WO2011086957A1 - Active energy ray-curable composition, and coated article - Google Patents

Active energy ray-curable composition, and coated article Download PDF

Info

Publication number
WO2011086957A1
WO2011086957A1 PCT/JP2011/050064 JP2011050064W WO2011086957A1 WO 2011086957 A1 WO2011086957 A1 WO 2011086957A1 JP 2011050064 W JP2011050064 W JP 2011050064W WO 2011086957 A1 WO2011086957 A1 WO 2011086957A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
meth
general formula
represented
Prior art date
Application number
PCT/JP2011/050064
Other languages
French (fr)
Japanese (ja)
Inventor
良成 松浦
彰典 永井
敦也 加藤
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2011549956A priority Critical patent/JP5656877B2/en
Publication of WO2011086957A1 publication Critical patent/WO2011086957A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen

Definitions

  • the present invention relates to an active energy ray-curable composition and a coated article.
  • Synthetic resins such as polymethyl methacrylate resin, polystyrene resin, and polycarbonate resin are excellent in impact resistance, transparency, light weight, and easy to process. Used in windows, lamp lenses, and instrument covers. However, since the synthetic resin is inferior in surface properties such as scratch resistance, chemical resistance, and weather resistance as compared with glass, the surface properties of the synthetic resin are improved.
  • methods for improving the surface properties of synthetic resins methods for applying polyorganosiloxane-based and melamine-based thermosetting coating compositions and methods for applying polyfunctional acrylate-based active energy ray-curable compositions have been proposed. Yes.
  • Patent Documents 1 and 2 disclose poly (meth) acrylates of mono- or polypentaerythritol, urethane (meth) acrylates having at least two (meth) acryloyl groups in the molecule, and poly (meth) acrylates.
  • An invention relating to a coating composition obtained by blending [(meth) acryloyloxyalkyl] (iso) cyanurate in a specific ratio is disclosed.
  • Patent Documents 1 and 2 do not satisfy the requirement for high scratch resistance.
  • Patent Document 3 discloses reactive particles obtained by chemically modifying colloidal silica fine particles with a radically polymerizable silane compound, poly [(meth) acryloyloxyalkyl] isocyanurate, and at least two (meth) acryloyloxy molecules per molecule.
  • a wear-resistant coating-forming composition containing a urethane (meth) acrylate having a group and an alicyclic skeleton, and a photopolymerization initiator.
  • the scratch resistance of the coating film obtained using this abrasion-resistant coating forming composition is not yet sufficient for the high scratch resistance requirement recently required. Moreover, in this invention, when it is going to increase the compounding quantity of the reactive particle so that abrasion resistance may be made high, the transparency of the cured coating film obtained will fall.
  • Patent Document 4 discloses reactive particles obtained by bonding specific oxide particles to an organic compound having a polymerizable unsaturated group and a hydrolyzable silyl group, and an organic compound having two or more polymerizable unsaturated groups.
  • a curable composition containing a compound and a both-end reactive polydimethylsiloxane compound.
  • the scratch resistance of the coating film obtained by using this curable composition is not yet sufficient for the high scratch resistance requirement recently required.
  • the both-end reactive polysiloxane compound is a component that imparts slipperiness to the cured coating film, and the scratch resistance is high even when the blending amount of the both-end reactive polysiloxane compound is increased.
  • the blending amount of the both-end reactive polysiloxane compound is increased, the transparency of the resulting cured coating film is lowered.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain an active energy ray-curable composition that can obtain a cured coating film having high scratch resistance and excellent transparency. It is.
  • the present inventors have used the above-mentioned problems by using an active energy ray-curable composition containing a specific silsesquioxane compound and specific reactive particles. As a result, the present invention has been completed.
  • silsesquioxane compound (A) and reactive particles (B) An active energy ray-curable composition containing The silsesquioxane compound (A) has an organic group directly bonded to a silicon atom in the silsesquioxane compound (A), At least one of the organic groups has both (a-1) at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond and a urea bond, and (a-2) at least one (meth) acryloyloxy group.
  • the reactive particles (B) are obtained by reacting silica fine particles (b-1) with hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule.
  • Active energy ray-curable composition 2.
  • the cured film with high scratch resistance and excellent transparency can be obtained by the active energy ray-curable composition of the present invention.
  • the active energy ray-curable composition of the present invention is the silsesquioxane compound (A),
  • the silsesquioxane compound (A) has an organic group directly bonded to a silicon atom, and at least one of the organic groups directly bonded to the silicon atom is a secondary hydroxyl group, a urethane bond or a urea bond. Having at least one selected from the group consisting of at least one (meth) acryloyloxy group, Silsesquioxane compound (A) [hereinafter referred to as “component (A)” or “silsesquioxane compound as component (A)”.
  • silsesquioxane compound “ silsesquioxane compound ” as the component (A) is a polysiloxane whose basic structural unit is a T unit.
  • the “silsesquioxane compound” does not mean only a silsesquioxane compound having a structure in which all of the Si—OH group (hydroxysilyl group) is hydrolytically condensed, but the Si—OH group remains. It is also possible to include a silsesquioxane compound having a ladder structure, an incomplete cage structure, or a random condensate.
  • the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is 80 mass% in the silsesquioxane compound as the component (A). % Or more, preferably 90% by mass or more, and more preferably 100% by mass from the viewpoint of liquid stability.
  • the silsesquioxane compound as the component (A) has an organic group directly bonded to the silicon atom in the silsesquioxane compound (A).
  • the silsesquioxane compound (A) contains at least 1 or all of silicon atoms (for example, 90 to 100 mol% with respect to all silicon atoms in component (A)).
  • At least one of the organic groups directly bonded to the silicon atom is (a-1) at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond and a urea bond, and (a-2) at least one (meth) acryloyl. It has both an oxy group.
  • the ratio of the number of organic groups having the above (a-1) and (a-2) among the number of the organic groups is, for example, 90 to 100% or the total number of the organic groups.
  • the total number of groups may be sufficient.
  • the silsesquioxane compound as the component (A) is excellent in compatibility with the reactive particles (B) and various polymerizable unsaturated compounds by having the organic group, and is a photopolymerizable initiator. It is cured by irradiation with active energy rays in the presence. Therefore, the cured coating film obtained by the active energy ray-curable composition of the present invention is excellent in transparency and scratch resistance.
  • the silsesquioxane compound as the component (A) is excellent in compatibility with various polymerizable unsaturated compounds such as the reactive particles (B) because the silsesquioxane compound as the component (A) is 2 This is presumed to have a functional group or bond having at least one polarity selected from the group consisting of a primary hydroxyl group, a urethane bond and a urea bond.
  • (meth) acryloyloxy group means “acryloyloxy group or methacryloyloxy group”. Further, “(meth) acryloyl group” means “acryloyl group or methacryloyl group”. “(Meth) acrylate” means “acrylate or methacrylate”. Further, “(meth) acryloyloxy” means “acryloyloxy or methacryloyloxy”. “(Meth) acrylic acid” means “acrylic acid or methacrylic acid”. “(Meth) acrylamide” means “acrylamide or methacrylamide”.
  • the secondary hydroxyl group means a hydroxyl group in which two carbon atoms are bonded to the carbon atom to which the hydroxyl group is bonded.
  • silsesquioxane compound as the component (A) examples include the silsesquioxane compounds represented by the following (A1) and (A2).
  • (A1) a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is at least one secondary hydroxyl group and at least one (
  • a silsesquioxane compound which is an organic group having both a (meth) acryloyloxy group [hereinafter, abbreviated as “silsesquioxane compound represented by (A1)”.
  • (A2) a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is at least one urethane bond and / or urea bond
  • a silsesquioxane compound which is an organic group having both of at least one (meth) acryloyloxy group [hereinafter, abbreviated as “silsesquioxane compound represented by (A2)”.
  • silsesquioxane compound which is the component (A) a silsesquioxane compound represented by (A2) is preferable. Since the silsesquioxane compound represented by (A2) is particularly excellent in compatibility with the reactive particles (B) and various polymerizable unsaturated compounds, the silsesquioxane compound represented by (A2) The cured coating film obtained from the active energy ray-curable composition of the present invention using the above has particularly excellent transparency.
  • silsesquioxane compound represented by (A2) include silsesquioxane compounds represented by the following (A21) to (A23).
  • a silsesquioxane compound which is an organic group having both an acryloyloxy group hereinafter, abbreviated as “silsesquioxane compound represented by (A22)”.
  • a silsesquioxane compound which is an organic group having both of two or more (meth) acryloyloxy groups [hereinafter, abbreviated as “silsesquioxane compound represented by (A23)”. ].
  • silsesquioxane compound represented by (A1) the silsesquioxane compound represented by (A21), the silsesquioxane compound represented by (A22), and (A23).
  • the silsesquioxane compound will be described in detail.
  • the silsesquioxane compound represented by (A1) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one secondary hydroxyl group and at least one (meth) acryloyloxy group.
  • Examples of the organic group having at least one secondary hydroxyl group and at least one (meth) acryloyloxy group include an organic group represented by the following general formula (A1-I) and the following general formula (A1-II). ).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 and R 2 are the same as described above. ].
  • R 2 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group.
  • a cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group;
  • a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group has a high scratch resistance and high polarity. It is preferable from the viewpoint that the compatibility with the polymerizable unsaturated compound is more excellent.
  • the organic group represented by the general formula (A1-I) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 1 is a hydrogen atom and R 2 is a 1,3-propylene group is preferable.
  • the organic group represented by the general formula (A1-II) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 1 is a hydrogen atom and R 2 is an ethylene group is preferable.
  • the silsesquioxane compound represented by (A21) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one urethane bond and one (meth) acryloyloxy group.
  • Examples of the organic group having both at least one urethane bond and one (meth) acryloyloxy group include an organic group represented by the following general formula (A21-I).
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 5 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 6 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms
  • the silsesquioxane compound represented by (A21) has one or more types of organic groups among the organic groups represented by the general formula (A21-I). You may do it.
  • silsesquioxane compound represented by (A21) for example, an organic group having both the at least one urethane bond and one (meth) acryloyloxy group is represented by the following general formula (A21- Examples thereof include silsesquioxane compounds which are at least one selected from the group consisting of organic groups represented by II) to (A21-IV).
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 5 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • m represents an integer of 0 to 9.
  • R 3 , R 4 , R 5 and R 6 are the same as defined above. ].
  • R 4 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group.
  • a cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group;
  • a divalent hydrocarbon group having 1 to 6 carbon atoms particularly an ethylene group, a 1,2-propylene group, or a 1,4-butylene group, is a polymerizable unsaturated compound having high scratch resistance and high polarity. It is preferable from the viewpoint of more excellent compatibility.
  • R 5 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group.
  • a cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group;
  • a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
  • m is not particularly limited as long as it is an integer of 0 to 9.
  • m is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and particularly preferably 0 or 1.
  • R 6 is not particularly limited as long as it is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • a non-cyclic aliphatic monovalent hydrocarbon group or a cyclic aliphatic monovalent hydrocarbon group such as a straight chain or branched alkyl group such as a group, n-hexyl group, isohexyl group, cyclohexyl group; trifluoromethyl group, 3, And fluorine-containing alkyl groups such as 3,3-trifluoro-n-propyl group.
  • a methyl group is preferable from the viewpoint of
  • the organic group represented by the general formula (A21-II) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator.
  • R 3 is a hydrogen atom
  • R 4 is an ethylene group or a 1,4-butylene group
  • R 5 is an ethylene group or a 1,3-propylene group
  • m is 0 preferable.
  • the organic group represented by the general formula (A21-III) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 3 is a hydrogen atom, R 4 is an ethylene group, R 5 is an ethylene group or a 1,3-propylene group, and R 6 is a methyl group is preferable.
  • the organic group represented by the general formula (A21-IV) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 3 is a hydrogen atom, R 4 is an ethylene group, R 5 is an ethylene group or a 1,3-propylene group, and R 6 is a methyl group is preferable.
  • the silsesquioxane compound represented by (A22) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one urea bond and one (meth) acryloyloxy group.
  • R 7 represents a hydrogen atom or a methyl group.
  • X 2 represents a divalent organic group having a urea bond. ] The organic group represented by these is mentioned.
  • organic group represented by the general formula (A22-I) include an organic group represented by the following general formula (A22-II).
  • R 7 is the same as defined above.
  • R 8 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (A22-III)
  • R 10 represents a divalent hydrocarbon group having 2 to 4 carbon atoms.
  • R 11 represents a diisocyanate residue.
  • R 9 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. ⁇ .
  • R 8 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (A22-III).
  • Specific examples of the divalent hydrocarbon group having 1 to 10 carbon atoms include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, Examples thereof include alkylene groups such as 4-butylene group, hexylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
  • R 9 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group.
  • a cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group;
  • a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
  • R 10 is not particularly limited as long as it is a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
  • R 11 represents a diisocyanate residue.
  • the diisocyanate residue is a remaining portion obtained by removing two isocyanate groups (NCO) from a diisocyanate compound.
  • NCO isocyanate groups
  • Specific examples of the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate , Hexane diisocyanate, heptane
  • aliphatic diisocyanate compounds particularly isophorone diisocyanate, are preferred from the viewpoint of excellent weather resistance.
  • a diisocyanate compound having a molecular weight of 300 or less is preferable from the viewpoint of better scratch resistance and curability of active energy rays in the presence of a photopolymerization initiator.
  • organic group represented by the general formula (A22-II) scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator are more excellent.
  • R 7 is a hydrogen atom
  • R 8 is an ethylene group
  • R 9 is an ethylene group or a 1,3-propylene group
  • R 7 is a hydrogen atom
  • R 8 is a divalent group represented by the general formula (A22-III)
  • R 10 is an ethylene group
  • R 11 is an isophorone diisocyanate residue.
  • an organic group in which R 9 is an ethylene group or a 1,3-propylene group.
  • the silsesquioxane compound represented by (A23) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one urethane bond and / or urea bond and two or more (meth) acryloyloxy groups.
  • organic group having both at least one urethane bond and / or urea bond and two or more (meth) acryloyloxy groups for example, the following general formula (A23-I)
  • R 12 represents a hydrogen atom or a methyl group.
  • n represents an integer of 2 to 5.
  • X 3 represents an (n + 1) -valent organic group having a urethane bond and / or a urea bond. ] The organic group represented by these is mentioned.
  • organic group represented by the general formula (A23-I) include organic groups represented by the following general formula (A23-II) to general formula (A23-V).
  • R 12 is the same as defined above, and R 12 may be the same as or different from each other.
  • R 13 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 14 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (A23-VI)
  • R 16 represents a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 17 represents a diisocyanate residue.
  • the bivalent group represented by these is shown.
  • R 12 is the same as defined above, and R 12 may be the same or different.
  • R 13 is the same as described above.
  • R 14 is the same as described above.
  • R 12 is the same as defined above, and R 12 may be the same or different.
  • R 13 is the same as described above.
  • R 14 is the same as above, and each R 14 may be the same or different.
  • p represents an integer of 1 to 3.
  • R 12 is the same as described above, and R 12 may be the same or different.
  • R 13 is the same as described above.
  • R 14 is the same as above, and each R 14 may be the same or different.
  • R 15 represents a (p + 1) -valent hydrocarbon group having 1 to 10 carbon atoms. ⁇ .
  • R 13 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group.
  • a cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group;
  • a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
  • R 14 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (A23-VI).
  • Specific examples of the divalent hydrocarbon group having 1 to 10 carbon atoms include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, Examples thereof include alkylene groups such as 4-butylene group, hexylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
  • R 16 is not particularly limited as long as it is a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
  • R 17 represents a diisocyanate residue.
  • the diisocyanate residue is a remaining portion obtained by removing two isocyanate groups (NCO) from a diisocyanate compound.
  • NCO isocyanate groups
  • Specific examples of the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, Heptane di
  • aliphatic diisocyanate compounds particularly isophorone diisocyanate, are preferred from the viewpoint of excellent weather resistance.
  • the diisocyanate compound of molecular weight 300 or less is preferable from the point which is more excellent in abrasion resistance and active energy ray curability.
  • R 15 is not particularly limited as long as it is a (p + 1) -valent hydrocarbon group having 1 to 10 carbon atoms.
  • the (p + 1) -valent hydrocarbon group for R 15 is a hydroxymonocarboxylic acid residue.
  • the hydroxy monocarboxylic acid residue is the remaining part obtained by removing the hydroxyl group and the carboxyl group from the hydroxy monocarboxylic acid.
  • Specific examples of the divalent hydrocarbon group include a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, and a 1,4-butylene group.
  • alkylene groups such as xylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; and arylene groups such as phenylene group and xylylene group.
  • hydroxy monocarboxylic acid include hydroxypivalic acid, glycolic acid, lactic acid, 3-hydroxypropionic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyisobutyric acid, 2 -Hydroxy-2-methylpropionic acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 2-hydroxycyclohexanecarboxylic acid, dimethylolpropionic acid, dimethylolbutanoic acid, o-hydroxybenzoic acid, m-hydroxybenzoic acid, Examples thereof include p-hydroxybenzoic acid. Of these, dimethylolpropionic acid and dimethylolbutanoic acid are preferred from the viewpoint of better scratch resistance and active energy ray curability.
  • the organic group represented by the general formula (A23-II) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, and R 14 is an ethylene group is preferable.
  • R 12 is a hydrogen atom
  • R 13 is an ethylene group or a 1,3-propylene group
  • R 14 is a divalent group represented by the general formula (A23-VI)
  • R 16 An organic group in which is a divalent group in which is an ethylene group and R 17 is an isophorone diisocyanate residue is preferred.
  • the organic group represented by the general formula (A23-III) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator.
  • R 12 is a hydrogen atom
  • R 13 is an ethylene group or a 1,3-propylene group
  • R 14 is an ethylene group
  • R 12 is a hydrogen atom
  • R 13 is an ethylene group or a 1,3-propylene group
  • R 14 is a divalent group represented by the general formula (A23-VI)
  • R 16 An organic group in which is a divalent group in which is an ethylene group and R 17 is an isophorone diisocyanate residue is preferred.
  • the organic group represented by the general formula (A23-IV) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator.
  • an organic group in which R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, and R 14 is an ethylene group is preferable.
  • R 12 is a hydrogen atom
  • R 13 is an ethylene group or a 1,3-propylene group
  • R 14 is a divalent group represented by the general formula (A23-VI)
  • R 16 An organic group in which is a divalent group in which is an ethylene group and R 17 is an isophorone diisocyanate residue is preferred.
  • the organic group represented by the general formula (A23-V) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator.
  • p is 2
  • R 12 is a hydrogen atom
  • R 13 is an ethylene group or a 1,3-propylene group
  • R 14 is an ethylene group
  • R 15 is a dimethylolpropionic acid residue.
  • Certain organic groups are preferred.
  • R 12 is a hydrogen atom
  • R 13 is an ethylene group or a 1,3-propylene group
  • R 14 is a divalent group represented by the general formula (A23-VI).
  • an organic group in which R 16 is an ethylene group
  • R 17 is a divalent group that is an isophorone diisocyanate residue
  • R 15 is a dimethylolpropionic acid residue.
  • the silsesquioxane compound as the component (A) may be a compound having a single composition or a mixture of compounds having different compositions.
  • the weight average molecular weight of the silsesquioxane compound as the component (A) is not particularly limited.
  • the weight average molecular weight is preferably 1,000 to 100,000, more preferably the weight average molecular weight is 1,000 to 10,000. These ranges are significant in terms of the viscosity and paintability of the active energy ray-curable composition of the present invention.
  • the weight average molecular weight is a weight average molecular weight measured by a light scattering method.
  • Zetasizer Nano Nano-ZS (Malvern Instruments Ltd.) was used for the measurement of the weight average molecular weight by the light scattering method.
  • the samples used for the measurement were 10 samples having different concentrations in which the silsesquioxane compound (A) component was dissolved in propylene glycol monomethyl ether and the concentration was adjusted to 0.5 to 5.0 mass%. .
  • the weight average molecular weight was determined by measuring the light scattering intensity of these 10 samples.
  • silsesquioxane compound as component (A) Production method of silsesquioxane compound as component (A)
  • the silsesquioxane compound as component (A) can be produced by various methods. An example is shown below.
  • Manufacturing method a Production method a is a hydrolyzable silane having an organic group directly bonded to a silicon atom, and the organic group is at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond, and a urea bond. And a production method using a starting material containing a hydrolyzable silane having both one and at least one (meth) acryloyloxy group.
  • the production method b includes a step of producing a silsesquioxane compound having a functional group using a hydrolyzable silane having a functional group such as an epoxy group, an amino group, an isocyanate group, and the silyl obtained by the step.
  • the manufacturing method which has the process of reacting a sesquioxane compound, the compound which has a (meth) acryloyl group and a functional group, and manufacturing the silsesquioxane compound which has a desired organic group is mentioned.
  • the process (i) which manufactures the silsesquioxane compound which has a functional group using hydrolyzable silane which has functional groups, such as an epoxy group, an amino group, and an isocyanate group If necessary, the silsesquioxane compound obtained in this step and the compound having a functional group are reacted to generate a new functional group (ii) and the silsesquioxane obtained in step (i).
  • Silsesquioxane compound having a desired organic group by reacting a functional group of an oxan compound or a functional group newly generated by the step (ii) with a functional group of a compound having a (meth) acryloyl group and a functional group
  • the manufacturing method which has the process (iii) which manufactures is mentioned.
  • R 1 and R 2 are the same as defined above. ].
  • the following manufacturing method corresponds to the manufacturing method b.
  • the following general formula (A1-I-1) is used as a starting material.
  • R 2 is the same as defined above.
  • Y is chlorine or an alkoxy group having 1 to 6 carbon atoms, and Y may be the same or different.
  • R 2 is the same as defined above.
  • the silsesquioxane compound which has an organic group represented by these is manufactured.
  • Y in the general formula (A1-I-1) include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.
  • hydrolyzable silane represented by the general formula (A1-I-1) include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like. .
  • hydrolyzable silane other than the hydrolyzable silane having an epoxy group a silsesquioxane compound is produced by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (A1-I-1). There is no particular limitation as long as it is possible.
  • alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
  • a basic catalyst is preferably used as the catalyst.
  • the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl
  • ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.
  • the amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the amount of the catalyst used is preferably in the range of 0.0001 to 1.0 mol, more preferably 0.0005 to 0.1 mol, relative to 1 mol of hydrolyzable silane.
  • water is used.
  • the quantity ratio of hydrolyzable silane and water is not particularly limited.
  • the amount of water used is preferably a ratio of 0.1 to 100 mol, more preferably 0.5 to 3 mol, of water relative to 1 mol of hydrolyzable silane. If the amount of water is too small, the reaction may be slowed and the yield of the desired silsesquioxane may be reduced. If the amount of water is too large, the molecular weight will increase and the product of the desired structure will decrease. There is a risk.
  • the water to be used may be substituted with the water, and water may be added separately.
  • an organic solvent may or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production.
  • organic solvent polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.
  • polar organic solvent a lower alcohol solvent such as methanol, ethanol and 2-propanol, a ketone solvent such as acetone and methyl isobutyl ketone, and an ether solvent such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point. Is preferable because it becomes uniform and the reactivity is improved.
  • nonpolar organic solvent a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable.
  • an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible.
  • mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.
  • the reaction temperature during the hydrolysis condensation is 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
  • the reaction is usually completed in about 1 to 12 hours.
  • the condensation reaction proceeds together with the hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A1-I-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
  • silsesquioxane compound having an organic group represented by the general formula (A1-I-2) include Glycylyl POSS cage mixture (trade name, Hybrid Plastics).
  • silsesquioxane compound having an organic group represented by the general formula (A1-I-2) produced above is added to the following general formula (A1-I-3).
  • Examples of the compound represented by the general formula (A1-I-3) include acrylic acid and methacrylic acid.
  • the reaction can be performed according to a conventional method in which an epoxy group and a carboxyl group are reacted.
  • the reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 to 120 ° C.
  • the reaction is usually completed in about 10 to 24 hours.
  • the ratio of the silsesquioxane compound having an organic group represented by the general formula (A1-I-2) and the compound represented by the general formula (A1-I-3) in the reaction is as follows.
  • the compound represented by the general formula (A1-I-3) is usually used in an amount of 0.80 to 1.20 mol per 1 mol of the organic group represented by the general formula (A1-I-2) of the oxan compound. About 0.90 to 1.10 mol.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates and formates such as diethylamine Secondary amine salts of sodium hydroxide, alkali metal hydroxides such as sodium hydroxide and calcium hydroxide; alkali metal and alkaline earth metal salts such as sodium acetate and calcium acetate; imidazole compounds; diaza Examples thereof include cyclic nitrogen-containing compounds such as bicycloundecene and phosphorus compounds such as triphenylphosphine and tributylphosphine.
  • the amount of the catalyst used is not particularly limited, but is 0.01 to 5% by mass with respect to the reaction raw material.
  • a solvent may be appropriately used.
  • the solvent is not particularly limited. Specifically, for example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc
  • Ester solvents such as tetrahydrofuran, dioxane and dimethoxyethane; glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents and the like can be mentioned.
  • the silsesquioxane compound having an organic group represented by the general formula (A1-I) is produced by the above production method.
  • the target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified.
  • this separation and purification means for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
  • the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
  • a ladder structure in which a Si—OH group remains, an incomplete cage structure, and / or a silsesquioxane compound of a random condensate may be included.
  • the silsesquioxane compound having an organic group represented by (II) may contain a ladder structure, an incomplete cage structure and / or a random condensate.
  • the silsesquioxane compound having an organic group represented by the general formula (A1-I) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
  • a silsesquioxane compound (A) is a silsesquioxane compound in which at least one of organic groups directly bonded to a silicon atom has an organic group represented by the following general formula (A21-II) Sun compound [hereinafter sometimes abbreviated as “silsesquioxane compound having an organic group represented by formula (A21-II)”. ] Is exemplified.
  • the following manufacturing method corresponds to the manufacturing method a.
  • the following general formula (A21-II-1) is used as a starting material.
  • R 3 , R 4 , R 5 , m and Y are the same as defined above. Y may be the same or different.
  • hydrolyzable silane other than the hydrolyzable silane represented by the general formula (A21-II-1) if necessary, in the presence of a catalyst.
  • a silsesquioxane compound having an organic group represented by the general formula (A21-II) is produced.
  • hydrolyzable silane other than the hydrolyzable silane represented by the general formula (A21-II-1) is hydrolyzed and condensed together with the hydrolyzable silane represented by the general formula (A21-II-1). If it can manufacture a silsesquioxane compound by this, it will not specifically limit.
  • alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
  • hydrolyzable silane represented by the general formula (A21-II-1) examples include a hydrolyzable silane represented by the following general formula (A21-II-2) and a general formula (A21-II- It can be obtained by reacting with the compound represented by 3).
  • R 5 and Y are the same as defined above. Y may be the same or different. ].
  • Examples of the compound represented by the general formula (A21-II-2) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatepropyltriethoxysilane.
  • Examples of the compound represented by the general formula (A21-II-3) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy Examples include butyl (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, and dipropylene glycol mono (meth) acrylate.
  • reaction between the hydrolyzable silane represented by the general formula (A21-II-2) and the compound represented by the general formula (A21-II-3) is performed according to a conventional method in which an isocyanate group and a hydroxyl group are reacted. It can be carried out.
  • the proportion of the hydrolyzable silane represented by the general formula (A21-II-2) and the compound represented by the general formula (A21-II-3) in the reaction is usually the latter with respect to 1 mol of the former.
  • the amount may be about 0.90 to 1.10 mol, preferably about 0.95 to 1.05 mol.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 2 to 10 hours.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • a solvent may be appropriately used.
  • the solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, Ester solvents such as methyl propionate; Ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ether solvents such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbon solvents such as toluene and xylene And aliphatic hydrocarbon solvents.
  • the catalyst In this hydrolysis condensation, the catalyst, the amount of catalyst used, the amount of water used, the type of organic solvent in the case of using an organic solvent, the reaction temperature and reaction time during the hydrolysis condensation are the above-mentioned general formulas (A1-I).
  • the condensation reaction proceeds together with the hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A21-II-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
  • the silsesquioxane compound having an organic group represented by the general formula (A21-II) is produced by the above production method.
  • the target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified.
  • this separation and purification means for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
  • the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
  • a ladder structure in which Si—OH groups remain may be included, an incomplete cage structure, and / or a silsesquioxane compound of a random condensate, but the general formula (A21-II) obtained by this production method may be included.
  • the silsesquioxane compound having an organic group represented by (II) may contain a ladder structure, an incomplete cage structure and / or a random condensate.
  • the silsesquioxane compound having an organic group represented by the general formula (A21-II) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
  • silsesquioxane compound (A) which is a silsesquioxane compound in which at least one of organic groups directly bonded to a silicon atom has an organic group represented by the following general formula (A22-II): Sun compound [hereinafter sometimes referred to as “silsesquioxane compound having an organic group represented by the general formula (A22-II)”. ] Is exemplified.
  • R 7 , R 8 and R 9 are the same as defined above. ].
  • the following manufacturing method corresponds to the manufacturing method b.
  • the following general formula (A22-II-1) is used as a starting material.
  • R 9 is the same as defined above.
  • the silsesquioxane compound which has an organic group represented by these is manufactured.
  • hydrolyzable silane represented by the general formula (A22-II-1) include aminomethyltrimethoxysilane, aminomethyltriethoxysilane, 2-aminoethyltrimethoxysilane, and 2-amino. Examples include ethyltriethoxysilane, 3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane.
  • the hydrolyzable silane other than the hydrolyzable silane having an amino group is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the amino group. It is not a thing.
  • alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
  • the catalyst In this hydrolysis condensation, the catalyst, the amount of catalyst used, the amount of water used, the type of organic solvent in the case of using an organic solvent, the reaction temperature and reaction time during the hydrolysis condensation are the above-mentioned general formulas (A1-I).
  • the condensation reaction proceeds together with the hydrolysis, and a hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A22-II-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
  • the amino group of the silsesquioxane compound having the organic group represented by the general formula (A22-II-2) produced above is represented by the following general formula (A22-II-3).
  • the isocyanate group of the compound is reacted to produce a silsesquioxane compound having an organic group represented by the general formula (A22-II).
  • R 7 and R 8 are the same as defined above. ].
  • Specific examples of the compound represented by the general formula (A22-II-3) include, for example, isocyanate methyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate, and isocyanate. Examples include octyl (meth) acrylate. Moreover, the adduct of a hydroxyl group containing (meth) acrylate and a diisocyanate compound is mentioned.
  • hydroxyl group-containing (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). An acrylate etc. are mentioned.
  • diisocyanate compound examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, Heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, dicyclohexylmethane diisocyanate , Aliphatic diisocyanate compounds such
  • the reaction is usually performed using 1 mol or more of the compound represented by the general formula (A22-II-3) per 1 mol of the organic group represented by the general formula (A22-II-2). Is called.
  • the reaction can be performed according to a conventional method in which an amino group and an isocyanate group are reacted.
  • the reaction temperature is, for example, ⁇ 78 ° C. to 200 ° C., preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 40 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is very fast and usually completes when the dropping is completed.
  • a solvent may be appropriately used.
  • the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate
  • ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane
  • propylene glycol monomethyl ether and propylene glycol monomethyl ether examples thereof include glycol ether solvents such as acetate and 3-methoxybutyl acetate; alcohol solvents such as methanol, ethanol and propanol, aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents and the like
  • the silsesquioxane compound having an organic group represented by the general formula (A22-II) is produced by the above production method.
  • the target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified.
  • this separation and purification means for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
  • the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
  • a ladder structure in which Si—OH groups remain there may be included a ladder structure in which Si—OH groups remain, an incomplete cage structure and / or a silsesquioxane compound of a random condensate, but the general formula (A22-II) obtained by this production method may be included.
  • the silsesquioxane compound having an organic group represented by (II) may contain a ladder structure, an incomplete cage structure and / or a random condensate.
  • the silsesquioxane compound having an organic group represented by the general formula (A22-II) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
  • silsesquioxane compound (A) which is a silsesquioxane compound in which at least one organic group directly bonded to a silicon atom has an organic group represented by the following general formula (A23-II): Sun compound [hereinafter sometimes referred to as “silsesquioxane compound having an organic group represented by formula (A23-II)”. ] Is exemplified.
  • R 12 , R 13 and R 14 are the same as defined above. ].
  • the following manufacturing method corresponds to the manufacturing method b.
  • the following general formula (A23-II-1) is used as a starting material.
  • R 13 and Y are the same as defined above. Y may be the same or different.
  • R 13 is the same as defined above.
  • the silsesquioxane compound which has an organic group represented by these is manufactured.
  • hydrolyzable silane represented by the general formula (A23-II-1) examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like. .
  • hydrolyzable silane represented by the general formula (A23-II-1) is used as a starting material for hydrolysis condensation in the presence of a catalyst, or [8] Hydrolysis in the presence of a catalyst using a hydrolyzable silane represented by the general formula (A23-II-1) and a hydrolyzable silane other than a hydrolyzable silane having an epoxy group as a starting material Condensing.
  • hydrolyzable silane other than the hydrolyzable silane having an epoxy group a silsesquioxane compound is produced by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (A23-II-1). There is no particular limitation as long as it is possible.
  • alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
  • the catalyst In this hydrolysis condensation, the catalyst, the amount of catalyst used, the amount of water used, the type of organic solvent in the case of using an organic solvent, the reaction temperature and reaction time during the hydrolysis condensation are the above-mentioned general formulas (A1-I).
  • the condensation reaction proceeds together with the hydrolysis, and a hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A23-II-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
  • silsesquioxane compound having an organic group represented by the general formula (A23-II-2) include Glycylyl POSS cage mixture (trade name, Hybrid Plastics).
  • silsesquioxane compound having an organic group represented by the general formula (A23-II-2) produced above is added to the following general formula (A23-II-3).
  • R 12 and R 13 are the same as defined above.
  • the silsesquioxane compound which has an organic group represented by these is manufactured.
  • Examples of the compound represented by the general formula (A23-II-3) include acrylic acid and methacrylic acid.
  • the reaction can be performed according to a conventional method in which an epoxy group and a carboxyl group are reacted.
  • various reaction conditions such as a reaction temperature, a use ratio, a reaction time, a catalyst, and a solvent can be used for the silsesquioxane compound having an organic group represented by the general formula (A1-I-2).
  • the same conditions as various reaction conditions for reacting the compound represented by the general formula (A1-I-3) can be applied.
  • R 12 and R 14 are the same as defined above. ].
  • the reaction can be performed according to a conventional method in which a hydroxyl group and an isocyanate group are reacted.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
  • the reaction is usually completed in about 2 to 10 hours.
  • the ratio of the silsesquioxane compound having an organic group represented by the general formula (A23-II-4) and the compound represented by the general formula (A23-II-5) in the above reaction is as follows.
  • the compound represented by the general formula (A23-II-5) is usually used in an amount of 0.90 to 1.10 mol per 1 mol of the organic group represented by the general formula (A23-II-4) of the oxan compound. About 0.95 to 1.05 mol.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • the silsesquioxane compound having an organic group represented by the general formula (A23-II) is produced by the above production method.
  • the target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified.
  • this separation and purification means for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
  • the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. May include a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a silsesquioxane compound of a random condensate.
  • the general formula (A23-II) obtained by this production method may be included.
  • the silsesquioxane compound which has an organic group represented by these may contain those ladder structures, incomplete cage structures, and / or random condensates.
  • the silsesquioxane compound having an organic group represented by the general formula (A23-II) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
  • the blending ratio of the silsesquioxane compound as the component (A) in the active energy ray-curable composition of the present invention is not particularly limited.
  • the cured film obtained is preferably 1 to 95 parts by mass with respect to 100 parts by mass of the nonvolatile content of the active energy ray-curable composition. More preferably, it is 10 to 80 parts by mass, and particularly preferably 15 to 50 parts by mass.
  • Reactive particles (B) The reactive particles (B) are obtained by reacting silica fine particles (b-1) with hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule.
  • Silica fine particles (b-1) examples include colloidal silica fine particles and powdery fine particle silica.
  • Colloidal silica fine particles are obtained by dispersing ultrafine particles of silica in a dispersion medium.
  • water As a dispersion medium, water; alcohol solvents such as methanol, ethanol, isopropanol, n-propanol, isobutanol, n-butanol; polyhydric alcohol solvents such as ethylene glycol; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, etc. Polyhydric alcohol derivatives; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol; and monomer compounds such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and tetrahydrofurfuryl acrylate. Of these, water, methanol, ethanol, isopropanol and the like are preferable from the viewpoint of ease of production.
  • alcohol solvents such as methanol, ethanol, isopropanol, n-propanol, isobutanol, n-butanol
  • Colloidal silica fine particles include methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, PGM-ST, ST-UP, ST-OUP, ST-20, ST-40, ST -C, ST-N, ST-O, ST-50, ST-OL (all manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • the average primary particle diameter of the silica fine particles (b-1) is preferably 1 to 200 nm, and more preferably 5 to 80 nm.
  • the lower limit of these ranges is significant in terms of suppressing gelation when reacted with the compound (b-2).
  • the upper limit of these ranges is significant in terms of the transparency of the cured coating film obtained with the active energy ray-curable composition of the present invention.
  • the average primary particle diameter in the present invention is a median diameter (d50) of a volume-based particle size distribution measured by a dynamic light scattering method, and can be measured using, for example, a nanotrack particle size distribution measuring apparatus manufactured by Nikkiso Co., Ltd. it can.
  • the hydrolyzable silyl group is a silanol group or a group that generates a silanol group by hydrolysis.
  • Examples of the group that forms a silanol group include groups in which an alkoxy group, an aryloxy group, an acetoxy group, a halogen atom, or the like is bonded to a silicon atom.
  • the alkoxy group is preferably an alkoxy group having 1 to 8 carbon atoms
  • the aryloxy group is preferably an aryloxy group having 6 to 18 carbon atoms.
  • a halogen atom includes chlorine.
  • Compound (b-2) is not particularly limited as long as it is a compound having a (meth) acryloyloxy group and a hydrolyzable silyl group in the molecule.
  • Z represents a (meth) acryloyloxy group.
  • R 18 represents a divalent hydrocarbon group having 1 to 8 carbon atoms. At least one of R a , R b and R c represents a halogen atom, a hydroxy group, an alkoxy group or an aryloxy group, and the remainder represents a hydrogen atom, an alkyl group or an aryl group.
  • Compound (b-2-1) represented by the formula [hereinafter sometimes referred to as “compound (b-2-1)”. ].
  • R 18 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 8 carbon atoms. Specifically, for example, methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group, octylene group and the like can be mentioned. It is done.
  • Examples of the alkoxy group represented by R a , R b and R c include those having 1 to 8 carbon atoms, and a methoxy group, ethoxy group, propoxy group, butoxy group, octyloxy group and the like are preferable.
  • Examples of the alkyl group represented by R a , R b and R c include those having 1 to 8 carbon atoms, and a methyl group, ethyl group, propyl group, butyl group, octyl group and the like are preferable.
  • Examples of the aryloxy group represented by R a , R b and R c include those having 6 to 18 carbon atoms, and a phenoxy group, a xylyloxy group and the like are preferable.
  • Examples of the aryl group represented by R a , R b and R c include those having 6 to 18 carbon atoms, and a phenyl group, a xylyl group and the like are preferable.
  • Examples of the group represented by R a (R b ) (R c ) Si— include a trimethoxysilyl group, a triethoxysilyl group, a triphenoxysilyl group, a methyldimethoxysilyl group, and a dimethylmethoxysilyl group. It can. Of these groups, a trimethoxysilyl group, a triethoxysilyl group, and the like are preferable.
  • Examples of the compound (b-2-1) include 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 2-methacryloyloxyethyltrimethoxysilane, 2-acryloyloxyethyltrimethoxysilane, 3 -Methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropyltriethoxysilane, 2-methacryloyloxyethyltriethoxysilane, 2-acryloyloxyethyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyl Examples thereof include at least one compound selected from dimethoxysilane and the like.
  • compound (B-2-2) in addition to the compound (b-2-1), for example, a hydrolyzable silane having both a (meth) acryloyloxy group and a urethane bond in the molecule [hereinafter referred to as “compound (B-2-2) ". ].
  • hydrolyzable silane having both a (meth) acryloyloxy group and a urethane bond in the molecule for example, the following general formula (B-II)
  • R 19 represents a hydrogen atom or a methyl group.
  • R 20 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 21 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • At least one of R a , R b and R c represents a halogen atom, a hydroxy group, an alkoxy group or an aryloxy group, and the remainder represents a hydrogen atom, an alkyl group or an aryl group.
  • q represents an integer of 1 to 10.
  • the hydrolyzable silane represented by these is mentioned.
  • R 20 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • an alkylene group such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group; cyclohexylene group And aralkylene groups such as a phenylene group and a xylylene group.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms particularly an ethylene group, a 1,2-propylene group, and a 1,4-butylene group are preferable.
  • R 21 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • an alkylene group such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group; cyclohexylene group And aralkylene groups such as a phenylene group and a xylylene group.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group and a 1,3-propylene group are preferable.
  • the q is not particularly limited as long as it is an integer of 1 to 10. q is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and particularly preferably 1.
  • hydrolyzable silane represented by the general formula (B-II) examples include a hydrolyzable silane represented by the following general formula (B-III) and the following general formula (B-IV). It can be obtained by reacting with a compound.
  • R 21 , R a , R b and R c are the same as defined above.
  • R 19 , R 20 and q are the same as defined above.
  • Examples of the hydrolyzable silane represented by the general formula (B-III) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane.
  • Examples of the compound represented by the general formula (B-IV) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl ( Examples include meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, and dipropylene glycol mono (meth) acrylate.
  • reaction between the hydrolyzable silane represented by the general formula (B-III) and the compound represented by the general formula (B-IV) can be performed according to a conventional method in which an isocyanate group and a hydroxyl group are reacted. .
  • the use ratio of the hydrolyzable silane represented by the general formula (B-III) and the compound represented by the general formula (B-IV) is usually 0.90 per 1 mol of the former. About 1.10 mol, preferably about 0.95 to 1.05 mol.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 2 to 10 hours.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • a solvent may be appropriately used.
  • the solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, Ester solvents such as methyl propionate; Ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ether solvents such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbon solvents such as toluene and xylene And aliphatic hydrocarbon solvents.
  • Examples of the compound (b-2) include, in addition to the compound (b-2-1) and the compound (b-2-2), both a (meth) acryloyloxy group and an isocyanurate ring structure in the molecule.
  • Hydrolyzable silane having the formula hereinafter sometimes referred to as “compound (b-2-3)”. ].
  • hydrolyzable silanes having both a (meth) acryloyloxy group and an isocyanurate ring structure in the molecule include, for example, the following general formula (BV)
  • R 22 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 23 is the same or different and represents a divalent organic group.
  • R 24 represents a divalent organic group.
  • At least one of R a , R b and R c represents a halogen atom, a hydroxy group, an alkoxy group or an aryloxy group, and the remainder represents a hydrogen atom, an alkyl group or an aryl group.
  • the hydrolyzable silane represented by these is mentioned.
  • R 23 is not particularly limited as long as it is a divalent organic group.
  • the divalent organic group include divalent organic groups having 1 to 100 carbon atoms.
  • a divalent organic group having 1 to 30 carbon atoms is preferred.
  • the divalent organic group is not limited to a hydrocarbon group, and may have, for example, a urethane bond, an ester bond, an ether bond, or the like.
  • the R 24 is not particularly limited as long as it is a divalent organic group.
  • the divalent organic group include divalent organic groups having 1 to 100 carbon atoms.
  • a divalent organic group having 1 to 30 carbon atoms is preferred.
  • the divalent organic group is not limited to a hydrocarbon group, and may have, for example, a urethane bond, an ester bond, an ether bond, or the like.
  • hydrolyzable silane represented by the general formula (BV) include hydrolyzable silanes represented by the following general formula (B-VI) and the following general formula (B-VII). ) Represented by a hydrolyzable silane.
  • R 25 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 26 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 27 represents a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • r is the same or different and represents an integer of 0 to 5.
  • R a , R b and R c are the same as described above.
  • R 28 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 29 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 30 represents a divalent hydrocarbon group having 1 to 4 carbon atoms.
  • R a , R b and R c are the same as described above. ].
  • R 26 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable from the viewpoint of transparency of the resulting cured coating film.
  • R 27 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
  • R 25 is a hydrogen atom from the viewpoint of better scratch resistance, transparency, and active energy ray curability in the presence of a photopolymerization initiator.
  • R 26 is an ethylene group
  • R 27 is a 1,3-propylene group
  • an organic group in which r is 0 is preferable.
  • R 29 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable from the viewpoint of transparency of the resulting cured coating film.
  • R 30 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
  • the organic group represented by the general formula (B-VII) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 28 is a hydrogen atom, R 29 is an ethylene group, and R 30 is a 1,3-propylene group is preferable.
  • hydrolyzable silane represented by the above general formula (B-VI) examples include a hydrolyzable silane represented by the following general formula (B-VIII) and a compound represented by the following general formula (B-IX). It can obtain by making it react.
  • R 27 , R a , R b and R c are the same as described above.
  • R 25 , R 26 and r are the same as described above.
  • hydrolyzable silane represented by the general formula (B-VIII) include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • the mixing ratio of the hydrolyzable silane represented by the general formula (B-VIII) and the compound represented by the general formula (B-IX) is not particularly limited.
  • the reaction is carried out using equimolar amounts of the isocyanate group of the compound represented by the general formula (B-IX) with respect to the number of moles of the amino group of the hydrolyzable silane represented by the general formula (B-VIII). Is done.
  • This reaction can be performed according to a conventional method in which an amino group and an isocyanate group are reacted.
  • the reaction temperature is, for example, ⁇ 78 ° C. to 200 ° C., preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 10 ° C. to 40 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • a solvent may be appropriately used.
  • the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate
  • ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane
  • propylene glycol monomethyl ether propylene glycol monomethyl ether
  • propylene glycol monomethyl ether propylene glycol monomethyl ether.
  • glycol ether solvents such as acetate and 3-methoxybutyl acetate
  • aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvent
  • the compound represented by the general formula (B-IX) is obtained by, for example, reacting a compound represented by the following general formula (BX) with a compound represented by the following general formula (B-XI). Obtainable.
  • the compound represented by the general formula (BX) is a so-called isocyanurate cycloadduct of 1,6-hexamethylene diisocyanate, and trade names include Sumijour N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.), Duranate. Examples thereof include TPA100 (manufactured by Asahi Kasei Chemicals Corporation).
  • R 25 , R 26 and r are the same as described above.
  • Examples of the compound represented by the general formula (B-XI) include compounds in which r is 0, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( And (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • Examples of the compound in which r is 1 to 5 include caprolactone-modified hydroxyalkyl (meth) acrylate.
  • the mixing ratio of the compound represented by the general formula (BX) and the compound represented by the general formula (B-XI) is not particularly limited.
  • This reaction can be carried out according to a conventional method in which an isocyanate group and a hydroxyl group are reacted.
  • the reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 ° C to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 2 to 10 hours.
  • a solvent may be appropriately used.
  • the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate
  • ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane
  • propylene glycol monomethyl ether propylene glycol monomethyl ether
  • propylene glycol monomethyl ether propylene glycol monomethyl ether.
  • glycol ether solvents such as acetate and 3-methoxybutyl acetate
  • aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvent
  • the product obtained by reacting the compound represented by the general formula (BX) with the compound represented by the general formula (B-XI) includes the above general formula (B-IX).
  • the compound represented by formula (B-XII) includes the above general formula (B-IX).
  • hydrolyzable silane represented by the general formula (B-VII) examples include a hydrolyzable silane represented by the following general formula (B-XIII) and a compound represented by the following general formula (B-XIV) It can obtain by making it react.
  • R 30 , R a , R b and R c are the same as described above.
  • R 28 and R 29 in the general formula (B-XIV) are the same as described above.
  • hydrolyzable silane represented by the general formula (B-XIII) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatepropyltriethoxysilane.
  • Examples of the compound represented by the general formula (B-XIV) include bis (2-acryloyloxyethyl) hydroxyethyl isocyanurate, bis (2-acryloyloxypropyl) hydroxyethyl isocyanurate, and the like.
  • Product names include Aronix M-215 and Aronix M-313 (both manufactured by Toagosei Co., Ltd.).
  • the mixing ratio of the hydrolyzable silane represented by the general formula (B-XIII) and the compound represented by the general formula (B-XIV) is not particularly limited. Usually, the reaction is carried out using an equimolar amount of the hydroxyl group of the compound represented by the general formula (B-XIV) with respect to the number of moles of the isocyanate group of the hydrolyzable silane represented by the general formula (B-XIII). Done.
  • This reaction can be carried out according to a conventional method in which an isocyanate group and a hydroxyl group are reacted.
  • the reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 ° C to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 2 to 10 hours.
  • a solvent may be appropriately used.
  • the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate
  • ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane
  • propylene glycol monomethyl ether propylene glycol monomethyl ether
  • propylene glycol monomethyl ether propylene glycol monomethyl ether.
  • glycol ether solvents such as acetate and 3-methoxybutyl acetate
  • aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvent
  • the compound represented by the general formula (B-XIV) is usually tris (2- (2)) as represented by, for example, Aronix M-215, Aronix M-313 (both manufactured by Toagosei Co., Ltd.) and the like.
  • the following general formula (B-XV) such as acryloyloxyethyl) isocyanurate, tris (2-acryloyloxypropyl) isocyanurate
  • the compounds exemplified above may be used alone or in combination of two or more kinds. From the viewpoint of active energy ray curability in the presence of a photopolymerization initiator, the compound (b-2-1) and / or the compound (b-2-2) and the compound (b-2-3) are used in combination. It is preferable to use the compound (b-2-1) and the compound (b-2-3) in combination.
  • an alkoxysilane having an alkyl group having 1 or more carbon atoms is optionally added together with the compound (b-2) to silica fine particles (b- You may make it react with 1).
  • the alkoxysilane having an alkyl group having 1 or more carbon atoms By reacting the alkoxysilane having an alkyl group having 1 or more carbon atoms, the water resistance of the coating film obtained using the obtained reactive particles (B) may be improved.
  • alkoxysilane having an alkyl group having 1 or more carbon atoms examples include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, and dodecyltrimethoxy.
  • Silane etc. are mentioned,
  • the compound (for example, methyltriethoxysilane etc.) which substituted the methoxy group in these illustrated compounds by the ethoxy group is also mentioned.
  • the reactive particles (B) can be obtained by reacting the silica fine particles (b-1) with the compound (b-2).
  • the method for reacting the silica fine particles (b-1) with the compound (b-2) is not particularly limited.
  • a method of condensing the hydrolyzate of compound (b-2) with silica fine particles (b-1) after hydrolyzing compound (b-2), [iii] silica fine particles (b-1) and compound ( and b-2) may be mixed in the presence of water, an organic solvent, and other components such as a polymerizable unsaturated compound, and hydrolytic condensation may be performed at once.
  • the water used in these production methods may be water contained in the raw material, for example, water that is a dispersion medium of colloidal silica fine particles.
  • the reactive particles (B) are, for example, in the presence of colloidal silica fine particles that are silica fine particles (b-1), a compound (b-2), optionally a lower alcohol, and optionally a polymerizable unsaturated compound.
  • a dispersion medium in colloidal silica fine particles, and a lower alcohol [including a lower alcohol produced by hydrolyzing compound (b-2). ] Is azeotropically distilled together with a solvent having a boiling point higher than that of the lower alcohol under normal pressure or reduced pressure, and the dispersion medium is replaced with the solvent, followed by a dehydration condensation reaction under heating.
  • a hydrolysis catalyst is optionally added to a mixture of the colloidal silica fine particles as the silica fine particles (b-1), the compound (b-2), optionally a lower alcohol, and optionally a polymerizable unsaturated compound.
  • the compound (b-2) is hydrolyzed by a conventional method such as stirring at room temperature or under heating.
  • the dispersion medium in the colloidal silica fine particles and the lower alcohol were azeotropically distilled together with a solvent having a boiling point higher than that of the lower alcohol under normal pressure or reduced pressure, and the dispersion medium was replaced with the solvent.
  • the reaction is carried out with stirring for 0.5 to 10 hours at a temperature of preferably 80 to 130 ° C.
  • the nonvolatile content concentration in the range of 30 to 90% by mass, preferably in the range of 50 to 80% by mass.
  • solvent used in the above reaction examples include hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and cyclohexane; halogenated hydrocarbon solvents such as trichloroethylene and tetrachloroethylene; 1,4-dioxane, dibutyl ether Ether solvents such as methyl isobutyl ketone; ester solvents such as n-butyl acetate, isobutyl acetate, ethyl acetate, and ethyl propionate; polyhydric alcohol derivatives such as ethylene glycol monobutyl ether.
  • hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and cyclohexane
  • halogenated hydrocarbon solvents such as trichloroethylene and tetrachloroethylene
  • 1,4-dioxane dibutyl
  • the non-volatile concentration during the reaction is preferably in the range of 5 to 50% by mass.
  • the nonvolatile content concentration is less than 5% by mass, that is, when the solvent exceeds 95% by mass, the reaction between the silica fine particles (b-1) and the compound (b-2) is insufficient, and active energy curing including reactive particles.
  • the cured film obtained by the conductive composition may be inferior in transparency.
  • the nonvolatile content concentration exceeds 50% by mass, the product may be gelled.
  • the silicon atom on the surface of the silica fine particle (b-1) and the silicon atom in the molecule of the compound (b-2) are bonded via an oxygen atom, whereby the silica fine particle (b-1) and the compound ( Reactive particles (B) chemically bonded to b-2) are obtained.
  • the compounding ratio of the compound (b-2) in obtaining the reactive particles (B) is preferably 1 part by mass or more, more preferably 2 parts by mass with respect to 100 parts by mass of the silica fine particles (b-1). As described above, it is particularly preferably 5 parts by mass or more.
  • the mixing ratio of the silica fine particles (b-1) in the raw material during the production of the reactive particles (B) is preferably 5 to 99 parts by mass with respect to 100 parts by mass of the resulting reactive particles (B). More preferably, it is 10 to 98 parts by mass.
  • the blending ratio is 2.5 to 100% by mass, preferably 25 to 50% by mass with respect to the compound (b-2). It is preferable from the point of the water resistance improvement of the coating film obtained.
  • the content of the reactive particles (B) in the active energy ray-curable composition is not particularly limited. From the viewpoint of scratch resistance and transparency of the cured coating, it is preferably 1 to 95 parts by mass, more preferably 5 to 70 parts by mass with respect to 100 parts by mass of the nonvolatile content of the active energy ray-curable composition. Particularly preferred is 10 to 50 parts by mass.
  • Photopolymerization initiator (C) The active energy ray-curable composition of the present invention may further contain a photopolymerization initiator (C).
  • a photoinitiator (C) if it is an initiator which absorbs an active energy ray and generate
  • Examples of the photopolymerization initiator (C) include ⁇ -diketone compounds such as benzyl and diacetyl; acyloin compounds such as benzoin; acyloin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether; thioxanthone, 2, Thioxanthone compounds such as 4-diethylthioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenone compounds such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketone compound; acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, ⁇ , ⁇ '-
  • Examples of commercially available photopolymerization initiators include IRGACURE-184, IRGACURE-261, IRGACURE-500, IRGACURE-651, IRGACURE-819, IRGACURE-907, IRGACURE-CGI-1700 (Ciba Specialty Chemicals, trade name, English name IRGACURE), Darocur-1173, Darocur-1116, Darocur-2959, Darocur-1664, Darocur-4064 (Merck Japan, trade name, English name Darocur), Kayacure (KAYACURE) -MBP, Kayacure-DETX-S, Kayacure-DMBI, Kayacure-EPA, Kayacure-OA (manufactured by Nippon Kayaku Co., Ltd., trade name English notation KAYACURE), Vicure-10, Vicure-55 [Stoufer (STAUFFER Co., LTD., Product name], TRIGONAL P1 [AKZO Co., LTD., Product name], S
  • the photopolymerization initiator (C) is preferably one or a mixture of two or more of a thioxanthone compound, an acetophenone compound and an acylphosphine oxide compound from the viewpoint of photocurability, and among them, an acetophenone compound and an acylphosphine. Particularly preferred is a mixture with a fin oxide compound.
  • the amount of the photopolymerization initiator (C) used is not particularly limited, but is preferably 0.5 to 10 parts by weight, more preferably 100 parts by weight of the nonvolatile content of the active energy ray-curable composition. Is in the range of 1 to 5 parts by weight. The lower limit of this range is significant in terms of improving active energy ray curability, and the upper limit is significant in terms of cost and deep curability.
  • the active energy ray-curable composition of the present invention may further contain a polymerizable unsaturated compound (D).
  • the polymerizable unsaturated compound (D) is particularly limited as long as it is a compound other than the components (A) and (B) and has at least one polymerizable unsaturated double bond in its chemical structure. Not.
  • Examples of the polymerizable unsaturated compound (D) include a monofunctional polymerizable unsaturated compound and a polyfunctional polymerizable unsaturated compound.
  • Examples of the monofunctional polymerizable unsaturated compound include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide.
  • hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid
  • Carboxyl group-containing (meth) acrylates such as 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (meth) acrylate and 5-carboxypentyl (meth) acrylate; glycidyl groups such as glycidyl (meth) acrylate and allyl glycidyl ether Containing polymerizable unsaturated compounds; vinyl aromatic compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, ⁇ -chlorostyrene; N, N-dimethylaminoethyl (meth)
  • polyfunctional polymerizable unsaturated compound examples include esterified products of polyhydric alcohol and (meth) acrylic acid.
  • esterified products of polyhydric alcohol and (meth) acrylic acid Specifically, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaery
  • a polymerizable unsaturated group containing acrylic resin urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin, etc.
  • the polymerizable unsaturated group-containing acrylic resin include a polymerizable unsaturated group-containing acrylic resin obtained by adding a glycidyl group-containing polymerizable unsaturated compound such as glycidyl (meth) acrylate to a carboxyl group-containing acrylic resin, hydroxyl group, and the like.
  • Examples thereof include polymerizable unsaturated group-containing acrylic resins obtained by adding a compound having an isocyanate group and a polymerizable unsaturated group, such as 2-isocyanatoethyl (meth) acrylate, to the group-containing acrylic resin.
  • polymerizable unsaturated compounds can be used alone or in combination of two or more.
  • examples of the polyfunctional polymerizable unsaturated compound include a polymerizable unsaturated compound represented by the following general formula (DI) and a polymerizable unsaturated compound represented by the following general formula (D-II).
  • R 31 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 32 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • s is the same or different and represents an integer of 0 to 5.
  • R 33 are the same or different and each represents a hydrogen atom or a methyl group.
  • R 34 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 32 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like.
  • a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable.
  • R 34 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable.
  • Examples of the polymerizable unsaturated compound represented by the general formula (DI) include isocyanurate cycloadducts of 1,6-hexamethylene diisocyanate, and hydroxyalkyl (meth) acrylate or caprolactone-modified hydroxyalkyl (meth).
  • the acrylate can be obtained by heating at 60 to 70 ° C. for several hours in the presence of a tin-based catalyst such as di-n-butyltin dilaurate so that the isocyanate group and the hydroxyl group are approximately equal.
  • Examples of the polymerizable unsaturated compound represented by the general formula (D-II) include tris (2-acryloyloxyethyl) isocyanurate, tris (2-acryloyloxypropyl) isocyanurate, and the like.
  • the polymerizable unsaturated compound represented by the general formula (DI) includes the compound represented by the general formula (B-XII) described in the method for producing the reactive particles (B) described above. The same compound.
  • the polymerizable unsaturated compound represented by the general formula (D-II) is the same as the compound represented by the general formula (B-XV) described in the method for producing the reactive particles (B) described above. A compound.
  • the polymerizable unsaturated compound represented by the general formula (DI) or the polymerizable unsaturated compound represented by the general formula (D-II) are used in the present invention. And contained in the polymerizable unsaturated compound (D).
  • hexamethylene disissocyanate trimer having iminooxadiazinedione group and hydroxyalkyl (meth) acrylate are present in the presence of a catalyst, and the isocyanate group and the hydroxyl group are approximately equal.
  • Urethane (meth) acrylates obtained by reacting with each other can also be used.
  • Examples of commercially available hexamethylene disissocyanate trimer having an iminooxadiazinedione group include Desmodur XP2410 (manufactured by Bayer MaterialScience).
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. .
  • the reaction of the hexamethylene disissocyanate trimer and the hydroxyalkyl (meth) acrylate can be carried out at a temperature of, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • the reaction is usually completed in about 2 to 10 hours.
  • a catalyst may be appropriately used.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • a solvent may be appropriately used.
  • the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether.
  • ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate
  • ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane
  • propylene glycol monomethyl ether propylene glycol monomethyl ether
  • propylene glycol monomethyl ether propylene glycol monomethyl ether.
  • glycol ether solvents such as acetate and 3-methoxybutyl acetate
  • aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvent
  • the blending ratio of the polymerizable unsaturated compound (D) in the active energy ray-curable composition of the present invention is not particularly limited. From the viewpoint of scratch resistance, transparency of the coating film, and adhesion, it is preferably 1 to 95 parts by mass, more preferably 10 to 80 parts per 100 parts by mass of the nonvolatile content of the active energy ray-curable composition. Part by mass, particularly preferably 20 to 70 parts by mass.
  • the active energy ray-curable composition of the present invention may be blended with various additives, saturated resins, etc., if necessary, and may be diluted with a solvent if desired.
  • the additive include a sensitizer, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, and a colorant.
  • the saturated resin include saturated acrylic resin, saturated polyester resin, saturated urethane resin, and the like.
  • Examples of the solvent used for dilution include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester solvents such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; ethers such as tetrahydrofuran, dioxane, and dimethoxyethane Solvents: Glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, etc. Is mentioned. These can be used in appropriate combination depending on the purpose such as adjustment of viscosity and adjustment of coating property.
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl
  • the ultraviolet absorber conventionally known ones can be used, and for example, a benzotriazole-based absorbent, a triazine-based absorbent, a salicylic acid derivative-based absorbent, a benzophenone-based absorbent, and the like can be used.
  • benzotriazole-based absorbent examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole, 2- ( 2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2 -(2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-t-amylphenyl) benzotriazole 2- (2′-hydroxy-4′-octoxyphenyl) benzotriazole, 2- ⁇ 2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -te La hydro) -5'-methylphenyl ⁇ benzotri
  • triazine-based absorbent examples include 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-isooctyloxyphenyl) -1,3,5-triazine, 2- [4 ((2-hydroxy-3-dodecyloxypropyl) -oxy) -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [ 4-((2-hydroxy-3-tridecyloxypropyl) -oxy) -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine and the like.
  • salicylic acid derivative-based absorbent examples include phenyl salicylate, p-octylphenyl salicylate, 4-tert-butylphenyl salicylate, and the like.
  • benzophenone-based absorbent examples include 4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone trihydrate, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-octadecyloxy Benzophenone, sodium 2,2'-dihydroxy-4,4'-dimethoxy-5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 5-chloro-2 -Hydroxy Benzophenone, resorcinol monobenzoate, 2,4-dibenzoyl resorcinol, 4,6-dibenz
  • UV absorber examples include known polymerizable UV absorbers such as 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole, 2,2′-dihydroxy-4 (3- Methacryloxy-2-hydroxypropoxy) benzophenone or the like can also be used.
  • known polymerizable UV absorbers such as 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole, 2,2′-dihydroxy-4 (3- Methacryloxy-2-hydroxypropoxy) benzophenone or the like can also be used.
  • UV absorbers examples include TINUVIN900, TINUVIN928, TINUVIN348-2, TINUVIN479, TINUVIN405 (trade name, manufactured by Ciba Specialty Chemicals), and RUVA93 (trade name, manufactured by Otsuka Chemical Co., Ltd.).
  • the amount of the ultraviolet absorber used is not particularly limited, but is 0.1 to 10 parts by weight, preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of the nonvolatile content of the active energy ray-curable composition. It is preferable that it is in the range of parts by mass.
  • the light stabilizer is used as a radical chain inhibitor that traps active radical species generated during the deterioration process of the film, and includes, for example, a hindered amine light stabilizer.
  • a hindered piperidine compound may be mentioned as a light stabilizer exhibiting an excellent light stabilizing action.
  • the hindered piperidine compound include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis ( N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, 4-benzoyloxy-2,2 ′, 6,6′-tetramethylpiperidine, bis (1,2,2,6, Monomer type such as 6-pentamethyl-4-piperidyl) ⁇ [3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl ⁇ butyl malonate; poly ⁇ [6- (1,1 , 3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-te
  • TINUVIN123 TINUVIN152
  • TINUVIN292 Ciba Specialty Chemicals, trade name
  • HOSTAVIN 3058 Ciba Specialty Chemicals, trade name
  • ADK STAB LA-82 trade name, manufactured by ADEKA Corporation
  • the amount of the light stabilizer to be used is not particularly limited, but is 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the nonvolatile content of the active energy ray-curable composition. It is preferable that it is in the range of parts by mass.
  • the nonvolatile content of the active energy ray-curable composition of the present invention is not particularly limited.
  • the content is preferably 20 to 100% by mass, and more preferably 25 to 70% by mass. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
  • the method for applying the active energy ray-curable composition of the present invention to the surface of an object to be coated is not particularly limited.
  • roller coating, roll coater coating, spin coater coating, curtain roll coater coating, slit coater coating, Examples include spray coating, electrostatic coating, dip coating, silk printing, and spin coating.
  • metal materials such as iron, aluminum, brass, copper, stainless steel, tinplate, galvanized steel, alloyed zinc (Zn—Al, Zn—Ni, Zn—Fe, etc.) plated steel; polyethylene resin, Polypropylene resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin, and various plastic materials such as FRP; glass, cement, concrete, etc. Inorganic materials; wood; fiber materials (paper, cloth, etc.) and the like.
  • a primer layer, an electrodeposition coating layer, an intermediate coating layer, a top coating layer, etc. are formed in advance by applying a primer coating, a cationic electrodeposition coating, an intermediate coating, a top coating, etc. May be.
  • drying can be performed as necessary.
  • the drying is not particularly limited as long as the solvent that is added can be removed.
  • the drying can be performed at a drying temperature of 20 to 100 ° C. for a drying time of 3 to 20 minutes.
  • the film thickness of the coating is appropriately set according to the purpose.
  • the film thickness is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the film thickness is at least the lower limit of these ranges, the coating film is excellent in smoothness and appearance.
  • the curability and crack resistance of the coating film are excellent.
  • an active energy ray-curable composition is applied to the surface of an object to be coated and dried as necessary, and then irradiated with active energy rays to form a cured coating film.
  • the irradiation source and irradiation amount of active energy ray irradiation are not particularly limited.
  • the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like.
  • the irradiation dose is, for example, preferably in the range of 5 to 20,000 J / m 2 , more preferably 100 to 10,000 J / m 2 .
  • the active energy ray irradiation may be performed in an air atmosphere or an inert gas atmosphere.
  • the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an inert gas atmosphere is preferable from the viewpoint of curability.
  • the coating film may be heated as necessary.
  • the heating may improve the hardness or adhesion of the coating film.
  • the heating can usually be performed at an atmospheric temperature of 150 to 250 ° C. for 1 to 30 minutes.
  • Part and % indicate “part by mass” and “% by mass” unless otherwise specified.
  • structural analysis and measurement in this example were performed by the following analyzer and measurement method in addition to the analyzer described in this specification.
  • Glycidyl POSS cage mixture used as a raw material was a 3-glycidoxypropyl group-containing cage-type polysilsesquioxane having a weight average molecular weight of 1,800 and an epoxy equivalent of 168 g / eq.
  • the weight average molecular weight of the product (A1) was 2,700.
  • the weight average molecular weight of the product (A3) was 2,500.
  • the compound was a silsesquioxane compound having a weight average molecular weight of 2,500.
  • the weight average molecular weight of the product (A4) was 1,500.
  • the weight average molecular weight of the product (A5) was 3,000.
  • Glycidyl POSS cage mixture used as a raw material was a 3-glycidoxypropyl group-containing cage-type polysilsesquioxane having a weight average molecular weight of 1,800 and an epoxy equivalent of 168 g / eq.
  • the NCO value of the product (A6) was 0 mg NCO / g.
  • the weight average molecular weight of the product (A6) was 5,000.
  • NCO value 0 mgNCO / g
  • amine value 0 mgKOH / g.
  • the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B1) was 4.0. It was.
  • As a result of 29 Si-NMR analysis of the product (B1) hydrolysis of the ethoxysilyl group in the product (B1) was not confirmed.
  • the product (B1) is a mixture of a compound represented by the following formula (PV) and a compound represented by the following formula (P-VI),
  • the solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was.
  • product (B2) The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B2).
  • the solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was.
  • product (B9) The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B9).
  • NCO value 0 mgNCO / g
  • amine value 0 mgKOH / g.
  • the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B10) was 4.0. It was.
  • As a result of 29 Si-NMR analysis of the product (B10) hydrolysis of the ethoxysilyl group in the product (B10) was not confirmed.
  • the product (B10) is a mixture of a compound represented by the following formula (P-VII) and a compound represented by the following formula (P-VIII),
  • the solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and the compound represented by the formula (P-VIII) having a nonvolatile content of 40%. It was.
  • product (B11) The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VIII) is referred to as product (B11).
  • NCO value 0 mgNCO / g
  • amine value 0 mgKOH / g.
  • the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B12) was 4.0. It was.
  • the product (B12) is a mixture of a compound represented by the following formula (P-IX) and a compound represented by the following formula (PX).
  • the solvent was replaced by performing an azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixture of reactive particles and a compound represented by the formula (PX) having a nonvolatile content of 40%. It was.
  • the mixture of the reactive particles obtained in this production example and the compound represented by the formula (PX) is referred to as a product (B13).
  • the obtained product (B14) had an NCO value of 0 mg NCO / g.
  • NCO value 0 mg NCO / g.
  • the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B14) was 7.7. It was. Further, as a result of 29 Si-NMR analysis of the product (B14), hydrolysis of the ethoxysilyl group in the product (B14) was not confirmed.
  • the product (B14) is a mixture of a compound represented by the following formula (P-XI) and a compound represented by the following formula (P-XII).
  • the solvent was replaced by performing an azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixture of reactive particles and a compound represented by the formula (P-XII) having a nonvolatile content of 40%. It was.
  • the mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-XII) is referred to as a product (B15).
  • the operation of adding propylene glycol monomethyl ether and performing azeotropic distillation was performed several times to replace the solvent, thereby obtaining a 40% non-volatile dispersion of reactive particles.
  • the reactive particle obtained by this manufacture example is called a product (B16).
  • the solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was.
  • product (B17) The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B17).
  • the product (D1) obtained had an NCO value of 0 mg NCO / g. From the above results, the product (D1) was a compound represented by the following formula (P-XIII).
  • Example 1 100.0 parts of a 50% non-volatile solution of the product (A1) obtained in Production Example 1, 75.0 parts of a 40% non-volatile solution of the product (B2) obtained in Production Example 6, Aronix M-315 (Trade name, manufactured by Toagosei Co., Ltd., isocyanuric acid EO-modified di- and triacrylate) 20.0 parts, 1-hydroxy-cyclohexyl-phenyl-ketone (photopolymerization initiator) 3.0 parts, and 2,4,6- 0.5 parts of trimethylbenzoyl-diphenyl-phosphine oxide (photopolymerization initiator) was added, diluted with ethyl acetate to a non-volatile content of 30%, and stirred, and then the active energy ray-curable composition No.
  • the active energy ray-curable composition was applied on an ABS substrate (acrylonitrile-butadiene-styrene terpolymer resin substrate) degreased with isopropanol using an applicator at a dry film thickness of 10 ⁇ m, at 80 ° C. After removing the solvent by drying for 10 minutes, a cured coating film is formed by irradiating ultraviolet rays (peak top wavelength 365 nm) with a high pressure mercury lamp (80 W / cm) at a dose of 20,000 J / m 2 in a nitrogen atmosphere. A test plate was obtained. The obtained test plate was subjected to the following evaluation test. The evaluation results are shown in Table 1.
  • Example 2 to 24, Comparative Examples 1 to 5 Example 1
  • the active energy rays of Examples 2 to 24 and Comparative Examples 1 to 5 were the same as Example 1, except that the respective components and blending amounts were changed to the respective components and blending amounts described in Table 1.
  • Curable composition No. 2 to 29 were produced.
  • Example 25 to 34 In Example 1, the active energy ray-curable composition Nos. 25 to 34 of Examples 25 to 34 were used in the same manner as in Example 1 except that the respective components and blending amounts were changed to the respective components and blending amounts shown in Table 2. 30-39 were produced.
  • the active energy ray-curable composition was air spray-coated on a polycarbonate resin plate degreased with isopropanol so that the dry film thickness was 10 ⁇ m, dried at 80 ° C. for 10 minutes to remove the solvent, and then subjected to ultrahigh pressure.
  • a cured coating film was formed by irradiating active energy rays at a dose of 3,000 mJ / cm 2 using a mercury lamp to obtain each test plate.
  • the obtained test plate was subjected to the following evaluation test. The evaluation results are shown in Table 2.
  • KAYARAD R-604 trade name, manufactured by Nippon Kayaku Co., Ltd., 5-ethyl-2- (2-hydroxy-1,1-dimethylethyl) -5- (hydroxymethyl) -1,3-dioxane Diacrylate.
  • TINUVIN 384-2 trade name, manufactured by Ciba Specialty Chemicals, Inc.
  • UV absorber (Note 5)
  • RUVA93 trade name, manufactured by Otsuka Chemical Co., Ltd.
  • UV absorber (Note 6)
  • TINUVIN 479 trade name, Ciba Specialty Chemicals Manufactured
  • UV absorber (Note 7)
  • TINUVIN123 trade name, manufactured by Ciba Specialty Chemicals, Inc.
  • light stabilizer (Note 8)
  • HOSTAVIN 3058 trade name, manufactured by Clariant, Inc.
  • ADK STAB LA82 trade name, stock A light stabilizer made by the company ADEKA.
  • ⁇ Adhesiveness> Make a cut line with a cutter to reach the object to be coated, make 100 squares with a size of 2 mm x 2 mm, stick adhesive cellophane tape (registered trademark) on the surface, and peel it off rapidly at 20 ° C The number of the remaining coatings after the check was examined and evaluated according to the following criteria.
  • ⁇ Abrasion resistance> In accordance with ASTM D-1044, a wear test was conducted under conditions of a wear wheel CS-10F, a load of 500 g, and a rotation speed of 500 cycles. After the test, the sample was washed with a neutral detergent, and the haze value was measured with a haze meter. [Haze value after test-haze value before test] was calculated and evaluated. The smaller the value, the better the scratch resistance.
  • A No abnormality, or slight swelling, discoloration, gloss change, peeling, etc. are recognized, but there is no practical problem.
  • test plate was prepared in the same manner as the test plate preparation method described above except that the article to be coated was changed from the ABS substrate to the glass plate. The appearance of the prepared test plate was visually observed and evaluated according to the following criteria.
  • Adhesiveness is AA, A or B, scratch resistance is 7 or less, weather resistance is A or B, transparency is A or B, and adhesiveness, scratch resistance and weather resistance At least one of which is B, C: At least one of adhesion, scratch resistance and weather resistance is C or cannot be evaluated, or the scratch resistance exceeds 7.

Abstract

Disclosed is an active energy ray-curable composition which is capable of providing a cured coating film that has high abrasion resistance and excellent transparency. Specifically disclosed is an active energy ray-curable composition which contains (A) a silsesquioxane compound and (B) reactive particles. The active energy ray-curable composition is characterized in that: the silsesquioxane compound (A) has organic groups that are directly bonded to silicon atoms in the silsesquioxane compound (A), and at least one of the organic groups has both (a-1) at least one member selected from the group consisting of a secondary hydroxyl group, an urethane bond and a urea bond and (a-2) at least one (meth)acryloyloxy group; and the reactive particles (B) are obtained by having (b-1) fine silica particles and (b-2) a hydrolyzable silane, which has a (meth)acryloyloxy group in each molecule, react with each other.

Description

活性エネルギー線硬化性組成物、及び塗装物品Active energy ray-curable composition and coated article
 本発明は、活性エネルギー線硬化性組成物、及び塗装物品に関する。 The present invention relates to an active energy ray-curable composition and a coated article.
 ポリメチルメタクリレート樹脂、ポリスチレン樹脂、ポリカーボネート樹脂等の合成樹脂は、耐衝撃性、透明性に優れ、軽量であり、加工が容易であること等から、ガラスに代わる材料として、建物の採光材、車両の窓、ランプレンズ、計器カバー等に用いられている。しかしながら、合成樹脂は、ガラスと比較して耐擦傷性、耐薬品性、耐候性等の表面特性に劣ることから、合成樹脂の表面特性を改良することが行われている。合成樹脂の表面特性を改良する方法としてポリオルガノシロキサン系、メラミン系等の熱硬化性塗料組成物を塗装する方法及び多官能アクリレート系の活性エネルギー線硬化性組成物を塗装する方法が提案されている。 Synthetic resins such as polymethyl methacrylate resin, polystyrene resin, and polycarbonate resin are excellent in impact resistance, transparency, light weight, and easy to process. Used in windows, lamp lenses, and instrument covers. However, since the synthetic resin is inferior in surface properties such as scratch resistance, chemical resistance, and weather resistance as compared with glass, the surface properties of the synthetic resin are improved. As methods for improving the surface properties of synthetic resins, methods for applying polyorganosiloxane-based and melamine-based thermosetting coating compositions and methods for applying polyfunctional acrylate-based active energy ray-curable compositions have been proposed. Yes.
 これら方法に関連して、特許文献1及び2には、モノ又はポリペンタエリスリトールのポリ(メタ)アクリレート、1分子内に少なくとも2個の(メタ)アクリロイル基を有するウレタン(メタ)アクリレート、及びポリ[(メタ)アクリロイルオキシアルキル](イソ)シアヌレートを特定の割合で配合して得られる塗料組成物に関する発明が開示されている。 In connection with these methods, Patent Documents 1 and 2 disclose poly (meth) acrylates of mono- or polypentaerythritol, urethane (meth) acrylates having at least two (meth) acryloyl groups in the molecule, and poly (meth) acrylates. An invention relating to a coating composition obtained by blending [(meth) acryloyloxyalkyl] (iso) cyanurate in a specific ratio is disclosed.
 近年、合成樹脂の屋外での用途が広がるに従い、合成樹脂の表面特性のさらなる向上が要求されており、特に高い耐擦傷性が要求されている。しかし、特許文献1及び2に記載の発明は高い耐擦傷性の要求を満足していない。 In recent years, as the use of synthetic resins outdoors increases, further improvements in the surface properties of synthetic resins are required, and particularly high scratch resistance is required. However, the inventions described in Patent Documents 1 and 2 do not satisfy the requirement for high scratch resistance.
 一方、塗料組成物の耐擦傷性を向上させる方法として、塗料組成物中に無機材料や無機-有機ハイブリッド材料を配合する方法がある。例えば、特許文献3には、コロイダルシリカ微粒子をラジカル重合性シラン化合物で化学修飾した反応性粒子、ポリ[(メタ)アクリロイルオキシアルキル]イソシアヌレート、1分子中に少なくとも2個の(メタ)アクリロイルオキシ基及び脂環式骨格を有するウレタン(メタ)アクリレート、並びに光重合開始剤を含有する耐磨耗性被覆形成組成物に関して開示されている。この耐磨耗性被覆形成組成物を用いて得られる塗膜の耐擦傷性は近年要求される高い耐擦傷性の要求に対してまだ十分ではない。また、この発明において、耐擦傷性を高くすべく反応性粒子の配合量を多くしようとすると、得られる硬化塗膜の透明性が低下する。 On the other hand, as a method for improving the scratch resistance of the coating composition, there is a method of blending an inorganic material or an inorganic-organic hybrid material in the coating composition. For example, Patent Document 3 discloses reactive particles obtained by chemically modifying colloidal silica fine particles with a radically polymerizable silane compound, poly [(meth) acryloyloxyalkyl] isocyanurate, and at least two (meth) acryloyloxy molecules per molecule. Disclosed is a wear-resistant coating-forming composition containing a urethane (meth) acrylate having a group and an alicyclic skeleton, and a photopolymerization initiator. The scratch resistance of the coating film obtained using this abrasion-resistant coating forming composition is not yet sufficient for the high scratch resistance requirement recently required. Moreover, in this invention, when it is going to increase the compounding quantity of the reactive particle so that abrasion resistance may be made high, the transparency of the cured coating film obtained will fall.
 また、特許文献4には特定の酸化物粒子と、重合性不飽和基及び加水分解性シリル基を有する有機化合物とを結合させてなる反応性粒子、2以上の重合性不飽和基を有する有機化合物、及び両末端反応性ポリジメチルシロキサン化合物を含有する硬化性組成物に関して開示されている。この硬化性組成物を用いて得られる塗膜の耐擦傷性は近年要求される高い耐擦傷性の要求に対してまだ十分ではない。また、この硬化性組成物において、両末端反応性ポリシロキサン化合物は硬化塗膜に滑り性を与える成分であり、両末端反応性ポリシロキサン化合物の配合量を多くしても耐擦傷性は高くはならない一方、両末端反応性ポリシロキサン化合物の配合量を多くすると得られる硬化塗膜の透明性が低下する。 Patent Document 4 discloses reactive particles obtained by bonding specific oxide particles to an organic compound having a polymerizable unsaturated group and a hydrolyzable silyl group, and an organic compound having two or more polymerizable unsaturated groups. Disclosed is a curable composition containing a compound and a both-end reactive polydimethylsiloxane compound. The scratch resistance of the coating film obtained by using this curable composition is not yet sufficient for the high scratch resistance requirement recently required. In this curable composition, the both-end reactive polysiloxane compound is a component that imparts slipperiness to the cured coating film, and the scratch resistance is high even when the blending amount of the both-end reactive polysiloxane compound is increased. On the other hand, when the blending amount of the both-end reactive polysiloxane compound is increased, the transparency of the resulting cured coating film is lowered.
特開平5-230397号公報Japanese Patent Laid-Open No. 5-230397 特開平6-128502号公報JP-A-6-128502 国際公開97/011129International Publication 97/011129 特開2005-36018号公報Japanese Patent Laid-Open No. 2005-36018
 本発明は上記事情に鑑みてなされたものであり、本発明の目的は、高い耐擦傷性を有しかつ透明性に優れる硬化塗膜を得ることができる活性エネルギー線硬化性組成物を得ることである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain an active energy ray-curable composition that can obtain a cured coating film having high scratch resistance and excellent transparency. It is.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定のシルセスキオキサン化合物及び特定の反応性粒子を含有する活性エネルギー線硬化性組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used the above-mentioned problems by using an active energy ray-curable composition containing a specific silsesquioxane compound and specific reactive particles. As a result, the present invention has been completed.
 すなわち本発明は、
 1.シルセスキオキサン化合物(A)及び
反応性粒子(B)
を含有する活性エネルギー線硬化性組成物であって、
 該シルセスキオキサン化合物(A)は、該シルセスキオキサン化合物(A)中のケイ素原子に直接に結合した有機基を有し、
 該有機基の少なくとも1つが、(a-1)2級水酸基、ウレタン結合及びウレア結合よりなる群から選ばれる少なくとも1つと(a-2)少なくとも1つの(メタ)アクリロイルオキシ基との両者を有しており、かつ
 該反応性粒子(B)が、シリカ微粒子(b-1)と、分子内に(メタ)アクリロイルオキシ基を有する加水分解性シラン(b-2)とを反応させて得られる、
活性エネルギー線硬化性組成物、
 2.光重合開始剤(C)を含有する1項に記載の活性エネルギー線硬化性組成物、
 3.前記(A)成分及び(B)成分以外の重合性不飽和化合物(D)を含有する1又は2項に記載の活性エネルギー線硬化性組成物、
 4.1~3項のいずれか1項に記載の活性エネルギー線硬化性組成物を被塗物上に塗装して得られる塗装物品、
に関する。
That is, the present invention
1. Silsesquioxane compound (A) and reactive particles (B)
An active energy ray-curable composition containing
The silsesquioxane compound (A) has an organic group directly bonded to a silicon atom in the silsesquioxane compound (A),
At least one of the organic groups has both (a-1) at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond and a urea bond, and (a-2) at least one (meth) acryloyloxy group. And the reactive particles (B) are obtained by reacting silica fine particles (b-1) with hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule. ,
Active energy ray-curable composition,
2. The active energy ray-curable composition according to item 1, containing a photopolymerization initiator (C),
3. The active energy ray-curable composition according to 1 or 2, comprising a polymerizable unsaturated compound (D) other than the component (A) and the component (B),
4. A coated article obtained by coating the active energy ray-curable composition according to any one of items 1 to 3 on an object to be coated,
About.
 本発明の活性エネルギー線硬化性組成物により、高い耐擦傷性を有しかつ透明性に優れる硬化塗膜を得ることができる。 The cured film with high scratch resistance and excellent transparency can be obtained by the active energy ray-curable composition of the present invention.
 本発明の活性エネルギー線硬化性組成物は、該シルセスキオキサン化合物(A)であって、
 該シルセスキオキサン化合物(A)が、ケイ素原子に直接に結合した有機基を有し、かつ
 該ケイ素原子に直接に結合した有機基の少なくとも1つが、2級水酸基、ウレタン結合及びウレア結合よりなる群から選ばれる少なくとも1つと少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する、
シルセスキオキサン化合物(A)[以下、「(A)成分」又は「(A)成分であるシルセスキオキサン化合物」と略すことがある。]、並びに
 シリカ微粒子(b-1)と、分子内に(メタ)アクリロイルオキシ基を有する加水分解性シラン(b-2)とを反応させて得られる反応性粒子(B)[以下、「(B)成分」又は「反応性粒子(B)」と略すことがある。]
を含有する。
The active energy ray-curable composition of the present invention is the silsesquioxane compound (A),
The silsesquioxane compound (A) has an organic group directly bonded to a silicon atom, and at least one of the organic groups directly bonded to the silicon atom is a secondary hydroxyl group, a urethane bond or a urea bond. Having at least one selected from the group consisting of at least one (meth) acryloyloxy group,
Silsesquioxane compound (A) [hereinafter referred to as “component (A)” or “silsesquioxane compound as component (A)”. ], And reactive particles (B) obtained by reacting silica fine particles (b-1) with hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule [hereinafter referred to as “( B) may be abbreviated as “component” or “reactive particle (B)”. ]
Containing.
 (A)成分であるシルセスキオキサン化合物
 「シルセスキオキサン化合物」とは、基本構成単位がT単位であるポリシロキサンである。
The silsesquioxane compoundsilsesquioxane compound ” as the component (A) is a polysiloxane whose basic structural unit is a T unit.
 本明細書において「シルセスキオキサン化合物」は、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物のみを意味するのではなく、Si-OH基が残存したラダー構造、不完全籠型構造、ランダム縮合体のシルセスキオキサン化合物をも含むことができる。 In the present specification, the “silsesquioxane compound” does not mean only a silsesquioxane compound having a structure in which all of the Si—OH group (hydroxysilyl group) is hydrolytically condensed, but the Si—OH group remains. It is also possible to include a silsesquioxane compound having a ladder structure, an incomplete cage structure, or a random condensate.
 (A)成分であるシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、(A)成分であるシルセスキオキサン化合物中に80質量%以上、好ましくは90質量%以上、より好ましくは100質量%であることが液安定性の点から好ましい。 In the silsesquioxane compound as the component (A), the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is 80 mass% in the silsesquioxane compound as the component (A). % Or more, preferably 90% by mass or more, and more preferably 100% by mass from the viewpoint of liquid stability.
 (A)成分であるシルセスキオキサン化合物は、該シルセスキオキサン化合物(A)中のケイ素原子に直接に結合した有機基を有する。典型的には、本発明において、シルセスキオキサン化合物(A)は、ケイ素原子の全て又は殆ど全て(例えば、(A)成分における全ケイ素原子に対して、90~100モル%)が少なくとも1つ(通常1つ)の有機基と結合している。該ケイ素原子に直接に結合した有機基の少なくとも1つが、(a-1)2級水酸基、ウレタン結合及びウレア結合よりなる群から選ばれる少なくとも1つと(a-2)少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する。前記有機基の個数のうち、上記(a-1)及び(a-2)を有する有機基の個数の割合は、例えば、90~100%でも、当該有機基の本質的に全数でも、当該有機基の全数でもよい。(A)成分であるシルセスキオキサン化合物は、該有機基を有することにより、前記反応性粒子(B)及びさまざまな重合性不飽和化合物との相溶性に優れ、かつ光重合性開始剤の存在下での活性エネルギー線照射により硬化する。そのため、本発明の活性エネルギー線硬化性組成物により得られる硬化塗膜は透明性及び耐擦傷性に優れる。(A)成分であるシルセスキオキサン化合物が前記反応性粒子(B)等のさまざまな重合性不飽和化合物との相溶性に優れるのは、(A)成分であるシルセスキオキサン化合物が2級水酸基、ウレタン結合及びウレア結合よりなる群から選ばれる少なくとも1つの極性を有する官能基又は結合を有するためと推測される。 The silsesquioxane compound as the component (A) has an organic group directly bonded to the silicon atom in the silsesquioxane compound (A). Typically, in the present invention, the silsesquioxane compound (A) contains at least 1 or all of silicon atoms (for example, 90 to 100 mol% with respect to all silicon atoms in component (A)). One (usually one) organic group. At least one of the organic groups directly bonded to the silicon atom is (a-1) at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond and a urea bond, and (a-2) at least one (meth) acryloyl. It has both an oxy group. The ratio of the number of organic groups having the above (a-1) and (a-2) among the number of the organic groups is, for example, 90 to 100% or the total number of the organic groups. The total number of groups may be sufficient. The silsesquioxane compound as the component (A) is excellent in compatibility with the reactive particles (B) and various polymerizable unsaturated compounds by having the organic group, and is a photopolymerizable initiator. It is cured by irradiation with active energy rays in the presence. Therefore, the cured coating film obtained by the active energy ray-curable composition of the present invention is excellent in transparency and scratch resistance. The silsesquioxane compound as the component (A) is excellent in compatibility with various polymerizable unsaturated compounds such as the reactive particles (B) because the silsesquioxane compound as the component (A) is 2 This is presumed to have a functional group or bond having at least one polarity selected from the group consisting of a primary hydroxyl group, a urethane bond and a urea bond.
 なお、本明細書において、「(メタ)アクリロイルオキシ基」は、「アクリロイルオキシ基又はメタクリロイルオキシ基」を意味する。また、「(メタ)アクリロイル基」は、「アクリロイル基又はメタクリロイル基」を意味する。また、「(メタ)アクリレート」は、「アクリレート又はメタクリレート」を意味する。また、「(メタ)アクリロイルオキシ」は、「アクリロイルオキシ又はメタクリロイルオキシ」を意味する。また、「(メタ)アクリル酸」は、「アクリル酸又はメタクリル酸」を意味する。また、「(メタ)アクリルアミド」は、「アクリルアミド又はメタクリルアミド」を意味する。 In this specification, “(meth) acryloyloxy group” means “acryloyloxy group or methacryloyloxy group”. Further, “(meth) acryloyl group” means “acryloyl group or methacryloyl group”. “(Meth) acrylate” means “acrylate or methacrylate”. Further, “(meth) acryloyloxy” means “acryloyloxy or methacryloyloxy”. “(Meth) acrylic acid” means “acrylic acid or methacrylic acid”. “(Meth) acrylamide” means “acrylamide or methacrylamide”.
 本明細書において、2級水酸基とは、当該水酸基が結合している炭素原子に、2つの炭素原子が結合しているような水酸基をいう。 In the present specification, the secondary hydroxyl group means a hydroxyl group in which two carbon atoms are bonded to the carbon atom to which the hydroxyl group is bonded.
 (A)成分であるシルセスキオキサン化合物としては、例えば、以下の(A1)、(A2)で表されるシルセスキオキサン化合物が挙げられる。 Examples of the silsesquioxane compound as the component (A) include the silsesquioxane compounds represented by the following (A1) and (A2).
 (A1):ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが、少なくとも1つの2級水酸基と少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する有機基であるシルセスキオキサン化合物[以下、「(A1)で表されるシルセスキオキサン化合物」と略すことがある。]。 (A1): a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is at least one secondary hydroxyl group and at least one ( A silsesquioxane compound which is an organic group having both a (meth) acryloyloxy group [hereinafter, abbreviated as “silsesquioxane compound represented by (A1)”. ].
 (A2):ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが、少なくとも1つのウレタン結合及び/又はウレア結合と少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する有機基であるシルセスキオキサン化合物[以下、「(A2)で表されるシルセスキオキサン化合物」と略すことがある。]。 (A2): a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is at least one urethane bond and / or urea bond A silsesquioxane compound which is an organic group having both of at least one (meth) acryloyloxy group [hereinafter, abbreviated as “silsesquioxane compound represented by (A2)”. ].
 (A)成分であるシルセスキオキサン化合物としては、(A2)で表されるシルセスキオキサン化合物が好ましい。(A2)で表されるシルセスキオキサン化合物は前記反応性粒子(B)及びさまざまな重合性不飽和化合物との相溶性が特に優れることから、(A2)で表されるシルセスキオキサン化合物を用いた本発明の活性エネルギー線硬化性組成物により得られる硬化塗膜は透明性が特に優れる。 As the silsesquioxane compound which is the component (A), a silsesquioxane compound represented by (A2) is preferable. Since the silsesquioxane compound represented by (A2) is particularly excellent in compatibility with the reactive particles (B) and various polymerizable unsaturated compounds, the silsesquioxane compound represented by (A2) The cured coating film obtained from the active energy ray-curable composition of the present invention using the above has particularly excellent transparency.
 (A2)で表されるシルセスキオキサン化合物としては、具体的には、下記(A21)~(A23)で表されるシルセスキオキサン化合物が挙げられる。 Specific examples of the silsesquioxane compound represented by (A2) include silsesquioxane compounds represented by the following (A21) to (A23).
 (A21):ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが、少なくとも1つのウレタン結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基であるシルセスキオキサン化合物[以下、「(A21)で表されるシルセスキオキサン化合物」と略すことがある。]。 (A21): a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is at least one urethane bond and one (meth) A silsesquioxane compound which is an organic group having both an acryloyloxy group and abbreviated as “silsesquioxane compound represented by (A21)”. ].
 (A22):ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが、少なくとも1つのウレア結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基であるシルセスキオキサン化合物[以下、「(A22)で表されるシルセスキオキサン化合物」と略すことがある。]。 (A22): a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom has at least one urea bond and one (meth) A silsesquioxane compound which is an organic group having both an acryloyloxy group [hereinafter, abbreviated as “silsesquioxane compound represented by (A22)”. ].
 (A23):ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つが、少なくとも1つのウレタン結合及び/又はウレア結合と2つ以上の(メタ)アクリロイルオキシ基との両者を有する有機基であるシルセスキオキサン化合物[以下、「(A23)で表されるシルセスキオキサン化合物」と略すことがある。]。 (A23): a silsesquioxane compound having an organic group directly bonded to a silicon atom, wherein at least one of the organic groups directly bonded to the silicon atom is at least one urethane bond and / or urea bond. A silsesquioxane compound which is an organic group having both of two or more (meth) acryloyloxy groups [hereinafter, abbreviated as “silsesquioxane compound represented by (A23)”. ].
 続いて、前記(A1)で表されるシルセスキオキサン化合物、(A21)で表されるシルセスキオキサン化合物、(A22)で表されるシルセスキオキサン化合物及び(A23)で表されるシルセスキオキサン化合物について詳細に説明する。 Subsequently, the silsesquioxane compound represented by (A1), the silsesquioxane compound represented by (A21), the silsesquioxane compound represented by (A22), and (A23). The silsesquioxane compound will be described in detail.
 まず、(A1)で表されるシルセスキオキサン化合物について説明する。前記(A1)で表されるシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有する。そして、該ケイ素原子に直接に結合した有機基の少なくとも1つは、少なくとも1つの2級水酸基と少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する有機基である。 First, the silsesquioxane compound represented by (A1) will be described. The silsesquioxane compound represented by the above (A1) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one secondary hydroxyl group and at least one (meth) acryloyloxy group.
 少なくとも1つの2級水酸基と少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する有機基としては、例えば、下記一般式(A1-I)で表される有機基及び下記一般式(A1-II)で表される有機基が挙げられる。 Examples of the organic group having at least one secondary hydroxyl group and at least one (meth) acryloyloxy group include an organic group represented by the following general formula (A1-I) and the following general formula (A1-II). ). An organic group represented by
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式(A1-I)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。式(A1-II)中、R及びRは前記と同じである。]。 [In the formula (A1-I), R 1 represents a hydrogen atom or a methyl group. R 2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. In formula (A1-II), R 1 and R 2 are the same as described above. ].
 前記Rとしては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基等であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 2 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group. A cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group; Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has a high scratch resistance and high polarity. It is preferable from the viewpoint that the compatibility with the polymerizable unsaturated compound is more excellent.
 前記一般式(A1-I)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、かつRが1,3-プロピレン基である有機基が好ましい。 The organic group represented by the general formula (A1-I) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 1 is a hydrogen atom and R 2 is a 1,3-propylene group is preferable.
 前記一般式(A1-II)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、かつRがエチレン基である有機基が好ましい。 The organic group represented by the general formula (A1-II) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 1 is a hydrogen atom and R 2 is an ethylene group is preferable.
 次に、(A21)で表されるシルセスキオキサン化合物について説明する。前記(A21)で表されるシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有する。そして、該ケイ素原子に直接に結合した有機基の少なくとも1つは、少なくとも1つのウレタン結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基である。 Next, the silsesquioxane compound represented by (A21) will be described. The silsesquioxane compound represented by the above (A21) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one urethane bond and one (meth) acryloyloxy group.
 少なくとも1つのウレタン結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基としては、例えば、下記一般式(A21-I)で表される有機基等が挙げられる。 Examples of the organic group having both at least one urethane bond and one (meth) acryloyloxy group include an organic group represented by the following general formula (A21-I).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(A21-I)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Rは炭素数1~10の2価の炭化水素基を示す。X[In the formula (A21-I), R 3 represents a hydrogen atom or a methyl group. R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. R 5 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. X 1 is
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは前記と同じである。mは0~9の整数を示す。)、 (Wherein R 4 is the same as defined above, m represents an integer of 0 to 9),
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)又は (Wherein R 6 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms) or
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Rは前記と同じである。)を示す。]。 (Wherein R 6 is the same as defined above). ].
 ここで、(A21)で表されるシルセスキオキサン化合物は、上記一般式(A21-I)で表される有機基のうち、一種類を有していても、複数種類の有機基を有していてもよい。 Here, the silsesquioxane compound represented by (A21) has one or more types of organic groups among the organic groups represented by the general formula (A21-I). You may do it.
 いいかえると、(A21)で表されるシルセスキオキサン化合物としては、例えば、前記少なくとも1つのウレタン結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基が、下記一般式(A21-II)~(A21-IV)で表される有機基からなる群より選択される少なくとも一種であるシルセスキオキサン化合物が挙げられる。 In other words, as the silsesquioxane compound represented by (A21), for example, an organic group having both the at least one urethane bond and one (meth) acryloyloxy group is represented by the following general formula (A21- Examples thereof include silsesquioxane compounds which are at least one selected from the group consisting of organic groups represented by II) to (A21-IV).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(A21-II)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Rは炭素数1~10の2価の炭化水素基を示す。mは0~9の整数を示す。] [In the formula (A21-II), R 3 represents a hydrogen atom or a methyl group. R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. R 5 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. m represents an integer of 0 to 9. ]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式(A21-III)中、R、R、R及びRは前記と同じである。] [In the formula (A21-III), R 3 , R 4 , R 5 and R 6 are the same as defined above. ]
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(A21-IV)中、R、R、R及びRは前記と同じである。]。 [In the formula (A21-IV), R 3 , R 4 , R 5 and R 6 are the same as defined above. ].
 前記Rとしては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6の2価の炭化水素基、特にエチレン基、1,2-プロピレン基、1,4-ブチレン基であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 4 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group. A cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group; Among them, a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group, a 1,2-propylene group, or a 1,4-butylene group, is a polymerizable unsaturated compound having high scratch resistance and high polarity. It is preferable from the viewpoint of more excellent compatibility.
 前記Rとしては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 5 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group. A cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group; Among these, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
 前記mとしては、0~9の整数であれば特に限定されるものではない。mとしては、好ましくは0~5の整数、さらに好ましくは0~3の整数、特に好ましくは0又は1である。 The m is not particularly limited as long as it is an integer of 0 to 9. m is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and particularly preferably 0 or 1.
 前記Rとしては、置換又は非置換の炭素数1~6の1価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等の直鎖状又は分岐状のアルキル基といった非環状脂肪族1価炭化水素基又は環状脂肪族1価炭化水素基;トリフルオロメチル基、3,3,3-トリフルオロ-n-プロピル基等の含フッ素アルキル基等が挙げられる。特に、極性の高い重合性不飽和化合物との相溶性がより優れる点からメチル基が好ましい。 R 6 is not particularly limited as long as it is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, isopentyl group, neopentyl group, cyclopentyl A non-cyclic aliphatic monovalent hydrocarbon group or a cyclic aliphatic monovalent hydrocarbon group such as a straight chain or branched alkyl group such as a group, n-hexyl group, isohexyl group, cyclohexyl group; trifluoromethyl group, 3, And fluorine-containing alkyl groups such as 3,3-trifluoro-n-propyl group. In particular, a methyl group is preferable from the viewpoint of better compatibility with a highly polar polymerizable unsaturated compound.
 前記一般式(A21-II)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基又は1,4-ブチレン基であり、Rがエチレン基又は1,3-プロピレン基であり、かつmが0である有機基が好ましい。 The organic group represented by the general formula (A21-II) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. In view of this, an organic group in which R 3 is a hydrogen atom, R 4 is an ethylene group or a 1,4-butylene group, R 5 is an ethylene group or a 1,3-propylene group, and m is 0 preferable.
 前記一般式(A21-III)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基であり、Rがエチレン基又は1,3-プロピレン基であり、かつRがメチル基である有機基が好ましい。 The organic group represented by the general formula (A21-III) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 3 is a hydrogen atom, R 4 is an ethylene group, R 5 is an ethylene group or a 1,3-propylene group, and R 6 is a methyl group is preferable.
 前記一般式(A21-IV)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基であり、Rがエチレン基又は1,3-プロピレン基であり、かつRがメチル基である有機基が好ましい。 The organic group represented by the general formula (A21-IV) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 3 is a hydrogen atom, R 4 is an ethylene group, R 5 is an ethylene group or a 1,3-propylene group, and R 6 is a methyl group is preferable.
 次に、(A22)で表されるシルセスキオキサン化合物について説明する。前記(A22)で表されるシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有する。そして、該ケイ素原子に直接に結合した有機基の少なくとも1つは、少なくとも1つのウレア結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基である。 Next, the silsesquioxane compound represented by (A22) will be described. The silsesquioxane compound represented by (A22) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one urea bond and one (meth) acryloyloxy group.
 少なくとも1つのウレア結合と1つの(メタ)アクリロイルオキシ基との両者を有する有機基としては、例えば、下記一般式(A22-I) As an organic group having both at least one urea bond and one (meth) acryloyloxy group, for example, the following general formula (A22-I)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式(A22-I)中、Rは水素原子又はメチル基を示す。Xはウレア結合を有する2価の有機基を示す。]
で表される有機基が挙げられる。
[In the formula (A22-I), R 7 represents a hydrogen atom or a methyl group. X 2 represents a divalent organic group having a urea bond. ]
The organic group represented by these is mentioned.
 前記一般式(A22-I)で表される有機基としては、具体的には例えば、下記一般式(A22-II)で表される有機基が挙げられる。 Specific examples of the organic group represented by the general formula (A22-I) include an organic group represented by the following general formula (A22-II).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
{式(A22-II)中、Rは前記と同じである。Rは炭素数1~10の2価の炭化水素基又は下記一般式(A22-III) {In Formula (A22-II), R 7 is the same as defined above. R 8 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (A22-III)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(A22-III)中、R10は炭素数2~4の2価の炭化水素基を示す。R11はジイソシアネート残基を示す。]
で表される2価の基を示し、Rは炭素数1~10の2価の炭化水素基を示す。}。
[In the formula (A22-III), R 10 represents a divalent hydrocarbon group having 2 to 4 carbon atoms. R 11 represents a diisocyanate residue. ]
R 9 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. }.
 前記Rとしては、炭素数1~10の2価の炭化水素基又は前記一般式(A22-III)で表される2価の基であれば特に限定されるものではない。炭素数1~10の2価の炭化水素基としては、具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 8 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (A22-III). Specific examples of the divalent hydrocarbon group having 1 to 10 carbon atoms include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, Examples thereof include alkylene groups such as 4-butylene group, hexylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group. Among these, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
 前記Rとしては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 9 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group. A cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group; Among these, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
 前記R10としては、炭素数2~4の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基等が挙げられる。 R 10 is not particularly limited as long as it is a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
 前記R11は、ジイソシアネート残基を示す。ジイソシアネ-ト残基とは、ジイソシアネ-ト化合物から2つのイソシアネ-ト基(NCO)を除いた残りの部分である。ジイソシアネート化合物としては、具体的には例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、1-クロロ-2,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアンート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート等の芳香族ジイソシアネート化合物;エタンジイソシアンート、プロパンジイソシアネート、ブタンジイソシアネート、ペンタンジイソシアネート、ヘキサンジイソシアネート、ヘプタンジイソシアネート、オクタンジイソシアネート、ノナンジイソシアネート、デカンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられる。なかでも、脂肪族ジイソシアネート化合物、特にイソホロンジイソシアネートが耐候性に優れる点から好ましい。また、ジイソシアネート化合物としては、耐擦傷性、光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から分子量300以下のジイソシアネート化合物が好ましい。 R 11 represents a diisocyanate residue. The diisocyanate residue is a remaining portion obtained by removing two isocyanate groups (NCO) from a diisocyanate compound. Specific examples of the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate , Hexane diisocyanate, heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, dicyclohexylmethane diisocyanate, Aliphatic diisocyanate compounds such as isophorone diisocyanate. Of these, aliphatic diisocyanate compounds, particularly isophorone diisocyanate, are preferred from the viewpoint of excellent weather resistance. Further, as the diisocyanate compound, a diisocyanate compound having a molecular weight of 300 or less is preferable from the viewpoint of better scratch resistance and curability of active energy rays in the presence of a photopolymerization initiator.
 前記一般式(A22-II)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基であり、Rがエチレン基若しくは1,3-プロピレン基である有機基が好ましい。また、Rが水素原子であり、Rが前記一般式(A22-III)で表される2価の基であってかつR10がエチレン基でありR11がイソホロンジイソシアネート残基である2価の基であり、Rがエチレン基若しくは1,3-プロピレン基である有機基が好ましい。 As the organic group represented by the general formula (A22-II), scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator are more excellent. From the viewpoint, an organic group in which R 7 is a hydrogen atom, R 8 is an ethylene group, and R 9 is an ethylene group or a 1,3-propylene group is preferable. Further, R 7 is a hydrogen atom, R 8 is a divalent group represented by the general formula (A22-III), R 10 is an ethylene group, and R 11 is an isophorone diisocyanate residue. And an organic group in which R 9 is an ethylene group or a 1,3-propylene group.
 次に、(A23)で表されるシルセスキオキサン化合物について説明する。前記(A23)で表されるシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有する。そして、該ケイ素原子に直接に結合した有機基の少なくとも1つは、少なくとも1つのウレタン結合及び/又はウレア結合と2つ以上の(メタ)アクリロイルオキシ基との両者を有する有機基である。 Next, the silsesquioxane compound represented by (A23) will be described. The silsesquioxane compound represented by the above (A23) has an organic group directly bonded to a silicon atom. At least one of the organic groups directly bonded to the silicon atom is an organic group having both at least one urethane bond and / or urea bond and two or more (meth) acryloyloxy groups.
 少なくとも1つのウレタン結合及び/又はウレア結合と2つ以上の(メタ)アクリロイルオキシ基との両者を有する有機基としては、例えば、下記一般式(A23-I) As the organic group having both at least one urethane bond and / or urea bond and two or more (meth) acryloyloxy groups, for example, the following general formula (A23-I)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(A23-I)中、R12は水素原子又はメチル基を示す。nは2~5の整数を示す。Xはウレタン結合及び/又はウレア結合を有する(n+1)価の有機基を示す。]
で表される有機基が挙げられる。
[In the formula (A23-I), R 12 represents a hydrogen atom or a methyl group. n represents an integer of 2 to 5. X 3 represents an (n + 1) -valent organic group having a urethane bond and / or a urea bond. ]
The organic group represented by these is mentioned.
 前記一般式(A23-I)で表される有機基としては、具体的には例えば、下記一般式(A23-II)~一般式(A23-V)で表される有機基が挙げられる。 Specific examples of the organic group represented by the general formula (A23-I) include organic groups represented by the following general formula (A23-II) to general formula (A23-V).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
{式(A23-II)中、R12は前記と同じであり、R12はそれぞれ同一でも又は異なっていてもよい。R13は炭素数1~10の2価の炭化水素基を示す。R14は炭素数1~10の2価の炭化水素基又は下記一般式(A23-VI) {In Formula (A23-II), R 12 is the same as defined above, and R 12 may be the same as or different from each other. R 13 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. R 14 is a divalent hydrocarbon group having 1 to 10 carbon atoms or the following general formula (A23-VI)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(A23-VI)中、R16は炭素数2~4の2価の炭化水素基を示し、R17はジイソシアネート残基を示す。]
で表される2価の基を示す。式(A23-III)中、R12は前記と同じであり、R12はそれぞれ同一でも又は異なっていてもよい。R13は前記と同じである。R14は前記と同じである。式(A23-IV)中、R12は前記と同じであり、R12はそれぞれ同一でも又は異なっていてもよい。R13は前記と同じである。R14は前記と同じであり、R14はそれぞれ同一でも又は異なっていてもよい。式(A23-V)中、pは1~3の整数を示す。R12は前記と同じであり、R12はそれぞれ同一でも又は異なっていてもよい。R13は前記と同じである。R14は前記と同じであり、R14はそれぞれ同一でも又は異なっていてもよい。R15は炭素数1~10の(p+1)価の炭化水素基を示す。}。
[In the formula (A23-VI), R 16 represents a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 17 represents a diisocyanate residue. ]
The bivalent group represented by these is shown. In formula (A23-III), R 12 is the same as defined above, and R 12 may be the same or different. R 13 is the same as described above. R 14 is the same as described above. In formula (A23-IV), R 12 is the same as defined above, and R 12 may be the same or different. R 13 is the same as described above. R 14 is the same as above, and each R 14 may be the same or different. In the formula (A23-V), p represents an integer of 1 to 3. R 12 is the same as described above, and R 12 may be the same or different. R 13 is the same as described above. R 14 is the same as above, and each R 14 may be the same or different. R 15 represents a (p + 1) -valent hydrocarbon group having 1 to 10 carbon atoms. }.
 前記R13は、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 13 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples include alkylene groups such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and decanylene group. A cycloalkylene group such as a cyclohexylene group; an arylene group such as a phenylene group or a xylylene group; Among these, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
 前記R14は、炭素数1~10の2価の炭化水素基又は前記一般式(A23-VI)で表される2価の基であれば特に限定されるものではない。炭素数1~10の2価の炭化水素基としては、具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6(より好ましくは炭素数1~3)の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。 R 14 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent group represented by the general formula (A23-VI). Specific examples of the divalent hydrocarbon group having 1 to 10 carbon atoms include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, Examples thereof include alkylene groups such as 4-butylene group, hexylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; arylene groups such as phenylene group and xylylene group. Among these, a divalent hydrocarbon group having 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), particularly an ethylene group or a 1,3-propylene group, has excellent scratch resistance and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
 前記R16としては、炭素数2~4の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基等が挙げられる。 R 16 is not particularly limited as long as it is a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
 前記R17は、ジイソシアネート残基を示す。ジイソシアネ-ト残基とは、ジイソシアネ-ト化合物から2つのイソシアネ-ト基(NCO)を除いた残りの部分である。ジイソシアネート化合物としては、具体的には例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、1-クロロ-2,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート等の芳香族ジイソシアネート化合物;エタンジイソシアネート、プロパンジイソシアネート、ブタンジイソシアネート、ペンタンジイソシアネート、ヘキサンジイソシアネート、ヘプタンジイソシアネート、オクタンジイソシアネート、ノナンジイソシアネート、デカンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられる。なかでも、脂肪族ジイソシアネート化合物、特にイソホロンジイソシアネートが耐候性に優れる点から好ましい。また、ジイソシアネート化合物としては、耐擦傷性、活性エネルギー線硬化性がより優れる点から分子量300以下のジイソシアネート化合物が好ましい。 R 17 represents a diisocyanate residue. The diisocyanate residue is a remaining portion obtained by removing two isocyanate groups (NCO) from a diisocyanate compound. Specific examples of the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, Heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, dicyclohexylmethane diisocyanate, Aliphatic diisocyanate compounds such as isophorone diisocyanate. Of these, aliphatic diisocyanate compounds, particularly isophorone diisocyanate, are preferred from the viewpoint of excellent weather resistance. Moreover, as a diisocyanate compound, the diisocyanate compound of molecular weight 300 or less is preferable from the point which is more excellent in abrasion resistance and active energy ray curability.
 前記R15は、炭素数1~10の(p+1)価の炭化水素基であれば特に限定されるものではない。R15における(p+1)価の炭化水素基は、ヒドロキシモノカルボン酸残基である。ヒドロキシモノカルボン酸残基とは、ヒドロキシモノカルボン酸からヒドロキシル基とカルボキシル基を除いた残りの部分である。具体的には例えば、2価の炭化水素基としては、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、へキシレン基、デカニレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。ヒドロキシモノカルボン酸としては、具体的には例えば、ヒドロキシピバリン酸、グリコール酸、乳酸、3-ヒドロキシプロピオン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、2-ヒドロキシイソ酪酸、2-ヒドロキシ-2-メチルプロピオン酸、3-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、2-ヒドロキシシクロヘキサンカルボン酸、ジメチロールプロピオン酸、ジメチロールブタン酸、o-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸等が挙げられる。なかでも、耐擦傷性、活性エネルギー線硬化性がより優れる点からジメチロールプロピオン酸、ジメチロールブタン酸が好ましい。 R 15 is not particularly limited as long as it is a (p + 1) -valent hydrocarbon group having 1 to 10 carbon atoms. The (p + 1) -valent hydrocarbon group for R 15 is a hydroxymonocarboxylic acid residue. The hydroxy monocarboxylic acid residue is the remaining part obtained by removing the hydroxyl group and the carboxyl group from the hydroxy monocarboxylic acid. Specific examples of the divalent hydrocarbon group include a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, and a 1,4-butylene group. And alkylene groups such as xylene group and decanylene group; cycloalkylene groups such as cyclohexylene group; and arylene groups such as phenylene group and xylylene group. Specific examples of the hydroxy monocarboxylic acid include hydroxypivalic acid, glycolic acid, lactic acid, 3-hydroxypropionic acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxyisobutyric acid, 2 -Hydroxy-2-methylpropionic acid, 3-hydroxyvaleric acid, 5-hydroxyvaleric acid, 2-hydroxycyclohexanecarboxylic acid, dimethylolpropionic acid, dimethylolbutanoic acid, o-hydroxybenzoic acid, m-hydroxybenzoic acid, Examples thereof include p-hydroxybenzoic acid. Of these, dimethylolpropionic acid and dimethylolbutanoic acid are preferred from the viewpoint of better scratch resistance and active energy ray curability.
 前記一般式(A23-II)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14がエチレン基である有機基が好ましい。また、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14が前記一般式(A23-VI)で表される2価の基であってかつR16がエチレン基でありR17がイソホロンジイソシアネート残基である2価の基である有機基が好ましい。 The organic group represented by the general formula (A23-II) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, and R 14 is an ethylene group is preferable. R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, R 14 is a divalent group represented by the general formula (A23-VI), and R 16 An organic group in which is a divalent group in which is an ethylene group and R 17 is an isophorone diisocyanate residue is preferred.
 前記一般式(A23-III)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14がエチレン基である有機基が好ましい。また、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14が前記一般式(A23-VI)で表される2価の基であってかつR16がエチレン基でありR17がイソホロンジイソシアネート残基である2価の基である有機基が好ましい。 The organic group represented by the general formula (A23-III) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, and R 14 is an ethylene group is preferable. R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, R 14 is a divalent group represented by the general formula (A23-VI), and R 16 An organic group in which is a divalent group in which is an ethylene group and R 17 is an isophorone diisocyanate residue is preferred.
 前記一般式(A23-IV)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14がエチレン基である有機基が好ましい。また、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14が前記一般式(A23-VI)で表される2価の基であってかつR16がエチレン基でありR17がイソホロンジイソシアネート残基である2価の基である有機基が好ましい。 The organic group represented by the general formula (A23-IV) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, and R 14 is an ethylene group is preferable. R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, R 14 is a divalent group represented by the general formula (A23-VI), and R 16 An organic group in which is a divalent group in which is an ethylene group and R 17 is an isophorone diisocyanate residue is preferred.
 前記一般式(A23-V)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、pが2であり、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14がエチレン基であり、R15がジメチロールプロピオン酸残基である有機基が好ましい。また、pが2であり、R12が水素原子であり、R13がエチレン基若しくは1,3-プロピレン基であり、R14が前記一般式(A23-VI)で表される2価の基であってかつR16がエチレン基でありR17がイソホロンジイソシアネート残基である2価の基であり、R15がジメチロールプロピオン酸残基である有機基が好ましい。 The organic group represented by the general formula (A23-V) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. In view of this, p is 2, R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, R 14 is an ethylene group, and R 15 is a dimethylolpropionic acid residue. Certain organic groups are preferred. In addition, p is 2, R 12 is a hydrogen atom, R 13 is an ethylene group or a 1,3-propylene group, and R 14 is a divalent group represented by the general formula (A23-VI). And an organic group in which R 16 is an ethylene group, R 17 is a divalent group that is an isophorone diisocyanate residue, and R 15 is a dimethylolpropionic acid residue.
 前記(A)成分であるシルセスキオキサン化合物は、単一の組成の化合物であってもよく、又は組成の異なる化合物の混合物であってもよい。 The silsesquioxane compound as the component (A) may be a compound having a single composition or a mixture of compounds having different compositions.
 前記(A)成分であるシルセスキオキサン化合物の重量平均分子量は、特に限定されるものではない。好ましくは重量平均分子量が1,000~100,000、より好ましくは重量平均分子量が1,000~10,000である。これら範囲は、本発明の活性エネルギー線硬化性組成物の粘度及び塗装性の点で意義がある。 The weight average molecular weight of the silsesquioxane compound as the component (A) is not particularly limited. The weight average molecular weight is preferably 1,000 to 100,000, more preferably the weight average molecular weight is 1,000 to 10,000. These ranges are significant in terms of the viscosity and paintability of the active energy ray-curable composition of the present invention.
 本明細書において、重量平均分子量は、光散乱法により測定した重量平均分子量である。光散乱法による重量平均分子量の測定には、Zetasizer Nano Nano-ZS(Malvern Instruments Ltd社製)を用いた。測定に用いた試料は、プロピレングリコールモノメチルエーテルに(A)成分であるシルセスキオキサン化合物を溶解させ、濃度を0.5~5.0質量%に調整した濃度の異なる10種の試料である。この10種の試料の光散乱強度を測定することにより、重量平均分子量を求めた。 In this specification, the weight average molecular weight is a weight average molecular weight measured by a light scattering method. Zetasizer Nano Nano-ZS (Malvern Instruments Ltd.) was used for the measurement of the weight average molecular weight by the light scattering method. The samples used for the measurement were 10 samples having different concentrations in which the silsesquioxane compound (A) component was dissolved in propylene glycol monomethyl ether and the concentration was adjusted to 0.5 to 5.0 mass%. . The weight average molecular weight was determined by measuring the light scattering intensity of these 10 samples.
 (A)成分であるシルセスキオキサン化合物の製造方法
 (A)成分であるシルセスキオキサン化合物は、種々の方法により製造されえる。その一例を以下に示す。
Production method of silsesquioxane compound as component (A) The silsesquioxane compound as component (A) can be produced by various methods. An example is shown below.
 製造方法a
 製造方法aとしては、加水分解性シランであって、ケイ素原子に直接に結合した有機基を有し、かつ当該有機基が、2級水酸基、ウレタン結合及びウレア結合よりなる群から選ばれる少なくとも1つと少なくとも1つの(メタ)アクリロイルオキシ基との両者を有する、加水分解性シランを含有する出発物質を用いた製造方法が挙げられる。
Manufacturing method a
Production method a is a hydrolyzable silane having an organic group directly bonded to a silicon atom, and the organic group is at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond, and a urea bond. And a production method using a starting material containing a hydrolyzable silane having both one and at least one (meth) acryloyloxy group.
 製造方法b
 製造方法bとしては、エポキシ基、アミノ基、イソシアネート基等の官能基を有する加水分解性シランを用いて、官能基を有するシルセスキオキサン化合物を製造する工程、及び該工程により得られたシルセスキオキサン化合物と、(メタ)アクリロイル基及び官能基を有する化合物とを反応させ、所望の有機基を有するシルセスキオキサン化合物を製造する工程を有する製造方法が挙げられる。
Manufacturing method b
The production method b includes a step of producing a silsesquioxane compound having a functional group using a hydrolyzable silane having a functional group such as an epoxy group, an amino group, an isocyanate group, and the silyl obtained by the step. The manufacturing method which has the process of reacting a sesquioxane compound, the compound which has a (meth) acryloyl group and a functional group, and manufacturing the silsesquioxane compound which has a desired organic group is mentioned.
 また製造方法bの他の一例としては、エポキシ基、アミノ基、イソシアネート基等の官能基を有する加水分解性シランを用いて、官能基を有するシルセスキオキサン化合物を製造する工程(i)、必要に応じ、該工程により得られたシルセスキオキサン化合物と、官能基を有する化合物とを反応させ、新たな官能基を生成する工程(ii)、及び工程(i)で得られたシルセスキオキサン化合物の官能基又は工程(ii)により新たに生成した官能基と、(メタ)アクリロイル基及び官能基を有する化合物の官能基とを反応させ、所望の有機基を有するシルセスキオキサン化合物を製造する工程(iii)を有する製造方法が挙げられる。 Moreover, as another example of the manufacturing method b, the process (i) which manufactures the silsesquioxane compound which has a functional group using hydrolyzable silane which has functional groups, such as an epoxy group, an amino group, and an isocyanate group, If necessary, the silsesquioxane compound obtained in this step and the compound having a functional group are reacted to generate a new functional group (ii) and the silsesquioxane obtained in step (i). Silsesquioxane compound having a desired organic group by reacting a functional group of an oxan compound or a functional group newly generated by the step (ii) with a functional group of a compound having a (meth) acryloyl group and a functional group The manufacturing method which has the process (iii) which manufactures is mentioned.
 これら製造方法について、具体例を示して詳細に説明する。 These manufacturing methods will be described in detail with specific examples.
 まず、(A)成分であるシルセスキオキサン化合物であって、ケイ素原子に直接に結合した有機基の少なくとも1つが下記一般式(A1-I)で表される有機基を有するシルセスキオキサン化合物[以下、「一般式(A1-I)で表される有機基を有するシルセスキオキサン化合物」と略すことがある。]の製造方法を例示する。 First, a silsesquioxane compound as component (A), wherein at least one of organic groups directly bonded to a silicon atom has an organic group represented by the following general formula (A1-I) Compound [hereinafter sometimes referred to as “silsesquioxane compound having an organic group represented by the general formula (A1-I)”. ] Is exemplified.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(A1-I)中、R及びRは前記と同じである。]。 [In the formula (A1-I), R 1 and R 2 are the same as defined above. ].
 以下の製造方法は、前記製造方法bに該当する。この製造方法では、出発物質に下記一般式(A1-I-1) The following manufacturing method corresponds to the manufacturing method b. In this production method, the following general formula (A1-I-1) is used as a starting material.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式(A1-I-1)中、Rは前記と同じである。Yは塩素又は炭素数1~6のアルコキシ基であり、Yは同一でも又は異なっていてもよい。]
で表される加水分解性シランを用いて、触媒の存在下で加水分解縮合を行うことにより下記一般式(A1-I-2)
[In the formula (A1-I-1), R 2 is the same as defined above. Y is chlorine or an alkoxy group having 1 to 6 carbon atoms, and Y may be the same or different. ]
Is hydrolyzed and condensed in the presence of a catalyst using a hydrolyzable silane represented by the following general formula (A1-I-2)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式(A1-I-2)中、Rは前記と同じである。]
で表される有機基を有するシルセスキオキサン化合物を製造する。
[In the formula (A1-I-2), R 2 is the same as defined above. ]
The silsesquioxane compound which has an organic group represented by these is manufactured.
 前記一般式(A1-I-1)のYとしては、具体的には、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。 Specific examples of Y in the general formula (A1-I-1) include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.
 前記一般式(A1-I-1)で表される加水分解性シランとしては、具体的には例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Specific examples of the hydrolyzable silane represented by the general formula (A1-I-1) include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like. .
 前記一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物を得るためには、具体的には、
 [1]前記一般式(A1-I-1)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
 [2]前記一般式(A1-I-1)で表される加水分解性シラン、及びエポキシ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In order to obtain a silsesquioxane compound having an organic group represented by the general formula (A1-I-2), specifically,
[1] Hydrolytic condensation using the hydrolyzable silane represented by the general formula (A1-I-1) as a starting material in the presence of a catalyst, or
[2] Hydrolysis in the presence of a catalyst using a hydrolyzable silane represented by the general formula (A1-I-1) and a hydrolyzable silane other than a hydrolyzable silane having an epoxy group as a starting material Condensing.
 前記エポキシ基を有する加水分解性シラン以外の加水分解性シランとしては、前記一般式(A1-I-1)で表される加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の3-(メタ)アクリロイルオキシプロピルトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン等が挙げられる。 As the hydrolyzable silane other than the hydrolyzable silane having an epoxy group, a silsesquioxane compound is produced by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (A1-I-1). There is no particular limitation as long as it is possible. Specifically, for example, alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
 前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩等が挙げられる。 As the catalyst, a basic catalyst is preferably used. Specific examples of the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl Examples thereof include ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.
 前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001~1.0モル、より好ましくは0.0005~0.1モルの範囲である。 The amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the amount of the catalyst used is preferably in the range of 0.0001 to 1.0 mol, more preferably 0.0005 to 0.1 mol, relative to 1 mol of hydrolyzable silane.
 加水分解縮合する場合(前記[1]又は[2]の場合)は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1~100モル、さらに好ましくは0.5~3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とするシルセスキオキサンの収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。 When hydrolytic condensation is performed (in the case of [1] or [2] above), water is used. The quantity ratio of hydrolyzable silane and water is not particularly limited. The amount of water used is preferably a ratio of 0.1 to 100 mol, more preferably 0.5 to 3 mol, of water relative to 1 mol of hydrolyzable silane. If the amount of water is too small, the reaction may be slowed and the yield of the desired silsesquioxane may be reduced. If the amount of water is too large, the molecular weight will increase and the product of the desired structure will decrease. There is a risk. Moreover, when using a basic catalyst as aqueous solution, the water to be used may be substituted with the water, and water may be added separately.
 前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。 In the hydrolysis condensation, an organic solvent may or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production. As the organic solvent, polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.
 極性有機溶媒としてはメタノール、エタノール、2-プロパノール等の低級アルコール系溶媒、アセトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン等のエーテル系溶媒が用いられるが、特にアセトン、テトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。 As the polar organic solvent, a lower alcohol solvent such as methanol, ethanol and 2-propanol, a ketone solvent such as acetone and methyl isobutyl ketone, and an ether solvent such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point. Is preferable because it becomes uniform and the reactivity is improved. As the nonpolar organic solvent, a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible. In particular, mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.
 加水分解縮合時の反応温度としては0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。当該反応は、通常、1~12時間程度で終了する。 The reaction temperature during the hydrolysis condensation is 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C. The reaction is usually completed in about 1 to 12 hours.
 加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(A1-I-1)中のY]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。 In the hydrolysis-condensation reaction, the condensation reaction proceeds together with the hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A1-I-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
 前記一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物の具体例としては、Glycidyl POSS cage mixture(商品名、Hybrid Plastics社)が挙げられる。 Specific examples of the silsesquioxane compound having an organic group represented by the general formula (A1-I-2) include Glycylyl POSS cage mixture (trade name, Hybrid Plastics).
 続いて、上記で製造された前記一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(A1-I-3) Subsequently, the silsesquioxane compound having an organic group represented by the general formula (A1-I-2) produced above is added to the following general formula (A1-I-3).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(A1-I-3)中、Rは前記と同じである。]
で表される化合物を反応させ、前記一般式(A1-I)で表される有機基を有するシルセスキオキサン化合物を製造する。
[In the formula (A1-I-3), R 1 is the same as defined above. ]
To produce a silsesquioxane compound having an organic group represented by the general formula (A1-I).
 前記一般式(A1-I-3)で表される化合物としては、アクリル酸及びメタクリル酸が挙げられる。 Examples of the compound represented by the general formula (A1-I-3) include acrylic acid and methacrylic acid.
 前記反応は、エポキシ基とカルボキシル基とを反応させる常法に従って行うことができる。反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。当該反応は、通常、10~24時間程度で終了する。 The reaction can be performed according to a conventional method in which an epoxy group and a carboxyl group are reacted. The reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 to 120 ° C. The reaction is usually completed in about 10 to 24 hours.
 前記反応における前記一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物と前記一般式(A1-I-3)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(A1-I-2)で表される有機基1モルに対し一般式(A1-I-3)で表される化合物を、通常、0.80~1.20モル程度、好ましくは0.90~1.10モル程度とすればよい。 The ratio of the silsesquioxane compound having an organic group represented by the general formula (A1-I-2) and the compound represented by the general formula (A1-I-3) in the reaction is as follows. The compound represented by the general formula (A1-I-3) is usually used in an amount of 0.80 to 1.20 mol per 1 mol of the organic group represented by the general formula (A1-I-2) of the oxan compound. About 0.90 to 1.10 mol.
 前記反応では適宜触媒を使用しても良い。触媒としては、具体的には例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジエチルアミン等の酢酸塩、ギ酸塩等の2級アミン塩;水酸化ナトリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物;酢酸ナトリウム、酢酸カルシウム等のアルカリ金属、アルカリ土類金属塩;イミダゾ-ル化合物;ジアザビシクロウンデセン等の環状含窒素化合物、トリフェニルフォスフィン、トリブチルフォスフィン等のリン化合物等が挙げられる。触媒の使用量は、特に限定されるものではないが、反応原料に対して、0.01~5質量%である。 In the above reaction, a catalyst may be used as appropriate. Specific examples of the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates and formates such as diethylamine Secondary amine salts of sodium hydroxide, alkali metal hydroxides such as sodium hydroxide and calcium hydroxide; alkali metal and alkaline earth metal salts such as sodium acetate and calcium acetate; imidazole compounds; diaza Examples thereof include cyclic nitrogen-containing compounds such as bicycloundecene and phosphorus compounds such as triphenylphosphine and tributylphosphine. The amount of the catalyst used is not particularly limited, but is 0.01 to 5% by mass with respect to the reaction raw material.
 前記反応では適宜溶媒を使用しても良い。溶媒は特に限定されるものではない。具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. The solvent is not particularly limited. Specifically, for example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc. Ester solvents such as tetrahydrofuran, dioxane and dimethoxyethane; glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents and the like can be mentioned.
 以上の製造方法により一般式(A1-I)で表される有機基を有するシルセスキオキサン化合物が製造される。 The silsesquioxane compound having an organic group represented by the general formula (A1-I) is produced by the above production method.
 上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー等を用いることができる。 The target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified. As this separation and purification means, for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
 ここで、前記加水分解縮合において100%縮合しない場合には、この製造方法により得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、この製造方法により得られる一般式(A1-I)で表される有機基を有するシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、この製造方法により得られる一般式(A1-I)で表される有機基を有するシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。 Here, when 100% condensation is not performed in the hydrolysis condensation, the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition, there may be included a ladder structure in which a Si—OH group remains, an incomplete cage structure, and / or a silsesquioxane compound of a random condensate, but the general formula (A1-I) obtained by this production method may be included. The silsesquioxane compound having an organic group represented by (II) may contain a ladder structure, an incomplete cage structure and / or a random condensate. The silsesquioxane compound having an organic group represented by the general formula (A1-I) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
 次に、(A)成分であるシルセスキオキサン化合物であって、ケイ素原子に直接に結合した有機基の少なくとも1つが下記一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物[以下、「一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物」と略すことがある。]の製造方法を例示する。 Next, a silsesquioxane compound (A) is a silsesquioxane compound in which at least one of organic groups directly bonded to a silicon atom has an organic group represented by the following general formula (A21-II) Sun compound [hereinafter sometimes abbreviated as “silsesquioxane compound having an organic group represented by formula (A21-II)”. ] Is exemplified.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式(A21-II)中、R、R、R及びmは前記と同じである。]。 [In the formula (A21-II), R 3 , R 4 , R 5 and m are the same as defined above. ].
 以下の製造方法は、前記製造方法aに該当する。この製造方法では、出発物質に下記一般式(A21-II-1) The following manufacturing method corresponds to the manufacturing method a. In this production method, the following general formula (A21-II-1) is used as a starting material.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式(A21-II-1)中、R、R、R、m及びYは前記と同じである。Yは同一でも又は異なっていてもよい。]
で表される加水分解性シラン及び必要に応じて前記一般式(A21-II-1)で表される加水分解性シラン以外の加水分解性シランを用いて、触媒の存在下で加水分解縮合を行って前記一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物を製造する。
[In the formula (A21-II-1), R 3 , R 4 , R 5 , m and Y are the same as defined above. Y may be the same or different. ]
And hydrolyzable silane other than the hydrolyzable silane represented by the general formula (A21-II-1), if necessary, in the presence of a catalyst. And a silsesquioxane compound having an organic group represented by the general formula (A21-II) is produced.
 前記一般式(A21-II-1)で表される加水分解性シラン以外の加水分解性シランとしては、前記一般式(A21-II-1)で表される加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の3-(メタ)アクリロイルオキシプロピルトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン等が挙げられる。 The hydrolyzable silane other than the hydrolyzable silane represented by the general formula (A21-II-1) is hydrolyzed and condensed together with the hydrolyzable silane represented by the general formula (A21-II-1). If it can manufacture a silsesquioxane compound by this, it will not specifically limit. Specifically, for example, alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
 前記一般式(A21-II-1)で表される加水分解性シランは、例えば、下記一般式(A21-II-2)で表される加水分解性シランと、下記一般式(A21-II-3)で表される化合物とを反応させることにより得ることができる。 Examples of the hydrolyzable silane represented by the general formula (A21-II-1) include a hydrolyzable silane represented by the following general formula (A21-II-2) and a general formula (A21-II- It can be obtained by reacting with the compound represented by 3).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式(A21-II-2)中、R及びYは前記と同じである。Yは同一でも又は異なっていてもよい。]。 [In the formula (A21-II-2), R 5 and Y are the same as defined above. Y may be the same or different. ].
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式(A21-II-3)中、R、R及びmは前記と同じである。]。 [In the formula (A21-II-3), R 3 , R 4 and m are the same as defined above. ].
 前記一般式(A21-II-2)で表される化合物としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。 Examples of the compound represented by the general formula (A21-II-2) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatepropyltriethoxysilane.
 前記一般式(A21-II-3)で表される化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート等が挙げられる。 Examples of the compound represented by the general formula (A21-II-3) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy Examples include butyl (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, and dipropylene glycol mono (meth) acrylate.
 前記一般式(A21-II-2)で表される加水分解性シランと前記一般式(A21-II-3)で表される化合物との反応は、イソシアネート基と水酸基とを反応させる常法に従って行うことができる。 The reaction between the hydrolyzable silane represented by the general formula (A21-II-2) and the compound represented by the general formula (A21-II-3) is performed according to a conventional method in which an isocyanate group and a hydroxyl group are reacted. It can be carried out.
 前記反応における一般式(A21-II-2)で表される加水分解性シランと前記一般式(A21-II-3)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。 The proportion of the hydrolyzable silane represented by the general formula (A21-II-2) and the compound represented by the general formula (A21-II-3) in the reaction is usually the latter with respect to 1 mol of the former. The amount may be about 0.90 to 1.10 mol, preferably about 0.95 to 1.05 mol.
 反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、2~10時間程度で終了する。 The reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. The reaction is usually completed in about 2 to 10 hours.
 前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。 In the above reaction, a catalyst may be used as appropriate. Examples of the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, Ester solvents such as methyl propionate; Ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ether solvents such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbon solvents such as toluene and xylene And aliphatic hydrocarbon solvents.
 この製造方法において、前記一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物を得るためには、具体的には、
 [3]前記一般式(A21-II-1)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は
 [4]前記一般式(A21-II-1)で表される加水分解性シラン及び前記一般式(A21-II-1)で表される加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In this production method, in order to obtain a silsesquioxane compound having an organic group represented by the general formula (A21-II), specifically,
[3] Hydrolytic condensation using the hydrolyzable silane represented by the general formula (A21-II-1) as a starting material in the presence of a catalyst, or [4] the general formula (A21-II-1 ) And a hydrolyzable silane other than the hydrolyzable silane represented by the general formula (A21-II-1) as a starting material, and hydrolytic condensation in the presence of a catalyst. Can be mentioned.
 この加水分解縮合において、触媒、触媒の使用量、水の使用量、有機溶媒を使用する場合の有機溶媒の種類、加水分解縮合時の反応温度及び反応時間は、前述の一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物を製造する際の各種条件と同じ条件が適用できる。 In this hydrolysis condensation, the catalyst, the amount of catalyst used, the amount of water used, the type of organic solvent in the case of using an organic solvent, the reaction temperature and reaction time during the hydrolysis condensation are the above-mentioned general formulas (A1-I). The same conditions as those used in the production of the silsesquioxane compound having an organic group represented by -2) can be applied.
 加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(A21-II-1)中のY]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。 In the hydrolysis-condensation reaction, the condensation reaction proceeds together with the hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A21-II-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
 以上の製造方法により一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物が製造される。 The silsesquioxane compound having an organic group represented by the general formula (A21-II) is produced by the above production method.
 上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー等を用いることができる。 The target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified. As this separation and purification means, for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
 ここで、前記加水分解縮合において100%縮合しない場合には、この製造方法により得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、この製造方法により得られる一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、この製造方法により得られる一般式(A21-II)で表される有機基を有するシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。 Here, when 100% condensation is not performed in the hydrolysis condensation, the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition, there may be included a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a silsesquioxane compound of a random condensate, but the general formula (A21-II) obtained by this production method may be included. The silsesquioxane compound having an organic group represented by (II) may contain a ladder structure, an incomplete cage structure and / or a random condensate. The silsesquioxane compound having an organic group represented by the general formula (A21-II) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
 次に、(A)成分であるシルセスキオキサン化合物であって、ケイ素原子に直接に結合した有機基の少なくとも1つが下記一般式(A22-II)で表される有機基を有するシルセスキオキサン化合物[以下、「一般式(A22-II)で表される有機基を有するシルセスキオキサン化合物」と略すことがある。]の製造方法を例示する。 Next, a silsesquioxane compound (A), which is a silsesquioxane compound in which at least one of organic groups directly bonded to a silicon atom has an organic group represented by the following general formula (A22-II): Sun compound [hereinafter sometimes referred to as “silsesquioxane compound having an organic group represented by the general formula (A22-II)”. ] Is exemplified.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式(A22-II)中、R、R及びRは前記と同じである。]。 [In the formula (A22-II), R 7 , R 8 and R 9 are the same as defined above. ].
 以下の製造方法は、前記製造方法bに該当する。この製造方法では、出発物質に下記一般式(A22-II-1) The following manufacturing method corresponds to the manufacturing method b. In this production method, the following general formula (A22-II-1) is used as a starting material.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式(A22-II-1)中、R及びYは前記と同じである。Yは同一でも又は異なっていてもよい。]
で表される加水分解性シランを用いて、触媒の存在下で加水分解縮合を行うことにより下記一般式(A22-II-2)
[In the formula (A22-II-1), R 9 and Y are the same as defined above. Y may be the same or different. ]
The following general formula (A22-II-2) is obtained by performing hydrolytic condensation in the presence of a catalyst using a hydrolyzable silane represented by
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式(A22-II-2)中、Rは前記と同じである。]
で表される有機基を有するシルセスキオキサン化合物を製造する。
[In the formula (A22-II-2), R 9 is the same as defined above. ]
The silsesquioxane compound which has an organic group represented by these is manufactured.
 前記一般式(A22-II-1)で表される加水分解性シランとしては、具体的には例えば、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、2-アミノエチルトリメトキシシラン、2-アミノエチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。 Specific examples of the hydrolyzable silane represented by the general formula (A22-II-1) include aminomethyltrimethoxysilane, aminomethyltriethoxysilane, 2-aminoethyltrimethoxysilane, and 2-amino. Examples include ethyltriethoxysilane, 3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane.
 前記一般式(A22-II-2)で表される有機基を有するシルセスキオキサン化合物を得るためには、具体的には、
 [5]前記一般式(A22-II-1)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
 [6]前記一般式(A22-II-1)で表される加水分解性シラン、及びアミノ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In order to obtain a silsesquioxane compound having an organic group represented by the general formula (A22-II-2), specifically,
[5] Hydrolytic condensation using the hydrolyzable silane represented by the general formula (A22-II-1) as a starting material in the presence of a catalyst, or
[6] Hydrolysis in the presence of a catalyst using a hydrolyzable silane represented by the general formula (A22-II-1) and a hydrolyzable silane other than a hydrolyzable silane having an amino group as a starting material. Condensing.
 前記アミノ基を有する加水分解性シラン以外の加水分解性シランとしては、前記アミノ基を有する加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の3-(メタ)アクリロイルオキシプロピルトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン等が挙げられる。 The hydrolyzable silane other than the hydrolyzable silane having an amino group is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the amino group. It is not a thing. Specifically, for example, alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
 この加水分解縮合において、触媒、触媒の使用量、水の使用量、有機溶媒を使用する場合の有機溶媒の種類、加水分解縮合時の反応温度及び反応時間は、前述の一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物を製造する際の各種条件と同じ条件が適用できる。 In this hydrolysis condensation, the catalyst, the amount of catalyst used, the amount of water used, the type of organic solvent in the case of using an organic solvent, the reaction temperature and reaction time during the hydrolysis condensation are the above-mentioned general formulas (A1-I). The same conditions as those used in the production of the silsesquioxane compound having an organic group represented by -2) can be applied.
 加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(A22-II-1)中のY]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。 In the hydrolysis-condensation reaction, the condensation reaction proceeds together with the hydrolysis, and a hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A22-II-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
 続いて、上記で製造された前記一般式(A22-II-2)で表される有機基を有するシルセスキオキサン化合物のアミノ基に、下記一般式(A22-II-3)で表される化合物のイソシアネート基を反応させ、前記一般式(A22-II)で表される有機基を有するシルセスキオキサン化合物を製造する。 Subsequently, the amino group of the silsesquioxane compound having the organic group represented by the general formula (A22-II-2) produced above is represented by the following general formula (A22-II-3). The isocyanate group of the compound is reacted to produce a silsesquioxane compound having an organic group represented by the general formula (A22-II).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[式(A22-II-3)中、R及びRは前記と同じである。]。 [In the formula (A22-II-3), R 7 and R 8 are the same as defined above. ].
 前記一般式(A22-II-3)で表される化合物としては、具体的には例えば、イソシアネートメチル(メタ)アクリレート、2-イソシアネートエチル(メタ)アクリレート、3-イソシアネートプロピル(メタ)アクリレート、イソシアネートオクチル(メタ)アクリレート等が挙げられる。また、ヒドロキシル基含有(メタ)アクリレートとジイソシアネート化合物との付加物が挙げられる。ヒドロキシル基含有(メタ)アクリレートとしては、具体的には例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。ジイソシアネート化合物としては、具体的には例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、1-クロロ-2,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート等の芳香族ジイソシアネート化合物;エタンジイソシアネート、プロパンジイソシアネート、ブタンジイソシアネート、ペンタンジイソシアネート、ヘキサンジイソシアネート、ヘプタンジイソシアネート、オクタンジイソシアネート、ノナンジイソシアネート、デカンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート化合物等が挙げられる。 Specific examples of the compound represented by the general formula (A22-II-3) include, for example, isocyanate methyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate, and isocyanate. Examples include octyl (meth) acrylate. Moreover, the adduct of a hydroxyl group containing (meth) acrylate and a diisocyanate compound is mentioned. Specific examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). An acrylate etc. are mentioned. Specific examples of the diisocyanate compound include m-phenylene diisocyanate, p-phenylene diisocyanate, 1-chloro-2,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1, Aromatic diisocyanate compounds such as 5-naphthalene diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate; ethane diisocyanate, propane diisocyanate, butane diisocyanate, pentane diisocyanate, hexane diisocyanate, Heptane diisocyanate, octane diisocyanate, nonane diisocyanate, decane diisocyanate, dicyclohexylmethane diisocyanate , Aliphatic diisocyanate compounds such as isophorone diisocyanate.
 前記反応は、通常、前記一般式(A22-II-2)で表される有機基1モルに対して、前記一般式(A22-II-3)で表される化合物を1モル以上用いて行われる。 The reaction is usually performed using 1 mol or more of the compound represented by the general formula (A22-II-3) per 1 mol of the organic group represented by the general formula (A22-II-2). Is called.
 前記反応は、アミノ基とイソシアネート基を反応させる常法に従って行うことができる。反応温度は、例えば、-78℃~200℃、好ましくは-78℃~100℃、更に好ましくは、-10℃~40℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は非常に早く、通常、滴下が終了すると反応は終了する。 The reaction can be performed according to a conventional method in which an amino group and an isocyanate group are reacted. The reaction temperature is, for example, −78 ° C. to 200 ° C., preferably −78 ° C. to 100 ° C., more preferably −10 ° C. to 40 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. The reaction is very fast and usually completes when the dropping is completed.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;メタノール、エタノール、プロパノール等のアルコール系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether. Examples thereof include glycol ether solvents such as acetate and 3-methoxybutyl acetate; alcohol solvents such as methanol, ethanol and propanol, aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents and the like.
 以上の製造方法により一般式(A22-II)で表される有機基を有するシルセスキオキサン化合物が製造される。 The silsesquioxane compound having an organic group represented by the general formula (A22-II) is produced by the above production method.
 上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー等を用いることができる。 The target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified. As this separation and purification means, for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
 ここで、前記加水分解縮合において100%縮合しない場合には、この製造方法により得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、この製造方法により得られる一般式(A22-II)で表される有機基を有するシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、この製造方法により得られる一般式(A22-II)で表される有機基を有するシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。 Here, when 100% condensation is not performed in the hydrolysis condensation, the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. In addition, there may be included a ladder structure in which Si—OH groups remain, an incomplete cage structure and / or a silsesquioxane compound of a random condensate, but the general formula (A22-II) obtained by this production method may be included. The silsesquioxane compound having an organic group represented by (II) may contain a ladder structure, an incomplete cage structure and / or a random condensate. The silsesquioxane compound having an organic group represented by the general formula (A22-II) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
 次に、(A)成分であるシルセスキオキサン化合物であって、ケイ素原子に直接に結合した有機基の少なくとも1つが下記一般式(A23-II)で表される有機基を有するシルセスキオキサン化合物[以下、「一般式(A23-II)で表される有機基を有するシルセスキオキサン化合物」と略すことがある。]の製造方法を例示する。 Next, a silsesquioxane compound (A), which is a silsesquioxane compound in which at least one organic group directly bonded to a silicon atom has an organic group represented by the following general formula (A23-II): Sun compound [hereinafter sometimes referred to as “silsesquioxane compound having an organic group represented by formula (A23-II)”. ] Is exemplified.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[式(A23-II)中、R12、R13及びR14は前記と同じである。]。 [In the formula (A23-II), R 12 , R 13 and R 14 are the same as defined above. ].
 以下の製造方法は、前記製造方法bに該当する。この製造方法では、出発物質に下記一般式(A23-II-1) The following manufacturing method corresponds to the manufacturing method b. In this production method, the following general formula (A23-II-1) is used as a starting material.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
[式(A23-II-1)中、R13及びYは前記と同じである。Yは同一でも又は異なっていてもよい。]
で表される加水分解性シラン及び必要に応じて前記一般式(A23-II-1)で表される加水分解性シラン以外の加水分解性シランを用いて、触媒の存在下で加水分解縮合を行って下記一般式(A22-II-2)
[In the formula (A23-II-1), R 13 and Y are the same as defined above. Y may be the same or different. ]
And hydrolyzable silane other than the hydrolyzable silane represented by the general formula (A23-II-1), if necessary, in the presence of a catalyst. The following general formula (A22-II-2)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[式(A23-II-2)中、R13は前記と同じである。]
で表される有機基を有するシルセスキオキサン化合物を製造する。
[In the formula (A23-II-2), R 13 is the same as defined above. ]
The silsesquioxane compound which has an organic group represented by these is manufactured.
 前記一般式(A23-II-1)で表される加水分解性シランとしては、具体的には例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Specific examples of the hydrolyzable silane represented by the general formula (A23-II-1) include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like. .
 前記一般式(A23-II-2)で表される有機基を有するシルセスキオキサン化合物を得るためには、具体的には、
 [7]前記一般式(A23-II-1)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
 [8]前記一般式(A23-II-1)で表される加水分解性シラン、及びエポキシ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、ことが挙げられる。
In order to obtain a silsesquioxane compound having an organic group represented by the general formula (A23-II-2), specifically,
[7] The hydrolyzable silane represented by the general formula (A23-II-1) is used as a starting material for hydrolysis condensation in the presence of a catalyst, or
[8] Hydrolysis in the presence of a catalyst using a hydrolyzable silane represented by the general formula (A23-II-1) and a hydrolyzable silane other than a hydrolyzable silane having an epoxy group as a starting material Condensing.
 前記エポキシ基を有する加水分解性シラン以外の加水分解性シランとしては、前記一般式(A23-II-1)で表される加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の3-(メタ)アクリロイルオキシプロピルトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン等が挙げられる。 As the hydrolyzable silane other than the hydrolyzable silane having an epoxy group, a silsesquioxane compound is produced by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (A23-II-1). There is no particular limitation as long as it is possible. Specifically, for example, alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
 この加水分解縮合において、触媒、触媒の使用量、水の使用量、有機溶媒を使用する場合の有機溶媒の種類、加水分解縮合時の反応温度及び反応時間は、前述の一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物を製造する際の各種条件と同じ条件が適用できる。 In this hydrolysis condensation, the catalyst, the amount of catalyst used, the amount of water used, the type of organic solvent in the case of using an organic solvent, the reaction temperature and reaction time during the hydrolysis condensation are the above-mentioned general formulas (A1-I). The same conditions as those used in the production of the silsesquioxane compound having an organic group represented by -2) can be applied.
 加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(A23-II-1)中のY]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。 In the hydrolysis-condensation reaction, the condensation reaction proceeds together with the hydrolysis, and a hydrolyzable group of the hydrolyzable silane [specifically, for example, most of Y in the general formula (A23-II-1)], preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups, preferably 80% or more, more preferably 90% or more, particularly preferably 100% is condensed to be liquid stable. It is preferable from the point.
 前記一般式(A23-II-2)で表される有機基を有するシルセスキオキサン化合物の具体例としては、Glycidyl POSS cage mixture(商品名、Hybrid Plastics社)が挙げられる。 Specific examples of the silsesquioxane compound having an organic group represented by the general formula (A23-II-2) include Glycylyl POSS cage mixture (trade name, Hybrid Plastics).
 続いて、上記で製造された前記一般式(A23-II-2)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(A23-II-3) Subsequently, the silsesquioxane compound having an organic group represented by the general formula (A23-II-2) produced above is added to the following general formula (A23-II-3).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[式(A23-II-3)中、R12は前記と同じである。]
で表される化合物を反応させ、下記一般式(A23-II-4)
[In the formula (A23-II-3), R 12 is the same as defined above. ]
And a compound represented by the following general formula (A23-II-4)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式(A23-II-4)中、R12及びR13は前記と同じである。]
で表される有機基を有するシルセスキオキサン化合物を製造する。
[In the formula (A23-II-4), R 12 and R 13 are the same as defined above. ]
The silsesquioxane compound which has an organic group represented by these is manufactured.
 前記一般式(A23-II-3)で表される化合物としては、アクリル酸及びメタクリル酸が挙げられる。 Examples of the compound represented by the general formula (A23-II-3) include acrylic acid and methacrylic acid.
 前記反応は、エポキシ基とカルボキシル基とを反応させる常法に従って行うことができる。この反応において、反応温度、使用割合、反応時間、触媒及び溶媒等の各種反応条件は、前述の前記一般式(A1-I-2)で表される有機基を有するシルセスキオキサン化合物に、前記一般式(A1-I-3)で表される化合物を反応させる際の各種反応条件と同じ条件が適用できる。 The reaction can be performed according to a conventional method in which an epoxy group and a carboxyl group are reacted. In this reaction, various reaction conditions such as a reaction temperature, a use ratio, a reaction time, a catalyst, and a solvent can be used for the silsesquioxane compound having an organic group represented by the general formula (A1-I-2). The same conditions as various reaction conditions for reacting the compound represented by the general formula (A1-I-3) can be applied.
 続いて、上記で製造された前記(A23-II-4)で表される有機基を有するシルセスキオキサン化合物の2級水酸基に、下記一般式(A23-II-5)で表される化合物のイソシアネート基を反応させる。 Subsequently, the compound represented by the following general formula (A23-II-5) is added to the secondary hydroxyl group of the silsesquioxane compound having the organic group represented by (A23-II-4) produced above. The isocyanate group is reacted.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[式(A23-II-5)中、R12及びR14は前記と同じである。]。 [In the formula (A23-II-5), R 12 and R 14 are the same as defined above. ].
 前記反応は、水酸基とイソシアネート基を反応させる常法に従って行うことができる。反応温度としては例えば、0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。当該反応は、通常、2~10時間程度で終了する。 The reaction can be performed according to a conventional method in which a hydroxyl group and an isocyanate group are reacted. The reaction temperature is, for example, 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C. The reaction is usually completed in about 2 to 10 hours.
 上記反応における前記一般式(A23-II-4)で表される有機基を有するシルセスキオキサン化合物と前記一般式(A23-II-5)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(A23-II-4)で表される有機基1モルに対し一般式(A23-II-5)で表される化合物を、通常、0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。 The ratio of the silsesquioxane compound having an organic group represented by the general formula (A23-II-4) and the compound represented by the general formula (A23-II-5) in the above reaction is as follows. The compound represented by the general formula (A23-II-5) is usually used in an amount of 0.90 to 1.10 mol per 1 mol of the organic group represented by the general formula (A23-II-4) of the oxan compound. About 0.95 to 1.05 mol.
 前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。 In the above reaction, a catalyst may be used as appropriate. Examples of the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
 以上の製造方法により一般式(A23-II)で表される有機基を有するシルセスキオキサン化合物が製造される。 The silsesquioxane compound having an organic group represented by the general formula (A23-II) is produced by the above production method.
 上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー等を用いることができる。 The target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified. As this separation and purification means, for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography and the like can be used.
 ここで、加水分解縮合において100%縮合しない場合には、この製造方法により得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、この製造方法により得られる一般式(A23-II)で表される有機基を有するシルセスキオキサン化合物は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。なお、この製造方法により得られる一般式(A23-II)で表される有機基を有するシルセスキオキサン化合物は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上であることが液安定性の点から好ましい。 Here, when 100% condensation is not performed in the hydrolysis condensation, the product obtained by this production method includes a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed. May include a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a silsesquioxane compound of a random condensate. The general formula (A23-II) obtained by this production method may be included. The silsesquioxane compound which has an organic group represented by these may contain those ladder structures, incomplete cage structures, and / or random condensates. The silsesquioxane compound having an organic group represented by the general formula (A23-II) obtained by this production method is a ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed. However, it is preferably 80% by mass or more, more preferably 90% by mass or more from the viewpoint of liquid stability.
 本発明の活性エネルギー線硬化性組成物における(A)成分であるシルセスキオキサン化合物の配合割合は特に限定されるものではない。得られる硬化塗膜の耐擦傷性、被塗物への付着性及び耐侯性の点から、好ましくは、活性エネルギー線硬化性組成物の不揮発分100質量部に対して、1~95質量部であり、より好ましくは10~80質量部であり、特に好ましくは15~50質量部である。 The blending ratio of the silsesquioxane compound as the component (A) in the active energy ray-curable composition of the present invention is not particularly limited. From the viewpoint of scratch resistance, adhesion to an object to be coated and weather resistance, the cured film obtained is preferably 1 to 95 parts by mass with respect to 100 parts by mass of the nonvolatile content of the active energy ray-curable composition. More preferably, it is 10 to 80 parts by mass, and particularly preferably 15 to 50 parts by mass.
 反応性粒子(B)
 反応性粒子(B)は、シリカ微粒子(b-1)と、分子内に(メタ)アクリロイルオキシ基を有する加水分解性シラン(b-2)とを反応させて得られる。
Reactive particles (B)
The reactive particles (B) are obtained by reacting silica fine particles (b-1) with hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule.
 シリカ微粒子(b-1)
 シリカ微粒子(b-1)としては、コロイダルシリカ微粒子、粉末状微粒子シリカ等が挙げられる。
Silica fine particles (b-1)
Examples of the silica fine particles (b-1) include colloidal silica fine particles and powdery fine particle silica.
 コロイダルシリカ微粒子は、シリカの超微粒子を分散媒に分散させたものである。 Colloidal silica fine particles are obtained by dispersing ultrafine particles of silica in a dispersion medium.
 分散媒としては、水;メタノール、エタノール、イソプロパノール、n-プロパノール、イソブタノール、n-ブタノール等のアルコール系溶剤;エチレングリコール等の多価アルコール系溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等の多価アルコール誘導体;メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール等のケトン系溶剤;2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート等のモノマー化合物がある。なかでも、水、メタノール、エタノール、イソプロパノール等が製造の容易さの点から好ましい。 As a dispersion medium, water; alcohol solvents such as methanol, ethanol, isopropanol, n-propanol, isobutanol, n-butanol; polyhydric alcohol solvents such as ethylene glycol; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, etc. Polyhydric alcohol derivatives; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol; and monomer compounds such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and tetrahydrofurfuryl acrylate. Of these, water, methanol, ethanol, isopropanol and the like are preferable from the viewpoint of ease of production.
 コロイダルシリカ微粒子としては、メタノールシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、PGM-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL(いずれも日産化学工業社製)等が挙げられる。 Colloidal silica fine particles include methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, PGM-ST, ST-UP, ST-OUP, ST-20, ST-40, ST -C, ST-N, ST-O, ST-50, ST-OL (all manufactured by Nissan Chemical Industries, Ltd.) and the like.
 粉末状微粒子シリカとしては、アエロジル130、アエロジル300、アエロジル380、アエロジルTT600、アエロジルOX50(いずれも日本アエロジル社製)、シルデックスH31、H32、H51、H52、H121、H122(いずれも旭硝子社製)、E220A、E220(いずれも日本シリカ工業社製)、SYLYSIA470(富士シリシア化学社製)等が挙げられる。 As the fine powder silica, Aerosil 130, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil OX50 (all manufactured by Nippon Aerosil), Sildex H31, H32, H51, H52, H121, H122 (all manufactured by Asahi Glass) , E220A, E220 (all manufactured by Nippon Silica Kogyo Co., Ltd.), SYLYSIA470 (manufactured by Fuji Silysia Chemical Ltd.), and the like.
 シリカ微粒子(b-1)の平均一次粒子径は、1~200nmが好ましく、5~80nmがより好ましい。これら範囲の下限値は、化合物(b-2)と反応させる際にゲル化を抑制する点で意義がある。これら範囲の上限値は、本発明の活性エネルギー線硬化性組成物により得られる硬化塗膜の透明性の点で意義がある。 The average primary particle diameter of the silica fine particles (b-1) is preferably 1 to 200 nm, and more preferably 5 to 80 nm. The lower limit of these ranges is significant in terms of suppressing gelation when reacted with the compound (b-2). The upper limit of these ranges is significant in terms of the transparency of the cured coating film obtained with the active energy ray-curable composition of the present invention.
 本発明における平均一次粒子径は、動的光散乱法によって測定される体積基準粒度分布のメジアン径(d50)であって、例えば日機装社製のナノトラック粒度分布測定装置を用いて測定することができる。 The average primary particle diameter in the present invention is a median diameter (d50) of a volume-based particle size distribution measured by a dynamic light scattering method, and can be measured using, for example, a nanotrack particle size distribution measuring apparatus manufactured by Nikkiso Co., Ltd. it can.
 分子内に(メタ)アクリロイルオキシ基を有する加水分解性シラン(b-2)
 分子内に(メタ)アクリロイルオキシ基を有する加水分解性シラン(b-2)[以下、「化合物(b-2)」と略すことがある。]は、加水分解性シリル基を有する。該加水分解性シリル基とは、シラノール基又は加水分解によってシラノール基を生成する基である。シラノール基を生成する基としては、ケイ素原子にアルコキシ基、アリールオキシ基、アセトキシ基、ハロゲン原子等が結合した基が挙げられる。ここでアルコキシ基としては炭素数1~8のアルコキシ基が好ましく、アリールオキシ基としては、炭素数6~18のアリールオキシ基が好ましい。ハロゲン原子としては、塩素が挙げられる。
Hydrolyzable silane having (meth) acryloyloxy group in the molecule (b-2)
Hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule [hereinafter sometimes referred to as “compound (b-2)”. ] Has a hydrolyzable silyl group. The hydrolyzable silyl group is a silanol group or a group that generates a silanol group by hydrolysis. Examples of the group that forms a silanol group include groups in which an alkoxy group, an aryloxy group, an acetoxy group, a halogen atom, or the like is bonded to a silicon atom. Here, the alkoxy group is preferably an alkoxy group having 1 to 8 carbon atoms, and the aryloxy group is preferably an aryloxy group having 6 to 18 carbon atoms. A halogen atom includes chlorine.
 化合物(b-2)は、分子内に(メタ)アクリロイルオキシ基及び加水分解性シリル基を有する化合物であれば特に限定されない。 Compound (b-2) is not particularly limited as long as it is a compound having a (meth) acryloyloxy group and a hydrolyzable silyl group in the molecule.
 化合物(b-2)としては、例えば、下記一般式(B-I) As the compound (b-2), for example, the following general formula (BI)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[式(B-I)中、Zは(メタ)アクリロイルオキシ基を示す。R18は炭素数1~8の2価の炭化水素基を示す。R、R及びRのうち少なくとも1つは、ハロゲン原子、ヒドロキシ基、アルコキシ基又はアリールオキシ基を示し、残余は水素原子、アルキル基又はアリール基を示す。]
で表される化合物(b-2-1)[以下、「化合物(b-2-1)」と略すことがある。]が挙げられる。
[In the formula (BI), Z represents a (meth) acryloyloxy group. R 18 represents a divalent hydrocarbon group having 1 to 8 carbon atoms. At least one of R a , R b and R c represents a halogen atom, a hydroxy group, an alkoxy group or an aryloxy group, and the remainder represents a hydrogen atom, an alkyl group or an aryl group. ]
Compound (b-2-1) represented by the formula [hereinafter sometimes referred to as “compound (b-2-1)”. ].
 前記R18は、炭素数1~8の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基、オクチレン基等が挙げられる。 R 18 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 8 carbon atoms. Specifically, for example, methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group, octylene group and the like can be mentioned. It is done.
 R、R及びRで示されるアルコキシ基としては、炭素数1~8のものが挙げられ、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、オクチルオキシ基等が好ましい。 Examples of the alkoxy group represented by R a , R b and R c include those having 1 to 8 carbon atoms, and a methoxy group, ethoxy group, propoxy group, butoxy group, octyloxy group and the like are preferable.
 R、R及びRで示されるアルキル基としては、炭素数1~8のものが挙げられ、メチル基、エチル基、プロピル基、ブチル基、オクチル基等が好ましい。 Examples of the alkyl group represented by R a , R b and R c include those having 1 to 8 carbon atoms, and a methyl group, ethyl group, propyl group, butyl group, octyl group and the like are preferable.
 R、R及びRで示されるアリールオキシ基としては、炭素数6~18のものが挙げられ、フェノキシ基、キシリルオキシ基等が好ましい。 Examples of the aryloxy group represented by R a , R b and R c include those having 6 to 18 carbon atoms, and a phenoxy group, a xylyloxy group and the like are preferable.
 R、R及びRで示されるアリール基としては、炭素数6~18のものが挙げられ、フェニル基、キシリル基等が好ましい。 Examples of the aryl group represented by R a , R b and R c include those having 6 to 18 carbon atoms, and a phenyl group, a xylyl group and the like are preferable.
 R(R)(R)Si-で示される基としては、例えば、トリメトキシシリル基、トリエトキシシリル基、トリフェノキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル基等を挙げることができる。このような基のうち、トリメトキシシリル基、トリエトキシシリル基等が好ましい。 Examples of the group represented by R a (R b ) (R c ) Si— include a trimethoxysilyl group, a triethoxysilyl group, a triphenoxysilyl group, a methyldimethoxysilyl group, and a dimethylmethoxysilyl group. it can. Of these groups, a trimethoxysilyl group, a triethoxysilyl group, and the like are preferable.
 化合物(b-2-1)としては、例えば、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、2-メタクリロイルオキシエチルトリメトキシシラン、2-アクリロイルオキシエチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、2-メタクリロイルオキシエチルトリエトキシシラン、2-アクリロイルオキシエチルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン等から選択される少なくとも1種の化合物が挙げられる。 Examples of the compound (b-2-1) include 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 2-methacryloyloxyethyltrimethoxysilane, 2-acryloyloxyethyltrimethoxysilane, 3 -Methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropyltriethoxysilane, 2-methacryloyloxyethyltriethoxysilane, 2-acryloyloxyethyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyl Examples thereof include at least one compound selected from dimethoxysilane and the like.
 化合物(b-2)としては、前記化合物(b-2-1)の他に、例えば、分子内に(メタ)アクリロイルオキシ基とウレタン結合との両者を有する加水分解性シラン[以下、「化合物(b-2-2)」と略すことがある。]が挙げられる。 As the compound (b-2), in addition to the compound (b-2-1), for example, a hydrolyzable silane having both a (meth) acryloyloxy group and a urethane bond in the molecule [hereinafter referred to as “compound (B-2-2) ". ].
 分子内に(メタ)アクリロイルオキシ基とウレタン結合との両者を有する加水分解性シランとしては、例えば、下記一般式(B-II) As the hydrolyzable silane having both a (meth) acryloyloxy group and a urethane bond in the molecule, for example, the following general formula (B-II)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式(B-II)中、R19は水素原子又はメチル基を示す。R20は炭素数1~10の2価の炭化水素基を示す。R21は炭素数1~10の2価の炭化水素基を示す。R、R及びRのうち少なくとも1つは、ハロゲン原子、ヒドロキシ基、アルコキシ基又はアリールオキシ基を示し、残余は水素原子、アルキル基又はアリール基を示す。qは1~10の整数を示す。]
で表される加水分解性シランが挙げられる。
[In the formula (B-II), R 19 represents a hydrogen atom or a methyl group. R 20 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. R 21 represents a divalent hydrocarbon group having 1 to 10 carbon atoms. At least one of R a , R b and R c represents a halogen atom, a hydroxy group, an alkoxy group or an aryloxy group, and the remainder represents a hydrogen atom, an alkyl group or an aryl group. q represents an integer of 1 to 10. ]
The hydrolyzable silane represented by these is mentioned.
 前記R20としては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6の2価の炭化水素基、特にエチレン基、1,2-プロピレン基、1,4-ブチレン基であることが好ましい。 R 20 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specifically, for example, an alkylene group such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group; cyclohexylene group And aralkylene groups such as a phenylene group and a xylylene group. Of these, a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group, a 1,2-propylene group, and a 1,4-butylene group are preferable.
 前記R21としては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが好ましい。 R 21 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms. Specifically, for example, an alkylene group such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group; cyclohexylene group And aralkylene groups such as a phenylene group and a xylylene group. Of these, a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group and a 1,3-propylene group are preferable.
 前記qとしては、1~10の整数であれば特に限定されるものではない。qとしては、好ましくは1~5の整数、さらに好ましくは1~3の整数、特に好ましくは1である。 The q is not particularly limited as long as it is an integer of 1 to 10. q is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and particularly preferably 1.
 前記一般式(B-II)で表される加水分解性シランは、例えば、下記一般式(B-III)で表される加水分解性シランと、下記一般式(B-IV)で表される化合物とを反応させることにより得ることができる。 Examples of the hydrolyzable silane represented by the general formula (B-II) include a hydrolyzable silane represented by the following general formula (B-III) and the following general formula (B-IV). It can be obtained by reacting with a compound.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[式(B-III)中、R21、R、R及びRは前記と同じである。] [In the formula (B-III), R 21 , R a , R b and R c are the same as defined above. ]
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[式(B-IV)中、R19、R20及びqは前記と同じである。] 前記一般式(B-III)で表される加水分解性シランとしては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。 [In the formula (B-IV), R 19 , R 20 and q are the same as defined above. Examples of the hydrolyzable silane represented by the general formula (B-III) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane.
 前記一般式(B-IV)で表される化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート等が挙げられる。 Examples of the compound represented by the general formula (B-IV) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl ( Examples include meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, and dipropylene glycol mono (meth) acrylate.
 前記一般式(B-III)で表される加水分解性シランと前記一般式(B-IV)で表される化合物との反応は、イソシアネート基と水酸基とを反応させる常法に従って行うことができる。 The reaction between the hydrolyzable silane represented by the general formula (B-III) and the compound represented by the general formula (B-IV) can be performed according to a conventional method in which an isocyanate group and a hydroxyl group are reacted. .
 上記反応式における一般式(B-III)で表される加水分解性シランと前記一般式(B-IV)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。 In the above reaction formula, the use ratio of the hydrolyzable silane represented by the general formula (B-III) and the compound represented by the general formula (B-IV) is usually 0.90 per 1 mol of the former. About 1.10 mol, preferably about 0.95 to 1.05 mol.
 反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、2~10時間程度で終了する。 The reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. The reaction is usually completed in about 2 to 10 hours.
 前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。 In the above reaction, a catalyst may be used as appropriate. Examples of the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, Ester solvents such as methyl propionate; Ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ether solvents such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbon solvents such as toluene and xylene And aliphatic hydrocarbon solvents.
 化合物(b-2)としては、前記化合物(b-2-1)及び化合物(b-2-2)の他に、例えば、分子内に(メタ)アクリロイルオキシ基とイソシアヌレート環構造との両者を有する加水分解性シラン[以下、「化合物(b-2-3)」と略すことがある。]が挙げられる。 Examples of the compound (b-2) include, in addition to the compound (b-2-1) and the compound (b-2-2), both a (meth) acryloyloxy group and an isocyanurate ring structure in the molecule. Hydrolyzable silane having the formula [hereinafter sometimes referred to as “compound (b-2-3)”. ].
 分子内に(メタ)アクリロイルオキシ基とイソシアヌレート環構造との両者を有する加水分解性シランとしては、例えば、下記一般式(B-V) Examples of hydrolyzable silanes having both a (meth) acryloyloxy group and an isocyanurate ring structure in the molecule include, for example, the following general formula (BV)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
[式(B-V)中、R22は同一又は異なって水素原子又はメチル基を示す。R23は同一又は異なって2価の有機基を示す。R24は2価の有機基を示す。R、R及びRのうち少なくとも1つは、ハロゲン原子、ヒドロキシ基、アルコキシ基又はアリールオキシ基を示し、残余は水素原子、アルキル基又はアリール基を示す。]
で表される加水分解性シランが挙げられる。
[In the formula (BV), R 22 are the same or different and each represents a hydrogen atom or a methyl group. R 23 is the same or different and represents a divalent organic group. R 24 represents a divalent organic group. At least one of R a , R b and R c represents a halogen atom, a hydroxy group, an alkoxy group or an aryloxy group, and the remainder represents a hydrogen atom, an alkyl group or an aryl group. ]
The hydrolyzable silane represented by these is mentioned.
 前記R23は、2価の有機基であれば特に限定されるものではない。2価の有機基としては、例えば、炭素数1~100の2価の有機基が挙げられる。好ましくは炭素数1~30の2価の有機基である。2価の有機基は、炭化水素基に限定されるものではなく、例えば、ウレタン結合、エステル結合、エーテル結合等を有していてもよい。 R 23 is not particularly limited as long as it is a divalent organic group. Examples of the divalent organic group include divalent organic groups having 1 to 100 carbon atoms. A divalent organic group having 1 to 30 carbon atoms is preferred. The divalent organic group is not limited to a hydrocarbon group, and may have, for example, a urethane bond, an ester bond, an ether bond, or the like.
 前記R24は、2価の有機基であれば特に限定されるものではない。2価の有機基としては、例えば、炭素数1~100の2価の有機基が挙げられる。好ましくは炭素数1~30の2価の有機基である。2価の有機基は、炭化水素基に限定されるものではなく、例えば、ウレタン結合、エステル結合、エーテル結合等を有していてもよい。 The R 24 is not particularly limited as long as it is a divalent organic group. Examples of the divalent organic group include divalent organic groups having 1 to 100 carbon atoms. A divalent organic group having 1 to 30 carbon atoms is preferred. The divalent organic group is not limited to a hydrocarbon group, and may have, for example, a urethane bond, an ester bond, an ether bond, or the like.
 前記一般式(B-V)で表される加水分解性シランとしては、さらに具体的には例えば、下記一般式(B-VI)で表される加水分解性シラン及び下記一般式(B-VII)で表される加水分解性シランが挙げられる。 Specific examples of the hydrolyzable silane represented by the general formula (BV) include hydrolyzable silanes represented by the following general formula (B-VI) and the following general formula (B-VII). ) Represented by a hydrolyzable silane.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[式(B-VI)中、R25は同一又は異なって水素原子又はメチル基を示す。R26は同一又は異なって炭素数1~6の2価の炭化水素基を示す。R27は炭素数1~4の2価の炭化水素基を示す。rは同一又は異なって0~5の整数を示す。R、R及びRは前記と同じである。式(B-VII)中、R28は同一又は異なって水素原子又はメチル基を示す。R29は同一又は異なって炭素数1~6の2価の炭化水素基を示す。R30は炭素数1~4の2価の炭化水素基を示す。R、R及びRは前記と同じである。]。 [In the formula (B-VI), R 25 are the same or different and each represents a hydrogen atom or a methyl group. R 26 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms. R 27 represents a divalent hydrocarbon group having 1 to 4 carbon atoms. r is the same or different and represents an integer of 0 to 5. R a , R b and R c are the same as described above. In formula (B-VII), R 28 are the same or different and each represents a hydrogen atom or a methyl group. R 29 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms. R 30 represents a divalent hydrocarbon group having 1 to 4 carbon atoms. R a , R b and R c are the same as described above. ].
 前記R26は、炭素数1~6の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等が挙げられる。なかでも、炭素数2~4の2価の炭化水素基、特にエチレン基であることが、得られる硬化塗膜の透明性の点から好ましい。 R 26 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable from the viewpoint of transparency of the resulting cured coating film.
 前記R27は、炭素数1~4の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基等が挙げられる。 R 27 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
 前記一般式(B-VI)で表される有機基としては、耐擦傷性、透明性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、R25が水素原子であり、R26がエチレン基であり、R27が1、3-プロピレン基であり、rが0である有機基が好ましい。 As the organic group represented by the general formula (B-VI), R 25 is a hydrogen atom from the viewpoint of better scratch resistance, transparency, and active energy ray curability in the presence of a photopolymerization initiator. R 26 is an ethylene group, R 27 is a 1,3-propylene group, and an organic group in which r is 0 is preferable.
 前記R29は、炭素数1~6の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等が挙げられる。なかでも、炭素数2~4の2価の炭化水素基、特にエチレン基であることが、得られる硬化塗膜の透明性の点から好ましい。 R 29 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable from the viewpoint of transparency of the resulting cured coating film.
 前記R30は、炭素数1~4の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基等が挙げられる。 R 30 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 4 carbon atoms. Specific examples include ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group and the like.
 前記一般式(B-VII)で表される有機基としては、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び光重合開始剤存在下での活性エネルギー線硬化性がより優れる点から、R28が水素原子であり、R29がエチレン基であり、R30が1、3-プロピレン基である有機基が好ましい。 The organic group represented by the general formula (B-VII) is more excellent in scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability in the presence of a photopolymerization initiator. From the viewpoint, an organic group in which R 28 is a hydrogen atom, R 29 is an ethylene group, and R 30 is a 1,3-propylene group is preferable.
 前記一般式(B-VI)で表される加水分解性シランを製造する方法を例示する。前記一般式(B-VI)で表される加水分解性シランは、例えば、下記一般式(B-VIII)で表される加水分解性シランと下記一般式(B-IX)で表される化合物とを反応させることにより得ることができる。 An example of a method for producing a hydrolyzable silane represented by the above general formula (B-VI) Examples of the hydrolyzable silane represented by the general formula (B-VI) include a hydrolyzable silane represented by the following general formula (B-VIII) and a compound represented by the following general formula (B-IX). It can obtain by making it react.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 前記一般式(B-VIII)中のR27、R、R及びRは前記と同じである。 In the general formula (B-VIII), R 27 , R a , R b and R c are the same as described above.
 前記一般式(B-IX)中のR25、R26及びrは前記と同じである。 In the general formula (B-IX), R 25 , R 26 and r are the same as described above.
 前記一般式(B-VIII)で表される加水分解性シランとしては、具体的には例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。 Specific examples of the hydrolyzable silane represented by the general formula (B-VIII) include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
 前記一般式(B-VIII)で表される加水分解性シランと前記一般式(B-IX)で表される化合物とを反応させる際の両者の配合割合は特に限定されるものではないが、通常、前記一般式(B-VIII)で表される加水分解性シランのアミノ基のモル数に対して、前記一般式(B-IX)で表される化合物のイソシアネート基を等モル用いて反応が行われる。 The mixing ratio of the hydrolyzable silane represented by the general formula (B-VIII) and the compound represented by the general formula (B-IX) is not particularly limited. Usually, the reaction is carried out using equimolar amounts of the isocyanate group of the compound represented by the general formula (B-IX) with respect to the number of moles of the amino group of the hydrolyzable silane represented by the general formula (B-VIII). Is done.
 この反応は、アミノ基とイソシアネート基とを反応させる常法に従って行うことができる。反応温度は、例えば、-78℃~200℃、好ましくは-78℃~100℃、更に好ましくは、-10℃~40℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。 This reaction can be performed according to a conventional method in which an amino group and an isocyanate group are reacted. The reaction temperature is, for example, −78 ° C. to 200 ° C., preferably −78 ° C. to 100 ° C., more preferably −10 ° C. to 40 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether. Examples thereof include glycol ether solvents such as acetate and 3-methoxybutyl acetate; aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents.
 前記一般式(B-IX)で表される化合物は、例えば、下記一般式(B-X)で表される化合物と下記一般式(B-XI)で表される化合物とを反応させることにより得ることができる。 The compound represented by the general formula (B-IX) is obtained by, for example, reacting a compound represented by the following general formula (BX) with a compound represented by the following general formula (B-XI). Obtainable.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 前記一般式(B-X)で表される化合物は、いわゆる1,6-ヘキサメチレンジイソシアネートのイソシアヌレート環付加物であり、商品名としては、スミジュールN3300(住化バイエルウレタン社製)、デュラネートTPA100(旭化成ケミカルズ社製)等が挙げられる。 The compound represented by the general formula (BX) is a so-called isocyanurate cycloadduct of 1,6-hexamethylene diisocyanate, and trade names include Sumijour N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.), Duranate. Examples thereof include TPA100 (manufactured by Asahi Kasei Chemicals Corporation).
 前記一般式(B-XI)中のR25、R26及びrは、前記と同じである。前記一般式(B-XI)で表される化合物は、例えば、rが0の場合の化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。rが1~5の場合の化合物としては、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートが挙げられる。具体的には、商品名として、「プラクセルFA-1」、「プラクセルFA-2」、「プラクセルFA-2D」、「プラクセルFA-3」、「プラクセルFA-4」、「プラクセルFA-5」、「プラクセルFM-1」、「プラクセルFM-2」、「プラクセルFM-2D」、「プラクセルFM-3」、「プラクセルFM-4」、「プラクセルFM-5」(いずれもダイセル化学社製)等が挙げられる。 In the general formula (B-XI), R 25 , R 26 and r are the same as described above. Examples of the compound represented by the general formula (B-XI) include compounds in which r is 0, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( And (meth) acrylate and 4-hydroxybutyl (meth) acrylate. Examples of the compound in which r is 1 to 5 include caprolactone-modified hydroxyalkyl (meth) acrylate. Specifically, as product names, “Placcel FA-1”, “Placcel FA-2”, “Placcel FA-2D”, “Placcel FA-3”, “Placcel FA-4”, “Placcel FA-5” , “Placcel FM-1,” “Placcel FM-2,” “Placcel FM-2D,” “Placcel FM-3,” “Placcel FM-4,” “Placcel FM-5” (all manufactured by Daicel Chemical Industries, Ltd.) Etc.
 前記一般式(B-X)で表される化合物と前記一般式(B-XI)で表される化合物とを反応させる際の両者の配合割合は特に限定されるものではないが、前記一般式(B-X)で表される化合物のイソシアネート基と前記一般式(B-XI)で表される化合物の水酸基とがモル比で、通常、NCO/OH=1.05~2.00、好ましくは1.10~1.50となる配合割合である。 The mixing ratio of the compound represented by the general formula (BX) and the compound represented by the general formula (B-XI) is not particularly limited. The isocyanate group of the compound represented by (BX) and the hydroxyl group of the compound represented by the general formula (B-XI) are usually in a molar ratio of NCO / OH = 1.05 to 2.00, preferably Is a blending ratio of 1.10 to 1.50.
 この反応は、イソシアネート基と水酸基とを反応させる常法に従って行うことができる。反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20℃~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、2~10時間程度で終了する。 This reaction can be carried out according to a conventional method in which an isocyanate group and a hydroxyl group are reacted. The reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 ° C to 120 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. The reaction is usually completed in about 2 to 10 hours.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether. Examples thereof include glycol ether solvents such as acetate and 3-methoxybutyl acetate; aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents.
 なお、前記一般式(B-X)で表される化合物と前記一般式(B-XI)で表される化合物とを反応させることにより得られる生成物には、前記一般式(B-IX)で表される化合物のほかに、下記一般式(B-XII) The product obtained by reacting the compound represented by the general formula (BX) with the compound represented by the general formula (B-XI) includes the above general formula (B-IX). In addition to the compound represented by formula (B-XII)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
[式(B-XII)中、R25、R26及びrは前記と同じである。]
で表される化合物等が含まれる場合がある。
[In the formula (B-XII), R 25 , R 26 and r are the same as defined above. ]
May be included.
 そして、前記一般式(B-VI)で表される加水分解性シランを製造する際、及び前記一般式(B-VI)で表される加水分解性シランを用いて反応性粒子(B)を製造する際に、その製造の原料中に前記一般式(B-XII)で表される化合物等が含まれていても特段問題はない。 Then, when producing the hydrolyzable silane represented by the general formula (B-VI), and using the hydrolyzable silane represented by the general formula (B-VI), the reactive particles (B) In production, there is no particular problem even if the compound represented by the general formula (B-XII) is contained in the raw material for the production.
 続いて、前記一般式(B-VII)で表される加水分解性シランを製造する方法を例示する。前記一般式(B-VII)で表される加水分解性シランは、例えば、下記一般式(B-XIII)で表される加水分解性シランと下記一般式(B-XIV)で表される化合物とを反応させることにより得ることができる。 Subsequently, a method for producing a hydrolyzable silane represented by the general formula (B-VII) will be exemplified. Examples of the hydrolyzable silane represented by the general formula (B-VII) include a hydrolyzable silane represented by the following general formula (B-XIII) and a compound represented by the following general formula (B-XIV) It can obtain by making it react.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 前記一般式(B-XIII)中のR30、R、R及びRは前記と同じである。 In the general formula (B-XIII), R 30 , R a , R b and R c are the same as described above.
 前記一般式(B-XIV)中のR28及びR29は前記と同じである。 R 28 and R 29 in the general formula (B-XIV) are the same as described above.
 前記一般式(B-XIII)で表される加水分解性シランとしては、具体的には例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。 Specific examples of the hydrolyzable silane represented by the general formula (B-XIII) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatepropyltriethoxysilane.
 前記一般式(B-XIV)で表される化合物としては、例えば、ビス(2-アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート、ビス(2-アクリロイルオキシプロピル)ヒドロキシエチルイソシアヌレート等が挙げられる。商品名としては、アロニックスM-215、アロニックスM-313(いずれも東亞合成社製)等が挙げられる。 Examples of the compound represented by the general formula (B-XIV) include bis (2-acryloyloxyethyl) hydroxyethyl isocyanurate, bis (2-acryloyloxypropyl) hydroxyethyl isocyanurate, and the like. Product names include Aronix M-215 and Aronix M-313 (both manufactured by Toagosei Co., Ltd.).
 前記一般式(B-XIII)で表される加水分解性シランと前記一般式(B-XIV)で表される化合物とを反応させる際の両者の配合割合は特に限定されるものではないが、通常、前記一般式(B-XIII)で表される加水分解性シランのイソシアネート基のモル数に対して、前記一般式(B-XIV)で表される化合物の水酸基を等モル用いて反応が行われる。 The mixing ratio of the hydrolyzable silane represented by the general formula (B-XIII) and the compound represented by the general formula (B-XIV) is not particularly limited. Usually, the reaction is carried out using an equimolar amount of the hydroxyl group of the compound represented by the general formula (B-XIV) with respect to the number of moles of the isocyanate group of the hydrolyzable silane represented by the general formula (B-XIII). Done.
 この反応は、イソシアネート基と水酸基とを反応させる常法に従って行うことができる。反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20℃~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、2~10時間程度で終了する。 This reaction can be carried out according to a conventional method in which an isocyanate group and a hydroxyl group are reacted. The reaction temperature is, for example, 0 to 200 ° C, preferably 20 to 200 ° C, more preferably 20 ° C to 120 ° C. This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred. The reaction is usually completed in about 2 to 10 hours.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether. Examples thereof include glycol ether solvents such as acetate and 3-methoxybutyl acetate; aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents.
 なお、前記一般式(B-XIV)で表される化合物は、例えば、アロニックスM-215、アロニックスM-313(いずれも東亞合成社製)等に代表されるように、通常、トリス(2-アクリロイルオキシエチル)イソシアヌレート、トリス(2-アクリロイルオキシプロピル)イソシアヌレート等の下記一般式(B-XV) The compound represented by the general formula (B-XIV) is usually tris (2- (2)) as represented by, for example, Aronix M-215, Aronix M-313 (both manufactured by Toagosei Co., Ltd.) and the like. The following general formula (B-XV) such as acryloyloxyethyl) isocyanurate, tris (2-acryloyloxypropyl) isocyanurate
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
[式(B-XV)中、R28及びR29は前記と同じである。]
で表される化合物との混合物として販売されている。
[In the formula (B-XV), R 28 and R 29 are the same as defined above. ]
It is sold as a mixture with a compound represented by
 そして、前記一般式(B-VII)で表される加水分解性シランを製造する際、及び前記一般式(B-VII)で表される加水分解性シランを用いて反応性粒子(B)を製造する際に、その製造の原料中に前記一般式(B-XV)で表される化合物等が含まれていても特段問題はない。 Then, when producing the hydrolyzable silane represented by the general formula (B-VII), and using the hydrolyzable silane represented by the general formula (B-VII), the reactive particles (B) In production, there is no particular problem even if the compound represented by the general formula (B-XV) is contained in the raw material for the production.
 化合物(b-2)は、上記で例示された化合物を単独で又は2種以上を組合せて用いてもよい。光重合開始剤存在下での活性エネルギー線硬化性の点から、化合物(b-2-1)及び/又は化合物(b-2-2)と、化合物(b-2-3)とを併用することが好ましく、化合物(b-2-1)と化合物(b-2-3)とを併用することがより好ましい。化合物(b-2-1)及び/又は化合物(b-2-2)と化合物(b-2-3)とを併用する際の配合割合は、化合物(b-2-1)及び化合物(b-2-2)の合計量/化合物(b-2-3)=10/90~90/10(質量比)であることが好ましく、20/80~50/50(質量比)であることがより好ましい。 As the compound (b-2), the compounds exemplified above may be used alone or in combination of two or more kinds. From the viewpoint of active energy ray curability in the presence of a photopolymerization initiator, the compound (b-2-1) and / or the compound (b-2-2) and the compound (b-2-3) are used in combination. It is preferable to use the compound (b-2-1) and the compound (b-2-3) in combination. The compounding ratio when the compound (b-2-1) and / or the compound (b-2-2) and the compound (b-2-3) are used in combination is the compound (b-2-1) and the compound (b -2-2) / compound (b-2-3) = 10/90 to 90/10 (mass ratio), preferably 20/80 to 50/50 (mass ratio). More preferred.
 上記化合物(b-2)に加えて、反応性粒子(B)を得る際に、必要に応じて炭素数1以上のアルキル基を有するアルコキシシランを化合物(b-2)とともにシリカ微粒子(b-1)と反応させても良い。炭素数1以上のアルキル基を有するアルコキシシランを反応させることで、得られる反応性粒子(B)を用いて得られる塗膜の耐水性を向上させる場合がある。かかる炭素数1以上のアルキル基を有するアルコキシシランとしては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン等が挙げられ、これら例示した化合物中のメトキシ基をエトキシ基に置換した化合物(例えばメチルトリエトキシシラン等)も挙げられる。 In addition to the compound (b-2), when obtaining the reactive particles (B), an alkoxysilane having an alkyl group having 1 or more carbon atoms is optionally added together with the compound (b-2) to silica fine particles (b- You may make it react with 1). By reacting the alkoxysilane having an alkyl group having 1 or more carbon atoms, the water resistance of the coating film obtained using the obtained reactive particles (B) may be improved. Examples of the alkoxysilane having an alkyl group having 1 or more carbon atoms include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, and dodecyltrimethoxy. Silane etc. are mentioned, The compound (for example, methyltriethoxysilane etc.) which substituted the methoxy group in these illustrated compounds by the ethoxy group is also mentioned.
 反応性粒子(B)は、シリカ微粒子(b-1)と化合物(b-2)とを反応させて得られる。シリカ微粒子(b-1)と化合物(b-2)とを反応させる方法としては、特に限定されない。例えば、[i]水を含む有機溶剤の存在下にシリカ微粒子(b-1)と化合物(b-2)を混合し、加水分解縮合を行う方法、[ii]水を含む有機溶剤の存在下で化合物(b-2)を加水分解した後、化合物(b-2)の加水分解物とシリカ微粒子(b-1)とを縮合させる方法、[iii]シリカ微粒子(b-1)と化合物(b-2)とを、水、有機溶剤及び重合性不飽和化合物等のその他の成分の存在下で混合し、加水分解縮合を一度に行う方法が挙げられる。ここで、これら製造方法において使用する水は、原材料に含まれる水、例えば、コロイダルシリカ微粒子の分散媒である水であってもよい。 The reactive particles (B) can be obtained by reacting the silica fine particles (b-1) with the compound (b-2). The method for reacting the silica fine particles (b-1) with the compound (b-2) is not particularly limited. For example, [i] a method in which silica fine particles (b-1) and a compound (b-2) are mixed in the presence of an organic solvent containing water and hydrolytic condensation is performed, [ii] in the presence of an organic solvent containing water. A method of condensing the hydrolyzate of compound (b-2) with silica fine particles (b-1) after hydrolyzing compound (b-2), [iii] silica fine particles (b-1) and compound ( and b-2) may be mixed in the presence of water, an organic solvent, and other components such as a polymerizable unsaturated compound, and hydrolytic condensation may be performed at once. Here, the water used in these production methods may be water contained in the raw material, for example, water that is a dispersion medium of colloidal silica fine particles.
 反応性粒子(B)を製造する方法についてより具体的に説明する。反応性粒子(B)は、例えば、シリカ微粒子(b-1)であるコロイダルシリカ微粒子と、化合物(b-2)と、任意で低級アルコールと、任意で重合性不飽和化合物との存在下で、コロイダルシリカ微粒子中の分散媒、及び低級アルコール[化合物(b-2)を加水分解して生じた低級アルコールを含む。]を常圧又は減圧下で低級アルコールよりも高沸点の溶剤とともに共沸留出させ、分散媒を該溶剤に置換した後、加熱下で脱水縮合反応させることにより製造することができる。 The method for producing the reactive particles (B) will be described more specifically. The reactive particles (B) are, for example, in the presence of colloidal silica fine particles that are silica fine particles (b-1), a compound (b-2), optionally a lower alcohol, and optionally a polymerizable unsaturated compound. A dispersion medium in colloidal silica fine particles, and a lower alcohol [including a lower alcohol produced by hydrolyzing compound (b-2). ] Is azeotropically distilled together with a solvent having a boiling point higher than that of the lower alcohol under normal pressure or reduced pressure, and the dispersion medium is replaced with the solvent, followed by a dehydration condensation reaction under heating.
 この製造方法においては、シリカ微粒子(b-1)であるコロイダルシリカ微粒子と、化合物(b-2)と、任意で低級アルコールと、任意で重合性不飽和化合物との混合物に必要により加水分解触媒を加え、常温又は加熱下で攪拌する等の常法によって、化合物(b-2)の加水分解を行う。続いて、コロイダルシリカ微粒子中の分散媒、及び低級アルコールを常圧又は減圧下で低級アルコールよりも高沸点の溶剤とともに共沸留出させ、分散媒を該溶剤に置換した後、60~150℃、好ましくは80~130℃の温度で、通常不揮発分濃度を30~90質量%の範囲、好ましくは50~80質量%の範囲に保ちながら、0.5~10時間攪拌下で反応させる。反応後には、縮合反応又は加水分解で生ずる水及び低級アルコールを、低級アルコールよりも高沸点の溶剤とともに共沸留去することが好ましい。 In this production method, a hydrolysis catalyst is optionally added to a mixture of the colloidal silica fine particles as the silica fine particles (b-1), the compound (b-2), optionally a lower alcohol, and optionally a polymerizable unsaturated compound. And the compound (b-2) is hydrolyzed by a conventional method such as stirring at room temperature or under heating. Subsequently, the dispersion medium in the colloidal silica fine particles and the lower alcohol were azeotropically distilled together with a solvent having a boiling point higher than that of the lower alcohol under normal pressure or reduced pressure, and the dispersion medium was replaced with the solvent. The reaction is carried out with stirring for 0.5 to 10 hours at a temperature of preferably 80 to 130 ° C. and usually maintaining the nonvolatile content concentration in the range of 30 to 90% by mass, preferably in the range of 50 to 80% by mass. After the reaction, it is preferable to azeotropically distill water and lower alcohol generated by condensation reaction or hydrolysis together with a solvent having a boiling point higher than that of the lower alcohol.
 上記反応に用いられる溶媒とは、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、シクロヘキサン等の炭化水素系溶媒;トリクロルエチレン、テトラクロルエチレン等のハロゲン化炭化水素系溶媒;1,4-ジオキサン、ジブチルエーテル等のエーテル系溶媒;メチルイソブチルケトン等のケトン系溶媒;酢酸n-ブチル、酢酸イソブチル、酢酸エチル、プロピオン酸エチル等のエステル系溶媒;エチレングリコールモノブチルエーテル等の多価アルコール誘導体等が挙げられる。 Examples of the solvent used in the above reaction include hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and cyclohexane; halogenated hydrocarbon solvents such as trichloroethylene and tetrachloroethylene; 1,4-dioxane, dibutyl ether Ether solvents such as methyl isobutyl ketone; ester solvents such as n-butyl acetate, isobutyl acetate, ethyl acetate, and ethyl propionate; polyhydric alcohol derivatives such as ethylene glycol monobutyl ether.
 反応中の不揮発分濃度は5~50質量%の範囲が好ましい。不揮発分濃度が5質量%未満、すなわち溶剤が95質量%を超える場合、シリカ微粒子(b-1)と化合物(b-2)との反応が不十分であり、反応性粒子を含む活性エネルギー硬化性組成物により得られる硬化被膜は透明性に劣る場合がある。一方、不揮発分濃度が50質量%を超えると、生成物がゲル化する恐れがある。 The non-volatile concentration during the reaction is preferably in the range of 5 to 50% by mass. When the nonvolatile content concentration is less than 5% by mass, that is, when the solvent exceeds 95% by mass, the reaction between the silica fine particles (b-1) and the compound (b-2) is insufficient, and active energy curing including reactive particles. The cured film obtained by the conductive composition may be inferior in transparency. On the other hand, if the nonvolatile content concentration exceeds 50% by mass, the product may be gelled.
 これらの製造方法によりシリカ微粒子(b-1)表面のケイ素原子と、化合物(b-2)分子中のケイ素原子が酸素原子を介して結合することにより、シリカ微粒子(b-1)と化合物(b-2)とが化学的に結合した反応性粒子(B)が得られる。 By these production methods, the silicon atom on the surface of the silica fine particle (b-1) and the silicon atom in the molecule of the compound (b-2) are bonded via an oxygen atom, whereby the silica fine particle (b-1) and the compound ( Reactive particles (B) chemically bonded to b-2) are obtained.
 反応性粒子(B)を得る際の化合物(b-2)の配合割合は、シリカ微粒子(b-1)100質量部に対して、好ましくは1質量部以上であり、より好ましくは2質量部以上、特に好ましくは5質量部以上である。シリカ微粒子(b-1)に結合した化合物(b-2)の量が5質量部未満であると、活性エネルギー線硬化性組成物中における反応性粒子(B)の分散性が十分ではなく、得られる硬化被膜の透明性が十分でなくなる場合がある。また、反応性粒子(B)製造時の原料中のシリカ微粒子(b-1)の配合割合は、得られる反応性粒子(B)100質量部に対して、好ましくは5~99質量部であり、さらに好ましくは10~98質量部である。 The compounding ratio of the compound (b-2) in obtaining the reactive particles (B) is preferably 1 part by mass or more, more preferably 2 parts by mass with respect to 100 parts by mass of the silica fine particles (b-1). As described above, it is particularly preferably 5 parts by mass or more. When the amount of the compound (b-2) bonded to the silica fine particles (b-1) is less than 5 parts by mass, the dispersibility of the reactive particles (B) in the active energy ray-curable composition is not sufficient, The cured film obtained may not have sufficient transparency. The mixing ratio of the silica fine particles (b-1) in the raw material during the production of the reactive particles (B) is preferably 5 to 99 parts by mass with respect to 100 parts by mass of the resulting reactive particles (B). More preferably, it is 10 to 98 parts by mass.
 また炭素数1以上のアルキル基を有するアルコキシシランを用いる場合には、その配合割合が化合物(b-2)に対して2.5~100質量%、好ましくは25~50質量%であることが得られる塗膜の耐水性向上の点から好ましい。 When an alkoxysilane having an alkyl group having 1 or more carbon atoms is used, the blending ratio is 2.5 to 100% by mass, preferably 25 to 50% by mass with respect to the compound (b-2). It is preferable from the point of the water resistance improvement of the coating film obtained.
 活性エネルギー線硬化性組成物における反応性粒子(B)の含有量は、特に限定されるものではない。硬化被膜の耐擦傷性及び透明性の点から、好ましくは活性エネルギー線硬化性組成物の不揮発分100質量部に対して、1~95質量部であり、より好ましくは5~70質量部であり、特に好ましくは10~50質量部である。 The content of the reactive particles (B) in the active energy ray-curable composition is not particularly limited. From the viewpoint of scratch resistance and transparency of the cured coating, it is preferably 1 to 95 parts by mass, more preferably 5 to 70 parts by mass with respect to 100 parts by mass of the nonvolatile content of the active energy ray-curable composition. Particularly preferred is 10 to 50 parts by mass.
 光重合開始剤(C)
 本発明の活性エネルギー線硬化性組成物はさらに光重合開始剤(C)を含有していてもよい。光重合開始剤(C)としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
Photopolymerization initiator (C)
The active energy ray-curable composition of the present invention may further contain a photopolymerization initiator (C). As a photoinitiator (C), if it is an initiator which absorbs an active energy ray and generate | occur | produces a radical, it can be used without being specifically limited.
 前記光重合開始剤(C)としては、例えばベンジル、ジアセチル等のα-ジケトン化合物;ベンゾイン等のアシロイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル化合物;チオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、チオキサントン-4-スルホン酸等のチオキサントン化合物;ベンゾフェノン、4,4′-ビス(ジメチルアミノ)ベンゾフェノン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;ミヒラーケトン化合物;アセトフェノン、2-(4-トルエンスルホニルオキシ)-2-フェニルアセトフェノン、p-ジメチルアミノアセトフェノン、α,α′-ジメトキシアセトキシベンゾフェノン、2,2′-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル〔4-(メチルチオ)フェニル〕-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、α-イソヒドロキシイソブチルフェノン、α,α′-ジクロル-4-フェノキシアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン等のアセトフェノン化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(アシル)フォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;アントラキノン、1,4-ナフトキノン等のキノン化合物;フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)-s-トリアジン等のハロゲン化合物;ジ-t-ブチルパーオキサイド等の過酸化物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。 Examples of the photopolymerization initiator (C) include α-diketone compounds such as benzyl and diacetyl; acyloin compounds such as benzoin; acyloin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether; thioxanthone, 2, Thioxanthone compounds such as 4-diethylthioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenone compounds such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketone compound; acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, α, α'-dimethoxyacetoxy Nzophenone, 2,2'-dimethoxy-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- Acetophenone compounds such as (4-morpholinophenyl) -butan-1-one, α-isohydroxyisobutylphenone, α, α'-dichloro-4-phenoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl-ketone; 2,4 Acylphosphine oxide compounds such as 1,6-trimethylbenzoyldiphenylphosphine oxide and bis (acyl) phosphine oxide; quinone compounds such as anthraquinone and 1,4-naphthoquinone; phenacyl chloride, trihalomethylphenylsulfone, Scan (trihalomethyl) -s-halogen compounds such as triazine; peroxides such as di -t- butyl peroxide. These can be used as one or a mixture of two or more.
 前記光重合開始剤(C)の市販品としては、例えば、イルガキュア(IRGACURE)-184、イルガキュア-261、イルガキュア-500、イルガキュア-651、イルガキュア-819、イルガキュア-907、イルガキュア-CGI-1700(チバ スペシャルティ ケミカルズ社製、商品名、英語表記 IRGACURE)、ダロキュア(Darocur)-1173、ダロキュア-1116、ダロキュア-2959、ダロキュア-1664、ダロキュア-4043(メルクジャパン社製、商品名、英語表記Darocur)、カヤキュア(KAYACURE)-MBP、カヤキュア-DETX-S、カヤキュア-DMBI、カヤキュア-EPA、カヤキュア-OA(日本化薬社製、商品名英語表記KAYACURE)、ビキュア(VICURE)-10、ビキュア-55〔ストウファー社(STAUFFER Co., LTD.)製、商品名〕、トリゴナル(TRIGONAL)P1〔アクゾ社(AKZO Co., LTD.)製、商品名〕、サンドレイ(SANDORAY)1000〔サンドズ社(SANDOZ Co., LTD.)製、商品名〕、ディープ(DEAP)〔アプジョン社(APJOHN Co., LTD.)製、商品名〕、カンタキュア(QUANTACURE)-PDO、カンタキュア-ITX、カンタキュア-EPD〔ウォードブレキンソプ社(WARD BLEKINSOP Co., LTD.)製、商品名〕等を挙げることができる。 Examples of commercially available photopolymerization initiators (C) include IRGACURE-184, IRGACURE-261, IRGACURE-500, IRGACURE-651, IRGACURE-819, IRGACURE-907, IRGACURE-CGI-1700 (Ciba Specialty Chemicals, trade name, English name IRGACURE), Darocur-1173, Darocur-1116, Darocur-2959, Darocur-1664, Darocur-4064 (Merck Japan, trade name, English name Darocur), Kayacure (KAYACURE) -MBP, Kayacure-DETX-S, Kayacure-DMBI, Kayacure-EPA, Kayacure-OA (manufactured by Nippon Kayaku Co., Ltd., trade name English notation KAYACURE), Vicure-10, Vicure-55 [Stoufer (STAUFFER Co., LTD., Product name], TRIGONAL P1 [AKZO Co., LTD., Product name], SANDORAY 1000 [SANDOZ Co., LTD.] Product name], Deep (DEAP) (manufactured by APJOHN Co., LTD., Product name), CANTACURE-PDO, CANTACURE-ITX, CANTACURE-EPD [WARD BREKKINSOP Co., LTD.), Trade name, etc.
 前記光重合開始剤(C)としては、光硬化性の点からチオキサントン化合物、アセトフェノン化合物及びアシルフォスフィンオキシド化合物の1種又は2種以上の混合物であることが好ましく、なかでもアセトフェノン化合物とアシルフォスフィンオキシド化合物との混合物であることが特に好適である。 The photopolymerization initiator (C) is preferably one or a mixture of two or more of a thioxanthone compound, an acetophenone compound and an acylphosphine oxide compound from the viewpoint of photocurability, and among them, an acetophenone compound and an acylphosphine. Particularly preferred is a mixture with a fin oxide compound.
 光重合開始剤(C)の使用量は、特に限定されるものではないが、活性エネルギー線硬化性組成物の不揮発分100質量部に対して、0.5~10質量部が好ましく、さらに好ましくは1~5質量部の範囲である。この範囲の下限値は、活性エネルギー線硬化性向上の点で意義があり、上限値はコスト及び深部硬化性の点で意義がある。 The amount of the photopolymerization initiator (C) used is not particularly limited, but is preferably 0.5 to 10 parts by weight, more preferably 100 parts by weight of the nonvolatile content of the active energy ray-curable composition. Is in the range of 1 to 5 parts by weight. The lower limit of this range is significant in terms of improving active energy ray curability, and the upper limit is significant in terms of cost and deep curability.
 重合性不飽和化合物(D)
 本発明の活性エネルギー線硬化性組成物はさらに重合性不飽和化合物(D)を含有していてもよい。重合性不飽和化合物(D)としては、(A)成分及び(B)成分以外の化合物であって、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
Polymerizable unsaturated compound (D)
The active energy ray-curable composition of the present invention may further contain a polymerizable unsaturated compound (D). The polymerizable unsaturated compound (D) is particularly limited as long as it is a compound other than the components (A) and (B) and has at least one polymerizable unsaturated double bond in its chemical structure. Not.
 前記重合性不飽和化合物(D)としては、単官能重合性不飽和化合物、多官能重合性不飽和化合物が挙げられる。 Examples of the polymerizable unsaturated compound (D) include a monofunctional polymerizable unsaturated compound and a polyfunctional polymerizable unsaturated compound.
 単官能重合性不飽和化合物としては、例えば、一価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。また、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、2-カルボキシエチル(メタ)アクリレート、2-カルボキシプロピル(メタ)アクリレート、5-カルボキシペンチル(メタ)アクリレート等のカルボキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性不飽和化合物;スチレン、α-メチルスチレン、ビニルトルエン、α-クロルスチレン等のビニル芳香族化合物;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N-t-ブチルアミノエチル(メタ)アクリレート等の含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド等の重合性アミド化合物等が挙げられる。 Examples of the monofunctional polymerizable unsaturated compound include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide. Also, for example, hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid Carboxyl group-containing (meth) acrylates such as 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (meth) acrylate and 5-carboxypentyl (meth) acrylate; glycidyl groups such as glycidyl (meth) acrylate and allyl glycidyl ether Containing polymerizable unsaturated compounds; vinyl aromatic compounds such as styrene, α-methylstyrene, vinyltoluene, α-chlorostyrene; N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl Nitrogen-containing alkyl (meth) acrylates such as ru (meth) acrylate and Nt-butylaminoethyl (meth) acrylate; acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N- Methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N- Examples thereof include polymerizable amide compounds such as dimethylaminoethyl (meth) acrylamide.
 多官能重合性不飽和化合物としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデンカンジメタノールジ(メタ)アクリレート、水素化ビスフェノールAジ(メタ)アクリレート、水素化ビスフェノールFジ(メタ)アクリレート、水素化ヘキサフルオロビスフェノールAジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシ)ヘキサヒドロフタル酸、5-エチル-2-(2-ヒドロキシ-1,1ジメチルエチル)-5-(ヒドロキシメチル)-1,3-ジオキサンジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;その他、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、重合性不飽和基含有アクリル樹脂、ウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂等が挙げられる。重合性不飽和基含有アクリル樹脂としては、例えば、カルボキシル基含有アクリル樹脂にグリシジル(メタ)アクリレート等のグリシジル基含有重合性不飽和化合物を付加して得られる重合性不飽和基含有アクリル樹脂、ヒドロキシル基含有アクリル樹脂に2-イソシアネートエチル(メタ)アクリレート等のイソシアネート基と重合性不飽和基とを有する化合物を付加して得られる重合性不飽和基含有アクリル樹脂等が挙げられる。これら重合性不飽和化合物は単独で又は2種以上組合せて使用することができる。 Examples of the polyfunctional polymerizable unsaturated compound include esterified products of polyhydric alcohol and (meth) acrylic acid. Specifically, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate, Hexane dimethanol di (meth) acrylate, tricyclodencan dimethanol di (meth) acrylate, hydrogenated bisphenol A di (meth) acrylate, hydrogenated bisphenol F di (meth) acrylate, hydrogenated hexafluorobisphenol A di (meth) Acrylate, bis (2- (meth) acryloyloxy) hexahydrophthalic acid, 5-ethyl-2- (2-hydroxy-1,1dimethylethyl) -5- (hydroxymethyl) -1,3-dioxanedi (meth) ) Di (meth) acrylate compounds such as acrylate; glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide Tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ε-caprolactone-modified tris (acryloxyethyl) isocyanurate and other tri (meth) acrylate compounds; pentaerythritol tetra (meth) acrylate and other tetra (meth) acrylates Compound; Other examples include dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate. Furthermore, a polymerizable unsaturated group containing acrylic resin, urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin, etc. are mentioned. Examples of the polymerizable unsaturated group-containing acrylic resin include a polymerizable unsaturated group-containing acrylic resin obtained by adding a glycidyl group-containing polymerizable unsaturated compound such as glycidyl (meth) acrylate to a carboxyl group-containing acrylic resin, hydroxyl group, and the like. Examples thereof include polymerizable unsaturated group-containing acrylic resins obtained by adding a compound having an isocyanate group and a polymerizable unsaturated group, such as 2-isocyanatoethyl (meth) acrylate, to the group-containing acrylic resin. These polymerizable unsaturated compounds can be used alone or in combination of two or more.
 さらに多官能重合性不飽和化合物としては、下記一般式(D-I)で表される重合性不飽和化合物及び下記一般式(D-II)で表される重合性不飽和化合物が挙げられる。 Furthermore, examples of the polyfunctional polymerizable unsaturated compound include a polymerizable unsaturated compound represented by the following general formula (DI) and a polymerizable unsaturated compound represented by the following general formula (D-II).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式(D-I)中、R31は同一又は異なって水素原子又はメチル基を示す。R32は同一又は異なって炭素数1~6の2価の炭化水素基を示す。sは同一又は異なって0~5の整数を示す。式(D-II)中、R33は同一又は異なって水素原子又はメチル基を示す。R34は同一又は異なって炭素数1~6の2価の炭化水素基を示す。] 前記R32は、炭素数1~6の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等が挙げられる。なかでも、炭素数2~4の2価の炭化水素基、特にエチレン基であることが好ましい。 [In the formula (DI), R 31 are the same or different and each represents a hydrogen atom or a methyl group. R 32 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms. s is the same or different and represents an integer of 0 to 5. In formula (D-II), R 33 are the same or different and each represents a hydrogen atom or a methyl group. R 34 is the same or different and represents a divalent hydrocarbon group having 1 to 6 carbon atoms. R 32 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable.
 前記R34は、炭素数1~6の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等が挙げられる。なかでも、炭素数2~4の2価の炭化水素基、特にエチレン基であることが好ましい。 R 34 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 6 carbon atoms. Specific examples include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group and the like. Among these, a divalent hydrocarbon group having 2 to 4 carbon atoms, particularly an ethylene group is preferable.
 前記一般式(D-I)で表される重合性不飽和化合物は、例えば、1,6-ヘキサメチレンジイソシアネートのイソシアヌレート環付加物、及びヒドロキシアルキル(メタ)アクリレート又はカプロラクトン変性ヒドロキシアルキル(メタ)アクリレートをジラウリン酸ジn-ブチル錫等の錫系触媒の存在下、イソシアネート基とヒドロキシル基がほぼ等量になるように用いて、60~70℃で数時間加熱することにより得ることができる。 Examples of the polymerizable unsaturated compound represented by the general formula (DI) include isocyanurate cycloadducts of 1,6-hexamethylene diisocyanate, and hydroxyalkyl (meth) acrylate or caprolactone-modified hydroxyalkyl (meth). The acrylate can be obtained by heating at 60 to 70 ° C. for several hours in the presence of a tin-based catalyst such as di-n-butyltin dilaurate so that the isocyanate group and the hydroxyl group are approximately equal.
 前記一般式(D-II)で表される重合性不飽和化合物としては、例えば、トリス(2-アクリロイルオキシエチル)イソシアヌレート、トリス(2-アクリロイルオキシプロピル)イソシアヌレート等が挙げられる。 Examples of the polymerizable unsaturated compound represented by the general formula (D-II) include tris (2-acryloyloxyethyl) isocyanurate, tris (2-acryloyloxypropyl) isocyanurate, and the like.
 ここで、前記一般式(D-I)で表される重合性不飽和化合物は、前述した反応性粒子(B)の製造方法において説明した前記一般式(B-XII)で表される化合物と同じ化合物である。また、前記一般式(D-II)で表される重合性不飽和化合物は、前述した反応性粒子(B)の製造方法において説明した前記一般式(B-XV)で表される化合物と同じ化合物である。そのため、反応性粒子(B)を製造する際に、前記一般式(D-I)で表される重合性不飽和化合物、又は前記一般式(D-II)で表される重合性不飽和化合物が含まれることがあるが、それら前記一般式(D-I)で表される重合性不飽和化合物及び前記一般式(D-II)で表される重合性不飽和化合物は、本発明においては、重合性不飽和化合物(D)に含まれるものとする。 Here, the polymerizable unsaturated compound represented by the general formula (DI) includes the compound represented by the general formula (B-XII) described in the method for producing the reactive particles (B) described above. The same compound. The polymerizable unsaturated compound represented by the general formula (D-II) is the same as the compound represented by the general formula (B-XV) described in the method for producing the reactive particles (B) described above. A compound. Therefore, when the reactive particles (B) are produced, the polymerizable unsaturated compound represented by the general formula (DI) or the polymerizable unsaturated compound represented by the general formula (D-II) In the present invention, the polymerizable unsaturated compound represented by the general formula (DI) and the polymerizable unsaturated compound represented by the general formula (D-II) are used in the present invention. And contained in the polymerizable unsaturated compound (D).
 さらに多官能重合性不飽和化合物としては、例えばイミノオキサジアジンジオン基を有するヘキサメチレンジシソシアネートトリマーとヒドロキシアルキル(メタ)アクリレートとを触媒の存在下、イソシアネート基とヒドロキシル基がほぼ等量になるように用いて反応させることにより得られるウレタン(メタ)アクリレートも使用することができる。イミノオキサジアジンジオン基を有するヘキサメチレンジシソシアネートトリマーの市販品としては、例えば、デスモジュールXP2410(バイエルマテリアルサイエンス社製)等が挙げられる。ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Furthermore, as the polyfunctional polymerizable unsaturated compound, for example, hexamethylene disissocyanate trimer having iminooxadiazinedione group and hydroxyalkyl (meth) acrylate are present in the presence of a catalyst, and the isocyanate group and the hydroxyl group are approximately equal. Urethane (meth) acrylates obtained by reacting with each other can also be used. Examples of commercially available hexamethylene disissocyanate trimer having an iminooxadiazinedione group include Desmodur XP2410 (manufactured by Bayer MaterialScience). Examples of the hydroxyalkyl (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. .
 上記ヘキサメチレンジシソシアネートトリマーとヒドロキシアルキル(メタ)アクリレートとの反応は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20℃~120℃の温度で行なうことができる。当該反応は、通常、2~10時間程度で終了する。反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。 The reaction of the hexamethylene disissocyanate trimer and the hydroxyalkyl (meth) acrylate can be carried out at a temperature of, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C. The reaction is usually completed in about 2 to 10 hours. In the reaction, a catalyst may be appropriately used. Examples of the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒等が挙げられる。 In the above reaction, a solvent may be appropriately used. Specific examples of the solvent include ester solvents such as ethyl acetate, butyl acetate, methyl benzoate and methyl propionate; ether solvents such as tetrahydrofuran, dioxane and dimethoxyethane; propylene glycol monomethyl ether and propylene glycol monomethyl ether. Examples thereof include glycol ether solvents such as acetate and 3-methoxybutyl acetate; aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents.
 本発明の活性エネルギー線硬化性組成物における重合性不飽和化合物(D)の配合割合は特に限定されるものではない。耐擦り傷性、塗膜の透明性及び付着性の点から、好ましくは、活性エネルギー線硬化性組成物の不揮発分100質量部に対して、1~95質量部であり、より好ましくは10~80質量部であり、特に好ましくは20~70質量部である。 The blending ratio of the polymerizable unsaturated compound (D) in the active energy ray-curable composition of the present invention is not particularly limited. From the viewpoint of scratch resistance, transparency of the coating film, and adhesion, it is preferably 1 to 95 parts by mass, more preferably 10 to 80 parts per 100 parts by mass of the nonvolatile content of the active energy ray-curable composition. Part by mass, particularly preferably 20 to 70 parts by mass.
 本発明の活性エネルギー線硬化性組成物は、必要に応じて各種添加剤、飽和樹脂等を配合してもよく、所望により溶剤で希釈しても良い。添加剤としては、例えば、増感剤、紫外線吸収剤、光安定剤、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、着色剤等が挙げられる。飽和樹脂としては、例えば、飽和アクリル樹脂、飽和ポリエステル樹脂、飽和ウレタン樹脂等が挙げられる。 The active energy ray-curable composition of the present invention may be blended with various additives, saturated resins, etc., if necessary, and may be diluted with a solvent if desired. Examples of the additive include a sensitizer, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, and a colorant. Examples of the saturated resin include saturated acrylic resin, saturated polyester resin, saturated urethane resin, and the like.
 希釈に用いる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル系溶剤;芳香族炭化水素系溶剤、脂肪族炭化水素系溶剤等が挙げられる。これらは、粘度の調整、塗布性の調整等の目的に応じて適宜組み合わせて使用することができる。 Examples of the solvent used for dilution include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester solvents such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; ethers such as tetrahydrofuran, dioxane, and dimethoxyethane Solvents: Glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, etc. Is mentioned. These can be used in appropriate combination depending on the purpose such as adjustment of viscosity and adjustment of coating property.
 紫外線吸収剤としては、従来から公知のものが使用でき、例えば、ベンゾトリアゾール系吸収剤、トリアジン系吸収剤、サリチル酸誘導体系吸収剤、ベンゾフェノン系吸収剤等を使用できる。 As the ultraviolet absorber, conventionally known ones can be used, and for example, a benzotriazole-based absorbent, a triazine-based absorbent, a salicylic acid derivative-based absorbent, a benzophenone-based absorbent, and the like can be used.
 ベンゾトリアゾール系吸収剤の具体例としては、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-{2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル}ベンゾトリアゾール等が挙げられる。 Specific examples of the benzotriazole-based absorbent include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole, 2- ( 2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2 -(2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-t-amylphenyl) benzotriazole 2- (2′-hydroxy-4′-octoxyphenyl) benzotriazole, 2- {2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -te La hydro) -5'-methylphenyl} benzotriazole.
 トリアジン系吸収剤の具体例としては、2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-1,3,5-トリアジンン、2-[4((2-ヒドロキシ-3-ドデシルオキシプロピル)-オキシ)-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンン、2-[4-((2-ヒドロキシ-3-トリデシルオキシプロピル)-オキシ)-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等が挙げられる。 Specific examples of the triazine-based absorbent include 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-isooctyloxyphenyl) -1,3,5-triazine, 2- [4 ((2-hydroxy-3-dodecyloxypropyl) -oxy) -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- [ 4-((2-hydroxy-3-tridecyloxypropyl) -oxy) -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine and the like.
 サリチル酸誘導体系吸収剤の具体例としては、フェニルサリシレート、p-オクチルフェニルサリシレート、4-tert-ブチルフェニルサリシレート等が挙げられる。 Specific examples of the salicylic acid derivative-based absorbent include phenyl salicylate, p-octylphenyl salicylate, 4-tert-butylphenyl salicylate, and the like.
 ベンゾフェノン系吸収剤の具体例としては、4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノントリヒドレート、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、ナトリウム2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、5-クロロ-2-ヒドロキシベンゾフェノン、レゾルシノールモノベンゾエート、2,4-ジベンゾイルレゾルシノール、4,6-ジベンゾイルレゾルシノール、ヒドロキシドデシルベンゾフェノン等が挙げられる。紫外線吸収剤としては、また、公知の重合性紫外線吸収剤、例えば2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2,2’-ジヒドロキシ-4(3-メタクリルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン等も使用することが可能である。 Specific examples of the benzophenone-based absorbent include 4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone trihydrate, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-octadecyloxy Benzophenone, sodium 2,2'-dihydroxy-4,4'-dimethoxy-5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 5-chloro-2 -Hydroxy Benzophenone, resorcinol monobenzoate, 2,4-dibenzoyl resorcinol, 4,6-dibenzoyl resorcinol, hydroxy dodecyl benzophenone. Examples of the UV absorber include known polymerizable UV absorbers such as 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole, 2,2′-dihydroxy-4 (3- Methacryloxy-2-hydroxypropoxy) benzophenone or the like can also be used.
 上記紫外線吸収剤の市販品としては、例えば、TINUVIN900、TINUVIN928、TINUVIN348-2、TINUVIN479、TINUVIN405(チバ スペシャルティ ケミカルズ社製、商品名)、RUVA93(大塚化学社製、商品名)等が挙げられる。 Examples of commercially available ultraviolet absorbers include TINUVIN900, TINUVIN928, TINUVIN348-2, TINUVIN479, TINUVIN405 (trade name, manufactured by Ciba Specialty Chemicals), and RUVA93 (trade name, manufactured by Otsuka Chemical Co., Ltd.).
 上記紫外線吸収剤の使用量は、特に限定されるものではないが、活性エネルギー線硬化性組成物の不揮発分100質量部に対して、0.1~10質量部、好ましくは0.2~10質量部の範囲であることが好適である。 The amount of the ultraviolet absorber used is not particularly limited, but is 0.1 to 10 parts by weight, preferably 0.2 to 10 parts by weight with respect to 100 parts by weight of the nonvolatile content of the active energy ray-curable composition. It is preferable that it is in the range of parts by mass.
 一方、光安定剤は、被膜の劣化過程で生成する活性なラジカル種を捕捉するラジカル連鎖禁止剤として用いられるもので、例えば、ヒンダードアミン系の光安定剤等が挙げられる。 On the other hand, the light stabilizer is used as a radical chain inhibitor that traps active radical species generated during the deterioration process of the film, and includes, for example, a hindered amine light stabilizer.
 光安定剤のなかで優れた光安定化作用を示す光安定剤としてヒンダードピペリジン化合物が挙げられる。ヒンダードピペリジン化合物としては、例えば、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、4-ベンゾイルオキシ-2,2’,6,6’-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル){[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}ブチルマロネート等のモノマータイプのもの;ポリ{[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノール]}等のオリゴマータイプのもの;4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとコハク酸とのポリエステル化物等のポリエステル結合タイプのもの等が挙げられるが、これらに限ったものではない。光安定剤としては、また、公知の重合性光安定剤も使用することが可能である。 Among the light stabilizers, a hindered piperidine compound may be mentioned as a light stabilizer exhibiting an excellent light stabilizing action. Examples of the hindered piperidine compound include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis ( N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, 4-benzoyloxy-2,2 ′, 6,6′-tetramethylpiperidine, bis (1,2,2,6, Monomer type such as 6-pentamethyl-4-piperidyl) {[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl} butyl malonate; poly {[6- (1,1 , 3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene Oligomer type such as (2,2,6,6-tetramethyl-4-piperidyl) iminol]}; 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and succinic acid Examples include polyester-bonded types such as polyesters, but are not limited thereto. A known polymerizable light stabilizer can also be used as the light stabilizer.
 上記光安定剤の市販品としては、例えば、TINUVIN123、TINUVIN152、TINUVIN292(チバ スペシャルティ ケミカルズ社製、商品名)、HOSTAVIN3058(クラリアント社製、商品名)、アデカスタブLA-82(株式会社ADEKA製、商品名)等が挙げられる。 Commercially available products of the above light stabilizer include, for example, TINUVIN123, TINUVIN152, TINUVIN292 (Ciba Specialty Chemicals, trade name), HOSTAVIN 3058 (Clariant, trade name), ADK STAB LA-82 (trade name, manufactured by ADEKA Corporation) ) And the like.
 上記光安定剤の使用量は、特に限定されるものではないが、活性エネルギー線硬化性組成物の不揮発分100質量部に対して、0.1~10質量部、好ましくは0.2~5質量部の範囲であることが好適である。 The amount of the light stabilizer to be used is not particularly limited, but is 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the nonvolatile content of the active energy ray-curable composition. It is preferable that it is in the range of parts by mass.
 本発明の活性エネルギー線硬化性組成物の不揮発分は特に限定されるものではない。例えば、好ましくは20~100質量%であり、さらに好ましくは25~70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。 The nonvolatile content of the active energy ray-curable composition of the present invention is not particularly limited. For example, the content is preferably 20 to 100% by mass, and more preferably 25 to 70% by mass. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
 本発明の活性エネルギー線硬化性組成物を被塗物表面へ塗布する方法は特に限定されるものではなく、例えば、ローラー塗装、ロールコーター塗装、スピンコーター塗装、カーテンロールコーター塗装、スリットコーター塗装、スプレー塗装、静電塗装、浸漬塗装、シルク印刷、スピン塗装等が挙げられる。 The method for applying the active energy ray-curable composition of the present invention to the surface of an object to be coated is not particularly limited. For example, roller coating, roll coater coating, spin coater coating, curtain roll coater coating, slit coater coating, Examples include spray coating, electrostatic coating, dip coating, silk printing, and spin coating.
 被塗物としては、特に限定されるものではない。具体的には例えば、鉄、アルミニウム、真鍮、銅、ステンレス鋼、ブリキ、亜鉛メッキ鋼、合金化亜鉛(Zn-Al、Zn-Ni、Zn-Fe等)メッキ鋼等の金属材料;ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂等の樹脂や各種のFRP等のプラスチック材料;ガラス、セメント、コンクリート等の無機材料;木材;繊維材料(紙、布等)等が挙げられる。また、被塗物には、例えば、プライマー塗料、カチオン電着塗料、中塗り塗料、上塗り塗料等を塗装することにより、予めプライマー層、電着塗膜層、中塗り層、上塗り層等が形成されていてもよい。 There is no particular limitation on the object to be coated. Specifically, for example, metal materials such as iron, aluminum, brass, copper, stainless steel, tinplate, galvanized steel, alloyed zinc (Zn—Al, Zn—Ni, Zn—Fe, etc.) plated steel; polyethylene resin, Polypropylene resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin, and various plastic materials such as FRP; glass, cement, concrete, etc. Inorganic materials; wood; fiber materials (paper, cloth, etc.) and the like. In addition, a primer layer, an electrodeposition coating layer, an intermediate coating layer, a top coating layer, etc. are formed in advance by applying a primer coating, a cationic electrodeposition coating, an intermediate coating, a top coating, etc. May be.
 前記活性エネルギー線硬化性組成物から塗膜を形成する際、必要に応じて乾燥を行うことができる。乾燥は、添加している溶剤を除去できる条件であれば特に限定されるものではない。例えば、20~100℃の乾燥温度において3~20分間の乾燥時間で行うことができる。 When forming a coating film from the active energy ray-curable composition, drying can be performed as necessary. The drying is not particularly limited as long as the solvent that is added can be removed. For example, the drying can be performed at a drying temperature of 20 to 100 ° C. for a drying time of 3 to 20 minutes.
 塗膜の膜厚は目的に応じて適宜設定される。例えば膜厚は1~100μmが好ましく、1~20μmがさらに好ましい。膜厚がこれら範囲の下限値以上の場合には、塗膜の平滑性及び外観に優れる。またこれら範囲の上限値以下の場合には塗膜の硬化性、耐割れ性に優れる。 The film thickness of the coating is appropriately set according to the purpose. For example, the film thickness is preferably 1 to 100 μm, more preferably 1 to 20 μm. When the film thickness is at least the lower limit of these ranges, the coating film is excellent in smoothness and appearance. Moreover, when it is below the upper limit value of these ranges, the curability and crack resistance of the coating film are excellent.
 活性エネルギー線硬化性組成物を被塗物表面に塗布し、必要に応じて乾燥させた後に、活性エネルギー線照射を行い硬化塗膜を形成する。活性エネルギー線照射の照射源及び照射量は特に限定されるものではない。例えば活性エネルギー線の照射源としては、超高圧、高圧、中圧、低圧の水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等が挙げられる。照射量は、例えば好ましくは5~20,000J/m、さらに好ましくは100~10,000J/mの範囲が挙げられる。 An active energy ray-curable composition is applied to the surface of an object to be coated and dried as necessary, and then irradiated with active energy rays to form a cured coating film. The irradiation source and irradiation amount of active energy ray irradiation are not particularly limited. For example, the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like. The irradiation dose is, for example, preferably in the range of 5 to 20,000 J / m 2 , more preferably 100 to 10,000 J / m 2 .
 活性エネルギー線照射は、大気雰囲気下で行なってもよく、また不活性ガス雰囲気下で行なっても良い。不活性ガスとしては、窒素、二酸化炭素等が挙げられる。不活性ガス雰囲気下での活性エネルギー線照射が、硬化性の点から好ましい。 The active energy ray irradiation may be performed in an air atmosphere or an inert gas atmosphere. Examples of the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an inert gas atmosphere is preferable from the viewpoint of curability.
 また、活性エネルギー線照射後、必要に応じて塗膜を加熱してもよい。加熱をすることによって、活性エネルギー線照射による塗膜の硬化により発生した塗膜の歪みを緩和することができる。さらにこの加熱によって塗膜の硬度、又は付着性の向上を行なうことができる場合がある。加熱は、通常、150~250℃の雰囲気温度で1~30分間の条件で行なうことができる。 Further, after the active energy ray irradiation, the coating film may be heated as necessary. By heating, distortion of the coating film generated by curing of the coating film by active energy ray irradiation can be alleviated. Further, the heating may improve the hardness or adhesion of the coating film. The heating can usually be performed at an atmospheric temperature of 150 to 250 ° C. for 1 to 30 minutes.
 以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、別記しない限り「質量部」及び「質量%」を示す。なお、本実施例における構造解析及び測定は、本明細書に記載の前記分析装置に加え、以下の分析装置及び測定方法により行った。 Hereinafter, the present invention will be described in more detail with reference to examples. “Part” and “%” indicate “part by mass” and “% by mass” unless otherwise specified. In addition, the structural analysis and measurement in this example were performed by the following analyzer and measurement method in addition to the analyzer described in this specification.
 (29Si-NMR、H-NMR分析)
 装置:JEOL社製 FT-NMR EX-400
 溶媒:CDCl
 内部標準物質:テトラメチルシラン。
( 29 Si-NMR, 1 H-NMR analysis)
Apparatus: FT-NMR EX-400 manufactured by JEOL
Solvent: CDCl 3
Internal standard: Tetramethylsilane.
 (製造例1)
 還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、Glycidyl POSS cage mixture (商品名、Hybrid Plastics社製)400部及び酢酸ブチル600部を仕込み、60℃で攪拌しながら溶解させた。ここにアクリル酸190部、メトキノン1.5部、及びテトラブチルアンモニウムブロミド10部を仕込み、乾燥空気を吹き込みながら100℃で4時間反応させ、生成物(A1)の不揮発分50%溶液を得た。
(Production Example 1)
A separable flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer was charged with 400 parts of Glycidyl POSS cage mixture (trade name, manufactured by Hybrid Plastics) and 600 parts of butyl acetate and dissolved while stirring at 60 ° C. I let you. Here, 190 parts of acrylic acid, 1.5 parts of methoquinone and 10 parts of tetrabutylammonium bromide were charged and reacted at 100 ° C. for 4 hours while blowing dry air to obtain a 50% non-volatile solution of the product (A1). .
 原材料として用いたGlycidyl POSS cage mixtureは、3-グリシドキシプロピル基含有籠型ポリシルセスキオキサンであり、重量平均分子量は1,800、エポキシ当量は168g/eqであった。 Glycidyl POSS cage mixture used as a raw material was a 3-glycidoxypropyl group-containing cage-type polysilsesquioxane having a weight average molecular weight of 1,800 and an epoxy equivalent of 168 g / eq.
 生成物(A1)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。 As a result of 29 Si-NMR analysis of the product (A1), only a peak around −70 ppm derived from T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed.
 また、生成物(A1)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したアクリロイルオキシ基の炭素-炭素不飽和結合とSiに結合したメチレン基とのモル比率は1.07であった。(モル比率が1.00を超えているのは、アクリル酸の付加反応を促進するため、アクリル酸を過剰に配合したためである。)また、エポキシ基に帰属されるピークは確認されなかった。また、エポキシ当量は10,000g/eq以上であった。 As a result of 1 H-NMR analysis of the product (A1), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio between the carbon-carbon unsaturated bond of the acryloyloxy group and the methylene group bonded to Si calculated from the peak intensity ratio was 1.07. (The molar ratio exceeds 1.00 because the acrylic acid is added excessively in order to promote the addition reaction of acrylic acid.) In addition, no peak attributed to the epoxy group was confirmed. The epoxy equivalent was 10,000 g / eq or more.
 また、生成物(A1)についてFT-IR分析を行った結果、原材料であるGlycidyl POSS cage mixtureにおいて確認されなかった水酸基に帰属される3500cm-1付近の幅広いピークが確認された。 Further, as a result of FT-IR analysis of the product (A1), a broad peak around 3500 cm −1 attributed to a hydroxyl group that was not confirmed in the raw material Glycidyl POSS cage mixture was confirmed.
 また、生成物(A1)の重量平均分子量は2,700であった。 The weight average molecular weight of the product (A1) was 2,700.
 生成物(A1)についての前記29Si-NMR、H-NMR、FT-IR、重量平均分子量等の結果から、生成物(A1)が、ケイ素原子に直接に結合した有機基の全てが下記式(P-I)で表される有機基 From the results of 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight and the like of the product (A1), all the organic groups in which the product (A1) was directly bonded to the silicon atom were Organic group represented by formula (PI)
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
を有する重量平均分子量2,700のシルセスキオキサン化合物であることが確認された。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 2,700.
 (製造例2)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、3-イソシアネートプロピルトリエトキシシラン100部、2-ヒドロキシエチルアクリレート47部、メトキノン0.1部を仕込み、乾燥空気を吹き込みながら100℃で12時間反応させ、生成物(A2)を得た。次に、還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、トルエン300部、テトラブチルアンモニウムヒドロキシド40%のメタノール溶液30部及び脱イオン水12部を入れ、混合物を氷浴で2℃まで冷却した。ここに、テトラヒドロフラン300部と生成物(A2)147部を混合した溶液を投入し、20℃にて24時間反応させた。減圧蒸留にて揮発分を除去した後、これをプロピレングリコールモノメチルエーテルアセテート100部に溶解し、生成物(A3)の不揮発分50%溶液を得た。
(Production Example 2)
A separable flask equipped with a reflux condenser, a thermometer and a stirrer was charged with 100 parts of 3-isocyanatopropyltriethoxysilane, 47 parts of 2-hydroxyethyl acrylate, and 0.1 part of methoquinone at 100 ° C. while blowing dry air. It was made to react for 12 hours and the product (A2) was obtained. Next, in a separable flask equipped with a reflux condenser, a thermometer and a stirrer, 300 parts of toluene, 30 parts of a 40% tetrabutylammonium hydroxide methanol solution and 12 parts of deionized water were placed. Cooled to ° C. A solution obtained by mixing 300 parts of tetrahydrofuran and 147 parts of the product (A2) was added thereto and reacted at 20 ° C. for 24 hours. After removing volatile components by distillation under reduced pressure, this was dissolved in 100 parts of propylene glycol monomethyl ether acetate to obtain a 50% non-volatile solution of the product (A3).
 生成物(A3)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。 As a result of 29 Si-NMR analysis of the product (A3), a peak around −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si, and one hydroxysilyl group were found. A -59 ppm peak derived from the T2 structure possessed was confirmed. The integrated intensity ratio of these peaks was: peak derived from the T3 structure / peak derived from the T2 structure = 90/10.
 また、生成物(A3)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は、1.01であった。 As a result of 1 H-NMR analysis of the product (A3), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 1.01.
 また、生成物(A3)についてFT-IR分析を行った結果、ウレタン結合に帰属する1540cm-1付近のピークが確認された。 As a result of FT-IR analysis of the product (A3), a peak around 1540 cm −1 attributable to the urethane bond was confirmed.
 また、生成物(A3)の重量平均分子量は2,500であった。 The weight average molecular weight of the product (A3) was 2,500.
 生成物(A3)についての前記29Si-NMR、H-NMR、FT-IR、重量平均分子量等の結果から、生成物(A3)が、ケイ素原子に直接に結合した有機基の全てが下記式(P-II)で表される有機基 From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight, etc. for the product (A3), all of the organic groups in which the product (A3) was directly bonded to the silicon atom were as follows: Organic group represented by formula (P-II)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
を有する重量平均分子量2,500のシルセスキオキサン化合物であることが確認された。 It was confirmed that the compound was a silsesquioxane compound having a weight average molecular weight of 2,500.
 (製造例3)
 還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、3-アミノプロピルトリメトキシシラン400部、2-プロピルアルコール1,600部、テトラブチルアンモニウムフルオリド2部、及び脱イオン水60部を仕込み、60℃で8時間反応させた。減圧蒸留にて不揮発分60%となるまで濃縮した後、酢酸ブチル160部を配合し、減圧蒸留を継続し、生成物(A4)の不揮発分60%溶液を得た。
(Production Example 3)
In a separable flask equipped with a reflux condenser, thermometer, air inlet tube and stirrer, 400 parts of 3-aminopropyltrimethoxysilane, 1,600 parts of 2-propyl alcohol, 2 parts of tetrabutylammonium fluoride, and deionized 60 parts of water was charged and reacted at 60 ° C. for 8 hours. After concentration by vacuum distillation until the nonvolatile content was 60%, 160 parts of butyl acetate was added and vacuum distillation was continued to obtain a 60% nonvolatile solution of the product (A4).
 還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、酢酸ブチル400部、及び2-イソシアネートエチルアクリレート310部を配合し、氷浴で攪拌しながら10℃まで冷却した。ここに生成物(A4)の不揮発分60%溶液400部を、反応温度を20℃以下に維持しながら滴下した。60℃で1時間攪拌した後、300メッシュのフィルターにてろ過し、生成物(A5)の不揮発分50%溶液を得た。 In a separable flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer, 400 parts of butyl acetate and 310 parts of 2-isocyanatoethyl acrylate were blended and cooled to 10 ° C. while stirring in an ice bath. 400 parts of a non-volatile content 60% solution of the product (A4) was added dropwise thereto while maintaining the reaction temperature at 20 ° C. or lower. After stirring at 60 ° C. for 1 hour, the mixture was filtered through a 300 mesh filter to obtain a 50% non-volatile solution of the product (A5).
 生成物(A4)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。また、全アミン価は508mgKOH/gであった。 As a result of 29 Si-NMR analysis of the product (A4), a peak around −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si, and one hydroxysilyl group were found. A -59 ppm peak derived from the T2 structure possessed was confirmed. The integrated intensity ratio of these peaks was: peak derived from the T3 structure / peak derived from the T2 structure = 90/10. The total amine value was 508 mgKOH / g.
 生成物(A4)の重量平均分子量は1,500であった。 The weight average molecular weight of the product (A4) was 1,500.
 生成物(A5)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークと、一つのヒドロキシシリル基を有するT2構造に由来する-59ppmのピークが確認された。これらのピークの積分強度比は、T3構造に由来するピーク/T2構造に由来するピーク=90/10であった。全アミン価は0mgKOH/g、NCO価は0mgNCO/gであった。 As a result of 29 Si-NMR analysis of the product (A5), a peak around −70 ppm derived from the T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si, and one hydroxysilyl group were found. A -59 ppm peak derived from the T2 structure possessed was confirmed. The integrated intensity ratio of these peaks was: peak derived from the T3 structure / peak derived from the T2 structure = 90/10. The total amine value was 0 mgKOH / g, and the NCO value was 0 mgNCO / g.
 生成物(A5)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は1.01であった。 As a result of 1 H-NMR analysis of the product (A5), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 1.01.
 生成物(A5)の重量平均分子量は3,000であった。 The weight average molecular weight of the product (A5) was 3,000.
 生成物(A5)についての前記29Si-NMR、H-NMR、重量平均分子量等の結果から、生成物(A5)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(P-III)で表される有機基 From the results of 29 Si-NMR, 1 H-NMR, weight average molecular weight, etc. for the product (A5), almost all of the organic groups in which the product (A5) was directly bonded to the silicon atom were represented by the following formula (P Organic group represented by -III)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
を有する重量平均分子量3,000のシルセスキオキサン化合物であることが確認された。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 3,000.
 (製造例4)
 還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、Glycidyl POSS cage mixture (商品名、Hybrid Plastics社製)400部及び酢酸ブチル600部を仕込み、60℃で攪拌しながら溶解させた。ここにアクリル酸172部、メトキノン1.5部、及びテトラブチルアンモニウムブロミド10部を仕込み、乾燥空気を吹き込みながら100℃で24時間反応させた。さらに2-イソシアネートエチルアクリレート338部、及び酢酸ブチル306部を配合して、80℃で12時間反応させ、生成物(A6)の不揮発分50%溶液を得た。
(Production Example 4)
A separable flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer was charged with 400 parts of Glycidyl POSS cage mixture (trade name, manufactured by Hybrid Plastics) and 600 parts of butyl acetate and dissolved while stirring at 60 ° C. I let you. To this, 172 parts of acrylic acid, 1.5 parts of methoquinone and 10 parts of tetrabutylammonium bromide were charged and reacted at 100 ° C. for 24 hours while blowing dry air. Further, 338 parts of 2-isocyanate ethyl acrylate and 306 parts of butyl acetate were blended and reacted at 80 ° C. for 12 hours to obtain a 50% nonvolatile solution of the product (A6).
 原材料として用いたGlycidyl POSS cage mixtureは、3-グリシドキシプロピル基含有籠型ポリシルセスキオキサンであり、重量平均分子量は1,800、エポキシ当量は168g/eqであった。 Glycidyl POSS cage mixture used as a raw material was a 3-glycidoxypropyl group-containing cage-type polysilsesquioxane having a weight average molecular weight of 1,800 and an epoxy equivalent of 168 g / eq.
 生成物(A6)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1及びT2構造は確認されなかった。 As a result of 29 Si-NMR analysis of the product (A6), only a peak around −70 ppm derived from T3 structure in which all three oxygen atoms bonded to Si were bonded to other Si was confirmed. The T1 and T2 structures indicating the presence of were not confirmed.
 また、生成物(A6)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は2.03であった。また、エポキシ基に帰属されるピークは確認されなかった。また、エポキシ当量は10,000g/eq以上であった。 As a result of 1 H-NMR analysis of the product (A6), a peak of 0.6 ppm derived from a methylene group bonded to Si was confirmed. In addition, 5.9 ppm, 6.1 ppm, and 6.4 ppm peaks derived from the carbon-carbon unsaturated bond of the acryloyloxy group were confirmed. The molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si calculated from these peak intensity ratios was 2.03. Moreover, the peak attributed to an epoxy group was not confirmed. The epoxy equivalent was 10,000 g / eq or more.
 また、生成物(A6)についてFT-IR分析を行った結果、原材料であるGlycidyl POSS cage mixtureにおいて確認されなかったウレタン結合に帰属される1540cm-1付近のピークが確認された。 Further, as a result of FT-IR analysis of the product (A6), a peak around 1540 cm −1 attributed to a urethane bond that was not confirmed in the raw material Glycidyl POSS cage mixture was confirmed.
 また、生成物(A6)のNCO価は0mgNCO/gであった。 The NCO value of the product (A6) was 0 mg NCO / g.
 また、生成物(A6)の重量平均分子量は5,000であった。 The weight average molecular weight of the product (A6) was 5,000.
 生成物(A6)についての前記29Si-NMR、H-NMR、FT-IR、重量平均分子量等の結果から、生成物(A6)が、ケイ素原子に直接に結合した有機基のほとんど全てが下記式(P-IV)で表される有機基 From the results of the 29 Si-NMR, 1 H-NMR, FT-IR, weight average molecular weight, etc. for the product (A6), almost all of the organic groups in which the product (A6) was directly bonded to the silicon atom were found. Organic group represented by the following formula (P-IV)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
を有する重量平均分子量5,000のシルセスキオキサン化合物であることが確認された。 It was confirmed to be a silsesquioxane compound having a weight average molecular weight of 5,000.
 (製造例5)
 還流冷却器、温度計、空気導入管及び攪拌機を備えた4つ口フラスコにスミジュールN3300(住化バイエルウレタン社製)179部、2-ヒドロキシエチルアクリレート87部、酢酸イソブチル205部及びp-メトキシフェノール 1部を配合し、攪拌した。空気を吹き込みながら100℃まで昇温し、100℃で8時間反応させた。反応後、5℃まで冷却し、3-アミノプロピルトリエトキシシラン41部を1時間かけて滴下した。この際、フラスコ内の反応物の温度が20℃を超えないように制御した。続いて、エチレングリコールモノブチルエーテル205部を配合して80℃まで昇温し、80℃で1時間攪拌した後、減圧蒸留にて酢酸イソブチルを除去し、生成物(B1)の不揮発分60%溶液を得た。
(Production Example 5)
In a four-necked flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer, 179 parts of Sumidur N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.), 87 parts of 2-hydroxyethyl acrylate, 205 parts of isobutyl acetate and p-methoxy 1 part of phenol was blended and stirred. While blowing air, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 8 hours. After the reaction, the mixture was cooled to 5 ° C., and 41 parts of 3-aminopropyltriethoxysilane was added dropwise over 1 hour. At this time, the temperature of the reaction product in the flask was controlled so as not to exceed 20 ° C. Subsequently, 205 parts of ethylene glycol monobutyl ether was added, the temperature was raised to 80 ° C., and the mixture was stirred at 80 ° C. for 1 hour. Then, isobutyl acetate was removed by distillation under reduced pressure, and a 60% nonvolatile solution of the product (B1) Got.
 得られた生成物(B1)はNCO価=0mgNCO/g、アミン価=0mgKOH/gであった。また、生成物(B1)についてH-NMR分析を行った結果、生成物(B1)のSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は4.0であった。また、生成物(B1)について29Si-NMR分析を行った結果、生成物(B1)中のエトキシシリル基の加水分解は確認されなかった。 The obtained product (B1) had an NCO value = 0 mgNCO / g and an amine value = 0 mgKOH / g. As a result of 1 H-NMR analysis of the product (B1), the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B1) was 4.0. It was. As a result of 29 Si-NMR analysis of the product (B1), hydrolysis of the ethoxysilyl group in the product (B1) was not confirmed.
 上記の結果から、生成物(B1)は、下記式(P-V)で表される化合物と下記式(P-VI)で表される化合物との混合物であり、 From the above results, the product (B1) is a mixture of a compound represented by the following formula (PV) and a compound represented by the following formula (P-VI),
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
その比率は、前記式(P-V)で表される化合物/前記式(P-VI)で表される化合物=60/40(モル比)であった。 The ratio was the compound represented by the formula (PV) / the compound represented by the formula (P-VI) = 60/40 (molar ratio).
 (製造例6)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール227部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液17部[前記式(P-V)で表される化合物が6部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/3(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B2)と称する。
(Production Example 6)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 3-methacryloyloxypropyltrimethoxysilane 10 parts, p-methoxyphenol 0.2 part and isopropanol 227 parts were added, and the temperature was raised with stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 5 [6 parts of the compound represented by the above formula (PV)] were added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio of the reactive particles calculated from the blending amount to the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/3 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B2).
 (製造例7)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン14部、p-メトキシフェノール0.2部及びイソプロパノール230部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液10部[前記式(P-V)で表される化合物が4部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/2(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B3)と称する。
(Production Example 7)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (100 parts of silica fine particles), 14 parts of 3-methacryloyloxypropyltrimethoxysilane, 0.2 part of p-methoxyphenol and 230 parts of isopropanol were added, and the temperature was increased while stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 10 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 5 [4 parts of the compound represented by the above formula (PV)] was added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio between the reactive particles calculated from the blending amount and the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/2 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B3).
 (製造例8)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン6部、p-メトキシフェノール0.2部及びイソプロパノール223部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液23部[前記式(P-V)で表される化合物が8部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/5(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B4)と称する。
(Production Example 8)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 3-methacryloyloxypropyltrimethoxysilane (6 parts), p-methoxyphenol (0.2 parts) and isopropanol (223 parts) were added, and the mixture was heated with stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 23 parts of a 60% nonvolatile solution of the product (B1) obtained in Production Example 5 [8 parts of the compound represented by the formula (PV)] was added, and the mixture was stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio between the reactive particles calculated from the blending amount and the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/5 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B4).
 (製造例9)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン3部、p-メトキシフェノール0.2部及びイソプロパノール232部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液4部[前記式(P-V)で表される化合物が2部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/1(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B5)と称する。
(Production Example 9)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (100 parts of silica fine particles), 3 parts of 3-methacryloyloxypropyltrimethoxysilane, 0.2 part of p-methoxyphenol and 232 parts of isopropanol were added, and the temperature was increased while stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 4 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 5 [2 parts of the compound represented by the above formula (PV)] were added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio between the reactive particles calculated from the blending amount and the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/1 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B5).
 (製造例10)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン20部、p-メトキシフェノール0.2部及びイソプロパノール220部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液33部[前記式(P-V)で表される化合物が12部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/6(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B6)と称する。
(Production Example 10)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (100 parts of silica fine particles), 20 parts of 3-methacryloyloxypropyltrimethoxysilane, 0.2 part of p-methoxyphenol and 220 parts of isopropanol were added, and the temperature was increased while stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 33 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 5 [12 parts of the compound represented by the above formula (PV)] were added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio between the reactive particles calculated from the blending amount and the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/6 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B6).
 (製造例11)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;水、シリカ濃度;40質量%、平均一次粒子径;20nm、商品名;スノーテックスO-40、日産化学工業社製)250部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール143部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液17部[前記式(P-V)で表される化合物が6部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/3(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B7)と称する。
(Production Example 11)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium; water, silica concentration: 40% by mass, average primary particle size: 20 nm, trade name: SNOWTEX O-40, Nissan Chemical Co., Ltd.) 250 parts (manufactured by Kogyo Co., Ltd.) (100 parts of silica fine particles), 10 parts of 3-methacryloyloxypropyltrimethoxysilane, 0.2 part of p-methoxyphenol and 143 parts of isopropanol were added, and the temperature was increased while stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 5 [6 parts of the compound represented by the above formula (PV)] were added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio of the reactive particles calculated from the blending amount to the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/3 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B7).
 (製造例12)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、3-イソシアネートプロピルトリエトキシシラン100部、2-ヒドロキシエチルアクリレート47部、p-メトキシフェノール0.1部を仕込み、乾燥空気を吹き込みながら100℃で12時間反応させ、生成物(B8)を得た。
(Production Example 12)
A separable flask equipped with a reflux condenser, a thermometer and a stirrer was charged with 100 parts of 3-isocyanatopropyltriethoxysilane, 47 parts of 2-hydroxyethyl acrylate, and 0.1 part of p-methoxyphenol while blowing dry air. The mixture was reacted at 100 ° C. for 12 hours to obtain a product (B8).
 (製造例13)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、製造例12で得られた生成物(B8)10部、p-メトキシフェノール0.2部及びイソプロパノール227部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例5で得られた生成物(B1)の不揮発分60%溶液17部[前記式(P-V)で表される化合物が6部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/3(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B9)と称する。
(Production Example 13)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 10 parts of the product (B8) obtained in Production Example 12, 0.2 part of p-methoxyphenol and 227 parts of isopropanol were added, and the temperature was increased while stirring. . When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 5 [6 parts of the compound represented by the above formula (PV)] were added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio of the reactive particles calculated from the blending amount to the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/3 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B9).
 (製造例14)
 還流冷却器、温度計、空気導入管及び攪拌機を備えた4つ口フラスコにスミジュールN3300(住化バイエルウレタン社製)179部、4-ヒドロキシブチルアクリレート108部、酢酸イソブチル205部及びp-メトキシフェノール 1部を配合し、攪拌した。空気を吹き込みながら100℃まで昇温し、100℃で8時間反応させた。反応後、5℃まで冷却し、3-アミノプロピルトリエトキシシラン41部を1時間かけて滴下した。この際、フラスコ内の反応物の温度が20℃を超えないように制御した。続いて、エチレングリコールモノブチルエーテル219部を配合して80℃まで昇温し、80℃で1時間攪拌した後、減圧蒸留にて酢酸イソブチルを除去し、生成物(B10)の不揮発分60%溶液を得た。
(Production Example 14)
In a four-necked flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer, 179 parts of Sumidur N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.), 108 parts of 4-hydroxybutyl acrylate, 205 parts of isobutyl acetate and p-methoxy 1 part of phenol was blended and stirred. While blowing air, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 8 hours. After the reaction, the mixture was cooled to 5 ° C., and 41 parts of 3-aminopropyltriethoxysilane was added dropwise over 1 hour. At this time, the temperature of the reaction product in the flask was controlled so as not to exceed 20 ° C. Subsequently, 219 parts of ethylene glycol monobutyl ether was added, the temperature was raised to 80 ° C., and the mixture was stirred at 80 ° C. for 1 hour, then isobutyl acetate was removed by distillation under reduced pressure, and a 60% non-volatile solution of the product (B10) Got.
 得られた生成物(B10)はNCO価=0mgNCO/g、アミン価=0mgKOH/gであった。また、生成物(B10)についてH-NMR分析を行った結果、生成物(B10)のSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は4.0であった。また、生成物(B10)について29Si-NMR分析を行った結果、生成物(B10)中のエトキシシリル基の加水分解は確認されなかった。 The obtained product (B10) had an NCO value = 0 mgNCO / g and an amine value = 0 mgKOH / g. As a result of 1 H-NMR analysis of the product (B10), the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B10) was 4.0. It was. Further, as a result of 29 Si-NMR analysis of the product (B10), hydrolysis of the ethoxysilyl group in the product (B10) was not confirmed.
 上記の結果から、生成物(B10)は、下記式(P-VII)で表される化合物と下記式(P-VIII)で表される化合物との混合物であり、 From the above results, the product (B10) is a mixture of a compound represented by the following formula (P-VII) and a compound represented by the following formula (P-VIII),
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
その比率は、前記式(P-VII)で表される化合物/前記式(P-VIII)で表される化合物=60/40(モル比)であった。 The ratio was the compound represented by the formula (P-VII) / the compound represented by the formula (P-VIII) = 60/40 (molar ratio).
 (製造例15)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール227部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例14で得られた生成物(B10)の不揮発分60%溶液17部[前記式(P-VII)で表される化合物が6部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VIII)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VIII)で表される化合物との比率は、反応性粒子/前記式(P-VIII)で表される化合物=100/3(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VIII)で表される化合物の混合物を生成物(B11)と称する。
(Production Example 15)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 3-methacryloyloxypropyltrimethoxysilane 10 parts, p-methoxyphenol 0.2 part and isopropanol 227 parts were added, and the temperature was raised with stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B10) obtained in Production Example 14 [6 parts of the compound represented by the above formula (P-VII)] were added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and the compound represented by the formula (P-VIII) having a nonvolatile content of 40%. It was. The ratio between the reactive particles calculated from the blending amount and the compound represented by the formula (P-VIII) is: reactive particles / compound represented by the formula (P-VIII) = 100/3 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VIII) is referred to as product (B11).
 (製造例16)
 還流冷却器、温度計、空気導入管及び攪拌機を備えた4つ口フラスコにスミジュールN3300(住化バイエルウレタン社製)179部、プラクセルFA-2D(商品名、ε-カプロラクトン変性2-ヒドロキシエチルアクリレート、ダイセル化学工業製)258部、酢酸イソブチル319部及びp-メトキシフェノール 1部を配合し、攪拌した。空気を吹き込みながら100℃まで昇温し、100℃で8時間反応させた。反応後、5℃まで冷却し、3-アミノプロピルトリエトキシシラン41部を1時間かけて滴下した。この際、フラスコ内の反応物の温度が20℃を超えないように制御した。続いて、エチレングリコールモノブチルエーテル319部を配合して80℃まで昇温し、80℃で1時間攪拌した後、減圧蒸留にて酢酸イソブチルを除去し、生成物(B12)の不揮発分60%溶液を得た。
(Production Example 16)
A four-necked flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer was added to 179 parts of Sumidur N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.), Plaxel FA-2D (trade name, ε-caprolactone modified 2-hydroxyethyl) Acrylate, manufactured by Daicel Chemical Industries, Ltd.) 258 parts, 319 parts of isobutyl acetate and 1 part of p-methoxyphenol were mixed and stirred. While blowing air, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 8 hours. After the reaction, the mixture was cooled to 5 ° C., and 41 parts of 3-aminopropyltriethoxysilane was added dropwise over 1 hour. At this time, the temperature of the reaction product in the flask was controlled so as not to exceed 20 ° C. Subsequently, 319 parts of ethylene glycol monobutyl ether was added, the temperature was raised to 80 ° C., and the mixture was stirred at 80 ° C. for 1 hour. Then, isobutyl acetate was removed by distillation under reduced pressure, and a 60% nonvolatile solution of the product (B12) Got.
 得られた生成物(B12)はNCO価=0mgNCO/g、アミン価=0mgKOH/gであった。また、生成物(B12)についてH-NMR分析を行った結果、生成物(B12)のSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は4.0であった。また、生成物(B12)について29Si-NMR分析を行った結果、生成物(B12)中のエトキシシリル基の加水分解は確認されなかった。 The obtained product (B12) had an NCO value = 0 mgNCO / g and an amine value = 0 mgKOH / g. As a result of 1 H-NMR analysis of the product (B12), the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B12) was 4.0. It was. As a result of 29 Si-NMR analysis of the product (B12), hydrolysis of the ethoxysilyl group in the product (B12) was not confirmed.
 上記の結果から、生成物(B12)は、下記式(P-IX)で表される化合物と下記式(P-X)で表される化合物との混合物であり、 From the above results, the product (B12) is a mixture of a compound represented by the following formula (P-IX) and a compound represented by the following formula (PX).
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
その比率は、前記式(P-IX)で表される化合物/前記式(P-X)で表される化合物=60/40(モル比)であった。 The ratio was the compound represented by the formula (P-IX) / the compound represented by the formula (PX) = 60/40 (molar ratio).
 (製造例17)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール227部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例16で得られた生成物(B12)の不揮発分60%溶液17部[前記式(P-IX)で表される化合物が6部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-X)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-X)で表される化合物との比率は、反応性粒子/前記式(P-X)で表される化合物=100/4(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-X)で表される化合物の混合物を生成物(B13)と称する。
(Production Example 17)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 3-methacryloyloxypropyltrimethoxysilane 10 parts, p-methoxyphenol 0.2 part and isopropanol 227 parts were added, and the temperature was raised with stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B12) obtained in Production Example 16 [6 parts of the compound represented by the formula (P-IX)] was added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing an azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixture of reactive particles and a compound represented by the formula (PX) having a nonvolatile content of 40%. It was. The ratio of the reactive particles calculated from the blending amount and the compound represented by the formula (PX) is: reactive particles / compound represented by the formula (PX) = 100/4 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (PX) is referred to as a product (B13).
 (製造例18)
 還流冷却器、温度計、空気導入管及び攪拌機を備えた4つ口フラスコにアロニックスM-313(東亜合成社製、イソシアヌル酸EO変性ジ及びトリアクリレート)179部、3-イソシアネートプロピルトリエトキシシラン38部、酢酸イソブチル145部及びp-メトキシフェノール 1部を配合し、攪拌した。空気を吹き込みながら100℃まで昇温し、100℃で8時間反応させた。反応後、エチレングリコールモノブチルエーテル145部を配合して80℃まで昇温し、80℃で1時間攪拌した後、減圧蒸留にて酢酸イソブチルを除去し、生成物(B14)の不揮発分60%溶液を得た。
(Production Example 18)
A four-necked flask equipped with a reflux condenser, a thermometer, an air inlet tube and a stirrer was charged with 179 parts of Aronix M-313 (manufactured by Toagosei Co., Ltd., isocyanuric acid EO-modified di- and triacrylate), 3-isocyanatopropyltriethoxysilane 38 Parts, 145 parts of isobutyl acetate and 1 part of p-methoxyphenol were mixed and stirred. While blowing air, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 8 hours. After the reaction, 145 parts of ethylene glycol monobutyl ether was added, the temperature was raised to 80 ° C., and the mixture was stirred at 80 ° C. for 1 hour. Then, isobutyl acetate was removed by distillation under reduced pressure, and a 60% nonvolatile solution of the product (B14) Got.
 得られた生成物(B14)はNCO価=0mgNCO/gであった。また、生成物(B14)についてH-NMR分析を行った結果、生成物(B14)のSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は7.7であった。また、生成物(B14)について29Si-NMR分析を行った結果、生成物(B14)中のエトキシシリル基の加水分解は確認されなかった。 The obtained product (B14) had an NCO value of 0 mg NCO / g. As a result of 1 H-NMR analysis of the product (B14), the molar ratio of the carbon-carbon unsaturated bond of the acryloyloxy group to the methylene group bonded to Si of the product (B14) was 7.7. It was. Further, as a result of 29 Si-NMR analysis of the product (B14), hydrolysis of the ethoxysilyl group in the product (B14) was not confirmed.
 上記の結果から、生成物(B14)は、下記式(P-XI)で表される化合物と下記式(P-XII)で表される化合物との混合物であり、 From the above results, the product (B14) is a mixture of a compound represented by the following formula (P-XI) and a compound represented by the following formula (P-XII).
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
その比率は、前記式(P-XI)で表される化合物/前記式(P-XII)で表される化合物=35/65(モル比)であった。 The ratio was the compound represented by the formula (P-XI) / the compound represented by the formula (P-XII) = 35/65 (molar ratio).
 (製造例19)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール227部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例18で得られた生成物(B14)の不揮発分60%溶液17部[前記式(P-XI)で表される化合物が4部]を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-XII)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-XII)で表される化合物との比率は、反応性粒子/前記式(P-XII)で表される化合物=100/3(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-XII)で表される化合物の混合物を生成物(B15)と称する。
(Production Example 19)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 3-methacryloyloxypropyltrimethoxysilane 10 parts, p-methoxyphenol 0.2 part and isopropanol 227 parts were added, and the temperature was raised with stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B14) obtained in Production Example 18 [4 parts of the compound represented by the above formula (P-XI)] was added and stirred at 95 ° C. for 2 hours. Then, the dehydration condensation reaction was carried out, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted for 1 hour with stirring. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing an azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixture of reactive particles and a compound represented by the formula (P-XII) having a nonvolatile content of 40%. It was. The ratio between the reactive particles calculated from the blending amount and the compound represented by the formula (P-XII) is as follows: reactive particles / compound represented by the formula (P-XII) = 100/3 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-XII) is referred to as a product (B15).
 (製造例20)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール233部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子の不揮発分40%分散液を得た。なお、本製造例で得られた反応性粒子を生成物(B16)と称する。
(Production Example 20)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (100 parts of silica fine particles), 10 parts of 3-methacryloyloxypropyltrimethoxysilane, 0.2 part of p-methoxyphenol and 233 parts of isopropanol were added, and the temperature was increased while stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, after performing a dehydration condensation reaction with stirring at 95 ° C. for 2 hours, the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted with stirring for 1 hour. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The operation of adding propylene glycol monomethyl ether and performing azeotropic distillation was performed several times to replace the solvent, thereby obtaining a 40% non-volatile dispersion of reactive particles. In addition, the reactive particle obtained by this manufacture example is called a product (B16).
 (製造例21)
 還流冷却器、温度計及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール227部を配合した後、攪拌しながら昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、製造例1で得られた生成物(B1)の不揮発分60%溶液17部[前記式(P-V)で表される化合物が6部]及びデシルトリメトキシシラン5部を添加し、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、反応性粒子及び前記式(P-VI)で表される化合物の不揮発分40%の混合液を得た。配合量から計算される反応性粒子と前記式(P-VI)で表される化合物との比率は、反応性粒子/前記式(P-VI)で表される化合物=100/3(質量比)であった。なお、本製造例で得られた反応性粒子及び前記式(P-VI)で表される化合物の混合物を生成物(B17)と称する。
(Production Example 21)
In a separable flask equipped with a reflux condenser, a thermometer and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, Nissan Chemical Industries, Ltd.) 333 parts (silica fine particle: 100 parts), 3-methacryloyloxypropyltrimethoxysilane 10 parts, p-methoxyphenol 0.2 part and isopropanol 227 parts were added, and the temperature was raised with stirring. When the reflux of volatile components began, propylene glycol monomethyl ether was added and azeotropically distilled to replace the solvent in the reaction system. Subsequently, 17 parts of a 60% non-volatile solution of the product (B1) obtained in Production Example 1 [6 parts of the compound represented by the formula (PV)] and 5 parts of decyltrimethoxysilane were added. The dehydration condensation reaction was carried out with stirring at 95 ° C. for 2 hours, then the temperature was lowered to 60 ° C., 0.03 part of tetrabutylammonium fluoride was added, and the mixture was further reacted with stirring for 1 hour. After completion of the reaction, volatile components were distilled off under reduced pressure, and propylene glycol monomethyl ether was further added for azeotropic distillation. The solvent was replaced by performing azeotropic distillation by adding propylene glycol monomethyl ether several times to obtain a mixed solution of reactive particles and a compound represented by the formula (P-VI) having a nonvolatile content of 40%. It was. The ratio of the reactive particles calculated from the blending amount to the compound represented by the formula (P-VI) is: reactive particles / compound represented by the formula (P-VI) = 100/3 (mass ratio) )Met. The mixture of the reactive particles obtained in this production example and the compound represented by the formula (P-VI) is referred to as product (B17).
 (製造例22)
 還流冷却器、温度計、空気導入管及び攪拌機を備えた4つ口フラスコにスミジュールN3300(住化バイエルウレタン社製)179部、2-ヒドロキシエチルアクリレート109部、酢酸イソブチル192部及びp-メトキシフェノール 1部を配合し、攪拌した。空気を吹き込みながら100℃まで昇温し、100℃で8時間反応させた。反応後、エチレングリコールモノブチルエーテル192部を配合して80℃まで昇温し、80℃で1時間攪拌した後、減圧蒸留にて酢酸イソブチルを除去し、生成物(D1)の不揮発分60%溶液を得た。
(Production Example 22)
In a four-necked flask equipped with a reflux condenser, thermometer, air inlet tube and stirrer, 179 parts of Sumidur N3300 (manufactured by Sumika Bayer Urethane Co., Ltd.), 109 parts of 2-hydroxyethyl acrylate, 192 parts of isobutyl acetate and p-methoxy 1 part of phenol was blended and stirred. While blowing air, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 8 hours. After the reaction, 192 parts of ethylene glycol monobutyl ether was added, the temperature was raised to 80 ° C., and the mixture was stirred at 80 ° C. for 1 hour. Then, isobutyl acetate was removed by distillation under reduced pressure, and a 60% nonvolatile solution of the product (D1) Got.
 得られた生成物(D1)はNCO価=0mgNCO/gであった。上記の結果から、生成物(D1)は、下記式(P-XIII)で表される化合物であった。 The product (D1) obtained had an NCO value of 0 mg NCO / g. From the above results, the product (D1) was a compound represented by the following formula (P-XIII).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 (製造例23)
 還流冷却器、温度計、空気導入管及び攪拌機を備えた4つ口フラスコにデスモジュールXP2410(バイエルマテリアルサイエンス社製)50部、ジブチルスズジラウレート0.02部、及びハイドロキノンモノメチルエーテル0.1部の混合物を仕込んだ。該混合物を攪拌しながら、80℃まで加熱した。続いて、混合物の温度が90℃を超えないようにしながら、2-ヒドロキシエチルアクリレート32.9部を2時間かけて滴下し、混合物を80℃で更に4時間撹拌し、1-メトキシ-2-プロパノール20.7部を加えて生成物(D2)の不揮発分80%溶液を得た。得られた生成物(D2)はNCO価=0mgNCO/gであった。
(Production Example 23)
A mixture of 50 parts Desmodur XP2410 (manufactured by Bayer MaterialScience), 0.02 part dibutyltin dilaurate, and 0.1 part hydroquinone monomethyl ether in a four-necked flask equipped with a reflux condenser, thermometer, air inlet tube and stirrer Was charged. The mixture was heated to 80 ° C. with stirring. Subsequently, 32.9 parts of 2-hydroxyethyl acrylate was added dropwise over 2 hours while keeping the temperature of the mixture not exceeding 90 ° C., and the mixture was stirred at 80 ° C. for further 4 hours to give 1-methoxy-2- 20.7 parts of propanol was added to obtain an 80% non-volatile solution of the product (D2). The obtained product (D2) had an NCO value of 0 mg NCO / g.
 (実施例1)
 製造例1で得られた生成物(A1)の不揮発分50%溶液100.0部、製造例6で得られた生成物(B2)の不揮発分40%溶液75.0部、アロニックスM-315(商品名、東亞合成社製、イソシアヌル酸EO変性ジ及びトリアクリレート)20.0部、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(光重合開始剤)3.0部、及び2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(光重合開始剤)0.5部を配合し、酢酸エチルで不揮発分30%に希釈した後に攪拌し、活性エネルギー線硬化性組成物No.1を製造した。第1表に活性エネルギー線硬化性組成物No.1中の不揮発分100質量部に対する(A)成分、(B)成分及び(D)成分の質量部を示した。なお、第1表に記載の配合量は不揮発分の質量部を示す。
Example 1
100.0 parts of a 50% non-volatile solution of the product (A1) obtained in Production Example 1, 75.0 parts of a 40% non-volatile solution of the product (B2) obtained in Production Example 6, Aronix M-315 (Trade name, manufactured by Toagosei Co., Ltd., isocyanuric acid EO-modified di- and triacrylate) 20.0 parts, 1-hydroxy-cyclohexyl-phenyl-ketone (photopolymerization initiator) 3.0 parts, and 2,4,6- 0.5 parts of trimethylbenzoyl-diphenyl-phosphine oxide (photopolymerization initiator) was added, diluted with ethyl acetate to a non-volatile content of 30%, and stirred, and then the active energy ray-curable composition No. 1 was produced. In Table 1, active energy ray-curable composition No. The mass part of (A) component, (B) component, and (D) component with respect to 100 mass parts of nonvolatile content in 1 was shown. In addition, the compounding quantity of Table 1 shows the mass part of a non volatile matter.
 次いでイソプロパノールにて脱脂したABS基板(アクリロニトリル-ブタジエン-スチレン3元共重合樹脂基板)上に、前記活性エネルギー線硬化性組成物をアプリケーターで乾燥膜厚が10μmとなる条件で塗装し、80℃で10分間乾燥して溶剤を除去した後、高圧水銀灯(80W/cm)で、紫外線(ピークトップ波長365nm)を窒素雰囲気下、照射量20,000J/mで照射して、硬化塗膜を形成し、試験板を得た。得られた試験板について、下記評価試験に供した。評価結果を第1表に示す。 Next, the active energy ray-curable composition was applied on an ABS substrate (acrylonitrile-butadiene-styrene terpolymer resin substrate) degreased with isopropanol using an applicator at a dry film thickness of 10 μm, at 80 ° C. After removing the solvent by drying for 10 minutes, a cured coating film is formed by irradiating ultraviolet rays (peak top wavelength 365 nm) with a high pressure mercury lamp (80 W / cm) at a dose of 20,000 J / m 2 in a nitrogen atmosphere. A test plate was obtained. The obtained test plate was subjected to the following evaluation test. The evaluation results are shown in Table 1.
 (実施例2~24、比較例1~5)
 実施例1において、各成分及び配合量を第1表に記載した各成分及び配合量に代えた以外は、実施例1と同様にして実施例2~24及び比較例1~5の活性エネルギー線硬化性組成物No.2~29を製造した。
(Examples 2 to 24, Comparative Examples 1 to 5)
In Example 1, the active energy rays of Examples 2 to 24 and Comparative Examples 1 to 5 were the same as Example 1, except that the respective components and blending amounts were changed to the respective components and blending amounts described in Table 1. Curable composition No. 2 to 29 were produced.
 次いで、実施例1に記載の方法と同様の方法にて硬化塗膜を形成し、各試験板を得た。得られた試験板について、下記評価試験に供した。評価結果を第1表に示す。 Next, a cured coating film was formed by the same method as described in Example 1 to obtain each test plate. The obtained test plate was subjected to the following evaluation test. The evaluation results are shown in Table 1.
 (実施例25~34)
 実施例1において、各成分及び配合量を第2表に記載した各成分及び配合量に代えた以外は、実施例1と同様にして実施例25~34の活性エネルギー線硬化性組成物No.30~39を製造した。
(Examples 25 to 34)
In Example 1, the active energy ray-curable composition Nos. 25 to 34 of Examples 25 to 34 were used in the same manner as in Example 1 except that the respective components and blending amounts were changed to the respective components and blending amounts shown in Table 2. 30-39 were produced.
 次いでイソプロパノールにて脱脂したポリカーボネート樹脂板上に、前記活性エネルギー線硬化性組成物を乾燥膜厚が10μmとなるようエアスプレー塗装し、80℃で10分間乾燥して溶剤を除去した後、超高圧水銀灯を用い3,000mJ/cmの照射量で活性エネルギー線を照射して硬化塗膜を形成し、各試験板を得た。得られた試験板について、下記評価試験に供した。評価結果を第2表に示す。 Next, the active energy ray-curable composition was air spray-coated on a polycarbonate resin plate degreased with isopropanol so that the dry film thickness was 10 μm, dried at 80 ° C. for 10 minutes to remove the solvent, and then subjected to ultrahigh pressure. A cured coating film was formed by irradiating active energy rays at a dose of 3,000 mJ / cm 2 using a mercury lamp to obtain each test plate. The obtained test plate was subjected to the following evaluation test. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
(注1)EBECRYL1290:ダイセルサイテック製、6官能ウレタンアクリレート
(注2)比較例2及び4の「-」は、生成物P16と重合性不飽和化合物との相溶性が悪く、塗膜がかなり濁っており、評価ができなかったことを示す。
(Note 1) EBECRYL 1290: manufactured by Daicel Cytec Co., Ltd., 6-functional urethane acrylate (Note 2) “-” in Comparative Examples 2 and 4 has poor compatibility between the product P16 and the polymerizable unsaturated compound, and the coating film is considerably cloudy. Indicates that the evaluation was not possible.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
(注3)KAYARAD R-604:商品名、日本化薬株式会社製、5-エチル-2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-(ヒドロキシメチル)-1,3-ジオキサンジアクリレート。
(注4)TINUVIN384-2:商品名、チバ スペシャルティ ケミカルズ社製、紫外線吸収剤
(注5)RUVA93:商品名、大塚化学社製、紫外線吸収剤
(注6)TINUVIN479:商品名、チバ スペシャルティ ケミカルズ社製、紫外線吸収剤
(注7)TINUVIN123:商品名、チバ スペシャルティ ケミカルズ社製、光安定剤
(注8)HOSTAVIN3058:商品名、クラリアント社製、光安定剤
(注9)アデカスタブLA82:商品名、株式会社ADEKA製、光安定剤。
(Note 3) KAYARAD R-604: trade name, manufactured by Nippon Kayaku Co., Ltd., 5-ethyl-2- (2-hydroxy-1,1-dimethylethyl) -5- (hydroxymethyl) -1,3-dioxane Diacrylate.
(Note 4) TINUVIN 384-2: trade name, manufactured by Ciba Specialty Chemicals, Inc., UV absorber (Note 5) RUVA93: trade name, manufactured by Otsuka Chemical Co., Ltd., UV absorber (Note 6) TINUVIN 479: trade name, Ciba Specialty Chemicals Manufactured, UV absorber (Note 7) TINUVIN123: trade name, manufactured by Ciba Specialty Chemicals, Inc., light stabilizer (Note 8) HOSTAVIN 3058: trade name, manufactured by Clariant, Inc., light stabilizer (Note 9) ADK STAB LA82: trade name, stock A light stabilizer made by the company ADEKA.
 <付着性>
 被塗物に達するようにカッターで切り込み線を入れ、大きさ2mm×2mmのマス目を100個作り、その表面に粘着セロハンテープ(登録商標)を貼着し、20℃においてそれを急激に剥離した後のマス目の残存塗膜数を調べ、下記基準にて評価した。
<Adhesiveness>
Make a cut line with a cutter to reach the object to be coated, make 100 squares with a size of 2 mm x 2 mm, stick adhesive cellophane tape (registered trademark) on the surface, and peel it off rapidly at 20 ° C The number of the remaining coatings after the check was examined and evaluated according to the following criteria.
  AA:100個(ハガレなし)
  A:90~99個、
  B:89~50個、
  C:49個以下。
AA: 100 (no peeling)
A: 90-99 pieces
B: 89-50 pieces,
C: 49 or less.
 <耐擦傷性>
 ASTM D-1044に準拠し、摩耗輪CS-10F、荷重500g、回転数500サイクルの条件で摩耗試験を行った。試験後、中性洗剤を用いて試料を洗浄し、ヘーズメータで曇価を測定した。[試験後の曇価-試験前の曇価]を計算し評価した。なお、値が小さい方が耐擦傷性が優れる。
<Abrasion resistance>
In accordance with ASTM D-1044, a wear test was conducted under conditions of a wear wheel CS-10F, a load of 500 g, and a rotation speed of 500 cycles. After the test, the sample was washed with a neutral detergent, and the haze value was measured with a haze meter. [Haze value after test-haze value before test] was calculated and evaluated. The smaller the value, the better the scratch resistance.
 <耐候性>
 得られた各試験板ついてサンシャインウェザーオメーターを用いて、1000時間試験を行った後に、塗膜を目視で観察し下記の基準に従って評価した。
<Weather resistance>
About each obtained test board, after performing the test for 1000 hours using a sunshine weatherometer, the coating film was observed visually and evaluated according to the following reference | standard.
  A:異常無し、若しくはフクレ、変色、ツヤ変化、剥がれ等が僅かに認められるが実用上問題が無い、
  B:フクレ、変色、ツヤ変化、剥がれ等が認められる、
  C:フクレ、変色、ツヤ変化、剥がれ等が著しく認められる。
A: No abnormality, or slight swelling, discoloration, gloss change, peeling, etc. are recognized, but there is no practical problem.
B: Dandruff, discoloration, gloss change, peeling, etc. are observed,
C: Remarkable blistering, discoloration, gloss change, peeling, etc.
 <透明性>
 被塗物をABS基板からガラス板に変えた以外は上記の試験板作製方法と同様にして試験板を作成した。作成した試験板の外観を目視で観察し、下記基準で評価した。
<Transparency>
A test plate was prepared in the same manner as the test plate preparation method described above except that the article to be coated was changed from the ABS substrate to the glass plate. The appearance of the prepared test plate was visually observed and evaluated according to the following criteria.
  A:透明であり、良好、
  B:わずかに濁りがある、
  C:かなりに濁っている。
A: Transparent and good,
B: Slightly cloudy,
C: It is very cloudy.
 <総合評価>
 本発明が属する建物の採光材、車両の窓、ランプレンズ、計器カバー等の塗装の分野においては、付着性、耐擦傷性、耐候性及び透明性の全てが優れていることが望ましい。従って、下記の基準にて総合評価を行った:
  AA:付着性がAAであり、耐擦傷性が7以下であり、耐候性がAであり、かつ透明性がAである、
  A:付着性がAであり、耐擦傷性が7以下であり、耐候性がAであり、かつ透明性がAである、
  B:付着性がAA、A又はBであり、耐擦傷性が7以下であり、耐候性がA又はBであり、透明性がA又はBであり、かつ付着性、耐擦傷性及び耐候性のうち少なくとも1つがBである、
  C:付着性、耐擦傷性及び耐候性のうち少なくとも1つがCもしくは評価不能であるか、または耐擦傷性が7を超える。
<Comprehensive evaluation>
In the field of painting such as daylighting materials for buildings to which the present invention belongs, vehicle windows, lamp lenses, instrument covers, etc., it is desirable that all of adhesion, scratch resistance, weather resistance and transparency are excellent. Therefore, a comprehensive evaluation was performed based on the following criteria:
AA: Adhesiveness is AA, scratch resistance is 7 or less, weather resistance is A, and transparency is A.
A: Adhesiveness is A, scratch resistance is 7 or less, weather resistance is A, and transparency is A.
B: Adhesiveness is AA, A or B, scratch resistance is 7 or less, weather resistance is A or B, transparency is A or B, and adhesiveness, scratch resistance and weather resistance At least one of which is B,
C: At least one of adhesion, scratch resistance and weather resistance is C or cannot be evaluated, or the scratch resistance exceeds 7.

Claims (4)

  1. シルセスキオキサン化合物(A)及び
    反応性粒子(B)
    を含有する活性エネルギー線硬化性組成物であって、
     該シルセスキオキサン化合物(A)は、該シルセスキオキサン化合物(A)中のケイ素原子に直接に結合した有機基を有し、
     該有機基の少なくとも1つが、(a-1)2級水酸基、ウレタン結合及びウレア結合よりなる群から選ばれる少なくとも1つと(a-2)少なくとも1つの(メタ)アクリロイルオキシ基との両者を有しており、かつ
     該反応性粒子(B)が、シリカ微粒子(b-1)と、分子内に(メタ)アクリロイルオキシ基を有する加水分解性シラン(b-2)とを反応させて得られる、
    活性エネルギー線硬化性組成物。
    Silsesquioxane compound (A) and reactive particles (B)
    An active energy ray-curable composition containing
    The silsesquioxane compound (A) has an organic group directly bonded to a silicon atom in the silsesquioxane compound (A),
    At least one of the organic groups has both (a-1) at least one selected from the group consisting of a secondary hydroxyl group, a urethane bond and a urea bond, and (a-2) at least one (meth) acryloyloxy group. And the reactive particles (B) are obtained by reacting silica fine particles (b-1) with hydrolyzable silane (b-2) having a (meth) acryloyloxy group in the molecule. ,
    An active energy ray-curable composition.
  2. 光重合開始剤(C)を含有する請求項1に記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1, comprising a photopolymerization initiator (C).
  3. 前記(A)成分及び(B)成分以外の重合性不飽和化合物(D)を含有する請求項1又は2に記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1 or 2, comprising a polymerizable unsaturated compound (D) other than the component (A) and the component (B).
  4. 請求項1~3のいずれか1項に記載の活性エネルギー線硬化性組成物を被塗物上に塗装して得られる塗装物品。 A coated article obtained by coating the active energy ray-curable composition according to any one of claims 1 to 3 on an article to be coated.
PCT/JP2011/050064 2010-01-15 2011-01-05 Active energy ray-curable composition, and coated article WO2011086957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011549956A JP5656877B2 (en) 2010-01-15 2011-01-05 Active energy ray-curable composition and coated article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010006514 2010-01-15
JP2010-006514 2010-01-15
JP2010195947 2010-09-01
JP2010-195947 2010-09-01

Publications (1)

Publication Number Publication Date
WO2011086957A1 true WO2011086957A1 (en) 2011-07-21

Family

ID=44304230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050064 WO2011086957A1 (en) 2010-01-15 2011-01-05 Active energy ray-curable composition, and coated article

Country Status (3)

Country Link
JP (1) JP5656877B2 (en)
TW (1) TWI439520B (en)
WO (1) WO2011086957A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144307A (en) * 2010-01-18 2011-07-28 Kansai Paint Co Ltd Active energy ray-curable composition and coated article
JP2011144233A (en) * 2010-01-13 2011-07-28 Kansai Paint Co Ltd Active energy ray-curable composition and coated article
JP2021123646A (en) * 2020-02-05 2021-08-30 信越化学工業株式会社 Active energy ray-curable composition, coating agent, and coated article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706012B (en) * 2019-09-12 2020-10-01 明基材料股份有限公司 A high hardness flexible hard coating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265609A (en) * 2001-03-14 2002-09-18 Lintec Corp Boron-containing polyorganosilsesquioxane and adhesive composition
WO2008108390A1 (en) * 2007-03-07 2008-09-12 Ube Industries, Ltd. Photocurable composition and cured product using the same
JP2009206197A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Curable composition for nanoimprint, and cured body and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265609A (en) * 2001-03-14 2002-09-18 Lintec Corp Boron-containing polyorganosilsesquioxane and adhesive composition
WO2008108390A1 (en) * 2007-03-07 2008-09-12 Ube Industries, Ltd. Photocurable composition and cured product using the same
JP2009206197A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Curable composition for nanoimprint, and cured body and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144233A (en) * 2010-01-13 2011-07-28 Kansai Paint Co Ltd Active energy ray-curable composition and coated article
JP2011144307A (en) * 2010-01-18 2011-07-28 Kansai Paint Co Ltd Active energy ray-curable composition and coated article
JP2021123646A (en) * 2020-02-05 2021-08-30 信越化学工業株式会社 Active energy ray-curable composition, coating agent, and coated article
JP7276183B2 (en) 2020-02-05 2023-05-18 信越化学工業株式会社 Active energy ray-curable composition, coating agent, and coated article

Also Published As

Publication number Publication date
TW201139573A (en) 2011-11-16
TWI439520B (en) 2014-06-01
JP5656877B2 (en) 2015-01-21
JPWO2011086957A1 (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP6057320B2 (en) Laminate and method for producing laminate
JP5656878B2 (en) Active energy ray-curable composition and coated article
JP6045096B2 (en) Laminate and method for producing laminate
JP5907588B2 (en) Silsesquioxane compound and coating composition containing the same
JP5470166B2 (en) Curable coating composition
JP2012130863A (en) Multilayer coating film forming method and coated article
JP5547540B2 (en) Active energy ray-curable coating composition and coated article
JP5393497B2 (en) Active energy ray-curable composition and coated article
JP5393493B2 (en) Active energy ray-curable composition and coated article
JP2014037453A (en) Active energy ray curable resin composition and laminate using the same
JP5643533B2 (en) MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
WO2011105401A1 (en) Coating agent composition
JP2013018848A (en) Active energy ray-curable composition and coated article
JP5656877B2 (en) Active energy ray-curable composition and coated article
JP2012183519A (en) Multi-layered coated film formation method, and coated article
JP2012183520A (en) Multi-layered coated film formation method, and coated article
JP5643534B2 (en) MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
JP5284869B2 (en) Silsesquioxane compound having a polymerizable functional group and an ultraviolet absorbing group
JP7276183B2 (en) Active energy ray-curable composition, coating agent, and coated article
JP2012116173A (en) Laminate having protective coating
JP5643535B2 (en) MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
WO2022158030A1 (en) Coating agent for resin glasses, and resin glass
JPWO2020066993A1 (en) Compositions, cured products, laminates and light-resistant paints

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011549956

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732827

Country of ref document: EP

Kind code of ref document: A1