WO2011087149A1 - Amplification device with automatic gain control, automatic gain control device, and automatic gain control method - Google Patents

Amplification device with automatic gain control, automatic gain control device, and automatic gain control method Download PDF

Info

Publication number
WO2011087149A1
WO2011087149A1 PCT/JP2011/051032 JP2011051032W WO2011087149A1 WO 2011087149 A1 WO2011087149 A1 WO 2011087149A1 JP 2011051032 W JP2011051032 W JP 2011051032W WO 2011087149 A1 WO2011087149 A1 WO 2011087149A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
gain control
signal
abnormality detection
automatic gain
Prior art date
Application number
PCT/JP2011/051032
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 寺本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011087149A1 publication Critical patent/WO2011087149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver

Definitions

  • the present invention relates to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method, and more particularly to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method that can cope with an abnormality.
  • the automatic gain control for automatically adjusting the level of a signal is often performed for an amplifier such as a communication device.
  • the automatic gain control is described in Patent Document 1, for example.
  • the automatic gain control device of Patent Document 1 includes a variable gain amplifier (hereinafter referred to as “VGA”) and a power calculator. Then, the gain of the VGA is controlled so that the signal power after the automatic gain control falls between the upper limit value and the lower limit value of the target power value width.
  • VGA variable gain amplifier
  • the gain control signal for controlling the gain of the VGA may stick to a state where the gain of the VGA is controlled to the maximum value or a state where the gain is controlled to the minimum value for some reason.
  • FIG. 8 shows an example of the state of the gain control signal when an abnormality occurs in the automatic gain control amplification device.
  • FIGS. 8A and 8B show a case where the gain control signal sticks to the minimum value and the maximum value at time t0, respectively. As shown in FIG.
  • an abnormality occurs in the automatic gain control amplifying apparatus, and even if the output of the VGA reaches the maximum value, the gain is not controlled to decrease, or even if the output of the VGA becomes the minimum value, May not be controlled in the direction of increasing In this way, control in the reverse direction is applied to control of increase or decrease of the gain that should be originally performed, and automatic gain control may be disabled.
  • the output signal of the VGA that is, the output signal of the automatic gain control amplifier becomes a signal amplified with the maximum gain or the minimum gain, and the signal level does not become the signal level that should be originally intended. Therefore, there is a high possibility that the subsequent circuit cannot operate correctly.
  • the automatic gain control amplifier of Patent Document 1 does not include means for detecting an abnormal situation. Therefore, the technique of Patent Document 1 cannot cope with a case where an abnormality occurs in the automatic gain control amplifier.
  • the present invention has been made in view of the technical problems as described above, and provides an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method capable of restoring a normal state when an abnormality occurs. The purpose is to do.
  • the automatic gain control amplifying apparatus of the present invention amplifies an input signal with a specified gain that is set to be equal to or higher than the minimum gain and lower than the maximum gain, and outputs the output signal.
  • a gain control means for setting the designated gain so as to be within a range; and an abnormality detection means for outputting an abnormality detection signal and initializing the gain control means when detecting that an abnormality has occurred in the gain control means, It is characterized by providing.
  • An automatic gain control device includes a variable gain amplifying device that amplifies an input signal with a specified gain that is set to be equal to or greater than a minimum gain and equal to or less than a maximum gain, and the signal level of the output signal is within a predetermined range.
  • a specified gain set to be equal to or higher than the minimum gain and lower than or equal to the maximum gain is set in a variable gain amplifying apparatus that amplifies an input signal and outputs an output signal, and the signal level of the output signal is
  • a designated gain is set so as to be within a predetermined range, and when a set gain is set, it is detected that an abnormality has occurred, and when an abnormality is detected, a setting process for setting the set gain is initialized.
  • the automatic gain control amplifying apparatus, automatic gain control apparatus, and automatic gain control method of the present invention have the effect of being able to recover to a normal state when an abnormality occurs.
  • FIG. 1 is a block diagram showing the configuration of the variable gain control amplifying apparatus of this embodiment.
  • the variable gain control amplification device includes a variable gain amplification unit 101, a gain control unit 102, and an abnormality detection unit 103.
  • the variable gain amplifying unit 101 amplifies the input signal 104 with a gain specified by the gain control signal 106 output by the gain control unit 102 (hereinafter referred to as “specified gain”), and outputs an output signal 105.
  • the gain control unit 102 performs the automatic gain control described above. That is, the designated gain is set so that the signal level of the output signal 105 falls within a predetermined range, and the gain control signal 106 corresponding to the designated designated gain is output. Specifically, the designated gain is decreased when the signal level of the output signal 105 is greater than a predetermined range, and the designated gain is increased when the signal level of the output signal 105 is smaller than the predetermined range.
  • the specific content of the automatic gain control is not important to the spirit of the present invention. Moreover, those skilled in the art can easily realize automatic gain control using various methods.
  • the abnormality detection unit 103 detects that an abnormality has occurred in the gain control unit 102 and outputs an abnormality detection signal 107.
  • a method of detecting that an abnormality has occurred in the gain control unit 102 is not particularly limited. In the present embodiment, the abnormality detection unit 103 monitors the change in the designated gain by observing the gain control signal 106 output by the gain control unit 102.
  • the gain control unit 102 When the change in the designated gain satisfies a predetermined condition, it is determined that an abnormality has occurred in the gain control unit 102, and an abnormality detection signal 107 is output.
  • the gain control unit 102 initializes the gain control unit 102 when the abnormality detection signal 107 is output.
  • the initialized gain control unit 102 starts a designated gain calculation process based on the signal level of the output signal 105 at that time. At this time, the gain control unit 102 may once set a predetermined initial gain that is larger than the minimum gain and smaller than the maximum gain.
  • Various conditions can be set as conditions for determining that an abnormality has occurred in the gain control unit 102 based on the designated gain.
  • the fact that the specified gain remains at the maximum gain or the minimum gain for a predetermined period and becomes a constant value can be used as a condition for determining the occurrence of an abnormality in the gain control unit 102. That is, when detecting that the gain control signal 106 remains at a level corresponding to the maximum value of the designated gain for a predetermined period, the abnormality detection unit 103 outputs the abnormality detection signal 107. Alternatively, when detecting that the gain control signal 106 remains at a level corresponding to the minimum value of the designated gain for a predetermined period, the abnormality detection unit 103 outputs an abnormality detection signal 107. Alternatively, by monitoring the output signal 105, the occurrence of an abnormality in the gain control unit 102 can be detected indirectly. FIG.
  • the abnormality detection unit 103 analyzes the output signal 105 to acquire predetermined information, and detects the occurrence of an abnormality in the gain control unit 102 based on the content of the information. For example, the abnormality detection unit 103 may detect the occurrence of an abnormality in the set gain using a carrier power to noise ratio (Carrier to Noise Ratio, hereinafter referred to as “C / N”).
  • C / N Carrier to Noise Ratio
  • the abnormality detection unit 103 determines that the set gain is set to an abnormal value and an abnormality has occurred in the gain control unit 102. Then, the abnormality detection signal 107 is output.
  • the output signal 105 may include a synchronization signal for use in a subsequent circuit. At this time, the abnormality detection unit 103 tries to extract the synchronization signal, and outputs the abnormality detection signal 107 if the synchronization signal cannot be extracted.
  • FIGS. 3 and 4 are block diagrams showing the configuration of the automatic gain control apparatus.
  • the automatic gain control devices of FIGS. 3 and 4 include only the gain control unit 102 and the abnormality detection unit 103 of the automatic gain control amplifiers of FIGS. 1 and 2, respectively.
  • An output signal 105 from an external variable gain amplifying device (not shown) is input, and a gain control signal 106 is output to the external variable gain amplifying device.
  • the functions of the gain control unit 102 and the abnormality detection unit 103 are the same as those of the automatic gain control amplifier gain control unit 102 and the abnormality detection unit 103 of FIGS.
  • the automatic gain control amplification apparatus detects that an abnormality has occurred in the gain control unit, and initializes the gain control unit. Therefore, when an abnormality occurs in the gain control unit, the automatic gain control device can be restored to a normal state.
  • the present embodiment can be applied to all devices that perform automatic gain control. In other words, the present invention can be applied regardless of whether the signal processing for detecting the occurrence of abnormality is analog processing or digital processing. Further, this embodiment does not depend on the frequency band of the signal to be amplified. Furthermore, this embodiment may include other circuits such as a modulator / demodulator and a frequency converter in addition to the amplifier to be processed for automatic gain control.
  • FIG. 5 is a block diagram showing a configuration of an automatic gain control amplifying apparatus according to the second embodiment of the present invention.
  • a quadrature modulation scheme such as QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) is assumed as a modulation scheme, and a synchronous detection scheme is assumed as a detection scheme of a demodulator.
  • the components of two orthogonal baseband signals are denoted as Ich and Qch.
  • the automatic gain control amplifying apparatus of this embodiment includes a VGA 301, a quadrature demodulator 302, an oscillator 303, an analog-digital converter (hereinafter simply referred to as “A / D”) (Ich) 304, and an A / D (Qch) 305.
  • AGC Automatic Gain Control
  • the AGC circuit 310 includes a power calculation circuit 306, a comparator 307, a low pass filter (hereinafter referred to as “LPF”) 308, and a specified value monitoring circuit 309.
  • the VGA 301 amplifies an intermediate frequency input signal (IFIN) signal 311 that is an input signal according to a designated value designated by the gain control signal 325 and outputs an IFIN signal 312.
  • IFIN intermediate frequency input signal
  • a specific method for controlling the gain of the VGA 301 by the gain control signal 325 is not particularly limited.
  • the gain of the VGA 301 may be reduced if the specified value of the gain control signal 325 is reduced, and the gain may be increased if the specified value of the gain control signal 325 is increased.
  • the gain may be increased if the specified value of the gain control signal 325 is decreased, and the gain may be decreased if the specified value of the gain control signal 325 is increased.
  • the quadrature demodulator 302 converts the IFIN 312 into an analog baseband signal Ich 314 and an analog baseband signal Qch 315 that are orthogonal to each other using the reference frequency signal 313 from the oscillator 303.
  • the A / D (Ich) 304 converts the analog baseband signal Ich 314 into a digital baseband signal Ich 316 in order to perform the subsequent processing by digital processing.
  • the A / D (Qch) 305 converts the analog baseband signal Qch315 to a digital baseband signal Qch317.
  • the sampling period of A / D (Ich) 304 and A / D (Qch) 305 (hereinafter referred to as “A / D sampling period”) is set to an appropriate value in consideration of the required AGC responsiveness.
  • the AGC circuit 310 performs AGC.
  • AGC means that the power value 318 is controlled to converge to the set AGC threshold 319.
  • the AGC absorbs the fluctuation of the input IFIN 311 by controlling the gain of the VGA 301, and the digital baseband signal obtained from the A / D (Ich) 304 and A / D (Qch) 305 It is said that the power is controlled so as to be a constant value.
  • the power calculation circuit 306 calculates the power possessed by the digital baseband signal Ich316 and the digital baseband signal Qch317.
  • the digital baseband signal Ich 316 and the digital baseband signal Qch 317 are squared, their sum is calculated, and output as a power value 318.
  • the calculation of the power value 318 is performed every A / D sampling period. Therefore, the power value 318 is output for each A / D sampling period in time series.
  • the comparator 307 compares the power value 318 with the AGC threshold value 319 set from the outside, and outputs 1 or 0 as the comparator output 320 according to the comparison result. For example, 1 is output if the power value 318 is smaller than the AGC threshold value 319, and 0 is output if it is larger.
  • 0 may be output if the power value 318 is smaller than the AGC threshold 319, and 1 may be output if it is larger.
  • the comparison operation by the comparator 307 is also performed every A / D sampling period. Accordingly, the comparison value output 320 is also output for each A / D sampling period in time series.
  • the LPF 308 removes the high frequency component of the comparator output 320 that is output every A / D sampling period, and outputs an LPF output 321.
  • the LPF output 321 approaches the minimum value when the ratio of “0” in the value of the comparator output 320 output in time series is large, and the LPF output 321 when the ratio of “1” is large. Approaches the maximum value.
  • the LPF 308 is reset by an AGC reset signal 324 input from the designated value monitoring circuit 309 described later.
  • “LPF 308 is reset” means, for example, that the circuit of LPF 308 is reset to a predetermined initial state.
  • the reset LPF 308 restarts the filtering process from the initial state.
  • the designated value monitoring circuit 309 compares the LPF output 321 with the designated value upper limit value 322 and the designated value lower limit value 323 set from the outside. When the LPF output 321 continues for a certain period of time (hereinafter referred to as “abnormality determination time”) that is greater than the specified value upper limit value 322 or smaller than the specified value lower limit value 323, the AGC reset signal 324. Is output to reset the AGC operation.
  • the number of occurrences when the AGC reset signal 324 is continuously generated is also counted. That is, the AGC operation is reset, and the number of times the AGC reset signal 324 is generated is counted again immediately after the AGC has once returned to normal.
  • the count value exceeds a certain number of times (hereinafter referred to as “failure determination number”), it is determined that the AGC amplifying device has failed, and an alarm signal 326 is generated.
  • the LPF output 321 is output as a gain control signal 325 for controlling the gain of the VGA 301 as it is. That is, when the time when the LPF output 321 becomes the specified value upper limit value 322 or more or the specified value lower limit value 323 or less does not exceed the abnormality determination time, the gain of the VGA 301 is controlled by the LPF output 321.
  • the designated value monitoring circuit 309 is used to monitor the LPF output 321.
  • the designated value monitoring circuit 309 compares the LPF output 321 with the designated value upper limit value 322 and the designated value lower limit value 323.
  • the AGC reset signal 324 is output when the LPF output 321 continues for more than the abnormality determination time.
  • the LPF 8 is reset by the AGC reset signal 324, and the AGC is initialized.
  • FIG. 6 shows an example of a change in the gain control signal when an abnormality occurs in the AGC amplification apparatus according to this embodiment. 6A and 6B show cases where the gain control signal sticks to the minimum value and the maximum value at time t0, respectively.
  • the designated value monitoring circuit 309 detects that the gain control signal 325 is stuck to the maximum value or the minimum value for some reason by monitoring the LPF output 321.
  • the designated value monitoring circuit 309 can initialize the AGC operation by resetting the LPF 308 using the AGC reset signal 324. Therefore, it is not necessary to detect an abnormality of the AGC amplifying apparatus in a circuit subsequent to the AGC amplifying apparatus, and the operation of the AGC can be stabilized.
  • the AGC operation does not depend on the performance of the abnormality detection circuit in the subsequent stage, it can be expected that the time for the signal to pass through the AGC amplifying apparatus is shortened. Even when IFIN 311 outside the AGC control range is input to the AGC amplifying apparatus, the gain control signal 325 sticks to the maximum value or the minimum value, and the AGC operation is not normally performed. Therefore, the AGC operation is not normally performed no matter how many times the AGC operation is initialized. In order to cope with such a case, the number of times the AGC reset signal 324 is generated may be counted.
  • the AGC amplifying apparatus uses the signal output from the designated value monitoring circuit 309 when the signal for controlling the gain of the VGA sticks to the maximum value or the minimum value and the AGC is disabled. The operation can be reset. Therefore, when an abnormality occurs in the AGC amplifier, there is an effect that it can be restored to a normal state. Further, it is not necessary to generate various alarm signals in the subsequent circuit of the AGC amplifier. Therefore, the circuit configuration can be simplified and the AGC operation can be stabilized. Further, as shown in FIG.
  • FIG. 7 is a block diagram showing the configuration of the AGC amplification apparatus according to the second embodiment of the present invention.
  • the AGC amplification apparatus according to the third embodiment includes a VGA 301, a quadrature demodulator 302, an oscillator 303, an A / D (Ich) 304, and an A / D (Qch) 305.
  • the AGC amplification apparatus includes a power calculation circuit 306, a comparator 307, an LPF 328, a C / N estimation circuit 329, and a frame synchronization circuit 330.
  • the operations of the VGA 301, the quadrature demodulator 302, the oscillator 303, the A / D (Ich) 304, and the A / D (Qch) 305 and the functions of the signals input and output by these are described in the AGC of the second embodiment shown in FIG. Since it is the same as that of the amplifying apparatus, the description is omitted.
  • the AGC amplifier according to the third embodiment includes an AGC circuit 327 that is different from the AGC circuit 310 of the AGC amplifier according to the second embodiment. That is, the AGC circuit 327 includes an LPF 328 having a function different from that of the LPF 308, a C / N estimation circuit 329 and a frame synchronization circuit 330 that the AGC circuit 310 does not have.
  • the LPF 328 removes the high-frequency component of the comparator output 320 that is output in time series for each A / D sampling period, and outputs a gain control signal 325 in the same manner as the LPF 308.
  • the gain control signal 325 approaches the minimum value when the ratio of “0” in the value of the comparator output 320 that is the input signal of the LPF 328 is large, and the gain control signal when the ratio of “1” is large. 325 approaches the maximum value.
  • the LPF 328 also has a reset function. That is, the LPF 328 is reset by a C / N alarm signal 331 or a frame asynchronous signal 332 described later.
  • the reset function of the LPF 328 is the same as that of the LPF 308.
  • the C / N estimation circuit 329 receives the digital baseband signal Ich316 and the digital baseband signal Qch317, and estimates the C / N of the digital baseband signal. When the estimated C / N is smaller than a predetermined reference value, a C / N alarm signal 331 is output.
  • the frame synchronization circuit 330 receives the digital baseband signal Ich316 and the digital baseband signal Qch317, and extracts a frame synchronization signal from the digital baseband signal.
  • the frame synchronization signal is a timing signal that is included in IFIN 311 and indicates the beginning of a frame for processing in units of frames.
  • the frame synchronization circuit 330 outputs a frame asynchronous signal 332 when the frame synchronization signal cannot be extracted from the digital baseband signal Ich316 and the digital baseband signal Qch317.
  • the gain control signal 325 for controlling the gain of the VGA 301 may stick to the maximum value or the minimum value for some reason.
  • the received IFIN signal 311 is not demodulated correctly. Therefore, in the present embodiment, the AGC operation is initialized using the reset signal generated by the circuit that inputs the digital baseband signal Ich316 and the digital baseband signal Qch317.
  • an alarm signal such as the C / N alarm signal 331 or the frame asynchronous signal 332 is used as the reset signal.
  • the AGC operation may be reset using an AGC macro reset signal 333 that initializes the AGC circuit 327 itself. Then, after the AGC circuit 327 is initialized, the AGC may be re-controlled and the received signal may be demodulated.
  • the AGC amplifying apparatus detects the occurrence of an abnormality in the AGC circuit 327 based on the digital baseband signal Ich316 and the digital baseband signal Qch317 that are output signals of the AGC amplifying apparatus. When the above occurrence is detected, a reset is generated and the AGC operation is reset.
  • both the C / N estimation circuit 329 and the frame synchronization circuit 330 are provided, but it goes without saying that the AGC can be initialized even if only one of them is provided.
  • the synchronous detection method is assumed as the detection method of the demodulator, but the detection method is not limited to the synchronous detection method.
  • the present embodiment can also be applied to other detection methods, for example, an AGC amplifier that employs a quasi-synchronous detection method.
  • each of the above embodiments can be combined with other embodiments. While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments.
  • the present invention relates to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method, and more particularly to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method that can cope with an abnormality.
  • An automatic gain control amplification device an automatic gain control device, and an automatic gain control method that can cope with an abnormality.
  • Anomaly detection signal 303 Oscillator 310 Automatic gain control (AGC) circuit 311, 312 Intermediate frequency input signal (IFIN) signal 313 Reference frequency signal 314 Analog baseband signal Ich 315 Analog baseband signal Qch 316 Digital baseband signal Ich 317 Digital baseband signal Qch 318 Power value 319 AGC threshold 320 Comparator output 321 LPF output 322 Specified value upper limit 323 Specified value lower limit 324 AGC reset signal 325 Gain control signal 326 Alarm signal 327 AGC circuit 331 C / N alarm signal 332 Frame asynchronous signal 333 AGC macro ⁇ Reset signal

Abstract

Disclosed is an automatic gain control device which can revert to a normal state when a malfunction occurs. The device is provided with: a gain control means which sets a designated gain for a variable gain amplification device, which amplifies an input signal at a designated gain between a minimum gain and a maximum gain and outputs an output signal, so that the signal level of the output signal lies within a predetermined range; and a malfunction detection means which outputs a malfunction detection signal when the occurrence of a malfunction in the gain control means is detected, and resets the gain control means.

Description

自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法Automatic gain control amplification device, automatic gain control device, and automatic gain control method
 本発明は、自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法に関し、特に異常が発生したときの対応が可能な自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法に関する。 The present invention relates to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method, and more particularly to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method that can cope with an abnormality.
 信号のレベルを自動的に調整するための自動利得制御は、通信機等の増幅器に対しよく行われている。
 自動利得制御については、例えば特許文献1に記載されている。特許文献1の自動利得制御装置は、可変利得増幅器(Variable Gain Amplifier。以降、「VGA」という。)、電力計算器を備える。そして、自動利得制御後の信号の電力が、目標電力値幅の上限値と下限値の間に入るように、VGAの利得が制御される。
Automatic gain control for automatically adjusting the level of a signal is often performed for an amplifier such as a communication device.
The automatic gain control is described in Patent Document 1, for example. The automatic gain control device of Patent Document 1 includes a variable gain amplifier (hereinafter referred to as “VGA”) and a power calculator. Then, the gain of the VGA is controlled so that the signal power after the automatic gain control falls between the upper limit value and the lower limit value of the target power value width.
特開2001−69066号公報(第5−6頁、第2図)JP 2001-69066 A (page 5-6, FIG. 2)
 自動利得制御増幅器では、VGAの利得を制御する利得制御信号が、何らかの原因で、VGAの利得を最大値に制御する状態、又は最小値に制御する状態に張り付くことがある。図8に、自動利得制御増幅装置に異常が発生したときの、利得制御信号の状態の例を示す。図8(a)、(b)では、時刻t0に、それぞれ、利得制御信号が最小値、最大値に張り付いた場合を示す。
 図8のように、自動利得制御増幅装置に異常が発生し、VGAの出力が最大値になっても利得を低下させる方向には制御されない、あるいは、VGAの出力が最小値になっても利得を上昇させる方向には制御されないことがある。このように、本来あるべき利得の増加、減少の制御に対して逆方向の制御がかかり、自動利得制御が不能となることがある。このような場合、VGAの出力信号、すなわち自動利得制御増幅器の出力信号は、最大利得又は最小利得で増幅された信号となり、その信号レベルは本来あるべき信号レベルとはならない。そのため、後段の回路は正しく動作することができない可能性が高い。
 ところが、特許文献1の自動利得制御増幅器は、異常事態を検出する手段を備えない。そのため、特許文献1の技術は、自動利得制御増幅器に異常が発生した場合に対応することができない。
(発明の目的)
 本発明は上記のような技術的課題に鑑みて行われたもので、異常が発生したときに正常状態に回復させることができる自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法を提供することを目的とする。
In the automatic gain control amplifier, the gain control signal for controlling the gain of the VGA may stick to a state where the gain of the VGA is controlled to the maximum value or a state where the gain is controlled to the minimum value for some reason. FIG. 8 shows an example of the state of the gain control signal when an abnormality occurs in the automatic gain control amplification device. FIGS. 8A and 8B show a case where the gain control signal sticks to the minimum value and the maximum value at time t0, respectively.
As shown in FIG. 8, an abnormality occurs in the automatic gain control amplifying apparatus, and even if the output of the VGA reaches the maximum value, the gain is not controlled to decrease, or even if the output of the VGA becomes the minimum value, May not be controlled in the direction of increasing In this way, control in the reverse direction is applied to control of increase or decrease of the gain that should be originally performed, and automatic gain control may be disabled. In such a case, the output signal of the VGA, that is, the output signal of the automatic gain control amplifier becomes a signal amplified with the maximum gain or the minimum gain, and the signal level does not become the signal level that should be originally intended. Therefore, there is a high possibility that the subsequent circuit cannot operate correctly.
However, the automatic gain control amplifier of Patent Document 1 does not include means for detecting an abnormal situation. Therefore, the technique of Patent Document 1 cannot cope with a case where an abnormality occurs in the automatic gain control amplifier.
(Object of invention)
The present invention has been made in view of the technical problems as described above, and provides an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method capable of restoring a normal state when an abnormality occurs. The purpose is to do.
 本発明の自動利得制御増幅装置は、最小利得以上でかつ最大利得以下に設定された指定利得で入力信号を増幅し、出力信号を出力する可変利得増幅手段と、出力信号の信号レベルが所定の範囲内になるように指定利得を設定する利得制御手段と、利得制御手段に異常が発生したことを検出したとき、異常検出信号を出力し、利得制御手段を初期化する異常検出手段と、を備えることを特徴とする。
 本発明の自動利得制御装置は、最小利得以上でかつ最大利得以下に設定された指定利得で入力信号を増幅し出力信号を出力する可変利得増幅装置に、出力信号の信号レベルが所定の範囲内になるように指定利得を設定する利得制御手段と、利得制御手段に異常が発生したことを検出したとき、異常検出信号を出力し、利得制御手段を初期化する異常検出手段と、を備えることを特徴とする。
 本発明の自動利得制御方法は、入力信号を増幅し、出力信号を出力する可変利得増幅装置に、最小利得以上でかつ最大利得以下に設定された指定利得を設定し、出力信号の信号レベルが所定の範囲内になるように指定利得を設定し、設定利得の設定したときに異常が発生したことを検出し、異常を検出したとき、設定利得の設定工程を初期化する。
The automatic gain control amplifying apparatus of the present invention amplifies an input signal with a specified gain that is set to be equal to or higher than the minimum gain and lower than the maximum gain, and outputs the output signal. A gain control means for setting the designated gain so as to be within a range; and an abnormality detection means for outputting an abnormality detection signal and initializing the gain control means when detecting that an abnormality has occurred in the gain control means, It is characterized by providing.
An automatic gain control device according to the present invention includes a variable gain amplifying device that amplifies an input signal with a specified gain that is set to be equal to or greater than a minimum gain and equal to or less than a maximum gain, and the signal level of the output signal is within a predetermined range. A gain control means for setting the designated gain so that the abnormality is detected, and an abnormality detection means for outputting an abnormality detection signal and initializing the gain control means when it is detected that an abnormality has occurred in the gain control means. It is characterized by.
In the automatic gain control method of the present invention, a specified gain set to be equal to or higher than the minimum gain and lower than or equal to the maximum gain is set in a variable gain amplifying apparatus that amplifies an input signal and outputs an output signal, and the signal level of the output signal is A designated gain is set so as to be within a predetermined range, and when a set gain is set, it is detected that an abnormality has occurred, and when an abnormality is detected, a setting process for setting the set gain is initialized.
 本発明の自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法は、異常が発生したときに正常状態に回復させることができるという効果がある。 The automatic gain control amplifying apparatus, automatic gain control apparatus, and automatic gain control method of the present invention have the effect of being able to recover to a normal state when an abnormality occurs.
本発明の第1の実施形態の自動利得制御増幅装置の構成を示すブロック図である。It is a block diagram which shows the structure of the automatic gain control amplification apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の自動利得制御増幅装置の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of the automatic gain control amplification apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の自動利得制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the automatic gain control apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の自動利得制御装置の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of the automatic gain control apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の自動利得制御増幅装置の構成を示すブロック図である。It is a block diagram which shows the structure of the automatic gain control amplification apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の自動利得制御増幅装置に異常が発生したときの、利得制御信号の変化の例を示すグラフである。It is a graph which shows the example of the change of a gain control signal when abnormality generate | occur | produces in the automatic gain control amplification apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施形態の自動利得制御増幅装置の構成を示すブロック図である。It is a block diagram which shows the structure of the automatic gain control amplification apparatus of the 3rd Embodiment of this invention. 自動利得制御増幅装置に異常が発生したときの、可変利得増幅器の利得を制御する信号の状態の例を示すグラフである。It is a graph which shows the example of the state of the signal which controls the gain of a variable gain amplifier when abnormality arises in an automatic gain control amplifier.
 (第1の実施形態)
 本実施形態の可変利得制御増幅装置について、図面を参照して詳細に説明する。図1は、本実施形態の可変利得制御増幅装置の構成を示すブロック図である。本実施形態の可変利得制御増幅装置は、可変利得増幅部101、利得制御部102、異常検出部103を備える。
 可変利得増幅部101は、利得制御部102によって出力される利得制御信号106が指定する利得(以降、「指定利得」という。)で入力信号104を増幅し、出力信号105を出力する。指定利得には、最小値(以降、「最小利得」という。)と最大値(以降、「最大利得」という。)が設定される。
 利得制御部102は、前述の自動利得制御を行う。すなわち、出力信号105の信号レベルが所定の範囲内になるように指定利得を設定し、設定された指定利得に対応した利得制御信号106を出力する。具体的には、出力信号105の信号レベルが所定の範囲よりも大きいときは指定利得を低下させ、出力信号105の信号レベルが所定の範囲よりも小さいときは指定利得を上昇させる。自動利得制御の具体的内容は、本発明の趣旨にとって重要ではない。また、当業者は、各種の方法を用いて、容易に自動利得制御を実現することができる。そのため、自動利得制御についての詳細な説明は省略する。以上のように、利得制御部102による自動利得制御によって、入力信号104の信号レベルが変動したときであっても、出力信号105の信号レベルは所定の範囲内に収められる。
 異常検出部103は、利得制御部102に異常が発生したことを検出し、異常検出信号107を出力する。利得制御部102に異常が発生したことを検出する方法は、特に限定されない。本実施形態では、異常検出部103は、利得制御部102によって出力された利得制御信号106を観測することによって、指定利得の変化を監視する。そして、指定利得の変化が所定の条件を満足するとき、利得制御部102に異常が発生したと判断し、異常検出信号107を出力する。
 利得制御部102は、異常検出信号107が出力されたとき、利得制御部102を初期化する。初期化された利得制御部102は、その時点の出力信号105の信号レベルに基づいて、指定利得の算出処理を開始する。このとき、利得制御部102は、一旦、最小利得より大きく最大利得より小さい所定の初期利得を設定してもよい。
 指定利得に基づいて利得制御部102に異常が発生していると判断するための条件としては、各種の条件設定が可能である。
 例えば、指定利得が、所定の期間、最大利得又は最小利得にとどまり一定値になったことを、利得制御部102の異常発生の判断条件とすることができる。すなわち、利得制御信号106が、所定の期間、指定利得の最大値に対応するレベルにとどまったことを検出したとき、異常検出部103は異常検出信号107を出力する。あるいは、利得制御信号106が、所定の期間、指定利得の最小値に対応するレベルにとどまったことを検出したとき、異常検出部103は異常検出信号107を出力する。
 あるいは、出力信号105を監視することによって、間接的に利得制御部102の異常の発生を検出することができる。図2は、本実施形態の可変利得制御増幅装置の構成の変形例を示すブロック図である。
 出力信号105を監視する場合、異常検出部103は、出力信号105を分析して所定の情報を取得し、その情報の内容に基づいて利得制御部102の異常の発生を検出する。
 例えば、異常検出部103は、搬送波電力対雑音電力比(Carrier to Noise Ratio。以降、「C/N」という。)を用いて、設定利得の異常発生を検出してもよい。例えば、異常検出部103は、出力信号105のC/Nが所定の値以下であることを検出したとき、設定利得が異常値に設定されており、利得制御部102に異常が発生したと判断し、異常検出信号107を出力する。
 あるいは、出力信号105に含まれるべき所定の信号が検出できないとき、利得制御部102に異常が発生したと判断してもよい。例えば、出力信号105には、後段の回路で使用するための同期信号等が含まれている場合がある。このとき、異常検出部103は、同期信号の抽出を試み、もし同期信号が抽出できないならば、異常検出信号107を出力する。
 なお、本実施形態は、可変利得増幅部101を備えずに、外部の可変利得増幅装置に対して利得制御を行う自動利得制御装置にも適用することができる。図3、図4は、自動利得制御装置の構成を示すブロック図である。図3、図4の自動利得制御装置は、それぞれ、図1、図2の自動利得制御増幅器の、利得制御部102、異常検出部103のみを備える。そして、外部の可変利得増幅装置(図示なし)からの出力信号105を入力し、利得制御信号106を外部の可変利得増幅装置へ出力する。利得制御部102、異常検出部103の機能は、図1、図2の自動利得制御増幅器の利得制御部102、異常検出部103と同じであるので、説明は省略する。
 以上のように、本実施形態の自動利得制御増幅装置は、利得制御部に異常が発生していることを検出し、利得制御部を初期化する。従って、利得制御部に異常が発生したとき、自動利得制御装置を正常な状態に回復させることができるという効果がある。
 なお、本実施形態は、自動利得制御を行う装置全般に適用可能である。すなわち、異常の発生の検出のための信号の処理が、アナログ処理であるか、ディジタル処理であるかには関係なく、適用可能である。また、本実施形態は、増幅される信号の周波数帯にも依存しない。さらに、本実施形態は、自動利得制御の処理対象となる増幅器以外に、変復調器、周波数変換器等、他の回路を備えていても差し支えない。
(第2の実施形態)
 次に、具体的な自動利得制御増幅装置に本発明を適用した実施形態について、図面を参照して説明する。図5は、本発明の第2の実施形態の自動利得制御増幅装置の構成を示すブロック図である。以降の実施形態の説明において、変調方式としては、QPSK(Quadrature Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)等の直交変調方式を、復調器の検波方式としては、同期検波方式を想定する。また、直交する2つのベースバンド信号の成分を、Ich、Qchと表記する。
 本実施形態の自動利得制御増幅装置は、VGA301、直交復調器302、発振器303、アナログ−ディジタル・コンバータ(以降、単に「A/D」という。)(Ich)304、A/D(Qch)305、自動利得制御(Automatic Gain Control。以降、「AGC」という。)回路310を備える。AGC回路310は、電力計算回路306、比較器307、ロウパス・フィルタ(Low Pass Filter。以降、「LPF」という。)308、指定値監視回路309を備える。
 VGA301は、利得制御信号325によって指定される指定値に従って、入力信号である中間周波数入力信号(IFIN)信号311を増幅し、IFIN信号312を出力する。利得制御信号325によってVGA301の利得を制御するときの具体的な方法は特に限定されない。例えば、利得制御信号325の指定値が小さくなればVGA301の利得を小さくし、利得制御信号325の指定値が大きくなれば利得を大きくしてもよい。逆に、利得制御信号325の指定値が小さくなれば利得を大きくし、利得制御信号325の指定値が大きくなれば利得を小さくしてもよい。
 直交復調器302は、IFIN312を、発振器303からの基準周波数信号313を用いて、互いに直交するアナログ・ベースバンド信号Ich314とアナログ・ベースバンド信号Qch315に変換する。
 A/D(Ich)304は、以降の処理をディジタル処理で行うために、アナログ・ベースバンド信号Ich314をディジタル・ベースバンド信号Ich316に変換する。同様に、A/D(Qch)305は、アナログ・ベースバンド信号Qch315をディジタル・ベースバンド信号Qch317に変換する。A/D(Ich)304、A/D(Qch)305のサンプリング周期(以降、「A/Dサンプリング周期」という。)は、必要なAGCの応答性等を考慮し、適切な値に設定される。
 次に、AGC回路310内の各回路について、説明する。本実施形態では、AGC回路310がAGCを行う。「AGC」とは、電力値318が、設定されたAGC閾値319に収束するように制御することを意味する。AGCは、具体的には、入力されたIFIN311の変動分をVGA301の利得を制御することによって吸収し、A/D(Ich)304、A/D(Qch)305から求めたディジタル・ベースバンド信号の電力が一定値となるように制御することをいう。
 電力計算回路306は、ディジタル・ベースバンド信号Ich316とディジタル・ベースバンド信号Qch317が持つ電力を計算する。すなわち、ディジタル・ベースバンド信号Ich316とディジタル・ベースバンド信号Qch317をそれぞれ2乗し、その和を計算し、電力値318として出力する。電力値318の計算は、A/Dサンプリング周期ごとに行われる。従って、電力値318は、時系列的に、A/Dサンプリング周期ごとに出力される。
 比較器307は、電力値318と外部より設定されたAGC閾値319を比較し、比較結果に従って、比較器出力320として1又は0を出力する。例えば、電力値318がAGC閾値319よりも小さければ1を、大きければ0を出力する。これとは逆に、電力値318がAGC閾値319よりも小さければ0を、大きければ1を出力するとしてもよい。比較器307による比較動作も、A/Dサンプリング周期ごとに行われる。従って、比較値出力320も、時系列的に、A/Dサンプリング周期ごと出力される。
 LPF308は、A/Dサンプリング周期ごと出力される比較器出力320の高周波成分を除去し、LPF出力321を出力する。例えば、時系列的に出力される比較器出力320の値に占める「0」の割合が多い場合にはLPF出力321は最小値に近づき、「1」の占める割合が多い場合にはLPF出力321は最大値に近づく。また、後述の、指定値監視回路309より入力されるAGCリセット信号324によって、LPF308はリセットされる。「LPF308がリセットされる」とは、例えば、LPF308の回路が所定の初期状態に再設定されることである。リセットされたLPF308は、初期状態から、フィルタ処理を再開する。
 指定値監視回路309は、LPF出力321と外部より設定された指定値上限値322、及び指定値下限値323との比較を行う。そして、LPF出力321が指定値上限値322よりも大きい、又は、指定値下限値323より小さい状態がある一定時間(以降、「異常判定時間」という。)以上継続したときに、AGCリセット信号324を出力し、AGC動作をリセットする。
 なお、本実施形態では、AGCリセット信号324が連続して発生したときの、発生回数のカウントも行う。すなわち、AGC動作をリセットし、AGCが正常に一旦復帰した直後に、再びAGCリセット信号324が発生した回数をカウントする。そして、そのカウント値が、ある回数(以降、「故障判定回数」という。)を超えた場合は、本AGC増幅装置が故障したと判断し、アラーム信号326を発生する。
 以上が、本実施形態のAGC増幅装置の内部の個々のブロックの機能及び動作である。次に、本実施形態のAGC増幅装置の全体としての動作を説明する。
 AGCが正常に動作しているとき、LPF出力321は、そのままVGA301の利得を制御する利得制御信号325として出力される。すなわち、LPF出力321が、指定値上限値322以上、又は指定値下限値323以下になる時間が異常判定時間以上にはならないとき、LPF出力321によってVGA301の利得が制御される。
 ところが、図8に示したように、何らかの原因によって、VGAの利得を制御するLPF出力321が最大値又は最小値に張り付いたとき、通常のAGC増幅装置では自力で復旧することができない。
 そこで、本実施形態のAGC増幅装置では、指定値監視回路309を用いてLPF出力321を監視する。指定値監視回路309は、LPF出力321と指定値上限値322、及び指定値下限値323との比較を行う。そして、LPF出力321が指定値上限値322よりも大きい状態、又は、指定値下限値323より小さい状態が、異常判定時間以上継続した場合に、AGCリセット信号324を出力する。AGCリセット信号324によって、LPF8はリセットされ、AGCが初期化される。図6に、本実施形態のAGC増幅装置に異常が発生したときの、利得制御信号の変化の例を示す。図6(a)、(b)では、時刻t0に、それぞれ、利得制御信号が最小値、最大値に張り付いた場合を示す。そして、時刻t1にAGCリセット信号324が発生したことによって、AGCが正常状態に回復し、利得制御信号325が正常レベルに収束している。
 このように、指定値監視回路309は、LPF出力321を監視することによって、利得制御信号325が何らかの原因で最大値又は最小値に張り付くことを検出する。そして、AGCが制御不能となった場合に、指定値監視回路309がAGCリセット信号324を用いてLPF308をリセットすることによって、AGC動作を初期化することができる。従って、本AGC増幅装置の後段の回路で、本AGC増幅装置の異常を検出する必要はなく、また、AGCの動作を安定させることができる。また、AGC動作が後段の異常検出回路の性能に依存しないため、本AGC増幅装置を信号が通過する時間を短縮することも期待できる。
 なお、本AGC増幅装置に、AGCの制御範囲外のIFIN311が入力された場合に関しても、利得制御信号325は最大値又は最小値に張り付き、AGC動作は正常に行われない。そのため、AGC動作の初期化を何度行っても、AGC動作が正常に行われることはない。このような場合に対応するために、AGCリセット信号324が発生する回数をカウントしてもよい。そして、カウント値が故障判定回数を超えたとき、入力過大もしくは、入力過小と判断し、本AGC増幅装置が故障したことを示すアラーム信号326を発生すればよい。
 以上のように、本実施形態のAGC増幅装置は、VGAの利得を制御する信号が最大値又は最小値に張り付きAGCが不能となったとき、指定値監視回路309より出力される信号によって、AGC動作をリセットすることができる。
従って、AGC増幅装置に異常が発生したときに、正常な状態に回復させることができるという効果がある。そして、本AGC増幅装置の後段の回路で各種のアラーム信号を発生させる必要がない。そのため、回路構成を簡素化でき、かつ、AGC動作を安定させることができる。また、図6に示すように、AGCの収束を早めることができるので、AGC増幅装置を信号が通過する時間を短縮する効果もある。
(第3の実施形態)
 次に、第2の実施形態の一部を変形した実施形態について、図面を参照して説明する。図7は、本発明の第2の実施形態のAGC増幅装置の構成を示すブロック図である。
 第3の実施形態のAGC増幅装置は、VGA301、直交復調器302、発振器303、A/D(Ich)304、A/D(Qch)305を備える。更に第3の実施形態のAGC増幅装置は、電力計算回路306、比較器307、LPF328、C/N推定回路329、フレーム同期回路330を備える。
 VGA301、直交復調器302、発振器303、A/D(Ich)304、A/D(Qch)305の動作及びこれらが入出力する信号の機能は、図5に示した第2の実施形態のAGC増幅装置と同じであるので、説明は省略する。
 また、電力計算回路306、比較器307の動作及びこれらが入出力する信号の機能も、図5に示した第2の実施形態のAGC増幅装置と同じであるので、説明は省略する。
 第3の実施形態のAGC増幅装置は、第2の実施形態のAGC増幅装置のAGC回路310とは異なるAGC回路327を備える。すなわち、AGC回路327は、LPF308とは異なる機能を持つLPF328と、AGC回路310が備えないC/N推定回路329及びフレーム同期回路330を備える。
 LPF328は、LPF308と同様に、A/Dサンプリング周期ごとに時系列的に出力される比較器出力320の高周波成分を除去し、利得制御信号325を出力する。例えば、LPF328の入力信号である比較器出力320の値に占める「0」の割合が多い場合には利得制御信号325は最小値に近づき、「1」の占める割合が多い場合には利得制御信号325は最大値に近づく。
 LPF328も、LPF308と同様に、リセット機能を備える。すなわち、後述の、C/Nアラーム信号331又はフレーム非同期信号332によって、LPF328はリセットされる。LPF328のリセット機能は、LPF308のものと同じである。
 C/N推定回路329は、ディジタル・ベースバンド信号Ich316、ディジタル・ベースバンド信号Qch317を入力し、ディジタル・ベースバンド信号のC/Nを推定する。そして、推定されたC/Nが所定の基準値よりも小さいとき、C/Nアラーム信号331を出力する。
 フレーム同期回路330は、ディジタル・ベースバンド信号Ich316、ディジタル・ベースバンド信号Qch317を入力し、ディジタル・ベースバンド信号からフレーム同期信号を抽出する。フレーム同期信号とは、IFIN311に含まれる、フレーム単位で処理を行うための、フレームの先頭を示すタイミング信号である。そして、フレーム同期回路330は、ディジタル・ベースバンド信号Ich316、ディジタル・ベースバンド信号Qch317から、フレーム同期信号が抽出できないとき、フレーム非同期信号332を出力する。
 第2の実施形態と同様に、本実施形態のAGC増幅装置においても、VGA301の利得を制御する利得制御信号325が何らかの原因で最大値又は最小値に張り付く可能性がある。そのとき、AGCが制御不能となるため、受信したIFIN信号311は正しく復調されない。
 そのため、本実施形態では、ディジタル・ベースバンド信号Ich316、ディジタル・ベースバンド信号Qch317を入力する回路によって生成されたリセット信号を用いて、AGC動作を初期化する。本実施形態では、リセット信号として、上記のC/Nアラーム信号331やフレーム非同期信号332等のアラーム信号を使用する。
 あるいは、AGC回路327自体の初期化を行うAGCマクロ・リセット信号333を用いて、AGC動作をリセットしてもよい。そして、AGC回路327の初期化後にAGCの再制御を行い、受信信号の復調を行ってもよい。
 以上のように、本実施形態のAGC増幅装置は、AGC増幅装置の出力信号であるディジタル・ベースバンド信号Ich316、ディジタル・ベースバンド信号Qch317を基に、AGC回路327の異常発生を検出する。そして、以上の発生を検出したとき、リセットを発生させ、AGC動作をリセットする。従って、AGC増幅装置に異常が発生したときに、正常な状態に回復させることができるという効果がある。
 なお、本実施形態では、C/N推定回路329、フレーム同期回路330の両方を備えるが、一方のみを備えても、AGCの初期化が可能であることは言うまでもない。
 なお、第2の実施形態及び第3の実施形態では、復調器の検波方式として同期検波方式を想定しているが、検波方式は同期検波方式には限定されない。他の検波方式、例えば、準同期検波方式を採用するAGC増幅装置においても本実施形態は適用可能である。
 また、以上の実施形態は各々他の実施形態と組み合わせることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年1月18日に出願された日本出願特願2010−008073を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(First embodiment)
The variable gain control amplifying apparatus of this embodiment will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the variable gain control amplifying apparatus of this embodiment. The variable gain control amplification device according to the present embodiment includes a variable gain amplification unit 101, a gain control unit 102, and an abnormality detection unit 103.
The variable gain amplifying unit 101 amplifies the input signal 104 with a gain specified by the gain control signal 106 output by the gain control unit 102 (hereinafter referred to as “specified gain”), and outputs an output signal 105. As the designated gain, a minimum value (hereinafter referred to as “minimum gain”) and a maximum value (hereinafter referred to as “maximum gain”) are set.
The gain control unit 102 performs the automatic gain control described above. That is, the designated gain is set so that the signal level of the output signal 105 falls within a predetermined range, and the gain control signal 106 corresponding to the designated designated gain is output. Specifically, the designated gain is decreased when the signal level of the output signal 105 is greater than a predetermined range, and the designated gain is increased when the signal level of the output signal 105 is smaller than the predetermined range. The specific content of the automatic gain control is not important to the spirit of the present invention. Moreover, those skilled in the art can easily realize automatic gain control using various methods. Therefore, detailed description of automatic gain control is omitted. As described above, even when the signal level of the input signal 104 varies due to the automatic gain control by the gain control unit 102, the signal level of the output signal 105 falls within a predetermined range.
The abnormality detection unit 103 detects that an abnormality has occurred in the gain control unit 102 and outputs an abnormality detection signal 107. A method of detecting that an abnormality has occurred in the gain control unit 102 is not particularly limited. In the present embodiment, the abnormality detection unit 103 monitors the change in the designated gain by observing the gain control signal 106 output by the gain control unit 102. When the change in the designated gain satisfies a predetermined condition, it is determined that an abnormality has occurred in the gain control unit 102, and an abnormality detection signal 107 is output.
The gain control unit 102 initializes the gain control unit 102 when the abnormality detection signal 107 is output. The initialized gain control unit 102 starts a designated gain calculation process based on the signal level of the output signal 105 at that time. At this time, the gain control unit 102 may once set a predetermined initial gain that is larger than the minimum gain and smaller than the maximum gain.
Various conditions can be set as conditions for determining that an abnormality has occurred in the gain control unit 102 based on the designated gain.
For example, the fact that the specified gain remains at the maximum gain or the minimum gain for a predetermined period and becomes a constant value can be used as a condition for determining the occurrence of an abnormality in the gain control unit 102. That is, when detecting that the gain control signal 106 remains at a level corresponding to the maximum value of the designated gain for a predetermined period, the abnormality detection unit 103 outputs the abnormality detection signal 107. Alternatively, when detecting that the gain control signal 106 remains at a level corresponding to the minimum value of the designated gain for a predetermined period, the abnormality detection unit 103 outputs an abnormality detection signal 107.
Alternatively, by monitoring the output signal 105, the occurrence of an abnormality in the gain control unit 102 can be detected indirectly. FIG. 2 is a block diagram showing a modification of the configuration of the variable gain control amplifying apparatus of the present embodiment.
When monitoring the output signal 105, the abnormality detection unit 103 analyzes the output signal 105 to acquire predetermined information, and detects the occurrence of an abnormality in the gain control unit 102 based on the content of the information.
For example, the abnormality detection unit 103 may detect the occurrence of an abnormality in the set gain using a carrier power to noise ratio (Carrier to Noise Ratio, hereinafter referred to as “C / N”). For example, when detecting that the C / N of the output signal 105 is equal to or less than a predetermined value, the abnormality detection unit 103 determines that the set gain is set to an abnormal value and an abnormality has occurred in the gain control unit 102. Then, the abnormality detection signal 107 is output.
Alternatively, when a predetermined signal that should be included in the output signal 105 cannot be detected, it may be determined that an abnormality has occurred in the gain control unit 102. For example, the output signal 105 may include a synchronization signal for use in a subsequent circuit. At this time, the abnormality detection unit 103 tries to extract the synchronization signal, and outputs the abnormality detection signal 107 if the synchronization signal cannot be extracted.
Note that this embodiment can also be applied to an automatic gain control device that does not include the variable gain amplification unit 101 and performs gain control on an external variable gain amplification device. 3 and 4 are block diagrams showing the configuration of the automatic gain control apparatus. The automatic gain control devices of FIGS. 3 and 4 include only the gain control unit 102 and the abnormality detection unit 103 of the automatic gain control amplifiers of FIGS. 1 and 2, respectively. An output signal 105 from an external variable gain amplifying device (not shown) is input, and a gain control signal 106 is output to the external variable gain amplifying device. The functions of the gain control unit 102 and the abnormality detection unit 103 are the same as those of the automatic gain control amplifier gain control unit 102 and the abnormality detection unit 103 of FIGS.
As described above, the automatic gain control amplification apparatus according to the present embodiment detects that an abnormality has occurred in the gain control unit, and initializes the gain control unit. Therefore, when an abnormality occurs in the gain control unit, the automatic gain control device can be restored to a normal state.
The present embodiment can be applied to all devices that perform automatic gain control. In other words, the present invention can be applied regardless of whether the signal processing for detecting the occurrence of abnormality is analog processing or digital processing. Further, this embodiment does not depend on the frequency band of the signal to be amplified. Furthermore, this embodiment may include other circuits such as a modulator / demodulator and a frequency converter in addition to the amplifier to be processed for automatic gain control.
(Second Embodiment)
Next, an embodiment in which the present invention is applied to a specific automatic gain control amplifying apparatus will be described with reference to the drawings. FIG. 5 is a block diagram showing a configuration of an automatic gain control amplifying apparatus according to the second embodiment of the present invention. In the following description of the embodiments, a quadrature modulation scheme such as QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) is assumed as a modulation scheme, and a synchronous detection scheme is assumed as a detection scheme of a demodulator. The components of two orthogonal baseband signals are denoted as Ich and Qch.
The automatic gain control amplifying apparatus of this embodiment includes a VGA 301, a quadrature demodulator 302, an oscillator 303, an analog-digital converter (hereinafter simply referred to as “A / D”) (Ich) 304, and an A / D (Qch) 305. , An automatic gain control (Automatic Gain Control; hereinafter referred to as “AGC”) circuit 310. The AGC circuit 310 includes a power calculation circuit 306, a comparator 307, a low pass filter (hereinafter referred to as “LPF”) 308, and a specified value monitoring circuit 309.
The VGA 301 amplifies an intermediate frequency input signal (IFIN) signal 311 that is an input signal according to a designated value designated by the gain control signal 325 and outputs an IFIN signal 312. A specific method for controlling the gain of the VGA 301 by the gain control signal 325 is not particularly limited. For example, the gain of the VGA 301 may be reduced if the specified value of the gain control signal 325 is reduced, and the gain may be increased if the specified value of the gain control signal 325 is increased. Conversely, the gain may be increased if the specified value of the gain control signal 325 is decreased, and the gain may be decreased if the specified value of the gain control signal 325 is increased.
The quadrature demodulator 302 converts the IFIN 312 into an analog baseband signal Ich 314 and an analog baseband signal Qch 315 that are orthogonal to each other using the reference frequency signal 313 from the oscillator 303.
The A / D (Ich) 304 converts the analog baseband signal Ich 314 into a digital baseband signal Ich 316 in order to perform the subsequent processing by digital processing. Similarly, the A / D (Qch) 305 converts the analog baseband signal Qch315 to a digital baseband signal Qch317. The sampling period of A / D (Ich) 304 and A / D (Qch) 305 (hereinafter referred to as “A / D sampling period”) is set to an appropriate value in consideration of the required AGC responsiveness. The
Next, each circuit in the AGC circuit 310 will be described. In the present embodiment, the AGC circuit 310 performs AGC. “AGC” means that the power value 318 is controlled to converge to the set AGC threshold 319. Specifically, the AGC absorbs the fluctuation of the input IFIN 311 by controlling the gain of the VGA 301, and the digital baseband signal obtained from the A / D (Ich) 304 and A / D (Qch) 305 It is said that the power is controlled so as to be a constant value.
The power calculation circuit 306 calculates the power possessed by the digital baseband signal Ich316 and the digital baseband signal Qch317. That is, the digital baseband signal Ich 316 and the digital baseband signal Qch 317 are squared, their sum is calculated, and output as a power value 318. The calculation of the power value 318 is performed every A / D sampling period. Therefore, the power value 318 is output for each A / D sampling period in time series.
The comparator 307 compares the power value 318 with the AGC threshold value 319 set from the outside, and outputs 1 or 0 as the comparator output 320 according to the comparison result. For example, 1 is output if the power value 318 is smaller than the AGC threshold value 319, and 0 is output if it is larger. On the contrary, 0 may be output if the power value 318 is smaller than the AGC threshold 319, and 1 may be output if it is larger. The comparison operation by the comparator 307 is also performed every A / D sampling period. Accordingly, the comparison value output 320 is also output for each A / D sampling period in time series.
The LPF 308 removes the high frequency component of the comparator output 320 that is output every A / D sampling period, and outputs an LPF output 321. For example, the LPF output 321 approaches the minimum value when the ratio of “0” in the value of the comparator output 320 output in time series is large, and the LPF output 321 when the ratio of “1” is large. Approaches the maximum value. Further, the LPF 308 is reset by an AGC reset signal 324 input from the designated value monitoring circuit 309 described later. “LPF 308 is reset” means, for example, that the circuit of LPF 308 is reset to a predetermined initial state. The reset LPF 308 restarts the filtering process from the initial state.
The designated value monitoring circuit 309 compares the LPF output 321 with the designated value upper limit value 322 and the designated value lower limit value 323 set from the outside. When the LPF output 321 continues for a certain period of time (hereinafter referred to as “abnormality determination time”) that is greater than the specified value upper limit value 322 or smaller than the specified value lower limit value 323, the AGC reset signal 324. Is output to reset the AGC operation.
In the present embodiment, the number of occurrences when the AGC reset signal 324 is continuously generated is also counted. That is, the AGC operation is reset, and the number of times the AGC reset signal 324 is generated is counted again immediately after the AGC has once returned to normal. When the count value exceeds a certain number of times (hereinafter referred to as “failure determination number”), it is determined that the AGC amplifying device has failed, and an alarm signal 326 is generated.
The above is the function and operation of each block inside the AGC amplifying apparatus of this embodiment. Next, the overall operation of the AGC amplification apparatus according to this embodiment will be described.
When the AGC is operating normally, the LPF output 321 is output as a gain control signal 325 for controlling the gain of the VGA 301 as it is. That is, when the time when the LPF output 321 becomes the specified value upper limit value 322 or more or the specified value lower limit value 323 or less does not exceed the abnormality determination time, the gain of the VGA 301 is controlled by the LPF output 321.
However, as shown in FIG. 8, when the LPF output 321 for controlling the gain of the VGA sticks to the maximum value or the minimum value due to some cause, the normal AGC amplifier cannot be restored by itself.
Therefore, in the AGC amplifying apparatus of this embodiment, the designated value monitoring circuit 309 is used to monitor the LPF output 321. The designated value monitoring circuit 309 compares the LPF output 321 with the designated value upper limit value 322 and the designated value lower limit value 323. When the LPF output 321 is greater than the specified value upper limit value 322 or smaller than the specified value lower limit value 323, the AGC reset signal 324 is output when the LPF output 321 continues for more than the abnormality determination time. The LPF 8 is reset by the AGC reset signal 324, and the AGC is initialized. FIG. 6 shows an example of a change in the gain control signal when an abnormality occurs in the AGC amplification apparatus according to this embodiment. 6A and 6B show cases where the gain control signal sticks to the minimum value and the maximum value at time t0, respectively. Since the AGC reset signal 324 is generated at time t1, the AGC recovers to the normal state, and the gain control signal 325 converges to the normal level.
As described above, the designated value monitoring circuit 309 detects that the gain control signal 325 is stuck to the maximum value or the minimum value for some reason by monitoring the LPF output 321. When the AGC becomes uncontrollable, the designated value monitoring circuit 309 can initialize the AGC operation by resetting the LPF 308 using the AGC reset signal 324. Therefore, it is not necessary to detect an abnormality of the AGC amplifying apparatus in a circuit subsequent to the AGC amplifying apparatus, and the operation of the AGC can be stabilized. Further, since the AGC operation does not depend on the performance of the abnormality detection circuit in the subsequent stage, it can be expected that the time for the signal to pass through the AGC amplifying apparatus is shortened.
Even when IFIN 311 outside the AGC control range is input to the AGC amplifying apparatus, the gain control signal 325 sticks to the maximum value or the minimum value, and the AGC operation is not normally performed. Therefore, the AGC operation is not normally performed no matter how many times the AGC operation is initialized. In order to cope with such a case, the number of times the AGC reset signal 324 is generated may be counted. Then, when the count value exceeds the number of times of failure determination, it is determined that the input is excessive or insufficient, and an alarm signal 326 indicating that the AGC amplifier has failed may be generated.
As described above, the AGC amplifying apparatus according to the present embodiment uses the signal output from the designated value monitoring circuit 309 when the signal for controlling the gain of the VGA sticks to the maximum value or the minimum value and the AGC is disabled. The operation can be reset.
Therefore, when an abnormality occurs in the AGC amplifier, there is an effect that it can be restored to a normal state. Further, it is not necessary to generate various alarm signals in the subsequent circuit of the AGC amplifier. Therefore, the circuit configuration can be simplified and the AGC operation can be stabilized. Further, as shown in FIG. 6, since the convergence of AGC can be accelerated, there is an effect of shortening the time for the signal to pass through the AGC amplifying apparatus.
(Third embodiment)
Next, an embodiment obtained by modifying a part of the second embodiment will be described with reference to the drawings. FIG. 7 is a block diagram showing the configuration of the AGC amplification apparatus according to the second embodiment of the present invention.
The AGC amplification apparatus according to the third embodiment includes a VGA 301, a quadrature demodulator 302, an oscillator 303, an A / D (Ich) 304, and an A / D (Qch) 305. Furthermore, the AGC amplification apparatus according to the third embodiment includes a power calculation circuit 306, a comparator 307, an LPF 328, a C / N estimation circuit 329, and a frame synchronization circuit 330.
The operations of the VGA 301, the quadrature demodulator 302, the oscillator 303, the A / D (Ich) 304, and the A / D (Qch) 305 and the functions of the signals input and output by these are described in the AGC of the second embodiment shown in FIG. Since it is the same as that of the amplifying apparatus, the description is omitted.
Further, the operations of the power calculation circuit 306 and the comparator 307 and the functions of the signals input and output by these are the same as those of the AGC amplification apparatus of the second embodiment shown in FIG.
The AGC amplifier according to the third embodiment includes an AGC circuit 327 that is different from the AGC circuit 310 of the AGC amplifier according to the second embodiment. That is, the AGC circuit 327 includes an LPF 328 having a function different from that of the LPF 308, a C / N estimation circuit 329 and a frame synchronization circuit 330 that the AGC circuit 310 does not have.
The LPF 328 removes the high-frequency component of the comparator output 320 that is output in time series for each A / D sampling period, and outputs a gain control signal 325 in the same manner as the LPF 308. For example, the gain control signal 325 approaches the minimum value when the ratio of “0” in the value of the comparator output 320 that is the input signal of the LPF 328 is large, and the gain control signal when the ratio of “1” is large. 325 approaches the maximum value.
Similarly to the LPF 308, the LPF 328 also has a reset function. That is, the LPF 328 is reset by a C / N alarm signal 331 or a frame asynchronous signal 332 described later. The reset function of the LPF 328 is the same as that of the LPF 308.
The C / N estimation circuit 329 receives the digital baseband signal Ich316 and the digital baseband signal Qch317, and estimates the C / N of the digital baseband signal. When the estimated C / N is smaller than a predetermined reference value, a C / N alarm signal 331 is output.
The frame synchronization circuit 330 receives the digital baseband signal Ich316 and the digital baseband signal Qch317, and extracts a frame synchronization signal from the digital baseband signal. The frame synchronization signal is a timing signal that is included in IFIN 311 and indicates the beginning of a frame for processing in units of frames. The frame synchronization circuit 330 outputs a frame asynchronous signal 332 when the frame synchronization signal cannot be extracted from the digital baseband signal Ich316 and the digital baseband signal Qch317.
Similar to the second embodiment, also in the AGC amplifying apparatus of the present embodiment, the gain control signal 325 for controlling the gain of the VGA 301 may stick to the maximum value or the minimum value for some reason. At that time, since AGC becomes uncontrollable, the received IFIN signal 311 is not demodulated correctly.
Therefore, in the present embodiment, the AGC operation is initialized using the reset signal generated by the circuit that inputs the digital baseband signal Ich316 and the digital baseband signal Qch317. In the present embodiment, an alarm signal such as the C / N alarm signal 331 or the frame asynchronous signal 332 is used as the reset signal.
Alternatively, the AGC operation may be reset using an AGC macro reset signal 333 that initializes the AGC circuit 327 itself. Then, after the AGC circuit 327 is initialized, the AGC may be re-controlled and the received signal may be demodulated.
As described above, the AGC amplifying apparatus according to the present embodiment detects the occurrence of an abnormality in the AGC circuit 327 based on the digital baseband signal Ich316 and the digital baseband signal Qch317 that are output signals of the AGC amplifying apparatus. When the above occurrence is detected, a reset is generated and the AGC operation is reset. Therefore, when an abnormality occurs in the AGC amplifier, there is an effect that it can be restored to a normal state.
In the present embodiment, both the C / N estimation circuit 329 and the frame synchronization circuit 330 are provided, but it goes without saying that the AGC can be initialized even if only one of them is provided.
In the second embodiment and the third embodiment, the synchronous detection method is assumed as the detection method of the demodulator, but the detection method is not limited to the synchronous detection method. The present embodiment can also be applied to other detection methods, for example, an AGC amplifier that employs a quasi-synchronous detection method.
In addition, each of the above embodiments can be combined with other embodiments.
While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2010-008073 for which it applied on January 18, 2010, and takes in those the indications of all here.
 本発明は自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法に関し、特に異常が発生したときの対応が可能な自動利得制御増幅装置、自動利得制御装置及び自動利得制御方法に関するものであり、産業上の利用可能性を有する。 The present invention relates to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method, and more particularly to an automatic gain control amplification device, an automatic gain control device, and an automatic gain control method that can cope with an abnormality. Have industrial applicability.
 104 入力信号
 105 出力信号
 106 利得制御信号
 107 異常検出信号
 303 発振器
 310 自動利得制御(AGC)回路
 311、312 中間周波数入力信号(IFIN)信号
 313 基準周波数信号
 314 アナログ・ベースバンド信号Ich
 315 アナログ・ベースバンド信号Qch
 316 ディジタル・ベースバンド信号Ich
 317 ディジタル・ベースバンド信号Qch
 318 電力値
 319 AGC閾値
 320 比較器出力
 321 LPF出力
 322 指定値上限値
 323 指定値下限値
 324 AGCリセット信号
 325 利得制御信号
 326 アラーム信号
 327 AGC回路
 331 C/Nアラーム信号
 332 フレーム非同期信号
 333 AGCマクロ・リセット信号
104 Input signal 105 Output signal 106 Gain control signal 107 Anomaly detection signal 303 Oscillator 310 Automatic gain control (AGC) circuit 311, 312 Intermediate frequency input signal (IFIN) signal 313 Reference frequency signal 314 Analog baseband signal Ich
315 Analog baseband signal Qch
316 Digital baseband signal Ich
317 Digital baseband signal Qch
318 Power value 319 AGC threshold 320 Comparator output 321 LPF output 322 Specified value upper limit 323 Specified value lower limit 324 AGC reset signal 325 Gain control signal 326 Alarm signal 327 AGC circuit 331 C / N alarm signal 332 Frame asynchronous signal 333 AGC macro・ Reset signal

Claims (16)

  1.  最小利得以上でかつ最大利得以下に設定された指定利得で入力信号を増幅し、出力信号を出力する可変利得増幅手段と、
     前記出力信号の信号レベルが所定の範囲内になるように前記指定利得を設定する利得制御手段と、
     前記利得制御手段に異常が発生したことを検出したとき、異常検出信号を出力し、前記利得制御手段を初期化する異常検出手段と、
    を備えることを特徴とする自動利得制御増幅装置。
    Variable gain amplifying means for amplifying an input signal with a specified gain set to be equal to or higher than the minimum gain and lower than the maximum gain, and to output an output signal;
    Gain control means for setting the designated gain so that the signal level of the output signal is within a predetermined range;
    When detecting that an abnormality has occurred in the gain control means, an abnormality detection means for outputting an abnormality detection signal and initializing the gain control means;
    An automatic gain control amplifying apparatus comprising:
  2.  前記利得制御手段は、前記初期化されたとき、前記最小利得より大きく、前記最大利得より小さい初期利得を、前記指定利得として設定する
    ことを特徴とする請求項1記載の自動利得制御増幅装置。
    2. The automatic gain control amplifying apparatus according to claim 1, wherein the gain control means sets, as the designated gain, an initial gain that is larger than the minimum gain and smaller than the maximum gain when the initialization is performed.
  3.  前記異常検出手段は、前記指定利得に基づいて、異常検出信号を出力し、前記利得制御手段を初期化する
    ことを特徴とする請求項1又は2記載の自動利得制御増幅装置。
    3. The automatic gain control amplifying apparatus according to claim 1, wherein the abnormality detection unit outputs an abnormality detection signal based on the designated gain and initializes the gain control unit.
  4.  前記異常検出手段は、前記指定利得の変化傾向に基づいて、異常検出信号を出力し、前記利得制御手段を初期化する
    ことを特徴とする請求項1乃至3のいずれかに記載の自動利得制御増幅装置。
    4. The automatic gain control according to claim 1, wherein the abnormality detection unit outputs an abnormality detection signal based on the change tendency of the designated gain, and initializes the gain control unit. 5. Amplification equipment.
  5.  前記異常検出手段は、前記指定利得が、所定の期間、前記最大利得にとどまったことを検出したとき、又は前記所定の期間、前記最小利得にとどまったことを検出したとき、前記異常検出信号を出力する
    ことを特徴とする請求項4記載の自動利得制御増幅装置。
    The abnormality detection means detects the abnormality detection signal when detecting that the specified gain stays at the maximum gain for a predetermined period, or when detecting that the specified gain stays at the minimum gain for the predetermined period. 5. The automatic gain control amplifying device according to claim 4, wherein the automatic gain control amplifying device outputs.
  6.  前記異常検出手段は、前記出力信号の搬送波電力対雑音電力比が所定の値以下であることを検出したとき、前記異常検出信号を出力する
    ことを特徴とする請求項1乃至3のいずれかに記載の自動利得制御増幅装置。
    The abnormality detection means outputs the abnormality detection signal when detecting that the carrier power to noise power ratio of the output signal is equal to or less than a predetermined value. The automatic gain control amplifying device described.
  7.  前記異常検出手段は、前記出力信号に含まれるべき所定の信号を抽出できないとき、前記異常検出信号を出力する
    ことを特徴とする請求項1乃至3のいずれかに記載の自動利得制御増幅装置。
    4. The automatic gain control amplification device according to claim 1, wherein the abnormality detection means outputs the abnormality detection signal when a predetermined signal to be included in the output signal cannot be extracted.
  8.  最小利得以上でかつ最大利得以下に設定された指定利得で入力信号を増幅し出力信号を出力する可変利得増幅装置に、前記出力信号の信号レベルが所定の範囲内になるように前記指定利得を設定する利得制御手段と、
     前記利得制御手段に異常が発生したことを検出したとき、異常検出信号を出力し、前記利得制御手段を初期化する異常検出手段と、
    を備えることを特徴とする自動利得制御装置。
    A variable gain amplifying apparatus that amplifies an input signal with a specified gain that is set to be equal to or greater than the minimum gain and equal to or less than the maximum gain and outputs the output signal to the variable gain amplifying device so that a signal level of the output signal is within a predetermined range. Gain control means to set;
    When detecting that an abnormality has occurred in the gain control means, an abnormality detection means for outputting an abnormality detection signal and initializing the gain control means;
    An automatic gain control device comprising:
  9.  入力信号を増幅し、出力信号を出力する可変利得増幅装置に、最小利得以上でかつ最大利得以下に設定された指定利得を設定し、
     前記出力信号の信号レベルが所定の範囲内になるように前記指定利得を設定し、
     前記指定利得を設定したときに異常が発生したことを検出し、
     前記異常を検出したとき、前記指定利得の設定を初期化する自動利得制御方法。
    In the variable gain amplifier that amplifies the input signal and outputs the output signal, a specified gain that is set to be equal to or higher than the minimum gain and equal to or lower than the maximum gain is set.
    Setting the designated gain so that the signal level of the output signal is within a predetermined range;
    Detect that an abnormality has occurred when setting the specified gain,
    An automatic gain control method for initializing the setting of the designated gain when the abnormality is detected.
  10.  前記異常を検出したとき、前記指定利得の設定するときに、所定の初期利得を前記指定利得として設定する
    ことを特徴とする請求項9記載の自動利得制御方法。
    10. The automatic gain control method according to claim 9, wherein when the abnormality is detected, a predetermined initial gain is set as the designated gain when the designated gain is set.
  11.  前記初期化されたとき、前記最小利得より大きく、前記最大利得より小さい初期利得を、前記指定利得として設定する
    ことを特徴とする請求項9又は請求項10記載の自動利得制御方法。
    11. The automatic gain control method according to claim 9, wherein an initial gain that is larger than the minimum gain and smaller than the maximum gain when the initialization is performed is set as the designated gain.
  12.  前記指定利得に基づいて、異常検出信号を出力し、前記利得制御手段を初期化する
    ことを特徴とする請求項9乃至11記載の自動利得制御方法。
    12. The automatic gain control method according to claim 9, wherein an abnormality detection signal is output based on the designated gain, and the gain control means is initialized.
  13.  前記指定利得の変化傾向に基づいて、異常検出信号を出力し、前記利得制御手段を初期化する
    ことを特徴とする請求項9乃至12のいずれかに記載の自動利得制御方法。
    13. The automatic gain control method according to claim 9, wherein an abnormality detection signal is output based on the change tendency of the designated gain, and the gain control means is initialized.
  14.  前記指定利得が、所定の期間、前記最大利得にとどまったことを検出したとき、又は前記所定の期間、前記最小利得にとどまったことを検出したとき、前記異常検出信号を出力する
    ことを特徴とする請求項13記載の自動利得制御方法。
    The abnormality detection signal is output when it is detected that the specified gain stays at the maximum gain for a predetermined period, or when it is detected that the specified gain stays at the minimum gain for the predetermined period. The automatic gain control method according to claim 13.
  15.  前記出力信号の搬送波電力対雑音電力比が所定の値以下であることを検出したとき、前記異常検出信号を出力する
    ことを特徴とする請求項9乃至12のいずれかに記載の自動利得制御方法。
    13. The automatic gain control method according to claim 9, wherein the abnormality detection signal is output when it is detected that a carrier power to noise power ratio of the output signal is a predetermined value or less. .
  16.  前記出力信号に含まれるべき所定の信号を抽出できないとき、前記異常検出信号を出力する
    ことを特徴とする請求項9乃至12のいずれかに記載の自動利得制御方法。
    13. The automatic gain control method according to claim 9, wherein the abnormality detection signal is output when a predetermined signal to be included in the output signal cannot be extracted.
PCT/JP2011/051032 2010-01-18 2011-01-14 Amplification device with automatic gain control, automatic gain control device, and automatic gain control method WO2011087149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-008073 2010-01-18
JP2010008073 2010-12-10

Publications (1)

Publication Number Publication Date
WO2011087149A1 true WO2011087149A1 (en) 2011-07-21

Family

ID=59505313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051032 WO2011087149A1 (en) 2010-01-18 2011-01-14 Amplification device with automatic gain control, automatic gain control device, and automatic gain control method

Country Status (1)

Country Link
WO (1) WO2011087149A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496509A (en) * 1990-08-13 1992-03-27 Nec Corp Variable gain amplifier
JP2004320273A (en) * 2003-04-15 2004-11-11 Alpine Electronics Inc Acoustic apparatus, offset voltage detecting method, program thereof, and recording medium for recording the program
JP2008085873A (en) * 2006-09-28 2008-04-10 Toshiba Corp Radio receiver
JP2008103894A (en) * 2006-10-18 2008-05-01 Pioneer Electronic Corp Audio apparatus, its method, its program, and its recording medium
JP2009005110A (en) * 2007-06-21 2009-01-08 Sharp Corp Automatic gain control circuit, receiver, automatic gain control method, automatic gain control program, and recording medium with the program recorded thereon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496509A (en) * 1990-08-13 1992-03-27 Nec Corp Variable gain amplifier
JP2004320273A (en) * 2003-04-15 2004-11-11 Alpine Electronics Inc Acoustic apparatus, offset voltage detecting method, program thereof, and recording medium for recording the program
JP2008085873A (en) * 2006-09-28 2008-04-10 Toshiba Corp Radio receiver
JP2008103894A (en) * 2006-10-18 2008-05-01 Pioneer Electronic Corp Audio apparatus, its method, its program, and its recording medium
JP2009005110A (en) * 2007-06-21 2009-01-08 Sharp Corp Automatic gain control circuit, receiver, automatic gain control method, automatic gain control program, and recording medium with the program recorded thereon

Similar Documents

Publication Publication Date Title
US8355454B2 (en) Reception device, reception method and integrated circuit
JP2012175701A (en) Apparatus, systems and methods utilizing adjacent-channel power dependent automatic gain control for digital television demodulation
US8804882B2 (en) Receiving apparatus, and computer readable memory medium that stores a program
JP2010004342A (en) Radio base station device, receiver, fault detection method therefor, and program
JP5681531B2 (en) Automatic gain control device and automatic gain control method
WO2011087149A1 (en) Amplification device with automatic gain control, automatic gain control device, and automatic gain control method
JPH11317782A (en) Blind automatic gain control system for receiver and modem
JP4737458B2 (en) Reception amplitude correction circuit, reception amplitude correction method, and receiver using the same
EP3226426A2 (en) Method and system for controlling an amplifier of a communications device
US10181970B2 (en) Method and system for controlling an amplifier of a communications device
JP2017092887A (en) Fault determination system, fault determination method, and fault determination program
JP2012019444A (en) Receiver
US20050163505A1 (en) Optical receiving device and optical receiving method
KR101419343B1 (en) Automatic Gain Controller and Method for Controlling the Same
CN108965177B (en) Signal in-phase and quadrature component exchange detection method and receiving end device
US20230353173A1 (en) Novel Integrated Programmable Gain Amplifier (PGA) and Protection Circuit
JP6811899B2 (en) Limiting amplifier circuit
JP4927055B2 (en) FM signal noise canceller circuit
KR19990066514A (en) Coefficient Change Control Device of Loop Filter in Digital Feedback System
JP4927054B2 (en) FM signal noise canceller circuit
JP6577289B2 (en) Digital demodulator
JPH0340630A (en) Signal interruption detection circuit
KR101034379B1 (en) Data recovering device
JP4328299B2 (en) Phase alarm circuit and alarm generation method
JP2008271288A (en) Receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11733015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11733015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP