WO2011085648A1 - 辅载波配对信息的传输方法、实现传输的节点b和系统 - Google Patents

辅载波配对信息的传输方法、实现传输的节点b和系统 Download PDF

Info

Publication number
WO2011085648A1
WO2011085648A1 PCT/CN2011/070026 CN2011070026W WO2011085648A1 WO 2011085648 A1 WO2011085648 A1 WO 2011085648A1 CN 2011070026 W CN2011070026 W CN 2011070026W WO 2011085648 A1 WO2011085648 A1 WO 2011085648A1
Authority
WO
WIPO (PCT)
Prior art keywords
pairing information
secondary carrier
downlink
uplink
node
Prior art date
Application number
PCT/CN2011/070026
Other languages
English (en)
French (fr)
Inventor
贺美芳
史莉荣
程翔
杨立
崔颖川
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/508,561 priority Critical patent/US20120269147A1/en
Priority to EP11732638.9A priority patent/EP2490504A4/en
Priority to RU2012121952/07A priority patent/RU2510600C9/ru
Priority to BR112012013683A priority patent/BR112012013683A2/pt
Publication of WO2011085648A1 publication Critical patent/WO2011085648A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to a wireless communication system, and in particular to a method for transmitting secondary carrier pairing information in a multi-carrier high-speed downlink packet access technology and a node B and system for implementing the transmission.
  • a wireless link refers to a logical connection between a terminal and a wireless access system access point, which is usually composed of one or more wireless bearer transmissions in physical implementation.
  • the wireless link identity is used to identify the wireless link, and the wireless link associated with the terminal has a unique wireless link identity.
  • the frequency information of the carrier of the cell is indicated by UTRA (Universal Telecommunication Radio Access) Absolute Radio Frequency Channel Number (hereinafter referred to as UARFCN).
  • UTRA Universal Telecommunication Radio Access
  • UARFCN Absolute Radio Frequency Channel Number
  • the IUB (Interconnection of Type B) interface is a logical interface between a Radio Network Controller (RNC) and Node B.
  • the IUB interface protocol framework has two functional layers, a wireless network layer and a transport network layer.
  • NBAP Node B Application Part
  • the basic process of NBAP is divided into a common process and a dedicated process.
  • the common process is applied to a specific terminal-independent signaling or a specific terminal context initialization request process already existing in the Node B, including: establishing the first wireless link of the terminal, selecting The service termination endpoint; the dedicated procedure refers to a process associated with a certain terminal context.
  • each subsequent signaling associated with the terminal will pass the dedicated operation of the terminal.
  • the control ports interact using dedicated procedures, including: Adding, releasing, and reconfiguring wireless links for the terminal.
  • the IUR (Interconnection of RNC) interface is an interface used by the radio network controller for signaling and data interaction with other radio network controllers, and is the link between the wireless network subsystems. Through the IUR interface, different wireless network subsystems can Connected together through a dedicated protocol RNSAP (Radio Network Subsystem Application
  • the wireless network subsystem application part completes the mobility management of the terminal connected to the wireless network controller across the wireless network subsystem, including switching between wireless network subsystems, wireless resource processing and synchronization.
  • a terminal establishes a connection to the radio access network and soft handover occurs on the IUR interface, more than one radio network controller resource is used.
  • the main functions of the IUR interface are as follows: Basic mobility management between radio network controllers, service flow supporting common channels, and service flow supporting dedicated channels. These business processes are the most basic functions of the IUR interface. The wireless network controllers of different manufacturers must be able to complete the compatibility of these business processes. Otherwise, the interconnection and interworking of the IUR interfaces cannot be realized.
  • the 3rd Generation Partnership Project (3GPP) introduced dual-carrier High Speed Downlink Packet Access (DC-HSDPA) in Rel-8.
  • DC-HSDPA High Speed Downlink Packet Access
  • the wireless network control entity passes The IUB port configures the additional high speed cell information radio link setup cell to the Node B with DC-HSDPA capability.
  • Additional high-speed cell information The information carried by the radio link setup cell mainly includes: a high-speed physical downlink shared channel radio link identifier, a cell identifier, a high-speed downlink shared channel auxiliary service information, and a total terminal maximum bit rate.
  • 3GPP introduced Dual Cell High Speed Uplink Packet Access (DC-HSUPA) in Rel-9, which uses two uplink adjacent carriers (primary carrier and secondary carrier) to increase the upstream bandwidth.
  • the uplink primary carrier and the uplink secondary carrier respectively set respective enhanced dedicated physical data channels (E-DCH Dedicated Physical Data Channels, E-DPDCH, wherein E-DCH (Enhanced Dedicated Channel) is an enhanced dedicated channel) and enhanced dedicated physical control Channel (E-DCH Dedicated Physical Control Channel, E-DPCCH for short).
  • E-DCH Dedicated Physical Data Channels E-DPDCH
  • E-DCH Enhanced Dedicated Channel
  • E-DCH Dedicated Physical Control Channel E-DCH Dedicated Physical Control Channel
  • the downlink primary carrier and the downlink secondary carrier respectively set respective enhanced absolute grant channels (E-DCH Absolute Grant Channels, E-AGCH), enhanced relative grant channels (E-DCH Relative Grant Channels, E-RGCH for short), and enhanced hybrid automatic The E-DCH HARQ Acknowledgement Indicator Channel (E-HICH).
  • E-DCH Absolute Grant Channels, E-AGCH enhanced relative grant channels
  • E-DCH Relative Grant Channels E-RGCH for short
  • E-HICH enhanced hybrid automatic The E-DCH HARQ Acknowledgement Indicator Channel
  • the uplink primary carrier corresponds to the downlink primary carrier
  • the uplink secondary carrier corresponds to the downlink secondary carrier.
  • the primary carrier and the secondary carrier are separately scheduled.
  • HSUPA data can be sent on both the uplink primary carrier and the uplink secondary carrier.
  • the uplink carrier is the uplink primary carrier.
  • the carrier carrying the high speed downlink shared channel is the downlink primary carrier, and the carrier corresponding to the downlink primary carrier is the uplink primary carrier.
  • the corresponding serving high speed downlink shared channel cell is determined by the downlink primary carrier.
  • the radio network control entity configures the additional enhanced data channel cell information radio link setup request cell to the Node B having DC-HSUPA capability.
  • the information carried by the enhanced data channel cell information radio link setup request cell mainly includes: a multi-cell E-DCH transport bearer mode and an additional E-DCH cell information setup cell.
  • the additional E-DCH cell information setup cells contain additional E-DCH frequency reuse duplex setup information and multi-cell E-DCH information.
  • the additional E-DCH frequency reuse duplex setup information is composed of uplink dedicated physical channel information, additional E-DCH radio link specific information, additional E-DCH frequency reuse duplex information, and F-DPCH information.
  • E-DCH additional wireless link-specific information is E-DCH additional wireless link-specific information
  • the E-DCH additional wireless link-specific information is the uplink secondary carrier information
  • the uplink secondary carrier information includes the E-DCH additional wireless Link-specific information entry 1 and E-DCH additional wireless link-specific information entry 2.
  • the E-DCH additional radio link-specific information entry 1 has the following information: E-DCH additional radio link identity, cell identity, first radio link set indication, propagation delay, initial downlink transmission power, primary common pilot The control channel signal-to-noise ratio, some downstream channel power offsets, and the additional E-DCH media intervention control flow-specific information.
  • the E-DCH additional radio link-specific information entry 2 is also the multi-cell E-DCH radio link-specific information.
  • the uplink secondary carrier and the downlink secondary carrier are directly paired, that is, the downlink auxiliary 'J, the corresponding cell of the area is the uplink auxiliary 'J, the corresponding 'J, zone,
  • the uplink and downlink frequency information of the uplink secondary cell is the frequency information of the uplink secondary carrier and the downlink secondary carrier.
  • the air interface refers to the interface between the terminal (UE) and the access network (UTRAN), referred to as the Uu interface, and is also commonly referred to as a wireless interface.
  • the wireless interface protocol is mainly used to establish, reconfigure, and release various radio bearer services.
  • the radio network control entity configures the uplink secondary cell information on the air interface to the terminal having the capability of receiving the DC-HSUPA.
  • the so-called uplink secondary cell information mainly includes: selecting configuration information (maintaining flag or new configuration flag).
  • the new configuration information includes the secondary service enhanced data channel cell information, the secondary enhanced data channel information common part, and the auxiliary Downlink information for each radio link list on the upstream frequency.
  • the common part of the auxiliary enhanced data channel information includes: frequency information, scrambling code type, scrambling code number, 2 millisecond scheduling transmission authorization HARQ processing allocation, service authorization, initial service authorization value, primary/secondary authorized selector, minimum Reduce E-DPDCH gain factor, E-DCH minimum set E-DCH Transport Format Combination Indicator (E-TFCI), Dedicated Physical Control Channel (DPCCH) for secondary uplink frequency Power bias, and power preamble (PC preamble).
  • the frequency information of the frequency duplex multiplexing includes: the downlink UARFCN indication of the uplink secondary carrier and the frequency of the downlink secondary carrier are indicated by the downlink UARFCN.
  • the multi-carrier high-speed downlink packet access technology is expected to be introduced into an existing system, which enables a terminal to transmit data on a high-speed downlink packet access technology on two carriers or more than two carriers, thereby enabling downlink
  • the link data rate is multiplied, and the number of carriers corresponding to the uplink can be one to four carriers.
  • the uplink secondary cell cannot be determined according to the downlink secondary cell. Therefore, for the uplink secondary carrier, it is not known which pair of downlink secondary carriers are paired with, which is called an uplink secondary cell.
  • the technical problem to be solved by the present invention is to provide a method for transmitting secondary carrier pairing information, a node B and a system for implementing transmission, and implementing flexible configuration of uplink and downlink secondary carriers.
  • the present invention provides a method for transmitting secondary carrier pairing information, including:
  • the node B to which the terminal belongs sets the pairing information of the uplink secondary carrier and the downlink secondary carrier of the secondary service enhanced dedicated channel cell for the terminal, Control signaling transmitted by the Class B Interconnect (IUB) interface is sent to the wireless network control entity.
  • IUB Class B Interconnect
  • the method further includes: after the wireless network control entity obtains the pairing information, determining Whether it is valid or not, the pairing information judged to be valid is transmitted to the terminal.
  • the node B selects the channel quality to be higher than a predetermined threshold.
  • the downlink secondary carrier, the serving high-speed downlink shared channel cell corresponding to the downlink secondary carrier is used as the secondary service enhanced dedicated channel cell, and the uplink frequency of the serving high-speed downlink shared channel cell corresponding to the downlink secondary carrier is used as the frequency of the uplink secondary carrier.
  • the pairing information of the uplink secondary carrier and the downlink secondary carrier includes: frequency information of the paired uplink secondary carrier and the downlink secondary carrier, or a wireless link identifier of the secondary service enhanced dedicated channel cell, or auxiliary service enhanced type The cell identity of the channel cell.
  • control signaling and the control signaling in the process of controlling are any one of the following: when the controlling process is a radio link establishing process, the control signaling is a radio link setup response message; When the process of controlling adds a process to the wireless link, the control signaling adds a response message to the wireless link; when the process of controlling is a wireless link deletion process, the control signaling is a wireless link deletion response message. When the process of the control is a radio link reconfiguration process, the control signaling is a radio link reconfiguration complete message.
  • the Node B sends the control information transmitted by the pairing information through the IUB interface to the radio network control entity, where the control process is a radio link addition process, in the radio link setup response message.
  • the pairing information is carried in the additional enhanced dedicated channel cell information response cell.
  • the Node B sends the control information transmitted by the pairing information through the IUB interface to the radio network control entity, where the control process is the radio link reconfiguration process
  • the radio link reconfiguration complete message The pairing information is carried in the additional enhanced dedicated channel area information response cell.
  • the radio access network control entity includes a serving radio network controller; the node B to which the terminal belongs sets the pairing information of the uplink subcarrier and the downlink subcarrier of the secondary service enhanced dedicated channel cell for the terminal, During the process of transmitting the control signaling transmitted by the IUB interface to the radio network control entity, the Node B sends the pairing information to the serving radio network controller through the Node B Application Part (NBAP) protocol layer through the IUB port.
  • NBAP Node B Application Part
  • the radio access network control entity includes a drift radio network controller and a serving radio network controller; a node at the terminal belonging to the terminal sets an uplink secondary carrier and a downlink of the secondary service enhanced dedicated channel cell for the terminal
  • the pairing information of the secondary carrier is sent to the wireless network control entity through the control signaling transmitted by the IUB interface, and the node sends the pairing information to the drift wireless through the node/application part ( ⁇ ) protocol layer through the IUB interface.
  • a network controller, the drift radio network controller transmitting the pairing information to a serving radio network controller through an IUR interface through a Radio Network Subsystem Application Part (RNSAP) protocol layer.
  • RNSAP Radio Network Subsystem Application Part
  • the present invention further provides a node for transmitting secondary carrier pairing information, including a pairing information setting module and a pairing information sending module, where:
  • a pairing information setting module configured to set, in the process of controlling a terminal using the multi-carrier high-speed packet access technology, pairing information of an uplink secondary carrier and a downlink secondary carrier of the secondary service enhanced dedicated channel cell;
  • the pairing information sending module is configured to send the pairing information set by the pairing information setting module to the wireless network control entity by using control signaling transmitted by the IUB interface.
  • the pairing information of the uplink secondary carrier and the downlink secondary carrier includes: frequency information of the paired uplink secondary carrier and the downlink secondary carrier, or a wireless link identifier of the secondary service enhanced dedicated channel cell, or auxiliary service enhanced type The cell identity of the channel cell.
  • control signaling in the control process and the control process is any one of the following: when the process of controlling is a radio link establishment process, the control signaling is a radio link setup response message; The process of adding a response message to the radio link when the process is added to the radio link; the control signaling is a radio link deletion process, and the control signaling is a radio link deletion response message; When the process of control is a radio link reconfiguration process, the control signaling is a radio link reconfiguration complete message.
  • the pairing information is carried in an additional enhanced dedicated channel cell information response cell in the radio link setup response message.
  • the pairing information is carried in an additional enhanced dedicated channel area information response cell in the radio link reconfiguration complete message.
  • the present invention also provides a system for transmitting secondary carrier pairing information, including a Node B and a wireless network control entity, where:
  • the Node B is configured to set, in the process of controlling the terminal using the multi-carrier high-speed packet access technology, the pairing of the uplink secondary carrier and the downlink secondary carrier of the secondary service enhanced dedicated channel cell Information, the control signaling transmitted through the IUB interface is sent to the wireless network control entity;
  • the wireless network control entity is configured to determine, after obtaining the pairing information, whether the pairing information is valid, and send the pairing information determined to be valid to the terminal.
  • the node B includes a pairing information setting module and a pairing information sending module, where: a pairing information setting module is configured to be in the process of controlling a terminal using the multi-carrier high-speed packet access technology Setting the pairing information of the uplink secondary carrier and the downlink secondary carrier of the secondary service enhanced dedicated channel cell; the pairing information sending module is configured to send the pairing information set by the pairing information setting module to the wireless network through the control signaling transmitted by the IUB interface Control entity.
  • a pairing information setting module is configured to be in the process of controlling a terminal using the multi-carrier high-speed packet access technology Setting the pairing information of the uplink secondary carrier and the downlink secondary carrier of the secondary service enhanced dedicated channel cell
  • the pairing information sending module is configured to send the pairing information set by the pairing information setting module to the wireless network through the control signaling transmitted by the IUB interface Control entity.
  • the pairing information of the uplink secondary carrier and the downlink secondary carrier includes: frequency information of the paired uplink secondary carrier and the downlink secondary carrier, or a wireless link identifier of the secondary service enhanced dedicated channel cell, or auxiliary service enhanced type The cell identity of the channel cell.
  • control signaling in the control process and the control process is any one of the following: when the process of controlling is a radio link establishment process, the control signaling is a radio link setup response message; The process of adding a response message to the radio link when the process is added to the radio link; the control signaling is a radio link deletion process, and the control signaling is a radio link deletion response message; When the process of control is a radio link reconfiguration process, the control signaling is a radio link reconfiguration complete message.
  • the pairing information is carried in an additional enhanced dedicated channel cell information response cell in the radio link setup response message.
  • the pairing information is carried in an additional enhanced dedicated channel area information response cell in the radio link reconfiguration complete message.
  • the present invention sets the pairing information of the uplink secondary carrier and a certain downlink secondary carrier by the Node B, and transmits the pairing information to the radio network controller through the control signaling, so that the radio network controller obtains the pairing information of the secondary carrier. .
  • the uplink and downlink secondary carrier pairing information cannot be flexibly configured based on the IUR/IUB interface.
  • FIG. 1 is a schematic diagram of a specific carrier according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a specific processing procedure according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a specific carrier according to Embodiment 2 of the present invention.
  • Embodiment 4 is a schematic diagram of a specific processing procedure of Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a specific carrier according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a specific processing procedure of Embodiment 3 of the present invention.
  • the service high-speed downlink shared channel radio link contains all the high-speed physical downlink shared channels allocated to the terminal, and the service high-speed downlink shared channel is the downlink main carrier.
  • the serving high speed downlink shared channel cell corresponding to the downlink primary carrier is a downlink primary cell.
  • the downlink primary cell is configured to implement transmission and reception of high-speed downlink shared channel radio link data for a certain terminal.
  • the uplink primary cell corresponding to the downlink primary cell is a service enhanced dedicated channel cell, and the bearer frequency in the cell is an uplink primary carrier.
  • the serving high speed downlink shared channel cell corresponding to the downlink secondary carrier is a downlink secondary cell.
  • the terminal receives an absolutely authorized cell from the Node B on the downlink secondary carrier, and is a secondary service enhanced dedicated channel cell, also referred to as an uplink secondary cell.
  • the frequency of the downlink primary carrier is the primary downlink frequency.
  • the frequency of the uplink primary carrier is the primary uplink frequency.
  • the frequency of the downlink secondary carrier is the secondary downlink frequency.
  • the frequency of the uplink secondary carrier is the secondary uplink frequency.
  • the inventive concept of the present invention is: in a process of controlling a terminal using a multi-carrier high-speed packet access technology, a node B to which the terminal belongs sets a secondary service enhanced dedicated channel cell (uplink secondary cell) for the terminal Pairing information of the uplink secondary carrier and the downlink secondary carrier, through the IUB interface
  • the transmitted control signaling is sent to the wireless network control entity.
  • the wireless network control entity After obtaining the pairing information, the wireless network control entity determines whether it is valid, and sends the pairing information determined to be valid to the terminal. After the uplink secondary cell is determined, the terminal can transmit uplink data through the uplink secondary carrier.
  • the pairing information is valid if it is within the range of the wireless network control entity configuration, otherwise it is invalid.
  • the Node B selects a downlink secondary carrier whose channel quality is higher than a predetermined threshold (that is, the channel quality is good), and then uses the uplink frequency of the cell corresponding to the downlink secondary carrier as the frequency of the uplink secondary carrier. That is, the serving high speed downlink shared channel cell (ie, the downlink secondary cell) corresponding to the downlink secondary carrier is used as the uplink secondary cell.
  • the signal quality threshold refers to the threshold of the parameter related to the signal quality. For example, the transmission power of the dedicated physical control channel (DPCCH) of the carrier can be used as the signal quality parameter. The smaller the transmission power of the DPCCH, the better the channel quality.
  • the uplink frequency of the downlink secondary carrier corresponding to the highest priority channel may be used as the frequency of the uplink secondary carrier.
  • the pairing information of the uplink secondary carrier and the downlink secondary carrier includes: frequency information of the paired uplink secondary carrier and the downlink secondary carrier (as shown in Table 1), or a radio link identifier of the uplink secondary cell, or a cell identifier of the uplink secondary cell. .
  • the Node B sends the pairing information to the wireless network control entity when returning a response to the wireless network control entity.
  • the process of controlling the terminal includes: a radio link establishment process, a radio link addition process, a radio link deletion process, and a radio link reconfiguration process.
  • the control signaling sent by the Node B to the radio network control entity as a response is: a radio link setup response message, a radio link addition response message, a radio link deletion response message, and a radio link reconfiguration complete message.
  • Node B can implement the setting of the uplink secondary cell in the above control process, and the configuration is flexible. It does not affect existing processes and is simple to implement.
  • the pairing information can be added to the additional E-DCH cell information response cell in the radio link setup response message, as shown in Table 2.
  • the pairing information may be added to the additional E-DCH cell information response cell in the radio link reconfiguration complete message, as shown in Table 3.
  • the location of the secondary carrier pairing information in the foregoing other control signaling may refer to the foregoing message.
  • the radio access network control entity includes a serving radio network controller; the node B sends the pairing information to a serving radio network controller through an IUB port through a Node B Application Part (NBAP) protocol layer.
  • the radio access network control entity includes a drift radio network controller and a serving radio network controller; the Node B sends the pairing information to the drift radio network controller through the Node B Application Part (NBAP) protocol layer through the IUB interface
  • the drift radio network controller sends the pairing information to the serving radio network controller through an IUR interface through a Radio Network Subsystem Application Part (RNSAP) protocol layer.
  • RNSAP Radio Network Subsystem Application Part
  • the embodiment provides a method for transmitting and receiving data when the uplink frequency of the two secondary cells is the same when the uplink frequency is the same as that of the uplink two carriers and the downlink three carriers.
  • the uplink two carriers and the downlink three carriers belong to the same operating band IV.
  • the UARFCN of the uplink primary carrier is 1312 (1712.4 MHz)
  • the UARFCN of the uplink secondary carrier is 1337 (1717.4 MHz)
  • the uplink primary carrier and the uplink secondary carrier are adjacent carriers in the operating band IV.
  • the UARFCN of the downlink secondary carrier 1 is 1537 (2112.4 MHz)
  • the UARFCN of the downlink secondary carrier 2 is 1562 (2117.4 MHz)
  • the UARFCN of the downlink secondary carrier 3 is 1587 (2122.4 MHz)
  • the downlink carrier 1 and the downlink carrier 2 and The downlink carrier 3 is an adjacent carrier within the operating band IV.
  • the downlink primary carrier, the downlink secondary carrier 1 and the downlink secondary carrier 2 are adjacent carriers in the operating frequency band IV.
  • the uplink primary carrier and the downlink primary carrier form a cell with the identifier 1 and the wireless link identifier is 1;
  • the downlink secondary carrier 1 and the uplink secondary carrier form a cell with the identifier 2, and the wireless link identifier is 2;
  • the downlink secondary carrier 2 and the uplink auxiliary The carrier consists of a cell with the identifier 3, and the radio link identifier is 3, as shown in FIG.
  • the method for transmitting pairing information includes:
  • Step 110 The radio network controller sends a radio link increase request message to the node B.
  • Step 120 The node B obtains the minimum DPCCH value of the downlink subcarrier 1 according to the DPCCH transmit power of the downlink subcarrier, and corresponds to the downlink subcarrier.
  • the uplink frequency of the cell is used as the frequency of the uplink secondary carrier, and the pairing information of the uplink secondary carrier and the downlink secondary carrier is obtained.
  • the wireless link addition is implemented by the existing method, and is not the focus of the present invention, and details are not described herein again.
  • Step 130 The Node B carries the frequency information of the paired uplink secondary carrier and the downlink secondary carrier 1 of the terminal in the radio link addition response message sent to the radio network controller, that is, the uplink UARFCN is 1337, and the downlink UARFCN is 1537.
  • the message is sent through the NBB layer of the IUB port;
  • Step 140 The radio network controller receives the radio link addition response message, determines whether the pairing configuration of the uplink subcarrier and the downlink subcarrier 1 of the terminal is valid, and sends the valid pairing information to the terminal.
  • the radio network controller determines whether the frequency information of the paired uplink subcarrier and the frequency information of the downlink subcarrier 1 are both in the configuration of the radio network controller, if the pairing configuration of the uplink subcarrier and the downlink subcarrier 1 of the terminal is valid. Update and save the relevant pairing configuration information; otherwise, the pairing configuration of the uplink secondary carrier and the downlink secondary carrier 1 of the terminal is invalid, and the original configuration information is maintained.
  • the radio network controller does not need to immediately send the pairing information to the terminal after determining that the pairing information is valid, but may be sent in a protocol specified by the protocol.
  • the embodiment provides a method for transmitting and receiving data when the uplink frequency of the two secondary cells is different by using the uplink two carriers and the downlink three carriers for data transmission and reception.
  • the uplink two carriers and the downlink three carriers belong to the same operating frequency band IV.
  • the UARFCN of the uplink primary carrier is 1312 (1712.4 MHz)
  • the UARFCN of the uplink secondary carrier is 1337 (1717.4 MHz)
  • the uplink primary carrier and the uplink secondary carrier are adjacent carriers in the operating band IV.
  • the UARFCN of the downlink secondary carrier 1 is 1537 (2112.4 MHz)
  • the UARFCN of the downlink secondary carrier 2 is 1562 (2117.4 MHz)
  • the UARFCN of the downlink secondary carrier 3 is 1587 (2122.4 MHz)
  • the downlink carrier 1 and the downlink carrier 2 and The downlink carrier 3 is an adjacent carrier within the operating band IV.
  • the downlink primary carrier, the downlink secondary carrier 1 and the downlink secondary carrier 2 are adjacent carriers in the operating frequency band IV.
  • the uplink primary carrier and the downlink primary carrier form a cell with the identifier 1 and the wireless link identifier is 1;
  • the downlink secondary carrier 1 and the uplink secondary carrier form a cell with the identifier 2, and the wireless link identifier is 2;
  • the downlink secondary carrier 2 and the uplink auxiliary The carrier consists of a cell with the identifier 3, and the radio link identifier is 3, as shown in Figure 3. Shown.
  • the method for transmitting pairing information includes:
  • Step 210 The radio network controller sends a radio link setup request message for the terminal to the node B.
  • Step 220 The Node B obtains the minimum DPCCH value of the downlink secondary carrier 2 according to the DPCCH transmission power of the downlink secondary carrier, and determines the uplink frequency of the uplink secondary carrier as the frequency of the uplink secondary carrier, and determines the uplink secondary carrier and Pairing information of the downlink secondary carrier 2;
  • Step 230 The Node B sends a radio link setup response message to the radio network controller, where the message carries the frequency information of the paired uplink subcarrier and the downlink subcarrier 2 of the terminal, that is, the uplink UARFCN is 1337, and the downlink UARFCN is 2237, the message is sent through an NBB layer of the IUB port;
  • Step 240 The radio network controller receives the radio network setup response message, determines whether the pairing configuration of the uplink secondary carrier and the downlink secondary carrier 2 of the terminal is valid, and sends the valid pairing information to the terminal.
  • the radio network controller determines whether the frequency information of the paired uplink subcarrier and the frequency information of the downlink subcarrier 2 are both in the configuration of the radio network controller, and if the pairing configuration of the uplink subcarrier and the downlink subcarrier 2 of the terminal is valid, Update and save the relevant pairing configuration information; otherwise, the pairing configuration of the uplink secondary carrier and the downlink secondary carrier 2 of the terminal is invalid, and the original configuration information is maintained.
  • the embodiment provides a method for transmitting and receiving data through the uplink two carriers and the downlink three carriers at the same time, and transmitting the pairing information.
  • the uplink two carriers, the downlink primary carrier, and the downlink secondary carrier all belong to the same operating frequency band IV.
  • the downlink secondary carrier 2 and the downlink secondary carrier 3 belong to the same operating frequency band VII.
  • the UARFCN of the uplink primary carrier is 1312 (1712.4 MHz)
  • the UARFCN of the uplink secondary carrier is 1337 (1717.4 MHz)
  • the downlink primary carrier and the downlink secondary carrier are adjacent carriers in the operating band IV.
  • the UARFCN of the downlink primary carrier is 1537 (2112.4 MHz)
  • the UARFCN of the downlink secondary carrier 1 is 1562. (2117.4 MHz)
  • the downlink primary carrier and the downlink secondary carrier are adjacent carriers within the operating band IV.
  • the UARFCN of the downlink secondary carrier 2 is 2237 (2622.4 MHz), the UARFCN of the downlink secondary carrier 3 is 2262 (2627.4 MHz), and the downlink secondary carrier 2 and the downlink secondary carrier 3 are adjacent carriers in the operating frequency band VII.
  • the uplink primary carrier and the downlink primary carrier form a cell with the identifier 1 and the wireless link identifier is 1; the downlink secondary carrier 1 and the uplink secondary carrier form a cell with the identifier 2, and the wireless link identifier is 2; the downlink secondary carrier 2 and the uplink auxiliary
  • the carrier consists of a cell with the identifier 3, and the radio link identifier is 3.
  • the downlink subcarrier 3 and the uplink subcarrier form a cell with the identifier 4, and the radio link identifier is 4, as shown in FIG. 5.
  • the transmission method of the pairing information includes:
  • Step 310 The serving radio network controller sends a radio link reconfiguration request message to the drift radio network controller.
  • Step 320 The drift radio network controller sends a radio link reconfiguration request message to the node B.
  • Step 340 The Node B sends a radio link reconfiguration complete message to the drift radio network controller, where the message carries the frequency information of the uplink subcarrier and the downlink subcarrier 3 of the terminal, that is, the uplink UARFCN is 1337, and the downlink UARFCN is 2262.
  • the message is sent through the NBB layer of the IUB port;
  • Step 350 The drift radio network controller sends a radio link reconfiguration complete message to the serving radio network controller, where the message carries the frequency information of the uplink secondary carrier and the downlink secondary carrier 3 of the terminal, where the message passes through the IUR port.
  • RNSAP layer sends;
  • Step 360 The serving radio network controller receives the radio network reconfiguration complete message, determines whether the pairing configuration of the uplink secondary carrier and the downlink secondary carrier 3 of the terminal is valid, and sends the valid pairing information to the terminal.
  • the radio network controller determines whether the frequency information of the paired uplink subcarrier and the frequency information of the downlink subcarrier 3 are both in the configuration of the radio network controller, if the uplink subcarrier of the terminal is The pairing configuration of the downlink secondary carrier 3 is valid, and the related pairing configuration information is updated and saved; otherwise, the pairing configuration of the uplink secondary carrier and the downlink secondary carrier 3 of the terminal is invalid, and the original configuration information is maintained.
  • the node B that implements the foregoing method includes a pairing information setting module and a pairing information sending module, where: a pairing information setting module is configured to set the terminal for controlling the terminal using the multi-carrier high-speed packet access technology Pairing information of the uplink secondary carrier and the downlink secondary carrier of the secondary service enhanced dedicated channel cell;
  • the pairing information sending module is configured to send the pairing information set by the pairing information setting module to the wireless network control entity by using control signaling transmitted by the IUB interface.
  • the system for implementing the above method includes the foregoing Node B and a radio network control entity, where: the Node B is configured to set, for the terminal, a terminal that uses the multi-carrier high-speed packet access technology under its jurisdiction
  • the pairing information of the uplink secondary carrier and the downlink secondary carrier of the secondary service enhanced dedicated channel cell is sent to the wireless network control entity by using control signaling transmitted by the IUB interface;
  • the wireless network control entity is configured to: after obtaining the pairing information, determine whether the pairing information is valid, and send the pairing information that is determined to be valid to the terminal.
  • the present invention provides a method for flexibly selecting and transmitting secondary carrier pairing information based on Node B control when data is transmitted and received by uplink two carriers and downlink three or four carriers.
  • the Node B For a designated terminal, the Node B according to each downlink secondary cell
  • the channel quality dynamically sets the pairing information of the uplink secondary carrier and a certain downlink secondary carrier, and transmits the control information to the radio network controller through the control signaling of the IUB interface, so that the radio network controller obtains the secondary carrier pairing information, and then transmits the information to the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

辅载波配对信息的传输方法、 实现传输的节点 B和系统
技术领域
本发明涉及无线通信系统, 具体涉及在多载波高速下行分组接入技术中 辅载波配对信息的传输方法及实现传输的节点 B和系统。
背景技术
在无线通讯系统中, 无线链路是指一个终端和一个无线接入系统接入点 之间的逻辑连接, 它在物理实现上通常是由一或多个无线承载传输组成。 在 终端与一个无线接入系统接入点(通常指小区)之间最多存在一条无线链路。 无线链路标识用于识别无线链路, 和此终端相关联的无线链路均有独一无二 的无线链路标识。 小 区的载波的频率信息以 UTRA ( Universal Telecommunication Radio Access , 通用电信无线接入) Absolute Radio Frequency Channel Number ( UTRA绝对无线频率信道号,以下简称 UARFCN ) 来标明。
IUB ( Interconnection of type B , B类互联)接口是无线网络控制器( Radio Network Controller, 简称 RNC )和节点 B之间的逻辑接口。 IUB接口协议框 架有两个功能层,无线网络层与传输网络层。 NBAP ( Node B Application Part, 节点 B应用部分)是无线网络层中的一部分, 它准确且完整地指定了节点 B 的功能性行为。 NBAP基本过程分为公共过程和专用过程, 公共过程应用于 已经存在于节点 B中的与特定终端无关的信令或特定终端上下文初始化请求 过程, 包括: 建立终端的第一条无线链路, 选择业务终结端点; 专用过程是 指和某一个终端上下文关联的过程, 当无线网络控制器通过公共过程为终端 分配一个业务终端节点之后, 每一个和该终端相关的后续信令将通过该节点 的专用控制端口使用专用过程来交互, 包括: 为终端增加、 释放以及重新配 置无线链路。
IUR ( Interconnection of RNC, 无线网络控制器之间互联接口)接口是无 线网络控制器用于同其他无线网络控制器进行信令和数据交互的接口, 是无 线网络子系统之间互联的纽带。 通过 IUR接口, 不同的无线网络子系统可以 连在一起,通过专用的协议 RNSAP ( Radio Network Subsystem Application
Part,无线网络子系统应用部分)来完成与无线网络控制器有连接的终端跨无 线网络子系统的移动性管理, 包括无线网络子系统间的切换、 无线资源处理 和同步等功能。 当一个终端建立了到无线接入网的连接, 并在 IUR接口产生 了软切换, 就会用到多于一个无线网络控制器的资源。 IUR接口主要的功能, 有以下 3种: 无线网络控制器之间基本移动性的管理、 支持公共信道的业务 流程、 支持专用信道的业务流程。 这些业务流程是 IUR接口最基本的功能, 不同厂家的无线网络控制器务必要能够完成这这些业务流程的兼容, 否则根 本无法实现 IUR接口的互连互通。
第三代合作伙伴计划 (3GPP )在 Rel-8引入了双载波高速下行链路分组 接入( Dual Cell High Speed Downlink Packet Access, DC-HSDPA ) , 为了实 现 DC-HSDPA功能,无线网络控制实体通过 IUB口将附加高速小区信息无线 链路建立信元配置给具有处理 DC-HSDPA能力的节点 B。 附加高速小区信息 无线链路建立信元携带的信息主要包括: 高速物理下行共享信道无线链路标 识、 小区标识、 高速下行共享信道辅服务信息和终端总的最大位速率。
3GPP在 Rel-9引入了双载波高速上行链路分组接入( Dual Cell High Speed Uplink Packet Access, DC-HSUPA), 利用两个上行相邻载波(主载波和辅载 波) 来提高上行带宽。 上行主载波和上行辅载波分别设置各自的增强专用物 理数据信道( E-DCH Dedicated Physical Data Channel, 简称 E-DPDCH, 其中 E-DCH ( Enhanced Dedicated Channel )为增强型专用信道)和增强专用物理 控制信道( E-DCH Dedicated Physical Control Channel, 简称 E-DPCCH ) 。 下 行主载波和下行辅载波分别设置各自的增强绝对授权信道(E-DCH Absolute Grant Channel, 简称 E-AGCH ) 、 增强相对授权信道( E-DCH Relative Grant Channel , 简称 E-RGCH )和增强混合自动重传请求指示信道( E-DCH HARQ Acknowledgement Indicator Channel, 简称 E-HICH )。 上行主载波与下行主载 波相对应, 上行辅载波与下行辅载波相对应。 主载波和辅载波分别进行独立 的调度。 对于具有发送 DC-HSUPA能力的 UE来说, 可以同时在上行主载波 和上行辅载波发送 HSUPA数据。
如果仅配置一个上行载波给终端, 则这个上行载波就是上行主载波。 当 多个上行载波被配置给终端, 其中承载高速下行共享信道的载波为下行主载 波, 与下行主载波对应的载波为上行主载波。 根据上行主载波定义, 其对应 的服务高速下行共享信道小区由下行主载波确定。
为了实现 DC-HSUPA功能,无线网络控制实体将附加增强型数据信道小 区信息无线链路建立请求信元配置给具有处理 DC-HSUPA能力的节点 B。 附 加增强数据信道小区信息无线链路建立请求信元携带的信息主要包括: 多小 区 E-DCH传输承载模式和附加的 E-DCH小区信息建立信元。附加的 E-DCH 小区信息建立信元包含附加的 E-DCH 频率复用双工建立信息和多小区 E-DCH信息。 附加的 E-DCH频率复用双工建立信息是由上行专用物理信道 信息、 为建立附加的 E-DCH无线链路特有信息、 附加 E-DCH频率复用双工 信息以及 F-DPCH信息。为建立附加的 E-DCH无线链路特有信息就是 E-DCH 附加无线链路特有信息, 记 E-DCH 附加无线链路特有信息为上行辅载波信 息, 上行辅载波信息其包含 E-DCH附加无线链路特有信息条目 1和 E-DCH 附加无线链路特有信息条目 2。 E-DCH附加无线链路特有信息条目 1有如下 一些信息: E-DCH附加无线链路标识、 小区标识、 第一个无线链路集指示, 传播延时、 初始下行传输功率, 主公共导频控制信道信噪比, 一些下行信道 功率偏移量, 以及附加 E-DCH 的媒体介入控制专用流特有的信息。 E-DCH 附加无线链路特有信息条目 2也就是多小区 E-DCH无线链路特有信息。
对于双载波系统, 只有一个下行辅载波和一个上行辅载波, 上行辅载波 和下行辅载波直接配对, 即下行辅 'J、区对应的小区就是上行辅 'J、区对应的 'J、 区,上行辅小区的上下行频率信息就是上行辅载波和下行辅载波的频率信息。
空中接口是指终端( UE )和接入网( UTRAN )之间的接口, 简称 Uu接 口, 通常也称为无线接口。 无线接口协议主要用来建立、 重配置和释放各种 无线承载业务。
为了实现 DC-HSUPA功能,在空中接口上无线网络控制实体将上行辅小 区信息配置给具有接收 DC-HSUPA能力的终端。 所谓上行辅小区信息, 主要 包括: 选择配置信息 (维持标记或新配置标记) 。 其中新配置信息中包括辅 服务增强型数据信道小区信息、 辅增强型数据信道信息公共部分、 以及在辅 上行频率上的每一个无线链路列表的下行信息。 其中辅增强型数据信道信息 公共部分包含参数有: 频率信息、 扰码编码类型、 扰码号、 2 毫秒调度传输 授权 HARQ处理分配、 服务授权、 初始服务授权值、 主 /辅授权选择者、 最小 减少 E-DPDCH增益因子、 E-DCH最小集 E-DCH传输格式合并指示( E-DCH Transport Format Combination Indicator , E-TFCI ) 、 针对辅上行频率的专用 物理控制信道( Dedicated Physical Control Channel , DPCCH )功率偏置、 以 及功率控制前导(PC preamble ) 。 其中频率双工复用的频率信息包括: 上行 辅载波的下行的 UARFCN表明和下行辅载波的频率是以下行的 UARFCN表 明。
随着技术的发展, 多载波高速下行分组接入技术希望被引入现有系统, 此技术使得终端能够在两个载波或者两个以上的载波上以高速下行分组接入 技术发送数据, 从而使得下行链路数据速率得以倍增, 而对应上行的载波数 可以为一到四个载波。
对于多载波高速下行分组接入技术, 除去下行主载波以外, 至少还有两 个下行辅载波, 最多可以有三个下行辅载波, 所以不能根据下行辅小区确定 上行辅小区。 故对上行辅载波来讲, 不知道与哪一个下行辅载波配对的称为 上行辅小区。
发明内容
本发明要解决的技术问题是提供一种辅载波配对信息的传输方法、 实现 传输的节点 B和系统, 实现上下行辅载波的灵活配置。
为解决上述技术问题, 本发明提供了一种辅载波配对信息的传输方法, 包括:
在对使用多载波高速分组接入技术的终端进行控制的过程中, 所述终端 归属的节点 B为所述终端设置辅服务增强型专用信道小区的上行辅载波和下 行辅载波的配对信息, 通过 B类互联(IUB )接口传输的控制信令发送给无 线网络控制实体。
优选地, 所述方法还包括: 无线网络控制实体获得所述配对信息后, 判 断其是否有效, 将判断为有效的配对信息发送给所述终端。
优选地, 在所述终端归属的节点 B为所述终端设置辅服务增强型专用信 道小区的上行辅载波和下行辅载波的配对信息的过程中, 所述节点 B选择信 道质量高于预定门限的下行辅载波, 将该下行辅载波对应的服务高速下行共 享信道小区作为辅服务增强型专用信道小区, 将该下行辅载波对应的服务高 速下行共享信道小区的上行频率作为上行辅载波的频率。
优选地, 所述上行辅载波和下行辅载波的配对信息包括: 配对的上行辅 载波和下行辅载波的频率信息, 或辅服务增强型专用信道小区的无线链路标 识, 或辅服务增强型专用信道小区的小区标识。
优选地, 所述控制的过程及控制的过程中的控制信令为以下任一种: 所 述控制的过程为无线链路建立过程时, 所述控制信令为无线链路建立响应消 息; 所述控制的过程为无线链路增加过程时, 所述控制信令为无线链路增加 响应消息; 所述控制的过程为无线链路删除过程时, 所述控制信令为无线链 路删除响应消息; 所述控制的过程为无线链路重配过程时, 所述控制信令为 无线链路重配完成消息。
优选地, 在节点 B将配对信息通过 IUB接口传输的控制信令发送给无线 网络控制实体的过程中, 所述控制的过程为无线链路增加过程时, 在所述无 线链路建立响应消息中的附加增强型专用信道小区信息响应信元中携带所述 配对信息。
优选地, 在节点 B将配对信息通过 IUB接口传输的控制信令发送给无线 网络控制实体的过程中, 所述控制的过程为无线链路重配过程时, 在无线链 路重配完成消息中的附加增强型专用信道区信息响应信元中携带所述配对信 息。
优选地, 所述无线接入网络控制实体包括服务无线网络控制器; 在所述 终端归属的节点 B为所述终端设置辅服务增强型专用信道小区的上行辅载波 和下行辅载波的配对信息, 通过 IUB接口传输的控制信令发送给无线网络控 制实体的过程中 , 所述节点 B通过 IUB口通过节点 B应用部分( NBAP )协 议层将所述配对信息发送给服务无线网络控制器。 优选地, 所述无线接入网络控制实体包括漂移无线网络控制器和服务无 线网络控制器; 在所述终端归属的节点 Β为所述终端设置辅服务增强型专用 信道小区的上行辅载波和下行辅载波的配对信息, 通过 IUB接口传输的控制 信令发送给无线网络控制实体的过程中, 所述节点 Β通过 IUB接口通过节点 Β应用部分(ΝΒΑΡ )协议层将所述配对信息发送给漂移无线网络控制器, 所 述漂移无线网络控制器通过 IUR接口通过无线网络子系统应用部分 ( RNSAP ) 协议层将所述配对信息发送给服务无线网络控制器。
为解决上述技术问题, 本发明还提供了一种传输辅载波配对信息的节点 Β, 包括配对信息设置模块、 配对信息发送模块, 其中:
配对信息设置模块, 用于在对使用多载波高速分组接入技术的终端进行 控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载波和 下行辅载波的配对信息;
配对信息发送模块, 用于将所述配对信息设置模块设置的配对信息通过 IUB接口传输的控制信令发送给无线网络控制实体。
优选地, 所述上行辅载波和下行辅载波的配对信息包括: 配对的上行辅 载波和下行辅载波的频率信息, 或辅服务增强型专用信道小区的无线链路标 识, 或辅服务增强型专用信道小区的小区标识。
优选地, 所述控制过程及控制过程中的控制信令为以下任一种: 所述控 制的过程为无线链路建立过程时, 所述控制信令为无线链路建立响应消息; 所述控制的过程为无线链路增加过程时, 所述控制信令为无线链路增加响应 消息; 所述控制的过程为无线链路删除过程时, 所述控制信令为无线链路删 除响应消息; 所述控制的过程为无线链路重配过程时, 所述控制信令为无线 链路重配完成消息。
优选地, 所述控制过程为无线链路增加过程时, 在所述无线链路建立响 应消息中的附加增强型专用信道小区信息响应信元中携带所述配对信息。
优选地, 所述控制过程为无线链路重配过程时, 在无线链路重配完成消 息中的附加增强型专用信道区信息响应信元中携带所述配对信息。 为解决上述技术问题,本发明还提供了一种传输辅载波配对信息的系统, 包括节点 B和无线网络控制实体, 其中:
所述节点 B, 设置为在对其管辖的使用多载波高速分组接入技术的终端 进行控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载 波和下行辅载波的配对信息, 通过 IUB接口传输的控制信令发送给无线网络 控制实体;
所述无线网络控制实体, 设置为在获得所述配对信息后, 判断其是否有 效, 将判断为有效的配对信息发送给所述终端。
优选地, 所述节点 B, 包括配对信息设置模块、 配对信息发送模块, 其 中: 配对信息设置模块, 设置为在对使用多载波高速分组接入技术的终端进 行控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载波 和下行辅载波的配对信息; 配对信息发送模块, 设置为将所述配对信息设置 模块设置的配对信息通过 IUB接口传输的控制信令发送给无线网络控制实 体。
优选地, 所述上行辅载波和下行辅载波的配对信息包括: 配对的上行辅 载波和下行辅载波的频率信息, 或辅服务增强型专用信道小区的无线链路标 识, 或辅服务增强型专用信道小区的小区标识。
优选地, 所述控制过程及控制过程中的控制信令为以下任一种: 所述控 制的过程为无线链路建立过程时, 所述控制信令为无线链路建立响应消息; 所述控制的过程为无线链路增加过程时, 所述控制信令为无线链路增加响应 消息; 所述控制的过程为无线链路删除过程时, 所述控制信令为无线链路删 除响应消息; 所述控制的过程为无线链路重配过程时, 所述控制信令为无线 链路重配完成消息。
优选地, 所述控制过程为无线链路增加过程时, 在所述无线链路建立响 应消息中的附加增强型专用信道小区信息响应信元中携带所述配对信息。
优选地, 所述控制过程为无线链路重配过程时, 在无线链路重配完成消 息中的附加增强型专用信道区信息响应信元中携带所述配对信息。 综上所述, 本发明通过由节点 B设置上行辅载波和某一下行辅载波的配 对信息, 通过控制信令传给无线网络控制器, 使得无线网络控制器获得此所 述辅载波的配对信息。 以解决不能基于 IUR/IUB口灵活配置上下行辅载波配 对信息的问题。
附图概述
图 1是本发明实施例一的具体载波示意图;
图 2是本发明实施例一的具体处理过程的示意图;
图 3是本发明实施例二的具体载波示意图;
图 4是本发明实施例二的具体处理过程的示意图;
图 5是本发明实施例三的具体载波示意图;
图 6是本发明实施例三的具体处理过程的示意图。
本发明的较佳实施方式
下面对本文中出现的一些名词进行解释: 服务高速下行共享信道无线链 路包含所有分配给该终端的高速物理下行共享信道, 服务高速下行共享信道 无线链路对应的载波为下行主载波。 下行主载波对应的服务高速下行共享信 道小区为下行主小区。 下行主小区用于实现对某一终端的服务高速下行共享 信道无线链路数据的发送和接收。 下行主小区对应的上行主小区为服务增强 型专用信道小区, 该小区中的承载频率为上行主载波。 下行辅载波对应的服 务高速下行共享信道小区为下行辅小区。 终端在下行辅载波上从节点 B收到 绝对授权的小区, 为辅服务增强型专用信道小区, 也称为上行辅小区。 下行 主载波的频率为主下行频率。 上行主载波的频率为主上行频率。 下行辅载波 的频率为辅下行频率。 上行辅载波的频率为辅上行频率。
本发明的发明构思是: 在对使用多载波高速分组接入技术的终端进行控 制的过程中 , 所述终端归属的节点 B为所述终端设置辅服务增强型专用信道 小区 (上行辅小区) 的上行辅载波和下行辅载波的配对信息, 通过 IUB接口 传输的控制信令发送给无线网络控制实体。
无线网络控制实体获得所述配对信息后, 判断是否有效, 将判断为有效 的配对信息发送给终端。 确定了上行辅小区后, 终端可以通过上行辅载波进 行上行数据的传输。 所述配对信息如果在无线网络控制实体配置的范围内, 则表示有效, 否则表示无效。
所述节点 B选择信道质量高于预定门限(即信道质量良好) 的下行辅载 波, 然后将该下行辅载波对应的小区的上行频率作为上行辅载波的频率。 即 将该下行辅载波对应的服务高速下行共享信道小区 (即下行辅小区)作为上 行辅小区。 信号质量门限是指与信号质量有关的参数的阔值, 例如可以将载 波的专用物理控制信道(DPCCH ) 的发射功率的大小作为信号质量参数, DPCCH的发射功率越小表示信道质量越好。或者也可以将优先级最高的下行 辅载波对应小区的上行频率作为上行辅载波的频率。
上述上行辅载波和下行辅载波的配对信息包括: 配对的上行辅载波和下 行辅载波的频率信息 (如表 1所示) , 或上行辅小区的无线链路标识, 或上 行辅小区的小区标识。
表 1辅载波配对信息
Figure imgf000011_0001
优选地, 节点 B是在向无线网络控制实体返回响应时, 将所述配对信息 发送给无线网络控制实体。 所述对终端进行控制的过程包括: 无线链路建立 过程、 无线链路增加过程、 无线链路删除过程、 无线链路重配过程。 相应地, 节点 B向无线网络控制实体发送的作为响应的控制信令为: 无线链路建立响 应消息、 无线链路增加响应消息、 无线链路删除响应消息、 无线链路重配完 成消息。节点 B在上述控制过程中均可实现上行辅小区的设置, 配置较灵活, 且不影响现有流程, 实现简单。
优选地,可在无线链路建立响应消息中的附加 E-DCH小区信息响应信元 中添加该配对信息, 如表 2所示。
表 2 无线链路建立响应中的附加 E-DCH小区信息响应信元
Figure imgf000012_0001
优选地,可在无线链路重配完成消息中的附加 E-DCH小区信息响应信元 中添加该配对信息, 如表 3所示。
表 3 无线链路重配置完成消息中的附加 E-DCH小区信息响应信元
Figure imgf000012_0002
上述其他控制信令中辅载波配对信息的位置可参考上述消息。
所述无线接入网络控制实体包括服务无线网络控制器; 所述节点 B通过 IUB 口通过节点 B应用部分(NBAP )协议层将所述配对信息发送给服务无 线网络控制器。 所述无线接入网络控制实体包括漂移无线网络控制器和服务无线网络控 制器; 所述节点 B通过 IUB接口通过节点 B应用部分(NBAP )协议层将所 述配对信息发送给漂移无线网络控制器, 所述漂移无线网络控制器通过 IUR 接口通过无线网络子系统应用部分(RNSAP )协议层将所述配对信息发送给 服务无线网络控制器。
下面结合附图对本发明所述技术方案的实施作进一步的详细描述。 下面 分别以在无线链路增加过程、 无线链路建立过程和无线链路重配过程中将配 对信息发送给无线网络控制器为例进行说明。 其他控制过程中的配置可参考 以下流程, 本文不再赘述。
实施例一
本实施例提供一种同时通过上行两载波、 下行三载波进行数据发送和接 收, 且两个辅小区的上行频率相同时传输配对信息的方法。
设定场景: 上行两个载波和下行三个载波均属于同一操作频段 IV。 上行 主载波的 UARFCN为 1312( 1712.4兆赫兹),上行辅载波的 UARFCN为 1337 ( 1717.4兆赫兹) , 上行主载波和上行辅载波为操作频段 IV内的相邻载波。 下行辅载波一的 UARFCN为 1537( 2112.4兆赫兹),下行辅载波二的 UARFCN 为 1562 ( 2117.4兆赫兹) , 下行辅载波三的 UARFCN为 1587 ( 2122.4兆赫 兹) , 下行载波一、 下行载波二和下行载波三为操作频段 IV内的相邻载波。 下行主载波、 下行辅载波一和下行辅载波二为操作频段 IV内的相邻载波。 上 行主载波和下行主载波组成标识为 1 的小区, 无线链路标识为 1 ; 下行辅载 波一和上行辅载波组成标识为 2的小区, 无线链路标识为 2; 下行辅载波二 和上行辅载波组成标识为 3的小区, 无线链路标识为 3 , 如图 1所示。
如图 2所示, 配对信息的传输方法包括:
步骤 110: 无线网络控制器向节点 B发送无线链路增加请求消息; 步骤 120: 节点 B根据下行辅载波的 DPCCH发射功率, 得出下行辅载 波一的 DPCCH值最小, 将下行辅载波一对应的小区的上行频点作为上行辅 载波的频点, 获得上行辅载波与下行辅载波一的配对信息; 无线链路增加釆用现有方法实现, 不是本发明的重点, 此处不再赘述。 步骤 130: 节点 B在向无线网络控制器发送的无线链路增加响应消息中 携带该终端的配对的上行辅载波与下行辅载波一的频率信息, 即上行 UARFCN为 1337、下行 UARFCN为 1537, 所述消息通过 IUB口 NBAP层发 送;
步骤 140: 无线网络控制器收到无线链路增加响应消息, 判断终端的上 行辅载波与下行辅载波一的配对配置是否有效, 将判断有效的配对信息发送 给终端。
无线网络控制器判断配对的上行辅载波的频率信息与下行辅载波一的频 率信息是否都在本无线网络控制器的配置中, 如果在, 终端的上行辅载波与 下行辅载波一的配对配置有效, 更新和保存相关配对配置信息; 否则终端的 上行辅载波与下行辅载波一的配对配置无效, 维持原有的配置信息。
无线网络控制器在确定配对信息有效后并不需要立即向终端发送该配对 信息, 而是可以协议规定的流程中发送。
实施例二
本实施例提供一种同时通过上行两载波、 下行三载波进行数据发送和接 收, 且两个辅小区的上行频率不相同时传输配对信息的方法。
设定场景: 上行两个载波和下行三个载波均属于同一操作频段 IV。 上行 主载波为的 UARFCN为 1312 ( 1712.4兆赫兹 ) , 上行辅载波为的 UARFCN 为 1337 ( 1717.4兆赫兹) , 上行主载波和上行辅载波为操作频段 IV内的相 邻载波。 下行辅载波一的 UARFCN为 1537 ( 2112.4兆赫兹) , 下行辅载波 二的 UARFCN为 1562 ( 2117.4兆赫兹 ) , 下行辅载波三的 UARFCN为 1587 ( 2122.4兆赫兹), 下行载波一、 下行载波二和下行载波三为操作频段 IV内 的相邻载波。 下行主载波、 下行辅载波一和下行辅载波二为操作频段 IV内的 相邻载波。 上行主载波和下行主载波组成标识为 1的小区, 无线链路标识为 1 ; 下行辅载波一和上行辅载波组成标识为 2的小区, 无线链路标识为 2; 下 行辅载波二和上行辅载波组成标识为 3 的小区, 无线链路标识为 3 , 如图 3 所示。
如图 4所示, 配对信息的传输方法包括:
步骤 210: 无线网络控制器向节点 B发送针对某终端的无线链路建立请 求消息;
步骤 220: 节点 B根据下行辅载波的 DPCCH发射功率, 得出下行辅载 波二的 DPCCH值最小, 将下行辅载波二对应的小区的上行频点作为上行辅 载波的频点, 确定上行辅载波与下行辅载波二的配对信息;
无线链路的建立釆用现有方法实现, 不是本发明的重点, 此处不再赘述。 步骤 230: 节点 B向无线网络控制器发送无线链路建立响应消息, 在所 述消息中携带该终端的配对的上行辅载波与下行辅载波二的频率信息, 即上 行 UARFCN为 1337、 下行 UARFCN为 2237, 所述消息通过 IUB口 NBAP 层发送;
步骤 240: 无线网络控制器收到无线网络建立响应消息, 判断终端的上 行辅载波与下行辅载波二的配对配置是否有效, 将判断有效的配对信息发送 给终端。
无线网络控制器判断配对的上行辅载波的频率信息与下行辅载波二的频 率信息是否都在本无线网络控制器的配置中, 如果在, 终端的上行辅载波与 下行辅载波二的配对配置有效, 更新和保存相关配对配置信息; 否则终端的 上行辅载波与下行辅载波二的配对配置无效, 维持原有的配置信息。
实施例三
本实施例提供一种同时通过上行两载波、 下行三载波进行数据发送和接 收, 传输配对信息的方法。
设定场景: 上行两个载波、 下行主载波和下行辅载波一均属于同一操作 频段 IV。 下行辅载波二和下行辅载波三属于同一操作频段 VII。 上行主载波 的 UARFCN为 1312( 1712.4兆赫兹),上行辅载波的 UARFCN为 1337( 1717.4 兆赫兹), 下行主载波和下行辅载波一为操作频段 IV内的相邻载波。 下行主 载波的 UARFCN为 1537( 2112.4兆赫兹),下行辅载波一的 UARFCN为 1562 ( 2117.4兆赫兹) , 下行主载波和下行辅载波为操作频段 IV内的相邻载波。 下行辅载波二的 UARFCN为 2237( 2622.4兆赫兹),下行辅载波三的 UARFCN 为 2262 ( 2627.4兆赫兹) , 下行辅载波二和下行辅载波三为操作频段 VII内 的相邻载波。 上行主载波和下行主载波组成标识为 1的小区, 无线链路标识 为 1 ; 下行辅载波一和上行辅载波组成标识为 2的小区, 无线链路标识为 2; 下行辅载波二和上行辅载波组成标识为 3 的小区, 无线链路标识为 3; 下行 辅载波三和上行辅载波组成标识为 4的小区, 无线链路标识为 4, 如图 5所 示。
本发明以漂移无线网络控制器作为中继为例进行说明, 如图 6所示, 配 对信息的传输方法包括:
步骤 310: 服务无线网络控制器向漂移无线网络控制器发送无线链路重 配请求消息;
步骤 320: 漂移无线网络控制器向节点 B发送无线链路重配请求消息; 步骤 330: 节点 B确定下行辅载波三为与上行辅载波配对的载波, 将该 下行载波三对应的小区的上行频点作为上行辅载波的频点;
无线链路的重配釆用现有方法实现, 不是本发明的重点, 此处不再赘述。 步骤 340: 节点 B向漂移无线网络控制器发送无线链路重配完成消息, 在此消息中携带了终端的上行辅载波与下行辅载波三的频率信息, 即上行 UARFCN为 1337、下行 UARFCN为 2262, 所述消息通过 IUB口 NBAP层发 送;
步骤 350: 漂移无线网络控制器向服务无线网络控制器发送无线链路重 配完成消息, 在此消息中携带所述终端的上行辅载波与下行辅载波三的频率 信息, 所述消息通过 IUR口 RNSAP层发送;
步骤 360: 服务无线网络控制器收到无线网络重配完成消息, 判断终端 的上行辅载波与下行辅载波三的配对配置是否有效, 将判断有效的配对信息 发送给终端。
无线网络控制器判断配对的上行辅载波的频率信息与下行辅载波三的频 率信息是否都在本无线网络控制器的配置中, 如果在, 终端的上行辅载波与 下行辅载波三的配对配置有效, 更新和保存相关配对配置信息; 否则终端的 上行辅载波与下行辅载波三的配对配置无效, 维持原有的配置信息。
实现上述方法的节点 B, 包括配对信息设置模块、 配对信息发送模块, 其中: 配对信息设置模块, 用于在对使用多载波高速分组接入技术的终端进行 控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载波和 下行辅载波的配对信息;
配对信息发送模块, 用于将所述配对信息设置模块设置的配对信息通过 IUB接口传输的控制信令发送给无线网络控制实体。
实现上述方法的系统包括上述节点 B和无线网络控制实体, 其中: 所述节点 B, 用于在对其管辖的使用多载波高速分组接入技术的终端进 行控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载波 和下行辅载波的配对信息, 通过 IUB接口传输的控制信令发送给无线网络控 制实体;
所述无线网络控制实体, 用于在获得所述配对信息后, 判断其是否有效, 将判断为有效的配对信息发送给所述终端。
本发明提供一种通过上行两载波、 下行三或四载波进行数据发送和接收 时, 基于节点 B控制, 灵活选择辅载波配对信息并传递的方法, 对于指定的 终端, 节点 B根据各个下行辅小区的信道质量动态设置上行辅载波和某一下 行辅载波的配对信息, 通过 IUB接口的控制信令传给无线网络控制器, 使得 无线网络控制器获得辅载波配对信息, 然后再传递给终端。 以解决基于 IUB/IUR口不能通过信令灵活配置上下行辅载波的问题。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明提供的辅载波配对信息的传输方法、 实现传输的节点 B和系统, 通过节点 B灵活选择辅载波配对信息并传递给无线网络控制器, 使得无线网 络控制器获得辅载波配对信息, 然后再传递给终端, 较好地实现了上下行辅 载波的灵活配置。

Claims

权 利 要 求 书
1、 一种辅载波配对信息的传输方法, 包括:
在对使用多载波高速分组接入技术的终端进行控制的过程中, 所述终端 归属的节点 B为所述终端设置辅服务增强型专用信道小区的上行辅载波和下 行辅载波的配对信息, 通过 B类互联(IUB )接口传输的控制信令发送给无 线网络控制实体。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括: 无线网络控制实体获得所述配对信息后, 判断其是否有效, 将判断为有 效的配对信息发送给所述终端。
3、 如权利要求 1或 2所述的方法, 其特征在于, 在所述终端归属的节点
B 为所述终端设置辅服务增强型专用信道小区的上行辅载波和下行辅载波的 配对信息的过程中,
所述节点 B选择信道质量高于预定门限的下行辅载波, 将该下行辅载波 对应的服务高速下行共享信道小区作为辅服务增强型专用信道小区, 将该下 行辅载波对应的服务高速下行共享信道小区的上行频率作为上行辅载波的频 率。
4、 如权利要求 1或 2所述的方法, 其特征在于,
所述上行辅载波和下行辅载波的配对信息包括: 配对的上行辅载波和下 行辅载波的频率信息, 或辅服务增强型专用信道小区的无线链路标识, 或辅 服务增强型专用信道小区的小区标识。
5、 如权利要求 1所述的方法, 其特征在于,
所述控制的过程及控制的过程中的控制信令为以下任一种:
所述控制的过程为无线链路建立过程时, 所述控制信令为无线链路建立 响应消息;
所述控制的过程为无线链路增加过程时, 所述控制信令为无线链路增加 响应消息;
所述控制的过程为无线链路删除过程时, 所述控制信令为无线链路删除 响应消息;
所述控制的过程为无线链路重配过程时, 所述控制信令为无线链路重配 完成消息。
6、 如权利要求 5所述的方法, 其特征在于, 在节点 B将配对信息通过 IUB接口传输的控制信令发送给无线网络控制实体的过程中,
所述控制的过程为无线链路增加过程时, 在所述无线链路建立响应消息 中的附加增强型专用信道小区信息响应信元中携带所述配对信息。
7、 如权利要求 5所述的方法, 其特征在于, 在节点 B将配对信息通过 IUB接口传输的控制信令发送给无线网络控制实体的过程中,
所述控制的过程为无线链路重配过程时, 在无线链路重配完成消息中的 附加增强型专用信道区信息响应信元中携带所述配对信息。
8、 如权利要求 1或 2所述的方法, 其特征在于,
所述无线接入网络控制实体包括服务无线网络控制器;
在所述终端归属的节点 B为所述终端设置辅服务增强型专用信道小区的 上行辅载波和下行辅载波的配对信息, 通过 IUB接口传输的控制信令发送给 无线网络控制实体的过程中, 所述节点 B通过 IUB 口通过节点 B应用部分 ( NBAP )协议层将所述配对信息发送给服务无线网络控制器。
9、 如权利要求 1或 2所述的方法, 其特征在于,
所述无线接入网络控制实体包括漂移无线网络控制器和服务无线网络控 制器;
在所述终端归属的节点 B为所述终端设置辅服务增强型专用信道小区的 上行辅载波和下行辅载波的配对信息, 通过 IUB接口传输的控制信令发送给 无线网络控制实体的过程中,所述节点 B通过 IUB接口通过节点 B应用部分 ( NBAP )协议层将所述配对信息发送给漂移无线网络控制器,所述漂移无线 网络控制器通过 IUR接口通过无线网络子系统应用部分( RNSAP )协议层将 所述配对信息发送给服务无线网络控制器。
10、 一种传输辅载波配对信息的节点 B, 包括配对信息设置模块、 配对 信息发送模块, 其中: 配对信息设置模块, 设置为在对使用多载波高速分组接入技术的终端进 行控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载波 和下行辅载波的配对信息;
配对信息发送模块, 设置为将所述配对信息设置模块设置的配对信息通 过 B类互联 ( IUB )接口传输的控制信令发送给无线网络控制实体。
11、一种传输辅载波配对信息的系统, 包括节点 B和无线网络控制实体, 其中:
所述节点 B, 设置为在对其管辖的使用多载波高速分组接入技术的终端 进行控制的过程中, 为所述终端设置辅服务增强型专用信道小区的上行辅载 波和下行辅载波的配对信息, 通过 B类互联(IUB )接口传输的控制信令发 送给无线网络控制实体;
所述无线网络控制实体, 设置为在获得所述配对信息后, 判断其是否有 效, 将判断为有效的配对信息发送给所述终端。
PCT/CN2011/070026 2010-01-15 2011-01-04 辅载波配对信息的传输方法、实现传输的节点b和系统 WO2011085648A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/508,561 US20120269147A1 (en) 2010-01-15 2011-01-04 Transmission method for auxiliary carrier pairing information, node b and system for implementing transmission
EP11732638.9A EP2490504A4 (en) 2010-01-15 2011-01-04 Transmission method for auxiliary carrier pairing information, node b and system for implementing transmission
RU2012121952/07A RU2510600C9 (ru) 2010-01-15 2011-01-04 Способ передачи информации о сопряжении вспомогательных несущих частот, узел в и система реализации передачи
BR112012013683A BR112012013683A2 (pt) 2010-01-15 2011-01-04 método para transmitir informações de emparelhamento de portadores auxiliares, nób para transmitir informações de emparelhamento de portadores auxiliares e sistema para transmitir informações de emparelhamento de portadores auxiliares

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010004830.3A CN102131245B (zh) 2010-01-15 2010-01-15 辅载波配对信息的传输方法、实现传输的节点b和系统
CN201010004830.3 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011085648A1 true WO2011085648A1 (zh) 2011-07-21

Family

ID=44269111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070026 WO2011085648A1 (zh) 2010-01-15 2011-01-04 辅载波配对信息的传输方法、实现传输的节点b和系统

Country Status (5)

Country Link
EP (1) EP2490504A4 (zh)
CN (1) CN102131245B (zh)
BR (1) BR112012013683A2 (zh)
RU (1) RU2510600C9 (zh)
WO (1) WO2011085648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645703A (zh) * 2017-05-17 2021-11-12 中兴通讯股份有限公司 上行链路载波接入

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
CN102300315B (zh) * 2010-06-25 2016-09-07 中兴通讯股份有限公司 一种信息传递方法及系统
US11190947B2 (en) * 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
RU2767777C2 (ru) 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
CN104618963B (zh) * 2013-11-01 2018-06-26 中国移动通信集团公司 一种辅载波资源的调度方法和设备
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
CN106034334B (zh) * 2015-03-17 2021-01-26 中兴通讯股份有限公司 Mf-hsdpa设置方法及装置
JP7257274B2 (ja) * 2019-06-27 2023-04-13 本田技研工業株式会社 通信システム、プログラム、及び情報処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187681A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 無線通信システム
CN101483828A (zh) * 2008-01-11 2009-07-15 大唐移动通信设备有限公司 终端设备与网络侧之间实现通信的方法、通信系统及装置
CN101521950A (zh) * 2008-02-29 2009-09-02 中兴通讯股份有限公司 一种公共媒体接入控制流与多载频的绑定方法
CN101605352A (zh) * 2008-06-13 2009-12-16 华为技术有限公司 一种基于多载波的测量上报方法、系统、网络设备及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2600540T3 (pl) * 2003-08-06 2019-08-30 Optis Wireless Technology, Llc Urządzenie komunikacji bezprzewodowej i sposób komunikacji bezprzewodowej
BRPI0413638A (pt) * 2003-08-19 2006-10-17 Matsushita Electric Ind Co Ltd aparelho de comunicação de multiportador , sistema de comunicação de multiportador e método de controle de potência de transmissão
EP1708413A1 (en) * 2005-03-29 2006-10-04 Lg Electronics Inc. Multimedia broadcast/multicast service (MBMS) cells reconfigurations
KR101256155B1 (ko) * 2005-08-19 2013-04-19 지티이 코포레이션 시분할-동기식 코드 분할 다중 접속 시스템의 다중 캐리어고속 하향 패킷 접속 구현 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187681A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 無線通信システム
CN101483828A (zh) * 2008-01-11 2009-07-15 大唐移动通信设备有限公司 终端设备与网络侧之间实现通信的方法、通信系统及装置
CN101521950A (zh) * 2008-02-29 2009-09-02 中兴通讯股份有限公司 一种公共媒体接入控制流与多载频的绑定方法
CN101605352A (zh) * 2008-06-13 2009-12-16 华为技术有限公司 一种基于多载波的测量上报方法、系统、网络设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2490504A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645703A (zh) * 2017-05-17 2021-11-12 中兴通讯股份有限公司 上行链路载波接入

Also Published As

Publication number Publication date
RU2510600C9 (ru) 2014-06-27
RU2012121952A (ru) 2014-02-20
CN102131245B (zh) 2016-01-20
RU2510600C2 (ru) 2014-03-27
EP2490504A4 (en) 2017-08-23
EP2490504A1 (en) 2012-08-22
BR112012013683A2 (pt) 2017-10-10
CN102131245A (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2011085648A1 (zh) 辅载波配对信息的传输方法、实现传输的节点b和系统
US9750055B2 (en) Mobile communication system for selecting a D2D radio resource
EP2695420B1 (en) Functional split for a multi-node carrier aggregation transmission scheme
CN108270540B (zh) 多点载波聚合配置以及数据转发方法
EP3197233B1 (en) Wireless network access control method, first base station and system
JP6045602B2 (ja) 移動通信システム、基地局、プロセッサ、及び通信制御方法
CN107211446A (zh) 用于在载波聚合系统中发送下行链路控制信道信息的方法和装置
WO2011082585A1 (zh) 一种多载波上行数据在网络侧的传输方法及系统
EP4096318A1 (en) Resource configuration method and network device
WO2010048835A1 (zh) 一种资源配置的方法、装置和系统
JP2021505037A (ja) 情報受信方法および装置
CN106506132B (zh) 一种多载波空口重配置的方法、用户设备及无线网络控制器
WO2011020310A1 (zh) 一种无线网络控制器之间通信控制的方法和装置
US20070173257A1 (en) Method, base station, and communication network supporting High-Speed Uplink Packet Access (HSUPA) with soft handover mechanisms
WO2012174903A1 (zh) 一种联合传输的方法、系统及锚点网元
AU2014202768B2 (en) Radio resource scheduling method, apparatus, and system
US20120269147A1 (en) Transmission method for auxiliary carrier pairing information, node b and system for implementing transmission
EP2515596B1 (en) Configuration method and system for transmission bearer mode with enhanced dedicated channel
CA2867322C (en) Method to notify node in multi point transmission
RU2518902C2 (ru) Способ и система доставки и получения информации о сопряжении вторичной несущей
CN102164376B (zh) 载波配对信息传递的异常处理方法和系统
KR20060081261A (ko) 이동통신 시스템에서 소프트 핸드오버 지역에서e-rgch 채널에 대한 1 계층 컴바이닝을 수행하는 방법
WO2014198058A1 (zh) 一种服务小区的切换方法、网络设备及用户设备
WO2012058923A1 (zh) 一种传递mimo辅公共导频信道功率偏移的方法及装置
WO2024029518A1 (ja) 通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011732638

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13508561

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012121952

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013683

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013683

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120606