WO2011084152A1 - Enclosure clamps and clamp systems - Google Patents

Enclosure clamps and clamp systems Download PDF

Info

Publication number
WO2011084152A1
WO2011084152A1 PCT/US2010/020066 US2010020066W WO2011084152A1 WO 2011084152 A1 WO2011084152 A1 WO 2011084152A1 US 2010020066 W US2010020066 W US 2010020066W WO 2011084152 A1 WO2011084152 A1 WO 2011084152A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
cover
clamp
flange
enclosure body
Prior art date
Application number
PCT/US2010/020066
Other languages
French (fr)
Inventor
Joseph Michael Manahan
Original Assignee
Cooper Technologies Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2014014554A priority Critical patent/MX345366B/en
Priority to CA2968744A priority patent/CA2968744C/en
Priority to MX2016012312A priority patent/MX356592B/en
Priority to CN201080060824.8A priority patent/CN102791168B/en
Priority to MX2012007820A priority patent/MX2012007820A/en
Priority to CA2786356A priority patent/CA2786356C/en
Application filed by Cooper Technologies Company filed Critical Cooper Technologies Company
Priority to DE112010005085T priority patent/DE112010005085T5/en
Priority to PCT/US2010/020066 priority patent/WO2011084152A1/en
Publication of WO2011084152A1 publication Critical patent/WO2011084152A1/en
Priority to US13/541,442 priority patent/US8602245B2/en
Priority to US14/100,709 priority patent/US9221587B2/en
Priority to US14/100,692 priority patent/US9284101B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • B25B5/10Arrangements for positively actuating jaws using screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B5/00Clamps
    • B25B5/06Arrangements for positively actuating jaws
    • B25B5/12Arrangements for positively actuating jaws using toggle links
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05GSAFES OR STRONG-ROOMS FOR VALUABLES; BANK PROTECTION DEVICES; SAFETY TRANSACTION PARTITIONS
    • E05G1/00Safes or strong-rooms for valuables
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05GSAFES OR STRONG-ROOMS FOR VALUABLES; BANK PROTECTION DEVICES; SAFETY TRANSACTION PARTITIONS
    • E05G1/00Safes or strong-rooms for valuables
    • E05G1/02Details
    • E05G1/04Closure fasteners

Definitions

  • the present invention relates generally to enclosure clamps and clamp systems for securing a cover to an enclosure body used in hazardous areas.
  • Explosion-proof enclosures may be used to enclose critical equipment in a hazardous environment.
  • Explosion-proof enclosures typically include an enclosure body and a cover that prevents access to the interior when the cover is coupled thereto, and allows access to the interior upon removal of the cover.
  • the cover is secured to the enclosure body using numerous bolts. Under some circumstances, as many as 64 bolts are used to secure the cover to the enclosure body. The coupling and uncoupling of numerous bolts is generally time-consuming and tedious for the user when trying to remove or secure the cover to the enclosure body.
  • the present invention attempts to satisfy the above-described need by providing enclosure clamps and clamp systems for securing a cover to an enclosure body.
  • the enclosure clamps and clamp systems can provide a sufficient force to create a gap, or flamepath, between the cover and the enclosure body to allow the system to withstand an explosion.
  • an enclosure clamp can secure an enclosure body to a cover.
  • the enclosure clamp includes a center portion, a flange extending orthogonally from one end of the center portion, and an upper portion extends at an angle away from the first flange.
  • the center portion, the flange, and the upper portion define a channel configured to accommodate a flange and an edge of a cover of an explosion-proof container.
  • the enclosure clamp includes one or more apertures configured to receive a fastener, such as a bolt.
  • another flange extends from the upper portion, with the fl nge being positioned parallel to the flange extending from the center portion.
  • the flange is configured to engage a securing arm.
  • an enclosure clamp system in another embodiment, includes an enclosure clamp securing a cover to an enclosure body to provide an explosion-proof enclosure.
  • the enclosure clamp includes a center portion, a flange extending orthogonally from one end of the center portion, and an upper portion extends at an angle away from the first flange.
  • the center portion, the flange, and the upper portion define a channel that receives a portion of the cover and the enclosure body.
  • the enclosure clamp is secured to the enclosure body by one or more bolts extending through apertures in the center portion of the enclosure clamp and apertures in the enclosure body.
  • another flange extends from the upper portion, with the flange being positioned parallel to the flange extending from the center portion.
  • the enclosure clamp systems include a securing arm that is coupled to the cover.
  • the securing arm is movable by cam actuation, and is configured to engage the flange extending from the upper portion when in the locked position.
  • enclosure clamp is coupled to a pivot arm or slidable arm that is fixed to the cover or the enclosure body.
  • the cover is hingedly coupled to the enclosure body.
  • an enclosure securing system includes a clamp system securing an enclosure body to a cover.
  • the clamp system includes a force distributing plate positioned along a side of the cover opposite the enclosure body, and a securing arm movably coupled to the enclosure body.
  • the securing arm is movable between a locked and unlocked position by cam actuation. The securing arm applies a force against the force distributing plate when in a locked position so as to provide an explosion- proof container.
  • Figure 1 is a perspective view of an enclosure clamp, according to an exemplary embodiment.
  • Figure 2 A is a perspective view of an enclosure clamp securing a cover to an enclosure body, according to an exemplary embodiment.
  • Figure 2B is side cross-sectional view of the enclosure clamp securing the cover to the enclosure body shown in Figure 2A, according to an exemplary embodiment.
  • Figure 3 is a top view of an enclosure clamp securing a cover to an enclosure body, according to another exemplary embodiment.
  • Figure 4A is a top view of an enclosure clamp securing a cover to an enclosure body, according to yet another exemplary embodiment.
  • Figures 4B is a side view of the enclosure clamp securing the cover to the enclosure body shown in Figure 4A, according to an exemplary embodiment.
  • Figure 5 is a side view of an enclosure clamp securing a cover to an enclosure body, according to yet another exemplary embodiment.
  • Figure 6A is a side view of a clamp system securing a cover to an enclosure body, according to an exemplary embodiment.
  • Figure 6B is a top view of the clamp system securing the cover to the enclosure body shown in Figure 6A, according to an exemplary embodiment.
  • the present invention relates to enclosure clamps and clamp systems for securing a cover to an enclosure body to provide an explosion-proof enclosure.
  • the enclosure clamps and clamp systems described herein allow users to more quickly and easily secure and/or remove the cover from the enclosure body over conventional securing mechanisms.
  • FIG. 1 is a perspective view of an enclosure clamp 100, according to an exemplary embodiment.
  • the enclosure clamp 100 can be used to secure a cover 230 ( Figures 2A-2B) to an enclosure body 240 ( Figures 2A-2B) to provide an explosion-proof enclosure.
  • the enclosure clamp 100 includes a rectangular center portion 105 having two apertures 105a therein. Each of the apertures 105a is configured for receiving a fastener, such as a bolt 255 ( Figures 2A-2B), for securing the enclosure clamp 100 to the enclosure body 240.
  • a fastener such as a bolt 255 ( Figures 2A-2B
  • the apertures 10 a may be situated at any position along the length of the center portion 105.
  • only one aperture 105a may be present and located in the center of the center portion 105. In other embodiments, three apertures 105a may be present.
  • One having ordinary skill in the art will recognize that multiple apertures 105a can be present on the center portion 105 and the configuration of these apertures 105a can vary.
  • the enclosure clamp 100 includes a rectangular lower portion 110 extending orthogonally from a lower end 105b of the center portion 105.
  • the enclosure clamp 100 also includes a rectangular upper portion 1 15 extending from an upper end 105c of the center portion 105.
  • the center portion 105, the lower portion 1 10, and the upper portion 115 define a channel 125 configured to received a portion of the cover 230 and a flange 245 of the enclosure body 240 ( Figures 2A-2B).
  • a rectangular flange 120 extends from an end 1 15a of the upper portion 1 15, and is parallel to the rectangular lower portion 1 10.
  • the flange 120 is absent.
  • the upper portion 1 15 extends at an angle a from a plane orthogonal to the center portion 105, in a direction away from the lower portion 1 10. In certain exemplary embodiments, the upper portion 115 extends at an angle a of about 15 degrees. In certain embodiments, the upper portion 1 15 extends at an angle a in a range from about 15 to 30 degrees. In certain embodiments, the upper portion 1 15 extends at an angle a so as to provide a sufficient amount of force on the cover 230 for clamping integrity. The upper portion 115 extends at an angle a sufficient to translate a bolt force from bolts 225 into a downward force on the cover 230 towards the enclosure body 240.
  • the enclosure clamp 100 is fabricated from extruded aluminum. In alternative embodiments, the enclosure clamp 100 is fabricated from die cast aluminum, stainless steel, and/or extruded steels.
  • FIGS 2A and 2B are perspective and side cross-sectional views of an enclosure clamp 200 securing a cover 230 to an enclosure body 240, according to an exemplary embodiment.
  • the enclosure clamp 200 is similar to the enclosure clamp 100, and includes a rectangular center portion 205, a rectangular lower portion 210 extending orthogonally from a lower end 205b of the center portion 205, and a rectangular upper portion 215 extending from an upper end 205c of the center portion 205 at an angle from a plane orthogonal to the center portion 205.
  • the center portion 205, the lower portion 210, and the upper portion 215 define a channel 225 that receives an angled portion 235 f the cover 230 and a flange 245 of the enclosure body 240.
  • the portion 235 of the cover 230 positioned within the channel 225 is angled to correspond to the angle a of the upper portion 215 extending from the center portion 205.
  • the upper portion 215 extends at an angle a sufficient to translate a bolt force from bolts 225 into a downward force on the cover 230 towards the enclosure body 240.
  • the upper portion 215 extends along the entire angled portion 235 of the cover 230. In alternative embodiments, the upper portion 215 extends along a portion of the angled portion 235 of the cover 230.
  • the bolts 225 generate the same amount of downward force on the cover 230, however, the shape of the enclosure clamp 200 influences the distribution of those forces.
  • the flange 245 of the enclosure body 240 includes two cylindrical apertures
  • Triple lead bolts 255 are positioned within each of the apertures 205a, 240a, and secure the enclosure clamp 200 to the enclosure body 240. As the bolts 255 are tightened, the upper portion 215 translates the bolt force into a downward force, or clamping force, on the angled portion 235 of the cover 230. The downward force is such that a maximum gap (not shown), or flamepath, of about 0.0015 inch (in) is maintained between the cover 230 and the enclosure body 240, while the explosion-proof enclosure system is also able to sustain high pressures. In certain embodiments, the explosion-proof enclosure system is able to sustain pressures up to 560 pounds per square inch (psi).
  • the explosion-proof enclosure system is able to sustain a pressure equal to four times the maximum combustion pressure.
  • the diameter of the apertures 205a, 240a, and the bolts 225 can be varied to adjust the bolt force on the system. In certain embodiments, increasing the diameter of the bolts 225 may increase the bolt force on the system.
  • the enclosure clamp 200 has length that is substantially equal to a side of the cover 230 and the enclosure body 240. In other embodiments, the length of the enclosure clamp 200 is less than the length of a side of the cover 230 and the enclosure body 240.
  • the enclosure clamp 200 can have any length, so long as the enclosure clamp 200 is able to maintain an appropriate tlamepath between the cover 230 and the enclosure body 240, and sustain high pressures associated with an explosion.
  • guide studs may be included to locate the cover 230 to the enclosure body 240.
  • the guide studs are generally positioned in opposing corners of the enclosure body 240, and help locate the cover 230 to the enclosure body 240.
  • the guide studs allow a user to easily clamp one side of the enclosure body 240 to the cover 230 without having to manually hold the cover 230 against the enclosure body 240.
  • the guide studs aid in preventing movement in the X or Y direction, such that the entire clamping force is translated in the Z direction.
  • Figure 3 is a top view of an enclosure clamp 300 securing a cover 330 to an enclosure body (not shown), according to another exemplary embodiment.
  • the enclosure clamp 300 is similar to the enclosure clamp 200.
  • the enclosure clamp 300 secures the cover 330 to the enclosure body using bolts 355, similar to the way the enclosure clamp 200 secures the cover 230 to the enclosure body 240 using bolts 255.
  • a pivot arm 350 having a substantially reshaped portion 350a and a curved base 350b configured to attach to the enclosure body is included.
  • the L-shaped portion 350a of the pivot arm 350 is coupled to a side 305d of a center portion 305 of the enclosure clamp 300.
  • the base 350b of the pivot arm 350 is coupled to the enclosure body, and includes a pivot point 350c about which the L-shaped portion 350a of the pivot arm 350 pivots.
  • the pivot arm 350 is coupled to the cover 330, instead of the enclosure body. Since the pivot arm 350 is directly attached to the enclosure clamp 300 and the cover 330 or enclosure body 340, a user can easily secure and/or remove the enclosure clamp 300 while eliminating accidental misplacement of the enclosure clamp 300.
  • the enclosure clamp 300 that is coupled to the pivot arm 350 is rotated in a counterclockwise direction about pivot point 350c.
  • a channel (not shown) in the enclosure clamp 300 can receive the side of the cover 330 and the enclosure body.
  • Bolts 355 are tightened to secure the enclosure clamp 300 to the enclosure body.
  • the bolts 355 are loosened and removed from the enclosure body, and the enclosure clamp 300 is separated from the cover 330 and the enclosure body by rotating the L-shaped portion 350a of the pivot arm 350 about pivot point 350c in a clockwise direction.
  • the cover 330 can then be removed from the enclosure body.
  • two hinges 360 may be included for hingcdly coupling the cover 330 to the enclosure body.
  • the cover 330 Upon removal of the enclosure clamp 300, the cover 330 can be rotated about the hinges 360 to an open position to allow access to the interior of the enclosure body.
  • the hinges 360 are positioned on the same side as the enclosure clamp 300.
  • the hinges 360 can be positioned on any side of the enclosure. The presence of the hinges 360 can help prevent accidental misplacement of the cover 330 after removal.
  • FIGs 4 A and 4B are top and side views of an enclosure clamp 400 securing a cover 430 to an enclosure body 440, according to another exemplary embodiment.
  • the enclosure clamp 400 is similar to the enclosure clamp 300.
  • the enclosure clamp 400 secures the cover 430 to the enclosure body 440 using bolts 455, similar to the way the enclosure clamp 300 secures the cover 330 to the enclosure body using bolts 355.
  • a slidable arm 450 is fixedly coupled to a side 405d of a center portion 405 of the enclosure clamp 400.
  • the slidable arm 450 is slidably positioned within a slot 465a of a hinge 465.
  • the hinge 465 is hingedly coupled to the cover 430.
  • the hinge 465 is hingedly coupled to the enclosure body 440, or to both the cover 430 and the enclosure body 440.
  • the enclosure clamp 400 is rotated in a counterclockwise direction via the hinge 465, such that the enclosure clamp 400 is aligned with a side of the cover 430 and the enclosure body 440.
  • the slidable arm 450 is shifted within the slot 465a and towards the enclosure body 440 such that the cover 430 and the enclosure body 440 are received within a channel (not shown) in the enclosure clamp 400.
  • the bolts 455 are tightened to secure the enclosure clamp 400 to the enclosure body 440.
  • the bolts 455 are loosened and removed from the enclosure body 440, and the enclosure clamp 400 is separated from the cover 430 and the enclosure body 440 by sliding the slidable arm 450 away from the enclosure body 440 and rotating the slidable arm 450 about the hinge 465 in a clockwise direction.
  • the cover 430 can then be removed from the enclosure body 440.
  • FIG. 5 is a side view of an enclosure clamp 500 securing a cover 530 to an enclosure body 540, without the use of any tools, according to another exemplary embodiment.
  • the enclosure clamp 500 includes a rectangular center portion 505.
  • a rectangular lower portion 510 extends orthogonally from a lower end 505b of the center portion 505.
  • An upper portion 515 extends from an upper end 505c of the center portion 505, at an angle away from the lower portion 510.
  • the center portion 505, the lower portion 510, and the upper portion 515 define a channel 525 that receives an angled portion 535 of the cover 530 and a flange 545 of the enclosure body 540.
  • the upper portion 515 extends across a distance greater than the angled portion 535 of the cover 530.
  • the upper portion 515 extends across a distance less than or equal to the angled portion 535 of the cover 530.
  • a rectangular-shaped clip portion 520 extends from an end 515a of the upper portion 515.
  • the clip portion 520 is parallel to the lower portion 510.
  • the clip portion 520 is configured to engage a securing arm 550 that secures and locks the enclosure clamp 500 in place.
  • the clip portion 520 includes a groove (not shown) configured to receive a corresponding portion of the securing arm 550.
  • the clip portion 520 can be configured any number of ways, so as to engage and secure the securing arm 550 to the enclosure clamp 500.
  • the force exerted by the securing arm 550 on the clip portion 520 is translated into a clamping force against the cover 530 towards the enclosure body 540.
  • the clamping force is such that a maximum gap of about 0.0015 in. is maintained between the cover 530 and the enclosure body 540, and the system is able to sustain exposure to high pressures.
  • the securing arm 550 is coupled to an actuation base 570 that is fixed to the cover 530.
  • the securing arm 550 is movable about a pivot point 550a by cam actuation.
  • the securing arm 550 includes a latching flange 550b that engages a side 520a of the clip portion 520 and locks the enclosure clamp 500 in place.
  • an end 550c of the securing arm 550 is shifted in a counterclockwise direction, thus allowing the securing arm 550 to move about the pivot point 550a by cam actuation.
  • the latching flange 550b disengages the side 520a of the clip portion 520 and the securing arm 550 can be rotated in the clockwise direction to release the latching flange 550b from the enclosure clamp 500.
  • the enclosure clamp 500 can then be removed.
  • FIGS 6A and 6B are side and top views of a clamp system 600 securing a cover 630 to an enclosure body 640, without the use of any tools, according to an exemplary embodiment.
  • the clamp system 600 includes a rectangular force distributing plate 605 and two securing arms 650 on each side of the enclosure body 640.
  • Each securing arm 650 is - Si - coupled to an actuation base 670.
  • the actuation bases 670 are coupled to a flange 645 of the enclosure body 640.
  • the securing arms 650 are similar to securing arm 550, and each include a latching flange 650b extending orthogonally therefrom.
  • the actuation bases 670 are similar to the actuation base 570.
  • a force distributing plate 605 is positioned along a length of each side of the cover 630.
  • Each of the latching flanges 650b engages the force distributing plate 605 and applies a force on the cover 630 towards the enclosure body 640 to lock the cover 630 in place.
  • the force exerted by the latching flanges 650b on the force distributing plate 605 is such that a maximum gap of about 0.0015 in. is maintained between the cover 630 and the enclosure body 640, and the system is able to sustain exposure to high pressures.
  • an end 650c of the securing arm 650 is shifted in a clockwise direction, thus allowing the securing arm 650 to move about a pivot point 650a by cam actuation.
  • the latching flange 650b disengages the force distributing plate 605 and the securing arm 650 can be rotated in the counterclockwise direction to release the clamp system 600 from the cover 630 and the enclosure body 640.
  • the cover 630 can then be removed.
  • the enclosure clamps and clamp systems of the present invention may be fabricated from any material suitable for high strength and wear resistance. Suitable materials include, but are not limited to, steel.
  • the enclosure clamps and clamp systems of the present invention are capable of supplying a uniform force so as to provide an appropriate gap, or flamepath, between the cover and the enclosure body.
  • the gap is configured to allow a flame to pass through, while the system is able to withstand any pressures associated with an internal explosion.
  • the gap is about 0.0015 in. and the system can withstand a hydrostatic pressure of about 560 pounds per square inch (psi).
  • a cover was secured to an EJB121208 enclosure body (commercially available from Cooper Technologies Company) using the enclosure clamp shown in Figures 1 and 2A-2B.
  • the enclosure body was constructed of sand cast aluminum alloy approaching grade 535 and the cover was constructed of plate aluminum (6061-T6).
  • An enclosure clamp is secured to each side of the cover and enclosure body as described with respect to Figures 2A-2B.
  • Each enclosure clamp includes two bolts, for a total of eight bolts on the system.
  • the clamping force of the enclosure clamps and clamp systems may be varied to provide a maximum gap, or flamepath, based on UL standards.
  • mechanical variations such as with respect to the cam latches, for applying the required force to the cover are within the purview of one having ordinary skill in the art.
  • ribbing may be added to the clamps systems to prevent clamps from opening up. While numerous changes may be made by those having ordinary skill in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casings For Electric Apparatus (AREA)
  • Clamps And Clips (AREA)

Abstract

Enclosure clamps and clamp systems are provided for fastening a cover to an enclosure body to provide an explosion-proof container, while minimizing the number of bolts used over conventional systems. The enclosure clamps and clamp systems create a sufficient force so as to provide a flamepath between the cover and the enclosure body. The enclosure clamps described include a channel for receiving the cover and a flange on the enclosure body. The enclosure clamp is secured to the enclosure body by one or more bolts and/or by a cam actuated securing mechanism. The clamp systems described include a force distributing plate secured to a cover by cam actuated securing mechanism that is coupled to an enclosure body. The enclosure clamps and clamp systems allow a user to attach or remove the cover from the enclosure body more easily than possible with conventional explosion-proof enclosures.

Description

ENCLOSURE CLAMPS AND CLAMP SYSTEMS
TECHNICAL FIELD
[0001] The present invention relates generally to enclosure clamps and clamp systems for securing a cover to an enclosure body used in hazardous areas.
BACKGROUND OF THE INVENTION
[0002] Explosion-proof enclosures may be used to enclose critical equipment in a hazardous environment. Explosion-proof enclosures typically include an enclosure body and a cover that prevents access to the interior when the cover is coupled thereto, and allows access to the interior upon removal of the cover. Conventionally, the cover is secured to the enclosure body using numerous bolts. Under some circumstances, as many as 64 bolts are used to secure the cover to the enclosure body. The coupling and uncoupling of numerous bolts is generally time-consuming and tedious for the user when trying to remove or secure the cover to the enclosure body.
[0003] Accordingly, a need exists in the art for providing a device that allows a user to attach or remove a cover from an enclosure body more easily than possible with conventional explosion-proof enclosures.
SUMMARY OF THE INVENTION
[0004] The present invention attempts to satisfy the above-described need by providing enclosure clamps and clamp systems for securing a cover to an enclosure body. Generally, the enclosure clamps and clamp systems can provide a sufficient force to create a gap, or flamepath, between the cover and the enclosure body to allow the system to withstand an explosion.
[0005] In a first embodiment, an enclosure clamp can secure an enclosure body to a cover. In certain aspects, the enclosure clamp includes a center portion, a flange extending orthogonally from one end of the center portion, and an upper portion extends at an angle away from the first flange. The center portion, the flange, and the upper portion define a channel configured to accommodate a flange and an edge of a cover of an explosion-proof container. In certain aspects, the enclosure clamp includes one or more apertures configured to receive a fastener, such as a bolt. In certain aspects, another flange extends from the upper portion, with the fl nge being positioned parallel to the flange extending from the center portion. In certain aspects, the flange is configured to engage a securing arm.
[0006] In another embodiment, an enclosure clamp system includes an enclosure clamp securing a cover to an enclosure body to provide an explosion-proof enclosure. In certain aspects, the enclosure clamp includes a center portion, a flange extending orthogonally from one end of the center portion, and an upper portion extends at an angle away from the first flange. The center portion, the flange, and the upper portion define a channel that receives a portion of the cover and the enclosure body. In certain aspects, the enclosure clamp is secured to the enclosure body by one or more bolts extending through apertures in the center portion of the enclosure clamp and apertures in the enclosure body. In certain aspects, another flange extends from the upper portion, with the flange being positioned parallel to the flange extending from the center portion. In certain aspects, the enclosure clamp systems include a securing arm that is coupled to the cover. The securing arm is movable by cam actuation, and is configured to engage the flange extending from the upper portion when in the locked position. In certain aspects, enclosure clamp is coupled to a pivot arm or slidable arm that is fixed to the cover or the enclosure body. In certain aspects, the cover is hingedly coupled to the enclosure body.
[0007] In yet another embodiment, an enclosure securing system includes a clamp system securing an enclosure body to a cover. The clamp system includes a force distributing plate positioned along a side of the cover opposite the enclosure body, and a securing arm movably coupled to the enclosure body. In certain aspects, the securing arm is movable between a locked and unlocked position by cam actuation. The securing arm applies a force against the force distributing plate when in a locked position so as to provide an explosion- proof container.
[0008] These and other aspects, objects, features and embodiments of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of illustrated embodiments exemplifying the best mode for carrying out the invention as presently perceived. BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Figure 1 is a perspective view of an enclosure clamp, according to an exemplary embodiment.
[0010] Figure 2 A is a perspective view of an enclosure clamp securing a cover to an enclosure body, according to an exemplary embodiment.
[001 1] Figure 2B is side cross-sectional view of the enclosure clamp securing the cover to the enclosure body shown in Figure 2A, according to an exemplary embodiment.
[0012] Figure 3 is a top view of an enclosure clamp securing a cover to an enclosure body, according to another exemplary embodiment.
[0013] Figure 4A is a top view of an enclosure clamp securing a cover to an enclosure body, according to yet another exemplary embodiment.
[0014] Figures 4B is a side view of the enclosure clamp securing the cover to the enclosure body shown in Figure 4A, according to an exemplary embodiment.
[0015] Figure 5 is a side view of an enclosure clamp securing a cover to an enclosure body, according to yet another exemplary embodiment.
[0016] Figure 6A is a side view of a clamp system securing a cover to an enclosure body, according to an exemplary embodiment.
[0017] Figure 6B is a top view of the clamp system securing the cover to the enclosure body shown in Figure 6A, according to an exemplary embodiment.
DETAILED DESCRIPTION OF THE INVENTION
[0018] The present invention relates to enclosure clamps and clamp systems for securing a cover to an enclosure body to provide an explosion-proof enclosure. The enclosure clamps and clamp systems described herein allow users to more quickly and easily secure and/or remove the cover from the enclosure body over conventional securing mechanisms.
[0019] The invention may be better understood by reading the following description of non-limitative, exemplary embodiments with reference to the attached drawings wherein like parts of each of the figures are identified by the same reference characters.
[0020] Figure 1 is a perspective view of an enclosure clamp 100, according to an exemplary embodiment. The enclosure clamp 100 can be used to secure a cover 230 (Figures 2A-2B) to an enclosure body 240 (Figures 2A-2B) to provide an explosion-proof enclosure. The enclosure clamp 100 includes a rectangular center portion 105 having two apertures 105a therein. Each of the apertures 105a is configured for receiving a fastener, such as a bolt 255 (Figures 2A-2B), for securing the enclosure clamp 100 to the enclosure body 240. One having ordin ry skill in the art will recognize that the apertures 10 a may be situated at any position along the length of the center portion 105. In certain alternative embodiments, only one aperture 105a may be present and located in the center of the center portion 105. In other embodiments, three apertures 105a may be present. One having ordinary skill in the art will recognize that multiple apertures 105a can be present on the center portion 105 and the configuration of these apertures 105a can vary.
[0021] The enclosure clamp 100 includes a rectangular lower portion 110 extending orthogonally from a lower end 105b of the center portion 105. The enclosure clamp 100 also includes a rectangular upper portion 1 15 extending from an upper end 105c of the center portion 105. The center portion 105, the lower portion 1 10, and the upper portion 115 define a channel 125 configured to received a portion of the cover 230 and a flange 245 of the enclosure body 240 (Figures 2A-2B). In certain embodiments, a rectangular flange 120 extends from an end 1 15a of the upper portion 1 15, and is parallel to the rectangular lower portion 1 10. In certain alternative embodiments, the flange 120 is absent.
[0022] The upper portion 1 15 extends at an angle a from a plane orthogonal to the center portion 105, in a direction away from the lower portion 1 10. In certain exemplary embodiments, the upper portion 115 extends at an angle a of about 15 degrees. In certain embodiments, the upper portion 1 15 extends at an angle a in a range from about 15 to 30 degrees. In certain embodiments, the upper portion 1 15 extends at an angle a so as to provide a sufficient amount of force on the cover 230 for clamping integrity. The upper portion 115 extends at an angle a sufficient to translate a bolt force from bolts 225 into a downward force on the cover 230 towards the enclosure body 240.
[0023] In certain exemplary embodiments, the enclosure clamp 100 is fabricated from extruded aluminum. In alternative embodiments, the enclosure clamp 100 is fabricated from die cast aluminum, stainless steel, and/or extruded steels.
[0024] Figures 2A and 2B are perspective and side cross-sectional views of an enclosure clamp 200 securing a cover 230 to an enclosure body 240, according to an exemplary embodiment. The enclosure clamp 200 is similar to the enclosure clamp 100, and includes a rectangular center portion 205, a rectangular lower portion 210 extending orthogonally from a lower end 205b of the center portion 205, and a rectangular upper portion 215 extending from an upper end 205c of the center portion 205 at an angle from a plane orthogonal to the center portion 205. The center portion 205, the lower portion 210, and the upper portion 215 define a channel 225 that receives an angled portion 235 f the cover 230 and a flange 245 of the enclosure body 240. The portion 235 of the cover 230 positioned within the channel 225 is angled to correspond to the angle a of the upper portion 215 extending from the center portion 205. The upper portion 215 extends at an angle a sufficient to translate a bolt force from bolts 225 into a downward force on the cover 230 towards the enclosure body 240.
[0025] In certain exemplary embodiments, the upper portion 215 extends along the entire angled portion 235 of the cover 230. In alternative embodiments, the upper portion 215 extends along a portion of the angled portion 235 of the cover 230. The bolts 225 generate the same amount of downward force on the cover 230, however, the shape of the enclosure clamp 200 influences the distribution of those forces.
[0026] The flange 245 of the enclosure body 240 includes two cylindrical apertures
240a aligned with two apertures 205a present on the center portion 205. Triple lead bolts 255 are positioned within each of the apertures 205a, 240a, and secure the enclosure clamp 200 to the enclosure body 240. As the bolts 255 are tightened, the upper portion 215 translates the bolt force into a downward force, or clamping force, on the angled portion 235 of the cover 230. The downward force is such that a maximum gap (not shown), or flamepath, of about 0.0015 inch (in) is maintained between the cover 230 and the enclosure body 240, while the explosion-proof enclosure system is also able to sustain high pressures. In certain embodiments, the explosion-proof enclosure system is able to sustain pressures up to 560 pounds per square inch (psi). In certain embodiments, the explosion-proof enclosure system is able to sustain a pressure equal to four times the maximum combustion pressure. In certain embodiments, the diameter of the apertures 205a, 240a, and the bolts 225 can be varied to adjust the bolt force on the system. In certain embodiments, increasing the diameter of the bolts 225 may increase the bolt force on the system.
[0027] In certain embodiments, the enclosure clamp 200 has length that is substantially equal to a side of the cover 230 and the enclosure body 240. In other embodiments, the length of the enclosure clamp 200 is less than the length of a side of the cover 230 and the enclosure body 240. One having ordinary skill in the art will recognize that the enclosure clamp 200 can have any length, so long as the enclosure clamp 200 is able to maintain an appropriate tlamepath between the cover 230 and the enclosure body 240, and sustain high pressures associated with an explosion.
[0028] In certain embodiments, guide studs (not shown) may be included to locate the cover 230 to the enclosure body 240. The guide studs are generally positioned in opposing corners of the enclosure body 240, and help locate the cover 230 to the enclosure body 240. The guide studs allow a user to easily clamp one side of the enclosure body 240 to the cover 230 without having to manually hold the cover 230 against the enclosure body 240. The guide studs aid in preventing movement in the X or Y direction, such that the entire clamping force is translated in the Z direction.
[0029] Figure 3 is a top view of an enclosure clamp 300 securing a cover 330 to an enclosure body (not shown), according to another exemplary embodiment. The enclosure clamp 300 is similar to the enclosure clamp 200. The enclosure clamp 300 secures the cover 330 to the enclosure body using bolts 355, similar to the way the enclosure clamp 200 secures the cover 230 to the enclosure body 240 using bolts 255.
[0030] In certain exemplary embodiments, a pivot arm 350 having a substantially reshaped portion 350a and a curved base 350b configured to attach to the enclosure body is included. The L-shaped portion 350a of the pivot arm 350 is coupled to a side 305d of a center portion 305 of the enclosure clamp 300. The base 350b of the pivot arm 350 is coupled to the enclosure body, and includes a pivot point 350c about which the L-shaped portion 350a of the pivot arm 350 pivots. In certain alternative embodiments, the pivot arm 350 is coupled to the cover 330, instead of the enclosure body. Since the pivot arm 350 is directly attached to the enclosure clamp 300 and the cover 330 or enclosure body 340, a user can easily secure and/or remove the enclosure clamp 300 while eliminating accidental misplacement of the enclosure clamp 300.
[0031] To secure the cover 330 to the enclosure body, the enclosure clamp 300 that is coupled to the pivot arm 350 is rotated in a counterclockwise direction about pivot point 350c. A channel (not shown) in the enclosure clamp 300 can receive the side of the cover 330 and the enclosure body. Bolts 355 are tightened to secure the enclosure clamp 300 to the enclosure body. To remove the cover 330 from the enclosure body, the bolts 355 are loosened and removed from the enclosure body, and the enclosure clamp 300 is separated from the cover 330 and the enclosure body by rotating the L-shaped portion 350a of the pivot arm 350 about pivot point 350c in a clockwise direction. The cover 330 can then be removed from the enclosure body. [0032] In certain exemplary embodiments, two hinges 360 may be included for hingcdly coupling the cover 330 to the enclosure body. Upon removal of the enclosure clamp 300, the cover 330 can be rotated about the hinges 360 to an open position to allow access to the interior of the enclosure body. In certain embodiments, the hinges 360 are positioned on the same side as the enclosure clamp 300. One having ordinary skill in the art will recognize that the hinges 360 can be positioned on any side of the enclosure. The presence of the hinges 360 can help prevent accidental misplacement of the cover 330 after removal.
[0033] Figures 4 A and 4B are top and side views of an enclosure clamp 400 securing a cover 430 to an enclosure body 440, according to another exemplary embodiment. The enclosure clamp 400 is similar to the enclosure clamp 300. The enclosure clamp 400 secures the cover 430 to the enclosure body 440 using bolts 455, similar to the way the enclosure clamp 300 secures the cover 330 to the enclosure body using bolts 355.
[0034] In certain exemplary embodiments, a slidable arm 450 is fixedly coupled to a side 405d of a center portion 405 of the enclosure clamp 400. The slidable arm 450 is slidably positioned within a slot 465a of a hinge 465. The hinge 465 is hingedly coupled to the cover 430. In alternative embodiments, the hinge 465 is hingedly coupled to the enclosure body 440, or to both the cover 430 and the enclosure body 440. To secure the cover 430 to the enclosure body 440, the enclosure clamp 400 is rotated in a counterclockwise direction via the hinge 465, such that the enclosure clamp 400 is aligned with a side of the cover 430 and the enclosure body 440. The slidable arm 450 is shifted within the slot 465a and towards the enclosure body 440 such that the cover 430 and the enclosure body 440 are received within a channel (not shown) in the enclosure clamp 400. The bolts 455 are tightened to secure the enclosure clamp 400 to the enclosure body 440.
[0035] To remove the cover 430 from the enclosure body 440, the bolts 455 are loosened and removed from the enclosure body 440, and the enclosure clamp 400 is separated from the cover 430 and the enclosure body 440 by sliding the slidable arm 450 away from the enclosure body 440 and rotating the slidable arm 450 about the hinge 465 in a clockwise direction. The cover 430 can then be removed from the enclosure body 440.
[0036] Figure 5 is a side view of an enclosure clamp 500 securing a cover 530 to an enclosure body 540, without the use of any tools, according to another exemplary embodiment. The enclosure clamp 500 includes a rectangular center portion 505. A rectangular lower portion 510 extends orthogonally from a lower end 505b of the center portion 505. An upper portion 515 extends from an upper end 505c of the center portion 505, at an angle away from the lower portion 510. The center portion 505, the lower portion 510, and the upper portion 515 define a channel 525 that receives an angled portion 535 of the cover 530 and a flange 545 of the enclosure body 540. In certain embodiments, the upper portion 515 extends across a distance greater than the angled portion 535 of the cover 530. In alternative embodiments, the upper portion 515 extends across a distance less than or equal to the angled portion 535 of the cover 530.
[0037] In certain exemplary embodiments, a rectangular-shaped clip portion 520 extends from an end 515a of the upper portion 515. The clip portion 520 is parallel to the lower portion 510. The clip portion 520 is configured to engage a securing arm 550 that secures and locks the enclosure clamp 500 in place. In certain alternative embodiments, the clip portion 520 includes a groove (not shown) configured to receive a corresponding portion of the securing arm 550. One having ordinary skill in the art will recognize that the clip portion 520 can be configured any number of ways, so as to engage and secure the securing arm 550 to the enclosure clamp 500.
[0038] The force exerted by the securing arm 550 on the clip portion 520 is translated into a clamping force against the cover 530 towards the enclosure body 540. The clamping force is such that a maximum gap of about 0.0015 in. is maintained between the cover 530 and the enclosure body 540, and the system is able to sustain exposure to high pressures.
[0039] The securing arm 550 is coupled to an actuation base 570 that is fixed to the cover 530. The securing arm 550 is movable about a pivot point 550a by cam actuation. One having ordinary skill in the art will recognize that the securing arm 550 can be movable about pivot point 550a in any number of ways. The securing arm 550 includes a latching flange 550b that engages a side 520a of the clip portion 520 and locks the enclosure clamp 500 in place. To remove the enclosure clamp 500, an end 550c of the securing arm 550 is shifted in a counterclockwise direction, thus allowing the securing arm 550 to move about the pivot point 550a by cam actuation. The latching flange 550b disengages the side 520a of the clip portion 520 and the securing arm 550 can be rotated in the clockwise direction to release the latching flange 550b from the enclosure clamp 500. The enclosure clamp 500 can then be removed.
[0040] Figures 6A and 6B are side and top views of a clamp system 600 securing a cover 630 to an enclosure body 640, without the use of any tools, according to an exemplary embodiment. The clamp system 600 includes a rectangular force distributing plate 605 and two securing arms 650 on each side of the enclosure body 640. Each securing arm 650 is - Si - coupled to an actuation base 670. The actuation bases 670 are coupled to a flange 645 of the enclosure body 640. The securing arms 650 are similar to securing arm 550, and each include a latching flange 650b extending orthogonally therefrom. The actuation bases 670 are similar to the actuation base 570. In certain exemplary embodiments, a force distributing plate 605 is positioned along a length of each side of the cover 630. Each of the latching flanges 650b engages the force distributing plate 605 and applies a force on the cover 630 towards the enclosure body 640 to lock the cover 630 in place. The force exerted by the latching flanges 650b on the force distributing plate 605 is such that a maximum gap of about 0.0015 in. is maintained between the cover 630 and the enclosure body 640, and the system is able to sustain exposure to high pressures.
[0041] To remove the cover 630 from the enclosure body 640, an end 650c of the securing arm 650 is shifted in a clockwise direction, thus allowing the securing arm 650 to move about a pivot point 650a by cam actuation. The latching flange 650b disengages the force distributing plate 605 and the securing arm 650 can be rotated in the counterclockwise direction to release the clamp system 600 from the cover 630 and the enclosure body 640. The cover 630 can then be removed.
[0042] Generally, the enclosure clamps and clamp systems of the present invention may be fabricated from any material suitable for high strength and wear resistance. Suitable materials include, but are not limited to, steel. The enclosure clamps and clamp systems of the present invention are capable of supplying a uniform force so as to provide an appropriate gap, or flamepath, between the cover and the enclosure body. The gap is configured to allow a flame to pass through, while the system is able to withstand any pressures associated with an internal explosion. In certain exemplary embodiments, the gap is about 0.0015 in. and the system can withstand a hydrostatic pressure of about 560 pounds per square inch (psi).
[0043] To facilitate a better understanding of the present invention, the following example of certain aspects of some embodiments are given. In no way should the following example be read to limit, or define, the scope of the invention.
EXAMPLE
[0044] A cover was secured to an EJB121208 enclosure body (commercially available from Cooper Technologies Company) using the enclosure clamp shown in Figures 1 and 2A-2B. The enclosure body was constructed of sand cast aluminum alloy approaching grade 535 and the cover was constructed of plate aluminum (6061-T6). An enclosure clamp is secured to each side of the cover and enclosure body as described with respect to Figures 2A-2B. Each enclosure clamp includes two bolts, for a total of eight bolts on the system.
[0045] The system was subjected to a hydrostatic pressure test, as outlined in
UL1203, section 22, dated April 30, 2004. Water was pumped into the system by a Hydro Pump, model TD120, commercially available from Union, via a one inch pipe. A pressure gauge, model 1082-8-3, commercially available from Ashcroft, was positioned within the system. The system was subjected to hydrostatic pressure until failure. The system was able to withstand pressures of up to about 400 psi. At a pressure of about 400 psi, the enclosure clamps experienced permanent deformation and created a loss of seal, indicating that the system is able to withstand a normal explosions pressure, which is typically about 140 psi.
[0046] Therefore, the invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. Any spatial references herein, such as, for example, "top," "bottom," "upper," "lower," "above", "below," "rear," "between," "vertical," "angular," "beneath," etc., are for purpose of illustration only and do not limit the specific orientation or location of the described structure. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those having ordinary skill in the art and having the benefit of the teachings herein. For instance, the number of bolts used may be reduced, or eliminated entirely, from certain enclosure clamps and clamp systems. Also, the clamping force of the enclosure clamps and clamp systems may be varied to provide a maximum gap, or flamepath, based on UL standards. In addition, mechanical variations, such as with respect to the cam latches, for applying the required force to the cover are within the purview of one having ordinary skill in the art. Furthermore, ribbing may be added to the clamps systems to prevent clamps from opening up. While numerous changes may be made by those having ordinary skill in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention as defined by the claims below. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims

CLAIMS What is claimed is:
1. An enclosure clamp, comprising:
a center portion;
a first flange extending from a first end of the center portion; and an upper portion extending from a second end of the center portion, the second end being opposite the first end of the center portion, the upper portion extending at an angle away from the first flange,
wherein the center portion, the first flange, and the upper portion define a channel configured to accommodate a flange and an edge of a cover of an explosion-proof container.
2. The enclosure clamp of claim 1, wherein the center portion comprises one or more apertures configured to receive a fastener.
3. The enclosure clamp of claim 1, further comprising a second flange extending from the upper portion, the second flange positioned parallel to the first flange.
4. The enclosure clamp of claim 3, the second flange configured to engage a securing arm.
5. An enclosure clamp system, comprising:
an explosion-proof enclosure comprising an enclosure body and a cover; and an enclosure clamp comprising
a center portion,
a first flange extending from a first end of the center portion, and an upper portion extending from a second end of the center portion, the second end being opposite the first end of the center portion, the upper portion extending at an angle away from the first flange,
wherein the center portion, the first flange, and the upper portion define a channel,
wherein the enclosure body and the cover are at least partially positioned within the channel.
6. The enclosure clamp system of claim 5, wherein the center portion comprises one or more first apertures configured to receive a fastener.
7. The enclosure clamp system of claim 6, wherein the enclosure body comprises one or more second apertures, wherein the second apertures are aligned with the first apertures when the enclosure body and cover are positioned in the channel of the enclosure clamp.
8. The enclosure clamp system of claim 7, further comprising one or more bolts extending through the first and second apertures.
9. The enclosure clamp system of claim 5, further comprising a second flange extending from the upper portion, the second flange positioned parallel to the first flange.
10. The enclosure clamp system of claim 9, further comprising a securing arm movably coupled to the cover, wherein the second flange engages the securing arm in a locked position.
1 1. The enclosure clamp system of claim 5, further comprising a movable arm fixed to the enclosure clamp at a first end of the movable arm, wherein the movable arm is movably coupled to one of the cover and the enclosure body at second end of the movable arm.
12. The enclosure clamp system of claim 5, wherein the cover is hingedly coupled to the enclosure body.
13. An enclosure securing system, comprising;
an enclosure body;
a cover coupled to the enclosure body; and
a clamp system, the clamp system securing the cover to the enclosure body, wherein the clamp system comprises
a force distributing plate positioned along a side of the cover opposite the enclosure body, and
a securing arm coupled to the enclosure body,
wherein the securing arm applies a force against the force distributing plate when in a locked position to provide an explosion-proof container.
14. The enclosure securing system of claim 13, wherein the force distributing plate comprises one or more first apertures configured to receive a fastener.
15. The enclosure securing system of claim 14, wherein the cover comprises one or more second apertures, wherein the second apertures are aligned with the first apertures when in the locked position.
16. The enclosure securing system of claim 15, further comprising one or more bolts extending through the first and second apertures.
17. The enclosure securing system of claim 15, wherein the securing arm is movable between a locked and unlocked position by cam actuation.
PCT/US2010/020066 2010-01-05 2010-01-05 Enclosure clamps and clamp systems WO2011084152A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2968744A CA2968744C (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems
MX2016012312A MX356592B (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems.
CN201080060824.8A CN102791168B (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems
MX2012007820A MX2012007820A (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems.
CA2786356A CA2786356C (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems
MX2014014554A MX345366B (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems.
DE112010005085T DE112010005085T5 (en) 2010-01-05 2010-01-05 Housing clamp and terminal systems
PCT/US2010/020066 WO2011084152A1 (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems
US13/541,442 US8602245B2 (en) 2010-01-05 2012-07-03 Enclosure clamps and clamp systems
US14/100,709 US9221587B2 (en) 2010-01-05 2013-12-09 Enclosure clamps and clamp systems
US14/100,692 US9284101B2 (en) 2010-01-05 2013-12-09 Enclosure clamps and clamp systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/020066 WO2011084152A1 (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/541,442 Continuation US8602245B2 (en) 2010-01-05 2012-07-03 Enclosure clamps and clamp systems

Publications (1)

Publication Number Publication Date
WO2011084152A1 true WO2011084152A1 (en) 2011-07-14

Family

ID=44305666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/020066 WO2011084152A1 (en) 2010-01-05 2010-01-05 Enclosure clamps and clamp systems

Country Status (5)

Country Link
CN (1) CN102791168B (en)
CA (2) CA2786356C (en)
DE (1) DE112010005085T5 (en)
MX (3) MX2012007820A (en)
WO (1) WO2011084152A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165560A1 (en) * 2012-05-01 2013-11-07 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US8844749B2 (en) 2012-09-14 2014-09-30 Cooper Technologies Company Fastening devices for explosion-proof enclosures
WO2015038806A1 (en) * 2013-09-13 2015-03-19 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9272821B2 (en) 2013-09-13 2016-03-01 Cooper Technologies Company Fastening devices for explosion-proof enclosures
RU2794987C2 (en) * 2018-06-05 2023-04-27 Р. Шталь Шальтгерете Гмбх Explosion-proof enclosure type
US11690181B2 (en) 2018-06-05 2023-06-27 R. Stahl Schaltgeräte GmbH Flameproof housing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000405T5 (en) * 2016-02-12 2018-10-11 Eaton Intelligent Power Limited HOUSING ARRANGEMENTS; COMPONENTS; AND METHOD
CN107899949A (en) * 2017-10-31 2018-04-13 常州新马干燥工程有限公司 Pneumatic frequency particle airflow shifting machine
DE102019102832B4 (en) 2019-02-05 2021-09-09 R. Stahl Schaltgeräte GmbH Explosion-proof housing and method for its assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656793A (en) * 1981-04-13 1987-04-14 Jansens & Dieperink B.V. Explosion cover plate especially explosion hatch
US4664281A (en) * 1985-10-15 1987-05-12 Killark Electric Manufacturing Co. Explosion proof enclosure
US5004129A (en) * 1990-01-18 1991-04-02 Itt Corporation Self-venting container

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035860A (en) * 1960-05-16 1962-05-22 Prestole Corp Clips for securing lids to pails
FR2727386A1 (en) * 1994-11-29 1996-05-31 Monoplast Sa Security ring for plastics container
CN201325647Y (en) * 2008-11-20 2009-10-14 张家港市科辰仪表有限公司 Box cover locking device
CN201325648Y (en) * 2008-11-20 2009-10-14 张家港市科辰仪表有限公司 Box cover locking device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656793A (en) * 1981-04-13 1987-04-14 Jansens & Dieperink B.V. Explosion cover plate especially explosion hatch
US4664281A (en) * 1985-10-15 1987-05-12 Killark Electric Manufacturing Co. Explosion proof enclosure
US5004129A (en) * 1990-01-18 1991-04-02 Itt Corporation Self-venting container

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8777535B2 (en) 2012-05-01 2014-07-15 Cooper Technologies Company Fastening devices for explosion-proof enclosures
WO2013165560A1 (en) * 2012-05-01 2013-11-07 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9145912B2 (en) 2012-05-01 2015-09-29 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9217459B2 (en) 2012-05-01 2015-12-22 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9217460B2 (en) 2012-05-01 2015-12-22 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US10100869B2 (en) 2012-05-01 2018-10-16 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9428312B2 (en) 2012-09-14 2016-08-30 Cooper Technologies Company Cover release mechanisms for enclosures
US8844749B2 (en) 2012-09-14 2014-09-30 Cooper Technologies Company Fastening devices for explosion-proof enclosures
CN104781155A (en) * 2012-09-14 2015-07-15 库帕技术公司 Fastening devices for explosion-proof enclosures
WO2015038806A1 (en) * 2013-09-13 2015-03-19 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9366058B2 (en) 2013-09-13 2016-06-14 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US9272821B2 (en) 2013-09-13 2016-03-01 Cooper Technologies Company Fastening devices for explosion-proof enclosures
US10569938B2 (en) 2013-09-13 2020-02-25 Eaton Intelligent Power Limited Fastening devices for explosion-proof enclosures
RU2794987C2 (en) * 2018-06-05 2023-04-27 Р. Шталь Шальтгерете Гмбх Explosion-proof enclosure type
US11690181B2 (en) 2018-06-05 2023-06-27 R. Stahl Schaltgeräte GmbH Flameproof housing

Also Published As

Publication number Publication date
CA2786356C (en) 2017-07-11
CN102791168A (en) 2012-11-21
MX356592B (en) 2018-06-05
DE112010005085T5 (en) 2012-11-08
CN102791168B (en) 2014-12-17
CA2968744A1 (en) 2011-07-14
CA2786356A1 (en) 2011-07-14
MX345366B (en) 2017-01-27
CA2968744C (en) 2020-03-24
MX2012007820A (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US8602245B2 (en) Enclosure clamps and clamp systems
CA2786356C (en) Enclosure clamps and clamp systems
US7828340B2 (en) Coupling
US8342580B2 (en) Lock system for a container
EP2813447B1 (en) Clamping devices
US20080235907A1 (en) Multi-functional hinge
US11946298B2 (en) Push rod lock for a switchgear cabinet housing, corresponding arrangement, and corresponding method
CN107559273B (en) Connecting device and display screen with same
US20150351267A1 (en) Latching assemblies for enclosures
AU2014253561A1 (en) Lifting Device, System, Plate and Associated Methods
AU2014202564B2 (en) Tamper-resistant locking fastener cover
CA2632378A1 (en) Closure for a vessel
CN210566819U (en) Vacuum aluminum clamp
CN104786167A (en) Seal clamps and clamp system
US20100006734A1 (en) Material support apparatus
US11885461B2 (en) Mechanism for mounting an electronic device to a drop ceiling T-bar and related methods
US20160312920A1 (en) Tool and method for unlocking guide clamps for cable harnesses
CN216954370U (en) Magnetic induction sensor device applied to crank arm type switch equipment
CN211260354U (en) Auxiliary device is transported in dismouting of transformer oil chromatogram on-line monitoring device year gas cylinder
CN220378995U (en) Valve body locking case
CN220534175U (en) Tool locking device
DE112010005085B4 (en) Housing terminal and terminal systems
KR101881042B1 (en) Dead latch
CN209137835U (en) A kind of connection structure between fire hydrant box and wall
DE112010006129B4 (en) Housing terminal and terminal systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060824.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2786356

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/007820

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 112010005085

Country of ref document: DE

Ref document number: 1120100050856

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842365

Country of ref document: EP

Kind code of ref document: A1