ciclo arterial.
27. Método para medir la presión según la cláusula 26 en donde la etapa iv comprende realizar la medición de la presión arterial en el momento en el cual desaparece la manifestación arterial, ya sea del periodo sistólico o diastólico según el caso.
28. Método para medir la presión según la cláusula 22 en donde la etapa iii comprende realizar la medición de la presión arterial diastólica en el momento en el cual aparece la manifestación arterial, del periodo diastólico del ciclo arterial.
29. Método para medir la presión según la cláusula 27 en donde la etapa iv comprende realizar la medición de la presión arterial diastólica se realiza en la oclusión de la arteria en el periodo diastólico antes de la oclusión total de la arteria y la medición de la presión arterial sistólica en la oclusión total de la arteria en el periodo sistólico.
30. Método para medir la presión según alguna de las clausulas 21 a 29 además comprende proporcionar una placa central de circuitos en un equipo electrónico complejo o capaz de adaptarse a la estructura de diversos instrumentos de medición con el mismo fin, así como la programación de las tarjetas para la interacción general del dispositivo electrónico, dicho dispositivo se compone por una tarjeta madre con los subsistemas críticos tales como; puertos, conectores, memoria del sistema, al menos una tarjeta para un sensor de manifestación arterial, una tarjeta de sensor de presión y tarjeta principal de procesamiento en la cual las señales recibidas del sensor de manifestación arterial y las recibidas del sensor de presión del medio de aplicación de fuerza son procesadas con oscilometría ó comparadas para registrar y emitir un valor de presión sistólica o diastólica a partir de la detección o no de la manifestación arterial en el periodo sistólico o en el periodo diastólico del ciclo arterial.
31. Método para medir la presión según alguna de las clausulas 21 a 30 en donde además comprende proporcionar un medio de despliegue de datos que puede consistir en un medio mecánico mediante una carátula graduada con indicadores que se muevan en respuesta a ondas de presión y descompresión.
32. Método para medir la presión según alguna de las clausulas 21 a 31 en donde la tarjeta para el sensor de manifestación arterial comprende una de las siguientes tarjetas: de sonido, sensor de flujo, sensor de presión, sensor láser, sensor de vibraciones, sensor sonoro del fonograma.
33. Método para medir la presión según alguna de las clausulas 21 a 32 en donde la tarjeta principal recibe la señal eléctrica de salida del sensor de manifestación arterial y del sensor de presión las muestrea y digitaliza para ser enviadas al controlador y ahí realizar el procesamiento, en donde las ganancias y los rangos de operación de la señal son revisados y ajustados en este momento también.
34. Método para medir la presión según alguna de las clausulas 21 a 33 caracterizado porque con la insuflación del brazalete y la recolección y análisis de datos el segundo bucle y subsistema recopila datos de variación de la sangre y delimita el periodo sistólico y el periodo diastólico del ciclo arterial y mide cualquier variación en cada uno de estos periodos.
35 Método para medir la presión según alguna de las clausulas 21 a 34 caracterizado porque las muestras de las variaciones del segundo bucle y segundo subsistema se proporcionan cada milisegundo y sus amplitudes son revisadas y comparadas hasta que en el periodo diastólico del ciclo arterial encontremos el rango de amplitud mínima o cero y al encontrarla tomamos el valor de presión que se encuentre en el primer bucle y primer subsistema, este valor es almacenado en memoria y corresponde al valor de la presión diastólica.
36. Método para medir la presión según alguna de las clausulas 21 a 35 caracterizado porque si la variación de la amplitud de la señal en el periodo diastólico no llega al rango mínimo o cero, la búsqueda continúa hasta que se encuentre este valor.
37. Método para medir la presión según alguna de las clausulas 21 a 36 caracterizado porque una vez almacenado el valor de la presión diastólica en la memoria se prosigue con la medición y el segundo bucle y segundo subsistema continua recopilando datos de la variación de la sangre ahora analizando el periodo sistólico de ciclo arterial en donde las muestras de las variaciones son revisadas y comparadas hasta encontrar un valor con un rango de amplitud mínima o cero, una vez encontrado este valor corresponde a la presión sistólica y es almacenado en memoria y desplegado en pantalla junto con el valor de la presión diastólica.
38. Método para medir la presión según alguna de las clausulas 21 a 37 caracterizado porque si la variación de la amplitud de la señal en el periodo sistólico no llega al mínimo o cero, la búsqueda continúa hasta que se encuentre este valor.
39. Método para medir la presión según alguna de las clausulas 21 a 38 caracterizado porque durante la fase de evaluación de la medición del valor de la presión diastólica, el sistema comprueba primero si hay al menos dos valores con un rango mínimo o igual a cero en el periodo diastólico del ciclo arterial, entonces la decisión se hace para fijar el valor o dato que se encuentre en el sensor de presión y determina el valor de la presión diastólica utilizando una interrupción que toma el valor del sensor de presión, utilizando para la activación de la interrupción el primero de los dos valores encontrados en el periodo diastólico del ciclo arterial con un rango mínimo o igual a cero.
40. Método para medir la presión según alguna de las clausulas 21 a 39 caracterizado porque durante la fase de evaluación de la medición del valor de la presión sistólica, el sistema comprueba primero si hay al menos dos valores con un rango mínimo o igual a cero en el periodo sistólico del ciclo arterial, entonces la decisión se hace para fijar el valor o dato que se encuentre en el sensor de presión y determina el valor de la presión sistólica utilizando una interrupción que toma el valor del sensor de presión, utilizando para la activación de la interrupción el primero de los dos valores encontrados en periodo sistólico con un rango mínimo o igual a cero.
41. Método para medir la presión según alguna de las clausulas 21 a 40, caracterizado además porque sensor de manifestación arterial detecta y el medio de detección de ciclo arterial traduce en señales eléctricas (análogas y digitales) u oscilaciones la aparición o eliminación de la manifestación arterial del periodo diastólico o sistólico del ciclo arterial.
42. Método para medir la presión según la cláusula 21 o 22 en donde dentro de las manifestaciones arteriales del periodo diastólico del ciclo arterial que pueden registrarse esta alguna de las siguientes: sonido o flujo sanguíneo, colisiones intermitentes de la pared arterial velocidad de flujo sanguíneo, vibraciones de la pared arterial, densidad del espectro de frecuencias, la variación del diámetro o volumen de la arteria, la variación de la temperatura.
PCT/MX2010/000003 2010-01-12 2010-01-12 Sistema y método para medir la presión arterial por sus efectos WO2011087347A1 (es)

Priority Applications (15)

Application Number Priority Date Filing Date Title
PCT/MX2010/000003 WO2011087347A1 (es) 2010-01-12 2010-01-12 Sistema y método para medir la presión arterial por sus efectos
JP2012548905A JP5698765B2 (ja) 2010-01-12 2010-01-12 動脈圧の影響により動脈圧を測定する動脈圧測定システム及び方法
CN201080061312.3A CN102711598B (zh) 2010-01-12 2010-01-12 通过动脉压的作用测量动脉压的系统和方法
CA2786248A CA2786248A1 (en) 2010-01-12 2010-01-12 System and method for the measurement of arterial pressure through the effects thereof
RU2012134385/14A RU2535909C2 (ru) 2010-01-12 2010-01-12 Система и способ измерения артериального давления по его эффектам
EP10843299.8A EP2524646B1 (en) 2010-01-12 2010-01-12 System and method for the measurement of arterial pressure through the effects thereof
BR112012017251A BR112012017251B8 (pt) 2010-01-12 2010-01-12 sistema de medida de pressão arterial e método para medir a pressão arterial
AU2010341901A AU2010341901B2 (en) 2010-01-12 2010-01-12 System and method for the measurement of arterial pressure through the effects thereof
KR1020127021258A KR101690250B1 (ko) 2010-01-12 2010-01-12 동맥압 측정 시스템 및 측정 방법
US12/866,854 US10653325B2 (en) 2010-01-12 2010-01-12 System and method for measuring arterial pressure by its effects
MX2012007315A MX2012007315A (es) 2010-01-12 2012-06-21 Sistema y metodo para medir la presion arterial por sus efectos.
IL220930A IL220930A (en) 2010-01-12 2012-07-12 A system and method for measuring arterial blood pressure through its effects
HK13102432.7A HK1175090A1 (zh) 2010-01-12 2013-02-26 通過動脈壓的作用測量動脈壓的系統和方法
IL239883A IL239883A (en) 2010-01-12 2015-07-09 Methods of measuring distal arterial pressure
AU2015249117A AU2015249117B2 (en) 2010-01-12 2015-10-29 System and method for the measurement of arterial pressure through the effects thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2010/000003 WO2011087347A1 (es) 2010-01-12 2010-01-12 Sistema y método para medir la presión arterial por sus efectos

Publications (1)

Publication Number Publication Date
WO2011087347A1 true WO2011087347A1 (es) 2011-07-21

Family

ID=44304452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2010/000003 WO2011087347A1 (es) 2010-01-12 2010-01-12 Sistema y método para medir la presión arterial por sus efectos

Country Status (13)

Country Link
US (1) US10653325B2 (es)
EP (1) EP2524646B1 (es)
JP (1) JP5698765B2 (es)
KR (1) KR101690250B1 (es)
CN (1) CN102711598B (es)
AU (2) AU2010341901B2 (es)
BR (1) BR112012017251B8 (es)
CA (1) CA2786248A1 (es)
HK (1) HK1175090A1 (es)
IL (2) IL220930A (es)
MX (1) MX2012007315A (es)
RU (1) RU2535909C2 (es)
WO (1) WO2011087347A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2652070C1 (ru) * 2017-05-16 2018-04-24 Общество с ограниченной ответственностью "ПроМЕД" (ООО "ПроМЕД") Электронный тонометр

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103083004A (zh) * 2013-02-06 2013-05-08 青岛盛福电子有限公司 电子血压计
RU2644299C1 (ru) * 2016-10-25 2018-02-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Осциллографический способ измерения артериального давления
RU2638712C1 (ru) * 2016-11-07 2017-12-15 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Пневматический сенсор для непрерывного неинвазивного измерения артериального давления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590661A (en) * 1994-07-29 1997-01-07 Colin Corporation Blood pressure measuring apparatus
US20030149369A1 (en) * 2002-02-05 2003-08-07 Gallant Stuart L Method and apparatus for non-invasively measuring hemodynamic parameters using parametrics
DE20310220U1 (de) * 2003-07-03 2003-09-04 Braun Gmbh Sensor zur Detektion der Pulswellenformen in Arterien
WO2006066793A1 (de) * 2004-12-20 2006-06-29 Braun Gmbh Verfahren und vorrichtung zur nicht-invasiven detektion des blutflusses und davon abhängiger parameter in arterien, insbesondere der arteriellen wellenform und des blutdruckes
US20070167844A1 (en) * 2005-11-29 2007-07-19 Asada Haruhiko H Apparatus and method for blood pressure measurement by touch

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1982505A (en) * 1932-12-30 1934-11-27 George B Emerson Arteriomanometer
US3744490A (en) * 1971-11-16 1973-07-10 H Fernandez Automatic device for recording blood pressure
JPS5470678A (en) * 1977-11-15 1979-06-06 Matsushita Electric Works Ltd Automatic digital hemadynamometer
DE3014219C2 (de) * 1980-02-18 1982-12-09 Asulab AG, 2502 Bienne Blutdruckmeßeinrichtung mit einem Mikrofon
JPS5975036A (ja) * 1982-10-22 1984-04-27 学校法人 東海大学 血圧測定装置
JPS61284230A (ja) * 1985-06-11 1986-12-15 株式会社 スズケン 自動血圧測定装置
JPH0751123B2 (ja) * 1987-06-25 1995-06-05 オムロン株式会社 指用電子血圧計
JP2576451B2 (ja) * 1988-03-15 1997-01-29 オムロン株式会社 電子血圧計
US4873987A (en) * 1988-06-30 1989-10-17 Ljubomir Djordjevich Noninvasive continuous monitor of arterial blood pressure waveform
US5103830A (en) * 1989-10-05 1992-04-14 Terumo Kabushiki Kaisha Electronic sphygmomanometer
US5651369A (en) * 1992-01-13 1997-07-29 Tomita; Mitsuei Apparatus for detecting and displaying blood circulatory information
US5533511A (en) * 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
JPH08280641A (ja) * 1995-04-10 1996-10-29 A & D Co Ltd 血圧計
MX2007006055A (es) * 2004-11-18 2008-02-22 Graham Packaging Co Agrupacion de varios recipientes y metodo para formarla.
RU2299006C2 (ru) * 2005-04-26 2007-05-20 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет им. академика С.П. Королева" Способ диагностики артериальной гипертензии, вызванной беременностью
US7717855B2 (en) * 2006-12-06 2010-05-18 The Hospital For Sick Children System for performing remote ischemic preconditioning
EP2139387A4 (en) * 2007-03-28 2013-11-06 Kaz Inc DEVICE FOR MONITORING ARTERY BLOOD PRESSURE WITH LIQUID-FILLED CUFF
GB2465787B (en) * 2008-11-28 2011-04-06 Royal United Hospital Bath Nhs Trust Method of measuring blood pressure and apparatus for performing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590661A (en) * 1994-07-29 1997-01-07 Colin Corporation Blood pressure measuring apparatus
US20030149369A1 (en) * 2002-02-05 2003-08-07 Gallant Stuart L Method and apparatus for non-invasively measuring hemodynamic parameters using parametrics
DE20310220U1 (de) * 2003-07-03 2003-09-04 Braun Gmbh Sensor zur Detektion der Pulswellenformen in Arterien
WO2006066793A1 (de) * 2004-12-20 2006-06-29 Braun Gmbh Verfahren und vorrichtung zur nicht-invasiven detektion des blutflusses und davon abhängiger parameter in arterien, insbesondere der arteriellen wellenform und des blutdruckes
US20070167844A1 (en) * 2005-11-29 2007-07-19 Asada Haruhiko H Apparatus and method for blood pressure measurement by touch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2524646A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2652070C1 (ru) * 2017-05-16 2018-04-24 Общество с ограниченной ответственностью "ПроМЕД" (ООО "ПроМЕД") Электронный тонометр

Also Published As

Publication number Publication date
CN102711598A (zh) 2012-10-03
BR112012017251B8 (pt) 2021-06-22
EP2524646A4 (en) 2016-12-14
MX2012007315A (es) 2012-07-04
EP2524646B1 (en) 2020-09-02
AU2010341901B2 (en) 2016-02-18
KR20120120300A (ko) 2012-11-01
KR101690250B1 (ko) 2017-01-09
CA2786248A1 (en) 2011-07-21
JP2013517047A (ja) 2013-05-16
EP2524646A1 (en) 2012-11-21
CN102711598B (zh) 2016-03-16
BR112012017251A2 (pt) 2020-08-18
IL220930A (en) 2015-10-29
US20120022383A1 (en) 2012-01-26
HK1175090A1 (zh) 2013-06-28
US10653325B2 (en) 2020-05-19
RU2012134385A (ru) 2014-02-20
BR112012017251B1 (pt) 2021-03-02
AU2015249117B2 (en) 2017-08-17
JP5698765B2 (ja) 2015-04-08
RU2535909C2 (ru) 2014-12-20
AU2010341901A1 (en) 2012-08-30
IL239883A (en) 2017-08-31
IL239883A0 (en) 2015-08-31
AU2015249117A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
US6355000B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
ES2820367T3 (es) Sistema y método de medición de cambios en el volumen arterial de un segmento de miembro
JP3971457B2 (ja) 末梢動脈緊張の監視による医学的状態の非侵襲検査装置
ES2213912T3 (es) Metodo y disposicion para medir la presion sanguinea.
US20060224070A1 (en) System and method for non-invasive cardiovascular assessment from supra-systolic signals obtained with a wideband external pulse transducer in a blood pressure cuff
US20150230774A1 (en) Blood pressure monitor and method
US20140107505A1 (en) Determination of ventricular pressure and related values
WO2016055036A1 (en) Device and method for measurement of intracranial pressure
US6565515B2 (en) Pulse-wave-propagation-velocity-relating-information obtaining apparatus and blood-pressure-index measuring apparatus
AU2015249117B2 (en) System and method for the measurement of arterial pressure through the effects thereof
Peura Blood pressure and sound
EP3352675A1 (en) Apparatus and methods for detecting increase in brain swelling and/or shifting
Kenner Arterial blood pressure and its measurement
GB2456947A (en) Non invasive determination of stroke volume based on incident wave suprasystolic blood pressure amplitude
Xuan An exploration on real-time cuffless blood pressure estimation for e-home healthcare
WO1999039634A1 (en) Method and device for arterial blood pressure measurement
WO2020260981A1 (en) Device for venous-pressure sensing
Dubey Non Invasive Blood Pressure Measurement Techniques: A Survey
Hieronymi et al. Cardiovascular monitoring
CD et al. Auscultatory and Oscillometric methods of Blood pressure measurement: a Survey
Mathew et al. Digital Sphygmomanometer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061312.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866854

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/007315

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2786248

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010843299

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012548905

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 220930

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 6913/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010341901

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12134297

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20127021258

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012134385

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010341901

Country of ref document: AU

Date of ref document: 20100112

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017251

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 239883

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 112012017251

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120712