WO2011083901A1 - Sealing-type reciprocating compressor - Google Patents

Sealing-type reciprocating compressor Download PDF

Info

Publication number
WO2011083901A1
WO2011083901A1 PCT/KR2010/006154 KR2010006154W WO2011083901A1 WO 2011083901 A1 WO2011083901 A1 WO 2011083901A1 KR 2010006154 W KR2010006154 W KR 2010006154W WO 2011083901 A1 WO2011083901 A1 WO 2011083901A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
reciprocating compressor
chamber
suction
discharge
Prior art date
Application number
PCT/KR2010/006154
Other languages
French (fr)
Korean (ko)
Inventor
이한중
이진주
Original Assignee
Lee Han Jung
Lee Jin Joo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100000448A external-priority patent/KR100957184B1/en
Priority claimed from KR1020100025304A external-priority patent/KR100972174B1/en
Application filed by Lee Han Jung, Lee Jin Joo filed Critical Lee Han Jung
Publication of WO2011083901A1 publication Critical patent/WO2011083901A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/01Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical

Definitions

  • the present invention relates to a hermetic reciprocating compressor, and more particularly, to a hermetic reciprocating compressor which minimizes the volume while minimizing the pulsation occurring during suction and compression as well as increasing the compression efficiency as much as possible.
  • a compressor is a device in which a refrigerant evaporated from an evaporator is compressed by suction to raise a pressure to liquefy at a relatively high temperature.
  • the compressor is an open type in which a compressor and an electric motor are largely separated, and a compressor and an electric motor It is divided into a sealed type embedded in the container.
  • compressors are classified into reciprocating compressors, rotary compressors, scroll compressors, turbo compressors, screw compressors, and the like according to the compression method.
  • reciprocating compressors among the various compressors will be described.
  • the sealed reciprocating compressor 100 which sucks and compresses and discharges refrigerant into a conventional hermetically sealed space has a rotating shaft 130 which is rotated by the drive unit 120 inside the hermetic container 110 as shown in FIG. 10.
  • a connecting rod 135 is installed at the top of the rotating rod to convert the rotational movement into a linear movement.
  • a piston 136 connected to the connecting rod 135 is mounted on the cylinder block 150 mounted on the upper portion of the main body frame 140. The refrigerant is sucked and compressed while reciprocating in the formed compression chamber 152.
  • one side of the cylinder block 150 is coupled to the discharge muffler 160 is formed with a suction chamber and a discharge chamber communicating with the outside, respectively, between the compression chamber and the suction chamber and the discharge chamber is a low-temperature low-pressure refrigerant gas suction and high temperature
  • a suction and discharge valve body 170 is provided to discharge the high pressure refrigerant gas.
  • the suction and discharge valve body 170 has a flapper or lead type thin plate structure having a general elasticity, and the flapper or lead type suction and discharge valve body 170 acts on both sides. It is opened and closed passively by the pressure difference.
  • the closed-type reciprocating compressor 100 configured as described above has an external evaporator (not shown) through a suction tube and a suction muffler not shown in the sealed container 110 in which the refrigerant gas of low temperature and low pressure during the backward motion of the piston 136 is moved. From the suction and discharge valve body 170 to the suction lead valve to the suction chamber of the discharge muffler 170 and then into the compression chamber 152.
  • the high temperature and high pressure refrigerant gas discharged from the compressor is sealed in the sealed container through the discharge chamber and the discharge muffler 160 from the discharge valve of the suction and discharge valve body 170. It is discharged to an external condenser (not shown) via a fixed discharge tube.
  • the cycle width in which one piston sucks and compresses ten times in one compression chamber when the suction and compression is performed ten times is large, resulting in a large pulsation phenomenon resulting in a large vibration noise.
  • each connection part has a problem such that cracks due to pressure, as well as the length of the pipe is also lengthened, the compression efficiency is considerably lowered, and the volume of the body frame is also significantly increased as the resonance chamber is formed.
  • the compression method of the reciprocating compressor 200 as shown in FIG. 12 is a method of raising and lowering the piston 202, and the rotational force of the main shaft 210 is transmitted to the rotor 212.
  • the inclination plate 214 hinged to the rotor 212 is also rotated, and the rocking plate 216 is coupled to the rocking plate while the rocking plate 216 swings left and right by the rotation of the inclined plate.
  • the rod 218 is forced and linearly reciprocated by the swinging plate 216 to lift and lower the piston 202 to suck and compress it.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main object is to provide a hermetic reciprocating compressor which can minimize the pulsation phenomenon occurring during suction and compression as well as to increase the compression efficiency as much as possible. .
  • Still another object of the present invention is to minimize the vibration noise generated during suction and compression by forming a path as long as possible upon suction or discharge of the refrigerant gas.
  • Still another object of the present invention is to minimize the frictional load during high speed operation to maximize the compression efficiency.
  • Another object of the present invention is to reduce the number of parts while minimizing the volume.
  • the first and second compression chamber is formed so that the suction and compression can be alternately formed compression chamber member mounted to the mounting groove formed in the cylinder block Wow;
  • Respective pistons inserted into the first and second compression chambers to suck and compress the refrigerant;
  • Lifting and lowering means for converting the rotary motion to a linear motion on the top of the rotating shaft rotated by the drive unit to make the rise and fall of each piston alternately; It is characterized by including.
  • the raising and lowering means is composed of an inclined plate which is coupled to the rotating shaft and rotated in the lower portion of the cylinder chamber of the cylinder block, and a link link rotatably coupled to the cylinder chamber and both ends rotatably coupled to the rod of each piston. It features.
  • connection link the center is coupled to the cylinder chamber by a fixed pin, characterized in that both ends of the connection link is configured to be mounted in the insertion groove for receiving the end of the connection link to the rod of each piston.
  • the inclined surface of the inclined plate is characterized in that it is formed to form a horizontal plane radially from the center of rotation.
  • each rod in contact with the inclined surface of the inclined plate is characterized in that the rolling means for reducing the friction is further provided.
  • the cylinder block is characterized in that the suction chamber and the discharge chamber in which the refrigerant gas is sucked and discharged into the first and second compression chambers are integrally formed.
  • the suction chamber includes an inlet hole formed in the lower outer surface of the cylinder block, an inlet space connected to the inlet hole to circulate the refrigerant gas, and connected to the first and second compression chambers on the upper surface of the cylinder block through the inlet space. Characterized in that composed of a suction hole.
  • the discharge chamber includes a discharge hole connected to the first and second compression chambers on an upper surface of the cylinder block, a discharge space circulated through the discharged refrigerant gas connected to the discharge hole, and a lower portion of the outer surface of the cylinder block through the discharge space. Characterized in that consisting of the discharge hole formed in.
  • FIG. 1 is a sectional view schematically showing a main part of a hermetic reciprocating compressor to which the present invention is applied.
  • FIG. 2 is a schematic exploded perspective view of the main portion according to FIG.
  • FIG. 3 is a cross-sectional view taken along the line A-A in the coupled state according to FIG.
  • FIG. 4 is a sectional view taken along the line B-B in the coupled state according to FIG.
  • FIG 5 is a main view of a state in which refrigerant gas is sucked into the first compression chamber and refrigerant gas is compressed in the second compression chamber.
  • FIG. 6 is a main view of a state in which refrigerant gas is compressed in a first compression chamber and refrigerant gas is sucked in a second compression chamber.
  • FIG. 7 is a perspective view schematically illustrating main parts of another embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the main part according to FIG. 7;
  • FIG. 9 is a main view showing the flow of the refrigerant gas in the suction chamber and the discharge chamber formed in the cylinder block according to FIG.
  • FIG. 10 is a sectional view schematically illustrating main parts of a general hermetic reciprocating compressor.
  • Figure 11 is a main part showing another embodiment of a conventional hermetic reciprocating compressor.
  • FIG. 12 is a main view showing still another embodiment of the conventional hermetic reciprocating compressor.
  • FIG. 1 is a cross-sectional view of a main part schematically showing a hermetic reciprocating compressor to which the present invention is applied
  • FIG. 2 is a schematic exploded perspective view of a main part according to FIG. 1
  • FIG. 3 is a cross-sectional view taken along line AA of FIG. 2
  • FIG. 4 is a cross-sectional view taken along line BB in the coupled state according to FIG. 2.
  • the present invention in order to maximize the compression efficiency as well as to minimize the pulsation phenomenon occurs during compression,
  • First and second compression chambers 12 and 14 are formed so that suction and compression may be alternately performed, and the compression is performed by mounting grooves 22 formed in the cylinder block 20 mounted on the upper part of the main body frame 140. Seal member 10;
  • Respective pistons 30 and 30a inserted into the first and second compression chambers 12 and 14 to suck and compress the refrigerant;
  • Ascending and descending means 40 to be made alternately; It is shown to include.
  • the compression chamber is formed of first and second compression chambers 12 and 14 instead of one as in the prior art, so that compression can be continuously performed by alternating compression by each of the pistons 30 and 30a. Compression cycle is also made continuously, thereby increasing the compression efficiency and minimizing the pulsation phenomenon.
  • the compression process is performed in the second compression chamber 14, and conversely, when the refrigerant is sucked in the first compression chamber 12, the second gas is compressed.
  • the first compression chamber 12 and the second compression chamber 14 are alternately compressed and suctioned to maximize the compression efficiency as a continuous compression process is made. Will be.
  • the upper and upper portions of the first and second compression chambers 12 and 14 are connected in communication with a suction and valve body 170 in which a normal suction lead valve and a discharge valve for suction and compression of refrigerant gas are formed.
  • the suction and the valve body 170 has a known configuration, and as the compression chamber is formed of the first and second compression chambers 12 and 14, a flapper or a reed having normal elasticity is provided.
  • the suction lead valve and the discharge valve are composed of a pair corresponding to the first and second compression chambers, and are opened and closed passively by the pressure difference acting on both sides.
  • a discharge muffler having an intake chamber and a discharge chamber in communication with the outside are formed on the outer surface of the suction and valve body 170 so that refrigerant gas is sucked and discharged through the suction lead valve and the discharge valve of the suction and discharge valve body ( 160 is mounted.
  • ascending and descending means 40 are provided to suck and compress the refrigerant while the pistons 30 and 30a inserted into the first and second compression chambers 12 and 14 alternately move up and down.
  • the inclined plate 42 is coupled to the upper end of the rotating shaft 130 is rotated in the lower portion of the cylinder chamber, the upper surface of which is inclined inclined surface (42a) is formed, the height of the upper surface at any point during the rotation of the inclined plate 42 It is changed continuously.
  • the inclined surface 42a is formed so that its height gradually increases when the inclined plate 40 is rotated halfway.
  • the inclined surface 42a continuously increases in height. As it is formed, the lower end of each rod is pushed up to the upper portion of the cylinder chamber by the rotation of the rotary shaft.
  • the inclined surface 42a is formed to gradually increase in height in the semicircular portion, or as shown, the semicircular portion of the inclined surface 42a gradually rises, and then the other semicircular portion gradually descends, so that the inclined surface can be continuously raised and lowered. So that it is formed.
  • the inclined surface 42a of the inclined plate 40 is gradually increased in height when the inclined plate is half rotated, the inclined surface is preferably formed to form a horizontal plane radially from the center of rotation. That is, when viewed radially on the rotation axis 130 of the inclined surface, to form a horizontal line perpendicular to the rotation axis on the radiation, the inclined surface 42a is formed by combining such a horizontal line continuously different height.
  • the local inclined surface which is in contact with the lower end of each rod, is horizontal in the radiation direction and inclined only in the circumferential direction, thereby eliminating the generation of a force to move each rod in the radiation direction, that is, in the direction of the center of rotation of the inclined surface. It becomes possible. This allows each rod to function properly without bending in the direction of radiation over a long period of use.
  • the link link 35 is coupled to the center of the cylinder chamber 24 by a fixing pin 35a to enable the seesaw movement, and both ends of the link link 35 are connected to the rods 32 and 32a of each piston. As it is configured to be mounted in the insertion groove (32 ') (32a') for receiving the end of the one piston connected to one end of the connection link is raised, the other piston is lowered about the fixing pin.
  • rolling means 45 is further provided at the bottom of each of the rods 32 and 32a in contact with the inclined surface 42a of the inclined plate 42 to reduce friction.
  • the rolling means 45 is embedded to protrude from the bottom of each rod 32, 32a, it may be made of a ball 45a capable of free rotation. Rolling means is to reduce the wear of the bottom of the rod by the contact with the inclined plate, as well as to minimize the friction load to enable a more smooth operation.
  • the refrigerant gas flows into the suction chamber of the discharge muffler 160 and the first compression chamber 12 through the suction lead valve of the suction and discharge valve bodies 170. Flows into.
  • the suction lead valves of the suction and discharge valve bodies are closed to prevent the refrigerant from being sucked into the second compression chamber.
  • the piston 30 located at the bottom dead center as shown in FIG. 6 by the rotation of the inclined plate 42 gradually rises on the inclined surface 42a, compresses the refrigerant gas that has been sucked in, and simultaneously sucks and discharges the valve body ( It is discharged to the outside through the discharge chamber of the discharge muffler 160 by the discharge valve of 170.
  • the piston (30a) located at the highest point connected to the connecting link 35 is lowered in the compressed state, while the refrigerant gas is returned to the second compression chamber 14 by the suction lead valve of the suction and discharge valve body. To be inhaled.
  • the inclined plate 42 is continuously rotated in one direction by the rotating shaft 130, the above-described action is repeatedly performed, and as the rotary motion converts each of the pistons 30 and 30a into linear motion, the inclined plate In the high speed operation of (42), the direction of the piston is also smoothly changed while minimizing friction with the piston, thereby reducing the energy loss due to the change of the direction of movement of the rotating shaft as well as the noise.
  • the compression cycle is continued to minimize the pulsation phenomenon and pulsation phenomenon
  • the compression efficiency can be maximized.
  • the refrigerant gas is sucked and discharged during the compression process, the refrigerant gas is sucked and discharged through the suction chamber and the discharge chamber of a long distance. It also has a condition that can minimize the generated vibration noise.
  • the cylinder block 20 has a suction chamber 50 and a discharge chamber 50a through which a refrigerant gas is sucked and discharged through a long distance to the first and second compression chambers 12 and 14 as shown in FIGS. 7 to 9. Is formed integrally, not only can the refrigerant gas be stably sucked and discharged, but also the vibration noise generated during the suction and discharge process can be offset and minimized in the suction chamber and the discharge chamber having a long distance. will be.
  • the suction chamber 50 is formed in the lower outer surface of the cylinder block 20, the inlet hole 52 through which the refrigerant gas is introduced, and the inlet space 53 through which the refrigerant gas is circulated and connected with the inlet hole; , Through the inlet space so as to be composed of a suction hole 54 connected to the first and second compression chambers 12 and 14 on the upper surface of the cylinder block 20, that is, in the inflow space again after the inflow from the bottom As long as it is circulated and sucked upwards.
  • the refrigerant gas sucked into the suction hole is introduced into the suction chamber of the discharge muffler and then sucked into the first and second compression chambers through respective suction lead valves formed in the suction and discharge valve bodies.
  • the discharge chamber 50a includes discharge holes 56 connected to the first and second compression chambers on the upper surface of the cylinder block 20, that is, refrigerant gas compressed in the first and second compression chambers 12 and 14. Discharge through the discharge valve of the suction and discharge valve body through the discharge chamber of the discharge muffler and is discharged, the discharge space 57 is connected to the discharge hole and the compressed refrigerant gas is circulated and discharged, and the cylinder through the discharge space By having a discharge hole 58 formed in the lower side of the outer surface of the block 20, the refrigerant gas, such as the suction chamber is also passed through the discharge space through the upper discharge hole again and discharged to the discharge hole of the lower To have the longest distance possible.
  • the vibration noise generated when the compressed refrigerant gas is compressed in the discharge chamber having the maximum distance even when discharged can be canceled and minimized.
  • the suction chamber and the discharge chamber are integrally formed inside the cylinder block, the volume is also minimized, and thus, the overall volume of the hermetic reciprocating compressor can be reduced and miniaturized.
  • the compression efficiency is maximized as the compression is performed by the first and second compression chambers instead of one compression chamber, and the compression is also alternately performed in the first and second compression chambers. It has the effect of minimizing the noise caused by the pulsation phenomenon.
  • the length of the refrigerant gas is sucked and discharged as long as possible, it also has the effect of minimizing the vibration noise generated in the process of the refrigerant gas is sucked and discharged.
  • the assembly is excellent and the compression efficiency is maximized by minimizing the frictional load.
  • the structure of raising and lowering is simple, and it is excellent in assembling property and productivity, and also has high economic efficiency.
  • the suction chamber and the discharge chamber are integrally formed in the cylinder block, the total volume of the compressor can be reduced by minimizing the volume, thereby reducing the volume of the high-output compressor, thereby reducing the volume of the refrigerant and through the long path.
  • the suction and discharge of the compressed gas is made also has the effect of minimizing the vibration noise due to the suction and discharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

The present invention relates to a sealing-type reciprocating compressor, and more particularly, to a sealing-type reciprocating compressor which maximizes compressing efficiency, minimizes fluctuation during suction and compression, and is miniaturized. For this purpose, the sealing-type reciprocating compressor includes a compression compartment member, pistons, and a vertical moving member. The compression compartment member includes first and second compression compartments to alternately perform a suction operation and a compression operation, and is installed in an installation recess of a cylinder block. The pistons are inserted in the first and second compression compartments, respectively, to suction and compress refrigerant. The vertical moving member is disposed on an upper side of a rotation shaft that is rotated by a driving part, and converts the rotational motion into linear motion such that the pistons alternatingly move upward and downward.

Description

밀폐형 왕복동식 압축기Hermetic reciprocating compressor
본 발명은 밀폐형 왕복동식 압축기에 관한 것으로, 더 상세하게는 압축 효율을 최대한 높임은 물론 흡입 및 압축시 발생하는 맥동현상을 극소화하면서 부피 또한 최소화할 수 있도록 한 밀폐형 왕복동식 압축기에 관한 것이다. The present invention relates to a hermetic reciprocating compressor, and more particularly, to a hermetic reciprocating compressor which minimizes the volume while minimizing the pulsation occurring during suction and compression as well as increasing the compression efficiency as much as possible.
일반적으로 압축기는 증발기에서 증발한 냉매를 흡입 압축하여 압력을 높여서 비교적 높은 온도에서 액화할 수 있는 상태로 만드는 기기로서, 구조에 따라 크게 압축기와 전동기가 분리되어 있는 개방형과, 압축기와 전동기가 하나의 용기 내에 내장된 밀폐형으로 나누어진다. In general, a compressor is a device in which a refrigerant evaporated from an evaporator is compressed by suction to raise a pressure to liquefy at a relatively high temperature. The compressor is an open type in which a compressor and an electric motor are largely separated, and a compressor and an electric motor It is divided into a sealed type embedded in the container.
또한, 압축기는 압축하는 방식에 따라 왕복동식 압축기, 회전식 압축기, 스크롤 압축기, 터보 압축기 및 스크류식 압축기 등으로 분류되어 지는 데, 본원에서는 여러 압축기 중에서도 밀폐형 왕복동식 압축기에 관하여 설명한다. In addition, compressors are classified into reciprocating compressors, rotary compressors, scroll compressors, turbo compressors, screw compressors, and the like according to the compression method. Herein, the reciprocating compressors among the various compressors will be described.
통상적인 밀폐된 공간 내로 냉매를 흡입하여 압축하여 토출하는 밀폐형 왕복동식 압축기(100)는, 도 10에 도시된 바와 같이 밀폐용기(110)의 내부에 구동부(120)에 의해 회전되는 회전축(130)의 상단에 회전 운동을 직선운동으로 변환하는 커넥팅 로드(135)가 장착되며, 상기 커넥팅 로드(135)와 연결되는 피스톤(136)이 본체프레임(140)의 상부에 장착되는 실린더블록(150)에 형성된 압축실(152)에서 왕복 운동하면서 냉매를 흡입 및 압축한다. The sealed reciprocating compressor 100 which sucks and compresses and discharges refrigerant into a conventional hermetically sealed space has a rotating shaft 130 which is rotated by the drive unit 120 inside the hermetic container 110 as shown in FIG. 10. A connecting rod 135 is installed at the top of the rotating rod to convert the rotational movement into a linear movement. A piston 136 connected to the connecting rod 135 is mounted on the cylinder block 150 mounted on the upper portion of the main body frame 140. The refrigerant is sucked and compressed while reciprocating in the formed compression chamber 152.
이때, 상기 실린더블록(150)의 일측에는 외부와 연통되는 흡입실 및 토출실이 각각 형성된 토출머플러(160)가 결합되며, 압축실과 흡입실 및 토출실 사이에는 저온 저압의 냉매가스가 흡입 및 고온 고압의 냉매가스가 토출되도록 흡입 및 토출밸브체(170)가 구비된다. At this time, one side of the cylinder block 150 is coupled to the discharge muffler 160 is formed with a suction chamber and a discharge chamber communicating with the outside, respectively, between the compression chamber and the suction chamber and the discharge chamber is a low-temperature low-pressure refrigerant gas suction and high temperature A suction and discharge valve body 170 is provided to discharge the high pressure refrigerant gas.
흡입 및 토출밸브체(170)는, 통상의 탄성을 지니는 플랩퍼(flapper) 내지는 리드(reed)형 박판 구조로 구성되며, 상기 플랩퍼 내지는 리드형 흡입 및 토출밸브체(170)는 양면에 작용하는 압력차에 의해 피동적으로 개폐되는 것이다. The suction and discharge valve body 170 has a flapper or lead type thin plate structure having a general elasticity, and the flapper or lead type suction and discharge valve body 170 acts on both sides. It is opened and closed passively by the pressure difference.
이와 같이 구성되는 밀폐형 왕복동식 압축기(100)는, 피스톤(136)의 후진 운동시 저온 저압의 냉매가스가 밀폐용기(110) 내의 도시되지 않은 흡입관 및 흡입머플러를 통해 외부의 증발기(도시되지 않음)로부터 흡입 및 토출밸브체(170)의 흡입리이드밸브로 토출머플러(170)의 흡입실로 유입된 후 압축실(152) 내로 유입된다. The closed-type reciprocating compressor 100 configured as described above has an external evaporator (not shown) through a suction tube and a suction muffler not shown in the sealed container 110 in which the refrigerant gas of low temperature and low pressure during the backward motion of the piston 136 is moved. From the suction and discharge valve body 170 to the suction lead valve to the suction chamber of the discharge muffler 170 and then into the compression chamber 152.
그리고, 피스톤(136)의 전진 운동시에는 상기 압축기에서 토출된 고온 고압의 냉매가스는 그 흡입 및 토출밸브체(170)의 토출밸브로부터 토출실과 토출머플러(160)를 거쳐 상기 밀폐용기에 밀폐되게 고정된 토출관을 거쳐 외부의 응축기(도시되지 않음)로 토출되는 것이다. In the forward movement of the piston 136, the high temperature and high pressure refrigerant gas discharged from the compressor is sealed in the sealed container through the discharge chamber and the discharge muffler 160 from the discharge valve of the suction and discharge valve body 170. It is discharged to an external condenser (not shown) via a fixed discharge tube.
그러나, 상기와 같은 종래의 밀폐형 왕복동식 압축기에 있어서는, 최초 운전시 회전축에서 커넥팅 로드를 거쳐 피스톤을 왕복시키는 과정에서, 즉 회전운동을 직선 왕복운동으로 변환되는 시점의 기동 소음이 크게 발생하였을 뿐만 아니라 특히 압축실에서 주기적으로 행하여 지는 흡입 및 압축에 따른 맥동현상으로 인한 진동 소음도 심하게 발생하는 문제점도 있었다. However, in the conventional hermetic reciprocating compressor as described above, not only the starting noise is greatly generated when the piston is reciprocated through the connecting rod at the rotational axis during the initial operation, that is, when the rotational movement is converted into the linear reciprocating motion. In particular, the vibration noise caused by the pulsation phenomenon caused by the suction and compression periodically performed in the compression chamber was also severely generated.
다시 말해서, 열 번의 흡입 및 압축이 이루어질 때 하나의 압축실에서 하나의 피스톤이 열 번을 흡입하고 압축시키는 사이클 폭이 큰 관계로, 맥동현상이 크게 발생하여 그로 인한 진동 소음이 커지는 문제점이 발생하였다. In other words, the cycle width in which one piston sucks and compresses ten times in one compression chamber when the suction and compression is performed ten times is large, resulting in a large pulsation phenomenon resulting in a large vibration noise. .
또한, 상기 회전축(130)과 커넥팅 로드(135)가 접하는 부분과 피스톤(136)과 실린더블록(150)의 압축실(152) 사이의 마찰에 의한 수명을 단축함은 물론 특히, 회전운동이 직선 왕복운동으로 변환되는, 즉 방향전환에 따른 충격 소음 또한 크게 발생하는 문제점도 초래되었다. In addition, as well as shortening the life due to friction between the portion in contact with the rotating shaft 130 and the connecting rod 135 and the compression chamber 152 of the piston 136 and the cylinder block 150, in particular, the rotational movement is straight In addition, there is also a problem that the impact noise that is converted to reciprocation, that is, a large amount of impact noise due to the change of direction.
이렇게, 주기적으로 행하여 지는 흡입 및 압축하는 과정에서 발생하는 맥동현상으로 인한 진동 소음을 최소화할 수 있도록 종래에도 도 11에서와 같이 실린더블록(150)의 양측 본체프레임(140)의 상면에 냉매가스가 흡입 및 토출되는 부분과 연결되어 진동 소음을 감소시키고자 별도로 각각의 공명실(180)을 형성하는 방식도 사용되었으나, 상기 흡입실 및 토출실과 다시 각각의 공명실로의 연결 또한 별도의 연결 배관으로 연결함으로써, 각 연결 부분이 압력으로 인한 크랙 등이 발생함은 물론 배관의 길이 또한 길어지게 됨에 따라 압축 효율이 상당히 떨어지는 문제점과 함께 공명실 형성에 따라 본체프레임의 부피 또한 상당히 커지는 문제점을 가지고 있었다.Thus, in order to minimize the vibration noise caused by the pulsation phenomenon occurring during the suction and compression is performed periodically, as shown in Figure 11 the refrigerant gas on the upper surface of the main body frame 140 on both sides of the cylinder block 150 In order to reduce vibration noise by being connected to the suction and discharge parts, a method of forming the respective resonance chambers 180 is also used. However, the connection between the suction chamber and the discharge chamber and the respective resonance chambers is also connected by a separate connection pipe. As a result, each connection part has a problem such that cracks due to pressure, as well as the length of the pipe is also lengthened, the compression efficiency is considerably lowered, and the volume of the body frame is also significantly increased as the resonance chamber is formed.
한편, 종래에도 밀폐형 왕복동 압축기의 회전운동을 직선 왕복운동으로 변환되는 과정에서 발생하는 기동소음이나 맥동 현상 및 방향 전환에 따른 충격 소음을 최소화하고자 일본공개특허공보 평19-187118호 "왕복동식 압축기"가 제안된바, 이는 도 12에 도시된 바와 같이 왕복동식 압축기(200)의 압축방식은, 피스톤(202)을 승,하강시키는 방식이 주축(210)의 회전력이 로터(212)에 전달되어 로터(212)가 회전되면서 로터(212)에 힌지 결합되어 있는 경사판(214) 또한 회전이 이루어지고, 상기 경사판의 회전에 의해 요동판(216)이 좌,우로 요동하면서 상기 요동판에 결합되어 있는 연결로드(218)가 요동판(216)에 의해 강제적으로 직선 왕복운동을 하게 되면서 피스톤(202)을 승,하강하여 흡입 및 압축하게 된다. On the other hand, Japanese Patent Application Laid-Open No. 19-187118 "Reciprocating Compressor" in order to minimize the impact noise caused by the starting noise or pulsation phenomenon and the change of direction generated in the process of converting the rotary motion of the hermetic reciprocating compressor into linear reciprocating motion. As proposed in FIG. 12, the compression method of the reciprocating compressor 200 as shown in FIG. 12 is a method of raising and lowering the piston 202, and the rotational force of the main shaft 210 is transmitted to the rotor 212. As the 212 is rotated, the inclination plate 214 hinged to the rotor 212 is also rotated, and the rocking plate 216 is coupled to the rocking plate while the rocking plate 216 swings left and right by the rotation of the inclined plate. The rod 218 is forced and linearly reciprocated by the swinging plate 216 to lift and lower the piston 202 to suck and compress it.
그러나, 이러한 요동방식에 있어서는 상호 구성요소 간의 많은 간섭이 발생하게 되고 그로 인해 마찰이나 충격 등이 발생하게 됨으로써, 고속으로의 회전이 이루어지지 않는 문제점과, 연결로드의 직선 왕복운동이 요동으로 인해 원활하게 이루어지기에는 부적합한 문제점을 가지고 있었다. However, in this swinging method, a lot of interference between components occurs, and friction or shock occurs, thereby causing a problem that rotation at high speed is not achieved, and a linear reciprocating motion of the connecting rod is smoothly caused by swinging. It was an unsuitable problem to be made.
또한, 종래에도 보다 높은 압축효율을 가지면서 맥동현상을 줄일 수 있도록 하기 위하여, 일본공개특허공보 평12-192882호 "왕복동식 압축기"에 기재된 바와 같이 하나의 압축실이 아닌 2개의 압축실을 구비하여 압축효율을 높일 수 있도록 하는 복수의 압축실과 피스톤을 구비하였으나, 상기 복수의 피스톤을 승,하강시키는 구조가 전술한 요동식과 같은 경사판과 요동판 및 연결로드 등과 같은 동일한 구성요소로 이루어지는 관계로, 전술한 요동방식에서 가지는 피스톤의 승,하강시키는 문제점을 그대로 가지고 있었다.In addition, in order to reduce the pulsation phenomenon while having a higher compression efficiency in the prior art, as described in Japanese Patent Application Laid-open No. Hei 12-192882 "reciprocating compressor" is provided with two compression chambers instead of one compression chamber. Although a plurality of compression chambers and pistons are provided to increase the compression efficiency, the structure for raising and lowering the plurality of pistons is composed of the same components such as the inclined plate and the rocking plate and the connecting rod, such as the rocking type described above, In the rocking method described above, the piston had the problem of raising and lowering.
본 발명은 상기와 같은 종래의 제반 문제점을 해소하고자 창안한 것으로, 그 주된 목적은 압축 효율을 최대한 높임은 물론 흡입 및 압축시 발생하는 맥동현상을 극소화할 수 있도록 한 밀폐형 왕복동 압축기를 제공하는 데 있다. The present invention has been made to solve the above-mentioned conventional problems, and its main object is to provide a hermetic reciprocating compressor which can minimize the pulsation phenomenon occurring during suction and compression as well as to increase the compression efficiency as much as possible. .
본 발명의 또 다른 목적은, 냉매가스의 흡입시나 토출시 경로를 최대한 길게 형성하여 흡입 및 압축시 발생하는 진동 소음 또한 최소화할 수 있도록 하는 데 있다. Still another object of the present invention is to minimize the vibration noise generated during suction and compression by forming a path as long as possible upon suction or discharge of the refrigerant gas.
본 발명의 또 다른 목적은, 고속운전시에도 마찰 부하를 최소화하여 압축 효율을 극대화할 수 있도록 하는 데 있다. Still another object of the present invention is to minimize the frictional load during high speed operation to maximize the compression efficiency.
본 발명의 다른 목적은, 부피를 최소화하면서 부품 수 또한 줄일 수 있도록 하는 데 있다. Another object of the present invention is to reduce the number of parts while minimizing the volume.
상기와 같은 기술적 과제를 해결하기 위한 본 발명은, 밀폐형 왕복동식 압축기에 있어서, 흡입 및 압축이 교호로 이루어질 수 있도록 제1,2 압축실이 형성되어 실린더 블록에 형성된 장착홈으로 장착되는 압축실부재와; 상기 제1,2 압축실에 삽입되어 냉매를 흡입 및 압축하는 각각의 피스톤과; 구동부에 의해 회전되는 회전축의 상부에 회전운동을 직선운동으로 전환하여 상기 각 피스톤의 상승과 하강이 교호로 이루어지도록 하는 승,하강수단을; 포함하는 것을 특징으로 한다. The present invention for solving the technical problem as described above, in the hermetic reciprocating compressor, the first and second compression chamber is formed so that the suction and compression can be alternately formed compression chamber member mounted to the mounting groove formed in the cylinder block Wow; Respective pistons inserted into the first and second compression chambers to suck and compress the refrigerant; Lifting and lowering means for converting the rotary motion to a linear motion on the top of the rotating shaft rotated by the drive unit to make the rise and fall of each piston alternately; It is characterized by including.
상기 승,하강수단은, 회전축에 결합되어 실린더블록의 실린더실 하부에서 회전되는 경사판과, 상기 실린더실에 회전가능하게 결합되며 양단이 각 피스톤의 로드에 회전가능하게 결합되는 연결링크로 구성되는 것을 특징으로 한다. The raising and lowering means is composed of an inclined plate which is coupled to the rotating shaft and rotated in the lower portion of the cylinder chamber of the cylinder block, and a link link rotatably coupled to the cylinder chamber and both ends rotatably coupled to the rod of each piston. It features.
상기 연결링크는, 중앙이 실린더실에 고정핀으로 결합되며, 상기 연결링크의 양단은 각 피스톤의 로드에 연결링크의 끝단을 수용하는 삽입홈에 거치되도록 구성되는 것을 특징으로 한다. The connection link, the center is coupled to the cylinder chamber by a fixed pin, characterized in that both ends of the connection link is configured to be mounted in the insertion groove for receiving the end of the connection link to the rod of each piston.
상기 경사판의 경사면은, 회전 중심으로부터 방사상으로 수평면을 이루도록 형성되는 것을 특징으로 한다. The inclined surface of the inclined plate is characterized in that it is formed to form a horizontal plane radially from the center of rotation.
상기 경사판의 경사면과 접하는 상기 각 로드의 밑단에는 마찰을 저감하는 구름수단이 더 구비되는 것을 특징으로 한다. At the bottom of each rod in contact with the inclined surface of the inclined plate is characterized in that the rolling means for reducing the friction is further provided.
상기 실린더블록에는 제1,2 압축실로 냉매가스가 흡입되고 토출되는 흡입챔버와 토출챔버가 일체로 형성되는 것을 특징으로 한다. The cylinder block is characterized in that the suction chamber and the discharge chamber in which the refrigerant gas is sucked and discharged into the first and second compression chambers are integrally formed.
상기 흡입챔버는, 실린더블록의 하부 외측면에 형성되는 유입공과, 이 유입공과 연결되어 냉매가스가 순환되어 유입되는 유입공간과, 상기 유입공간을 거쳐 실린더블록의 상면에 제1,2 압축실와 연결되는 흡입공으로 구성되는 것을 특징으로 한다. The suction chamber includes an inlet hole formed in the lower outer surface of the cylinder block, an inlet space connected to the inlet hole to circulate the refrigerant gas, and connected to the first and second compression chambers on the upper surface of the cylinder block through the inlet space. Characterized in that composed of a suction hole.
상기 토출챔버는, 실린더블록의 상면에 제1,2 압축실과 연결되는 토출공과, 이 토출공과 연결되어 압축된 냉매가스가 순환되어 토출되는 토출공간과, 상기 토출공간을 거쳐 실린더블록의 외측면 하부에 형성되는 배출공으로 구성되는 것을 특징으로 한다. The discharge chamber includes a discharge hole connected to the first and second compression chambers on an upper surface of the cylinder block, a discharge space circulated through the discharged refrigerant gas connected to the discharge hole, and a lower portion of the outer surface of the cylinder block through the discharge space. Characterized in that consisting of the discharge hole formed in.
도 1은 본 발명이 적용된 밀폐형 왕복동식 압축기를 개략적으로 나타낸 요부 단면도. 1 is a sectional view schematically showing a main part of a hermetic reciprocating compressor to which the present invention is applied.
도 2는 도 1에 따른 개략적인 요부 분해 사시도. 2 is a schematic exploded perspective view of the main portion according to FIG.
도 3은 도 2에 따른 결합된 상태의 A-A선 단면도.3 is a cross-sectional view taken along the line A-A in the coupled state according to FIG.
도 4는 도 2에 따른 결합된 상태의 B-B선 단면도.4 is a sectional view taken along the line B-B in the coupled state according to FIG.
도 5 및 도 6은 본 발명의 작동상태를 개략적으로 나타낸 것으로, 5 and 6 schematically show the operating state of the present invention,
도 5는 제1 압축실에 냉매가스가 흡입되고 제2 압축실에서는 냉매가스가 압축되는 상태의 요부도.5 is a main view of a state in which refrigerant gas is sucked into the first compression chamber and refrigerant gas is compressed in the second compression chamber.
도 6은 제1 압축실에 냉매가스가 압축되고 제2 압축실에서는 냉매가스가 흡입되는 상태의 요부도.6 is a main view of a state in which refrigerant gas is compressed in a first compression chamber and refrigerant gas is sucked in a second compression chamber.
도 7은 본 발명의 다른 실시 예를 개략적으로 나타낸 요부 사시도.7 is a perspective view schematically illustrating main parts of another embodiment of the present invention.
도 8은 도 7에 따른 개략적인 요부 단면도.8 is a schematic cross-sectional view of the main part according to FIG. 7;
도 9는 도 7에 따른 실린더블록에 형성된 흡입챔버와 토출챔버에서 냉매가스의 흐름을 나타낸 요부도.9 is a main view showing the flow of the refrigerant gas in the suction chamber and the discharge chamber formed in the cylinder block according to FIG.
도 10은 일반적인 밀폐형 왕복동식 압축기를 개략적으로 나타낸 요부 단면도.10 is a sectional view schematically illustrating main parts of a general hermetic reciprocating compressor.
도 11은 종래의 밀폐형 왕복동식 압축기의 다른 실시 예를 나타낸 요부도.Figure 11 is a main part showing another embodiment of a conventional hermetic reciprocating compressor.
도 12는 종래의 밀폐형 왕복동식 압축기의 또 다른 실시 예를 나타낸 요부도.12 is a main view showing still another embodiment of the conventional hermetic reciprocating compressor.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참고하여 전술한 동일한 기술적 구성에 대해서는 동일한 부호를 기재하여 좀더 상세하게 설명하면 다음과 같다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in more detail with reference to the same technical configuration described above.
도 1은 본 발명이 적용된 밀폐형 왕복동식 압축기를 개략적으로 나타낸 요부 단면도이며, 도 2는 도 1에 따른 개략적인 요부 분해 사시도이며, 도 3은 도 2에 따른 결합된 상태의 A-A선 단면도이고, 도 4는 도 2에 따른 결합된 상태의 B-B선 단면도이다. 1 is a cross-sectional view of a main part schematically showing a hermetic reciprocating compressor to which the present invention is applied, FIG. 2 is a schematic exploded perspective view of a main part according to FIG. 1, FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, and FIG. 4 is a cross-sectional view taken along line BB in the coupled state according to FIG. 2.
도시된 바와 같이 주지된 바와 같이 냉매가스를 흡입한 후 압축하여 토출하는 밀폐형 왕복동식 압축기에 있어서, In the hermetic reciprocating compressor which sucks the refrigerant gas and compresses and discharges the refrigerant gas as shown in the drawing,
본 발명은, 압축 효율을 최대한 높임은 물론 압축시 발생하는 맥동현상을 극소화할 수 있도록 하기 위하여, The present invention, in order to maximize the compression efficiency as well as to minimize the pulsation phenomenon occurs during compression,
흡입 및 압축이 교호로 이루어질 수 있도록 제1,2 압축실(12)(14)이 형성되어 본체프레임(140)의 상부에 장착된 실린더 블록(20)에 형성된 장착홈(22)으로 장착되는 압축실부재(10)와; First and second compression chambers 12 and 14 are formed so that suction and compression may be alternately performed, and the compression is performed by mounting grooves 22 formed in the cylinder block 20 mounted on the upper part of the main body frame 140. Seal member 10;
상기 제1,2 압축실(12)(14)에 삽입되어 냉매를 흡입 및 압축하는 각각의 피스톤(30)(30a)과; Respective pistons 30 and 30a inserted into the first and second compression chambers 12 and 14 to suck and compress the refrigerant;
공지의 고정자와 회전자의 전기적인 상호 작용에 의해 회전력을 가지는 구동부(120)에 의해 회전되는 회전축의 상부에 회전운동을 직선운동으로 전환하여 상기 각 피스톤(30)(30a)의 상승과 하강이 교호로 이루어지도록 하는 승,하강수단(40)을; 포함하는 것을 나타낸 것이다. By raising and lowering the pistons 30 and 30a by converting the rotary motion into a linear motion on the upper part of the rotating shaft rotated by the drive unit 120 having the rotational force by the electrical interaction of the known stator and the rotor. Ascending and descending means 40 to be made alternately; It is shown to include.
상기에서, 압축실은 종래와 같이 하나가 아닌 제1,2 압축실(12)(14)로 형성되어 각각의 피스톤(30)(30a)에 의해 교호로 압축이 이루어질 수 있도록 함에 따라 압축이 연속적으로 이루어져 압축 사이클 또한 연속적으로 이루어지게 되는 것이고, 그로 인해 압축 효율을 높임은 물론 맥동현상을 최소화할 수 있는 것이다. In the above, the compression chamber is formed of first and second compression chambers 12 and 14 instead of one as in the prior art, so that compression can be continuously performed by alternating compression by each of the pistons 30 and 30a. Compression cycle is also made continuously, thereby increasing the compression efficiency and minimizing the pulsation phenomenon.
다시 말해서, 종래와 같이 한 번의 압축공정에서는 흡입 및 압축이 개별적으로 이루어짐에 따라 압축 사이클이 큰 관계로 맥동현상이 큰 문제점이 발생하였으나, 흡입 및 압축이 제1,2 압축실에서 교호로 연속적으로 이루어짐으로써, 압축 사이클이 연속적으로 이루어짐에 따라 맥동현상을 최소화할 수 있는 것이다. In other words, as in the conventional compression process, as the suction and the compression are performed separately, a large pulsation phenomenon occurs due to the large compression cycle, but the suction and the compression are alternately performed in the first and second compression chambers. By doing so, the pulsation can be minimized as the compression cycle is performed continuously.
즉, 상기 제1 압축실(12)에서 냉매가 흡입될 때는 제2 압축실(14)에서는 압축 공정이 이루어지고, 반대로 제1 압축실(12)에서 흡입되어 있는 냉매가스를 압축할 때에는 제2 압축실(14)에서는 냉매가스를 흡입하게 됨으로써, 상기 제1 압축실(12)과 제2 압축실(14)은 교호로 압축과 흡입이 이루어져 연속적인 압축 공정이 이루어짐에 따라 압축효율 극대화할 수 있게 된다. That is, when the refrigerant is sucked in the first compression chamber 12, the compression process is performed in the second compression chamber 14, and conversely, when the refrigerant is sucked in the first compression chamber 12, the second gas is compressed. By compressing the refrigerant gas in the compression chamber 14, the first compression chamber 12 and the second compression chamber 14 are alternately compressed and suctioned to maximize the compression efficiency as a continuous compression process is made. Will be.
그리고, 상기 제1,2 압축실(12)(14)의 상부에는 냉매가스를 흡입 및 압축하기 위한 통상의 흡입리드밸브와 토출밸브가 형성된 흡입 및 밸브체(170)가 연통되게 결합되는 데, 이때 흡입 및 밸브체(170)는 공지된 구성을 가지는 것으로, 압축실이 제1,2 압축실(12)(14)로 형성됨에 따라 통상의 탄성을 지닌 플랩퍼(flapper) 내지 리드(reed)형 박판 구조로 흡입리드밸브와 토출밸브가 제1,2 압축실과 대응되는 형태인 한 쌍으로 구성되어 양면에서 작용하는 압력차에 의해 피동적으로 개폐되어 진다. In addition, the upper and upper portions of the first and second compression chambers 12 and 14 are connected in communication with a suction and valve body 170 in which a normal suction lead valve and a discharge valve for suction and compression of refrigerant gas are formed. At this time, the suction and the valve body 170 has a known configuration, and as the compression chamber is formed of the first and second compression chambers 12 and 14, a flapper or a reed having normal elasticity is provided. In the thin plate structure, the suction lead valve and the discharge valve are composed of a pair corresponding to the first and second compression chambers, and are opened and closed passively by the pressure difference acting on both sides.
또한, 상기 흡입 및 밸브체(170)의 외측면에는 흡입 및 토출밸브체의 흡입리드밸브와 토출배브를 거쳐 냉매가스가 흡입되고 배출되도록 외부와 연통되는 흡입실 및 토출실이 각각 형성된 토출머플러(160)가 장착된다. In addition, a discharge muffler having an intake chamber and a discharge chamber in communication with the outside are formed on the outer surface of the suction and valve body 170 so that refrigerant gas is sucked and discharged through the suction lead valve and the discharge valve of the suction and discharge valve body ( 160 is mounted.
한편, 상기 제1,2 압축실(12)(14)에 삽입된 각 피스톤(30)(30a)을 상승과 하강이 교호로 이루어지면서 냉매를 흡입하고 압축하도록 구비되는 승,하강수단(40)은, Meanwhile, ascending and descending means 40 are provided to suck and compress the refrigerant while the pistons 30 and 30a inserted into the first and second compression chambers 12 and 14 alternately move up and down. silver,
구동부(120)에 의해 회전되는 회전축(130)의 상단에 결합되어 실린더블록(20)의 실린더실(24) 하부에서 회전되는 경사판(42)과, 상기 실린더실(24)에 회동가능하게 결합되며 양단이 각 피스톤(30)(30a)의 로드(32)(32a)에 회전가능하게 결합되는 연결링크(35)로 구성된다. It is coupled to the upper end of the rotating shaft 130 is rotated by the drive unit 120 is rotated in the lower cylinder plate 24 of the cylinder block 20 and the cylinder chamber 24 is rotatably coupled to the cylinder chamber 24 Both ends are composed of connecting links 35 rotatably coupled to rods 32 and 32a of each piston 30 and 30a.
즉, 경사판(42)의 회전에 따라 하나의 피스톤(30)이 상부로 밀려 상승 되면 상기 상부로 밀려 상승 된 피스톤(30)과 평행한 방향으로 설치되어 연결링크(35)로 연결된 다른 피스톤(30a)은 하강하게 된다. That is, when one piston 30 is pushed upward and raised as the inclination plate 42 rotates, the other piston 30a installed in a direction parallel to the piston 30 pushed upward and connected to the connection link 35 is provided. ) Descends.
상기 경사판(42)은 회전축(130)의 상단부에 결합되어 실린더실의 하부에서 회전되며, 그 상면은 경사진 경사면(42a)이 형성되어 있어 경사판(42)의 회전시 어느 한 지점에서 상면의 높이는 연속적으로 변경된다. The inclined plate 42 is coupled to the upper end of the rotating shaft 130 is rotated in the lower portion of the cylinder chamber, the upper surface of which is inclined inclined surface (42a) is formed, the height of the upper surface at any point during the rotation of the inclined plate 42 It is changed continuously.
다시 말해서, 상기 경사면(42a)은 경사판(40)의 반 회전시에 그 높이가 점차 증대되도록 형성되는 것으로, 경사판의 상부에서 바라보았을 때에, 경사판(40)의 반원 부분은 높이가 연속적으로 증가하도록 형성됨에 따라, 회전축의 회전에 의하여 각 로드의 하단부를 실린더실의 상부로 밀어 올리게 되는 것이다. In other words, the inclined surface 42a is formed so that its height gradually increases when the inclined plate 40 is rotated halfway. When viewed from the top of the inclined plate, the inclined surface 42a continuously increases in height. As it is formed, the lower end of each rod is pushed up to the upper portion of the cylinder chamber by the rotation of the rotary shaft.
경사면(42a)은 반원 부분에서 높이가 점차 높아지도록 형성되거나, 도시된 바와 같이 경사면(42a)의 반원 부분은 점차 상승하고 이어서 나머지 반원 부분은 점차 하강함으로써, 경사면에서 상승과 하강이 연속적으로 이루어질 수 있도록 형성된다. The inclined surface 42a is formed to gradually increase in height in the semicircular portion, or as shown, the semicircular portion of the inclined surface 42a gradually rises, and then the other semicircular portion gradually descends, so that the inclined surface can be continuously raised and lowered. So that it is formed.
또한, 상기 경사판(40)의 경사면(42a)은 경사판의 반 회전시에 그 높이가 점차 증대되며, 경사면은 회전 중심으로부터 방사상으로 수평면을 이루도록 형성되는 것이 바람직하다. 즉, 경사면의 회전축(130) 상에서 방사상으로 보았을 때, 해당 방사선 상에서 회전축과 수직된 수평선을 형성하는 것이고, 경사면(42a)은 이러한 수평선이 연속적으로 높낮이를 달리하도록 조합되어 형성되는 것이다. In addition, the inclined surface 42a of the inclined plate 40 is gradually increased in height when the inclined plate is half rotated, the inclined surface is preferably formed to form a horizontal plane radially from the center of rotation. That is, when viewed radially on the rotation axis 130 of the inclined surface, to form a horizontal line perpendicular to the rotation axis on the radiation, the inclined surface 42a is formed by combining such a horizontal line continuously different height.
그에 따라 각 로드의 하단부가 접하는 국소 경사면은 방사선 방향으로 수평이며, 원주 방향으로만 경사를 가지게 되며, 그로 인해 각 로드를 상기 방사선 방향 즉, 경사면의 회전중심 방향으로 이동시키려는 힘의 발생을 배제할 수 있게 된다. 이로써, 오랜 사용기간 동안 각 로드는 방사선 방향으로 휘어지지 않고 제 기능을 발휘할 수 있게 되는 것이다. Accordingly, the local inclined surface, which is in contact with the lower end of each rod, is horizontal in the radiation direction and inclined only in the circumferential direction, thereby eliminating the generation of a force to move each rod in the radiation direction, that is, in the direction of the center of rotation of the inclined surface. It becomes possible. This allows each rod to function properly without bending in the direction of radiation over a long period of use.
연결링크(35)는 시소운동이 가능하게 중앙이 실린더실(24)에 고정핀(35a)으로 결합되며, 상기 연결링크(35)의 양단은 각 피스톤의 로드(32)(32a)에 연결링크의 끝단을 수용하는 삽입홈(32')(32a')에 거치되도록 구성됨에 따라 연결링크의 일단에 연결된 하나의 피스톤이 상승하게 되면 다른 피스톤은 고정핀을 중심으로 하강하게 되는 것이다. The link link 35 is coupled to the center of the cylinder chamber 24 by a fixing pin 35a to enable the seesaw movement, and both ends of the link link 35 are connected to the rods 32 and 32a of each piston. As it is configured to be mounted in the insertion groove (32 ') (32a') for receiving the end of the one piston connected to one end of the connection link is raised, the other piston is lowered about the fixing pin.
또한, 상기 경사판(42)의 경사면(42a)과 접하는 상기 각 로드(32)(32a)의 밑단에는 마찰을 저감하는 각각 구름수단(45)이 더 구비되는 것이 바람직하다. In addition, it is preferable that rolling means 45 is further provided at the bottom of each of the rods 32 and 32a in contact with the inclined surface 42a of the inclined plate 42 to reduce friction.
구름수단(45)은, 각 로드(32)(32a)의 밑단에서 돌출되게 매입되며, 자유회전이 가능한 볼(45a)로 이루어질 수 있다. 구름수단은 상기 경사판과의 접촉에 의한 각 로드 밑단의 마모를 저감 함은 물론 마찰 부하 또한 극소화하면서 보다 원활한 작동이 가능케 하는 것이다. The rolling means 45 is embedded to protrude from the bottom of each rod 32, 32a, it may be made of a ball 45a capable of free rotation. Rolling means is to reduce the wear of the bottom of the rod by the contact with the inclined plate, as well as to minimize the friction load to enable a more smooth operation.
상기와 같이 구성되는 본 발명의 작동 관계를 첨부된 도면 도 5 내지 도 6를 참고하여 설명하면 다음과 같다. Referring to the accompanying drawings, the operational relationship of the present invention configured as described above with reference to Figures 5 to 6 as follows.
먼저, 도 5에서와 같이 하나의 피스톤(30)의 로드(32) 하단이 경사판(42)의 경사면(42a) 최하점으로 위치하면 피스톤(30)은 하사점에 위치하고, 이때 다른 피스톤(30a)은 로드(32a)의 하단이 경사판(42)의 경사면(42a)의 최상점 상에 접촉되어 최대로 상승된 상태로 위치한다. First, as shown in FIG. 5, when the lower end of the rod 32 of one piston 30 is located at the lowest point of the inclined surface 42a of the inclined plate 42, the piston 30 is located at the bottom dead center, and the other piston 30a is The lower end of the rod 32a is in contact with the uppermost point of the inclined surface 42a of the inclined plate 42, and is positioned in the maximum raised state.
즉, 하사점으로 하나의 피스톤(30)이 위치할 경우에는 냉매가스가 토출머플러(160)의 흡입실로 유입되면서 흡입 및 토출밸브체(170)의 흡입리드밸브를 통하여 제1 압축실(12) 내로 유입된다. 이때, 제2 압축실(14)은 압축공정이 행하여 지고 있는 관계로, 흡입 및 토출밸브체의 흡입리드밸브를 닫혀져 냉매는 제2 압축실로 흡입되지 않는 것이다. That is, when one piston 30 is located at the bottom dead center, the refrigerant gas flows into the suction chamber of the discharge muffler 160 and the first compression chamber 12 through the suction lead valve of the suction and discharge valve bodies 170. Flows into. At this time, since the second compression chamber 14 is subjected to the compression process, the suction lead valves of the suction and discharge valve bodies are closed to prevent the refrigerant from being sucked into the second compression chamber.
그런 다음 경사판(42)의 회전에 의해 도 6에서와 같이 하사점에 위치한 피스톤(30)은 경사면(42a)을 타고 점차적으로 상승되면서 흡입되어 있던 냉매가스를 압축함과 동시에 흡입 및 토출밸브체(170)의 토출밸브에 의해 토출머플러(160)의 토출실을 통하여 외부로 토출되어 지는 것이다. 이때, 연결링크(35)로 연결되어 있는 최상점에 위치한 피스톤(30a)은 압축을 끝난 상태에서 하강하면서 흡입 및 토출밸브체의 흡입리드밸브에 의해 다시 냉매가스가 제2 압축실(14)로 흡입되도록 하강하게 된다. Then, the piston 30 located at the bottom dead center as shown in FIG. 6 by the rotation of the inclined plate 42 gradually rises on the inclined surface 42a, compresses the refrigerant gas that has been sucked in, and simultaneously sucks and discharges the valve body ( It is discharged to the outside through the discharge chamber of the discharge muffler 160 by the discharge valve of 170. At this time, the piston (30a) located at the highest point connected to the connecting link 35 is lowered in the compressed state, while the refrigerant gas is returned to the second compression chamber 14 by the suction lead valve of the suction and discharge valve body. To be inhaled.
이렇게, 경사판(42)이 회전축(130)에 의하여 일 방향으로 지속적인 회전이 이루어짐에 따라 전술한 작용이 반복적으로 이루어져 회전운동이 각각의 피스톤(30)(30a)을 직선운동으로 변환시킴에 따라 경사판(42)의 고속운전시에도 피스톤과의 마찰을 최소화하면서 피스톤의 방향 전환 또한 부드럽게 이루어져 회전축의 운동 방향 전환에 따른 에너지 손실을 저감할 수 있을 뿐만 아니라 소음 또한 저감하게 된다. Thus, as the inclined plate 42 is continuously rotated in one direction by the rotating shaft 130, the above-described action is repeatedly performed, and as the rotary motion converts each of the pistons 30 and 30a into linear motion, the inclined plate In the high speed operation of (42), the direction of the piston is also smoothly changed while minimizing friction with the piston, thereby reducing the energy loss due to the change of the direction of movement of the rotating shaft as well as the noise.
또한, 각각의 피스톤(30)(30a)이 제1 압축실(12)과 제2 압축실(14)에서 압축작용을 교호로 연속되도록 반복됨에 따라 압축 싸이클이 연속되어 맥동현상을 최소화하여 맥동현상으로 인한 소음을 저감할 수 있는 조건을 가짐은 물론 압축 효율 또한 극대화할 수 있는 것이고, 압축하는 과정에서 냉매가스의 흡입 및 토출시 냉매가스가 긴 거리의 흡입챔버와 토출챔버를 거쳐 흡입 및 토출시 발생되는 진동 소음도 최소화할 수 있는 조건을 가지게 되는 것이다. In addition, as each piston 30, 30a is repeated so that the compression action is alternately continued in the first compression chamber 12 and the second compression chamber 14, the compression cycle is continued to minimize the pulsation phenomenon and pulsation phenomenon In addition to having a condition to reduce the noise caused by the noise, the compression efficiency can be maximized. When the refrigerant gas is sucked and discharged during the compression process, the refrigerant gas is sucked and discharged through the suction chamber and the discharge chamber of a long distance. It also has a condition that can minimize the generated vibration noise.
상기 실린더블록(20)에는 도 7 내지 도 9에서와 같이 제1,2 압축실(12)(14)로 긴 거리를 통하여 냉매가스가 흡입되고 토출되는 흡입챔버(50)와 토출챔버(50a)가 일체로 형성되도록 함으로써, 냉매가스가 안정적으로 흡입 및 토출이 이루어질 수 있을 뿐만 아니라 흡입 및 토출되는 과정에서 발생하는 진동소음 또한 긴 거리를 갖는 상기 흡입챔버와 토출챔버 내에서 상쇄되어 최소화할 수 있는 것이다. The cylinder block 20 has a suction chamber 50 and a discharge chamber 50a through which a refrigerant gas is sucked and discharged through a long distance to the first and second compression chambers 12 and 14 as shown in FIGS. 7 to 9. Is formed integrally, not only can the refrigerant gas be stably sucked and discharged, but also the vibration noise generated during the suction and discharge process can be offset and minimized in the suction chamber and the discharge chamber having a long distance. will be.
상기 흡입챔버(50)는, 실린더블록(20)의 하부 외측면에 형성되어 냉매가스가 유입되는 유입공(52)과, 이 유입공과 연결되어 냉매가스가 순환되어 유입되는 유입공간(53)과, 상기 유입공간을 거쳐 실린더블록(20)의 상면에 제1,2 압축실(12)(14)와 연결되는 흡입공(54)으로 구성되도록 함으로써, 즉, 하부에서 유입된 후 다시 유입공간에서 순환되면서 상부로 흡입되는 최대한의 긴 거리를 가지는 것이다. The suction chamber 50 is formed in the lower outer surface of the cylinder block 20, the inlet hole 52 through which the refrigerant gas is introduced, and the inlet space 53 through which the refrigerant gas is circulated and connected with the inlet hole; , Through the inlet space so as to be composed of a suction hole 54 connected to the first and second compression chambers 12 and 14 on the upper surface of the cylinder block 20, that is, in the inflow space again after the inflow from the bottom As long as it is circulated and sucked upwards.
이때, 상기 흡입공으로 흡입된 냉매가스는 토출머플러의 흡입실로 유입된 후 흡입 및 토출밸브체에 형성된 각각의 흡입리드밸브를 거쳐 제1,2 압축실로 각각 흡입된다. At this time, the refrigerant gas sucked into the suction hole is introduced into the suction chamber of the discharge muffler and then sucked into the first and second compression chambers through respective suction lead valves formed in the suction and discharge valve bodies.
상기 토출챔버(50a)는, 실린더블록(20)의 상면에 제1,2 압축실과 연결되는 토출공(56)과, 즉 제1,2 압축실(12)(14)에서 압축된 냉매가스가 흡입 및 토출밸브체의 토출밸브를 거처 토출머플러의 토출실을 통한 후 토출되도록 형성되며, 상기 토출공과 연결되어 압축된 냉매가스가 순환되어 토출되는 토출공간(57)과, 상기 토출공간을 거쳐 실린더블록(20)의 외측면 하부에 형성되는 배출공(58)으로 구성되도록 함으로써, 이 또한 상기 흡입챔버와 같이 압축된 냉매가스가 상부의 토출공을 거쳐 다시 토출공간을 거친 후 하부의 배출공으로 토출되는 최대한의 긴 거리를 가지는 것이다. The discharge chamber 50a includes discharge holes 56 connected to the first and second compression chambers on the upper surface of the cylinder block 20, that is, refrigerant gas compressed in the first and second compression chambers 12 and 14. Discharge through the discharge valve of the suction and discharge valve body through the discharge chamber of the discharge muffler and is discharged, the discharge space 57 is connected to the discharge hole and the compressed refrigerant gas is circulated and discharged, and the cylinder through the discharge space By having a discharge hole 58 formed in the lower side of the outer surface of the block 20, the refrigerant gas, such as the suction chamber is also passed through the discharge space through the upper discharge hole again and discharged to the discharge hole of the lower To have the longest distance possible.
그에 따라 압축된 냉매가스가 토출시에도 최대한의 긴 거리를 갖는 토출챔버에서 압축시 발생하는 진동 소음 또한 상쇄시켜 최소화할 수 있는 것이다. Accordingly, the vibration noise generated when the compressed refrigerant gas is compressed in the discharge chamber having the maximum distance even when discharged can be canceled and minimized.
이로써, 냉매가스가 제1,2 압축실로 유입될 때와 압축 후 배출되어 질 때, 흡입챔버와 토출챔버의 최대한 긴 경로를 통하여 유입 및 토출되도록 함으로써, 냉매가스의 유입 및 토출시 발생하는 진동 소음 또한 극소화할 수 있는 조건을 가지게 되는 것이다. As a result, when the refrigerant gas is introduced into the first and second compression chambers and discharged after compression, vibration noise generated when the refrigerant gas is introduced and discharged through the maximum length path of the suction chamber and the discharge chamber is achieved. It will also have conditions that can be minimized.
또한, 흡입챔버와 토출챔버를 실린더블록의 내부에 일체로 형성됨에 따라 부피 또한 최소화할 수 있는 조건을 가지게 되는 것이고, 그로 인해 밀폐형 왕복동식 압축기의 전체적인 부피를 줄여 소형화할 수 있는 조건도 가지게 된다. In addition, since the suction chamber and the discharge chamber are integrally formed inside the cylinder block, the volume is also minimized, and thus, the overall volume of the hermetic reciprocating compressor can be reduced and miniaturized.
본 발명은, 하나의 압축실이 아닌 제1,2 압축실에 의해 압축이 이루어짐에 따라 압축효율을 최대로 높일 수 있을 뿐만 아니라 압축 또한 제1,2 압축실에서 교호로 이루어짐에 따라 맥동현상을 저감시켜 맥동현상으로 인해 발생하는 소음을 최소화할 수 있는 효과를 가지는 것이다. According to the present invention, the compression efficiency is maximized as the compression is performed by the first and second compression chambers instead of one compression chamber, and the compression is also alternately performed in the first and second compression chambers. It has the effect of minimizing the noise caused by the pulsation phenomenon.
또한, 냉매가스가 흡입 및 토출되는 길이를 최대한 길게 형성함으로써, 냉매가스가 흡입 및 토출되는 과정에서 발생하는 진동 소음도 최소화할 수 있는 효과도 갖는다. In addition, by forming the length of the refrigerant gas is sucked and discharged as long as possible, it also has the effect of minimizing the vibration noise generated in the process of the refrigerant gas is sucked and discharged.
또한, 승,하강수단에 의해 고속운전시에도 회전운동을 왕복운동으로 변환하는 구조가 간단하게 구현됨에 따라 조립성이 우수할 뿐만 아니라 마찰 부하를 최소화하여 압축 효율을 극대화되는 효과를 가지는 것이다. In addition, as the structure for converting the rotational motion into a reciprocating motion even at high speed by the lifting and lowering means is simply implemented, the assembly is excellent and the compression efficiency is maximized by minimizing the frictional load.
또한, 승,하강수단인 로드와 경사판의 경사면이 접하는 부분에 구비되는 구름수단에 의해 마찰 부하를 극소화함은 물론 접촉에 의한 로드의 마모를 저감하여 보다 원활한 작동 및 오랜 사용기간을 확보할 수 있는 효과도 가지는 것이다. In addition, by the rolling means provided in the contact portion of the rod and the inclined surface of the inclined plate as the lifting and lowering means to minimize the frictional load and to reduce the wear of the rod due to the contact can ensure a smoother operation and longer service life It also has an effect.
또한, 승,하강시키는 구조도 간단하여 조립성과 생산성도 뛰어나 경제성도 높은 효과를 가지는 것이다. In addition, the structure of raising and lowering is simple, and it is excellent in assembling property and productivity, and also has high economic efficiency.
또한, 실린더블록 내에 흡입챔버와 토출챔버를 일체로 형성함에 따라 부피를 최소하여 압축기의 전체적인 부피를 줄일 수 있는 것이며 그로 인해 고출력 압축기의 부피를 줄여 소형화할 수 있는 효과와 함께 긴 경로를 통하여 냉매가스의 흡입 및 압축가스의 토출이 이루어져 흡입 및 토출로 인한 진동소음 또한 최소화할 수 있는 효과도 갖는다. In addition, since the suction chamber and the discharge chamber are integrally formed in the cylinder block, the total volume of the compressor can be reduced by minimizing the volume, thereby reducing the volume of the high-output compressor, thereby reducing the volume of the refrigerant and through the long path. The suction and discharge of the compressed gas is made also has the effect of minimizing the vibration noise due to the suction and discharge.

Claims (8)

  1. 밀폐형 왕복동식 압축기에 있어서, In a hermetic reciprocating compressor,
    흡입 및 압축이 교호로 이루어질 수 있도록 제1,2 압축실이 형성되어 실린더 블록에 형성된 장착홈으로 장착되는 압축실부재와; A compression chamber member having first and second compression chambers formed therein so as to alternately perform suction and compression, and mounted as mounting grooves formed in the cylinder block;
    상기 제1,2 압축실에 삽입되어 냉매를 흡입 및 압축하는 각각의 피스톤과; Respective pistons inserted into the first and second compression chambers to suck and compress the refrigerant;
    구동부에 의해 회전되는 회전축의 상부에 회전운동을 직선운동으로 전환하여 상기 각 피스톤의 상승과 하강이 교호로 이루어지도록 하는 승,하강수단을; 포함하는 것을 특징으로 하는 밀폐형 왕복동식 압축기. Lifting and lowering means for converting the rotary motion to a linear motion on the top of the rotating shaft rotated by the drive unit to make the rise and fall of each piston alternately; Hermetic reciprocating compressor comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 승,하강수단은, 회전축에 결합되어 실린더블록의 실린더실 하부에서 회전되는 경사판과, 상기 실린더실에 회전가능하게 결합되며 양단이 각 피스톤의 로드에 회전가능하게 결합되는 연결링크로 구성되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. The raising and lowering means is composed of an inclined plate which is coupled to the rotating shaft and rotated in the lower portion of the cylinder chamber of the cylinder block, and a coupling link rotatably coupled to the cylinder chamber and both ends rotatably coupled to the rod of each piston. Sealed reciprocating compressor characterized in that.
  3. 제2항에 있어서, The method of claim 2,
    상기 연결링크는 중앙이 실린더실에 고정핀으로 결합되며, 상기 연결링크의 양단은 각 피스톤의 로드에 연결링크의 끝단을 수용하는 삽입홈에 거치되도록 구성되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. The connecting link has a center coupled to the cylinder chamber with a fixed pin, and both ends of the connecting link is configured to be mounted in an insertion groove for receiving the end of the connecting link to the rod of each piston.
  4. 제2항에 있어서, The method of claim 2,
    상기 경사판의 경사면은, 회전 중심으로부터 방사상으로 수평면을 이루도록 형성되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. The inclined surface of the inclined plate is formed to form a horizontal plane radially from the rotation center, characterized in that the sealed reciprocating compressor.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 경사판의 경사면과 접하는 상기 각 로드의 밑단에는 마찰을 저감하는 구름수단이 더 구비되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. Hermetically sealed reciprocating compressor, characterized in that the rolling means for reducing the friction is further provided at the bottom of each rod in contact with the inclined surface of the inclined plate.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
    상기 실린더블록에는, 제1,2 압축실로 냉매가스가 흡입되고 토출되는 흡입챔버와 토출챔버가 일체로 형성되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. The cylinder block, hermetic reciprocating compressor, characterized in that the suction chamber and the discharge chamber in which the refrigerant gas is sucked and discharged into the first and second compression chambers are integrally formed.
  7. 제6항에 있어서, The method of claim 6,
    상기 흡입챔버는, 실린더블록의 하부 외측면에 형성되는 유입공과, 이 유입공과 연결되어 냉매가스가 순환되어 유입되는 유입공간과, 상기 유입공간을 거쳐 실린더블록의 상면에 제1,2 압축실와 연결되는 흡입공으로 구성되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. The suction chamber includes an inlet hole formed in the lower outer surface of the cylinder block, an inlet space connected to the inlet hole to circulate the refrigerant gas, and connected to the first and second compression chambers on the upper surface of the cylinder block through the inlet space. Sealed reciprocating compressor, characterized in that consisting of suction holes.
  8. 제6항에 있어서, The method of claim 6,
    상기 토출챔버는, 실린더블록의 상면에 제1,2 압축실과 연결되는 토출공과, 이 토출공과 연결되어 압축된 냉매가스가 순환되어 토출되는 토출공간과, 상기 토출공간을 거쳐 실린더블록의 외측면 하부에 형성되는 배출공으로 구성되는 것을 특징으로 하는 밀폐형 왕복동식 압축기. The discharge chamber includes a discharge hole connected to the first and second compression chambers on an upper surface of the cylinder block, a discharge space circulated through the discharged refrigerant gas connected to the discharge hole, and a lower portion of the outer surface of the cylinder block through the discharge space. Sealed reciprocating compressor, characterized in that consisting of discharge holes formed in.
PCT/KR2010/006154 2010-01-05 2010-09-10 Sealing-type reciprocating compressor WO2011083901A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0000448 2010-01-05
KR1020100000448A KR100957184B1 (en) 2010-01-05 2010-01-05 Crank mechanism and reciprocating compressor using it
KR1020100025304A KR100972174B1 (en) 2010-03-22 2010-03-22 Sealing type recipricating compressor
KR10-2010-0025304 2010-03-22

Publications (1)

Publication Number Publication Date
WO2011083901A1 true WO2011083901A1 (en) 2011-07-14

Family

ID=44305627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006154 WO2011083901A1 (en) 2010-01-05 2010-09-10 Sealing-type reciprocating compressor

Country Status (1)

Country Link
WO (1) WO2011083901A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192882A (en) * 1998-12-25 2000-07-11 Sanden Corp Reciprocating compressor
KR100350194B1 (en) * 1994-10-17 2002-11-05 캐타필라 인코포레이티드 Variable Displacement Axial Piston Hydraulic Unit
JP2007187118A (en) * 2006-01-16 2007-07-26 Sanden Corp Wobble plate type compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350194B1 (en) * 1994-10-17 2002-11-05 캐타필라 인코포레이티드 Variable Displacement Axial Piston Hydraulic Unit
JP2000192882A (en) * 1998-12-25 2000-07-11 Sanden Corp Reciprocating compressor
JP2007187118A (en) * 2006-01-16 2007-07-26 Sanden Corp Wobble plate type compressor

Similar Documents

Publication Publication Date Title
CN1227459C (en) Multi-stage compressor
WO2013172578A1 (en) Hermetic reciprocating compressor
WO2010056002A1 (en) Frequency- variable compressor and control method thereof
WO2010047543A2 (en) Suction muffler for hermetic compressor
CN1793653A (en) Apparatus for varying capacity in scroll compressor
WO2013005905A1 (en) Scroll compressor
WO2011062402A2 (en) Compressor
WO2012057488A2 (en) Hermetic compressor
WO2010079885A2 (en) Reciprocating compressor and refrigerating machine having the same
WO2013005906A1 (en) Scroll compressor
WO2011083901A1 (en) Sealing-type reciprocating compressor
WO2016043455A1 (en) Compressor
WO2024008136A1 (en) Power apparatus
KR100944110B1 (en) Vertical piston equipped the reciprocating compressor
CN1500991A (en) Compressor
WO2012108671A2 (en) Valve plate assembly of compressor
WO2009139559A1 (en) Swash plate compressor
WO2023106525A1 (en) Reciprocating compressor
CN113898564A (en) Diaphragm vacuum pump
WO2010085041A2 (en) Hermetic compressor
KR100972174B1 (en) Sealing type recipricating compressor
WO2018151512A1 (en) Scroll compressor
WO2021091002A1 (en) Hermetic compressor having eccentric fan
WO2023210878A1 (en) Reciprocating compressor
CN2656664Y (en) Symmetrical balance type oilless lubricating compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842281

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1001268

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI1001268

Country of ref document: BR