WO2011083632A1 - Memory cell and method for manufacturing memory cell - Google Patents

Memory cell and method for manufacturing memory cell Download PDF

Info

Publication number
WO2011083632A1
WO2011083632A1 PCT/JP2010/070524 JP2010070524W WO2011083632A1 WO 2011083632 A1 WO2011083632 A1 WO 2011083632A1 JP 2010070524 W JP2010070524 W JP 2010070524W WO 2011083632 A1 WO2011083632 A1 WO 2011083632A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
memory cell
forming step
ink
forming
Prior art date
Application number
PCT/JP2010/070524
Other languages
French (fr)
Japanese (ja)
Inventor
稗田 克彦
青木 修
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2011083632A1 publication Critical patent/WO2011083632A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Other compounds of groups 13-15, e.g. elemental or compound semiconductors
    • H10N70/8845Carbon or carbides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to a memory cell and a method for manufacturing the memory cell.
  • a non-volatile memory for example, a flash memory
  • Flash memory uses a tunnel current to accumulate electrons in a region called a floating gate, and the threshold voltage of the transistor changes depending on whether or not the floating gate has electrons, thereby storing 1 and 0. is there.
  • ReRAM Resistivity Change Random Access Memory
  • MRAM Magneticoresistive Random Access Memory
  • PCM Phase Change Memory
  • the present invention has been made in view of the above problems. According to some aspects of the present invention, it is possible to provide a memory cell and a method of manufacturing the memory cell that can be easily manufactured using a printing technique.
  • One aspect of the memory cell according to the present invention is: Including a transistor and a resistance change element formed on a substrate;
  • the transistor is A gate electrode, a source electrode and a drain electrode;
  • the variable resistance element is A first electrode and a second electrode formed apart from each other;
  • One of the first electrode and the second electrode is common to either the source electrode or the drain electrode.
  • a memory cell that can be easily manufactured using a printing technique can be realized.
  • the gate electrode is formed on the substrate;
  • the insulating part is formed to cover at least a part of the gate electrode,
  • the source electrode and the drain electrode are formed so as to cover at least a part of the insulating part,
  • the channel part is formed so as to cover at least a part of the insulating part,
  • the other of the first electrode and the second electrode and the resistance portion may be formed on the base material.
  • This memory cell The source electrode, the drain electrode, and the channel portion are formed on a base material,
  • the insulating part is formed so as to cover at least a part of the channel part,
  • the gate electrode is formed so as to cover at least a part of the insulating portion;
  • the other of the first electrode and the second electrode and the resistance portion may be formed on the base material.
  • the channel portion may include semiconducting carbon nanotubes.
  • This memory cell may include a conductive carbon nanotube.
  • the channel portion may include a multi-wall carbon nanotube having three or more layers so that the content is larger than the sum of the contents of the single-wall carbon nanotube and the double-wall carbon nanotube.
  • Multiwall carbon nanotubes of 3 or more layers usually show semiconducting properties. Therefore, the switch characteristics of the transistors constituting the memory cell are improved.
  • the resistance portion may include a single-wall carbon nanotube and a double-wall carbon nanotube in such a manner that the sum of the contents of the single-wall carbon nanotube and the double-wall carbon nanotube is larger than the content of the multi-wall carbon nanotube having three or more layers.
  • Single wall carbon nanotubes and double wall carbon nanotubes are so thin that they tend to bend due to the force of an electric field or the like, and bend easily change due to thermal vibration. That is, the distance between the carbon nanotubes is likely to change. For this reason, the carbon nanotubes between the electrodes of the resistance change element are changed from a high resistance state where the carbon nanotubes are not electrically connected to a low resistance state where the carbon nanotubes are attracted by Coulomb force, or due to heat. It is easy to cause a change from a low resistance state to a high resistance state that is not electrically connected due to vibration. Therefore, a difference between reading of 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be realized.
  • One aspect of the method for manufacturing a memory cell according to the present invention is: A gate electrode forming step of forming a gate electrode by applying a conductive ink on a substrate; An electrode forming step of applying a conductive ink on the substrate and forming an electrode separated from the gate electrode; An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the gate electrode; A source electrode forming step of forming a source electrode insulated from the gate electrode by applying conductive ink so as to cover at least a part of the insulating portion; A drain electrode forming step of applying a conductive ink so as to cover at least a part of the insulating portion, forming a drain electrode spaced apart from the source electrode and insulated from the gate electrode; A channel part forming step of covering at least a part of the insulating part and applying a carbon nanotube ink so as to be in contact with the source electrode and the drain electrode to form a channel part insulated from the gate
  • a nonvolatile memory cell can be easily manufactured using a coating technique or a printing technique.
  • the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • One aspect of the method for manufacturing a memory cell according to the present invention is: A source electrode forming step of forming a source electrode by applying a conductive ink on a substrate; A drain electrode forming step of applying a conductive ink on a substrate and forming a drain electrode apart from the source electrode; An electrode forming step of applying a conductive ink on a substrate and forming an electrode apart from the source electrode and the drain electrode; Applying a carbon nanotube ink on a substrate, and forming a channel part forming a channel part in contact with the source electrode and the drain electrode; and A resistance part forming step of forming a resistance part in contact with either the source electrode or the drain electrode and the electrode by applying a carbon nanotube ink on a substrate; An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the channel part; Forming a gate electrode that covers at least a part of the insulating portion and forms a gate electrode insulated from
  • a nonvolatile memory cell can be easily manufactured using a coating technique or a printing technique.
  • the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • One aspect of the method for manufacturing a memory cell according to the present invention is: A gate electrode forming step of forming a gate electrode by applying a conductive ink on a substrate; An electrode forming step of applying a conductive ink on the substrate and forming an electrode separated from the gate electrode; An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the gate electrode; A resistance part forming step of forming a resistance part by applying carbon nanotube ink so as to contact the electrode; and A source electrode forming step of forming a source electrode insulated from the gate electrode by applying conductive ink so as to cover at least a part of the insulating portion; A drain electrode forming step of applying a conductive ink so as to cover at least a part of the insulating portion, forming a drain electrode spaced apart from the source electrode and insulated from the gate electrode; A channel part forming step of covering at least a part of the insulating part and applying a carbon
  • a nonvolatile memory cell can be easily manufactured using a coating technique or a printing technique.
  • the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • a manufacturing method of this memory cell is as follows: The channel portion forming step and the resistor portion forming step may be performed as the same step.
  • the manufacturing method of this memory cell is as follows: In the channel part forming step, the carbon nanotube ink containing semiconducting carbon nanotubes may be applied.
  • a manufacturing method of this memory cell is as follows: In the resistance portion forming step, the carbon nanotube ink containing conductive carbon nanotubes may be applied.
  • variable resistance element constituted by one of the source electrode and the drain electrode, the first electrode, and the resistance portion. Therefore, the difference between reading 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be manufactured.
  • a manufacturing method of this memory cell is as follows: In the channel part forming step, the carbon nanotube ink may be applied so that the content of three or more layers of multi-wall carbon nanotubes is greater than the sum of the content of single-wall carbon nanotubes and double-wall carbon nanotubes. Good.
  • Multiwall carbon nanotubes of 3 or more layers usually show semiconducting properties. Therefore, the switch characteristics of the transistors constituting the memory cell are improved.
  • a manufacturing method of this memory cell is as follows: In the resistance portion forming step, the carbon nanotube ink may be applied so that the sum of the content of the single wall carbon nanotube and the double wall carbon nanotube is larger than the content of the multi-wall carbon nanotube of three or more layers. Good.
  • Single wall carbon nanotubes and double wall carbon nanotubes are so thin that they tend to bend due to the force of an electric field or the like, and bend easily change due to thermal vibration. That is, the distance between the carbon nanotubes is likely to change. For this reason, the carbon nanotubes in the resistance portion are subjected to a change from a high resistance state where the carbon nanotubes are not electrically connected to a low resistance state where the carbon nanotubes are attracted by a Coulomb force, and vibration due to heat. It tends to change from a low resistance state to a high resistance state that is not electrically connected. Therefore, the difference between reading 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be manufactured.
  • FIG. 1A is a plan view schematically showing the structure of the memory cell according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 2 is an equivalent circuit diagram of the memory cell according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating an example of a memory circuit using the memory cell according to the first embodiment.
  • FIG. 4 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 5 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 6 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 7 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 1A is a plan view schematically showing the structure of the memory cell according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 2 is an equivalent circuit diagram of the memory cell according
  • FIG. 8 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 9 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 10 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment.
  • FIG. 11A is a plan view schematically showing the structure of the memory cell according to the second embodiment, and
  • FIG. 11B is a cross-sectional view taken along the line AA in FIG. 11A.
  • FIG. 12 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment.
  • FIG. 13 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment.
  • FIG. 14 is a view for explaining the method for manufacturing the memory cell according to the second embodiment.
  • FIG. 15 is a view for explaining the method of manufacturing the memory cell according to the second embodiment.
  • FIG. 16 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment.
  • FIG. 17 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment.
  • 18A is a plan view schematically showing the structure of the memory cell according to the third embodiment, and
  • FIG. 18B is a cross-sectional view taken along the line AA in FIG. 18A.
  • FIG. 19 is a view for explaining the method for manufacturing the memory cell according to the third embodiment.
  • FIG. 20 is a diagram for explaining the method of manufacturing the memory cell according to the third embodiment.
  • FIG. 21 is a diagram for explaining the method of manufacturing the memory cell according to the third embodiment.
  • FIG. 22 is a view for explaining the method for manufacturing the memory cell according to the third embodiment.
  • FIG. 23 is a view for explaining the method for manufacturing the memory cell according to the third embodiment.
  • FIG. 24 is a view for explaining the method for manufacturing the memory cell according to the third embodiment.
  • FIG. 25 is a view for explaining the method of manufacturing the memory cell according to the third embodiment.
  • FIG. 26A is a plan view schematically showing the structure of a memory block using the memory cell according to the third embodiment, and FIG. 26B is a cross-sectional view taken along the line AA in FIG. It is.
  • FIG. 27 is an equivalent circuit diagram of the memory block.
  • FIG. 28 is a diagram for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment.
  • FIG. 29 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment.
  • FIG. 30 is a diagram for explaining a method of manufacturing a memory block using the memory cell according to the third embodiment.
  • FIG. 31 is a diagram for explaining a method of manufacturing a memory block using memory cells according to the third embodiment.
  • FIG. 32 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment.
  • FIG. 33 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment.
  • FIG. 34 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment.
  • the word “above” is formed, for example, as “above” “being specified” (hereinafter referred to as “A”) and other specified items (hereinafter referred to as “B”). And so on.
  • the description according to the present embodiment includes a case where B is formed directly on A and a case where B is formed on A via another in the case of this example.
  • the word “above” is used.
  • FIG. 1A is a plan view schematically showing the structure of the memory cell according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 2 is an equivalent circuit diagram of the memory cell according to the first embodiment.
  • the memory cell 1 includes a transistor T1 and a resistance change element RC1 formed on a base material 10.
  • the base material 10 may be composed of, for example, a PET film or a thin glass film.
  • the substrate 10 is preferably a film film having high heat resistance.
  • the transistor T1 includes a gate electrode 20, an insulating part 40, a source electrode 50, a drain electrode 60, and a channel part 70.
  • the resistance change element RC ⁇ b> 1 includes the electrode 30 and the resistance unit 80.
  • the gate electrode 20 functions as the gate electrode G of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the gate electrode 20 is formed on the base material 10.
  • the gate electrode 20 may be formed using a conductive ink.
  • the gate electrode 20 may be formed, for example, by applying conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the conductive ink may be composed of, for example, a conductive Ag paste (manufactured by Harima Chemical Co., Ltd.) mixed with Ag nanoparticles.
  • the insulating part 40 functions as a gate insulating film of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the insulating portion 40 is formed so as to cover at least a part of the gate electrode 20. The insulating portion 40 is formed so as to be interposed between the gate electrode 20 and a channel portion 70 described later.
  • the insulating unit 40 may be formed using an insulating ink.
  • the insulating unit 40 may be formed, for example, by applying an insulating ink so as to cover at least a part of the gate electrode 20 and volatilizing the solvent (or dispersion medium) of the insulating ink.
  • the insulating ink may be composed of, for example, ink obtained by dispersing high dielectric nanoparticles (eg, 3.6 nm diameter) such as Al 2 O 3 and SrTiO 3 in an organic substance.
  • the source electrode 50 functions as the source electrode S of the transistor T1 in FIG. 2, and together forms a part of the resistance change element RC1. As shown in FIGS. 1A and 1B, the source electrode 50 is formed so as to cover at least a part of the insulating portion 40. The source electrode 50 is formed so as not to contact the gate electrode 20 and the electrode 30. The source electrode 50 may be formed using a conductive ink. The source electrode 50 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
  • the drain electrode 60 functions as the drain electrode D of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the drain electrode 60 is formed so as to cover at least a part of the insulating portion 40. The drain electrode 60 is formed so as not to contact the gate electrode 20, the electrode 30, and the source electrode 50. Further, the drain electrode 60 may be formed using a conductive ink. The drain electrode 60 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
  • the channel unit 70 functions as a channel formation region of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the channel part 70 covers at least a part of the insulating part 40 and is formed in contact with the source electrode 50 and the drain electrode 60. Further, the channel portion 70 is formed so as to overlap at least a part of the gate electrode 20 when viewed from the normal direction of the substrate 10.
  • the channel part 70 includes carbon nanotubes.
  • the channel part 70 may be formed using a carbon nanotube ink.
  • Carbon nanotube ink is a dispersion containing carbon nanotubes.
  • the channel part 70 may be formed by covering at least a part of the insulating part 40, applying carbon nanotube ink so as to be in contact with the source electrode 50 and the drain electrode 60, and volatilizing the dispersion medium of the carbon nanotube ink. Good.
  • the carbon nanotubes for forming the channel part 70 may include semiconducting carbon nanotubes. Furthermore, the carbon nanotubes for forming the channel part 70 may contain more semiconducting carbon nanotubes than metallic (conductive) carbon nanotubes. Thereby, the switch characteristics of the transistors constituting the memory cell 1 are improved.
  • the carbon nanotubes for forming the channel part 70 may be included so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistors constituting the memory cell 1 are improved.
  • the electrode 30 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 1A and 1B, the electrode 30 is formed on the substrate 10. The electrode 30 is formed so as not to contact the gate electrode 20, the source electrode 50 and the drain electrode 60.
  • the electrode 30 may be formed using a conductive ink.
  • the electrode 30 may be formed, for example, by applying a conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
  • the resistance unit 80 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 1A and 1B, the resistance portion 80 is formed in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30. That is, one of the source electrode 50 and the drain electrode 60 also serves as one electrode of the resistance change element RC1. In the example shown in FIGS. 1A and 1B, the resistance portion 80 is formed in contact with the source electrode 50 and the electrode 30. In the example shown in FIGS. 1A and 1B, the resistance portion 80 is formed on the base material 10.
  • the resistance unit 80 includes carbon nanotubes. It may be formed using carbon nanotube ink.
  • the resistance unit 80 may be formed, for example, by applying a carbon nanotube ink so as to contact the source electrode 50 and the electrode 30 and volatilizing the dispersion medium of the carbon nanotube ink.
  • the carbon nanotubes for forming the resistance portion 80 may include conductive carbon nanotubes. Furthermore, the carbon nanotubes for forming the resistance portion 80 may contain more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes. Thereby, the difference in resistance value between the low resistance state and the high resistance state of the resistance change element RC1 constituting the memory cell 1 is increased. Therefore, the memory cell 1 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
  • the carbon nanotubes for forming the resistance portion 80 may be included so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 1 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
  • One of the source electrode 50 and the drain electrode 60 of the memory cell 1 according to the first embodiment that is not connected to the resistance change element RC1 may be electrically connected to the bit line 110.
  • the drain electrode 60 is electrically connected to the bit line 110.
  • An interlayer insulating film 90 may be provided so that the bit line 110 and members other than the drain electrode 60 of the memory cell 1 are not electrically connected.
  • the interlayer insulating film 90 may be made of a filler that is insulative and does not affect circuit performance. As shown in FIGS. 1A and 1B, the bit line 110 is electrically connected to the drain electrode 60 through a contact hole 100 provided in the interlayer insulating film 90.
  • the memory cell 1 according to the first embodiment may be covered with a protective film 120 that covers at least the bit line 110.
  • the protective film 120 may be made of an insulating material.
  • 1A and 1B shows an example in which nothing is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80, but other members. It is also possible to adopt a configuration with intervening. For example, a configuration in which the insulating portion 40 or another insulating film is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80 is also possible.
  • a memory cell that can be easily manufactured using a printing technique can be realized.
  • the resistance change element RC1 in the first embodiment includes a plurality of carbon nanotubes existing between two electrodes, the electrode 30 and the source electrode 50, and has a relatively low resistance state and a relatively high resistance. It takes one of the high resistance states that become resistance. That is, the resistance change element RC1 in the first embodiment can function as a switch element.
  • the resistance change element RC1 in the first embodiment maintains the high resistance state or the low resistance state when voltage and current are not applied between the two electrodes or when the power supply is shut off.
  • the resistance change element RC1 changes to either a high resistance state or a low resistance state when a voltage and a current are applied between the two electrodes. That is, the resistance change element RC1 in the first embodiment can function as a nonvolatile switch element.
  • the resistance change element RC1 is a distance between a plurality of carbon nanotubes included in the resistance change element RC1 due to heat generated by a current flowing through the first voltage V1 and the first current I1 applied between two electrodes. Changes from a positional relationship in which the two electrodes are electrically connected to a positional relationship in which the two electrodes are not electrically connected, thereby changing from the low resistance state to the high resistance state.
  • the resistance change element RC1 electrically connects the two electrodes from a positional relationship such that the two electrodes are not electrically connected by a Coulomb force based on the second voltage V2 applied between the two electrodes. By changing to such a positional relationship, the high resistance state is changed to the low resistance state.
  • the first voltage V1 may be greater than the second voltage V2.
  • the heat generation is Joule heat generated by the current flowing through the carbon nanotubes, but it may be heat generation by Joule heat generated by the resistance of the heat generation part (electrode, connection portion thereof, etc.) in the region close to the carbon nanotubes. Carbon nanotubes have a good thermal conductivity and easily transmit locally generated heat.
  • setting of the first current value I1 is important.
  • the memory cell 1 in the first embodiment is used in a memory circuit, it is desirable to set the current value according to the size of the circuit, the internal resistance of the transistor to be incorporated, the resistance of the wiring portion, and the like.
  • the first current I1 is set so that the relationship of I1> I2 is established when the current flowing through the variable resistance element is the second current I2.
  • Such a resistance change element RC1 in the first embodiment can operate as a high-speed switching element as compared with a method of storing charges such as a DRAM or a flash memory.
  • the resistance change element RC1 in the first embodiment has higher durability against state changes than a configuration in which electrons penetrate the insulating oxide film of the transistor, such as a flash memory. Therefore, the memory cell 1 having a long rewrite life can be realized.
  • the resistance change element RC1 in the first embodiment may include conductive carbon nanotubes. Furthermore, the resistance change element RC1 preferably contains more metallic carbon nanotubes than semiconducting carbon nanotubes. By including many metallic (conductive) carbon nanotubes, the difference in resistance value between the low resistance state and the high resistance state is increased. Therefore, the difference between the data representing “1” and the data representing “0” becomes clear, and good memory characteristics with high reliability can be obtained.
  • the resistance change element RC1 in the first embodiment preferably includes the total content of single-walled carbon nanotubes and double-walled carbon nanotubes to be larger than the content of multi-walled carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the difference in resistance value between the low resistance state and the high resistance state becomes large, and good memory characteristics can be obtained.
  • FIG. 3 is a circuit diagram illustrating an example of a memory circuit using the memory cell 1 according to the first embodiment.
  • the memory circuit 100 shown in FIG. 3 includes a memory block 110 including four memory cells Cell-1 to Cell-4 connected in series.
  • the memory cells Cell-1 to Cell-4 are the memory cell 1 according to the first embodiment.
  • the number of memory cells included in the memory block 110 can be any natural number.
  • the drain terminal of the first transistor T1 included in the memory cell Cell-1 is connected to the bit line BL1.
  • the gate electrodes of the first transistor T1 to the fourth transistor T4 included in the memory cells Cell-1 to Cell-4 connected in series are connected to different word lines.
  • the gate electrode of the first transistor T1 is on the word line WL1
  • the gate electrode of the second transistor T2 is on the word line WL2
  • the gate electrode of the third transistor T3 is on the word line WL3, and the fourth transistor T4.
  • the source electrodes of the first transistor T1 to the fourth transistor T4 included in the memory cells Cell-1 to Cell-4 connected in series are connected to different program lines through at least different resistance change elements. ing.
  • the source electrode of the first transistor T1 is connected to the program line PL1 via the resistance change element RC1
  • the source electrode of the second transistor T2 is connected to the program line PL2 via the resistance change element RC2.
  • the source electrode of the third transistor T3 is connected to the program line PL3 via the resistance change element RC3
  • the source electrode of the fourth transistor T4 is connected to the program line PL4 via the resistance change element RC4.
  • the control circuit 200 applies a voltage and a current to at least one of the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4, thereby changing the resistance change element RC1 included in the memory cells Cell-1 to Cell-4. Voltage and current are applied between the two electrodes RC4 to RC4 to change the state of the resistance change elements RC1 to RC4 to either the low resistance state or the high resistance state.
  • the control circuit 200 can apply different voltages and currents to the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4 at different timings.
  • the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4 are independent control lines.
  • the control circuit 200 applies a BL control circuit 202 for applying a voltage to the bit line BL1, a WL control circuit 204 for applying a voltage to the word lines WL1 to WL4, and program lines PL1 to PL4.
  • a PL control circuit 206 for applying a voltage and a current is included.
  • the control circuit 200 applies voltage and current to at least one of the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4, for example, the state of the resistance change elements RC1 to RC4 becomes a low resistance state.
  • the memory circuit 100 can function as “1” for the case and “0” for the high resistance state.
  • the memory cell 1 according to the first embodiment can be used in a memory circuit as a memory cell that can be easily manufactured by using a printing technique.
  • the NAND-structured memory circuit has been described as an example.
  • the circuit configuration of the memory circuit using the memory cell 1 according to the first embodiment is not limited to the above-described example, and various known and publicly known circuits can be used. A circuit configuration is possible.
  • FIG. 4 to 10 are views for explaining a method of manufacturing the memory cell according to the first embodiment.
  • FIG. 4A is a plan view in the process of manufacturing a memory cell
  • FIG. 4B is a sectional view taken along line AA in FIG.
  • the method of manufacturing a memory cell according to the first embodiment includes a gate electrode forming step of forming a gate electrode 20 by applying a conductive ink on a substrate 10, and applying a conductive ink on the substrate 10.
  • a conductive electrode is applied so as to cover at least a portion of the portion 40 to form a source electrode 50 insulated from the gate electrode 20; and a conductive property is formed so as to cover at least a portion of the insulating portion 40.
  • the carbon nanotube ink is applied so as to be in contact with the drain electrode 60 to form a channel portion 70 that is insulated from the gate electrode 20, and one of the source electrode 50 and the drain electrode 60 and the electrode 30.
  • An electrode forming step of applying a conductive ink and forming the electrode 30 apart from the gate electrode 20 is performed.
  • the substrate 10 may be composed of, for example, a PET film or a thin glass substrate.
  • the substrate 10 is preferably a film having high heat resistance.
  • the conductive ink may be composed of, for example, an Ag conductive paste containing Ag nanoparticles (manufactured by Harima Chemical Co., Ltd.).
  • the gate electrode formation step and the electrode formation step may be performed in the same step or in different steps.
  • the gate electrode formation step and the electrode formation step are the same step using conductive ink made of the same material in the gate electrode formation step and the electrode formation step.
  • the gate electrode 20 and the electrode 30 are formed on the base material 10 by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the base material 10.
  • an insulating portion forming step is performed in which an insulating ink is applied to cover at least part of the gate electrode 20 to form the insulating portion 40.
  • the insulating ink may be composed of, for example, a high dielectric constant material such as Al 2 O 3 made into nanoparticles and dispersed in an organic substance.
  • the insulating portion 40 is formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
  • conductive ink is applied so as to cover at least a part of the insulating portion 40, and the source electrode 50 insulated from the gate electrode 20 is formed.
  • the source electrode forming step and the drain electrode forming step may be performed as the same step or different steps.
  • the source electrode forming step and the drain electrode forming step are performed as the same step using conductive ink made of the same material in the source electrode forming step and the drain electrode forming step.
  • the source electrode 50 and the drain electrode 60 are formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
  • a carbon nanotube ink is applied so as to cover at least a part of the insulating portion 40 and to be in contact with the source electrode 50 and the drain electrode 60, and the gate.
  • a channel part forming step for forming the channel part 70 insulated from the electrode 20 is performed.
  • Carbon nanotube ink is a dispersion containing carbon nanotubes.
  • the channel part 70 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • carbon nanotube ink containing semiconducting carbon nanotubes may be applied.
  • a carbon nanotube ink containing more semiconducting carbon nanotubes than metallic carbon nanotubes may be applied.
  • a carbon nanotube ink may be applied so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes.
  • Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switching characteristics of the transistor T1 constituting the memory cell 1 are improved.
  • carbon nanotube ink is applied so as to contact either one of the source electrode 50 and the drain electrode 60 and the electrode 30, and the resistance portion 80 is formed.
  • a resistance portion forming step to be formed is performed.
  • the resistor 80 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • carbon nanotube ink containing conductive carbon nanotubes may be applied.
  • a carbon nanotube ink containing more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes may be applied.
  • the carbon nanotube ink may be applied so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 1 can be manufactured in which the difference between readings of 1 and 0 becomes clear and good memory characteristics can be obtained.
  • a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell 1 can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • the channel portion forming step and the resistance portion forming step are performed as different steps, but the channel portion forming step and the resistance portion forming step may be performed in the same step. Thereby, the memory cell 1 can be manufactured by a simpler process.
  • the carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are mixed in the channel portion forming step and the resistance portion forming step. May be used.
  • a carbon nanotube ink in which multiwall carbon nanotubes and single wall carbon nanotubes are mixed may be used in the channel portion forming step and the resistance portion forming step.
  • carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are not mixed may be used in the channel portion forming step and the resistance portion forming step.
  • a carbon nanotube ink in which multi-wall carbon nanotubes and single wall carbon nanotubes are not mixed may be used in the channel portion forming step and the resistance portion forming step.
  • an interlayer insulating film forming step for forming an interlayer insulating film 90 having a through hole 100a that communicates with the drain electrode 60 may be performed after the resistance portion forming step.
  • an insulating ink is applied to form the interlayer insulating film 90
  • the interlayer insulating film 90 is formed by a CVD (Chemical Vapor Deposition) method, or the interlayer insulating film 90 is formed by a film transfer method. May be formed.
  • the interlayer insulating film 90 for example, a Si 3 N 4 film, a SiO 2 film, or a laminated film thereof, or a coating type low-temperature insulating film (for example, a JPR WPR film) is used by using a plasma CVD method. May be.
  • bit line forming step of forming a bit line 110 electrically connected to the drain electrode 60 through the contact hole 100 may be performed.
  • the bit line may be formed by applying conductive ink on the interlayer insulating film 90.
  • the conductive ink may be composed of, for example, an Ag paste.
  • the contact hole 100 is formed by filling the through hole 100a with conductive ink.
  • a protective film forming step of forming a protective film 120 covering at least the bit line 110 may be performed.
  • the protective film 120 is formed by applying an insulating ink
  • the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method
  • the protective film 120 is formed by a film transfer method. May be.
  • a material of the protective film 120 for example, a low-temperature curing type insulating film such as a coating type polyimide film or a JSR WPR film may be used.
  • FIG. 11A is a plan view schematically showing the structure of the memory cell according to the second embodiment
  • FIG. 11B is a cross-sectional view taken along line AA in FIG. It is sectional drawing.
  • the circuit diagram of the memory cell according to the second embodiment is the same as FIG.
  • symbol is attached
  • the materials of the members, the conductive ink, the insulating ink, and the carbon nanotube ink are the same as those described in the first embodiment.
  • the memory cell 2 includes a transistor T1 and a resistance change element RC1 formed on the base material 10.
  • the transistor T1 includes a gate electrode 20, an insulating part 40, a source electrode 50, a drain electrode 60, and a channel part 70.
  • the resistance change element RC ⁇ b> 1 includes the electrode 30 and the resistance unit 80.
  • the source electrode 50 functions as the source electrode S of the transistor T1 in FIG. 2, and together forms a part of the resistance change element RC1. As shown in FIGS. 11A and 11B, the source electrode 50 is formed on the base material 10.
  • the source electrode 50 may be formed using a conductive ink.
  • the source electrode 50 may be formed, for example, by applying a conductive ink on the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the drain electrode 60 functions as the drain electrode D of the transistor T1 in FIG. Further, the drain electrode 60 can be extended and used as a bit line. As shown in FIGS. 11A and 11B, the drain electrode 60 is formed on the base material 10. The drain electrode 60 is formed so as not to contact the source electrode 50. Further, the drain electrode 60 may be formed using a conductive ink. The drain electrode 60 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the source electrode 50.
  • the channel unit 70 functions as a channel formation region of the transistor T1 in FIG. As shown in FIGS. 11A and 11B, the channel portion 70 is formed in contact with the source electrode 50 and the drain electrode 60. In the example shown in FIGS. 11A and 11B, the channel portion 70 is formed on the base material 10.
  • the channel part 70 includes carbon nanotubes.
  • the channel part 70 may be formed using a carbon nanotube ink.
  • Carbon nanotube ink is a dispersion containing carbon nanotubes.
  • the channel part 70 may be formed, for example, by applying a carbon nanotube ink on the substrate 10 so as to be in contact with the source electrode 50 and the drain electrode 60 and volatilizing the dispersion medium of the carbon nanotube ink.
  • the carbon nanotubes for forming the channel part 70 may include semiconducting carbon nanotubes. Furthermore, the carbon nanotubes for forming the channel part 70 may contain more semiconducting carbon nanotubes than metallic (conductive) carbon nanotubes. Thereby, the switch characteristics of the transistors constituting the memory cell 2 are improved.
  • the carbon nanotubes for forming the channel part 70 may be included so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistors constituting the memory cell 2 are improved.
  • the insulating part 40 functions as a gate insulating film of the transistor T1 in FIG. As shown in FIGS. 11A and 11B, the insulating part 40 is formed so as to cover at least a part of the channel part 70.
  • the insulating portion 40 is formed so as to be interposed between a gate electrode 20 and a channel portion 70 described later.
  • the insulating unit 40 may be formed using an insulating ink.
  • the insulating unit 40 may be formed, for example, by applying an insulating ink so as to cover at least a part of the channel unit 70 and volatilizing the solvent (or dispersion medium) of the insulating ink.
  • the gate electrode 20 functions as the gate electrode G of the transistor T1 in FIG. As shown in FIGS. 11A and 11B, the gate electrode 20 is formed to cover at least part of the insulating portion 40.
  • the gate electrode 20 is formed to be insulated from the source electrode 50 and the drain electrode 60.
  • the gate electrode 20 may be formed using a conductive ink.
  • the gate electrode 20 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the conductive ink may be composed of the same material as the conductive ink used to form the source electrode 50 and the drain electrode 60.
  • the electrode 30 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 11A and 11B, the electrode 30 is formed on the base material 10. The electrode 30 is formed so as not to contact the source electrode 50 and the drain electrode 60.
  • the electrode 30 may be formed using a conductive ink.
  • the electrode 30 may be formed, for example, by applying a conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the conductive ink may be composed of the same material as the conductive ink used to form the source electrode 50 and the drain electrode 60.
  • the resistance unit 80 constitutes a part of the resistance change element RC1 in FIG.
  • the resistance portion 80 is formed in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30. That is, one of the source electrode 50 and the drain electrode 60 also serves as one electrode of the resistance change element RC1.
  • the resistance portion 80 is formed in contact with the source electrode 50 and the electrode 30.
  • the resistance portion 80 is formed on the base material 10.
  • the resistance unit 80 includes carbon nanotubes. It may be formed using carbon nanotube ink.
  • the resistance unit 80 may be formed, for example, by applying a carbon nanotube ink so as to contact the source electrode 50 and the electrode 30 and volatilizing the dispersion medium of the carbon nanotube ink.
  • the carbon nanotubes for forming the resistance portion 80 may include conductive carbon nanotubes. Furthermore, the carbon nanotubes for forming the resistance portion 80 may contain more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes. Thereby, the difference in resistance value between the low resistance state and the high resistance state of the resistance change element RC1 constituting the memory cell 2 is increased. Therefore, the memory cell 2 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
  • the carbon nanotubes for forming the resistance portion 80 may be included so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 2 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
  • the memory cell 2 according to the second embodiment may be covered with a protective film 120 that covers the above-described members.
  • the protective film 120 may be made of an insulating material.
  • FIGS. 11A and 11B an example in which nothing is interposed between the electrode 30, the source electrode 50, the drain electrode 60, the channel part 70, the resistance part 80, and the base material 10.
  • a configuration in which another member is interposed is also possible.
  • a configuration in which an insulating film is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80 is also possible.
  • a memory cell that can be easily manufactured using a printing technique can be realized.
  • FIG. 12A is a plan view in the process of manufacturing a memory cell
  • FIG. 12B is a cross-sectional view taken along line AA in FIG.
  • the drain electrode forming step of forming the drain electrode 60 away from the source electrode 50 and the conductive ink is applied on the substrate 10 to form the electrode 30 away from the source electrode 50 and the drain electrode 60.
  • coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example applied using the printing technique using an inkjet printer etc.
  • the materials of the base material 10, the insulating ink, and the carbon nanotube ink are the same as those of the memory cell manufacturing method of the first embodiment.
  • an electrode forming step for forming the electrode 30 is performed.
  • the source electrode forming step, the drain electrode forming step, and the electrode forming step may be performed in the same step or different steps.
  • a conductive ink made of the same material is used in the source electrode formation step, the drain electrode formation step, and the electrode formation step, and the source electrode formation step and the drain electrode formation are performed.
  • the process and the electrode forming process are performed in the same process.
  • the source electrode 50, the drain electrode 60, and the electrode 30 are formed on the substrate 10 by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the substrate 10.
  • a carbon nanotube ink is applied on the substrate 10 to form a channel portion 70 that contacts the source electrode 50 and the drain electrode 60.
  • a part formation process is performed.
  • the channel part 70 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • carbon nanotube ink containing semiconducting carbon nanotubes may be applied.
  • a carbon nanotube ink containing more semiconducting carbon nanotubes than metallic carbon nanotubes may be applied.
  • a carbon nanotube ink may be applied so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes.
  • Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistor T1 constituting the memory cell 2 are improved.
  • a carbon nanotube ink is applied on the base material 10 to make contact with one of the source electrode 50 and the drain electrode 60 and the electrode 30.
  • a resistance portion forming step for forming the resistance portion 80 to be performed is performed.
  • the resistance portion 80 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • carbon nanotube ink containing conductive carbon nanotubes may be applied.
  • a carbon nanotube ink containing more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes may be applied.
  • the carbon nanotube ink may be applied so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 2 can be manufactured in which the difference between readings of 1 and 0 becomes clear and good memory characteristics can be obtained.
  • an insulating portion forming step is performed in which an insulating ink is applied to cover at least a part of the channel portion 70 to form the insulating portion 40.
  • the insulating portion 40 is formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
  • the gate electrode 20 is formed so as to cover at least part of the insulating portion 40 and to be insulated from the source electrode 50, the drain electrode 60, and the channel portion 70.
  • a gate electrode forming step is performed.
  • the gate electrode 20 is formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
  • a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • the channel portion forming step and the resistance portion forming step are performed as different steps, but the channel portion forming step and the resistance portion forming step may be performed in the same step. Thereby, a memory cell can be manufactured by a simpler process.
  • the carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are mixed in the channel portion forming step and the resistance portion forming step. May be used.
  • a carbon nanotube ink in which multiwall carbon nanotubes and single wall carbon nanotubes are mixed may be used in the channel portion forming step and the resistance portion forming step.
  • carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are not mixed may be used in the channel portion forming step and the resistance portion forming step.
  • a carbon nanotube ink in which multi-wall carbon nanotubes and single wall carbon nanotubes are not mixed may be used in the channel portion forming step and the resistance portion forming step.
  • a protective film forming step for forming the protective film 120 covering the above-described members may be performed.
  • the protective film forming step for example, the protective film 120 is formed by applying an insulating ink, the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method, or the protective film 120 is formed by a film transfer method. May be.
  • FIG. 18A is a plan view schematically showing the structure of the memory cell according to the third embodiment
  • FIG. 18B is a cross-sectional view taken along the line AA in FIG. It is sectional drawing.
  • the circuit diagram of the memory cell according to the third embodiment is the same as FIG.
  • symbol is attached
  • the materials of the members, the conductive ink, the insulating ink, and the carbon nanotube ink are the same as those described in the first embodiment.
  • the memory cell 3 includes a transistor T1 and a resistance change element RC1 formed on the base material 10.
  • the transistor T1 includes a gate electrode 20, an insulating part 40, a source electrode 50, a drain electrode 60, and a channel part 70.
  • the resistance change element RC ⁇ b> 1 includes the electrode 30 and the resistance unit 80.
  • the gate electrode 20 functions as the gate electrode G of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the gate electrode 20 is formed on the substrate 10.
  • the gate electrode 20 may be formed using a conductive ink.
  • the gate electrode 20 may be formed, for example, by applying conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the insulating part 40 functions as a gate insulating film of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the insulating portion 40 is formed so as to cover at least a part of the gate electrode 20. The insulating portion 40 is formed so as to be interposed between the gate electrode 20 and a channel portion 70 described later.
  • the insulating unit 40 may be formed using an insulating ink. The insulating unit 40 may be formed, for example, by applying an insulating ink so as to cover at least a part of the gate electrode 20 and volatilizing the solvent (or dispersion medium) of the insulating ink.
  • the source electrode 50 functions as the source electrode S of the transistor T1 in FIG. 2, and together forms a part of the resistance change element RC1. As shown in FIGS. 18A and 18B, the source electrode 50 is formed so as to cover at least a part of the insulating portion 40. In the example shown in FIGS. 18A and 18B, the source electrode 50 is formed so as to cover at least a part of a resistance portion 80 described later. The source electrode 50 is formed so as not to contact the gate electrode 20 and the electrode 30. The source electrode 50 may be formed using a conductive ink.
  • the source electrode 50 is formed, for example, by applying a conductive ink so as to cover at least a part of the insulating part 40 and at least a part of the resistance part 80 and volatilizing a solvent (or dispersion medium) of the conductive ink. Also good.
  • the conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
  • the drain electrode 60 functions as the drain electrode D of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the drain electrode 60 is formed so as to cover at least a part of the insulating portion 40. The drain electrode 60 is formed so as not to contact the gate electrode 20, the electrode 30, and the source electrode 50. Further, the drain electrode 60 may be formed using a conductive ink. The drain electrode 60 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
  • the channel unit 70 functions as a channel formation region of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the channel portion 70 covers at least part of the insulating portion 40 and is formed in contact with the source electrode 50 and the drain electrode 60. Further, the channel portion 70 is formed so as to overlap at least a part of the gate electrode 20 when viewed from the normal direction of the substrate 10.
  • the channel part 70 includes carbon nanotubes.
  • the channel part 70 may be formed using a carbon nanotube ink.
  • Carbon nanotube ink is a dispersion containing carbon nanotubes.
  • the channel part 70 may be formed by covering at least a part of the insulating part 40, applying carbon nanotube ink so as to be in contact with the source electrode 50 and the drain electrode 60, and volatilizing the dispersion medium of the carbon nanotube ink. Good.
  • the carbon nanotubes for forming the channel part 70 may include semiconducting carbon nanotubes. Furthermore, the carbon nanotubes for forming the channel part 70 may contain more semiconducting carbon nanotubes than metallic (conductive) carbon nanotubes. Thereby, the switch characteristics of the transistors constituting the memory cell 3 are improved.
  • the carbon nanotubes for forming the channel part 70 may be included so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistors constituting the memory cell 1 are improved.
  • the electrode 30 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 18A and 18B, the electrode 30 is formed on the substrate 10. The electrode 30 is formed so as not to contact the gate electrode 20, the source electrode 50 and the drain electrode 60.
  • the electrode 30 may be formed using a conductive ink.
  • the electrode 30 may be formed, for example, by applying a conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
  • the conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
  • the resistance unit 80 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 18A and 18B, the resistance portion 80 is formed in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30. That is, one of the source electrode 50 and the drain electrode 60 also serves as one electrode of the resistance change element RC1. In the example illustrated in FIGS. 18A and 18B, the resistance portion 80 is formed in contact with the source electrode 50 and the electrode 30. In the example shown in FIGS. 18A and 18B, the resistance portion 80 is formed on the base material 10.
  • the resistance unit 80 includes carbon nanotubes. It may be formed using carbon nanotube ink.
  • the resistance unit 80 may be formed, for example, by applying a carbon nanotube ink so as to contact the source electrode 50 and the electrode 30 and volatilizing the dispersion medium of the carbon nanotube ink.
  • the carbon nanotubes for forming the resistance portion 80 may include conductive carbon nanotubes. Furthermore, the carbon nanotubes for forming the resistance portion 80 may contain more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes. Thereby, the difference in resistance value between the low resistance state and the high resistance state of the resistance change element RC1 constituting the memory cell 3 is increased. Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be realized.
  • the carbon nanotubes for forming the resistance portion 80 may be included so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be realized.
  • One of the source electrode 50 and the drain electrode 60 of the memory cell 3 according to the third embodiment that is not connected to the resistance change element RC1 may be electrically connected to the bit line 110.
  • the drain electrode 60 is electrically connected to the bit line 110.
  • An interlayer insulating film 90 may be provided so that the bit line 110 and members other than the drain electrode 60 of the memory cell 1 are not electrically connected.
  • the interlayer insulating film 90 may be made of a filler that is insulative and does not affect circuit performance.
  • the bit line 110 is electrically connected to the drain electrode 60 through a contact hole 100 provided in the interlayer insulating film 90.
  • the memory cell 3 according to the third embodiment may be covered with a protective film 120 that covers at least the bit line 110.
  • the protective film 120 may be made of an insulating material.
  • 18A and 18B shows an example in which nothing is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80, but other members. It is also possible to adopt a configuration with intervening. For example, a configuration in which the insulating portion 40 or another insulating film is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80 is also possible.
  • a memory cell that can be easily manufactured using a printing technique can be realized.
  • 19 to 25 are views for explaining the method of manufacturing the memory cell according to the third embodiment.
  • 19A to 25B (A) is a plan view in the process of manufacturing a memory cell, and (B) is a cross-sectional view taken along line AA in (A).
  • the method of manufacturing a memory cell according to the third embodiment includes a gate electrode forming step of forming a gate electrode 20 by applying a conductive ink on a substrate 10, and applying a conductive ink on the substrate 10.
  • An electrode forming step of forming the electrode 30 apart from the gate electrode 20 an insulating portion forming step of forming an insulating portion 40 by applying an insulating ink so as to cover at least a part of the gate electrode 20, and an electrode
  • the source electrode forming step of forming the source electrode 50 and the conductive ink is applied so as to cover at least a part of the insulating portion 40, separated from the source electrode 50, and insulated from the gate electrode 20.
  • coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example applied using the printing technique using an inkjet printer etc.
  • the materials of the base material 10, the insulating ink, and the carbon nanotube ink are the same as those of the memory cell manufacturing method of the first embodiment.
  • An electrode forming step of applying a conductive ink and forming the electrode 30 apart from the gate electrode 20 is performed.
  • the gate electrode formation step and the electrode formation step may be performed in the same step or in different steps.
  • the gate electrode formation step and the electrode formation step are the same step using conductive ink made of the same material in the gate electrode formation step and the electrode formation step.
  • the gate electrode 20 and the electrode 30 are formed on the base material 10 by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the base material 10.
  • an insulating part forming step is performed in which an insulating ink is applied so as to cover at least a part of the gate electrode 20 to form the insulating part 40.
  • the insulating portion 40 is formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
  • a resistance part forming step of forming the resistance part 80 by applying carbon nanotube ink so as to contact the electrode 30 is performed.
  • the carbon nanotube ink is applied so as to cover at least a part of the electrode 30 to form the resistance portion 80.
  • the resistance portion 80 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • carbon nanotube ink containing conductive carbon nanotubes may be applied.
  • a carbon nanotube ink containing more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes may be applied.
  • the carbon nanotube ink may be applied so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers.
  • Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be manufactured.
  • conductive ink is applied so as to cover at least a part of the insulating portion 40, and the source electrode 50 insulated from the gate electrode 20 is formed.
  • the source electrode forming step and the drain electrode forming step may be performed as the same step or different steps.
  • conductive inks made of the same material are used in the source electrode forming step and the drain electrode forming step, and the source electrode forming step and the drain electrode forming step are performed as the same step.
  • the source electrode 50 and the drain electrode 60 are formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
  • conductive ink is applied so as to cover at least a part of the resistance portion 80 to form either the source electrode 50 or the drain electrode 60.
  • the source electrode 50 is formed by applying conductive ink so as to cover at least a part of the resistance portion 80 in the source electrode forming step.
  • a carbon nanotube ink is applied so as to cover at least a part of the insulating portion 40 and to be in contact with the source electrode 50 and the drain electrode 60, and then the gate.
  • a channel part forming step for forming the channel part 70 insulated from the electrode 20 is performed.
  • Carbon nanotube ink is a dispersion containing carbon nanotubes.
  • the channel portion 70 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • carbon nanotube ink containing semiconducting carbon nanotubes may be applied.
  • a carbon nanotube ink containing more semiconducting carbon nanotubes than metallic carbon nanotubes may be applied.
  • a carbon nanotube ink may be applied so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes.
  • Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switching characteristics of the transistor T1 constituting the memory cell 3 are improved.
  • a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell 3 can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • an interlayer insulating film forming step for forming an interlayer insulating film 90 having a through hole 100a communicating with the drain electrode 60 may be performed as shown in FIGS. .
  • an insulating ink is applied to form the interlayer insulating film 90
  • the interlayer insulating film 90 is formed by a CVD (Chemical Vapor Deposition) method, or the interlayer insulating film 90 is formed by a film transfer method. May be formed.
  • bit line forming step of forming a bit line 110 electrically connected to the drain electrode 60 through the contact hole 100 may be performed.
  • the bit line may be formed by applying conductive ink on the interlayer insulating film 90.
  • the contact hole 100 is formed by filling the through hole 100a with conductive ink.
  • a protective film forming step of forming a protective film 120 covering at least the bit line 110 may be performed.
  • the protective film 120 is formed by applying an insulating ink
  • the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method
  • the protective film 120 is formed by a film transfer method. May be.
  • FIG. 26A is a plan view schematically showing the structure of a memory block using the memory cell according to the third embodiment
  • FIG. FIG. 27 is a cross-sectional view taken along line AA in FIG.
  • FIG. 27 is an equivalent circuit diagram of a memory block using memory cells according to the third embodiment.
  • symbol or the same prefix number is attached
  • the materials of the members, the conductive ink, the insulating ink, and the carbon nanotube ink are the same as those described in the first embodiment.
  • the memory block 4 is configured as a NAND type memory block including memory cells Cell-1 and Cell-2.
  • the circuit configuration illustrated in FIG. 27 is the same as part of the memory circuit 150 described with reference to FIG. 3, and thus detailed description of the circuit configuration is omitted.
  • the memory block 4 may be configured by connecting three or more memory cells in series.
  • the structure in the case where the memory cell 3 according to the third embodiment is used as the memory cell Cell-1 and the memory cell Cell-2 will be described as an example. Further, a member that mainly functions as the memory cell Cell-1 is given a suffix number "-1", and a member that mainly functions as the memory cell Cell-2 is given a suffix number "-2". This member does not prevent other members from having other functions.
  • the memory cell Cell-1 includes a transistor T1 and a resistance change element RC1 formed on the base material 10.
  • the memory cell Cell-2 includes a transistor T2 and a resistance change element RC2 formed on the base material 10.
  • the transistor T1 includes a gate electrode 20-1, an insulating part 40-1, a source electrode 50-1, a drain electrode 60-1, and a channel part 70-1.
  • the resistance change element RC1 includes an electrode 30-1 and a resistance unit 80-1.
  • the transistor T2 includes a gate electrode 20-2, an insulating part 40-2, a source electrode 50-2, a drain electrode 60-2, and a channel part 70-2.
  • the resistance change element RC2 includes an electrode 30-2 and a resistance unit 80-2.
  • the source electrode 50-1 of the transistor T1 and the drain electrode 60-2 of the transistor T2 are integrally formed.
  • the source electrode 50-1 and the drain electrode 60-2 can be formed in one process. Further, a special wiring for connecting the source electrode 50-1 and the drain electrode 60-2 is not necessary.
  • the resistance portion 80-1 is interposed between the source electrode 50-1, the drain electrode 60-2, and the electrode 30-1, so that the source The electrode 50-1, the drain electrode 60-2, and the electrode 30-1 are not in direct contact with each other.
  • the configuration of the memory block 4 is not limited to this.
  • the insulating portion 40-2 is interposed between the source electrode 50-1, the drain electrode 60-2, and the electrode 30-1, so that the source electrode 50-1 is interposed. -1 and the drain electrode 60-2 and the electrode 30-1 may not be in direct contact with each other.
  • the bit line 110 is connected to the drain electrode 60-1 of the transistor T1 through the contact hole 100, and the drain of the transistor T2 It is not connected to the electrode 60-2.
  • the NAND type memory block shown in FIG. 27 is configured.
  • the memory block 4 it is possible to realize a memory block that can be easily manufactured using printing technology.
  • the example in which the memory block is configured using the memory cell 3 according to the third embodiment has been described.
  • the memory cell 1 according to the first embodiment and the memory cell 2 according to the second embodiment are used.
  • the memory block shown in FIG. 27 can also be configured.
  • FIGS. 28 to 34 are views for explaining a method of manufacturing a memory block using the memory cell according to the third embodiment.
  • (A) is a plan view in the manufacturing process of the memory block
  • (B) is a sectional view taken along the line AA in (A).
  • a method of manufacturing a memory block using memory cells according to the third embodiment includes a gate electrode forming step of forming a gate electrode 20-1 and a gate electrode 20-2 by applying a conductive ink on a base material 10.
  • -2 forming step, and applying the carbon nanotube ink so as to be in contact with the electrode 30-1 to form the resistance portion 80-1, and so as to be in contact with the electrode 30-2.
  • a conductive ink is applied so as to cover at least part of the insulating portion 40-1, and a drain electrode 60-1 that is separated from the source electrode 50-1 and insulated from the gate electrode 20-1 is formed.
  • a conductive ink is applied so as to cover at least a part of the insulating portion 40-2, and the drain electrode 60-2 that is separated from the source electrode 50-2 and insulated from the gate electrode 20-2 is formed.
  • the carbon nanotube ink is applied so as to cover the source electrode 50-1 and the drain electrode 60-1 so as to cover at least a part of the in-electrode forming step and the insulating portion 40-1, and is insulated from the gate electrode 20-1.
  • the channel portion 70-1 is formed, and at least part of the insulating portion 40-2 is covered, and carbon nanotube ink is applied so as to be in contact with the source electrode 50-2 and the drain electrode 60-2.
  • the conductive ink is applied to form one of the source electrode 50-1 and the drain electrode 60-1, and the resistance portion 80-2
  • One of the source electrode 50-2 and the drain electrode 60-2 is formed by applying conductive ink so as to cover at least a part.
  • the source electrode 50-1 and the drain electrode 60-2 may be integrally formed by simultaneously performing the source electrode formation step and the drain electrode formation step.
  • coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example applied using the printing technique using an inkjet printer etc.
  • the materials of the base material 10, the insulating ink, and the carbon nanotube ink are the same as those of the memory cell manufacturing method of the first embodiment.
  • the gate electrode formation step and the electrode formation step may be performed in the same step or in different steps.
  • conductive inks made of the same material are used in the gate electrode formation step and the electrode formation step, and the gate electrode formation step and the electrode formation step are the same step. As you go. Further, by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the base material 10, the gate electrode 20-1, the gate electrode 20-2, the electrode 30-1, and the electrode are formed on the base material 10. 30-2 is formed.
  • an insulating ink is applied so as to cover at least a part of the gate electrode 20-1, thereby forming an insulating portion 40-1, and the gate.
  • An insulating part forming step is performed in which an insulating ink is applied so as to cover at least a part of the electrode 20-2 to form the insulating part 40-2.
  • the insulating part 40-1 and the insulating part 40-2 are formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
  • a carbon nanotube ink is applied so as to be in contact with the electrode 30-1 to form a resistance portion 80-1, and the electrode 30-2 is applied to the electrode 30-2.
  • a resistance portion forming step is performed in which the carbon nanotube ink is applied so as to come into contact with each other to form the resistance portion 80-2.
  • the carbon nanotube ink is applied so as to cover at least a part of the electrode 30-1, thereby forming the resistance portion 80-1, and the electrode 30-2.
  • the resistance part 80-2 is formed by applying carbon nanotube ink so as to cover at least a part.
  • the resistor 80-1 and the resistor 80-2 are formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • a conductive ink is applied so as to cover at least part of the insulating portion 40-1, and the source insulated from the gate electrode 20-1 is applied.
  • a conductive ink is applied so as to cover at least part of the insulating portion 40-1, and a drain electrode 60-1 that is separated from the source electrode 50-1 and insulated from the gate electrode 20-1 is formed.
  • a conductive ink is applied so as to cover at least a part of the insulating portion 40-2, and the drain electrode 60-2 that is separated from the source electrode 50-2 and insulated from the gate electrode 20-2 is formed. Electrode forming worker Carry out the door.
  • the source electrode forming step and the drain electrode forming step may be performed as the same step or different steps.
  • the source electrode forming step and the drain electrode forming step are performed as the same step using conductive ink made of the same material in the source electrode forming step and the drain electrode forming step.
  • the source electrode 50 and the drain electrode 60 are formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
  • the source electrode 50-1 and the drain electrode 60-2 are integrally formed.
  • conductive ink is applied so as to cover at least a part of the resistance portion 80-1, and any of the source electrode 50-1 and the drain electrode 60-1 is applied.
  • One of the source electrode 50-2 and the drain electrode 60-2 is formed by applying conductive ink so as to cover at least part of the resistor 80-2.
  • the source electrode 50-1 is formed by applying conductive ink so as to cover at least a part of the resistance portion 80-1 in the source electrode formation step.
  • the source electrode 50-2 is formed by applying conductive ink so as to cover at least a part of the resistor 80-2.
  • the carbon nanotube ink covers at least part of the insulating portion 40-1 and contacts the source electrode 50-1 and the drain electrode 60-1. Is applied to form a channel portion 70-1 that is insulated from the gate electrode 20-1, and covers at least part of the insulating portion 40-2 and contacts the source electrode 50-2 and the drain electrode 60-2.
  • a carbon nanotube ink is applied, and a channel part forming step is performed to form a channel part 70-2 insulated from the gate electrode 20-2.
  • Carbon nanotube ink is a dispersion containing carbon nanotubes.
  • the channel part 70-1 and the channel part 70-2 are formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
  • a memory block using a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell 4 can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
  • an interlayer insulating film forming step for forming an interlayer insulating film 90 having a through hole 100a communicating with the drain electrode 60-1 is performed. Also good.
  • an insulating ink is applied to form the interlayer insulating film 90, the interlayer insulating film 90 is formed by a CVD (Chemical Vapor Deposition) method, or the interlayer insulating film 90 is formed by a film transfer method. May be formed.
  • bit line formation step for forming a bit line 110 electrically connected to the drain electrode 60-1 through the contact hole 100 may be performed.
  • the bit line may be formed by applying conductive ink on the interlayer insulating film 90.
  • the contact hole 100 is formed by filling the through hole 100a with conductive ink.
  • a protective film forming step of forming a protective film 120 covering at least the bit line 110 may be performed.
  • the protective film 120 is formed by applying an insulating ink
  • the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method
  • the protective film 120 is formed by a film transfer method. May be.
  • the present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • 1, 2, 3 memory cell, 4 memory block 10 base material, 20, 20-1, 20-2 gate electrode, 30, 30-1, 30-2 electrode, 40, 40-1, 40-2 insulation part 50, 50-1, 50-2 source electrode, 60, 60-1, 60-2 drain electrode, 70, 70-1, 70-2 channel part, 80, 80-1, 80-2 resistance part, 90 Interlayer insulating film, 100 contact hole, 100a through hole, 110 bit line, 120 protective film, 150 memory circuit, 160 memory block, 200 control circuit, 202 BL control circuit, 204 WL control circuit, 206 PL control circuit, D drain electrode , G gate electrode, S source electrode, BL1 bit line, Cell-1 to Cell-4 memory cell, RC1 to RC4 resistance change Child, T1 ⁇ T4 transistor, WL1 ⁇ WL4 word lines, PL1 ⁇ PL4 program line

Abstract

Disclosed is a memory cell that includes a transistor (T1) and a variable resistance element (RC1), which are formed on a base material (10). The transistor (T1) includes: a gate electrode (20), a source electrode (50), and a drain electrode (60); a channel section (70), which includes carbon nano-tubes, and which is in contact with the source electrode (50) and the drain electrode (60); and an insulating section (40), which is disposed between the gate electrode (20) and the channel section (70). The variable resistance element (RC1) includes: a first electrode (30) and a second electrode, which are formed by being spaced apart from each other; a resistance section (80), which includes carbon nano-tubes, and which is in contact with the first electrode (30) and the second electrode. The first electrode (30) or the second electrode is shared as the source electrode (50) or the drain electrode (60).

Description

メモリセル及びメモリセルの製造方法Memory cell and method of manufacturing memory cell
 本発明は、メモリセル及びメモリセルの製造方法に関する。 The present invention relates to a memory cell and a method for manufacturing the memory cell.
 近年、印刷技術を利用して電子回路を製造する技術(プリンタブル・エレクトロニクス)が開発されている。例えば、国際公開第WO2007/078860号では、印刷技術を用いてトランジスタを製造する方法が提案されている。 In recent years, technology (printable electronics) for manufacturing electronic circuits using printing technology has been developed. For example, International Publication No. WO2007 / 078860 proposes a method for manufacturing a transistor using a printing technique.
 一方、電源を切ってもデータが消えない不揮発性メモリ(例えば、フラッシュメモリなど)が開発されている。フラッシュメモリはトンネル電流などを利用して浮遊ゲートと呼ばれる領域に電子を蓄積し、浮遊ゲートに電子があるかないかによりトランジスタのしきい値電圧が変化し、それにより1と0を記憶する方式である。さらに最近においては、ReRAM(Resistivity Change Random Access Memory)としてMRAM(Magnetoresistive Random Access Memory)やPCM(Phase Change Memory)などの各種抵抗変化素子を用いたものが提案されている。その一つとして、国際公開第WO2008/021912号には、カーボンナノチューブを抵抗変化素子として用いた不揮発性メモリが記載されている。 On the other hand, a non-volatile memory (for example, a flash memory) has been developed in which data is not lost even when the power is turned off. Flash memory uses a tunnel current to accumulate electrons in a region called a floating gate, and the threshold voltage of the transistor changes depending on whether or not the floating gate has electrons, thereby storing 1 and 0. is there. More recently, ReRAM (Resistivity Change Random Access Memory) using various resistance change elements such as MRAM (Magnetoresistive Random Access Memory) and PCM (Phase Change Memory) has been proposed. As one of them, International Publication No. WO2008 / 021912 describes a nonvolatile memory using carbon nanotubes as resistance change elements.
 電子機器には、種々のデータを記憶するために不揮発性メモリを用いる電子機器がある。したがって、プリンタブル・エレクトロニクスにおいても、不揮発性のメモリ回路を形成するニーズがある。 There are electronic devices that use non-volatile memory to store various data. Therefore, there is a need to form a non-volatile memory circuit also in printable electronics.
 本発明は、以上のような問題点に鑑みてなされたものである。本発明のいくつかの態様によれば、印刷技術を利用して容易に製造できるメモリセル及びメモリセルの製造方法を提供することができる。 The present invention has been made in view of the above problems. According to some aspects of the present invention, it is possible to provide a memory cell and a method of manufacturing the memory cell that can be easily manufactured using a printing technique.
(1)本発明に係るメモリセルの態様の一つは、
 基材の上に形成されたトランジスタと抵抗変化素子とを含み、
 前記トランジスタは、
 ゲート電極、ソース電極及びドレイン電極と、
 カーボンナノチューブを含み、前記ソース電極及び前記ドレイン電極と接触するチャネル部と、
 前記ゲート電極と前記チャネル部との間に介在する絶縁部とを含み、
 前記抵抗変化素子は、
 離間して形成された第1電極及び第2電極と、
 カーボンナノチューブを含み、前記第1電極及び前記第2電極と接触する抵抗部とを含み、
 前記第1電極及び前記第2電極のいずれか一方は、前記ソース電極及び前記ドレイン電極のいずれか一方と共通である。
(1) One aspect of the memory cell according to the present invention is:
Including a transistor and a resistance change element formed on a substrate;
The transistor is
A gate electrode, a source electrode and a drain electrode;
A channel portion containing carbon nanotubes and in contact with the source electrode and the drain electrode;
Including an insulating part interposed between the gate electrode and the channel part,
The variable resistance element is
A first electrode and a second electrode formed apart from each other;
A carbon nanotube, including a resistance portion in contact with the first electrode and the second electrode;
One of the first electrode and the second electrode is common to either the source electrode or the drain electrode.
 本発明によれば、印刷技術を利用して容易に製造できるメモリセルを実現できる。 According to the present invention, a memory cell that can be easily manufactured using a printing technique can be realized.
(2)このメモリセルは、
 前記ゲート電極は、前記基材の上に形成され、
 前記絶縁部は、前記ゲート電極の少なくとも一部を覆うように形成され、
 前記ソース電極及び前記ドレイン電極は、それぞれ前記絶縁部の少なくとも一部を覆うように形成され、
 前記チャネル部は、前記絶縁部の少なくとも一部を覆うように形成され、
 前記第1電極及び前記第2電極のいずれか他方と前記抵抗部とは、前記基材の上に形成されていてもよい。
(2) This memory cell
The gate electrode is formed on the substrate;
The insulating part is formed to cover at least a part of the gate electrode,
The source electrode and the drain electrode are formed so as to cover at least a part of the insulating part,
The channel part is formed so as to cover at least a part of the insulating part,
The other of the first electrode and the second electrode and the resistance portion may be formed on the base material.
(3)このメモリセルは、
 前記ソース電極、前記ドレイン電極及び前記チャネル部は、基材の上に形成され、
 前記絶縁部は、前記チャネル部の少なくとも一部を覆うように形成され、
 前記ゲート電極は、前記絶縁部の少なくとも一部を覆うように形成され、
 前記第1電極及び前記第2電極のいずれか他方と前記抵抗部とは、前記基材の上に形成されていてもよい。
(3) This memory cell
The source electrode, the drain electrode, and the channel portion are formed on a base material,
The insulating part is formed so as to cover at least a part of the channel part,
The gate electrode is formed so as to cover at least a part of the insulating portion;
The other of the first electrode and the second electrode and the resistance portion may be formed on the base material.
(4)このメモリセルは、
 前記チャネル部は、半導体性のカーボンナノチューブを含んでもよい。
(4) This memory cell
The channel portion may include semiconducting carbon nanotubes.
 これにより、メモリセルを構成するトランジスタのスイッチ特性が向上する。 This improves the switching characteristics of the transistors constituting the memory cell.
(5)このメモリセルは、
 前記抵抗部は、導電性のカーボンナノチューブを含んでもよい。
(5) This memory cell
The resistance portion may include a conductive carbon nanotube.
 これにより、メモリセルを構成する抵抗変化素子の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセルを実現できる。 As a result, the difference in resistance value between the low resistance state and the high resistance state of the variable resistance element constituting the memory cell increases. Therefore, a difference between reading of 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be realized.
(6)このメモリセルは、
 前記チャネル部は、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含んでもよい。
(6) This memory cell
The channel portion may include a multi-wall carbon nanotube having three or more layers so that the content is larger than the sum of the contents of the single-wall carbon nanotube and the double-wall carbon nanotube.
 3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセルを構成するトランジスタのスイッチ特性が向上する。 Multiwall carbon nanotubes of 3 or more layers usually show semiconducting properties. Therefore, the switch characteristics of the transistors constituting the memory cell are improved.
(7)このメモリセルは、
 前記抵抗部は、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含んでもよい。
(7) This memory cell
The resistance portion may include a single-wall carbon nanotube and a double-wall carbon nanotube in such a manner that the sum of the contents of the single-wall carbon nanotube and the double-wall carbon nanotube is larger than the content of the multi-wall carbon nanotube having three or more layers.
 シングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、非常に細いため電界などの力により曲がったり、熱的な振動によって屈曲が変化したりしやすい性質がある。すなわち、カーボンナノチューブ間の距離の変化を起こしやすい。このため、抵抗変化素子の電極間にあるカーボンナノチューブ間が電気的に接続されていない高抵抗な状態からクーロン力で引き付けられることにより電気的に接続された低抵抗状態への変化や、熱による振動を受けて低抵抗状態から電気的に接続されていない高抵抗状態への変化を起こしやすい。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセルを実現できる。 Single wall carbon nanotubes and double wall carbon nanotubes are so thin that they tend to bend due to the force of an electric field or the like, and bend easily change due to thermal vibration. That is, the distance between the carbon nanotubes is likely to change. For this reason, the carbon nanotubes between the electrodes of the resistance change element are changed from a high resistance state where the carbon nanotubes are not electrically connected to a low resistance state where the carbon nanotubes are attracted by Coulomb force, or due to heat. It is easy to cause a change from a low resistance state to a high resistance state that is not electrically connected due to vibration. Therefore, a difference between reading of 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be realized.
(8)本発明に係るメモリセルの製造方法の態様の一つは、
 基材の上に導電性インクを塗布してゲート電極を形成するゲート電極形成工程と、
 前記基材の上に導電性インクを塗布して、前記ゲート電極と離間して電極を形成する電極形成工程と、
 前記ゲート電極の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部を形成する絶縁部形成工程と、
 前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ゲート電極と絶縁されたソース電極を形成するソース電極形成工程と、
 前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ソース電極と離間し、前記ゲート電極と絶縁されたドレイン電極を形成するドレイン電極形成工程と、
 前記絶縁部の少なくとも一部を覆い、前記ソース電極及び前記ドレイン電極に接触するようにカーボンナノチューブインクを塗布して、前記ゲート電極と絶縁されたチャネル部を形成するチャネル部形成工程と、
 前記ソース電極及び前記ドレイン電極のいずれか一方と前記電極とに接触するようにカーボンナノチューブインクを塗布して抵抗部を形成する抵抗部形成工程と、
 を含む。
(8) One aspect of the method for manufacturing a memory cell according to the present invention is:
A gate electrode forming step of forming a gate electrode by applying a conductive ink on a substrate;
An electrode forming step of applying a conductive ink on the substrate and forming an electrode separated from the gate electrode;
An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the gate electrode;
A source electrode forming step of forming a source electrode insulated from the gate electrode by applying conductive ink so as to cover at least a part of the insulating portion;
A drain electrode forming step of applying a conductive ink so as to cover at least a part of the insulating portion, forming a drain electrode spaced apart from the source electrode and insulated from the gate electrode;
A channel part forming step of covering at least a part of the insulating part and applying a carbon nanotube ink so as to be in contact with the source electrode and the drain electrode to form a channel part insulated from the gate electrode;
A resistance part forming step of forming a resistance part by applying a carbon nanotube ink so as to be in contact with either the source electrode or the drain electrode and the electrode;
including.
 本発明によれば、不揮発性のメモリセルを、塗布技術や印刷技術を利用して容易に製造できる。 According to the present invention, a nonvolatile memory cell can be easily manufactured using a coating technique or a printing technique.
 また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセルを製造できる。 Further, the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
(9)本発明に係るメモリセルの製造方法の態様の一つは、
 基材の上に導電性インクを塗布してソース電極を形成するソース電極形成工程と、
 基材の上に導電性インクを塗布して、前記ソース電極と離間してドレイン電極を形成するドレイン電極形成工程と、
 基材の上に導電性インクを塗布して、前記ソース電極及び前記ドレイン電極と離間して電極を形成する電極形成工程と、
 基材の上にカーボンナノチューブインクを塗布して、前記ソース電極及び前記ドレイン電極と接触するチャネル部を形成するチャネル部形成工程と、
 基材の上にカーボンナノチューブインクを塗布して、前記ソース電極及び前記ドレイン電極のいずれか一方と前記電極とに接触する抵抗部を形成する抵抗部形成工程と、
 前記チャネル部の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部を形成する絶縁部形成工程と、
 前記絶縁部の少なくとも一部を覆い、前記ソース電極、前記ドレイン電極及び前記チャネル部と絶縁されたゲート電極を形成するゲート電極形成工程と、
 を含む。
(9) One aspect of the method for manufacturing a memory cell according to the present invention is:
A source electrode forming step of forming a source electrode by applying a conductive ink on a substrate;
A drain electrode forming step of applying a conductive ink on a substrate and forming a drain electrode apart from the source electrode;
An electrode forming step of applying a conductive ink on a substrate and forming an electrode apart from the source electrode and the drain electrode;
Applying a carbon nanotube ink on a substrate, and forming a channel part forming a channel part in contact with the source electrode and the drain electrode; and
A resistance part forming step of forming a resistance part in contact with either the source electrode or the drain electrode and the electrode by applying a carbon nanotube ink on a substrate;
An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the channel part;
Forming a gate electrode that covers at least a part of the insulating portion and forms a gate electrode insulated from the source electrode, the drain electrode, and the channel portion;
including.
 本発明によれば、不揮発性のメモリセルを、塗布技術や印刷技術を利用して容易に製造できる。 According to the present invention, a nonvolatile memory cell can be easily manufactured using a coating technique or a printing technique.
 また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセルを製造できる。 Further, the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
(10)本発明に係るメモリセルの製造方法の態様の一つは、
 基材の上に導電性インクを塗布してゲート電極を形成するゲート電極形成工程と、
 前記基材の上に導電性インクを塗布して、前記ゲート電極と離間して電極を形成する電極形成工程と、
 前記ゲート電極の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部を形成する絶縁部形成工程と、
 前記電極に接触するようにカーボンナノチューブインクを塗布して抵抗部を形成する抵抗部形成工程と、
 前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ゲート電極と絶縁されたソース電極を形成するソース電極形成工程と、
 前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ソース電極と離間し、前記ゲート電極と絶縁されたドレイン電極を形成するドレイン電極形成工程と、
 前記絶縁部の少なくとも一部を覆い、前記ソース電極及び前記ドレイン電極に接触するようにカーボンナノチューブインクを塗布して、前記ゲート電極と絶縁されたチャネル部を形成するチャネル部形成工程と、
 を含み、
 前記ソース電極形成工程及び前記ドレイン電極形成工程のいずれか一方において、前記抵抗部の少なくとも一部を覆うように導電性インクを塗布して前記ソース電極及び前記ドレイン電極のいずれか一方を形成する。
(10) One aspect of the method for manufacturing a memory cell according to the present invention is:
A gate electrode forming step of forming a gate electrode by applying a conductive ink on a substrate;
An electrode forming step of applying a conductive ink on the substrate and forming an electrode separated from the gate electrode;
An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the gate electrode;
A resistance part forming step of forming a resistance part by applying carbon nanotube ink so as to contact the electrode; and
A source electrode forming step of forming a source electrode insulated from the gate electrode by applying conductive ink so as to cover at least a part of the insulating portion;
A drain electrode forming step of applying a conductive ink so as to cover at least a part of the insulating portion, forming a drain electrode spaced apart from the source electrode and insulated from the gate electrode;
A channel part forming step of covering at least a part of the insulating part and applying a carbon nanotube ink so as to be in contact with the source electrode and the drain electrode to form a channel part insulated from the gate electrode;
Including
In any one of the source electrode forming step and the drain electrode forming step, conductive ink is applied so as to cover at least a part of the resistance portion, thereby forming either the source electrode or the drain electrode.
 本発明によれば、不揮発性のメモリセルを、塗布技術や印刷技術を利用して容易に製造できる。 According to the present invention, a nonvolatile memory cell can be easily manufactured using a coating technique or a printing technique.
 また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセルを製造できる。 Further, the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
(11)このメモリセルの製造方法は、
 前記チャネル部形成工程と前記抵抗部形成工程とを同一の工程として行ってもよい。
(11) A manufacturing method of this memory cell is as follows:
The channel portion forming step and the resistor portion forming step may be performed as the same step.
 これにより、より簡易な工程でメモリセルを製造できる。 This makes it possible to manufacture memory cells with simpler processes.
(12)このメモリセルの製造方法は、
 前記チャネル部形成工程において、半導体性のカーボンナノチューブを含む前記カーボンナノチューブインクを塗布してもよい。
(12) The manufacturing method of this memory cell is as follows:
In the channel part forming step, the carbon nanotube ink containing semiconducting carbon nanotubes may be applied.
 これにより、メモリセルを構成するトランジスタのスイッチ特性が向上する。 This improves the switching characteristics of the transistors constituting the memory cell.
(13)このメモリセルの製造方法は、
 前記抵抗部形成工程において、導電性のカーボンナノチューブを含む前記カーボンナノチューブインクを塗布してもよい。
(13) A manufacturing method of this memory cell is as follows:
In the resistance portion forming step, the carbon nanotube ink containing conductive carbon nanotubes may be applied.
 これにより、ソース電極及びドレイン電極のいずれか一方、第1電極及び抵抗部とで構成される抵抗変化素子の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセルを製造できる。 Thereby, the difference in resistance value between the low resistance state and the high resistance state of the variable resistance element constituted by one of the source electrode and the drain electrode, the first electrode, and the resistance portion is increased. Therefore, the difference between reading 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be manufactured.
(14)このメモリセルの製造方法は、
 前記チャネル部形成工程において、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含む前記カーボンナノチューブインクを塗布してもよい。
(14) A manufacturing method of this memory cell is as follows:
In the channel part forming step, the carbon nanotube ink may be applied so that the content of three or more layers of multi-wall carbon nanotubes is greater than the sum of the content of single-wall carbon nanotubes and double-wall carbon nanotubes. Good.
 3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセルを構成するトランジスタのスイッチ特性が向上する。 Multiwall carbon nanotubes of 3 or more layers usually show semiconducting properties. Therefore, the switch characteristics of the transistors constituting the memory cell are improved.
(15)このメモリセルの製造方法は、
 前記抵抗部形成工程において、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含む前記カーボンナノチューブインクを塗布してもよい。
(15) A manufacturing method of this memory cell is as follows:
In the resistance portion forming step, the carbon nanotube ink may be applied so that the sum of the content of the single wall carbon nanotube and the double wall carbon nanotube is larger than the content of the multi-wall carbon nanotube of three or more layers. Good.
 シングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、非常に細いため電界などの力により曲がったり、熱的な振動によって屈曲が変化したりしやすい性質がある。すなわち、カーボンナノチューブ間の距離の変化を起こしやすい。このため、抵抗部にあるカーボンナノチューブ間が電気的に接続されていない高抵抗な状態からクーロン力で引き付けられることにより電気的に接続された低抵抗状態への変化や、熱による振動を受けて低抵抗状態から電気的に接続されていない高抵抗状態への変化を起こしやすい。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセルを製造できる。 Single wall carbon nanotubes and double wall carbon nanotubes are so thin that they tend to bend due to the force of an electric field or the like, and bend easily change due to thermal vibration. That is, the distance between the carbon nanotubes is likely to change. For this reason, the carbon nanotubes in the resistance portion are subjected to a change from a high resistance state where the carbon nanotubes are not electrically connected to a low resistance state where the carbon nanotubes are attracted by a Coulomb force, and vibration due to heat. It tends to change from a low resistance state to a high resistance state that is not electrically connected. Therefore, the difference between reading 1 and 0 becomes clear, and a memory cell that can obtain good memory characteristics can be manufactured.
図1(A)は、第1実施形態に係るメモリセルの構造を模式的に示す平面図、図1(B)は、図1(A)のA-A線における断面図である。FIG. 1A is a plan view schematically showing the structure of the memory cell according to the first embodiment, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 図2は、第1実施形態に係るメモリセルの等価回路図である。FIG. 2 is an equivalent circuit diagram of the memory cell according to the first embodiment. 図3は、第1実施形態に係るメモリセルを用いたメモリ回路の一例を表す回路図である。FIG. 3 is a circuit diagram illustrating an example of a memory circuit using the memory cell according to the first embodiment. 図4は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 4 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図5は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 5 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図6は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図7は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 7 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図8は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 8 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図9は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 9 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図10は、第1実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 10 is a diagram for explaining the method of manufacturing the memory cell according to the first embodiment. 図11(A)は、第2実施形態に係るメモリセルの構造を模式的に示す平面図、図11(B)は、図11(A)のA-A線における断面図である。FIG. 11A is a plan view schematically showing the structure of the memory cell according to the second embodiment, and FIG. 11B is a cross-sectional view taken along the line AA in FIG. 11A. 図12は、第2実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 12 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment. 図13は、第2実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 13 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment. 図14は、第2実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 14 is a view for explaining the method for manufacturing the memory cell according to the second embodiment. 図15は、第2実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 15 is a view for explaining the method of manufacturing the memory cell according to the second embodiment. 図16は、第2実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 16 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment. 図17は、第2実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 17 is a diagram for explaining the method of manufacturing the memory cell according to the second embodiment. 図18(A)は、第3実施形態に係るメモリセルの構造を模式的に示す平面図、図18(B)は、図18(A)のA-A線における断面図である。18A is a plan view schematically showing the structure of the memory cell according to the third embodiment, and FIG. 18B is a cross-sectional view taken along the line AA in FIG. 18A. 図19は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 19 is a view for explaining the method for manufacturing the memory cell according to the third embodiment. 図20は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 20 is a diagram for explaining the method of manufacturing the memory cell according to the third embodiment. 図21は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 21 is a diagram for explaining the method of manufacturing the memory cell according to the third embodiment. 図22は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 22 is a view for explaining the method for manufacturing the memory cell according to the third embodiment. 図23は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 23 is a view for explaining the method for manufacturing the memory cell according to the third embodiment. 図24は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 24 is a view for explaining the method for manufacturing the memory cell according to the third embodiment. 図25は、第3実施形態に係るメモリセルの製造方法を説明するための図である。FIG. 25 is a view for explaining the method of manufacturing the memory cell according to the third embodiment. 図26(A)は、第3実施形態に係るメモリセルを用いたメモリブロックの構造を模式的に示す平面図、図26(B)は、図26(A)のA-A線における断面図である。FIG. 26A is a plan view schematically showing the structure of a memory block using the memory cell according to the third embodiment, and FIG. 26B is a cross-sectional view taken along the line AA in FIG. It is. 図27は、メモリブロックの等価回路図である。FIG. 27 is an equivalent circuit diagram of the memory block. 図28は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 28 is a diagram for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment. 図29は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 29 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment. 図30は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 30 is a diagram for explaining a method of manufacturing a memory block using the memory cell according to the third embodiment. 図31は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 31 is a diagram for explaining a method of manufacturing a memory block using memory cells according to the third embodiment. 図32は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 32 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment. 図33は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 33 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment. 図34は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。FIG. 34 is a view for explaining the method of manufacturing the memory block using the memory cell according to the third embodiment.
 以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below do not unduly limit the contents of the present invention described in the claims. Also, not all of the configurations described below are essential constituent requirements of the present invention.
 なお、本実施形態に係る記載では、「上」という文言を、例えば、「特定のもの(以下「A」という)の「上」に他の特定のもの(以下「B」という)を形成する」などと用いている。本実施形態に係る記載では、この例のような場合に、A上に直接Bを形成するような場合と、A上に他のものを介してBを形成するような場合とが含まれるものとして、「上」という文言を用いている。 In the description according to the present embodiment, the word “above” is formed, for example, as “above” “being specified” (hereinafter referred to as “A”) and other specified items (hereinafter referred to as “B”). And so on. The description according to the present embodiment includes a case where B is formed directly on A and a case where B is formed on A via another in the case of this example. The word “above” is used.
1.第1実施形態のメモリセル
1-1.メモリセルの構造
 図1(A)は、第1実施形態に係るメモリセルの構造を模式的に示す平面図、図1(B)は、図1(A)のA-A線における断面図、図2は、第1実施形態に係るメモリセルの等価回路図である。
1. Memory Cell 1-1 of First Embodiment 1-1. Structure of Memory Cell FIG. 1A is a plan view schematically showing the structure of the memory cell according to the first embodiment, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. FIG. 2 is an equivalent circuit diagram of the memory cell according to the first embodiment.
 第1実施形態に係るメモリセル1は、基材10の上に形成されたトランジスタT1と抵抗変化素子RC1とを含む。基材10は、例えば、PETフィルムや薄いガラス膜などで構成されていてもよい。基材10は、耐熱性の高いフィルム膜の方が望ましい。 The memory cell 1 according to the first embodiment includes a transistor T1 and a resistance change element RC1 formed on a base material 10. The base material 10 may be composed of, for example, a PET film or a thin glass film. The substrate 10 is preferably a film film having high heat resistance.
 トランジスタT1は、ゲート電極20、絶縁部40、ソース電極50、ドレイン電極60及びチャネル部70を含む。また、抵抗変化素子RC1は、電極30及び抵抗部80を含む。 The transistor T1 includes a gate electrode 20, an insulating part 40, a source electrode 50, a drain electrode 60, and a channel part 70. The resistance change element RC <b> 1 includes the electrode 30 and the resistance unit 80.
 ゲート電極20は、図2におけるトランジスタT1のゲート電極Gとして機能する。図1(A)及び図1(B)に示すように、ゲート電極20は、基材10の上に形成されている。また、ゲート電極20は、導電性インクを用いて形成されてもよい。ゲート電極20は、例えば、基材10に導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、例えば、Agナノ粒子の混ざった導電性Agペースト(ハリマ化成株式会社製)で構成されていてもよい。 The gate electrode 20 functions as the gate electrode G of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the gate electrode 20 is formed on the base material 10. The gate electrode 20 may be formed using a conductive ink. The gate electrode 20 may be formed, for example, by applying conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of, for example, a conductive Ag paste (manufactured by Harima Chemical Co., Ltd.) mixed with Ag nanoparticles.
 絶縁部40は、図2におけるトランジスタT1のゲート絶縁膜として機能する。図1(A)及び図1(B)に示すように、絶縁部40は、ゲート電極20の少なくとも一部を覆うように形成されている。また、絶縁部40は、ゲート電極20と後述するチャネル部70との間に介在するように形成されている。また、絶縁部40は、絶縁性インクを用いて形成されてもよい。絶縁部40は、例えば、ゲート電極20の少なくとも一部を覆うように絶縁性インクを塗布し、絶縁性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。絶縁性インクは、例えば、AlやSrTiOなどの高誘電体のナノ粒子(例えば3.6nm径)を有機物に分散させてインクにしたものなどで構成されていてもよい。 The insulating part 40 functions as a gate insulating film of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the insulating portion 40 is formed so as to cover at least a part of the gate electrode 20. The insulating portion 40 is formed so as to be interposed between the gate electrode 20 and a channel portion 70 described later. The insulating unit 40 may be formed using an insulating ink. The insulating unit 40 may be formed, for example, by applying an insulating ink so as to cover at least a part of the gate electrode 20 and volatilizing the solvent (or dispersion medium) of the insulating ink. The insulating ink may be composed of, for example, ink obtained by dispersing high dielectric nanoparticles (eg, 3.6 nm diameter) such as Al 2 O 3 and SrTiO 3 in an organic substance.
 ソース電極50は、図2におけるトランジスタT1のソース電極Sとして機能し、合わせて抵抗変化素子RC1の一部を構成する。図1(A)及び図1(B)に示すように、ソース電極50は、絶縁部40の少なくとも一部を覆うように形成されている。ソース電極50は、ゲート電極20及び電極30とは接触しないように形成されている。また、ソース電極50は、導電性インクを用いて形成されてもよい。ソース電極50は、例えば、絶縁部40の少なくとも一部を覆うように導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ゲート電極20を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The source electrode 50 functions as the source electrode S of the transistor T1 in FIG. 2, and together forms a part of the resistance change element RC1. As shown in FIGS. 1A and 1B, the source electrode 50 is formed so as to cover at least a part of the insulating portion 40. The source electrode 50 is formed so as not to contact the gate electrode 20 and the electrode 30. The source electrode 50 may be formed using a conductive ink. The source electrode 50 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
 ドレイン電極60は、図2におけるトランジスタT1のドレイン電極Dとして機能する。図1(A)及び図1(B)に示すように、ドレイン電極60は、絶縁部40の少なくとも一部を覆うように形成されている。ドレイン電極60は、ゲート電極20、電極30及びソース電極50とは、互いに接触しないように形成されている。また、ドレイン電極60は、導電性インクを用いて形成されてもよい。ドレイン電極60は、例えば、絶縁部40の少なくとも一部を覆うように導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ゲート電極20を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The drain electrode 60 functions as the drain electrode D of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the drain electrode 60 is formed so as to cover at least a part of the insulating portion 40. The drain electrode 60 is formed so as not to contact the gate electrode 20, the electrode 30, and the source electrode 50. Further, the drain electrode 60 may be formed using a conductive ink. The drain electrode 60 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
 チャネル部70は、図2におけるトランジスタT1のチャネル形成領域として機能する。図1(A)及び図1(B)に示すように、チャネル部70は、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60と接触して形成されている。また、チャネル部70は、基材10の法線方向から見たときに、ゲート電極20の少なくとも一部と重なるように形成されている。 The channel unit 70 functions as a channel formation region of the transistor T1 in FIG. As shown in FIGS. 1A and 1B, the channel part 70 covers at least a part of the insulating part 40 and is formed in contact with the source electrode 50 and the drain electrode 60. Further, the channel portion 70 is formed so as to overlap at least a part of the gate electrode 20 when viewed from the normal direction of the substrate 10.
 チャネル部70は、カーボンナノチューブを含む。チャネル部70は、カーボンナノチューブインクを用いて形成されてもよい。カーボンナノチューブインクは、カーボンナノチューブを含んだ分散液である。チャネル部70は、例えば、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60と接触するようにカーボンナノチューブインクを塗布し、カーボンナノチューブインクの分散媒を揮発させて形成されてもよい。 The channel part 70 includes carbon nanotubes. The channel part 70 may be formed using a carbon nanotube ink. Carbon nanotube ink is a dispersion containing carbon nanotubes. For example, the channel part 70 may be formed by covering at least a part of the insulating part 40, applying carbon nanotube ink so as to be in contact with the source electrode 50 and the drain electrode 60, and volatilizing the dispersion medium of the carbon nanotube ink. Good.
 チャネル部70を形成するためのカーボンナノチューブは、半導体性のカーボンナノチューブを含んでもよい。さらに、チャネル部70を形成するためのカーボンナノチューブは、金属性(導電性)のカーボンナノチューブよりも半導体性のカーボンナノチューブを多く含んでもよい。これにより、メモリセル1を構成するトランジスタのスイッチ特性が向上する。 The carbon nanotubes for forming the channel part 70 may include semiconducting carbon nanotubes. Furthermore, the carbon nanotubes for forming the channel part 70 may contain more semiconducting carbon nanotubes than metallic (conductive) carbon nanotubes. Thereby, the switch characteristics of the transistors constituting the memory cell 1 are improved.
 チャネル部70を形成するためのカーボンナノチューブは、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含んでもよい。3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセル1を構成するトランジスタのスイッチ特性が向上する。 The carbon nanotubes for forming the channel part 70 may be included so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistors constituting the memory cell 1 are improved.
 電極30は、図2における抵抗変化素子RC1の一部を構成する。図1(A)及び図1(B)に示すように、電極30は、基材10の上に形成されている。また、電極30は、ゲート電極20、ソース電極50及びドレイン電極60と接触しないように形成されている。また、電極30は、導電性インクを用いて形成されてもよい。電極30は、例えば、基材10に導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ゲート電極20を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The electrode 30 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 1A and 1B, the electrode 30 is formed on the substrate 10. The electrode 30 is formed so as not to contact the gate electrode 20, the source electrode 50 and the drain electrode 60. The electrode 30 may be formed using a conductive ink. The electrode 30 may be formed, for example, by applying a conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
 抵抗部80は、図2における抵抗変化素子RC1の一部を構成する。図1(A)及び図1(B)に示すように、抵抗部80は、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触して形成されている。すなわち、ソース電極50及びドレイン電極60のいずれか一方は、抵抗変化素子RC1の一方の電極を兼ねている。図1(A)及び図1(B)に示す例では、抵抗部80は、ソース電極50と電極30とに接触して形成されている。また、図1(A)及び図1(B)に示す例では、抵抗部80は、基材10の上に形成されている。 The resistance unit 80 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 1A and 1B, the resistance portion 80 is formed in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30. That is, one of the source electrode 50 and the drain electrode 60 also serves as one electrode of the resistance change element RC1. In the example shown in FIGS. 1A and 1B, the resistance portion 80 is formed in contact with the source electrode 50 and the electrode 30. In the example shown in FIGS. 1A and 1B, the resistance portion 80 is formed on the base material 10.
 抵抗部80は、カーボンナノチューブを含む。カーボンナノチューブインクを用いて形成されてもよい。抵抗部80は、例えば、ソース電極50と電極30とに接触するようにカーボンナノチューブインクを塗布し、カーボンナノチューブインクの分散媒を揮発させて形成されてもよい。 The resistance unit 80 includes carbon nanotubes. It may be formed using carbon nanotube ink. The resistance unit 80 may be formed, for example, by applying a carbon nanotube ink so as to contact the source electrode 50 and the electrode 30 and volatilizing the dispersion medium of the carbon nanotube ink.
 抵抗部80を形成するためのカーボンナノチューブは、導電性のカーボンナノチューブを含んでもよい。さらに、抵抗部80を形成するためのカーボンナノチューブは、半導体性のカーボンナノチューブよりも金属性(導電性)のカーボンナノチューブを多く含んでもよい。これにより、メモリセル1を構成する抵抗変化素子RC1の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル1を実現できる。 The carbon nanotubes for forming the resistance portion 80 may include conductive carbon nanotubes. Furthermore, the carbon nanotubes for forming the resistance portion 80 may contain more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes. Thereby, the difference in resistance value between the low resistance state and the high resistance state of the resistance change element RC1 constituting the memory cell 1 is increased. Therefore, the memory cell 1 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
 抵抗部80を形成するためのカーボンナノチューブは、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含んでもよい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル1を実現できる。 The carbon nanotubes for forming the resistance portion 80 may be included so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 1 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
 第1実施形態に係るメモリセル1のソース電極50及びドレイン電極60のうち抵抗変化素子RC1と接続していない一方は、ビット線110と電気的に接続されてもよい。図1(A)及び図1(B)に示す例では、ドレイン電極60がビット線110と電気的に接続されている。 One of the source electrode 50 and the drain electrode 60 of the memory cell 1 according to the first embodiment that is not connected to the resistance change element RC1 may be electrically connected to the bit line 110. In the example shown in FIGS. 1A and 1B, the drain electrode 60 is electrically connected to the bit line 110.
 ビット線110とメモリセル1のドレイン電極60以外の部材とが電気的に接続しないように、層間絶縁膜90を設けてもよい。例えば、絶縁性があり、回路性能に影響を及ぼさない充填材で層間絶縁膜90を構成してもよい。図1(A)及び図1(B)に示すように、ビット線110は、層間絶縁膜90に設けられたコンタクトホール100を介してドレイン電極60と電気的に接続している。 An interlayer insulating film 90 may be provided so that the bit line 110 and members other than the drain electrode 60 of the memory cell 1 are not electrically connected. For example, the interlayer insulating film 90 may be made of a filler that is insulative and does not affect circuit performance. As shown in FIGS. 1A and 1B, the bit line 110 is electrically connected to the drain electrode 60 through a contact hole 100 provided in the interlayer insulating film 90.
 第1実施形態に係るメモリセル1は、少なくともビット線110を覆うような保護膜120で覆われていてもよい。例えば、絶縁性の材料で保護膜120を構成してもよい。 The memory cell 1 according to the first embodiment may be covered with a protective film 120 that covers at least the bit line 110. For example, the protective film 120 may be made of an insulating material.
 なお、図1(A)及び図1(B)に示す例では、ゲート電極20、電極30及び抵抗部80と基材10との間に何も介在させない例を示しているが、他の部材を介在させた構成も可能である。例えば、ゲート電極20、電極30及び抵抗部80と基材10との間に絶縁部40や他の絶縁膜を介在させた構成も可能である。 1A and 1B shows an example in which nothing is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80, but other members. It is also possible to adopt a configuration with intervening. For example, a configuration in which the insulating portion 40 or another insulating film is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80 is also possible.
 第1実施形態に係るメモリセル1によれば、印刷技術を利用して容易に製造できるメモリセルを実現できる。 According to the memory cell 1 according to the first embodiment, a memory cell that can be easily manufactured using a printing technique can be realized.
1-2.抵抗変化素子
 第1実施形態における抵抗変化素子RC1は、電極30とソース電極50の2つの電極間に存在する複数のカーボンナノチューブを含み、相対的に低抵抗となる低抵抗状態と相対的に高抵抗となる高抵抗状態のいずれかの状態をとる。すなわち、第1実施形態における抵抗変化素子RC1は、スイッチ素子として機能できる。
1-2. Resistance Change Element The resistance change element RC1 in the first embodiment includes a plurality of carbon nanotubes existing between two electrodes, the electrode 30 and the source electrode 50, and has a relatively low resistance state and a relatively high resistance. It takes one of the high resistance states that become resistance. That is, the resistance change element RC1 in the first embodiment can function as a switch element.
 また、第1実施形態における抵抗変化素子RC1は、2つの電極間に電圧及び電流が印加されていない場合又は電源が遮断された場合には、高抵抗状態又は低抵抗状態を保持する。また、抵抗変化素子RC1は、2つの電極間に電圧及び電流が印加されることにより、高抵抗状態と低抵抗状態のいずれかの状態に変化する。すなわち、第1実施形態における抵抗変化素子RC1は、不揮発性のスイッチ素子として機能できる。 In addition, the resistance change element RC1 in the first embodiment maintains the high resistance state or the low resistance state when voltage and current are not applied between the two electrodes or when the power supply is shut off. The resistance change element RC1 changes to either a high resistance state or a low resistance state when a voltage and a current are applied between the two electrodes. That is, the resistance change element RC1 in the first embodiment can function as a nonvolatile switch element.
 第1実施形態における抵抗変化素子RC1は、2つの電極間にから印加される第1電圧V1と第1電流I1により流れる電流による発熱により、抵抗変化素子RC1に含まれる複数のカーボンナノチューブ間の距離が2つの電極間を電気的に接続するような位置関係から2つの電極間を電気的に接続しないような位置関係に変化することによって低抵抗状態から高抵抗状態に変化する。また、抵抗変化素子RC1は、2つの電極間に印加される第2電圧V2に基づくクーロン力によって2つの電極間を電気的に接続しないような位置関係から2つの電極間を電気的に接続するような位置関係に変化することによって高抵抗状態から低抵抗状態に変化する。通常、第1電圧V1は第2電圧V2よりも大きくてもよい。 The resistance change element RC1 according to the first embodiment is a distance between a plurality of carbon nanotubes included in the resistance change element RC1 due to heat generated by a current flowing through the first voltage V1 and the first current I1 applied between two electrodes. Changes from a positional relationship in which the two electrodes are electrically connected to a positional relationship in which the two electrodes are not electrically connected, thereby changing from the low resistance state to the high resistance state. In addition, the resistance change element RC1 electrically connects the two electrodes from a positional relationship such that the two electrodes are not electrically connected by a Coulomb force based on the second voltage V2 applied between the two electrodes. By changing to such a positional relationship, the high resistance state is changed to the low resistance state. In general, the first voltage V1 may be greater than the second voltage V2.
 前記発熱は、カーボンナノチューブを流れる電流により発生したジュール熱であるが、カーボンナノチューブに近い領域での発熱部位(電極やその接続部など)の抵抗により発生するジュール熱による発熱でもよい。カーボンナノチューブは熱伝導性が良く局所的に発生した熱が伝わりやすいという性質を持っている。ジュール熱による格子散乱を実現するためには第1の電流値I1の設定が重要である。第1実施形態におけるメモリセル1をメモリ回路に用いる場合には、回路の規模、組み込むトランジスタの内部抵抗、配線部の抵抗などの大きさによって電流値を設定するのが望ましい。ここでは、第2電圧V2を印加した場合に抵抗変化素子に流れる電流を第2電流I2としたときにI1>I2の関係となるように第1電流I1を設定する。 The heat generation is Joule heat generated by the current flowing through the carbon nanotubes, but it may be heat generation by Joule heat generated by the resistance of the heat generation part (electrode, connection portion thereof, etc.) in the region close to the carbon nanotubes. Carbon nanotubes have a good thermal conductivity and easily transmit locally generated heat. In order to realize lattice scattering due to Joule heat, setting of the first current value I1 is important. When the memory cell 1 in the first embodiment is used in a memory circuit, it is desirable to set the current value according to the size of the circuit, the internal resistance of the transistor to be incorporated, the resistance of the wiring portion, and the like. Here, when the second voltage V2 is applied, the first current I1 is set so that the relationship of I1> I2 is established when the current flowing through the variable resistance element is the second current I2.
 このような、第1実施形態における抵抗変化素子RC1は、DRAMやフラッシュメモリのような電荷を貯める方式に比べて高速なスイッチ素子として動作できる。 Such a resistance change element RC1 in the first embodiment can operate as a high-speed switching element as compared with a method of storing charges such as a DRAM or a flash memory.
 さらに、第1実施形態における抵抗変化素子RC1は、例えばフラッシュメモリのように、電子がトランジスタの絶縁酸化膜を貫通する構成に比べて、状態変化に対する耐久性が高い。したがって、書き換え寿命の長いメモリセル1を実現することができる。 Furthermore, the resistance change element RC1 in the first embodiment has higher durability against state changes than a configuration in which electrons penetrate the insulating oxide film of the transistor, such as a flash memory. Therefore, the memory cell 1 having a long rewrite life can be realized.
 第1実施形態における抵抗変化素子RC1は、導電性のカーボンナノチューブを含んでもよい。さらに、抵抗変化素子RC1は、半導体性のカーボンナノチューブよりも金属性のカーボンナノチューブを多く含むことが好ましい。金属性(導電性)のカーボンナノチューブを多く含むことにより、低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、「1」を表すデータと「0」を表すデータとの差が明確になり信頼性の高い良好なメモリ特性が得られる。 The resistance change element RC1 in the first embodiment may include conductive carbon nanotubes. Furthermore, the resistance change element RC1 preferably contains more metallic carbon nanotubes than semiconducting carbon nanotubes. By including many metallic (conductive) carbon nanotubes, the difference in resistance value between the low resistance state and the high resistance state is increased. Therefore, the difference between the data representing “1” and the data representing “0” becomes clear, and good memory characteristics with high reliability can be obtained.
 第1実施形態における抵抗変化素子RC1は、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含むことが好ましい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、低抵抗状態と高抵抗状態の抵抗値の差が大きくなり、良好なメモリ特性が得られる。 The resistance change element RC1 in the first embodiment preferably includes the total content of single-walled carbon nanotubes and double-walled carbon nanotubes to be larger than the content of multi-walled carbon nanotubes of three or more layers. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the difference in resistance value between the low resistance state and the high resistance state becomes large, and good memory characteristics can be obtained.
1-3.メモリセルを用いたメモリ回路
 図3は、第1実施形態に係るメモリセル1を用いたメモリ回路の一例を表す回路図である。
1-3. Memory Circuit Using Memory Cell FIG. 3 is a circuit diagram illustrating an example of a memory circuit using the memory cell 1 according to the first embodiment.
 図3に示すメモリ回路100は、4個のメモリセルCell-1~Cell-4を直列接続して含むメモリブロック110を含んでいる。メモリセルCell-1~Cell-4は、第1実施形態に係るメモリセル1である。メモリブロック110に含まれるメモリセルの数は、任意の自然数とすることができる。また、図3に示す例では、メモリセルCell-1に含まれる第1トランジスタT1のドレイン端子は、ビット線BL1に接続されている。 The memory circuit 100 shown in FIG. 3 includes a memory block 110 including four memory cells Cell-1 to Cell-4 connected in series. The memory cells Cell-1 to Cell-4 are the memory cell 1 according to the first embodiment. The number of memory cells included in the memory block 110 can be any natural number. In the example shown in FIG. 3, the drain terminal of the first transistor T1 included in the memory cell Cell-1 is connected to the bit line BL1.
 直列接続されたメモリセルCell-1~Cell-4に含まれる第1のトランジスタT1~第4のトランジスタT4の各ゲート電極は、それぞれ異なるワード線に接続されている。図1に示す例では、第1トランジスタT1のゲート電極はワード線WL1に、第2トランジスタT2のゲート電極はワード線WL2に、第3トランジスタT3のゲート電極はワード線WL3に、第4トランジスタT4のゲート電極はワード線WL4に、それぞれ接続されている。 The gate electrodes of the first transistor T1 to the fourth transistor T4 included in the memory cells Cell-1 to Cell-4 connected in series are connected to different word lines. In the example shown in FIG. 1, the gate electrode of the first transistor T1 is on the word line WL1, the gate electrode of the second transistor T2 is on the word line WL2, the gate electrode of the third transistor T3 is on the word line WL3, and the fourth transistor T4. Are respectively connected to the word line WL4.
 直列接続されたメモリセルCell-1~Cell-4に含まれる第1のトランジスタT1~第4のトランジスタT4の各ソース電極は、少なくともそれぞれ異なる抵抗変化素子を介して、それぞれ異なるプログラム線に接続されている。図1に示す例では、第1のトランジスタT1のソース電極は抵抗変化素子RC1を介してプログラム線PL1に、第2のトランジスタT2のソース電極は抵抗変化素子RC2を介してプログラム線PL2に、第3のトランジスタT3のソース電極は抵抗変化素子RC3を介してプログラム線PL3に、第4のトランジスタT4のソース電極は抵抗変化素子RC4を介してプログラム線PL4に、それぞれ接続されている。 The source electrodes of the first transistor T1 to the fourth transistor T4 included in the memory cells Cell-1 to Cell-4 connected in series are connected to different program lines through at least different resistance change elements. ing. In the example shown in FIG. 1, the source electrode of the first transistor T1 is connected to the program line PL1 via the resistance change element RC1, and the source electrode of the second transistor T2 is connected to the program line PL2 via the resistance change element RC2. The source electrode of the third transistor T3 is connected to the program line PL3 via the resistance change element RC3, and the source electrode of the fourth transistor T4 is connected to the program line PL4 via the resistance change element RC4.
 図3に示すメモリ回路100は、制御回路200を含む。制御回路200は、ビット線BL1、ワード線WL1~WL4及びプログラム線PL1~PL4の少なくとも1つに電圧及び電流を印加することにより、メモリセルCell-1~Cell-4に含まれる抵抗変化素子RC1~RC4の2つの電極間に電圧及び電流を印加し、抵抗変化素子RC1~RC4の状態を、低抵抗状態と高抵抗状態のいずれかの状態に変化させる。制御回路200は、ビット線BL1、ワード線WL1~WL4及びプログラム線PL1~PL4に対して、それぞれ異なるタイミングで、それぞれ異なる電圧及び電流を印加することができる。すなわち、ビット線BL1、ワード線WL1~WL4及びプログラム線PL1~PL4は、それぞれ互いに独立した制御線である。第1実施形態においては、制御回路200は、ビット線BL1に電圧を印加するためのBL制御回路202、ワード線WL1~WL4に電圧を印加するためのWL制御回路204、プログラム線PL1~PL4に電圧及び電流を印加するためのPL制御回路206を含んで構成されている。 The memory circuit 100 shown in FIG. The control circuit 200 applies a voltage and a current to at least one of the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4, thereby changing the resistance change element RC1 included in the memory cells Cell-1 to Cell-4. Voltage and current are applied between the two electrodes RC4 to RC4 to change the state of the resistance change elements RC1 to RC4 to either the low resistance state or the high resistance state. The control circuit 200 can apply different voltages and currents to the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4 at different timings. That is, the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4 are independent control lines. In the first embodiment, the control circuit 200 applies a BL control circuit 202 for applying a voltage to the bit line BL1, a WL control circuit 204 for applying a voltage to the word lines WL1 to WL4, and program lines PL1 to PL4. A PL control circuit 206 for applying a voltage and a current is included.
 制御回路200が、ビット線BL1、ワード線WL1~WL4及びプログラム線PL1~PL4の少なくとも1つに電圧及び電流を印加することにより、例えば、抵抗変化素子RC1~RC4の状態が低抵抗状態となる場合を「1」、高抵抗状態となる場合を「0」とするメモリ回路100として機能させることができる。 When the control circuit 200 applies voltage and current to at least one of the bit line BL1, the word lines WL1 to WL4, and the program lines PL1 to PL4, for example, the state of the resistance change elements RC1 to RC4 becomes a low resistance state. The memory circuit 100 can function as “1” for the case and “0” for the high resistance state.
 このように、第1実施形態に係るメモリセル1は、印刷技術を利用して容易に製造できるメモリセルとしてメモリ回路に利用することができる。 As described above, the memory cell 1 according to the first embodiment can be used in a memory circuit as a memory cell that can be easily manufactured by using a printing technique.
 なお、上述の例ではNAND構成のメモリ回路を例に説明したが、第1実施形態に係るメモリセル1を利用したメモリ回路の回路構成としては、上述の例に限られず周知・公知の種々の回路構成が可能である。 In the above example, the NAND-structured memory circuit has been described as an example. However, the circuit configuration of the memory circuit using the memory cell 1 according to the first embodiment is not limited to the above-described example, and various known and publicly known circuits can be used. A circuit configuration is possible.
2.第1実施形態のメモリセルの製造方法
 次に、第1実施形態に係るメモリセルの製造方法について説明する。図4~図10は、第1実施形態に係るメモリセルの製造方法を説明するための図である。図4~図10の各図において、(A)はメモリセルの製造過程における平面図、(B)は(A)のA-A線における断面図を表す。
2. Manufacturing Method of Memory Cell of First Embodiment Next, a manufacturing method of the memory cell according to the first embodiment will be described. 4 to 10 are views for explaining a method of manufacturing the memory cell according to the first embodiment. 4A to 10A, FIG. 4A is a plan view in the process of manufacturing a memory cell, and FIG. 4B is a sectional view taken along line AA in FIG.
 第1実施形態に係るメモリセルの製造方法は、基材10の上に導電性インクを塗布してゲート電極20を形成するゲート電極形成工程と、基材10の上に導電性インクを塗布して、ゲート電極20と離間して電極30を形成する電極形成工程と、ゲート電極20の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40を形成する絶縁部形成工程と、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20と絶縁されたソース電極50を形成するソース電極形成工程と、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50と離間し、ゲート電極20と絶縁されたドレイン電極60を形成するドレイン電極形成工程と、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20と絶縁されたチャネル部70を形成するチャネル部形成工程と、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触するようにカーボンナノチューブインクを塗布して抵抗部80を形成する抵抗部形成工程と、を含む。 The method of manufacturing a memory cell according to the first embodiment includes a gate electrode forming step of forming a gate electrode 20 by applying a conductive ink on a substrate 10, and applying a conductive ink on the substrate 10. An electrode forming step for forming the electrode 30 apart from the gate electrode 20; an insulating portion forming step for forming an insulating portion 40 by applying an insulating ink so as to cover at least a part of the gate electrode 20; A conductive electrode is applied so as to cover at least a portion of the portion 40 to form a source electrode 50 insulated from the gate electrode 20; and a conductive property is formed so as to cover at least a portion of the insulating portion 40. A drain electrode forming step of applying ink to separate the source electrode 50 and forming the drain electrode 60 insulated from the gate electrode 20, covering at least part of the insulating portion 40, and covering the source electrode 5 The carbon nanotube ink is applied so as to be in contact with the drain electrode 60 to form a channel portion 70 that is insulated from the gate electrode 20, and one of the source electrode 50 and the drain electrode 60 and the electrode 30. And a resistance part forming step of forming the resistance part 80 by applying the carbon nanotube ink so as to be in contact with the resistance part.
 以下、各工程について具体例を用いて説明する。なお、導電性インク、絶縁性インク及びカーボンナノチューブインクを塗布する工程は、スクリーン印刷やインクジェットプリンタ等を用いた印刷技術を用いて塗布する例について説明する。 Hereinafter, each process will be described using specific examples. In addition, the process of apply | coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example apply | coated using the printing technique using screen printing, an inkjet printer, etc. FIG.
 まず、図4(A)及び図4(B)に示すように、基材10の上に導電性インクを塗布してゲート電極20を形成するゲート電極形成工程と、基材10の上に導電性インクを塗布して、ゲート電極20と離間して電極30を形成する電極形成工程とを行う。基材10は、例えば、PETフィルムや薄膜のガラス基板などで構成されていてもよい。基材10は、耐熱性の高いフィルムの方が望ましい。導電性インクは、例えば、Agナノ粒子の含まれたAg導電性ペースト(ハリマ化成株式会社製)などで構成されていてもよい。 First, as shown in FIGS. 4A and 4B, a gate electrode forming step of forming a gate electrode 20 by applying a conductive ink on the base material 10, and conducting on the base material 10. An electrode forming step of applying a conductive ink and forming the electrode 30 apart from the gate electrode 20 is performed. The substrate 10 may be composed of, for example, a PET film or a thin glass substrate. The substrate 10 is preferably a film having high heat resistance. The conductive ink may be composed of, for example, an Ag conductive paste containing Ag nanoparticles (manufactured by Harima Chemical Co., Ltd.).
 ゲート電極形成工程と電極形成工程とは、同一の工程で行ってもよいし、それぞれ異なる工程で行ってもよい。図4(A)及び図4(B)に示す例では、ゲート電極形成工程と電極形成工程とで同一の材料からなる導電性インクを用い、ゲート電極形成工程と電極形成工程とを同一の工程として行っている。また、基材10の上に塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、基材10の上にゲート電極20と電極30とを形成している。 The gate electrode formation step and the electrode formation step may be performed in the same step or in different steps. In the example shown in FIGS. 4A and 4B, the gate electrode formation step and the electrode formation step are the same step using conductive ink made of the same material in the gate electrode formation step and the electrode formation step. As you go. In addition, the gate electrode 20 and the electrode 30 are formed on the base material 10 by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the base material 10.
 次に、図5(A)及び図5(B)に示すように、ゲート電極20の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40を形成する絶縁部形成工程を行う。絶縁性インクは、例えば、Alなどの高誘電率材料をナノ粒子にして有機物に分散させてものなどで構成されていてもよい。第1実施形態においては、塗布した絶縁性インクの溶媒(又は分散媒)を揮発させることにより、絶縁部40を形成している。 Next, as shown in FIGS. 5A and 5B, an insulating portion forming step is performed in which an insulating ink is applied to cover at least part of the gate electrode 20 to form the insulating portion 40. The insulating ink may be composed of, for example, a high dielectric constant material such as Al 2 O 3 made into nanoparticles and dispersed in an organic substance. In the first embodiment, the insulating portion 40 is formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
 次に、図6(A)及び図6(B)に示すように、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20と絶縁されたソース電極50を形成するソース電極形成工程と、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50と離間し、ゲート電極20と絶縁されたドレイン電極60を形成するドレイン電極形成工程とを行う。 Next, as shown in FIGS. 6A and 6B, conductive ink is applied so as to cover at least a part of the insulating portion 40, and the source electrode 50 insulated from the gate electrode 20 is formed. And a drain electrode forming step of forming a drain electrode 60 that is separated from the source electrode 50 and insulated from the gate electrode 20 by applying conductive ink so as to cover at least a part of the insulating portion 40. And do.
 ソース電極形成工程とドレイン電極形成工程とは、同一の工程として行ってもよいし、それぞれ異なる工程として行ってもよい。第1実施形態においては、ソース電極形成工程とドレイン電極形成工程とで同一の材料からなる導電性インクを用い、ソース電極形成工程とドレイン電極形成工程とを同一の工程として行っている。また、塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、ソース電極50とドレイン電極60とを形成している。 The source electrode forming step and the drain electrode forming step may be performed as the same step or different steps. In the first embodiment, the source electrode forming step and the drain electrode forming step are performed as the same step using conductive ink made of the same material in the source electrode forming step and the drain electrode forming step. Further, the source electrode 50 and the drain electrode 60 are formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
 次に、図7(A)及び図7(B)に示すように、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20と絶縁されたチャネル部70を形成するチャネル部形成工程を行う。カーボンナノチューブインクは、カーボンナノチューブを含んだ分散液である。第1実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、チャネル部70を形成している。 Next, as shown in FIGS. 7A and 7B, a carbon nanotube ink is applied so as to cover at least a part of the insulating portion 40 and to be in contact with the source electrode 50 and the drain electrode 60, and the gate. A channel part forming step for forming the channel part 70 insulated from the electrode 20 is performed. Carbon nanotube ink is a dispersion containing carbon nanotubes. In the first embodiment, the channel part 70 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 チャネル部形成工程において、半導体性のカーボンナノチューブを含むカーボンナノチューブインクを塗布してもよい。例えば、金属性のカーボンナノチューブよりも半導体性のカーボンナノチューブを多く含むカーボンナノチューブインクを塗布してもよい。これにより、メモリセル1を構成するトランジスタT1のスイッチ特性が向上する。 In the channel portion forming step, carbon nanotube ink containing semiconducting carbon nanotubes may be applied. For example, a carbon nanotube ink containing more semiconducting carbon nanotubes than metallic carbon nanotubes may be applied. Thereby, the switch characteristics of the transistor T1 constituting the memory cell 1 are improved.
 また、チャネル部形成工程において、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含むカーボンナノチューブインクを塗布してもよい。3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセル1を構成するトランジスタT1のスイッチ特性が向上する。 Further, in the channel portion forming step, a carbon nanotube ink may be applied so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Good. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switching characteristics of the transistor T1 constituting the memory cell 1 are improved.
 次に、図8(A)及び図8(B)に示すように、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触するようにカーボンナノチューブインクを塗布して抵抗部80を形成する抵抗部形成工程を行う。第1実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、抵抗部80を形成している。 Next, as shown in FIGS. 8A and 8B, carbon nanotube ink is applied so as to contact either one of the source electrode 50 and the drain electrode 60 and the electrode 30, and the resistance portion 80 is formed. A resistance portion forming step to be formed is performed. In the first embodiment, the resistor 80 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 抵抗部形成工程において、導電性のカーボンナノチューブを含むカーボンナノチューブインクを塗布してもよい。例えば、半導体性のカーボンナノチューブよりも金属性(導電性)のカーボンナノチューブを多く含むカーボンナノチューブインクを塗布してもよい。これにより、電極30、ソース電極50及び抵抗部80とで構成される抵抗変化素子RC1の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル1を製造できる。 In the resistance part forming step, carbon nanotube ink containing conductive carbon nanotubes may be applied. For example, a carbon nanotube ink containing more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes may be applied. As a result, the difference in resistance value between the low resistance state and the high resistance state of the variable resistance element RC1 including the electrode 30, the source electrode 50, and the resistance unit 80 is increased. Therefore, the memory cell 1 can be manufactured in which the difference between readings of 1 and 0 becomes clear and good memory characteristics can be obtained.
 また、抵抗部形成工程において、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含むカーボンナノチューブインクを塗布してもよい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル1を製造できる。 Further, in the resistance portion forming step, the carbon nanotube ink may be applied so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers. Good. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 1 can be manufactured in which the difference between readings of 1 and 0 becomes clear and good memory characteristics can be obtained.
 第1実施形態の係るメモリセルの製造方法によれば、不揮発性のメモリセルを、印刷技術を利用して容易に製造できる。また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセル1を製造できる。 According to the method for manufacturing a memory cell according to the first embodiment, a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell 1 can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
 なお、上述の例では、チャネル部形成工程と抵抗部形成工程とを異なる工程として行う例であったが、チャネル部形成工程と抵抗部形成工程とを同一の工程で行ってもよい。これにより、より簡易な工程でメモリセル1を製造できる。 In the above example, the channel portion forming step and the resistance portion forming step are performed as different steps, but the channel portion forming step and the resistance portion forming step may be performed in the same step. Thereby, the memory cell 1 can be manufactured by a simpler process.
 また、チャネル部形成工程と抵抗部形成工程とを同一の工程として行う場合、チャネル部形成工程と抵抗部形成工程とにおいて、半導体性のカーボンナノチューブと金属性のカーボンナノチューブとが混在したカーボンナノチューブインクを用いてもよい。また、チャネル部形成工程と抵抗部形成工程とにおいて、マルチウォールカーボンナノチューブとシングルウォールのカーボンナノチューブとが混在したカーボンナノチューブインクを用いてもよい。これにより、異なる性質のカーボンナノチューブを分離して製造されたカーボンナノチューブインクを使用しなくても済むため、より安価にメモリセルを製造することができる。 Further, when the channel portion forming step and the resistance portion forming step are performed as the same step, the carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are mixed in the channel portion forming step and the resistance portion forming step. May be used. Further, in the channel portion forming step and the resistance portion forming step, a carbon nanotube ink in which multiwall carbon nanotubes and single wall carbon nanotubes are mixed may be used. As a result, it is not necessary to use carbon nanotube inks produced by separating carbon nanotubes having different properties, so that a memory cell can be produced at a lower cost.
 もちろん、チャネル部形成工程と抵抗部形成工程とにおいて、半導体性のカーボンナノチューブと金属性のカーボンナノチューブとが混在していないカーボンナノチューブインクを用いてもよい。また、チャネル部形成工程と抵抗部形成工程とにおいて、マルチウォールカーボンナノチューブとシングルウォールのカーボンナノチューブとが混在していないカーボンナノチューブインクを用いてもよい。 Of course, carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are not mixed may be used in the channel portion forming step and the resistance portion forming step. Further, in the channel portion forming step and the resistance portion forming step, a carbon nanotube ink in which multi-wall carbon nanotubes and single wall carbon nanotubes are not mixed may be used.
 抵抗部形成工程の後、図9(A)及び図9(B)に示すように、ドレイン電極60に通じる貫通孔100aを有する層間絶縁膜90を形成する層間絶縁膜形成工程を行ってもよい。層間絶縁膜形成工程では、例えば、絶縁性インクを塗布して層間絶縁膜90を形成したり、CVD(Chemical Vapor Deposition)法により層間絶縁膜90を形成したり、フィルム転写法により層間絶縁膜90を形成したりしてもよい。層間絶縁膜90の材料としては、例えば、プラズマCVD法を用いてSi膜やSiO膜、又はそれらの積層膜、または塗布型の低温絶縁膜(例えばJSR製WPR膜など)を用いてもよい。 9A and 9B, an interlayer insulating film forming step for forming an interlayer insulating film 90 having a through hole 100a that communicates with the drain electrode 60 may be performed after the resistance portion forming step. . In the interlayer insulating film forming step, for example, an insulating ink is applied to form the interlayer insulating film 90, the interlayer insulating film 90 is formed by a CVD (Chemical Vapor Deposition) method, or the interlayer insulating film 90 is formed by a film transfer method. May be formed. As a material of the interlayer insulating film 90, for example, a Si 3 N 4 film, a SiO 2 film, or a laminated film thereof, or a coating type low-temperature insulating film (for example, a JPR WPR film) is used by using a plasma CVD method. May be.
 次に、図10(A)及び図10(B)に示すように、コンタクトホール100を介してドレイン電極60と電気的に接続するビット線110を形成するビット線形成工程を行ってもよい。ビット線形成工程では、例えば、層間絶縁膜90の上に導電性インクを塗布することによりビット線を形成してもよい。導電性インクは、例えば、Agペーストで構成されていてもよい。また、貫通孔100aに導電性インクが充填されることにより、コンタクトホール100となる。 Next, as shown in FIGS. 10A and 10B, a bit line forming step of forming a bit line 110 electrically connected to the drain electrode 60 through the contact hole 100 may be performed. In the bit line formation step, for example, the bit line may be formed by applying conductive ink on the interlayer insulating film 90. The conductive ink may be composed of, for example, an Ag paste. Further, the contact hole 100 is formed by filling the through hole 100a with conductive ink.
 次に、少なくともビット線110を覆う保護膜120を形成する保護膜形成工程を行ってもよい。保護膜形成工程では、例えば、絶縁性インクを塗布して保護膜120を形成したり、CVD(Chemical Vapor Deposition)法により保護膜120を形成したり、フィルム転写法により保護膜120を形成したりしてもよい。保護膜120の材料としては、例えば、塗布型のポリイミド膜やJSR製のWPR膜などの低温硬化型の絶縁膜などを用いてもよい。 Next, a protective film forming step of forming a protective film 120 covering at least the bit line 110 may be performed. In the protective film forming step, for example, the protective film 120 is formed by applying an insulating ink, the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method, or the protective film 120 is formed by a film transfer method. May be. As a material of the protective film 120, for example, a low-temperature curing type insulating film such as a coating type polyimide film or a JSR WPR film may be used.
3.第2実施形態のメモリセル
 図11(A)は、第2実施形態に係るメモリセルの構造を模式的に示す平面図、図11(B)は、図11(A)のA-A線における断面図である。第2実施形態に係るメモリセルの回路図は、図2と同一である。なお、第1実施形態に係るメモリセルと共通する構成には同一の符号を付し、その詳細な説明を省略する。また、各部材や、導電性インク、絶縁性インク及びカーボンナノチューブインクの材料については、第1実施形態で説明した材料と同様である。
3. Memory Cell of Second Embodiment FIG. 11A is a plan view schematically showing the structure of the memory cell according to the second embodiment, and FIG. 11B is a cross-sectional view taken along line AA in FIG. It is sectional drawing. The circuit diagram of the memory cell according to the second embodiment is the same as FIG. In addition, the same code | symbol is attached | subjected to the structure which is common in the memory cell concerning 1st Embodiment, and the detailed description is abbreviate | omitted. The materials of the members, the conductive ink, the insulating ink, and the carbon nanotube ink are the same as those described in the first embodiment.
 第2実施形態に係るメモリセル2は、基材10の上に形成されたトランジスタT1と抵抗変化素子RC1とを含む。 The memory cell 2 according to the second embodiment includes a transistor T1 and a resistance change element RC1 formed on the base material 10.
 トランジスタT1は、ゲート電極20、絶縁部40、ソース電極50、ドレイン電極60及びチャネル部70を含む。また、抵抗変化素子RC1は、電極30及び抵抗部80を含む。 The transistor T1 includes a gate electrode 20, an insulating part 40, a source electrode 50, a drain electrode 60, and a channel part 70. The resistance change element RC <b> 1 includes the electrode 30 and the resistance unit 80.
 ソース電極50は、図2におけるトランジスタT1のソース電極Sとして機能し、合わせて抵抗変化素子RC1の一部を構成する。図11(A)及び図11(B)に示すように、ソース電極50は、基材10の上に形成されている。ソース電極50は、導電性インクを用いて形成されてもよい。ソース電極50は、例えば、基材10の上に導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。 The source electrode 50 functions as the source electrode S of the transistor T1 in FIG. 2, and together forms a part of the resistance change element RC1. As shown in FIGS. 11A and 11B, the source electrode 50 is formed on the base material 10. The source electrode 50 may be formed using a conductive ink. The source electrode 50 may be formed, for example, by applying a conductive ink on the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
 ドレイン電極60は、図2におけるトランジスタT1のドレイン電極Dとして機能する。また、ドレイン電極60を延長してビット線として利用することも可能である。図11(A)及び図11(B)に示すように、ドレイン電極60は、基材10の上に形成されている。また、ドレイン電極60は、ソース電極50とは接触しないように形成されている。また、ドレイン電極60は、導電性インクを用いて形成されてもよい。ドレイン電極60は、例えば、絶縁部40の少なくとも一部を覆うように導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ソース電極50を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The drain electrode 60 functions as the drain electrode D of the transistor T1 in FIG. Further, the drain electrode 60 can be extended and used as a bit line. As shown in FIGS. 11A and 11B, the drain electrode 60 is formed on the base material 10. The drain electrode 60 is formed so as not to contact the source electrode 50. Further, the drain electrode 60 may be formed using a conductive ink. The drain electrode 60 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the source electrode 50.
 チャネル部70は、図2におけるトランジスタT1のチャネル形成領域として機能する。図11(A)及び図11(B)に示すように、チャネル部70は、ソース電極50及びドレイン電極60と接触して形成されている。また、図11(A)及び図11(B)に示す例では、チャネル部70は、基材10の上に形成されている。 The channel unit 70 functions as a channel formation region of the transistor T1 in FIG. As shown in FIGS. 11A and 11B, the channel portion 70 is formed in contact with the source electrode 50 and the drain electrode 60. In the example shown in FIGS. 11A and 11B, the channel portion 70 is formed on the base material 10.
 チャネル部70は、カーボンナノチューブを含む。チャネル部70は、カーボンナノチューブインクを用いて形成されてもよい。カーボンナノチューブインクは、カーボンナノチューブを含んだ分散液である。チャネル部70は、例えば、基材10の上に、ソース電極50及びドレイン電極60と接触するようにカーボンナノチューブインクを塗布し、カーボンナノチューブインクの分散媒を揮発させて形成されてもよい。 The channel part 70 includes carbon nanotubes. The channel part 70 may be formed using a carbon nanotube ink. Carbon nanotube ink is a dispersion containing carbon nanotubes. The channel part 70 may be formed, for example, by applying a carbon nanotube ink on the substrate 10 so as to be in contact with the source electrode 50 and the drain electrode 60 and volatilizing the dispersion medium of the carbon nanotube ink.
 チャネル部70を形成するためのカーボンナノチューブは、半導体性のカーボンナノチューブを含んでもよい。さらに、チャネル部70を形成するためのカーボンナノチューブは、金属性(導電性)のカーボンナノチューブよりも半導体性のカーボンナノチューブを多く含んでもよい。これにより、メモリセル2を構成するトランジスタのスイッチ特性が向上する。 The carbon nanotubes for forming the channel part 70 may include semiconducting carbon nanotubes. Furthermore, the carbon nanotubes for forming the channel part 70 may contain more semiconducting carbon nanotubes than metallic (conductive) carbon nanotubes. Thereby, the switch characteristics of the transistors constituting the memory cell 2 are improved.
 チャネル部70を形成するためのカーボンナノチューブは、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含んでもよい。3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセル2を構成するトランジスタのスイッチ特性が向上する。 The carbon nanotubes for forming the channel part 70 may be included so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistors constituting the memory cell 2 are improved.
 絶縁部40は、図2におけるトランジスタT1のゲート絶縁膜として機能する。図11(A)及び図11(B)に示すように、絶縁部40は、チャネル部70の少なくとも一部を覆うように形成されている。また、絶縁部40は、後述するゲート電極20とチャネル部70との間に介在するように形成されている。また、絶縁部40は、絶縁性インクを用いて形成されてもよい。絶縁部40は、例えば、チャネル部70の少なくとも一部を覆うように絶縁性インクを塗布し、絶縁性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。 The insulating part 40 functions as a gate insulating film of the transistor T1 in FIG. As shown in FIGS. 11A and 11B, the insulating part 40 is formed so as to cover at least a part of the channel part 70. The insulating portion 40 is formed so as to be interposed between a gate electrode 20 and a channel portion 70 described later. The insulating unit 40 may be formed using an insulating ink. The insulating unit 40 may be formed, for example, by applying an insulating ink so as to cover at least a part of the channel unit 70 and volatilizing the solvent (or dispersion medium) of the insulating ink.
 ゲート電極20は、図2におけるトランジスタT1のゲート電極Gとして機能する。図11(A)及び図11(B)に示すように、ゲート電極20は、絶縁部40の少なくとも一部を覆うように形成されている。また、ゲート電極20は、ソース電極50及びドレイン電極60とは絶縁されて形成されている。また、ゲート電極20は、導電性インクを用いて形成されてもよい。ゲート電極20は、例えば、絶縁部40の少なくとも一部を覆うように導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ソース電極50及びドレイン電極60を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The gate electrode 20 functions as the gate electrode G of the transistor T1 in FIG. As shown in FIGS. 11A and 11B, the gate electrode 20 is formed to cover at least part of the insulating portion 40. The gate electrode 20 is formed to be insulated from the source electrode 50 and the drain electrode 60. The gate electrode 20 may be formed using a conductive ink. The gate electrode 20 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the source electrode 50 and the drain electrode 60.
 電極30は、図2における抵抗変化素子RC1の一部を構成する。図11(A)及び図11(B)に示すように、電極30は、基材10の上に形成されている。また、電極30は、ソース電極50及びドレイン電極60と接触しないように形成されている。また、電極30は、導電性インクを用いて形成されてもよい。電極30は、例えば、基材10に導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ソース電極50及びドレイン電極60を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The electrode 30 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 11A and 11B, the electrode 30 is formed on the base material 10. The electrode 30 is formed so as not to contact the source electrode 50 and the drain electrode 60. The electrode 30 may be formed using a conductive ink. The electrode 30 may be formed, for example, by applying a conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the source electrode 50 and the drain electrode 60.
 抵抗部80は、図2における抵抗変化素子RC1の一部を構成する。図11(A)及び図11(B)に示すように、抵抗部80は、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触して形成されている。すなわち、ソース電極50及びドレイン電極60のいずれか一方は、抵抗変化素子RC1の一方の電極を兼ねている。図11(A)及び図11(B)に示す例では、抵抗部80は、ソース電極50と電極30とに接触して形成されている。また、図11(A)及び図11(B)に示す例では、抵抗部80は、基材10の上に形成されている。 The resistance unit 80 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 11A and 11B, the resistance portion 80 is formed in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30. That is, one of the source electrode 50 and the drain electrode 60 also serves as one electrode of the resistance change element RC1. In the example shown in FIGS. 11A and 11B, the resistance portion 80 is formed in contact with the source electrode 50 and the electrode 30. In the example shown in FIGS. 11A and 11B, the resistance portion 80 is formed on the base material 10.
 抵抗部80は、カーボンナノチューブを含む。カーボンナノチューブインクを用いて形成されてもよい。抵抗部80は、例えば、ソース電極50と電極30とに接触するようにカーボンナノチューブインクを塗布し、カーボンナノチューブインクの分散媒を揮発させて形成されてもよい。 The resistance unit 80 includes carbon nanotubes. It may be formed using carbon nanotube ink. The resistance unit 80 may be formed, for example, by applying a carbon nanotube ink so as to contact the source electrode 50 and the electrode 30 and volatilizing the dispersion medium of the carbon nanotube ink.
 抵抗部80を形成するためのカーボンナノチューブは、導電性のカーボンナノチューブを含んでもよい。さらに、抵抗部80を形成するためのカーボンナノチューブは、半導体性のカーボンナノチューブよりも金属性(導電性)のカーボンナノチューブを多く含んでもよい。これにより、メモリセル2を構成する抵抗変化素子RC1の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル2を実現できる。 The carbon nanotubes for forming the resistance portion 80 may include conductive carbon nanotubes. Furthermore, the carbon nanotubes for forming the resistance portion 80 may contain more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes. Thereby, the difference in resistance value between the low resistance state and the high resistance state of the resistance change element RC1 constituting the memory cell 2 is increased. Therefore, the memory cell 2 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
 抵抗部80を形成するためのカーボンナノチューブは、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含んでもよい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル2を実現できる。 The carbon nanotubes for forming the resistance portion 80 may be included so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 2 can be realized in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained.
 第2実施形態に係るメモリセル2は、上述の各部材を覆うような保護膜120で覆われていてもよい。例えば、絶縁性の材料で保護膜120を構成してもよい。 The memory cell 2 according to the second embodiment may be covered with a protective film 120 that covers the above-described members. For example, the protective film 120 may be made of an insulating material.
 なお、図11(A)及び図11(B)に示す例では、電極30、ソース電極50、ドレイン電極60、チャネル部70及び抵抗部80と基材10との間に何も介在させない例を示しているが、他の部材を介在させた構成も可能である。例えば、ゲート電極20、電極30及び抵抗部80と基材10との間に絶縁膜を介在させた構成も可能である。 In the example shown in FIGS. 11A and 11B, an example in which nothing is interposed between the electrode 30, the source electrode 50, the drain electrode 60, the channel part 70, the resistance part 80, and the base material 10. Although shown, a configuration in which another member is interposed is also possible. For example, a configuration in which an insulating film is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80 is also possible.
 なお、上述した「1-2.抵抗変化素子」及び「1-3.メモリセルを用いたメモリ回路」の内容については、第1実施形態のメモリセル1を第2実施形態のメモリセル2に置き換えても同様に成立する。 As for the contents of “1-2. Resistance change element” and “1-3. Memory circuit using memory cell” described above, the memory cell 1 of the first embodiment is replaced with the memory cell 2 of the second embodiment. The same holds true for replacement.
 第2実施形態に係るメモリセル2によれば、印刷技術を利用して容易に製造できるメモリセルを実現できる。 According to the memory cell 2 according to the second embodiment, a memory cell that can be easily manufactured using a printing technique can be realized.
4.第2実施形態のメモリセルの製造方法
 次に、第2実施形態に係るメモリセルの製造方法について説明する。図12~図17は、第2実施形態に係るメモリセルの製造方法を説明するための図である。図12~図17の各図において、(A)はメモリセルの製造過程における平面図、(B)は(A)のA-A線における断面図を表す。
4). Method for Manufacturing Memory Cell of Second Embodiment Next, a method for manufacturing a memory cell according to the second embodiment will be described. 12 to 17 are views for explaining a method of manufacturing a memory cell according to the second embodiment. 12A to 17A, FIG. 12A is a plan view in the process of manufacturing a memory cell, and FIG. 12B is a cross-sectional view taken along line AA in FIG.
 第2実施形態に係るメモリセルの製造方法は、基材10の上に導電性インクを塗布してソース電極50を形成するソース電極形成工程と、基材10の上に導電性インクを塗布して、ソース電極50と離間してドレイン電極60を形成するドレイン電極形成工程と、基材10の上に導電性インクを塗布して、ソース電極50及びドレイン電極60と離間して電極30を形成する電極形成工程と、基材10の上にカーボンナノチューブインクを塗布して、ソース電極50及びドレイン電極60と接触するチャネル部70を形成するチャネル部形成工程と、基材10の上にカーボンナノチューブインクを塗布して、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触する抵抗部80を形成する抵抗部形成工程と、チャネル部70の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40を形成する絶縁部形成工程と、絶縁部40の少なくとも一部を覆い、ソース電極50、ドレイン電極60及びチャネル部70と絶縁されたゲート電極20を形成するゲート電極形成工程と、を含む。 In the method for manufacturing a memory cell according to the second embodiment, a source electrode forming step of forming a source electrode 50 by applying a conductive ink on a base material 10, and applying a conductive ink on the base material 10. The drain electrode forming step of forming the drain electrode 60 away from the source electrode 50 and the conductive ink is applied on the substrate 10 to form the electrode 30 away from the source electrode 50 and the drain electrode 60. Electrode forming step, applying a carbon nanotube ink on the base material 10 to form a channel portion 70 in contact with the source electrode 50 and the drain electrode 60, and carbon nanotubes on the base material 10. A resistance portion forming step of applying ink to form a resistance portion 80 in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30, and a channel portion. An insulating portion forming step of forming an insulating portion 40 by applying an insulating ink so as to cover at least a portion of 0, a source electrode 50, a drain electrode 60, and a channel portion 70 covering at least a portion of the insulating portion 40; Forming a gate electrode 20 that is insulated.
 以下、各工程について具体例を用いて説明する。なお、導電性インク、絶縁性インク及びカーボンナノチューブインクを塗布する工程は、インクジェットプリンタ等を用いた印刷技術を用いて塗布する例について説明する。また、基材10、絶縁性インク及びカーボンナノチューブインクの材料については、第1実施形態のメモリセルの製造方法と同様である。 Hereinafter, each process will be described using specific examples. In addition, the process of apply | coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example applied using the printing technique using an inkjet printer etc. FIG. Further, the materials of the base material 10, the insulating ink, and the carbon nanotube ink are the same as those of the memory cell manufacturing method of the first embodiment.
 まず、図12(A)及び図12(B)に示すように、基材10の上に導電性インクを塗布してソース電極50を形成するソース電極形成工程と、基材10の上に導電性インクを塗布して、ソース電極50と離間してドレイン電極60を形成するドレイン電極形成工程と、基材10の上に導電性インクを塗布して、ソース電極50及びドレイン電極60と離間して電極30を形成する電極形成工程とを行う。 First, as shown in FIGS. 12A and 12B, a source electrode forming step of forming a source electrode 50 by applying a conductive ink on the base material 10, and conducting on the base material 10. A drain electrode forming step in which a conductive ink is applied to be separated from the source electrode 50 to form the drain electrode 60; and a conductive ink is applied on the substrate 10 to be separated from the source electrode 50 and the drain electrode 60. Then, an electrode forming step for forming the electrode 30 is performed.
 ソース電極形成工程、ドレイン電極形成工程及び電極形成工程とは、同一の工程で行ってもよいし、それぞれ異なる工程で行ってもよい。図12(A)及び図12(B)に示す例では、ソース電極形成工程、ドレイン電極形成工程及び電極形成工程とで同一の材料からなる導電性インクを用い、ソース電極形成工程、ドレイン電極形成工程及び電極形成工程を同一の工程で行っている。また、基材10の上に塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、基材10の上にソース電極50、ドレイン電極60及び電極30を形成している。 The source electrode forming step, the drain electrode forming step, and the electrode forming step may be performed in the same step or different steps. In the example shown in FIGS. 12A and 12B, a conductive ink made of the same material is used in the source electrode formation step, the drain electrode formation step, and the electrode formation step, and the source electrode formation step and the drain electrode formation are performed. The process and the electrode forming process are performed in the same process. Further, the source electrode 50, the drain electrode 60, and the electrode 30 are formed on the substrate 10 by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the substrate 10.
 次に、図13(A)及び図13(B)に示すように、基材10の上にカーボンナノチューブインクを塗布して、ソース電極50及びドレイン電極60と接触するチャネル部70を形成するチャネル部形成工程を行う。第2実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、チャネル部70を形成している。 Next, as shown in FIGS. 13A and 13B, a carbon nanotube ink is applied on the substrate 10 to form a channel portion 70 that contacts the source electrode 50 and the drain electrode 60. A part formation process is performed. In the second embodiment, the channel part 70 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 チャネル部形成工程において、半導体性のカーボンナノチューブを含むカーボンナノチューブインクを塗布してもよい。例えば、金属性のカーボンナノチューブよりも半導体性のカーボンナノチューブを多く含むカーボンナノチューブインクを塗布してもよい。これにより、メモリセル2を構成するトランジスタT1のスイッチ特性が向上する。 In the channel portion forming step, carbon nanotube ink containing semiconducting carbon nanotubes may be applied. For example, a carbon nanotube ink containing more semiconducting carbon nanotubes than metallic carbon nanotubes may be applied. Thereby, the switching characteristics of the transistor T1 constituting the memory cell 2 are improved.
 また、チャネル部形成工程において、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含むカーボンナノチューブインクを塗布してもよい。3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセル2を構成するトランジスタT1のスイッチ特性が向上する。 Further, in the channel portion forming step, a carbon nanotube ink may be applied so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Good. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistor T1 constituting the memory cell 2 are improved.
 次に、図14(A)及び図14(B)に示すように、基材10の上にカーボンナノチューブインクを塗布して、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触する抵抗部80を形成する抵抗部形成工程を行う。第2実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、抵抗部80を形成している。 Next, as shown in FIGS. 14A and 14B, a carbon nanotube ink is applied on the base material 10 to make contact with one of the source electrode 50 and the drain electrode 60 and the electrode 30. A resistance portion forming step for forming the resistance portion 80 to be performed is performed. In the second embodiment, the resistance portion 80 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 抵抗部形成工程において、導電性のカーボンナノチューブを含むカーボンナノチューブインクを塗布してもよい。例えば、半導体性のカーボンナノチューブよりも金属性(導電性)のカーボンナノチューブを多く含むカーボンナノチューブインクを塗布してもよい。これにより、電極30、ソース電極50及び抵抗部80とで構成される抵抗変化素子RC1の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル2を製造できる。 In the resistance part forming step, carbon nanotube ink containing conductive carbon nanotubes may be applied. For example, a carbon nanotube ink containing more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes may be applied. As a result, the difference in resistance value between the low resistance state and the high resistance state of the variable resistance element RC1 including the electrode 30, the source electrode 50, and the resistance unit 80 is increased. Therefore, the memory cell 2 can be manufactured in which the difference between readings of 1 and 0 becomes clear and good memory characteristics can be obtained.
 また、抵抗部形成工程において、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含むカーボンナノチューブインクを塗布してもよい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル2を製造できる。 Further, in the resistance portion forming step, the carbon nanotube ink may be applied so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers. Good. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 2 can be manufactured in which the difference between readings of 1 and 0 becomes clear and good memory characteristics can be obtained.
 次に、図15(A)及び図15(B)に示すように、チャネル部70の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40を形成する絶縁部形成工程を行う。第2実施形態においては、塗布した絶縁性インクの溶媒(又は分散媒)を揮発させることにより、絶縁部40を形成している。 Next, as shown in FIGS. 15A and 15B, an insulating portion forming step is performed in which an insulating ink is applied to cover at least a part of the channel portion 70 to form the insulating portion 40. In the second embodiment, the insulating portion 40 is formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
 次に、図16(A)及び図16(B)に示すように、絶縁部40の少なくとも一部を覆い、ソース電極50、ドレイン電極60及びチャネル部70と絶縁されたゲート電極20を形成するゲート電極形成工程を行う。第2実施形態においては、塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、ゲート電極20を形成している。 Next, as shown in FIGS. 16A and 16B, the gate electrode 20 is formed so as to cover at least part of the insulating portion 40 and to be insulated from the source electrode 50, the drain electrode 60, and the channel portion 70. A gate electrode forming step is performed. In the second embodiment, the gate electrode 20 is formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
 第2実施形態の係るメモリセルの製造方法によれば、不揮発性のメモリセルを、印刷技術を利用して容易に製造できる。また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセルを製造できる。 According to the method for manufacturing a memory cell according to the second embodiment, a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
 なお、上述の例では、チャネル部形成工程と抵抗部形成工程とを異なる工程として行う例であったが、チャネル部形成工程と抵抗部形成工程とを同一の工程で行ってもよい。これにより、より簡易な工程でメモリセルを製造できる。 In the above example, the channel portion forming step and the resistance portion forming step are performed as different steps, but the channel portion forming step and the resistance portion forming step may be performed in the same step. Thereby, a memory cell can be manufactured by a simpler process.
 また、チャネル部形成工程と抵抗部形成工程とを同一の工程として行う場合、チャネル部形成工程と抵抗部形成工程とにおいて、半導体性のカーボンナノチューブと金属性のカーボンナノチューブとが混在したカーボンナノチューブインクを用いてもよい。また、チャネル部形成工程と抵抗部形成工程とにおいて、マルチウォールカーボンナノチューブとシングルウォールのカーボンナノチューブとが混在したカーボンナノチューブインクを用いてもよい。これにより、異なる性質のカーボンナノチューブを分離して製造されたカーボンナノチューブインクを使用しなくても済むため、より安価にメモリセルを製造することができる。 Further, when the channel portion forming step and the resistance portion forming step are performed as the same step, the carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are mixed in the channel portion forming step and the resistance portion forming step. May be used. Further, in the channel portion forming step and the resistance portion forming step, a carbon nanotube ink in which multiwall carbon nanotubes and single wall carbon nanotubes are mixed may be used. As a result, it is not necessary to use carbon nanotube inks produced by separating carbon nanotubes having different properties, so that a memory cell can be produced at a lower cost.
 もちろん、チャネル部形成工程と抵抗部形成工程とにおいて、半導体性のカーボンナノチューブと金属性のカーボンナノチューブとが混在していないカーボンナノチューブインクを用いてもよい。また、チャネル部形成工程と抵抗部形成工程とにおいて、マルチウォールカーボンナノチューブとシングルウォールのカーボンナノチューブとが混在していないカーボンナノチューブインクを用いてもよい。 Of course, carbon nanotube ink in which semiconducting carbon nanotubes and metallic carbon nanotubes are not mixed may be used in the channel portion forming step and the resistance portion forming step. Further, in the channel portion forming step and the resistance portion forming step, a carbon nanotube ink in which multi-wall carbon nanotubes and single wall carbon nanotubes are not mixed may be used.
 ゲート電極形成工程の後に、上述の各部材を覆う保護膜120を形成する保護膜形成工程を行ってもよい。保護膜形成工程では、例えば、絶縁性インクを塗布して保護膜120を形成したり、CVD(Chemical Vapor Deposition)法により保護膜120を形成したり、フィルム転写法により保護膜120を形成したりしてもよい。 After the gate electrode forming step, a protective film forming step for forming the protective film 120 covering the above-described members may be performed. In the protective film forming step, for example, the protective film 120 is formed by applying an insulating ink, the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method, or the protective film 120 is formed by a film transfer method. May be.
5.第3実施形態のメモリセル
 図18(A)は、第3実施形態に係るメモリセルの構造を模式的に示す平面図、図18(B)は、図18(A)のA-A線における断面図である。第3実施形態に係るメモリセルの回路図は、図2と同一である。なお、第1実施形態に係るメモリセルと共通する構成には同一の符号を付し、その詳細な説明を省略する。また、各部材や、導電性インク、絶縁性インク及びカーボンナノチューブインクの材料については、第1実施形態で説明した材料と同様である。
5. Memory Cell According to Third Embodiment FIG. 18A is a plan view schematically showing the structure of the memory cell according to the third embodiment, and FIG. 18B is a cross-sectional view taken along the line AA in FIG. It is sectional drawing. The circuit diagram of the memory cell according to the third embodiment is the same as FIG. In addition, the same code | symbol is attached | subjected to the structure which is common in the memory cell concerning 1st Embodiment, and the detailed description is abbreviate | omitted. The materials of the members, the conductive ink, the insulating ink, and the carbon nanotube ink are the same as those described in the first embodiment.
 第3実施形態に係るメモリセル3は、基材10の上に形成されたトランジスタT1と抵抗変化素子RC1とを含む。 The memory cell 3 according to the third embodiment includes a transistor T1 and a resistance change element RC1 formed on the base material 10.
 トランジスタT1は、ゲート電極20、絶縁部40、ソース電極50、ドレイン電極60及びチャネル部70を含む。また、抵抗変化素子RC1は、電極30及び抵抗部80を含む。 The transistor T1 includes a gate electrode 20, an insulating part 40, a source electrode 50, a drain electrode 60, and a channel part 70. The resistance change element RC <b> 1 includes the electrode 30 and the resistance unit 80.
 ゲート電極20は、図2におけるトランジスタT1のゲート電極Gとして機能する。図18(A)及び図18(B)に示すように、ゲート電極20は、基材10の上に形成されている。また、ゲート電極20は、導電性インクを用いて形成されてもよい。ゲート電極20は、例えば、基材10に導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。 The gate electrode 20 functions as the gate electrode G of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the gate electrode 20 is formed on the substrate 10. The gate electrode 20 may be formed using a conductive ink. The gate electrode 20 may be formed, for example, by applying conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink.
 絶縁部40は、図2におけるトランジスタT1のゲート絶縁膜として機能する。図18(A)及び図18(B)に示すように、絶縁部40は、ゲート電極20の少なくとも一部を覆うように形成されている。また、絶縁部40は、ゲート電極20と後述するチャネル部70との間に介在するように形成されている。また、絶縁部40は、絶縁性インクを用いて形成されてもよい。絶縁部40は、例えば、ゲート電極20の少なくとも一部を覆うように絶縁性インクを塗布し、絶縁性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。 The insulating part 40 functions as a gate insulating film of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the insulating portion 40 is formed so as to cover at least a part of the gate electrode 20. The insulating portion 40 is formed so as to be interposed between the gate electrode 20 and a channel portion 70 described later. The insulating unit 40 may be formed using an insulating ink. The insulating unit 40 may be formed, for example, by applying an insulating ink so as to cover at least a part of the gate electrode 20 and volatilizing the solvent (or dispersion medium) of the insulating ink.
 ソース電極50は、図2におけるトランジスタT1のソース電極Sとして機能し、合わせて抵抗変化素子RC1の一部を構成する。図18(A)及び図18(B)に示すように、ソース電極50は、絶縁部40の少なくとも一部を覆うように形成されている。また、図18(A)及び図18(B)に示す例では、ソース電極50は、後述する抵抗部80の少なくとも一部を覆うように形成されている。ソース電極50は、ゲート電極20及び電極30とは接触しないように形成されている。また、ソース電極50は、導電性インクを用いて形成されてもよい。ソース電極50は、例えば、絶縁部40の少なくとも一部及び抵抗部80の少なくとも一部を覆うように導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ゲート電極20を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The source electrode 50 functions as the source electrode S of the transistor T1 in FIG. 2, and together forms a part of the resistance change element RC1. As shown in FIGS. 18A and 18B, the source electrode 50 is formed so as to cover at least a part of the insulating portion 40. In the example shown in FIGS. 18A and 18B, the source electrode 50 is formed so as to cover at least a part of a resistance portion 80 described later. The source electrode 50 is formed so as not to contact the gate electrode 20 and the electrode 30. The source electrode 50 may be formed using a conductive ink. The source electrode 50 is formed, for example, by applying a conductive ink so as to cover at least a part of the insulating part 40 and at least a part of the resistance part 80 and volatilizing a solvent (or dispersion medium) of the conductive ink. Also good. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
 ドレイン電極60は、図2におけるトランジスタT1のドレイン電極Dとして機能する。図18(A)及び図18(B)に示すように、ドレイン電極60は、絶縁部40の少なくとも一部を覆うように形成されている。ドレイン電極60は、ゲート電極20、電極30及びソース電極50とは、互いに接触しないように形成されている。また、ドレイン電極60は、導電性インクを用いて形成されてもよい。ドレイン電極60は、例えば、絶縁部40の少なくとも一部を覆うように導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ゲート電極20を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The drain electrode 60 functions as the drain electrode D of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the drain electrode 60 is formed so as to cover at least a part of the insulating portion 40. The drain electrode 60 is formed so as not to contact the gate electrode 20, the electrode 30, and the source electrode 50. Further, the drain electrode 60 may be formed using a conductive ink. The drain electrode 60 may be formed, for example, by applying conductive ink so as to cover at least a part of the insulating portion 40 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
 チャネル部70は、図2におけるトランジスタT1のチャネル形成領域として機能する。図18(A)及び図18(B)に示すように、チャネル部70は、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60と接触して形成されている。また、チャネル部70は、基材10の法線方向から見たときに、ゲート電極20の少なくとも一部と重なるように形成されている。 The channel unit 70 functions as a channel formation region of the transistor T1 in FIG. As shown in FIGS. 18A and 18B, the channel portion 70 covers at least part of the insulating portion 40 and is formed in contact with the source electrode 50 and the drain electrode 60. Further, the channel portion 70 is formed so as to overlap at least a part of the gate electrode 20 when viewed from the normal direction of the substrate 10.
 チャネル部70は、カーボンナノチューブを含む。チャネル部70は、カーボンナノチューブインクを用いて形成されてもよい。カーボンナノチューブインクは、カーボンナノチューブを含んだ分散液である。チャネル部70は、例えば、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60と接触するようにカーボンナノチューブインクを塗布し、カーボンナノチューブインクの分散媒を揮発させて形成されてもよい。 The channel part 70 includes carbon nanotubes. The channel part 70 may be formed using a carbon nanotube ink. Carbon nanotube ink is a dispersion containing carbon nanotubes. For example, the channel part 70 may be formed by covering at least a part of the insulating part 40, applying carbon nanotube ink so as to be in contact with the source electrode 50 and the drain electrode 60, and volatilizing the dispersion medium of the carbon nanotube ink. Good.
 チャネル部70を形成するためのカーボンナノチューブは、半導体性のカーボンナノチューブを含んでもよい。さらに、チャネル部70を形成するためのカーボンナノチューブは、金属性(導電性)のカーボンナノチューブよりも半導体性のカーボンナノチューブを多く含んでもよい。これにより、メモリセル3を構成するトランジスタのスイッチ特性が向上する。 The carbon nanotubes for forming the channel part 70 may include semiconducting carbon nanotubes. Furthermore, the carbon nanotubes for forming the channel part 70 may contain more semiconducting carbon nanotubes than metallic (conductive) carbon nanotubes. Thereby, the switch characteristics of the transistors constituting the memory cell 3 are improved.
 チャネル部70を形成するためのカーボンナノチューブは、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含んでもよい。3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセル1を構成するトランジスタのスイッチ特性が向上する。 The carbon nanotubes for forming the channel part 70 may be included so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switch characteristics of the transistors constituting the memory cell 1 are improved.
 電極30は、図2における抵抗変化素子RC1の一部を構成する。図18(A)及び図18(B)に示すように、電極30は、基材10の上に形成されている。また、電極30は、ゲート電極20、ソース電極50及びドレイン電極60と接触しないように形成されている。また、電極30は、導電性インクを用いて形成されてもよい。電極30は、例えば、基材10に導電性インクを塗布し、導電性インクの溶媒(又は分散媒)を揮発させて形成されてもよい。導電性インクは、ゲート電極20を形成するために用いた導電性インクと同一の材料で構成されていてもよい。 The electrode 30 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 18A and 18B, the electrode 30 is formed on the substrate 10. The electrode 30 is formed so as not to contact the gate electrode 20, the source electrode 50 and the drain electrode 60. The electrode 30 may be formed using a conductive ink. The electrode 30 may be formed, for example, by applying a conductive ink to the substrate 10 and volatilizing the solvent (or dispersion medium) of the conductive ink. The conductive ink may be composed of the same material as the conductive ink used to form the gate electrode 20.
 抵抗部80は、図2における抵抗変化素子RC1の一部を構成する。図18(A)及び図18(B)に示すように、抵抗部80は、ソース電極50及びドレイン電極60のいずれか一方と電極30とに接触して形成されている。すなわち、ソース電極50及びドレイン電極60のいずれか一方は、抵抗変化素子RC1の一方の電極を兼ねている。図18(A)及び図18(B)に示す例では、抵抗部80は、ソース電極50と電極30とに接触して形成されている。また、図18(A)及び図18(B)に示す例では、抵抗部80は、基材10の上に形成されている。 The resistance unit 80 constitutes a part of the resistance change element RC1 in FIG. As shown in FIGS. 18A and 18B, the resistance portion 80 is formed in contact with either the source electrode 50 or the drain electrode 60 and the electrode 30. That is, one of the source electrode 50 and the drain electrode 60 also serves as one electrode of the resistance change element RC1. In the example illustrated in FIGS. 18A and 18B, the resistance portion 80 is formed in contact with the source electrode 50 and the electrode 30. In the example shown in FIGS. 18A and 18B, the resistance portion 80 is formed on the base material 10.
 抵抗部80は、カーボンナノチューブを含む。カーボンナノチューブインクを用いて形成されてもよい。抵抗部80は、例えば、ソース電極50と電極30とに接触するようにカーボンナノチューブインクを塗布し、カーボンナノチューブインクの分散媒を揮発させて形成されてもよい。 The resistance unit 80 includes carbon nanotubes. It may be formed using carbon nanotube ink. The resistance unit 80 may be formed, for example, by applying a carbon nanotube ink so as to contact the source electrode 50 and the electrode 30 and volatilizing the dispersion medium of the carbon nanotube ink.
 抵抗部80を形成するためのカーボンナノチューブは、導電性のカーボンナノチューブを含んでもよい。さらに、抵抗部80を形成するためのカーボンナノチューブは、半導体性のカーボンナノチューブよりも金属性(導電性)のカーボンナノチューブを多く含んでもよい。これにより、メモリセル3を構成する抵抗変化素子RC1の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル3を実現できる。 The carbon nanotubes for forming the resistance portion 80 may include conductive carbon nanotubes. Furthermore, the carbon nanotubes for forming the resistance portion 80 may contain more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes. Thereby, the difference in resistance value between the low resistance state and the high resistance state of the resistance change element RC1 constituting the memory cell 3 is increased. Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be realized.
 抵抗部80を形成するためのカーボンナノチューブは、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含んでもよい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル3を実現できる。 The carbon nanotubes for forming the resistance portion 80 may be included so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be realized.
 第3実施形態に係るメモリセル3のソース電極50及びドレイン電極60のうち抵抗変化素子RC1と接続していない一方は、ビット線110と電気的に接続されてもよい。図18(A)及び図18(B)に示す例では、ドレイン電極60がビット線110と電気的に接続されている。 One of the source electrode 50 and the drain electrode 60 of the memory cell 3 according to the third embodiment that is not connected to the resistance change element RC1 may be electrically connected to the bit line 110. In the example shown in FIGS. 18A and 18B, the drain electrode 60 is electrically connected to the bit line 110.
 ビット線110とメモリセル1のドレイン電極60以外の部材とが電気的に接続しないように、層間絶縁膜90を設けてもよい。例えば、絶縁性があり、回路性能に影響を及ぼさない充填材で層間絶縁膜90を構成してもよい。図18(A)及び図18(B)に示すように、ビット線110は、層間絶縁膜90に設けられたコンタクトホール100を介してドレイン電極60と電気的に接続している。 An interlayer insulating film 90 may be provided so that the bit line 110 and members other than the drain electrode 60 of the memory cell 1 are not electrically connected. For example, the interlayer insulating film 90 may be made of a filler that is insulative and does not affect circuit performance. As shown in FIGS. 18A and 18B, the bit line 110 is electrically connected to the drain electrode 60 through a contact hole 100 provided in the interlayer insulating film 90.
 第3実施形態に係るメモリセル3は、少なくともビット線110を覆うような保護膜120で覆われていてもよい。例えば、絶縁性の材料で保護膜120を構成してもよい。 The memory cell 3 according to the third embodiment may be covered with a protective film 120 that covers at least the bit line 110. For example, the protective film 120 may be made of an insulating material.
 なお、図18(A)及び図18(B)に示す例では、ゲート電極20、電極30及び抵抗部80と基材10との間に何も介在させない例を示しているが、他の部材を介在させた構成も可能である。例えば、ゲート電極20、電極30及び抵抗部80と基材10との間に絶縁部40や他の絶縁膜を介在させた構成も可能である。 18A and 18B shows an example in which nothing is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80, but other members. It is also possible to adopt a configuration with intervening. For example, a configuration in which the insulating portion 40 or another insulating film is interposed between the base electrode 10 and the gate electrode 20, the electrode 30, and the resistance portion 80 is also possible.
 また、上述した「1-2.抵抗変化素子」及び「1-3.メモリセルを用いたメモリ回路」の内容については、第1実施形態のメモリセル1を第3実施形態のメモリセル3に置き換えても同様に成立する。 As for the contents of “1-2. Resistance change element” and “1-3. Memory circuit using memory cell” described above, the memory cell 1 of the first embodiment is replaced with the memory cell 3 of the third embodiment. The same holds true for replacement.
 第3実施形態に係るメモリセル3によれば、印刷技術を利用して容易に製造できるメモリセルを実現できる。 According to the memory cell 3 according to the third embodiment, a memory cell that can be easily manufactured using a printing technique can be realized.
6.第3実施形態のメモリセルの製造方法
 次に、第3実施形態に係るメモリセルの製造方法について説明する。図19~図25は、第3実施形態に係るメモリセルの製造方法を説明するための図である。図19~図25の各図において、(A)はメモリセルの製造過程における平面図、(B)は(A)のA-A線における断面図を表す。
6). Method for Manufacturing Memory Cell of Third Embodiment Next, a method for manufacturing a memory cell according to the third embodiment will be described. 19 to 25 are views for explaining the method of manufacturing the memory cell according to the third embodiment. 19A to 25B, (A) is a plan view in the process of manufacturing a memory cell, and (B) is a cross-sectional view taken along line AA in (A).
 第3実施形態に係るメモリセルの製造方法は、基材10の上に導電性インクを塗布してゲート電極20を形成するゲート電極形成工程と、基材10の上に導電性インクを塗布して、ゲート電極20と離間して電極30を形成する電極形成工程と、ゲート電極20の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40を形成する絶縁部形成工程と、電極30に接触するようにカーボンナノチューブインクを塗布して抵抗部80を形成する抵抗部形成工程と、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20と絶縁されたソース電極50を形成するソース電極形成工程と、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50と離間し、ゲート電極20と絶縁されたドレイン電極60を形成するドレイン電極形成工程と、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20と絶縁されたチャネル部70を形成するチャネル部形成工程と、を含み、ソース電極形成工程及びドレイン電極形成工程のいずれか一方において、抵抗部80の少なくとも一部を覆うように導電性インクを塗布してソース電極50及びドレイン電極60のいずれか一方を形成する。 The method of manufacturing a memory cell according to the third embodiment includes a gate electrode forming step of forming a gate electrode 20 by applying a conductive ink on a substrate 10, and applying a conductive ink on the substrate 10. An electrode forming step of forming the electrode 30 apart from the gate electrode 20, an insulating portion forming step of forming an insulating portion 40 by applying an insulating ink so as to cover at least a part of the gate electrode 20, and an electrode A resistance portion forming step of forming a resistance portion 80 by applying carbon nanotube ink so as to be in contact with the electrode 30, and a conductive ink is applied so as to cover at least a part of the insulating portion 40 to be insulated from the gate electrode 20. The source electrode forming step of forming the source electrode 50 and the conductive ink is applied so as to cover at least a part of the insulating portion 40, separated from the source electrode 50, and insulated from the gate electrode 20. A drain electrode forming step for forming the drain electrode 60 and a channel that covers at least a part of the insulating portion 40 and is coated with carbon nanotube ink so as to be in contact with the source electrode 50 and the drain electrode 60, and is insulated from the gate electrode 20. A channel portion forming step for forming the portion 70, and in any one of the source electrode forming step and the drain electrode forming step, a conductive ink is applied so as to cover at least a part of the resistance portion 80, and the source electrode 50 And one of the drain electrode 60 is formed.
 以下、各工程について具体例を用いて説明する。なお、導電性インク、絶縁性インク及びカーボンナノチューブインクを塗布する工程は、インクジェットプリンタ等を用いた印刷技術を用いて塗布する例について説明する。また、基材10、絶縁性インク及びカーボンナノチューブインクの材料については、第1実施形態のメモリセルの製造方法と同様である。 Hereinafter, each process will be described using specific examples. In addition, the process of apply | coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example applied using the printing technique using an inkjet printer etc. FIG. Further, the materials of the base material 10, the insulating ink, and the carbon nanotube ink are the same as those of the memory cell manufacturing method of the first embodiment.
 まず、図19(A)及び図19(B)に示すように、基材10の上に導電性インクを塗布してゲート電極20を形成するゲート電極形成工程と、基材10の上に導電性インクを塗布して、ゲート電極20と離間して電極30を形成する電極形成工程とを行う。 First, as shown in FIGS. 19A and 19B, a gate electrode forming step of forming a gate electrode 20 by applying a conductive ink on the base material 10, and conducting on the base material 10. An electrode forming step of applying a conductive ink and forming the electrode 30 apart from the gate electrode 20 is performed.
 ゲート電極形成工程と電極形成工程とは、同一の工程で行ってもよいし、それぞれ異なる工程で行ってもよい。図19(A)及び図19(B)に示す例では、ゲート電極形成工程と電極形成工程とで同一の材料からなる導電性インクを用い、ゲート電極形成工程と電極形成工程とを同一の工程として行っている。また、基材10の上に塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、基材10の上にゲート電極20と電極30とを形成している。 The gate electrode formation step and the electrode formation step may be performed in the same step or in different steps. In the example shown in FIGS. 19A and 19B, the gate electrode formation step and the electrode formation step are the same step using conductive ink made of the same material in the gate electrode formation step and the electrode formation step. As you go. In addition, the gate electrode 20 and the electrode 30 are formed on the base material 10 by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the base material 10.
 次に、図20(A)及び図20(B)に示すように、ゲート電極20の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40を形成する絶縁部形成工程を行う。第3実施形態においては、塗布した絶縁性インクの溶媒(又は分散媒)を揮発させることにより、絶縁部40を形成している。 Next, as shown in FIGS. 20A and 20B, an insulating part forming step is performed in which an insulating ink is applied so as to cover at least a part of the gate electrode 20 to form the insulating part 40. In the third embodiment, the insulating portion 40 is formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
 次に、図21(A)及び図21(B)に示すように、電極30に接触するようにカーボンナノチューブインクを塗布して抵抗部80を形成する抵抗部形成工程を行う。図21(A)及び図21(B)に示す例では、電極30の少なくとも一部を覆うようにカーボンナノチューブインクを塗布して抵抗部80を形成している。第3実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、抵抗部80を形成している。 Next, as shown in FIGS. 21 (A) and 21 (B), a resistance part forming step of forming the resistance part 80 by applying carbon nanotube ink so as to contact the electrode 30 is performed. In the example shown in FIGS. 21A and 21B, the carbon nanotube ink is applied so as to cover at least a part of the electrode 30 to form the resistance portion 80. In the third embodiment, the resistance portion 80 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 抵抗部形成工程において、導電性のカーボンナノチューブを含むカーボンナノチューブインクを塗布してもよい。例えば、半導体性のカーボンナノチューブよりも金属性(導電性)のカーボンナノチューブを多く含むカーボンナノチューブインクを塗布してもよい。これにより、電極30、ソース電極50及び抵抗部80とで構成される抵抗変化素子RC1の低抵抗状態と高抵抗状態の抵抗値の差が大きくなる。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル3を製造できる。 In the resistance part forming step, carbon nanotube ink containing conductive carbon nanotubes may be applied. For example, a carbon nanotube ink containing more metallic (conductive) carbon nanotubes than semiconducting carbon nanotubes may be applied. As a result, the difference in resistance value between the low resistance state and the high resistance state of the variable resistance element RC1 including the electrode 30, the source electrode 50, and the resistance unit 80 is increased. Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be manufactured.
 また、抵抗部形成工程において、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含むカーボンナノチューブインクを塗布してもよい。金属性のシングルウォールカーボンナノチューブ及びダブルウォールカーボンナノチューブは、クーロン力の影響を受けやすく状態が曲がりやすく、ジュール熱による振動(格子散乱)により状態が変形しやすいという特徴がある。したがって、1と0の読み出しの差が明確になり良好なメモリ特性が得られるメモリセル3を製造できる。 Further, in the resistance portion forming step, the carbon nanotube ink may be applied so that the sum of the contents of the single wall carbon nanotubes and the double wall carbon nanotubes is larger than the content of the multi-wall carbon nanotubes of three or more layers. Good. Metallic single-walled carbon nanotubes and double-walled carbon nanotubes are characterized by being easily affected by Coulomb force and being easily bent, and being easily deformed by Joule heat vibration (lattice scattering). Therefore, the memory cell 3 in which the difference between reading 1 and 0 becomes clear and good memory characteristics can be obtained can be manufactured.
 次に、図22(A)及び図22(B)に示すように、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20と絶縁されたソース電極50を形成するソース電極形成工程と、絶縁部40の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50と離間し、ゲート電極20と絶縁されたドレイン電極60を形成するドレイン電極形成工程とを行う。 Next, as shown in FIGS. 22A and 22B, conductive ink is applied so as to cover at least a part of the insulating portion 40, and the source electrode 50 insulated from the gate electrode 20 is formed. And a drain electrode forming step of forming a drain electrode 60 that is separated from the source electrode 50 and insulated from the gate electrode 20 by applying conductive ink so as to cover at least a part of the insulating portion 40. And do.
 ソース電極形成工程とドレイン電極形成工程とは、同一の工程として行ってもよいし、それぞれ異なる工程として行ってもよい。第3実施形態においては、ソース電極形成工程とドレイン電極形成工程とで同一の材料からなる導電性インクを用い、ソース電極形成工程とドレイン電極形成工程とを同一の工程として行っている。また、塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、ソース電極50とドレイン電極60とを形成している。 The source electrode forming step and the drain electrode forming step may be performed as the same step or different steps. In the third embodiment, conductive inks made of the same material are used in the source electrode forming step and the drain electrode forming step, and the source electrode forming step and the drain electrode forming step are performed as the same step. Further, the source electrode 50 and the drain electrode 60 are formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink.
 また、ソース電極形成工程及びドレイン電極形成工程のいずれか一方において、抵抗部80の少なくとも一部を覆うように導電性インクを塗布してソース電極50及びドレイン電極60のいずれか一方を形成する。図22(A)及び図22(B)に示す例では、ソース電極形成工程において、抵抗部80の少なくとも一部を覆うように導電性インクを塗布してソース電極50を形成している。 In either one of the source electrode forming step and the drain electrode forming step, conductive ink is applied so as to cover at least a part of the resistance portion 80 to form either the source electrode 50 or the drain electrode 60. In the example shown in FIGS. 22A and 22B, the source electrode 50 is formed by applying conductive ink so as to cover at least a part of the resistance portion 80 in the source electrode forming step.
 次に、図23(A)及び図23(B)に示すように、絶縁部40の少なくとも一部を覆い、ソース電極50及びドレイン電極60に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20と絶縁されたチャネル部70を形成するチャネル部形成工程を行う。カーボンナノチューブインクは、カーボンナノチューブを含んだ分散液である。第3実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、チャネル部70を形成している。 Next, as shown in FIGS. 23A and 23B, a carbon nanotube ink is applied so as to cover at least a part of the insulating portion 40 and to be in contact with the source electrode 50 and the drain electrode 60, and then the gate. A channel part forming step for forming the channel part 70 insulated from the electrode 20 is performed. Carbon nanotube ink is a dispersion containing carbon nanotubes. In the third embodiment, the channel portion 70 is formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 チャネル部形成工程において、半導体性のカーボンナノチューブを含むカーボンナノチューブインクを塗布してもよい。例えば、金属性のカーボンナノチューブよりも半導体性のカーボンナノチューブを多く含むカーボンナノチューブインクを塗布してもよい。これにより、メモリセル3を構成するトランジスタT1のスイッチ特性が向上する。 In the channel portion forming step, carbon nanotube ink containing semiconducting carbon nanotubes may be applied. For example, a carbon nanotube ink containing more semiconducting carbon nanotubes than metallic carbon nanotubes may be applied. Thereby, the switch characteristics of the transistor T1 constituting the memory cell 3 are improved.
 また、チャネル部形成工程において、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含むカーボンナノチューブインクを塗布してもよい。3層以上のマルチウォールカーボンナノチューブは、通常、半導体性を示す。したがって、メモリセル3を構成するトランジスタT1のスイッチ特性が向上する。 Further, in the channel portion forming step, a carbon nanotube ink may be applied so that the content of the multi-wall carbon nanotubes of three or more layers is larger than the sum of the content of the single wall carbon nanotubes and the double wall carbon nanotubes. Good. Multiwall carbon nanotubes having three or more layers usually exhibit semiconductivity. Therefore, the switching characteristics of the transistor T1 constituting the memory cell 3 are improved.
 第3実施形態の係るメモリセルの製造方法によれば、不揮発性のメモリセルを、印刷技術を利用して容易に製造できる。また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセル3を製造できる。 According to the method for manufacturing a memory cell according to the third embodiment, a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell 3 can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
 チャネル部形成工程の後、図24(A)及び図24(B)に示すように、ドレイン電極60に通じる貫通孔100aを有する層間絶縁膜90を形成する層間絶縁膜形成工程を行ってもよい。層間絶縁膜形成工程では、例えば、絶縁性インクを塗布して層間絶縁膜90を形成したり、CVD(Chemical Vapor Deposition)法により層間絶縁膜90を形成したり、フィルム転写法により層間絶縁膜90を形成したりしてもよい。 After the channel portion forming step, an interlayer insulating film forming step for forming an interlayer insulating film 90 having a through hole 100a communicating with the drain electrode 60 may be performed as shown in FIGS. . In the interlayer insulating film forming step, for example, an insulating ink is applied to form the interlayer insulating film 90, the interlayer insulating film 90 is formed by a CVD (Chemical Vapor Deposition) method, or the interlayer insulating film 90 is formed by a film transfer method. May be formed.
 次に、図25(A)及び図25(B)に示すように、コンタクトホール100を介してドレイン電極60と電気的に接続するビット線110を形成するビット線形成工程を行ってもよい。ビット線形成工程では、例えば、層間絶縁膜90の上に導電性インクを塗布することによりビット線を形成してもよい。また、貫通孔100aに導電性インクが充填されることにより、コンタクトホール100となる。 Next, as shown in FIGS. 25A and 25B, a bit line forming step of forming a bit line 110 electrically connected to the drain electrode 60 through the contact hole 100 may be performed. In the bit line formation step, for example, the bit line may be formed by applying conductive ink on the interlayer insulating film 90. Further, the contact hole 100 is formed by filling the through hole 100a with conductive ink.
 次に、少なくともビット線110を覆う保護膜120を形成する保護膜形成工程を行ってもよい。保護膜形成工程では、例えば、絶縁性インクを塗布して保護膜120を形成したり、CVD(Chemical Vapor Deposition)法により保護膜120を形成したり、フィルム転写法により保護膜120を形成したりしてもよい。 Next, a protective film forming step of forming a protective film 120 covering at least the bit line 110 may be performed. In the protective film forming step, for example, the protective film 120 is formed by applying an insulating ink, the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method, or the protective film 120 is formed by a film transfer method. May be.
7.第3実施形態に係るメモリセルを用いたメモリブロック
 図26(A)は、第3実施形態に係るメモリセルを用いたメモリブロックの構造を模式的に示す平面図、図26(B)は、図26(A)のA-A線における断面図である。図27は、第3実施形態に係るメモリセルを用いたメモリブロックの等価回路図である。なお、第1実施形態に係るメモリセルと共通する構成には同一の符号又は同一の接頭番号を付し、その詳細な説明を省略する。また、各部材や、導電性インク、絶縁性インク及びカーボンナノチューブインクの材料については、第1実施形態で説明した材料と同様である。
7). Memory Block Using Memory Cell According to Third Embodiment FIG. 26A is a plan view schematically showing the structure of a memory block using the memory cell according to the third embodiment, and FIG. FIG. 27 is a cross-sectional view taken along line AA in FIG. FIG. 27 is an equivalent circuit diagram of a memory block using memory cells according to the third embodiment. In addition, the same code | symbol or the same prefix number is attached | subjected to the structure which is common in the memory cell concerning 1st Embodiment, and the detailed description is abbreviate | omitted. The materials of the members, the conductive ink, the insulating ink, and the carbon nanotube ink are the same as those described in the first embodiment.
 図27に示すように、メモリブロック4は、メモリセルCell-1とメモリセルCell-2を含んだNAND型のメモリブロックとして構成されている。図27に示す回路構成は、図3を用いて説明したメモリ回路150の一部と同様であるため、回路構成の詳細についての説明は省略する。なお、メモリブロック4は、3つ以上のメモリセルを直列接続して構成されていてもよい。 As shown in FIG. 27, the memory block 4 is configured as a NAND type memory block including memory cells Cell-1 and Cell-2. The circuit configuration illustrated in FIG. 27 is the same as part of the memory circuit 150 described with reference to FIG. 3, and thus detailed description of the circuit configuration is omitted. The memory block 4 may be configured by connecting three or more memory cells in series.
 以下、メモリセルCell-1及びメモリセルCell-2として第3実施形態に係るメモリセル3を用いた場合の構造を例にとり説明する。また、主としてメモリセルCell-1として機能する部材には「-1」の接尾番号を、主としてメモリセルCell-2として機能する部材には「-2」の接尾番号を付与しているが、これらの部材が他の機能を有することを妨げるものではない。 Hereinafter, the structure in the case where the memory cell 3 according to the third embodiment is used as the memory cell Cell-1 and the memory cell Cell-2 will be described as an example. Further, a member that mainly functions as the memory cell Cell-1 is given a suffix number "-1", and a member that mainly functions as the memory cell Cell-2 is given a suffix number "-2". This member does not prevent other members from having other functions.
 メモリセルCell-1は、基材10の上に形成されたトランジスタT1と抵抗変化素子RC1とを含む。メモリセルCell-2は、基材10の上に形成されたトランジスタT2と抵抗変化素子RC2とを含む。 The memory cell Cell-1 includes a transistor T1 and a resistance change element RC1 formed on the base material 10. The memory cell Cell-2 includes a transistor T2 and a resistance change element RC2 formed on the base material 10.
 トランジスタT1は、ゲート電極20-1、絶縁部40-1、ソース電極50-1、ドレイン電極60-1及びチャネル部70-1を含む。また、抵抗変化素子RC1は、電極30-1及び抵抗部80-1を含む。 The transistor T1 includes a gate electrode 20-1, an insulating part 40-1, a source electrode 50-1, a drain electrode 60-1, and a channel part 70-1. The resistance change element RC1 includes an electrode 30-1 and a resistance unit 80-1.
 トランジスタT2は、ゲート電極20-2、絶縁部40-2、ソース電極50-2、ドレイン電極60-2及びチャネル部70-2を含む。また、抵抗変化素子RC2は、電極30-2及び抵抗部80-2を含む。 The transistor T2 includes a gate electrode 20-2, an insulating part 40-2, a source electrode 50-2, a drain electrode 60-2, and a channel part 70-2. The resistance change element RC2 includes an electrode 30-2 and a resistance unit 80-2.
 メモリセルCell-1及びメモリセルCell-2の主たる構造は、図18(A)及び図18(B)を用いて説明したメモリセル3と同様であるため、以下では相違点についてのみ詳述する。 Since the main structures of the memory cell Cell-1 and the memory cell Cell-2 are the same as those of the memory cell 3 described with reference to FIGS. 18A and 18B, only the differences will be described in detail below. .
 図26(A)及び図26(B)に示すように、メモリブロック4において、トランジスタT1のソース電極50-1とトランジスタT2のドレイン電極60-2とは、一体に形成されている。これにより、1つの工程でソース電極50-1とドレイン電極60-2とを形成できる。また、ソース電極50-1とドレイン電極60-2とを接続するための特別な配線が不要となる。 As shown in FIGS. 26A and 26B, in the memory block 4, the source electrode 50-1 of the transistor T1 and the drain electrode 60-2 of the transistor T2 are integrally formed. Thus, the source electrode 50-1 and the drain electrode 60-2 can be formed in one process. Further, a special wiring for connecting the source electrode 50-1 and the drain electrode 60-2 is not necessary.
 なお、図26(A)及び図26(B)に示す例では、ソース電極50-1及びドレイン電極60-2と電極30-1との間に抵抗部80-1が介在することにより、ソース電極50-1及びドレイン電極60-2と電極30-1とが直接接触しないように構成されている。メモリブロック4の構成はこれに限らず、例えば、ソース電極50-1及びドレイン電極60-2と電極30-1との間の一部に絶縁部40-2が介在することにより、ソース電極50-1及びドレイン電極60-2と電極30-1とが直接接触しないように構成されていてもよい。 In the example shown in FIGS. 26A and 26B, the resistance portion 80-1 is interposed between the source electrode 50-1, the drain electrode 60-2, and the electrode 30-1, so that the source The electrode 50-1, the drain electrode 60-2, and the electrode 30-1 are not in direct contact with each other. The configuration of the memory block 4 is not limited to this. For example, the insulating portion 40-2 is interposed between the source electrode 50-1, the drain electrode 60-2, and the electrode 30-1, so that the source electrode 50-1 is interposed. -1 and the drain electrode 60-2 and the electrode 30-1 may not be in direct contact with each other.
 図26(A)及び図26(B)に示すように、メモリブロック4において、ビット線110は、コンタクトホール100を介してトランジスタT1のドレイン電極60-1に接続されており、トランジスタT2のドレイン電極60-2には接続されていない。これにより、図27に示すNAND型のメモリブロックを構成している。 As shown in FIGS. 26A and 26B, in the memory block 4, the bit line 110 is connected to the drain electrode 60-1 of the transistor T1 through the contact hole 100, and the drain of the transistor T2 It is not connected to the electrode 60-2. Thus, the NAND type memory block shown in FIG. 27 is configured.
 メモリブロック4によれば、印刷技術を利用して容易に製造できるメモリブロックを実現できる。 According to the memory block 4, it is possible to realize a memory block that can be easily manufactured using printing technology.
 以上の説明では、第3実施形態に係るメモリセル3を用いてメモリブロックを構成する例について説明したが、第1実施形態に係るメモリセル1や第2実施形態に係るメモリセル2を用いて、図27に示すメモリブロックを構成することも可能である。 In the above description, the example in which the memory block is configured using the memory cell 3 according to the third embodiment has been described. However, the memory cell 1 according to the first embodiment and the memory cell 2 according to the second embodiment are used. The memory block shown in FIG. 27 can also be configured.
8.第3実施形態に係るメモリセルを用いたメモリブロックの製造方法
 次に、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法について説明する。図28~図34は、第3実施形態に係るメモリセルを用いたメモリブロックの製造方法を説明するための図である。図28~図34の各図において、(A)はメモリブロックの製造過程における平面図、(B)は(A)のA-A線における断面図を表す。
8). Method of Manufacturing Memory Block Using Memory Cell According to Third Embodiment Next, a method of manufacturing a memory block using a memory cell according to the third embodiment will be described. 28 to 34 are views for explaining a method of manufacturing a memory block using the memory cell according to the third embodiment. In each of FIGS. 28 to 34, (A) is a plan view in the manufacturing process of the memory block, and (B) is a sectional view taken along the line AA in (A).
 第3実施形態に係るメモリセルを用いたメモリブロックの製造方法は、基材10の上に導電性インクを塗布してゲート電極20-1及びゲート電極20-2を形成するゲート電極形成工程と、基材10の上に導電性インクを塗布して、ゲート電極20-1及びゲート電極20-2と離間して電極30-1及び電極30-2を形成する電極形成工程と、ゲート電極20-1の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40-1を形成するとともに、ゲート電極20-2の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40-2を形成する絶縁部形成工程と、電極30-1に接触するようにカーボンナノチューブインクを塗布して抵抗部80-1を形成するとともに、電極30-2に接触するようにカーボンナノチューブインクを塗布して抵抗部80-2を形成する抵抗部形成工程と、絶縁部40-1の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20-1と絶縁されたソース電極50-1を形成するとともに、絶縁部40-2の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20-2と絶縁されたソース電極50-2を形成するソース電極形成工程と、絶縁部40-1の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50-1と離間し、ゲート電極20-1と絶縁されたドレイン電極60-1を形成するとともに、絶縁部40-2の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50-2と離間し、ゲート電極20-2と絶縁されたドレイン電極60-2を形成するドレイン電極形成工程と、絶縁部40-1の少なくとも一部を覆い、ソース電極50-1及びドレイン電極60-1に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20-1と絶縁されたチャネル部70-1を形成するとともに、絶縁部40-2の少なくとも一部を覆い、ソース電極50-2及びドレイン電極60-2に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20-2と絶縁されたチャネル部70-2を形成するチャネル部形成工程と、を含み、ソース電極形成工程及びドレイン電極形成工程のいずれか一方において、抵抗部80-1の少なくとも一部を覆うように導電性インクを塗布してソース電極50-1及びドレイン電極60-1のいずれか一方を形成するとともに、抵抗部80-2の少なくとも一部を覆うように導電性インクを塗布してソース電極50-2及びドレイン電極60-2のいずれか一方を形成する。ソース電極形成工程とドレイン電極形成工程とを同時に行って、ソース電極50-1とドレイン電極60-2とを一体形成してもよい。 A method of manufacturing a memory block using memory cells according to the third embodiment includes a gate electrode forming step of forming a gate electrode 20-1 and a gate electrode 20-2 by applying a conductive ink on a base material 10. An electrode forming step of applying conductive ink on the substrate 10 to form the electrode 30-1 and the electrode 30-2 apart from the gate electrode 20-1 and the gate electrode 20-2; -1 is applied to cover at least a portion of -1 to form an insulating portion 40-1, and an insulating ink is applied to cover at least a portion of the gate electrode 20-2. -2 forming step, and applying the carbon nanotube ink so as to be in contact with the electrode 30-1 to form the resistance portion 80-1, and so as to be in contact with the electrode 30-2. A resistance portion forming step of forming a resistance portion 80-2 by applying a tube ink; and a source insulated from the gate electrode 20-1 by applying a conductive ink so as to cover at least a part of the insulating portion 40-1. Source electrode formation for forming the electrode 50-1 and applying the conductive ink so as to cover at least a part of the insulating portion 40-2 to form the source electrode 50-2 insulated from the gate electrode 20-2 A conductive ink is applied so as to cover at least part of the insulating portion 40-1, and a drain electrode 60-1 that is separated from the source electrode 50-1 and insulated from the gate electrode 20-1 is formed. At the same time, a conductive ink is applied so as to cover at least a part of the insulating portion 40-2, and the drain electrode 60-2 that is separated from the source electrode 50-2 and insulated from the gate electrode 20-2 is formed. The carbon nanotube ink is applied so as to cover the source electrode 50-1 and the drain electrode 60-1 so as to cover at least a part of the in-electrode forming step and the insulating portion 40-1, and is insulated from the gate electrode 20-1. The channel portion 70-1 is formed, and at least part of the insulating portion 40-2 is covered, and carbon nanotube ink is applied so as to be in contact with the source electrode 50-2 and the drain electrode 60-2. -2 and a channel portion forming step for forming an insulated channel portion 70-2, and covering at least part of the resistor portion 80-1 in either one of the source electrode forming step and the drain electrode forming step The conductive ink is applied to form one of the source electrode 50-1 and the drain electrode 60-1, and the resistance portion 80-2 One of the source electrode 50-2 and the drain electrode 60-2 is formed by applying conductive ink so as to cover at least a part. The source electrode 50-1 and the drain electrode 60-2 may be integrally formed by simultaneously performing the source electrode formation step and the drain electrode formation step.
 以下、各工程について具体例を用いて説明する。なお、導電性インク、絶縁性インク及びカーボンナノチューブインクを塗布する工程は、インクジェットプリンタ等を用いた印刷技術を用いて塗布する例について説明する。また、基材10、絶縁性インク及びカーボンナノチューブインクの材料については、第1実施形態のメモリセルの製造方法と同様である。 Hereinafter, each process will be described using specific examples. In addition, the process of apply | coating a conductive ink, an insulating ink, and a carbon nanotube ink demonstrates the example applied using the printing technique using an inkjet printer etc. FIG. Further, the materials of the base material 10, the insulating ink, and the carbon nanotube ink are the same as those of the memory cell manufacturing method of the first embodiment.
 まず、図28(A)及び図28(B)に示すように、基材10の上に導電性インクを塗布してゲート電極20-1及びゲート電極20-2を形成するゲート電極形成工程と、基材10の上に導電性インクを塗布して、ゲート電極20-1及びゲート電極20-2と離間して電極30-1及び電極30-2を形成する電極形成工程とを行う。 First, as shown in FIGS. 28A and 28B, a gate electrode forming step of forming a gate electrode 20-1 and a gate electrode 20-2 by applying a conductive ink on the base material 10; Then, a conductive ink is applied on the base material 10, and an electrode forming step is performed in which the electrode 30-1 and the electrode 30-2 are formed apart from the gate electrode 20-1 and the gate electrode 20-2.
 ゲート電極形成工程と電極形成工程とは、同一の工程で行ってもよいし、それぞれ異なる工程で行ってもよい。図28(A)及び図28(B)に示す例では、ゲート電極形成工程と電極形成工程とで同一の材料からなる導電性インクを用い、ゲート電極形成工程と電極形成工程とを同一の工程として行っている。また、基材10の上に塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、基材10の上にゲート電極20-1、ゲート電極20-2、電極30-1及び電極30-2を形成している。 The gate electrode formation step and the electrode formation step may be performed in the same step or in different steps. In the example shown in FIGS. 28A and 28B, conductive inks made of the same material are used in the gate electrode formation step and the electrode formation step, and the gate electrode formation step and the electrode formation step are the same step. As you go. Further, by volatilizing the solvent (or dispersion medium) of the conductive ink applied on the base material 10, the gate electrode 20-1, the gate electrode 20-2, the electrode 30-1, and the electrode are formed on the base material 10. 30-2 is formed.
 次に、図29(A)及び図29(B)に示すように、ゲート電極20-1の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40-1を形成するとともに、ゲート電極20-2の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部40-2を形成する絶縁部形成工程を行う。本実施形態においては、塗布した絶縁性インクの溶媒(又は分散媒)を揮発させることにより、絶縁部40-1及び絶縁部40-2を形成している。 Next, as shown in FIGS. 29A and 29B, an insulating ink is applied so as to cover at least a part of the gate electrode 20-1, thereby forming an insulating portion 40-1, and the gate. An insulating part forming step is performed in which an insulating ink is applied so as to cover at least a part of the electrode 20-2 to form the insulating part 40-2. In this embodiment, the insulating part 40-1 and the insulating part 40-2 are formed by volatilizing the solvent (or dispersion medium) of the applied insulating ink.
 次に、図30(A)及び図30(B)に示すように、電極30-1に接触するようにカーボンナノチューブインクを塗布して抵抗部80-1を形成するとともに、電極30-2に接触するようにカーボンナノチューブインクを塗布して抵抗部80-2を形成する抵抗部形成工程を行う。図30(A)及び図30(B)に示す例では、電極30-1の少なくとも一部を覆うようにカーボンナノチューブインクを塗布して抵抗部80-1を形成するとともに、電極30-2の少なくとも一部を覆うようにカーボンナノチューブインクを塗布して抵抗部80-2を形成している。本実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、抵抗部80-1及び抵抗部80-2を形成している。 Next, as shown in FIGS. 30A and 30B, a carbon nanotube ink is applied so as to be in contact with the electrode 30-1 to form a resistance portion 80-1, and the electrode 30-2 is applied to the electrode 30-2. A resistance portion forming step is performed in which the carbon nanotube ink is applied so as to come into contact with each other to form the resistance portion 80-2. In the example shown in FIGS. 30A and 30B, the carbon nanotube ink is applied so as to cover at least a part of the electrode 30-1, thereby forming the resistance portion 80-1, and the electrode 30-2. The resistance part 80-2 is formed by applying carbon nanotube ink so as to cover at least a part. In this embodiment, the resistor 80-1 and the resistor 80-2 are formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 次に、図31(A)及び図31(B)に示すように、絶縁部40-1の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20-1と絶縁されたソース電極50-1を形成するとともに、絶縁部40-2の少なくとも一部を覆うように導電性インクを塗布して、ゲート電極20-2と絶縁されたソース電極50-2を形成するソース電極形成工程と、絶縁部40-1の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50-1と離間し、ゲート電極20-1と絶縁されたドレイン電極60-1を形成するとともに、絶縁部40-2の少なくとも一部を覆うように導電性インクを塗布して、ソース電極50-2と離間し、ゲート電極20-2と絶縁されたドレイン電極60-2を形成するドレイン電極形成工程とを行う。 Next, as shown in FIGS. 31A and 31B, a conductive ink is applied so as to cover at least part of the insulating portion 40-1, and the source insulated from the gate electrode 20-1 is applied. Source electrode formation for forming the electrode 50-1 and applying the conductive ink so as to cover at least a part of the insulating portion 40-2 to form the source electrode 50-2 insulated from the gate electrode 20-2 A conductive ink is applied so as to cover at least part of the insulating portion 40-1, and a drain electrode 60-1 that is separated from the source electrode 50-1 and insulated from the gate electrode 20-1 is formed. In addition, a conductive ink is applied so as to cover at least a part of the insulating portion 40-2, and the drain electrode 60-2 that is separated from the source electrode 50-2 and insulated from the gate electrode 20-2 is formed. Electrode forming worker Carry out the door.
 ソース電極形成工程とドレイン電極形成工程とは、同一の工程として行ってもよいし、それぞれ異なる工程として行ってもよい。本実施形態においては、ソース電極形成工程とドレイン電極形成工程とで同一の材料からなる導電性インクを用い、ソース電極形成工程とドレイン電極形成工程とを同一の工程として行っている。また、塗布した導電性インクの溶媒(又は分散媒)を揮発させることにより、ソース電極50とドレイン電極60とを形成している。また、本実施形態においては、図31(A)及び図31(B)に示すように、ソース電極50-1とドレイン電極60-2とを一体形成している。 The source electrode forming step and the drain electrode forming step may be performed as the same step or different steps. In this embodiment, the source electrode forming step and the drain electrode forming step are performed as the same step using conductive ink made of the same material in the source electrode forming step and the drain electrode forming step. Further, the source electrode 50 and the drain electrode 60 are formed by volatilizing the solvent (or dispersion medium) of the applied conductive ink. In the present embodiment, as shown in FIGS. 31A and 31B, the source electrode 50-1 and the drain electrode 60-2 are integrally formed.
 また、ソース電極形成工程及びドレイン電極形成工程のいずれか一方において、抵抗部80-1の少なくとも一部を覆うように導電性インクを塗布してソース電極50-1及びドレイン電極60-1のいずれか一方を形成するとともに、抵抗部80-2の少なくとも一部を覆うように導電性インクを塗布してソース電極50-2及びドレイン電極60-2のいずれか一方を形成する。図31(A)及び図31(B)に示す例では、ソース電極形成工程において、抵抗部80-1の少なくとも一部を覆うように導電性インクを塗布してソース電極50-1を形成するとともに、抵抗部80-2の少なくとも一部を覆うように導電性インクを塗布してソース電極50-2を形成している。 In either one of the source electrode formation step and the drain electrode formation step, conductive ink is applied so as to cover at least a part of the resistance portion 80-1, and any of the source electrode 50-1 and the drain electrode 60-1 is applied. One of the source electrode 50-2 and the drain electrode 60-2 is formed by applying conductive ink so as to cover at least part of the resistor 80-2. In the example shown in FIGS. 31A and 31B, the source electrode 50-1 is formed by applying conductive ink so as to cover at least a part of the resistance portion 80-1 in the source electrode formation step. At the same time, the source electrode 50-2 is formed by applying conductive ink so as to cover at least a part of the resistor 80-2.
 次に、図32(A)及び図32(B)に示すように、絶縁部40-1の少なくとも一部を覆い、ソース電極50-1及びドレイン電極60-1に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20-1と絶縁されたチャネル部70-1を形成するとともに、絶縁部40-2の少なくとも一部を覆い、ソース電極50-2及びドレイン電極60-2に接触するようにカーボンナノチューブインクを塗布して、ゲート電極20-2と絶縁されたチャネル部70-2を形成するチャネル部形成工程を行う。カーボンナノチューブインクは、カーボンナノチューブを含んだ分散液である。本実施形態においては、塗布したカーボンナノチューブインクの分散媒を揮発させることにより、チャネル部70-1及びチャネル部70-2を形成している。 Next, as shown in FIGS. 32A and 32B, the carbon nanotube ink covers at least part of the insulating portion 40-1 and contacts the source electrode 50-1 and the drain electrode 60-1. Is applied to form a channel portion 70-1 that is insulated from the gate electrode 20-1, and covers at least part of the insulating portion 40-2 and contacts the source electrode 50-2 and the drain electrode 60-2. Thus, a carbon nanotube ink is applied, and a channel part forming step is performed to form a channel part 70-2 insulated from the gate electrode 20-2. Carbon nanotube ink is a dispersion containing carbon nanotubes. In the present embodiment, the channel part 70-1 and the channel part 70-2 are formed by volatilizing the dispersion medium of the applied carbon nanotube ink.
 本実施形態の係るメモリブロックの製造方法によれば、不揮発性のメモリセルを用いたメモリブロックを、印刷技術を利用して容易に製造できる。また、インクの溶媒(又は分散媒)を気化させる程度の温度(例えば100~200℃程度)でメモリセル4を製造できる。 According to the method for manufacturing a memory block according to the present embodiment, a memory block using a nonvolatile memory cell can be easily manufactured using a printing technique. Further, the memory cell 4 can be manufactured at a temperature (for example, about 100 to 200 ° C.) at which the ink solvent (or dispersion medium) is vaporized.
 チャネル部形成工程の後、図33(A)及び図33(B)に示すように、ドレイン電極60-1に通じる貫通孔100aを有する層間絶縁膜90を形成する層間絶縁膜形成工程を行ってもよい。層間絶縁膜形成工程では、例えば、絶縁性インクを塗布して層間絶縁膜90を形成したり、CVD(Chemical Vapor Deposition)法により層間絶縁膜90を形成したり、フィルム転写法により層間絶縁膜90を形成したりしてもよい。 After the channel portion forming step, as shown in FIGS. 33A and 33B, an interlayer insulating film forming step for forming an interlayer insulating film 90 having a through hole 100a communicating with the drain electrode 60-1 is performed. Also good. In the interlayer insulating film forming step, for example, an insulating ink is applied to form the interlayer insulating film 90, the interlayer insulating film 90 is formed by a CVD (Chemical Vapor Deposition) method, or the interlayer insulating film 90 is formed by a film transfer method. May be formed.
 次に、図34(A)及び図24(B)に示すように、コンタクトホール100を介してドレイン電極60-1と電気的に接続するビット線110を形成するビット線形成工程を行ってもよい。ビット線形成工程では、例えば、層間絶縁膜90の上に導電性インクを塗布することによりビット線を形成してもよい。また、貫通孔100aに導電性インクが充填されることにより、コンタクトホール100となる。 Next, as shown in FIGS. 34A and 24B, a bit line formation step for forming a bit line 110 electrically connected to the drain electrode 60-1 through the contact hole 100 may be performed. Good. In the bit line formation step, for example, the bit line may be formed by applying conductive ink on the interlayer insulating film 90. Further, the contact hole 100 is formed by filling the through hole 100a with conductive ink.
 次に、少なくともビット線110を覆う保護膜120を形成する保護膜形成工程を行ってもよい。保護膜形成工程では、例えば、絶縁性インクを塗布して保護膜120を形成したり、CVD(Chemical Vapor Deposition)法により保護膜120を形成したり、フィルム転写法により保護膜120を形成したりしてもよい。 Next, a protective film forming step of forming a protective film 120 covering at least the bit line 110 may be performed. In the protective film forming step, for example, the protective film 120 is formed by applying an insulating ink, the protective film 120 is formed by a CVD (Chemical Vapor Deposition) method, or the protective film 120 is formed by a film transfer method. May be.
 なお、本発明は本実施の形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。 The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the gist of the present invention.
 本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 The present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment. In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
1,2,3 メモリセル、4 メモリブロック、10 基材、20,20-1,20-2 ゲート電極、30,30-1,30-2 電極、40,40-1,40-2 絶縁部、50,50-1,50-2 ソース電極、60,60-1,60-2 ドレイン電極、70,70-1,70-2 チャネル部、80,80-1,80-2 抵抗部、90 層間絶縁膜、100 コンタクトホール、100a 貫通孔、110 ビット線、120 保護膜、150 メモリ回路、160 メモリブロック、200 制御回路、202 BL制御回路、204 WL制御回路、206 PL制御回路、D ドレイン電極、G ゲート電極、S ソース電極、BL1 ビット線、Cell-1~Cell-4 メモリセル、RC1~RC4 抵抗変化素子、T1~T4 トランジスタ、WL1~WL4 ワード線、PL1~PL4 プログラム線 1, 2, 3 memory cell, 4 memory block, 10 base material, 20, 20-1, 20-2 gate electrode, 30, 30-1, 30-2 electrode, 40, 40-1, 40-2 insulation part 50, 50-1, 50-2 source electrode, 60, 60-1, 60-2 drain electrode, 70, 70-1, 70-2 channel part, 80, 80-1, 80-2 resistance part, 90 Interlayer insulating film, 100 contact hole, 100a through hole, 110 bit line, 120 protective film, 150 memory circuit, 160 memory block, 200 control circuit, 202 BL control circuit, 204 WL control circuit, 206 PL control circuit, D drain electrode , G gate electrode, S source electrode, BL1 bit line, Cell-1 to Cell-4 memory cell, RC1 to RC4 resistance change Child, T1 ~ T4 transistor, WL1 ~ WL4 word lines, PL1 ~ PL4 program line

Claims (15)

  1.  基材の上に形成されたトランジスタと抵抗変化素子とを含み、
     前記トランジスタは、
     ゲート電極、ソース電極及びドレイン電極と、
     カーボンナノチューブを含み、前記ソース電極及び前記ドレイン電極と接触するチャネル部と、
     前記ゲート電極と前記チャネル部との間に介在する絶縁部とを含み、
     前記抵抗変化素子は、
     離間して形成された第1電極及び第2電極と、
     カーボンナノチューブを含み、前記第1電極及び前記第2電極と接触する抵抗部とを含み、
     前記第1電極及び前記第2電極のいずれか一方は、前記ソース電極及び前記ドレイン電極のいずれか一方と共通である、メモリセル。
    Including a transistor and a resistance change element formed on a substrate;
    The transistor is
    A gate electrode, a source electrode and a drain electrode;
    A channel portion containing carbon nanotubes and in contact with the source electrode and the drain electrode;
    Including an insulating part interposed between the gate electrode and the channel part,
    The variable resistance element is
    A first electrode and a second electrode formed apart from each other;
    A carbon nanotube, including a resistance portion in contact with the first electrode and the second electrode;
    One of the first electrode and the second electrode is a memory cell in common with either the source electrode or the drain electrode.
  2.  請求項1に記載のメモリセルにおいて、
     前記ゲート電極は、前記基材の上に形成され、
     前記絶縁部は、前記ゲート電極の少なくとも一部を覆うように形成され、
     前記ソース電極及び前記ドレイン電極は、それぞれ前記絶縁部の少なくとも一部を覆うように形成され、
     前記チャネル部は、前記絶縁部の少なくとも一部を覆うように形成され、
     前記第1電極及び前記第2電極のいずれか他方と前記抵抗部とは、前記基材の上に形成されている、メモリセル。
    The memory cell of claim 1, wherein
    The gate electrode is formed on the substrate;
    The insulating part is formed to cover at least a part of the gate electrode,
    The source electrode and the drain electrode are formed so as to cover at least a part of the insulating part,
    The channel part is formed so as to cover at least a part of the insulating part,
    The other of the first electrode and the second electrode and the resistance portion are memory cells formed on the base material.
  3.  請求項1に記載のメモリセルにおいて、
     前記ソース電極、前記ドレイン電極及び前記チャネル部は、基材の上に形成され、
     前記絶縁部は、前記チャネル部の少なくとも一部を覆うように形成され、
     前記ゲート電極は、前記絶縁部の少なくとも一部を覆うように形成され、
     前記第1電極及び前記第2電極のいずれか他方と前記抵抗部とは、前記基材の上に形成されている、メモリセル。
    The memory cell of claim 1, wherein
    The source electrode, the drain electrode, and the channel portion are formed on a base material,
    The insulating part is formed so as to cover at least a part of the channel part,
    The gate electrode is formed so as to cover at least a part of the insulating portion;
    The other of the first electrode and the second electrode and the resistance portion are memory cells formed on the base material.
  4.  請求項1ないし3のいずれかに記載のメモリセルにおいて、
     前記チャネル部は、半導体性のカーボンナノチューブを含む、メモリセル。
    The memory cell according to any one of claims 1 to 3,
    The channel portion is a memory cell including semiconducting carbon nanotubes.
  5.  請求項1ないし4のいずれかに記載のメモリセルにおいて、
     前記抵抗部は、導電性のカーボンナノチューブを含む、メモリセル。
    The memory cell according to any one of claims 1 to 4,
    The resistance portion is a memory cell including a conductive carbon nanotube.
  6.  請求項1ないし5のいずれかに記載のメモリセルにおいて、
     前記チャネル部は、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含む、メモリセル。
    The memory cell according to any one of claims 1 to 5,
    The channel part is a memory cell including a content of three or more layers of multi-wall carbon nanotubes to be larger than a sum of content of single-wall carbon nanotubes and double-wall carbon nanotubes.
  7.  請求項1ないし6のいずれかに記載のメモリセルにおいて、
     前記抵抗部は、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含む、メモリセル。
    The memory cell according to any one of claims 1 to 6,
    The resistance part is a memory cell including a sum of contents of single-walled carbon nanotubes and double-walled carbon nanotubes so as to be larger than contents of multi-walled carbon nanotubes having three or more layers.
  8.  基材の上に導電性インクを塗布してゲート電極を形成するゲート電極形成工程と、
     前記基材の上に導電性インクを塗布して、前記ゲート電極と離間して電極を形成する電極形成工程と、
     前記ゲート電極の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部を形成する絶縁部形成工程と、
     前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ゲート電極と絶縁されたソース電極を形成するソース電極形成工程と、
     前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ソース電極と離間し、前記ゲート電極と絶縁されたドレイン電極を形成するドレイン電極形成工程と、
     前記絶縁部の少なくとも一部を覆い、前記ソース電極及び前記ドレイン電極に接触するようにカーボンナノチューブインクを塗布して、前記ゲート電極と絶縁されたチャネル部を形成するチャネル部形成工程と、
     前記ソース電極及び前記ドレイン電極のいずれか一方と前記電極とに接触するようにカーボンナノチューブインクを塗布して抵抗部を形成する抵抗部形成工程と、
     を含む、メモリセルの製造方法。
    A gate electrode forming step of forming a gate electrode by applying a conductive ink on a substrate;
    An electrode forming step of applying a conductive ink on the substrate and forming an electrode separated from the gate electrode;
    An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the gate electrode;
    A source electrode forming step of forming a source electrode insulated from the gate electrode by applying conductive ink so as to cover at least a part of the insulating portion;
    A drain electrode forming step of applying a conductive ink so as to cover at least a part of the insulating portion, forming a drain electrode spaced apart from the source electrode and insulated from the gate electrode;
    A channel part forming step of covering at least a part of the insulating part and applying a carbon nanotube ink so as to be in contact with the source electrode and the drain electrode to form a channel part insulated from the gate electrode;
    A resistance part forming step of forming a resistance part by applying a carbon nanotube ink so as to be in contact with either the source electrode or the drain electrode and the electrode;
    A method of manufacturing a memory cell.
  9.  基材の上に導電性インクを塗布してソース電極を形成するソース電極形成工程と、
     基材の上に導電性インクを塗布して、前記ソース電極と離間してドレイン電極を形成するドレイン電極形成工程と、
     基材の上に導電性インクを塗布して、前記ソース電極及び前記ドレイン電極と離間して電極を形成する電極形成工程と、
     基材の上にカーボンナノチューブインクを塗布して、前記ソース電極及び前記ドレイン電極と接触するチャネル部を形成するチャネル部形成工程と、
     基材の上にカーボンナノチューブインクを塗布して、前記ソース電極及び前記ドレイン電極のいずれか一方と前記電極とに接触する抵抗部を形成する抵抗部形成工程と、
     前記チャネル部の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部を形成する絶縁部形成工程と、
     前記絶縁部の少なくとも一部を覆い、前記ソース電極、前記ドレイン電極及び前記チャネル部と絶縁されたゲート電極を形成するゲート電極形成工程と、
     を含む、メモリセルの製造方法。
    A source electrode forming step of forming a source electrode by applying a conductive ink on a substrate;
    A drain electrode forming step of applying a conductive ink on a substrate and forming a drain electrode apart from the source electrode;
    An electrode forming step of applying a conductive ink on a substrate and forming an electrode apart from the source electrode and the drain electrode;
    Applying a carbon nanotube ink on a substrate, and forming a channel part forming a channel part in contact with the source electrode and the drain electrode; and
    A resistance part forming step of forming a resistance part in contact with either the source electrode or the drain electrode and the electrode by applying a carbon nanotube ink on a substrate;
    An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the channel part;
    Forming a gate electrode that covers at least a part of the insulating portion and forms a gate electrode insulated from the source electrode, the drain electrode, and the channel portion;
    A method of manufacturing a memory cell.
  10.  基材の上に導電性インクを塗布してゲート電極を形成するゲート電極形成工程と、
     前記基材の上に導電性インクを塗布して、前記ゲート電極と離間して電極を形成する電極形成工程と、
     前記ゲート電極の少なくとも一部を覆うように絶縁性インクを塗布して絶縁部を形成する絶縁部形成工程と、
     前記電極に接触するようにカーボンナノチューブインクを塗布して抵抗部を形成する抵抗部形成工程と、
     前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ゲート電極と絶縁されたソース電極を形成するソース電極形成工程と、
     前記絶縁部の少なくとも一部を覆うように導電性インクを塗布して、前記ソース電極と離間し、前記ゲート電極と絶縁されたドレイン電極を形成するドレイン電極形成工程と、
     前記絶縁部の少なくとも一部を覆い、前記ソース電極及び前記ドレイン電極に接触するようにカーボンナノチューブインクを塗布して、前記ゲート電極と絶縁されたチャネル部を形成するチャネル部形成工程と、
     を含み、
     前記ソース電極形成工程及び前記ドレイン電極形成工程のいずれか一方において、前記抵抗部の少なくとも一部を覆うように導電性インクを塗布して前記ソース電極及び前記ドレイン電極のいずれか一方を形成する、メモリセルの製造方法。
    A gate electrode forming step of forming a gate electrode by applying a conductive ink on a substrate;
    An electrode forming step of applying a conductive ink on the substrate and forming an electrode separated from the gate electrode;
    An insulating part forming step of forming an insulating part by applying an insulating ink so as to cover at least a part of the gate electrode;
    A resistance part forming step of forming a resistance part by applying carbon nanotube ink so as to contact the electrode; and
    A source electrode forming step of forming a source electrode insulated from the gate electrode by applying conductive ink so as to cover at least a part of the insulating portion;
    A drain electrode forming step of applying a conductive ink so as to cover at least a part of the insulating portion, forming a drain electrode spaced apart from the source electrode and insulated from the gate electrode;
    A channel part forming step of covering at least a part of the insulating part and applying a carbon nanotube ink so as to be in contact with the source electrode and the drain electrode to form a channel part insulated from the gate electrode;
    Including
    In any one of the source electrode formation step and the drain electrode formation step, a conductive ink is applied so as to cover at least a part of the resistance portion to form either the source electrode or the drain electrode. A method for manufacturing a memory cell.
  11.  請求項8及び9のいずれかに記載のメモリセルの製造方法において、
     前記チャネル部形成工程と前記抵抗部形成工程とを同一の工程として行う、メモリセルの製造方法。
    In the manufacturing method of the memory cell according to any one of claims 8 and 9,
    A method of manufacturing a memory cell, wherein the channel portion forming step and the resistor portion forming step are performed as the same step.
  12.  請求項8ないし11のいずれかに記載のメモリセルの製造方法において、
     前記チャネル部形成工程において、半導体性のカーボンナノチューブを含む前記カーボンナノチューブインクを塗布する、メモリセルの製造方法。
    12. The method of manufacturing a memory cell according to claim 8,
    A method of manufacturing a memory cell, comprising applying the carbon nanotube ink containing semiconducting carbon nanotubes in the channel part forming step.
  13.  請求項8ないし12のいずれかに記載のメモリセルの製造方法において、
     前記抵抗部形成工程において、導電性のカーボンナノチューブを含む前記カーボンナノチューブインクを塗布する、メモリセルの製造方法。
    The method of manufacturing a memory cell according to any one of claims 8 to 12,
    A method of manufacturing a memory cell, comprising applying the carbon nanotube ink containing conductive carbon nanotubes in the resistance portion forming step.
  14.  請求項8ないし13のいずれかに記載のメモリセルの製造方法において、
     前記チャネル部形成工程において、3層以上のマルチウォールカーボンナノチューブの含有量が、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和よりも多くなるように含む前記カーボンナノチューブインクを塗布する、メモリセルの製造方法。
    The method of manufacturing a memory cell according to any one of claims 8 to 13,
    In the channel portion forming step, the memory is coated with the carbon nanotube ink including a content of three or more layers of multi-wall carbon nanotubes that is larger than a sum of content of single-wall carbon nanotubes and double-wall carbon nanotubes. Cell manufacturing method.
  15.  請求項8ないし14のいずれかに記載のメモリセルの製造方法において、
     前記抵抗部形成工程において、シングルウォールカーボンナノチューブとダブルウォールカーボンナノチューブの含有量の和が、3層以上のマルチウォールカーボンナノチューブの含有量よりも多くなるように含む前記カーボンナノチューブインクを塗布する、メモリセルの製造方法。
    The method of manufacturing a memory cell according to any one of claims 8 to 14,
    In the resistance portion forming step, the memory is coated with the carbon nanotube ink including the sum of the content of the single wall carbon nanotube and the double wall carbon nanotube so as to be larger than the content of the multi-wall carbon nanotube of three or more layers. Cell manufacturing method.
PCT/JP2010/070524 2010-01-06 2010-11-18 Memory cell and method for manufacturing memory cell WO2011083632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-001037 2010-01-06
JP2010001037 2010-01-06

Publications (1)

Publication Number Publication Date
WO2011083632A1 true WO2011083632A1 (en) 2011-07-14

Family

ID=44305371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070524 WO2011083632A1 (en) 2010-01-06 2010-11-18 Memory cell and method for manufacturing memory cell

Country Status (2)

Country Link
TW (1) TW201131745A (en)
WO (1) WO2011083632A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779346B (en) * 2014-01-15 2017-04-12 清华大学 Preparation method of phase change storage unit
US11653581B2 (en) 2020-08-13 2023-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM device structure and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267513A (en) * 2000-03-21 2001-09-28 Nec Corp Electronic element and recording method by using the same
WO2002063693A1 (en) * 2001-02-08 2002-08-15 Hitachi, Ltd. Carbon nanotube electronic device and electron source
JP2006210910A (en) * 2005-01-26 2006-08-10 Samsung Electronics Co Ltd Multiple bit nonvolatile memory device using carbon nanotube channel and operation method thereof
JP2008166591A (en) * 2006-12-28 2008-07-17 Osaka Univ Nonvolatile memory cell, its manufacturing method, resistance variable type nonvolatile memory device and method for designing the nonvolatile memory cell
JP2009526389A (en) * 2006-02-08 2009-07-16 キモンダ アクチエンゲゼルシャフト Memory with nanotube transistor access device
WO2009110120A1 (en) * 2008-03-07 2009-09-11 株式会社 東芝 Nonvolatile memory device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267513A (en) * 2000-03-21 2001-09-28 Nec Corp Electronic element and recording method by using the same
WO2002063693A1 (en) * 2001-02-08 2002-08-15 Hitachi, Ltd. Carbon nanotube electronic device and electron source
JP2006210910A (en) * 2005-01-26 2006-08-10 Samsung Electronics Co Ltd Multiple bit nonvolatile memory device using carbon nanotube channel and operation method thereof
JP2009526389A (en) * 2006-02-08 2009-07-16 キモンダ アクチエンゲゼルシャフト Memory with nanotube transistor access device
JP2008166591A (en) * 2006-12-28 2008-07-17 Osaka Univ Nonvolatile memory cell, its manufacturing method, resistance variable type nonvolatile memory device and method for designing the nonvolatile memory cell
WO2009110120A1 (en) * 2008-03-07 2009-09-11 株式会社 東芝 Nonvolatile memory device and its manufacturing method

Also Published As

Publication number Publication date
TW201131745A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP6783506B2 (en) Graphene devices, their manufacturing and operating methods, and electronic devices containing graphene devices.
Zhao et al. Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS 2/Au structure for multilevel flexible memory
Chung et al. Nanoscale memory devices
US8098520B2 (en) Storage device including a memory cell having multiple memory layers
US8648323B2 (en) Nonvolatile memory device and method of fabricating the same
JP5058487B2 (en) Phase change RAM operation method
Yoon et al. Double‐Layer‐Stacked One Diode‐One Resistive Switching Memory Crossbar Array with an Extremely High Rectification Ratio of 109
JP2007067408A (en) Nonvolatile organic resistance memory device and manufacturing method thereof
KR20110033061A (en) Nonvolatile memory device and method for manufacturing same
US11469371B2 (en) SOT-MRAM cell in high density applications
JP2009071304A (en) Resistance change memory element, and method of forming resistance change memory element
US20090302301A1 (en) Resistance ram device having a carbon nano-tube and method for manufacturing the same
US8242479B2 (en) Nonvolatile memory apparatus and manufacturing method thereof
JP2012004242A (en) Nonvolatile storage device
US11948616B2 (en) Semiconductor structure and manufacturing method thereof
US8860000B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
WO2011083632A1 (en) Memory cell and method for manufacturing memory cell
KR20120007438A (en) Nonvolatile memory device and method for manufacturing same
US8222704B2 (en) Compact electrical switching devices with nanotube elements, and methods of making same
US20200243606A1 (en) Semiconductor memory device
Khurana et al. Graphene oxide-based memristor
JP2013197254A (en) Semiconductor memory device and method of manufacturing the same
Zhuge et al. Advances in resistive switching memories based on graphene oxide
US9035289B2 (en) Nonvolatile memory device
US8014188B2 (en) Electric element, switching element, memory element, switching method and memory method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP