WO2011082697A1 - 一种下行导频的传输方法、装置 - Google Patents

一种下行导频的传输方法、装置 Download PDF

Info

Publication number
WO2011082697A1
WO2011082697A1 PCT/CN2011/070149 CN2011070149W WO2011082697A1 WO 2011082697 A1 WO2011082697 A1 WO 2011082697A1 CN 2011070149 W CN2011070149 W CN 2011070149W WO 2011082697 A1 WO2011082697 A1 WO 2011082697A1
Authority
WO
WIPO (PCT)
Prior art keywords
orthogonal sequence
orthogonal
transmission
rank
port
Prior art date
Application number
PCT/CN2011/070149
Other languages
English (en)
French (fr)
Inventor
徐婧
缪德山
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US13/521,659 priority Critical patent/US9780935B2/en
Priority to EP11731698.4A priority patent/EP2525540A4/en
Publication of WO2011082697A1 publication Critical patent/WO2011082697A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J2013/165Joint allocation of code together with frequency or time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a downlink pilot transmission method and apparatus. Background technique
  • LTE Long Term Evolution
  • LTE-Advanced Long Term Evolution-Advanced
  • LTE-Advanced the abbreviation of Long Term Evolution, which is the evolution system of the third generation mobile communication system, and the LTE-Advanced system is the upgrade of the LTE system
  • New technologies such as collaborative transmission technology improve system performance.
  • the LTE-A system uses dedicated pilot demodulation data and the pilots between the streams remain orthogonal.
  • the pilots of the two streams adopt the orthogonal mode of CDM, as shown in Figure 1.
  • the pilots of 4 streams use FDM.
  • CDM for transmission schemes with 3 and 4 streams, the pilots of 4 streams use FDM.
  • CDM for transmission schemes with 5, 6, 7 and 8 streams, the pilots of 8 streams use a mixture of FDM and CDM.
  • all transmission schemes and pilots contain the orthogonal mode of CDM.
  • the pilot of the CDM mode uses a walsh code or a normalized walsh code, this causes the power on the adjacent two OFDM symbols where the pilot is located to be different. Summary of the invention
  • the embodiments of the present invention provide a method and a device for transmitting downlink pilots, which are used to solve the problem of different powers on OFDM symbols existing in the prior art.
  • Dedicated pilots are transmitted using a code division multiplexed CDM method or a CDM and frequency division multiplexed FDM hybrid;
  • an orthogonal sequence is configured for the dedicated pilots according to a set mapping rule.
  • a downlink pilot transmission device includes: a configuration unit, configured to configure an orthogonal sequence for the dedicated pilot according to a set mapping rule on a resource for transmitting a dedicated pilot;
  • the transmission unit is configured to transmit the dedicated pilot processed by the configuration unit by using a code division multiplexing CDM method or a CDM and a frequency division multiplexing FDM hybrid.
  • a code division multiplexing CDM mode is adopted, or a dedicated pilot is transmitted by using a CDM and a frequency division multiplexing FDM hybrid manner, where a resource for transmitting a dedicated pilot is used according to a set mapping rule.
  • the dedicated pilot configures an orthogonal sequence to solve the problem of different OFDM symbol power caused by the walsh code.
  • FIG. 1 is a schematic flowchart of a method for transmitting a downlink pilot according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a downlink pilot transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a LTE-A downlink dedicated pilot structure
  • FIG. 4 is a schematic diagram of a sequence mapping scheme based on subcarriers in rank3-rank 4 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a sequence mapping scheme based on a subcarrier group in rank3-rank 4 according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a sequence mapping scheme based on subcarriers in rank5-rank8 according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a sequence mapping scheme based on a subcarrier group in rank5-rank8 according to an embodiment of the present invention.
  • a dedicated pilot is transmitted by using a code division multiplexing (CDM) method or a CDM and a frequency division multiplexing (FDM) hybrid method, where a resource for transmitting a dedicated pilot is used according to a set mapping rule.
  • An orthogonal sequence is configured for the dedicated pilot.
  • a method for transmitting a dedicated pilot includes the following steps: Step 101: mapping a dedicated pilot by using a code division multiplexing CDM method or a CDM and a frequency division multiplexing FDM hybrid manner, where , on the resources used to transmit the dedicated pilot, according to the settings
  • the mapping rule configures the orthogonal sequence for the dedicated pilot, and further, before configuring the orthogonal sequence for the dedicated pilot, the port may be further mapped according to the set mapping rule.
  • Step 102 Send the mapped dedicated pilot.
  • the orthogonal sequence and mapping rule adopted by the first stream transmitted are the same as when the rank number of the transmission is 1 or 2, and the orthogonal sequence and mapping adopted by the transmitted second stream The rule is the same as when the rank of the transmission is 2.
  • the orthogonal sequence and mapping rule adopted by the transmitted third stream are the same as when the rank of the transmission is 3 or 4; the orthogonal sequence of the transmitted fourth stream is The mapping rule is the same as when the rank of the transmission is 4.
  • the port groups mapped in different resources adopt the same orthogonal sequence set; or, the port groups mapped in different resources independently configure the orthogonal sequence.
  • the recommended design approach is to map the cyclic shift relationship between orthogonal sets of sequences that are independently configured for port groups in different resources.
  • the value of the cyclic shift is 2.
  • Ports mapped on the same subcarrier use different orthogonal sequences in the same orthogonal sequence set.
  • Adjacent subcarriers for each dedicated port for transmitting dedicated pilots are taken from orthogonal sequences of different orthogonal sequence sets.
  • the recommended design method is that the orthogonal sequences of adjacent subcarriers used to transmit dedicated pilots for each port are arranged in reverse order.
  • the adjacent two subcarriers corresponding to each dedicated port for transmitting dedicated pilots are taken from orthogonal sequences of different orthogonal sequence sets;
  • the adjacent two subcarriers corresponding to each dedicated port for transmitting dedicated pilots are taken from orthogonal sequences of different orthogonal sequence sets, or
  • the adjacent 4 subcarriers corresponding to each port for transmitting dedicated pilots are taken from orthogonal sequences of different orthogonal sequence sets.
  • the adjacent two subcarrier configurations for transmitting dedicated pilots corresponding to each port in the frequency domain order are taken from different orthogonal sequence sets. Orthogonal sequence
  • each port is ordered in frequency domain order.
  • Corresponding one subcarrier for transmitting a dedicated pilot is taken from an orthogonal sequence of different orthogonal sequence sets, or
  • the adjacent four subcarriers for transmitting dedicated pilots corresponding to each port in the frequency domain order are taken from different orthogonal sequence sets. Orthogonal sequence.
  • the number of orthogonal sequence sets is the same as the orthogonal code length used by the dedicated pilot.
  • a downlink pilot transmission apparatus includes: a configuration unit 21 and a transmission unit 22. among them,
  • the configuration unit 21 is configured to configure an orthogonal sequence according to the dedicated pilot to be used on the resource for transmitting the dedicated pilot.
  • the configuration unit 21 may further follow the orthogonal sequence before configuring the dedicated pilot. This set mapping rule maps the ports.
  • the transmission unit 22 is configured to transmit the dedicated pilot by using a code division multiplexing CDM method or a CDM and a frequency division multiplexing FDM hybrid.
  • the orthogonal sequence and mapping rule adopted by the first stream are the same as when the rank number of the transmission is 1 or 2, and the orthogonal sequence and mapping rule used by the second stream and the rank number of the transmission are used. The same for 2 hours.
  • the orthogonal sequence and mapping rule adopted by the third stream are the same as when the rank number of the transmission is 3 or 4; the orthogonal sequence and the mapping rule and the rank of the transmission adopted by the fourth stream The same when the number is 4.
  • the port groups mapped in different resources adopt the same orthogonal sequence set; or, the port groups mapped in different resources independently configure the orthogonal sequence.
  • the recommended design approach is to map the cyclic shift relationship between orthogonal sets of sequences that are independently configured for port groups in different resources.
  • the value of the cyclic shift is 2.
  • Ports mapped on the same subcarrier use different orthogonal sequences in the same orthogonal sequence set.
  • Adjacent subcarriers for transmitting dedicated pilots for each port are taken from different orthogonal sequence sets Orthogonal sequence.
  • the recommended design method is that the orthogonal sequences of adjacent subcarriers for transmitting dedicated pilots for each port are arranged in reverse order with each other.
  • the adjacent two subcarriers corresponding to each dedicated port for transmitting the dedicated pilot are taken from orthogonal sequences of different orthogonal sequence sets; when the system transmits the rank number When 5 ⁇ 8, the adjacent two subcarriers corresponding to each dedicated port for transmitting dedicated pilots are taken from orthogonal sequences of different orthogonal sequence sets, or when the system transmits ranks 5 ⁇ 8
  • the adjacent four subcarriers corresponding to each port for transmitting dedicated pilots are taken from orthogonal sequences of different orthogonal sequence sets.
  • the adjacent two subcarrier configurations for transmitting dedicated pilots corresponding to each port in the frequency domain order are taken from different orthogonal sequence sets. Orthogonal sequence
  • the adjacent one subcarriers for transmitting dedicated pilots corresponding to each port are taken from the different orthogonal sequence sets in the frequency domain order.
  • the adjacent four subcarriers for transmitting the dedicated pilot corresponding to each port are taken from the different orthogonal sequence sets in the frequency domain order.
  • Cross sequence
  • the number of orthogonal sequence sets is the same as the orthogonal code length used by the dedicated pilot.
  • Figure 3 shows the LTE-A downlink dedicated pilot structure.
  • the pilot structure of rank3-rank4 increases the number of supported ports by frequency division (FDM) on the basis of rankl-rank2.
  • FDM frequency division
  • 01 corresponds to the first and second streams.
  • 23 corresponds to the 3rd, 4th stream, and 01 and 23 are distinguished by frequency division (FDM).
  • the first and second streams are distinguished by CDM, and the third and fourth streams are distinguished by CDM.
  • the orthogonal sequence group flip specifically includes two methods: based on the subcarrier, based on the subcarrier group.
  • FIG. 4 is a schematic diagram of an embodiment of rank3-rank 4 and based on a sub-carrier configuration orthogonal sequence. Referring to FIG. 4, this embodiment is different in orthogonal sequence groups of adjacent subcarriers.
  • the orthogonal sequence of the arrow to the left is Code IndexO: [1 1] [1-1] ;
  • the orthogonal sequence of the arrow to the right is Code indexl: [1 1] [- 1 1].
  • Figure 5 is a schematic illustration of another embodiment of rank3-rank 4 and based on a configuration orthogonal sequence of subcarrier groups.
  • adjacent subcarriers in the PRB are grouped first, and there are three groups in one PRB, and two subcarriers are corresponding in the group; the sequence flipping (selection) is performed based on the subcarriers, that is, The sub-carriers in the group use the same orthogonal sequence group, and the adjacent groups use different orthogonal sequence groups.
  • the orthogonal sequence of the direction arrow to the left is Code indexO: [1 1] [1-1];
  • the orthogonal sequence of the arrow to the right is Code indexl: [1 1] [- 1 1].
  • the port mapping method is as follows: 01, 23 respectively correspond to 4 streams, and are distinguished by FDM; 01 corresponding 4 streams are distinguished by CDM, and 23 corresponding 4 streams are distinguished by CDM. .
  • 01 corresponds to the first, 2, 5, 7 streams, 23 corresponds to the 3, 4, 6, 8 streams, and 01 and 23 pass the frequency division. (FDM) way of distinguishing.
  • the first, second, fifth, and seventh streams are distinguished by CDM, and the third, fourth, and sixth streams are distinguished by CDM.
  • 01 in the case of rank3-4 corresponds to the first and second streams
  • 23 corresponds to the 34th stream, which is consistent, and thus has compatibility.
  • FIG. 6 is a schematic diagram of a rank5-rank8 subcarrier-based sequence mapping scheme.
  • the power of each pilot symbol can be guaranteed to be close or consistent.
  • Recommended design method The cyclic shift relationship is satisfied between the orthogonal sequence sets independently mapped by the port groups mapped in different resources. Orthogonal sequence sets of adjacent subcarriers used for transmitting dedicated pilots in the same port group are reversed ⁇ 1 J. As shown in Table 1.
  • Figure 7 is a schematic diagram of a rank5-rank8 subcarrier-based sequence mapping scheme. Referring to Figure 7, the sequence shown in Table 2, based on the subcarrier group, ensures that the power of each pilot symbol is close or consistent.
  • the recommended design method is: Cycle shift based on a sequence set to generate a new sequence set, as shown in Table 2.
  • the power balance can be ensured, the orthogonality of the time-frequency domain is ensured, and the backward compatibility is ensured.
  • the schemes of Ranks 5 ⁇ 8 that are mapped to the 1-4 stream sequences in rank4 can be completely identical. Therefore, embodiments of the present invention can ensure backward compatibility and time-frequency domain orthogonality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种下行导频的传输方法、 装置 技术领域
本发明涉及通信技术领域, 特别是指一种下行导频的传输方法、 装置。 背景技术
在 3GPP长期演进 LTE-Advanced (LTE是 Long Term Evolution 的缩写, 是第三代移动通信系统的演进系统, LTE-Advanced系统是 LTE系统的升级) 系统中, 将会采用高阶 MIMO技术和多小区协同传输技术等新技术提高系统 性能。
针对这些新的技术特征, LTE-A系统采用专用导频解调数据, 并且各个流 之间的导频保持正交。 对于流数为 1和 2的传输方案, 两个流的导频采用 CDM 的正交方式,如图 1所示;对于流数为 3和 4的传输方案, 4个流的导频釆用 FDM 和 CDM混合的方式;对于流数为 5, 6, 7和 8的传输方案, 8个流的导频采用 FDM 和 CDM混合的方式。 由此可见, 所有的传输方案, 导频都包含了 CDM的正交 方式。 但由于 CDM模式的导频采用 walsh码或归一化的 walsh码, 这样会导致 导频所在的相邻两个 OFDM符号上的功率不同。 发明内容
本发明实施例提供一种下行导频的传输方法、 装置, 用以解决现有技术 中存在的 OFDM符号上的功率不同的问题。
本发明实施例中一种下行导频的传输方法, 包括:
采用码分复用 CDM方式, 或采用 CDM和频分复用 FDM混合的方式传 输专用导频; 且
在用于传输专用导频的资源上, 按照设定的映射规则为所述专用导频配 置正交序列。
在本发明实施例中, 一种下行导频的传输装置包括: 配置单元, 用于在传输专用导频的资源上, 按照设定的映射规则为所述 专用导频配置正交序列;
传输单元,用于采用码分复用 CDM方式,或采用 CDM和频分复用 FDM 混合的方式传输配置单元处理后的专用导频。
本发明实施例中采用码分复用 CDM方式,或采用 CDM和频分复用 FDM 混合的方式传输专用导频, 其中, 用于传输专用导频的资源上, 按照设定的 映射规则为所述专用导频配置正交序列, 从而解决 walsh码导致的 OFDM符 号功率不同的问题。 附图说明
图 1为本发明实施例的下行导频的传输方法的流程示意图;
图 2为本发明实施例的下行导频的传输装置的结构示意图;
图 3所示为 LTE-A下行专用导频结构示意图;
图 4为本发明实施例在 rank3-rank4时基于子载波的序列映射方案示意图; 图 5为本发明实施例在 rank3-rank4时基于子栽波组的序列映射方案示意 图;
图 6为本发明实施例在 rank5-rank8时基于子载波的序列映射方案示意图; 图 7 为本发明实施例在 rank5-rank8时基于子栽波组的序列映射方案示意 图。 具体实施方式
在本发明实施例中, 采用码分复用 CDM方式, 或采用 CDM和频分复用 FDM混合的方式传输专用导频, 其中, 用于传输专用导频的资源上, 按照设 定的映射规则为所述专用导频配置正交序列。
参见图 1所示, 本发明实施例的专用导频的传输方法包括以下步骤: 步骤 101: 采用码分复用 CDM方式, 或采用 CDM和频分复用 FDM混 合的方式映射专用导频, 其中, 在用于传输专用导频的资源上, 按照设定的 映射规则为所述专用导频配置正交序列, 此外在为所述专用导频配置正交序 列前, 还可以进而按照该设定的映射规则将端口进行映射。
步骤 102: 将映射后的专用导频发送。
当系统的传输秩数为 3〜8 时, 所传输的第一流采用的正交序列和映射规 则与传输的秩数为 1或 2时相同, 所传输的第二流采用的正交序列和映射规 则与传输的秩数为 2时相同。 当系统的传输秩数为 5~8时, 所传输的第三流 采用的正交序列和映射规则与传输的秩数为 3或 4时相同; 所传输的第四流 采用的正交序列和映射规则与传输的秩数为 4时相同。
映射在不同资源中的端口组采用相同的正交序列集合; 或, 映射在不同 资源中的端口组独立配置正交序列。
推荐的设计方法是, 映射在不同资源中的端口组独立配置的正交序列集 合之间满足循环移位关系。 较佳地, 循环移位的值为 2。
映射在同一个子载波上的端口采用同一个正交序列集合中的不同正交序 列。
对于每个端口用于传输专用导频的相邻子栽波取自不同的正交序列集合 的正交序列。 推荐的设计方法是, 对于每个端口用于传输专用导频的相邻子 栽波的正交序列互为逆序排列。
当系统传输的秩数为 1〜4时, 每个端口对应的用于传输专用导频的相邻 的 2个子载波取自不同的正交序列集合的正交序列;
当系统传输的秩数为 5〜8 时, 每个端口对应的用于传输专用导频的相邻 的 2个子栽波取自不同的正交序列集合的正交序列, 或
当系统传输的秩数为 5〜8时, 每个端口对应的用于传输专用导频的相邻 的 4个子载波取自不同的正交序列集合的正交序列。
当系统传输的秩数为 1~4时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 2个子栽波配置取自不同的正交序列集合 的正交序列;
当系统传输的秩数为 5~8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 1个子栽波取自不同的正交序列集合的正 交序列, 或
当系统传输的秩数为 5〜8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 4个子栽波取自不同的正交序列集合的正 交序列。
所述正交序列集合的数目与专用导频所使用的正交码码长一致。
所述正交序列集合间满足循环移位的关系。
参见图 2所示, 本发明实施例的一种下行导频的传输装置, 包括: 配置 单元 21和传输单元 22。 其中,
配置单元 21 , 用于在传输专用导频的资源上, 按照设定为所述专用导频 配置正交序列; 此外配置单元 21在为所述专用导频配置正交序列前, 还可以 进而按照该设定的映射规则将端口进行映射。
传输单元 22, 用于采用码分复用 CDM方式, 或采用 CDM和频分复用 FDM混合的方式传输专用导频。
当系统的传输秩数为 3~8 时, 第一流采用的正交序列和映射规则与传输 的秩数为 1或 2时相同,第二流采用的正交序列和映射规则与传输的秩数为 2 时相同。
当系统传输的秩数为 5〜8时, 第三流采用的正交序列和映射规则与传输 的秩数为 3或 4时相同;第四流采用的正交序列和映射规则与传输的秩数为 4 时相同。
映射在不同资源中的端口组采用相同的正交序列集合; 或, 映射在不同 资源中的端口组独立配置正交序列。
推荐的设计方法是, 映射在不同资源中的端口组独立配置的正交序列集 合之间满足循环移位关系。 较佳地, 循环移位的值为 2。
映射在同一个子栽波上的端口采用同一个正交序列集合中的不同正交序 列。
对于每个端口用于传输专用导频的相邻子载波取自不同的正交序列集合 的正交序列。 推荐的设计方法是, 对于每个端口用于传输专用导频的相邻子 载波的正交序列互为逆序排列。
当系统传输的秩数为 1〜4时, 每个端口对应的用于传输专用导频的相邻 的 2个子栽波取自不同的正交序列集合的正交序列;当系统传输的秩数为 5~8 时, 每个端口对应的用于传输专用导频的相邻的 2个子栽波取自不同的正交 序列集合的正交序列, 或, 当系统传输的秩数为 5~8 时, 每个端口对应的用 于传输专用导频的相邻的 4个子栽波取自不同的正交序列集合的正交序列。
当系统传输的秩数为 1~4时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 2个子载波配置取自不同的正交序列集合 的正交序列;
当系统传输的秩数为 5~8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 1个子载波取自不同的正交序列集合的正 交序列, 或
当系统传输的秩数为 5~8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 4个子载波取自不同的正交序列集合的正 交序列。
所述正交序列集合的数目与专用导频所使用的正交码码长一致。
所述正交序列集合间满足循环移位的关系。
下面举具体实施例详细说明 Rank3-rank4的具体实现方案。
图 3 为 LTE-A下行专用导频结构。 参见图 3所示, rank3-rank4的导频结 构是在 rankl-rank2的基础上通过频分(FDM )的方式增加所支持的端口数, 如图 3所示, 01对应第 1, 2流, 23对应第 3, 4流, 01和 23之间通过频分 ( FDM ) 的方式区分。 第 1, 2流之间通过 CDM方式区分, 第 3, 4流之间 通过 CDM方式区分。
基于 rank3-rank4专用导频的结构特点, 正交序列组翻转(选择)具体包 括两种方式: 基于子栽波, 基于子栽波組。
图 4为 rank3-rank4并基于子栽波配置正交序列的一种实施例的示意图。 参见图 4所示, 本实施例是相邻子载波的正交序列组不同。 方向向左的箭头 ^的正交序列为 Code indexO: [1 1] [1-1] ; 方向向右的箭头 的正交序列为 Code indexl: [1 1] [- 1 1]。
图 5为 rank3-rank4并基于子栽波组的配置正交序列的另一种实施例的示 意图。参见图 5所示,本实施例是先将 PRB内相邻的子载波化分组,一个 PRB 内共有 3组, 组内对应两个子栽波; 序列翻转(选择)基于子栽波进行翻转, 即组内子栽波采用相同的正交序列组, 相邻组采用不同的正交序列组。 方向向左的箭头 ^的正交序列为 Code indexO: [1 1] [1-1]; 方向向右的箭头 的正交序列为 Code indexl: [1 1] [- 1 1].
下面举具体实施例详细说明 Rank5-rank8的具体实现方案。
参见图 3所示, 端口映射方法为: 01, 23分别对应 4个流, 通过 FDM方 式区分; 01对应的 4个流之间采用 CDM方式区分, 23对应的 4个流之间采 用 CDM方式区分。 为保证后向兼容性, 较佳地, 可以采用如下这种方式: 01 对应第 1, 2, 5, 7流, 23对应第 3, 4, 6, 8流, 01和 23之间通过频分( FDM ) 的方式区分。 第 1, 2, 5, 7流之间通过 CDM方式区分, 第 3, 4, 6, 8流之 间通过 CDM方式区分。 这种方式与 rank3-4的情况下的 01对应第 1、 2流, 23对应第 34流, 保持一致, 进而具有兼容性。
对于 Rank5-rank8的情况,当正交序列的长度为 2时,方案同 rank3-rank4, 只是每个序列对应的端口不同, 这里不再贅述。
对于 Rank5-rank8的情况, 正交序列的长度为 4时, 采用 4个正交序列集 合, 按照一定的规则映射。
图 6为 rank5-rank8基于子栽波的序列映射方案示意图。 在本实施例中, 基于子载波, 可以保证各个导频符号的功率接近或一致。 推荐设计方法: 映 射在不同资源中的端口组独立配置的正交序列集合间满足循环移位关系。 对 于同一个端口组用于传输专用导频的相邻子栽波的正交序列集合互为逆序排 歹1 J。 如表 1所示。
Figure imgf000009_0001
表 1
为保证后向兼容性,即 rank8与 rank4中的 1-4流序列映射的方案完全一 致, 推荐使用图 6的映射方法。
图 7为 rank5-rank8基于子栽波的序列映射方案示意图。 参见图 7所示, 如表 2所示的序列, 基于子栽波组, 可以保证各个导频符号的功率接近或一 致。 推荐的设计方法是: 基于一个序列集合进行循环移位进而生成新的序列 集合, 参见表 2所示。
Figure imgf000009_0002
表 2
在本发明实施例中,针对 rank3-rank8正交序列设计,可以保证功率平衡, 保证时频域正交性, 保证后向兼容性。 并且, 可以将 Rank5~8中与 rank4中 的 1-4流序列映射的方案完全一致。 因此本发明实施例可以保证后向兼容性, 以及时频域正交性。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种下行导频的传输方法, 其特征在于, 该方法包括以下步骤: V 采用码分复用 CDM方式, 或采用 CDM和频分复用 FDM混合的方式传 输专用导频; 且
在用于传输专用导频的资源上, 按照设定的映射规则为所述专用导频配 置正交序列。
2、 根据权利要求 1所述的方法, 其特征在于, 当系统的传输秩数为 3〜8 时, 所传输的第一流釆用的正交序列和映射规则与传输的秩数为 1或 2时相 同, 所传输的第二流采用的正交序列和映射规则与传输的秩数为 2时相同。
3、 根据权利要求 1所述的方法, 其特征在于, 当系统的传输秩数为 5~8 时, 所传输的第三流采用的正交序列和映射规则与传输的秩数为 3或 4时相 同; 所传输的第四流采用的正交序列和映射规则与传输的秩数为 4时相同。
4、 根据权利要求 1所述的方法, 其特征在于, 映射在不同资源中的端口 组采用相同的正交序列集合; 或,
映射在不同资源中的端口组独立配置正交序列集合。
5、 根据权利要求 4所述的方法, 其特征在于, 映射在不同资源中的端口 组独立配置的正交序列集合之间满足循环移位关系。
6、 根据权利要求 5所述的方法, 其特征在于, 循环移位的值为 2。
7、 根据权利要求 1所述的方法, 其特征在于, 映射在同一个子载波上的 端口采用同一个正交序列集合中的不同正交序列。
8、 根据权利要求 1所述的方法, 其特征在于, 对于每个端口用于传输专 用导频的相邻子载波取自不同的正交序列集合的正交序列。
9、 根据权利要求 8所述的方法, 其特征在于,
当系统传输的秩数为 1〜4 时, 每个端口对应的用于传输专用导频的相邻 的 2个子载波取自不同的正交序列集合的正交序列;
当系统传输的秩数为 5〜8 时, 每个端口对应的用于传输专用导频的相邻
8
替换页 (细则第 26条) 的 2个子栽波取自不同的正交序列集合的正交序列, 或
当系统传输的秩数为 5〜8 时, 每个端口对应的用于传输专用导频的相邻 的 4个子栽波取自不同的正交序列集合的正交序列。
10、根据权利要求 9所述的方法, 其特征在于, 当系统传输的秩数为 1~4 时, 在系统带宽内, 按频域顺序针对每个端口对应的用于传输专用导频的相 邻的 2个子栽波配置取自不同的正交序列集合的正交序列;
当系统传输的秩数为 5~8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 2个子载波取自不同的正交序列集合的正 交序列, 或
当系统传输的秩数为 5~8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 4个子栽波取自不同的正交序列集合的正 交序列。
11、 根据权利要求 6所述的方法, 其特征在于, 所述不同的正交序列集 合互为逆序排列。
12、 根据权利要求 7或 8所述的方法, 其特征在于, 所述正交序列集合 的数目与专用导频所使用的正交码码长一致。
13、 根据权利要求 7或 8所述的方法, 其特征在于, 所述正交序列集合 之间满足循环移位的关系。
14、 一种下行导频的传输装置, '其特征在于, 该装置包括:
配置单元, 用于在传输专用导频的资源上, 按照设定的映射规则为所述 专用导频配置正交序列;
传输单元,用于采用码分复用 CDM方式,或采用 CDM和频分复用 FDM 混合的方式传输配置单元处理后的专用导频。
15、根据权利要求 14所述的装置,其特征在于, 当系统的传输秩数为 3~8 时, 第一流采用的正交序列和映射规则与传输的秩数为 1或 2时相同, 第二 流采用的正交序列和映射规则与传输的秩数为 2时相同。
16、根据权利要求 14所述的装置,其特征在于, 当系统传输的秩数为 5~8 时, 第三流采用的正交序列和映射规则与传输的秩数为 3或 4时相同; 第四 流釆用的正交序列和映射规则与传输的秩数为 4时相同。
17、 根据权利要求 14所述的装置, 其特征在于, 映射在不同资源中的端 口组采用相同的正交序列集合; 或, 映射在不同资源中的端口组独立配置正 交序列集合。
18、 根据权利要求 17所述的装置, 其特征在于, 映射在不同资源中的端 口组独立配置的正交序列集合之间满足循环移位关系。
19、 根据权利要求 18所述的装置, 其特征在于, 循环移位的值为 2。
20、 根据权利要求 14所述的装置, 其特征在于, 映射在同一个子载波上 的端口采用同一个正交序列集合中的不同正交序列。
21、 根据权利要求 14所述的装置, 其特征在于, 对于每个端口用于传输 专用导频的相邻子载波取自不同的正交序列集合的正交序列。
22、根据权利要求 21所述的装置,其特征在于, 当系统传输的秩数为 1〜4 时, 每个端口对应的用于传输专用导频的相邻的 2个子载波取自不同的正交 序列集合的正交序列; 当系统传输的秩数为 5〜8 时, 每个端口对应的用于传 输专用导频的相邻的 2个子载波取自不同的正交序列集合的正交序列, 或当 系统传输的秩数为 5~8时, 每个端口对应的用于传输专用导频的相邻的 4个 子载波取自不同的正交序列集合的正交序列。
23、根据权利要求 22所述的装置,其特征在于, 当系统传输的秩数为 1〜4 时, 在系统带宽内, 按频域顺序针对每个端口对应的用于传输专用导频的相 邻的 2个子载波配置取自不同的正交序列集合的正交序列;
当系统传输的秩数为 5~8 时, 在系统带宽内, 按频域顺序针对每个端口 对应的用于传输专用导频的相邻的 2个子载波取自不同的正交序列集合的正 交序列, 或
当系统传输的秩数为 5〜8 时, 每个端口对应的用于传输专用导频的相邻 的 4个子载波取自不同的正交序列集合的正交序列。
24、 根据权利要求 21所述的装置, 其特征在于, 所述不同的正交序列集
10
替换页 (细则第 26条) 合互为逆序排列。
25、 根据权利要求 20或 21所述的装置, 其特征在于, 所述正交序列集 合的数目与专用导频所使用的正交码码长一致。
26、 根据权利要求 20或 21所述的装置, 其特征在于, 所述正交序列集 合间满足循环移位的关系。
PCT/CN2011/070149 2010-01-11 2011-01-11 一种下行导频的传输方法、装置 WO2011082697A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/521,659 US9780935B2 (en) 2010-01-11 2011-01-11 Method and device for transmitting downlink pilot
EP11731698.4A EP2525540A4 (en) 2010-01-11 2011-01-11 METHOD AND APPARATUS FOR DOWNLINK PILOT TRANSMISSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010002542.4A CN102082755B (zh) 2010-01-11 2010-01-11 一种下行导频的传输方法、装置
CN201010002542.4 2010-01-11

Publications (1)

Publication Number Publication Date
WO2011082697A1 true WO2011082697A1 (zh) 2011-07-14

Family

ID=44088509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070149 WO2011082697A1 (zh) 2010-01-11 2011-01-11 一种下行导频的传输方法、装置

Country Status (4)

Country Link
US (1) US9780935B2 (zh)
EP (1) EP2525540A4 (zh)
CN (1) CN102082755B (zh)
WO (1) WO2011082697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147273A1 (ja) * 2011-04-26 2012-11-01 パナソニック株式会社 送信装置、受信装置、送信方法、受信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409583A (zh) * 2007-10-11 2009-04-15 大唐移动通信设备有限公司 信号发送方法、信号发送装置
CN101431490A (zh) * 2007-10-30 2009-05-13 大唐移动通信设备有限公司 正交频分复用系统的导频插入方法、装置、基站和用户设备
CN101467375A (zh) * 2006-02-14 2009-06-24 摩托罗拉公司 导频信号传输的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE059616T2 (hu) * 2007-02-14 2022-11-28 Optis Wireless Technology Llc Kódszó réteghozzárendeléshez HARQ-ot implementáló rendszerben
US8369299B2 (en) * 2007-05-07 2013-02-05 Qualcomm Incorporated Method and apparatus for multiplexing CDM pilot and FDM data
KR101548324B1 (ko) * 2007-08-08 2015-09-07 한국전자통신연구원 무선통신시스템에서 신호형성방법 및 장치
US20090168730A1 (en) * 2007-10-29 2009-07-02 Motorola, Inc. Pilot Signal Allocation Method and Apparatus
KR101468226B1 (ko) * 2008-03-19 2014-12-04 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 프리앰블 생성 방법
JP5497656B2 (ja) * 2008-10-30 2014-05-21 パナソニック株式会社 送信装置及び受信装置、応答信号送信方法及び応答信号受信方法、並びに集積回路
KR101559794B1 (ko) * 2009-02-17 2015-10-13 엘지전자 주식회사 시퀀스 생성 방법 및 이를 위한 장치
US8750257B2 (en) * 2009-10-12 2014-06-10 Lg Electronics Inc. Method and apparatus for providing downlink reference signal transmission power information in a wireless communication system that supports multiple antennas
EP2642709B1 (en) * 2010-11-17 2018-08-15 LG Electronics Inc. Method and apparatus for transceiving a downlink control channel in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467375A (zh) * 2006-02-14 2009-06-24 摩托罗拉公司 导频信号传输的方法和装置
CN101409583A (zh) * 2007-10-11 2009-04-15 大唐移动通信设备有限公司 信号发送方法、信号发送装置
CN101431490A (zh) * 2007-10-30 2009-05-13 大唐移动通信设备有限公司 正交频分复用系统的导频插入方法、装置、基站和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525540A4 *

Also Published As

Publication number Publication date
CN102082755A (zh) 2011-06-01
EP2525540A4 (en) 2013-10-16
CN102082755B (zh) 2016-06-08
EP2525540A1 (en) 2012-11-21
US20130016674A1 (en) 2013-01-17
US9780935B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
JP5859136B2 (ja) 制御情報の伝送方法および装置
CN105049168B (zh) 在通信系统中发送和接收参考信号的方法和装置
EP2412115B1 (en) Cell-specific shifting of reference signals in multi-stream transmissions
CN102469059B (zh) 解调参考信号承载方法及装置
WO2011150784A1 (zh) 下行信道测量参考信号发送方法、装置和接收方法、装置
JP2013502139A5 (zh)
WO2013067828A1 (zh) 信息发送及盲检方法和设备
CN107070618A (zh) 用于分配和接收信道状态信息‑基准信号的装置和方法
WO2011097894A1 (zh) 解调参考信号的发送功率配置方法及装置
WO2018177295A1 (zh) 传输dmrs的方法和装置
WO2014110928A1 (zh) 上行解调参考信号的发送方法、装置和系统
WO2013020491A1 (zh) 一种导频信号发送方法和设备
WO2014094477A1 (zh) 增强物理混合自动重传请求指示信道传输方法及装置
WO2014114113A1 (zh) Dmrs处理方法及装置
KR101422041B1 (ko) 다중 안테나 무선 통신 시스템에서 상향링크 제어 정보의 변조 차수 결정 방법 및 이를 위한 장치
JP2013502136A5 (zh)
WO2013022272A2 (en) Apparatus for transmitting and receiving downlink control information in a wireless access system and method thereof
WO2013117171A1 (zh) 一种控制信道资源传输方法、基站及用户设备
WO2013028005A2 (ko) 장치 간 통신을 지원하는 무선 접속 시스템에서 장치 간 데이터 전송 방식 및 이를 위한 장치
WO2014127676A1 (zh) 一种解调参考信号的传输方法及基站、用户设备
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2011020342A1 (zh) 信道测量导频发送方法和系统
WO2017167155A1 (zh) 上行解调参考信号dmrs的发送方法及装置
WO2011160473A1 (zh) 信道测量导频发送方法及装置
WO2013063988A1 (zh) 一种传输信息的方法、系统和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13521659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011731698

Country of ref document: EP