WO2011081485A2 - Polyurethane foam-carbon nanotube composite, and preparation method thereof - Google Patents

Polyurethane foam-carbon nanotube composite, and preparation method thereof Download PDF

Info

Publication number
WO2011081485A2
WO2011081485A2 PCT/KR2010/009585 KR2010009585W WO2011081485A2 WO 2011081485 A2 WO2011081485 A2 WO 2011081485A2 KR 2010009585 W KR2010009585 W KR 2010009585W WO 2011081485 A2 WO2011081485 A2 WO 2011081485A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
polyurethane
carbon nanotubes
composite
polyol
Prior art date
Application number
PCT/KR2010/009585
Other languages
French (fr)
Korean (ko)
Other versions
WO2011081485A3 (en
Inventor
김우년
김지문
이윤균
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100066322A external-priority patent/KR20110079470A/en
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2011081485A2 publication Critical patent/WO2011081485A2/en
Publication of WO2011081485A3 publication Critical patent/WO2011081485A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a polyurethane article-carbon nanotube composite, and more particularly, to a polyurethane article-carbon nanotube composite having a reduced size of the foam cell and improved thermal insulation performance.
  • Polyurethane foam (PUF) insulation provides superior insulation and processability compared to other synthetic resins.
  • the thermal conductivity is extremely low, it can reduce the thickness of the insulation when molding the product, it can reduce the price and weight of the product.
  • Polyurethane products are soft or hard porous urethane in which isomer isocyanate and poly, which are urethane raw materials, are mixed with a foaming agent, a catalyst, a surfactant, and the like, and the foam is vaporized by the reaction heat generated during reaction.
  • Polyurethane products have high mechanical strength and economical efficiency, and are widely used in buildings, refrigerators, low temperature containers and cryogenic LNG storage tanks.
  • the composite is a composite material in which two or more materials are physically or chemically bonded to each other, and thus the physical properties of the composite are improved by bonding the materials.
  • Composites can improve various physical properties such as mechanical, thermal or numerical stability and abrasion resistance of existing materials, and new physical properties that do not exist in each material are expressed. It is being magnified.
  • composites based on polymer resins can significantly improve strength, flame resistance, abrasion resistance, or high temperature stability without damaging conventional physical properties such as layer resistance, toughness and transparency. Research is ongoing.
  • carbon nanotubes Since carbon nanotubes were discovered in 1991, carbon nanotubes have excellent characteristics in various fields of use due to physical and chemical properties not found in conventional materials. In particular, carbon nanotubes show excellent mechanical and electrical properties compared to conventional conductive materials, and research on this is being actively conducted. In addition, carbon nanotubes are used in various technical fields because of their excellent physical properties, but many researches are being conducted as composite materials in combination with other materials. However, there have been no reports of improving the thermal insulation performance of insulating materials by combining carbon nanotubes with polyurethane.
  • the first problem to be solved by the present invention is to provide a polyurethane foam-carbon nanotube composites that impart electrical conductivity and at the same time improve the thermal insulation performance.
  • the second problem to be solved by the present invention is to provide a method for producing the polyurethane foam-carbon nanotube composite.
  • the third problem to be solved by the present invention is to provide a polyurethane-carbon composite that provides electrical conductivity and at the same time improved heat insulation performance.
  • the fourth problem to be solved by the present invention is to provide a method for producing the polyurethane-carbon composite.
  • the present invention to achieve the first object,
  • the carbon nanotubes provide a polyurethane-tansonanotube composite, characterized in that 0.01-7 parts by weight based on 100 weight of the polyol.
  • the carbon nanotubes may be any one of single-walled carbon nano-leave, double-walled carbon nanotubes, or a combination thereof, and may be distributed on the foam cell boundary of the polyurethane foam.
  • the polyurethane is synthesized by reacting a diisocyanate compound with a polyol, and the diisocyanate compound is a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and poly is poly Ether polyols.
  • the polyurethane foam-carbon nanotube composite may further comprise a flame retardant or cell stabilizer.
  • the present invention to achieve the second object,
  • a method for producing a polyurethane foam-carbon nanotube composite comprising the step of adding a foaming agent and a diisocyanate compound selected from polymeric polyene to fullermeric methylene diphenyl isocyanate and monomeric methylene diphenyl isocyanate To provide.
  • the crushing time of the carbon nanotubes of step (al) may be performed for 0.5-100 hours.
  • the carbon nanotubes are acid-treated using hydrogen peroxide in the step (a2), and may be 0.2-0.4 parts by weight relative to 100 parts by weight of hydrogen peroxide.
  • step (b) may be dispersed by further adding 0.05-0.15 parts by weight of the silane coupling agent to 100 parts by weight of the polyether polyol.
  • the hydroxyl group of the polyether polyol and the isocyanate group of the diisocyanate compound may have a weight ratio of 1-2: 1.
  • ultrasonic waves may be used to disperse the carbon nanotubes in the polyol.
  • the blowing agent added to the polyol in which the carbon nanotubes are dispersed in the step (c) is cyclopentane, isopentane, normal pentane, chlorofluorocarbon, hydrochlorofluorocarbon, hydro Fluorocarbon, water, or a combination thereof.
  • the reaction of step (c) may proceed to a temperature of 25-80 ° C.
  • the present invention to achieve the third object,
  • the carbon nano-rubber may be any one of single-walled carbon nanotubes, double-walled carbon nanotubes, or a combination thereof.
  • the polyurethane is synthesized by reacting a diisocyanate compound and a polyol, the diisocyanate compound is a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and the polyol is a polyester It can be poly.
  • the present invention to achieve the fourth object,
  • the crushing time of the carbon nanotubes of the (dl) step may be performed for 0.5-100 hours.
  • step (d2) using the carbon peroxide acid treatment of hydrogen peroxide 0.2 to 0.4 parts by weight relative to 100 weight of hydrogen peroxide.
  • the hydroxyl group of the polyether polyol and the isocyanate group of the diisocyanate compound may have a weight ratio of 1-2: 1.
  • ultrasonic waves may be used to disperse the carbon nanotubes in the polyol.
  • the reaction of step (c) may proceed to a temperature of 25-80 ° C.
  • the carbon nanotubes included in the polyurethane foam-carbon nanotube composite of the present invention may function as a nucleating agent for foaming cell formation to reduce the foaming cell size and reduce the thermal conductivity of the composite. Therefore, the polyurethane article-carbon nanotube composite of the present invention is conventional While maintaining the mechanical properties of polyurethane products, the thermal insulation properties are significantly improved.
  • La and lb are electron scanning micrographs showing the position of the carbon nanotubes in the polyurethane foam-carbon nano-leube complex according to an embodiment of the present invention.
  • Figure 2 is a graph showing the electrical conductivity of the polyurethane foam-carbon nanotube composites prepared according to Examples 2 to 4 and Comparative Examples 1 and 2.
  • Figure 3 is a graph showing the thermal conductivity of the polyurethane foam-carbon nanotube composite and polyurethane foam prepared according to Examples 2 to 4 and Comparative Examples 1 and 2.
  • Figure 6 is a graph showing the flexural strength of the polyurethane foam-carbon nano-leube composite prepared according to Examples 1, 3, 4 and Comparative Example 1.
  • FIG. 7 is a graph showing the electrical conductivity of polyurethane product-carbon nanotube composites prepared according to Examples 3, 5, 6, 7, 7, 8, and Comparative Example 1.
  • FIG. 7 is a graph showing the electrical conductivity of polyurethane product-carbon nanotube composites prepared according to Examples 3, 5, 6, 7, 7, 8, and Comparative Example 1.
  • Example 8 is a graph showing the thermal conductivity of the polyurethane product-carbon nanotube composite prepared according to Example 3, Example 5, Example 6, Example 7, Example 8, Example 9 and Comparative Example 1 .
  • 10 is a graph showing the thermal conductivity of the polyurethane product-carbon nanotube composite prepared according to Examples 23, 24, 25, 26, 27, 28.
  • the present invention relates to a polyurethane article-carbon nanotube composite, wherein the polyurethane article-carbon nanotube composite according to the present invention comprises carbon or norub dispersed in polyurethane and polyol, and the content ratio of the carbon nanotubes
  • the poly is characterized in that 0.01-7 parts by weight with respect to 100.
  • the thermal insulation performance of the polyurethane foam-carbon nano-leube composite according to the present invention is carbon nano It depends greatly on the content of the tube.
  • carbon nanotubes are dispersed in the polyol, and carbon nanotubes and polyurene are very weakly bound by the intermolecular attraction, and when the amount of added carbon nanotubes is too large, the tendency to coagulate each other becomes stronger. It is not nano-ized and the thermal insulation performance is reduced.
  • Polyurethane article-carbon nanotube composite according to a preferred embodiment of the present invention is characterized in that the carbon nano-rubber is distributed on the foam cell boundary of the polyurethane article.
  • La to lb are electron scanning micrographs showing the position of the carbon nanotubes in the polyurethane nano carbon nano-bubble composite according to an embodiment of the present invention. Referring to FIG. La, a triangular foam cell boundary is shown at the point where three foam cells meet, and carbon nanotubes are located at the site.
  • Figure lb is an enlarged picture of the foam cell boundary, it can be seen more clearly that the carbon nanotubes are located on the foam cell boundary.
  • a foaming agent is used to form a foaming cell in the polyurethane, and carbon nanotubes dispersed in a polyol serve as a nucleating agent for foaming cell formation.
  • the content of carbon nanotubes also plays an important role. If the content of carbon nanotubes is excessively high, the carbon nanotubes may be in contact with neighboring foam cells, and the foam cells may be destroyed. The gas may leak and deteriorate the thermal insulation performance.
  • the blowing agent added to the polyol in which the carbon nanotubes are dispersed is cyclopentane, isopentane, normal pentane, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, water or their It may be any one of the combinations.
  • the carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, or a mixture thereof, and may be treated with hydroxide or treated in a milling step using a ball mill.
  • the polyurethane is synthesized by reacting a diisocyanate compound with a polyol.
  • the diisocyanate compound may be a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate
  • the polyol may be phthalic anhydride or It may be a polyether polyol prepared by polymerizing adipic acid with ethylene oxide, propylene oxide or a mixture thereof.
  • the polyurethane foam-carbon nano-leube composite may further include a flame retardant or cell stabilizer, and it is also possible to use any flame retardant or cell stabilizer known in the art.
  • an embodiment of the present invention for producing a polyurethane foam-carbon nano-leube composite according to the present invention is as follows.
  • the carbon nano-leave is pulverized using a ball mill. Subsequently, carbon or a norrebe is mixed with a polyol. Subsequently, the polyol mixed with the carbon nanotubes is stirred, and the carbon nanotubes are dispersed using an ultrasonic pot. Finally, the mixture obtained above and diisocyanate are mixed and stirred to react.
  • the carbon nanotubes may be acid treated or hydroxide ionized to improve the dispersion property in the polyol.
  • the intensity of the ultrasonic wave is preferably carried out at 300 kHz or less, and the ultrasonic treatment for 5 to 60 minutes at a temperature of 5 to 60 ° C. This is more preferable.
  • the diisocyanate compound used in the step of reacting the polyol and the diisocyanate in which the carbon nanotubes are dispersed may be the diisocyanate compound may be polymeric methylene diphenyl isocyanate or monomeric methylene diphenyl isocyanate.
  • reaction temperature is preferably carried out at a silver content of 25 to 80 ° C. If the reaction is carried out at less than 25 ° C, reaction of isocyanate functional groups and polyol functional groups hardly occurs, and thus the desired polyurethane bonds are not formed. to be. Reaction temperature
  • the hydroxyl group and the isocyanate group of the diisocyanate compound are present in a ratio of 1: 1 to 2: 1. This is because when the ratio is less than 1: 1, the polyol component is present in excess and the polyurethane formation reaction is not completed. When the ratio exceeds 2: 1, the rigid polyurethane produced is excessively high and easily broken. .
  • the content of the carbon nanotubes in the step of reacting the poly-dispersed polyisocyanate with the carbon nanotubes is preferably 0.01 to 0.1 parts by weight based on the polyol.
  • the ratio is a range for the carbon nanotubes to act as a nucleating agent for the growth of foam cells, as described above, and is determined in consideration of the content ratio of poly and diisocyanate.
  • a surfactant or a catalyst it is preferable to further add a surfactant or a catalyst to the carbon nanotube-dispersed polyol.
  • a surfactant pentamethyl ethylene triamine, Dimethykyclohexyl amine, tris (3—dimethylamin) propyl hexahydroamine, triethylene amine or a combination thereof may be used.
  • the surfactant all known materials in this field can be used.
  • the blowing agent used in the reaction of polyol and diisocyanate in which carbon nano dispersion is dispersed has low thermal conductivity and is stable in the atmosphere of cyclopentane, isopentane, normal pentane and chloroflu Chlorofluorocarbons, hydrochlorocarm, hydrofluorocarbons, water or combinations thereof can be used.
  • the amount of the blowing agent can be adjusted according to the density of the product to be prepared, and the amount of blowing agent to be added increases as the product of low density is obtained.
  • foamed polyurethane product-carbon nanotube nano composite new material can be produced without using ultrasonic waves. It is preferable to perform ultrasonic treatment in parallel. The reason for this is that when foaming reaction using a blowing agent, carbon nanotubes that are not dispersed well may be agglomerated, and these properties can be prevented through sonication to improve physical properties.
  • foaming reaction using a blowing agent carbon nanotubes that are not dispersed well may be agglomerated, and these properties can be prevented through sonication to improve physical properties.
  • the carbon nanotubes were ground into smaller particles using a ball mill. At this time, milling or crushing the carbon nanotubes using a ball mill was performed for 2 hours.
  • the carbon nanotubes were added at 0. 2 parts by weight based on the weight of the polyether poly (polyether polyol, purchased from KPC Co.).
  • polyether poly polyether polyol, purchased from KPC Co.
  • a reaction mixture was stirred for 10 minutes at a low speed of 100 rpm and then a high speed of 5000 rpm, using a mechanical stirrer. It was stirred for 20 seconds.
  • a polyurethane foam-carbon nanotube composite was prepared in the same manner as in Example 1, except that the amount of carbon nanotubes added was 0.05 parts by weight based on the weight of the polyol.
  • Example 3
  • a polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 1, except that the amount of carbon nanotubes added was 0.1 parts by weight based on the weight of the polyol compound.
  • Example 4
  • a polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 1, except that the amount of carbon nanotubes added was 0.2 parts by weight based on the weight of the polyol compound.
  • a polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 1 hour.
  • Example 6 A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 1 hour.
  • Example 7 Except that carbon nanotubes were ground or crushed for 3 hours In the same manner as in Example 3, a polyurethane product-carbon nanoleube composite was prepared. Example 7
  • Polyurethane foam-carbon nanotube composites were prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 4 hours.
  • Example 8
  • a polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 6 hours.
  • Example 9 A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 6 hours.
  • Example 10 Except that the carbon nanotubes were pulverized or crushed for 12 hours, a polyurethane product-carbon nano-leube composite was prepared in the same manner as in Example 3.
  • Example 10 a polyurethane product-carbon nano-leube composite was prepared in the same manner as in Example 3.
  • the carbon nanotubes were acid treated with hydrogen peroxide to ensure good dispersion on the polyols.
  • the hydrogen peroxide was added by adding 1.5 parts by weight of carbon nano-lube to 50 (l. During the acid treatment, it proceeded for 90 minutes using a bath-type ultrasonic device.
  • polyether polyol polyether polyol, purchased from KPC Co.
  • the poly was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer to enable the compound to be smoothly inserted and dispersed between the carbon nano-rubbers.
  • Carbon nanotube-containing polyols and polymeric methylene diphenyl isocyanates purchased from Lupranat M20, BASF Co.
  • catalysts B8462, purchased from Goldschmidt's Co.
  • surfactants and blowing agents prepared according to Example 10-2.
  • a mixture of cyclopentane The reaction was added at room temperature to prepare a polyurethane product-carbon nanotube composite.
  • the ratio of the polymer polyol compound including the carbon nanotubes was added in excess of 5% by weight relative to the stoichiometric ratio, and stirred for 20 seconds at 3000 rpm using a mechanical stirring device.
  • a pulley urethane foam-carbon nanotube composite was prepared in the same manner as in Example 10, except that the amount of carbon nanoleub added was 0.05 parts by weight based on the weight of the polyol.
  • a polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 10, except that carbon nanotubes were added in an amount of 0.3 parts by weight based on the weight of poly.
  • the carbon nanotubes were acid treated with hydrogen peroxide to ensure good dispersion of the poly phases. At this time, 1.5 parts by weight of carbon nanotubes were added to 500 ml of hydrogen peroxide. During the acid treatment, a bath-type ultrasonic device was used for 90 minutes.
  • 0.1 parts by weight of the carbon nanotubes were added based on the weight of the polyether polyol (polyether polyol, purchased from KPC Co.).
  • polyether polyol polyether polyol, purchased from KPC Co.
  • 0.1 parts by weight of a silane coupling agent was added and a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer. It was stirred for 5 minutes.
  • Carbon nanotube containing poly and polymeric methylene diphenyl isocyanates purchased from Lupranat M20, BASF Co.) prepared according to Examples 13-2, catalyst (B8462, Purchased from Goldschmidt's Co.), a surfactant and a blowing agent (a mixture of water and cyclopentane) were added at room temperature to prepare a polyurethane product-carbon nanotube composite.
  • catalyst B8462, Purchased from Goldschmidt's Co.
  • a surfactant and a blowing agent a mixture of water and cyclopentane
  • Polyurethane article-carbon nanotube composites were prepared in the same manner as in Example 13, except that the amount of carbon nanoleuze was added to 0.05 part by weight based on the weight of the polyol.
  • Example 15
  • Polyurethane article-carbon nano-leube composite was prepared in the same manner as in Example 13, except that the amount of carbon nanotubes added was 0.3 parts by weight based on the weight of the polyol.
  • a polyurethane foam-carbon nanotube composite was prepared in the same manner as in Example 13, except that the amount of carbon nanotubes added was 0.5 parts by weight based on the weight of the polyol.
  • polyether polyol polyether polyol, purchased from KPC Co.
  • the polyol compound was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer so that the polyol compound could be smoothly inserted into the graphite to be dispersed and reacted.
  • Graphite-containing polyols and polymeric methylene diphenyl isocyanates purchased from Lupranat M20, BASF Co.
  • catalysts B8462, purchased from Goldschraidt's Co.
  • surfactants prepared according to Example 17-1. I don't add a blowing agent
  • Polyurethane-graphite composites were prepared. The ratio of the polymer-containing polyol compound including graphite was added in an amount of 5% by weight over the stoichiometric ratio, and stirred at 5000 rpm for 20 seconds using a mechanical stirring device for reaction.
  • a polyurethane-graphite composite was prepared in the same manner as in Example 17, except that the addition amount of graphite was 3.0 parts by weight based on the weight of the polyol.
  • a polyurethane-graphite composite was prepared in the same manner as in Example 17, except that the amount of graphite added was 7.0 parts by weight based on the weight of the polyol.
  • Example 20
  • polyether polyol polyether polyol, purchased from KPC Co.
  • the polyol compound was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer in order to allow the polyol compound to be smoothly inserted and dispersed between the nickel-coated carbon fibers.
  • Nickel-coated carbon fiber-containing polyols prepared according to Example 20-1 and polymeric methylene diphenyl isocyanates (Lupranat M20, purchased from BASF Co.), catalysts (B8462, purchased from Goldschmidt's Co.), and surfactants Afterwards, the foaming agent was reacted at room temperature without adding a polyurethane-nickel coated carbon fiber composite. The ratio of the polymer polyol compound containing the nickel-coated carbon fiber was added in excess of 5% by weight of the stoichiometric ratio, and stirred for 20 seconds at 5000 rpm using a mechanical stirring device for reaction.
  • Example 21 A polyurethane-carbon nanotube composite was prepared in the same manner as in Example 20, except that the amount of the nickel-coated carbon fiber was added to 3.0 parts by weight based on the weight of the polyol.
  • a polyurethane-carbon nanotube composite f was prepared in the same manner as in Example 20, except that the amount of the nickel-coated carbon fiber was 7.0 parts by weight based on the weight of the poly.
  • Example 23
  • the ratio of the polymer polyol compound containing carbon nanonob and graphite was added in an amount of 5% by weight over the stoichiometric ratio, and the reaction was stirred for 20 seconds at 5000 rpm using a mechanical stirring device.
  • Polyurethane-carbon nano-leube-graphite composite was prepared in the same manner as in Example 18, except that the amount of carbon nanoleube was added by 3.0 parts by weight and the amount of graphite was added by 3.0 parts by weight based on the weight of the polyol.
  • Example 25
  • Nickel-coated carbon fiber-containing polyols and polymeric methylene diphenyl isocyanates purchased from Lupranat M20, BASF Co.
  • catalysts B8462, purchased from Goldschmidt's Co.
  • surfactants and blowing agents prepared according to Example 26-1.
  • a mixture of water and cyclopentane was added and reacted at room temperature to prepare a polyurethane-carbon nanotube-nickel coated carbon fiber composite.
  • the ratio of the polymer polyol compound including the carbon nanotubes and the nickel-coated carbon fiber was added in an excess of 5% by weight of the stoichiometric ratio, and stirred at 5000 rpm for 20 seconds using a mechanical stirrer.
  • Example 28 Polyurethane-carbon nanotubes-nickel-coated carbon fiber composites in the same manner as in Example 26, except that 3.0 parts by weight of carbon nanotubes and 3.0 parts by weight of nickel-coated carbon fibers were added based on the weight of the polyol. Was prepared.
  • Example 28
  • the carbon nanotubes were acid treated with hydrogen peroxide to ensure good dispersion on the polyols. At this time, 1.5 parts by weight of carbon nanotubes were added to 500 ml of hydrogen peroxide. During the acid treatment, a bath-type ultrasonic device was used for 90 minutes.
  • polyether polyol polyether polyol, purchased from KPC Co.
  • the poly was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer to enable the compound to be smoothly inserted and dispersed between the carbon nanotubes.
  • Carbon nanotube-containing poly and polymethylene diphenyl isocyanate purchased from Lupranat M20, BASF Co.
  • catalyst B8462, purchased from Goldschmidt's Co.
  • a polyurethane-carbon nanotube composite was prepared by reacting in phase silver without adding a blowing agent.
  • the ratio of the polymer polyol compound including the carbon nanotubes was added in excess of 5% by weight of the stoichiometry bar, and the reaction was stirred at 3000 rpm for 20 seconds using a mechanical stirring device.
  • a polyurethane-tan ' sonanoleuven composite was prepared in the same manner as in Example 29, except that 7.0 parts by weight of carbon nanotubes were used based on the weight of the polyol. Comparative Example 1
  • a polyurethane product was manufactured in the same manner as in Example 1, except that carbon nanotubes were not added to the polyol. Comparative Example 2
  • each of the polyurethane product-carbon nanotube composite and the polyurethane foam specimens according to Examples 1 to 9 and Comparative Examples 1 to 2 were cut out to a width of 15 mm x 15 mm x 5 mm, The electrical conductivity of the specimen was measured.
  • Figure 2 is a result of the electrical conductivity of the polyurethane foam-carbon nanotube composite prepared according to Examples 2 to 4 and Comparative Examples 1 and 2.
  • Table 2 summarizes the results of measuring the electrical conductivity (S / cm) for the polyurethane foam ⁇ carbon nano-lube composite and polyurethane foam prepared according to the Examples and Comparative Examples.
  • the polyurethane foam-carbon nanotube composites according to Examples 1 to 9 are higher in electrical conductivity than Comparative Example 1 without adding carbon nanotubes. It can be seen that having. This is because when the polyurethane foam-carbon nanotube composite is formed due to the addition of the carbon nanotubes, the pulverized carbon nanotube particles serve to create a path for electricity to flow in the polyurethane product. It is believed that the electrical conductivity is increased accordingly.
  • Density and thermal conductivity were measured for the polyurethane article-carbon nanotube composite and the polyurethane article prepared according to Examples and Comparative Examples.
  • Table 3 shows the density and thermal conductivity (kcal / mh ° C) of polyurethane foamed carbon nanotubes or polyurethane foam prepared according to Examples 1 to 9 and Comparative Examples 1 to 2 .
  • the polyurethane product-carbon nanotube composite prepared according to the examples has a lower thermal conductivity than the comparative examples.
  • the polyurethane product-carbon nanotube composite according to the embodiment is generally smaller in size than the comparative example.

Abstract

The present invention relates to a polyurethane foam-carbon nanotube composite. The polyurethane foam-carbon nanotube composite according to the present invention comprises polyurethane and a carbon nanotube, and the content of the carbon nanotube is 0.01-7 parts by weight on the basis of 100 parts by weight of a polyol. The carbon nanotube contained in the polyurethane foam-carbon nanotube composite of the present invention can reduce the size of foamed cells by acting as a nucleating agent of foamed cell formation and can reduce thermal conductivity of the composite. Therefore, the polyurethane foam-carbon nanotube composite of the present invention additionally provides electrical characteristics while maintaining the mechanical characteristics of known polyurethane foams and remarkably improves thermal insulation characteristics.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
폴리우레탄 품-탄소나노류브 복합체 및 이의 제조 방법  Polyurethane Product-Carbon Nano-Rube Composite and Method for Producing the Same
【기술분야】  Technical Field
본 발명은 폴리우레탄 품-탄소나노튜브 복합체에 관한 것으로서, 더욱 상세 하게는 발포셀의 크기가 감소되고, 단열성능이 향상된 폴리우레탄 품-탄소나노튜브 복합체에 관한 것이다.  The present invention relates to a polyurethane article-carbon nanotube composite, and more particularly, to a polyurethane article-carbon nanotube composite having a reduced size of the foam cell and improved thermal insulation performance.
【배경기술】  Background Art
단열재는 농수산물 포장용 상자, 건축용 판넬, 가전제품 포장재 등의 다양한 분야에 사용되고 있다. 폴리우레탄 품 (polyur ethane foam; PUF) 단열재는 다른 합 성수지에 비해 뛰어난 단열성능과 가공성을 가진다. 또한 열전도도가 극히 낮아 제 품 성형시 단열재의 두께를 줄일 수 있어, 제품의 가격 및 중량을 감소시킬 수 있 다. 폴리우레탄 품은 우레탄의 원료가 되는 이소시아네이트와 폴리을에 발포제와 촉매, 계면활성제 등을 흔합하여 반웅시켜, 반웅 중 발생하는 반웅열에 의해 발포 제가 기화되어 품이 형성된 연질이나 경질의 다공성 우레탄을 말한다. 폴리우레탄 품은 높은 기계적 강도를 가지고 있으며, 경제성 또한 뛰어나 건축물, 냉장고, 저 온 컨테이너와 초저온 LNG 저장탱크에 이르기까지 널리 사용되고 있다.  Insulation is used in various fields such as agricultural and marine product packaging boxes, building panels, and consumer electronics packaging materials. Polyurethane foam (PUF) insulation provides superior insulation and processability compared to other synthetic resins. In addition, the thermal conductivity is extremely low, it can reduce the thickness of the insulation when molding the product, it can reduce the price and weight of the product. Polyurethane products are soft or hard porous urethane in which isomer isocyanate and poly, which are urethane raw materials, are mixed with a foaming agent, a catalyst, a surfactant, and the like, and the foam is vaporized by the reaction heat generated during reaction. Polyurethane products have high mechanical strength and economical efficiency, and are widely used in buildings, refrigerators, low temperature containers and cryogenic LNG storage tanks.
복합체는 둘 이상의 재료를 물리적 또는 화학적으로 결합시킨 복합재료로서 재료간의 결합에 의하여 물성이 향상되는 효과를 가진다. 복합체는 기존 재료의 기 계적, 열적 물성 또는 수치 안정성이나 내마모성과 같은 다양한 물성을 향상시킬 수 있고, 각각의 재료에는 존재하지 않던 새로운 물성이 발현되기도 하므로, 고분 자, 금속 등의 재료관련 분야에서 많이 웅용되고 있다. 특히 고분자 수지에 기초한 복합체는 종래의 물성인 내층격성, 인성 및 투명성올 손상시키지 않으면서, 강도, 방염성, 내마모성 또는 고온안정성 등올 획기적으로 향상시킬 수 있으므로, 고분자 수지에 보강재를 첨가한 나노 복합체에 관한 연구가 계속되고 있다.  The composite is a composite material in which two or more materials are physically or chemically bonded to each other, and thus the physical properties of the composite are improved by bonding the materials. Composites can improve various physical properties such as mechanical, thermal or numerical stability and abrasion resistance of existing materials, and new physical properties that do not exist in each material are expressed. It is being magnified. In particular, composites based on polymer resins can significantly improve strength, flame resistance, abrasion resistance, or high temperature stability without damaging conventional physical properties such as layer resistance, toughness and transparency. Research is ongoing.
폴리우레탄 폼 복합체에 관한 종래의 연구로서, 분자 사슬이 긴 폴리올에 클 레이나 에어로질, 셀를로스 등과 같은 고체 첨가제를 분산시킨 후 하이드록시 작용 기를 가진 폴리을의 일부가 고체 첨가제 층 사이에 삽입되도록 한 뒤, 이소시아네 이트와 반웅시켜 폴리우레탄을 형성시킴으로써 층간에 폴리우레탄 사슬을 삽입시키 거나 이에 의해 고체 첨가제 층을 박리시키려는 시도가 있었다. 또한, 폴리우레탄 에 유리섬유, 석면, 암면, 화학섬유 또는 식물성 섬유질을 첨가하여 단열재의 내구 성을 향상시키는 동시에 난영성을 증가시킨 종래의 연구도 있었다. 탄소나노튜브는 1991년에 발견된 이래 종래의 물질에서는 볼 수 없었던 물 리, 화학적인 특성에 의해 다양한 웅용 분야에서 우수한 특성을 보이고 있다. 특 히, 탄소나노튜브는 종래의 전도성 재료에 비하여 우수한 기계적 특성과 전기적 특 성을 보이고 있으며, 이에 관한 연구가 활발히 진행되고 있다. 또한, 탄소나노튜브 는 그 자체로도 우수한 물성을 보이므로 여러 기술분야에 웅용되고 있지만, 다른 재료와 결합한 형태의 복합체 재료로서도 연구가 많이 진행되고 있다. 다만, 탄소 나노튜브를 폴리우레탄과 결합시켜 단열재료의 단열성능을 향상시켰다는 보고는 현 재까지 이루어진 바가 없다. Conventional studies on polyurethane foam composites include dispersing solid additives such as clay, aerosil, cellulose, etc. in polyols having long molecular chains, and then allowing a portion of the poly with hydroxy functional groups to be intercalated between the solid additive layers. Attempts have been made to react with isocyanates to form polyurethane, thereby inserting polyurethane chains between layers or thereby stripping off solid additive layers. In addition, there has been a previous study in which the addition of glass fiber, asbestos, rock wool, chemical fiber or vegetable fiber to the polyurethane improves the durability of the insulation and at the same time increases the durability. Since carbon nanotubes were discovered in 1991, carbon nanotubes have excellent characteristics in various fields of use due to physical and chemical properties not found in conventional materials. In particular, carbon nanotubes show excellent mechanical and electrical properties compared to conventional conductive materials, and research on this is being actively conducted. In addition, carbon nanotubes are used in various technical fields because of their excellent physical properties, but many researches are being conducted as composite materials in combination with other materials. However, there have been no reports of improving the thermal insulation performance of insulating materials by combining carbon nanotubes with polyurethane.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
따라서, 본 발명이 해결하고자 하는 첫 번째 과제는 전기전도도를 부여하고 동시에 단열성능을 향상시킨 폴리우레탄 폼-탄소나노튜브 복합체를 제공하는 것이 다.  Therefore, the first problem to be solved by the present invention is to provide a polyurethane foam-carbon nanotube composites that impart electrical conductivity and at the same time improve the thermal insulation performance.
본 발명이 해결하고자 하는 두 번째 과제는 상기 폴리우레탄 폼 -탄소나노튜 브 복합체의 제조방법을 제공하는 것이다.  The second problem to be solved by the present invention is to provide a method for producing the polyurethane foam-carbon nanotube composite.
본 발명이 해결하고자 하는 세 번째 과제는 전기전도도를 부여하고 동시에 단열성능을 향상시킨 폴리우레탄 -탄소 소재 복합체를 제공하는 것이다.  The third problem to be solved by the present invention is to provide a polyurethane-carbon composite that provides electrical conductivity and at the same time improved heat insulation performance.
본 발명이 해결하고자 하는 네 번째 과제는 상기 폴리우레탄 -탄소 소재 복합 체의 제조방법을 제공하는 것이다.  The fourth problem to be solved by the present invention is to provide a method for producing the polyurethane-carbon composite.
【기술적 해결방법】  Technical Solution
본 발명은 상기 첫 번째 과제를 달성하기 위하여,  The present invention to achieve the first object,
폴리우레탄 및 폴리올에 분산된 탄소나노튜브를 포함하고, 상기 탄소나노튜 브는 폴리올 100 중량 대비 0.01-7 중량부인 것을 특징으로 하는 폴리우레탄 품-탄 소나노튜브 복합체를 제공한다.  Polyurethane and carbon nanotubes dispersed in a polyol, the carbon nanotubes provide a polyurethane-tansonanotube composite, characterized in that 0.01-7 parts by weight based on 100 weight of the polyol.
본 발명의 일 실시예에 의하면, 상기 탄소나노튜브는 단일벽 탄소나노류브, 이중벽 탄소나노튜브 또는 이들의 흔합물 중 어느 하나일 수 있으며, 폴리우레탄 폼의 발포셀 경계에 분포할 수 있다.  According to one embodiment of the present invention, the carbon nanotubes may be any one of single-walled carbon nano-leave, double-walled carbon nanotubes, or a combination thereof, and may be distributed on the foam cell boundary of the polyurethane foam.
본 발명의 다른 실시예에 의하면, 상기 폴리우레탄은 디이소시아네이트 화합 물과 폴리올을 반웅시켜 합성하고, 상기 디이소시아네이트 화합물은 폴리머릭 메틸 렌 디페닐 이소시아네이트 또는 모노머릭 메틸렌 디페닐 이소시아네이트이며, 폴리 을은 폴리에테르 폴리올일 수 있다.  According to another embodiment of the present invention, the polyurethane is synthesized by reacting a diisocyanate compound with a polyol, and the diisocyanate compound is a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and poly is poly Ether polyols.
본 발명의 또 다른 실시예에 의하면, 상기 폴리우레탄 폼-탄소나노튜브 복합 체는 난연제 또는 셀 안정제를 더 포함할 수 있다. According to another embodiment of the present invention, the polyurethane foam-carbon nanotube composite The sieve may further comprise a flame retardant or cell stabilizer.
본 발명은 상기 두 번째 과제를 달성하기 위하여,  The present invention to achieve the second object,
(al) 볼밀을 이용하여 탄소나노튜브를 파쇄하는 단계; 또는 (a2) 탄소나노튜 브를 산처리하는 단계와, (b) 폴리에테르 폴리올에 상기 파쇄한 탄소나노튜브 또는 산처리한 탄소나노튜브를 분산시키는 단계 및 (c) 상기 탄소나노튜브가 분산된 폴 리에테르 폴리을에 풀리머릭 메틸렌 디페닐 이소시아네이트 및 모노머릭 메틸렌 디 페닐 이소시아네이트중에서 선택되는 어느 하나의 디이소시아네이트 화합물과 발포 제를 첨가하여 반웅시키는 단계를 포함하는 폴리우레탄 폼-탄소나노튜브 복합체의 제조방법을 제공한다.  (al) crushing the carbon nanotubes using a ball mill; Or (a2) acid treating the carbon nanotubes, (b) dispersing the crushed carbon nanotubes or acid treated carbon nanotubes in a polyether polyol, and (c) dispersing the carbon nanotubes. A method for producing a polyurethane foam-carbon nanotube composite comprising the step of adding a foaming agent and a diisocyanate compound selected from polymeric polyene to fullermeric methylene diphenyl isocyanate and monomeric methylene diphenyl isocyanate To provide.
본 발명의 일 실시예에 의하면, 상기 (al) 단계의 탄소나노튜브의 파쇄시간 은 0.5-100 시간 동안 진행할 수 있다.  According to one embodiment of the present invention, the crushing time of the carbon nanotubes of step (al) may be performed for 0.5-100 hours.
본 발명의 다른 실시예에 의하면, 상기 (a2) 단계에서 과산화수소를 이용하 여 탄소나노튜브를 산처리하고, 과산화수소 100 중량 대비 0.2-0.4 중량부일 수 있 다.  According to another embodiment of the present invention, the carbon nanotubes are acid-treated using hydrogen peroxide in the step (a2), and may be 0.2-0.4 parts by weight relative to 100 parts by weight of hydrogen peroxide.
본 발명의 또 다른 실시예에 의하면, 상기 (b)단계는 상기 폴리에테르 폴리 올 100 중량 대비 0.05-0.15 중량부의 실란 커플링 에이젼트를 더 첨가하여 분산시 킬 수 있다ᅳ  According to another embodiment of the present invention, step (b) may be dispersed by further adding 0.05-0.15 parts by weight of the silane coupling agent to 100 parts by weight of the polyether polyol.
본 발명의 다른 실시예에 의하면, 상기 폴리에테르 폴리올의 히드록시기와 디이소시아네이트 화합물의 이소시아네이트기는 1-2 : 1의 중량비일 수 있다.  According to another embodiment of the present invention, the hydroxyl group of the polyether polyol and the isocyanate group of the diisocyanate compound may have a weight ratio of 1-2: 1.
본 발명의 다른 실시예에 의하면, 상기 (b) 단계에서 폴리올에 탄소나노튜브 를 분산시키기 위하여 초음파를 이용할 수 있다.  According to another embodiment of the present invention, in step (b), ultrasonic waves may be used to disperse the carbon nanotubes in the polyol.
본 발명의 다른 실시예에 의하면, 상기 (c) 단계에서 상기 탄소나노튜브가 분산된 폴리올에 첨가하는 발포제는 시클로펜탄, 아이소펜탄, 노말펜탄, 클로로플 루오로카본, 히드로클로로플루오로카본, 히드로플루오로카본, 물 또는 이들의 흔합 물 중 어느 하나일 수 있다.  According to another embodiment of the present invention, the blowing agent added to the polyol in which the carbon nanotubes are dispersed in the step (c) is cyclopentane, isopentane, normal pentane, chlorofluorocarbon, hydrochlorofluorocarbon, hydro Fluorocarbon, water, or a combination thereof.
' 본 발명의 다른 실시예에 의하면, 상기 (c) 단계의 반응은 25-80°C의 온도로 진행할 수 있다. According to another embodiment of the present invention, the reaction of step (c) may proceed to a temperature of 25-80 ° C.
본 발명은 상기 세 번째 과제를 달성하기 위하여,  The present invention to achieve the third object,
폴리우레탄 및 폴리을에 분산되는 탄소나노튜브, 그라파이트, 니켈코팅탄소 섬유, 탄소나노튜브 -그라파이트 복합체 및 탄소나노튜브 -니켈코팅탄소섬유 복합체 중에서 선택되는 어느 하나의 탄소 소재를 포함하고, 상기 탄소 소재는 폴리올 100 중량 대비 0.01—7 중량부인 것을 특징으로 하는 폴리우레탄 -탄소 소재 복합체를 제 공한다. Carbon nanotubes, graphite, nickel-coated carbon fiber, carbon nanotube-graphite composite and carbon nanotube-nickel-coated carbon fiber composite dispersed in a polyurethane and a poly-containing, the carbon material is Polyurethane-carbon composite material is characterized in that 0.01 to 7 parts by weight based on 100 weight of the polyol Ball.
본 발명의 일 실시예에 의하면, 상기 탄소나노류브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 이들의 흔합물중 어느 하나일 수 있다.  According to one embodiment of the present invention, the carbon nano-rubber may be any one of single-walled carbon nanotubes, double-walled carbon nanotubes, or a combination thereof.
본 발명의 다른 실시예의 의하면, 상기 폴리우레탄은 디이소시아네이트 화합 물과 폴리올을 반웅시켜 합성하고, 상기 디이소시아네이트 화합물은 폴리머릭 메틸 렌 디페닐 이소시아네이트 또는 모노머릭 메틸렌 디페닐 이소시아네이트이며, 폴리 올은 폴리에스테르 폴리을일 수 있다.  According to another embodiment of the present invention, the polyurethane is synthesized by reacting a diisocyanate compound and a polyol, the diisocyanate compound is a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and the polyol is a polyester It can be poly.
본 발명은 상기 네 번째 과제를 달성하기 위하여 ,  The present invention to achieve the fourth object,
(dl) 볼밀을 이용하여 탄소나노튜브를 파쇄하는 단계; 또는 (d2) 탄소나노튜 브를 산처리하는 단계와, (e) 폴리에테르 폴리올에 상기 파쇄 또는 산처리한 탄소 나노류브, 그라파이트, 니켈코팅탄소섬유, 상기 파쇄 또는 산처리한 탄소나노튜브 와 그라파이트 복합체 및 상기 파쇄 또는 산처리한 탄소나노튜브와 니켈코팅탄소섬 유 복합체 증에서 선택되는 어느 하나의 탄소 소재를 분산시키는 단계 및 (f) 상기 탄소 소재가 분산된 폴리에테르 폴리올에 폴리머릭 메틸렌 디페닐 이소시아네이트 및 모노머릭 메틸렌 디페닐 이소시아네이트중에서 선택되는 어느 하나의 디이소시 아네이트 화합물을 반응시키는 단계를 포함하는 폴리우레탄—탄소 소재 복합체의 제 조방법을 제공한다.  (dl) crushing the carbon nanotubes using a ball mill; Or (d2) acid treating the carbon nanotubes, and (e) carbon crushed or acid treated carbon nanotubes, graphite, nickel-coated carbon fibers, the crushed or acid treated carbon nanotubes and graphite Dispersing any one carbon material selected from the composite and the crushed or acid treated carbon nanotubes and nickel-coated carbon fiber composites, and (f) polymeric methylene diphenyl in the polyether polyol in which the carbon material is dispersed. Provided is a method for preparing a polyurethane-carbon composite comprising reacting one of the diisocyanate compounds selected from isocyanate and monomeric methylene diphenyl isocyanate.
본 발명의 일 실시예에 의하면, 상기 (dl) 단계의 탄소나노튜브의 파쇄시간 은 0.5-100 시간 동안 진행할 수 있다.  According to one embodiment of the present invention, the crushing time of the carbon nanotubes of the (dl) step may be performed for 0.5-100 hours.
본 발명의 다른 실시예에 의하면, 상기 (d2) 단계에서 과산화수소를 이용하 여 탄소나노류브를 산처리하고, 과산화수소 100 중량 대비 0.2ᅳ 0.4 중량부일 수 있 다.  According to another embodiment of the present invention, in the step (d2) using the carbon peroxide acid treatment of hydrogen peroxide, 0.2 to 0.4 parts by weight relative to 100 weight of hydrogen peroxide.
본 발명의 또 다른 실시예에 의하면, 상기 폴리에테르 폴리올의 히드록시기 와 디이소시아네이트 화합물의 이소시아네이트기는 1-2 : 1의 중량비일 수 있다. 본 발명의 다른 실시예에 의하면, 상기 (e) 단계에서 폴리올에 탄소나노튜브 를 분산시키기 위하여 초음파를 이용할 수 있다.  According to another embodiment of the present invention, the hydroxyl group of the polyether polyol and the isocyanate group of the diisocyanate compound may have a weight ratio of 1-2: 1. According to another embodiment of the present invention, in step (e), ultrasonic waves may be used to disperse the carbon nanotubes in the polyol.
본 발명의 다른 실시예에 의하면, 상기 (c) 단계의 반응은 25-80 °C의 온도로 진행할 수 있다. According to another embodiment of the present invention, the reaction of step (c) may proceed to a temperature of 25-80 ° C.
【유리한 효과】  Advantageous Effects
본 발명의 폴리우레탄 폼-탄소나노튜브 복합체에 포함되는 탄소나노튜브는 발포셀 형성의 핵제로 기능하여 발포셀 크기를 감소시키고, 복합체의 열 전도도를 감소시킬 수 있다. 따라서, 본 발명의 폴리우레탄 품-탄소나노튜브 복합체는 종래 의 폴리우레탄 품의 기계적 특성을 유지하면서도 단열 특성올 현저히 향상시킨다. 【도면의 간단한 설명】 The carbon nanotubes included in the polyurethane foam-carbon nanotube composite of the present invention may function as a nucleating agent for foaming cell formation to reduce the foaming cell size and reduce the thermal conductivity of the composite. Therefore, the polyurethane article-carbon nanotube composite of the present invention is conventional While maintaining the mechanical properties of polyurethane products, the thermal insulation properties are significantly improved. [Brief Description of Drawings]
도 la, 도 lb는 본 발명의 일 구현예에 따른 폴리우레탄 폼-탄소나노류브 복 합체에서 탄소나노튜브의 위치를 보여주는 전자주사현미경 사진이다.  La and lb are electron scanning micrographs showing the position of the carbon nanotubes in the polyurethane foam-carbon nano-leube complex according to an embodiment of the present invention.
도 2는 실시예 2 내지 실시예 4와 비교예 1 및 비교예 2에 따라 제조된 폴리 우레탄 폼-탄소나노튜브 복합체의 전기전도도를 나타낸 그래프이다.  Figure 2 is a graph showing the electrical conductivity of the polyurethane foam-carbon nanotube composites prepared according to Examples 2 to 4 and Comparative Examples 1 and 2.
도 3은 실시예 2 내지 실시예 4와 비교예 1 및 비교예 2에 따라 제조된 폴리 우레탄 폼-탄소나노튜브 복합체와 폴리우레탄 폼에 대한 열전도도를 나타낸 그래프 이다.  Figure 3 is a graph showing the thermal conductivity of the polyurethane foam-carbon nanotube composite and polyurethane foam prepared according to Examples 2 to 4 and Comparative Examples 1 and 2.
도 4 내지 도 5는 각각 비교예 1, 실시예 3에 따라 제조된 폴리우레탄 품-탄 소나노튜브 복합체의 전자주사현미경 사진이다.  4 to 5 are electron scanning micrographs of the polyurethane product-carbon sonanotube composites prepared according to Comparative Example 1 and Example 3, respectively.
도 6은 실시예 1, 실시예 3, 실시예 4 및 비교예 1에 따라 제조된 폴리우레 탄 폼-탄소나노류브 복합체의 굴곡 강도를 나타낸 그래프이다.  Figure 6 is a graph showing the flexural strength of the polyurethane foam-carbon nano-leube composite prepared according to Examples 1, 3, 4 and Comparative Example 1.
도 7은 실시예 3, 실시예 5, 실시예 6, 실시예 7, 실시예 8, 실시예 9 및 비 교예 1에 따라 제조된 폴리우레탄 품-탄소나노튜브 복합체의 전기전도도를 나타낸 그래프이다.  FIG. 7 is a graph showing the electrical conductivity of polyurethane product-carbon nanotube composites prepared according to Examples 3, 5, 6, 7, 7, 8, and Comparative Example 1. FIG.
도 8은 실시예 3, 실시예 5, 실시예 6, 실시예 7, 실시예 8, 실시예 9 및 비 교예 1에 따라 제조된 폴리우레탄 품-탄소나노튜브 복합체의 열전도도를 나타낸 그 래프이다.  8 is a graph showing the thermal conductivity of the polyurethane product-carbon nanotube composite prepared according to Example 3, Example 5, Example 6, Example 7, Example 8, Example 9 and Comparative Example 1 .
도 9는 실시예 17, 실시예 18, 실시예 19, 실시예 20, 실시예 21, 실시예 22 에 따라 제조된 폴리우레탄 품-탄소나노튜브 복합체의 열전도도를 나타낸 그래프이 다.  9 is a graph showing the thermal conductivity of the polyurethane product-carbon nanotube composites prepared according to Examples 17, 18, 19, 20, 21, 22.
도 10은 실시예 23, 실시예 24, 실시예 25, 실시예 26, 실시예 27, 실시예 28에 따라 제조된 폴리우레탄 품-탄소나노튜브 복합체의 열전도도를 나타낸 그래프 이다.  10 is a graph showing the thermal conductivity of the polyurethane product-carbon nanotube composite prepared according to Examples 23, 24, 25, 26, 27, 28.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 본 발명을 상세하게 설명한다.  Hereinafter, the present invention will be described in detail.
본 발명은 폴리우레탄 품-탄소나노튜브 복합체에 관한 것으로서, 본 발명에 따른 폴리우레탄 품-탄소나노튜브 복합체는 폴리우레탄 및 폴리올에 분산된 탄소나 노류브를 포함하고, 상기 탄소나노튜브의 함량비는 폴리을 100 증량 대비 0.01-7 중량부인 것을 특징으로 한다.  The present invention relates to a polyurethane article-carbon nanotube composite, wherein the polyurethane article-carbon nanotube composite according to the present invention comprises carbon or norub dispersed in polyurethane and polyol, and the content ratio of the carbon nanotubes The poly is characterized in that 0.01-7 parts by weight with respect to 100.
본 발명에 따른 폴리우레탄 폼-탄소나노류브 복합체의 단열성능은 탄소나노 튜브의 함량에 크게 의존한다. 복합체의 제조과정에서 탄소나노튜브는 폴리올에 분 산되게 되는데, 탄소나노튜브와 폴리을은 분자 간 인력에 의해 매우 약하게 결합하 게 되므로, 첨가한 탄소나노튜브의 양이 지나치게 많으면 서로 웅집하려는 경향이 강해져 나노화가 이루어지지 않고 단열성능이 저하되게 된다 . The thermal insulation performance of the polyurethane foam-carbon nano-leube composite according to the present invention is carbon nano It depends greatly on the content of the tube. In the manufacturing process of the composite, carbon nanotubes are dispersed in the polyol, and carbon nanotubes and polyurene are very weakly bound by the intermolecular attraction, and when the amount of added carbon nanotubes is too large, the tendency to coagulate each other becomes stronger. It is not nano-ized and the thermal insulation performance is reduced.
폴리우레탄에 탄소나노튜브를 첨가한 종래의 기술들은 단열재의 기계적 강도 를 증가시키기 위하여 탄소나노튜브를 이용하였으므로 탄소나노튜브의 함량이 전체 중량 기준 0.1중량%를 초과하여 단열성능의 감소를 초래하였다. 그러나, 본 발명에 서는 폴리우레탄에 첨가되는 탄소나노류브의 함량을 전체 중량 기준 0.001 내지 으 05중량 %로 조절하여 발포셀의 형성시에 탄소나노튜브가 핵제의 역할을 하도록 유 도하여 단열성능을 오히려 향상시킬 수 있는 것을 특징으로 한다.  Conventional techniques in which carbon nanotubes are added to polyurethane use carbon nanotubes to increase the mechanical strength of the insulation, resulting in a decrease in the thermal insulation performance of the carbon nanotubes exceeding 0.1 wt% based on the total weight. However, in the present invention, by controlling the content of the carbon nano-rubber added to the polyurethane to 0.001 to 05% by weight based on the total weight to induce the carbon nanotubes to act as a nucleating agent during the formation of the foaming cell to improve the thermal insulation Rather, it can be improved.
본 발명의 바람직한 구현예에 따른 폴리우레탄 품-탄소나노튜브 복합체에서 는 탄소나노류브가 폴리우레탄 품의 발포셀 경계에 분포되는 것을 특징으로 한다. 도 la 내지 도 lb는 본 발명의 일 구현예에 따른 폴리우레탄 품ᅳ탄소나노류 브 복합체에서 탄소나노튜브의 위치를 보여주는 전자주사현미경 사진이다. 도 la를 참조하면, 3개의 발포셀이 만나는 지점에 삼각형 형태의 발포셀 경계가 보이고, 그 부위에 탄소나노튜브가 위치하는 것을 확인할 수 있다. 도 lb는 상기 발포셀 경계 를 보다 확대한 사진인데, 발포셀 경계에 탄소나노튜브가 위치하는 것을 보다 명확 히 알 수 있다.  Polyurethane article-carbon nanotube composite according to a preferred embodiment of the present invention is characterized in that the carbon nano-rubber is distributed on the foam cell boundary of the polyurethane article. La to lb are electron scanning micrographs showing the position of the carbon nanotubes in the polyurethane nano carbon nano-bubble composite according to an embodiment of the present invention. Referring to FIG. La, a triangular foam cell boundary is shown at the point where three foam cells meet, and carbon nanotubes are located at the site. Figure lb is an enlarged picture of the foam cell boundary, it can be seen more clearly that the carbon nanotubes are located on the foam cell boundary.
폴리우레탄의 내부에 발포셀을 형성하기 위하여 발포제를 사용하게 되는데, 폴리올에 분산된 탄소나노튜브는 발포셀 형성의 핵제 역할을 한다. 탄노나노튜브의 표면에서 성장하기 시작한 발포셀은 탄소나노튜브가 존재하지 않는 영역으로 성장 하게 되고, 결과적으로 탄소나노튜브는 발포셀의 경계에 위치하게 된다. 이때에도 탄소나노튜브의 함량이 중요한 역할을 하게 되는데, 탄소나노튜브의 함량이 지나치 게 높은 경우에는 탄소나노튜브가 이웃한 발포셀과 접촉하여 발포셀이 파괴될 수 있고, 파괴된 발포셀에서 발포기체가 누설되어 단열성능이 저하될 수 있다.  A foaming agent is used to form a foaming cell in the polyurethane, and carbon nanotubes dispersed in a polyol serve as a nucleating agent for foaming cell formation. Foam cells that start to grow on the surface of the tanno-nanotubes grow to areas where carbon nanotubes do not exist, and as a result carbon nanotubes are located at the boundary of the foam cell. In this case, the content of carbon nanotubes also plays an important role. If the content of carbon nanotubes is excessively high, the carbon nanotubes may be in contact with neighboring foam cells, and the foam cells may be destroyed. The gas may leak and deteriorate the thermal insulation performance.
본 발명의 바람직한 구현예에 따라 탄소나노튜브가 분산되는 폴리올에 첨가 하는 발포제는 시클로펜탄, 아이소펜탄, 노말펜탄, 클로로플루오로카본, 히드로클 로로플루오로카본, 히드로플루오로카본, 물 또는 이들의 흔합물 중 어느 하나일 수 있다.  According to a preferred embodiment of the present invention, the blowing agent added to the polyol in which the carbon nanotubes are dispersed is cyclopentane, isopentane, normal pentane, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, water or their It may be any one of the combinations.
본 발명의 일 구현예에 따르면, 탄소나노튜브는 단일벽 탄소나노튜브, 이중 벽 탄소나노튜브 또는 이들의 흔합물일 수 있고, 볼밀을 이용한 분쇄단계에서 산처 리되거나 수산화 이온으로 처리될 수 있다. 본 발명의 일 구현예에서 폴리우레탄은 디이소시아네이트 화합물과 폴리올이 반응하여 합성하게 되는데, 디이소시아네이트 화합물은 폴리머릭 메틸렌 디페닐 이 소시아네이트 또는 모노머릭 메틸렌 디페닐 이소시아네이트일 수 있고, 폴리올은 무수프탈산 또는 아디프산과 ;에틸렌 옥사이드, 프로필렌 옥사이드 또는 이들의 흔 합물을 중합시켜 제조된 폴리에테르 폴리올일 수 있다. According to one embodiment of the present invention, the carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, or a mixture thereof, and may be treated with hydroxide or treated in a milling step using a ball mill. In one embodiment of the present invention, the polyurethane is synthesized by reacting a diisocyanate compound with a polyol. The diisocyanate compound may be a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and the polyol may be phthalic anhydride or It may be a polyether polyol prepared by polymerizing adipic acid with ethylene oxide, propylene oxide or a mixture thereof.
본 발명의 일 구현예에 따르면 , 폴리우레탄 폼-탄소나노류브 복합체는 난연 제 또는 셀 안정제를 더 포함할 수 있는데, 이 분야에 공지된 어떠한 난연제나 셀 안정제를 사용하는 것도 가능하다.  According to one embodiment of the present invention, the polyurethane foam-carbon nano-leube composite may further include a flame retardant or cell stabilizer, and it is also possible to use any flame retardant or cell stabilizer known in the art.
또한, 본 발명에 따른 폴리우레탄 폼-탄소나노류브 복합체 제조하기 위한 본 발명의 일 구현예는 다음과 같다.  In addition, an embodiment of the present invention for producing a polyurethane foam-carbon nano-leube composite according to the present invention is as follows.
먼저, 볼밀을 이용하여 탄소나노류브를 분쇄한다. 이어서, 폴리올에 탄소나 노류브를 흔합한다. 이어서, 탄소나노튜브가 흔합된 폴리올을 교반하고 초음팟를 이용하여 탄소나노튜브를 분산시킨다. 마지막으로 상기에서 얻어진 흔합물과 디이 소사아네이트를 흔합하고 교반하여 반웅시킨다.  First, the carbon nano-leave is pulverized using a ball mill. Subsequently, carbon or a norrebe is mixed with a polyol. Subsequently, the polyol mixed with the carbon nanotubes is stirred, and the carbon nanotubes are dispersed using an ultrasonic pot. Finally, the mixture obtained above and diisocyanate are mixed and stirred to react.
볼밀을 이용하여 탄소나노튜브를 분쇄하는 단계에서는 볼밀 외에 탄소나노류 브를 분쇄시킬 수 있는 다른 방법이 사용될 수 있고, 이 분야에 공지된 방법이라면 어떠한 방법이 사용되어도 무방하다. 또한, 볼밀을 이용하여 탄소나노튜브를 분쇄 하는 단계 전에 탄소나노튜브를 산처리하거나 수산화 이온처리하여 폴리올에 분산 되는 특성을 향상시킬 수도 있다.  In the step of pulverizing the carbon nanotubes by using a ball mill, other methods for pulverizing carbon nanobubbles besides the ball mill may be used, and any method known in the art may be used. In addition, before the step of pulverizing the carbon nanotubes using a ball mill, the carbon nanotubes may be acid treated or hydroxide ionized to improve the dispersion property in the polyol.
탄소나노류브가 흔합된 폴리올을 교반하고 초음파를 이용하여 탄소나노류브 를 분산시키는 단계는 10 내지 60분 동안 100 내지 3000rpm으로 초기 교반을 한 후 , 1000 내지 5000rpm으로 1 내지 24시간 동안 더 교반을 진행할 수 있다. 상기 초 기 교반은 탄소나노튜브를 잘 분산시키기 위한 것인데, 초기부터 고속으로 교반하 게 되면 탄소나노튜브끼리 서로 뭉쳐지게 되어 폴리올 화합물 안에서 탄소나노류브 가 잘 분산되지 못하게 되어 원하는 반웅이 충분히 일어나지 못하게 된다. 또한, 상기 초기교반시간이 10분 미만이면 탄소나노튜브를 분산시키기에 부족하고, 60분 을 초과하게 되면 공정효율이 떨어질 염려가 있다. 초기 교반 후에 lOOOrpm 이하로 교반시키게 되면 탄소나노튜브 사이로 폴리올 화합물이 층분히 들어가지 못하여 반 웅에 참여하기 힘들어지게 되므로 초기 교반 후에는 lOOOrpm 이상의 고속으로 교반 시키는 것이 바람직하고, 5000rpm을 초과하면 탄소나노튜브가 뭉치게 되어 폴리올 화합물에 잘 분산되지 않는다. 또한 초음파의 세기는 300kHz 이하로 진행하는 것이 바람직하고, 5 내지 60°C의 온도에서 5 내지 60분 동안 초음파 처리를 진행하는 것 이 보다 바람직하다 . Stirring the polyol mixed with carbon nano-lube and dispersing the carbon nano-lube using ultrasonic waves after the initial stirring at 100 to 3000rpm for 10 to 60 minutes, further stirring for 1 to 24 hours at 1000 to 5000rpm Can be. The initial stirring is to disperse the carbon nanotubes well, and when the mixture is stirred at a high speed from the beginning, the carbon nanotubes are agglomerated with each other so that the carbon nanotubes are not dispersed well in the polyol compound so that the desired reaction does not occur sufficiently. . In addition, if the initial stirring time is less than 10 minutes is insufficient to disperse the carbon nanotubes, if more than 60 minutes there is a fear that the process efficiency is lowered. After the initial stirring, if the mixture is stirred at lOOOOrpm or less, the polyol compound does not enter the reaction between the carbon nanotubes, so it is difficult to participate in reaction. Therefore, after the initial stirring, stirring at a high speed of lOOOOrpm or more is preferable. Are aggregated and do not disperse well in the polyol compound. In addition, the intensity of the ultrasonic wave is preferably carried out at 300 kHz or less, and the ultrasonic treatment for 5 to 60 minutes at a temperature of 5 to 60 ° C. This is more preferable.
탄소나노튜브가 분산된 폴리올과 디이소시아네이트를 반웅시키는 단계에 사 용되는 디이소시아네이트 화합물은 디이소시아네이트 화합물은 폴리머릭 메틸렌 디 페닐 이소시아네이트 또는 모노머릭 메틸렌 디페닐 이소시아네이트일 수 있다.  The diisocyanate compound used in the step of reacting the polyol and the diisocyanate in which the carbon nanotubes are dispersed may be the diisocyanate compound may be polymeric methylene diphenyl isocyanate or monomeric methylene diphenyl isocyanate.
반웅은 25 내지 80°C의 은도에서 진행시키는 것이 바람직한데, 25 °C 미만에 서 반웅을 진행시키면 이소시아네이트 작용기와 폴리올 작용기와의 반웅이 거의 일 어나지 못하여 원하는 폴리우레탄 결합이 형성되지 못하기 때문이다. 반웅온도가It is preferable that the reaction is carried out at a silver content of 25 to 80 ° C. If the reaction is carried out at less than 25 ° C, reaction of isocyanate functional groups and polyol functional groups hardly occurs, and thus the desired polyurethane bonds are not formed. to be. Reaction temperature
80°C를 초과하는 경우에는 내부에 삽입되어 있는 유기물이 분해되어 탄소나노튜브 의 층간 거리가 축소될 염려가 있고, 반웅성이 지나치게 높으면 공기 증에 포함되 어 있는 수분 등과 반웅이 신속하게 일어나게 되어 디이소시아네이트 화합물의 점 도가 지나치게 상승되며, 수분과의 화학 반웅을 통해 C02기포가 많이 생성되어 이를 제거하고 안정화시키는데 많은 시간이 소요되게 되는 문제점이 있다. If it exceeds 80 ° C, organic matter inserted inside may be decomposed, and the distance between layers of carbon nanotubes may be reduced. If the reaction property is too high, water and reaction contained in the air will rapidly occur. Viscosity of the diisocyanate compound is excessively increased, there is a problem that a large amount of C0 2 bubbles are generated through the chemical reaction with moisture to take a long time to remove and stabilize it.
탄소나노류브가 분산된 폴리을과 디이소시아네이트를 반웅시키는 단계에서, 상기 폴리을의 히드록시기와 디이소시아네이트 화합물의 이소시아네이트기는 1:1 내지 2:1의 비율로 존재하는 것이 바람직하다. 상기 비율이 1:1 미만일 경우에는 폴리올 성분이 과량으로 존재하며 폴리우레탄 형성 반웅이 완결되지 못하고, 2:1을 초과하는 경우에는 제조되는 경질 폴리우레탄의 강직도가 지나치게 높게 되어 깨어 지기 쉬워지기 때문이다.  In the step of reacting the poly-dispersed polyisocyanate with the di-isocyanate, it is preferred that the hydroxyl group and the isocyanate group of the diisocyanate compound are present in a ratio of 1: 1 to 2: 1. This is because when the ratio is less than 1: 1, the polyol component is present in excess and the polyurethane formation reaction is not completed. When the ratio exceeds 2: 1, the rigid polyurethane produced is excessively high and easily broken. .
탄소나노튜브가 분산된 폴리을과 디이소시아네이트를 반웅시키는 단계에서 탄소나노튜브의 함량은 폴리올 대비 0.01 내지 0.1중량부인 것이 바람직하다. 상기 비율은 앞에서 설명한 바와 같이 탄소나노튜브가 발포셀 성장의 핵제로 작용하기 위한 범위로, 폴리을과 디이소시아네이트의 함량비를 고려하여 결정된 것이다.  The content of the carbon nanotubes in the step of reacting the poly-dispersed polyisocyanate with the carbon nanotubes is preferably 0.01 to 0.1 parts by weight based on the polyol. The ratio is a range for the carbon nanotubes to act as a nucleating agent for the growth of foam cells, as described above, and is determined in consideration of the content ratio of poly and diisocyanate.
탄소나노튜브가 분산된 폴리올과 디이소시아네이트를 반웅시키는 단계에서는 탄소나노튜브가 분산된 폴리올에 계면활성제 또는 촉매를 더 첨가하는 것이 바람직 한데, 촉매로는 펜타메틸디에틸렌트리아민 (pentamethyl ethylene triamine), 디메 틸시클로핵실아민 (dimethykyclohexyl amine), 트리스 (3—디메틸아미노)프로필핵사 히드로트라아민 (tris(3— dimethylamin)propyl hexahydroamine), 트리에틸렌디아민 (triethylene amine) 또는 이들의 흔합물이 사용될 수 있고, 계면활성제로는 이 분 야의 공지된 물질이 모두 사용될 수 있다.  In the step of reacting the carbon nanotube-dispersed polyol and diisocyanate, it is preferable to further add a surfactant or a catalyst to the carbon nanotube-dispersed polyol. As a catalyst, pentamethyl ethylene triamine, Dimethykyclohexyl amine, tris (3—dimethylamin) propyl hexahydroamine, triethylene amine or a combination thereof may be used, As the surfactant, all known materials in this field can be used.
탄소나노류브가 분산된 폴리올과 디이소시아네이트를 반웅시키는 단계에서 사용되는 발포제는 낮은 열전도도를 가지며 대기 중에서 안정한 시클로펜탄 (cyclopentane) , 아이소펜탄 ( isopentane), 노말펜탄 (normal pentane) , 클로로플루 오로카본 (chlorof luorocarbon), 히드로클로로폴루오로카본 (hydrochlorocar m), 히 드로플루오로카본 (hydrofluorocarbon), 물 또는 이들의 흔합물을 사용할 수 있다. 상기 발포제의 양은 제조하고자 하는 품의 밀도에 따라 조절이 가능하며 낮 은 밀도의 품을 얻고자 할수록 첨가하는 발포제의 양은 증가하게 된다. The blowing agent used in the reaction of polyol and diisocyanate in which carbon nano dispersion is dispersed has low thermal conductivity and is stable in the atmosphere of cyclopentane, isopentane, normal pentane and chloroflu Chlorofluorocarbons, hydrochlorocarm, hydrofluorocarbons, water or combinations thereof can be used. The amount of the blowing agent can be adjusted according to the density of the product to be prepared, and the amount of blowing agent to be added increases as the product of low density is obtained.
본 발명에서는 초음파를 사용하지 않고 발포 폴리우레탄 품-탄소나노튜브 나 노 복합 신소재를 제조할 수도 있지만. 초음파 처리를 병행하는 것이 바람직하다. 그 이유는 발포제를 사용한 발포 반웅시, 잘 분산되지 않는 탄소나노튜브가 응집될 염려가 있기 때문에 초음파 처리를 통하여 이러한 웅집을 방지하여 물성을 향상시 킬 수 있기 때문이다. 이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위 가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명 할 것이다.  In the present invention, foamed polyurethane product-carbon nanotube nano composite new material can be produced without using ultrasonic waves. It is preferable to perform ultrasonic treatment in parallel. The reason for this is that when foaming reaction using a blowing agent, carbon nanotubes that are not dispersed well may be agglomerated, and these properties can be prevented through sonication to improve physical properties. Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.
<실시예 > <Example>
실시예 1  Example 1
(1) 탄소나노류브의 분쇄 및 파쇄  (1) Crushing and Shredding of Carbon Nano-Rubes
폴리올 상에서 잘 분산되게 만들어 주기 위하여 볼밀을 이용하여 탄소나노튜 브를 더욱 작은 크기의 입자로 분쇄하였다. 이때, 볼밀을 이용하여 탄소나노튜브를 분쇄 또는 파쇄는 2시간 동안 진행하였다.  In order to disperse well on the polyol, the carbon nanotubes were ground into smaller particles using a ball mill. At this time, milling or crushing the carbon nanotubes using a ball mill was performed for 2 hours.
(2) 탄소나노튜브가 분산된 폴리올의 제조 (2) Preparation of Polyols Dispersed with Carbon Nanotubes
폴리에테르 폴리을 (polyether polyol, KPC Co.에서 구매)의 중량을 기준으로 상기 탄소나노튜브를 0.이중량부로 첨가하였다. 상기의 폴리을 화합물이 탄소나노 튜브사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여 기계적 교반 장치 (mechanical stirrer)를 이용하여 반웅 초기에는 lOOOrpm의 저속으로 10분간 교반하여 주었으며 그 이후에는 5000rpm의 고속으로 20초 동안 교반시켜 주었다.  The carbon nanotubes were added at 0. 2 parts by weight based on the weight of the polyether poly (polyether polyol, purchased from KPC Co.). In order to allow the compound to be smoothly inserted into the carbon nanotubes to be dispersed and reacted, a reaction mixture was stirred for 10 minutes at a low speed of 100 rpm and then a high speed of 5000 rpm, using a mechanical stirrer. It was stirred for 20 seconds.
(3) 폴리우레탄 품 -탄소나노류브 복합체의 제조 (3) Preparation of Polyurethane Product-Carbon Nano-Rube Composite
실시예 1-2에 따라 제조된 탄소나노튜브 함유 폴리올과 폴리머릭 메틸렌 디 페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt 뭘 Co.에서 구매), 계면활성제 및 발포제 (물과 싸이클로펜탄의 흔합물)를 넣어 상 류브가 포함된 고분자형 폴리올 화합물의 비는 양론비보다 5중량 ¾ 과량으로 첨가하 였으며, 반웅을 위하여 기계적 교반 장치를 이용하여 5000rpm으로 20초 동안 교반 하였다. 하기의 [표 1]에 반웅물을 정리하였다. Carbon nanotube-containing polyols prepared according to Examples 1-2 and polymeric methylene diphenyl isocyanates (Lupranat M20, purchased from BASF Co.), catalysts (B8462, Goldschmidt) What was purchased from Co.), surfactants and blowing agents (a mixture of water and cyclopentane), the ratio of the polymer polyol compound containing the phase flow was added in excess of 5 wt ¾ of the stoichiometric ratio. Stirred at 5000 rpm for 20 seconds using a stirrer. [Table 1] to summarize the half water.
【표 1】  Table 1
Figure imgf000012_0001
실시예 2
Figure imgf000012_0001
Example 2
폴리올의 중량을 기준으로 탄소나노튜브의 첨가량을 0.05중량부로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 폴리우레탄 폼-탄소나노튜브 복합체 를 제조하였다. 실시예 3  A polyurethane foam-carbon nanotube composite was prepared in the same manner as in Example 1, except that the amount of carbon nanotubes added was 0.05 parts by weight based on the weight of the polyol. Example 3
폴리올 화합물의 중량을 기준으로 탄소나노튜브의 첨가량을 0.1중량부로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 폴리우레탄 품-탄소나노튜브 복 합체를 제조하였다. 실시예 4  A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 1, except that the amount of carbon nanotubes added was 0.1 parts by weight based on the weight of the polyol compound. Example 4
폴리올 화합물의 중량을 기준으로 탄소나노튜브의 첨가량을 0.2중량부로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 폴리우레탄 품-탄소나노튜브 복 합체를 제조하였다. 실시예 5 ' A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 1, except that the amount of carbon nanotubes added was 0.2 parts by weight based on the weight of the polyol compound. Example 5 ''
탄소나노튜브를 분쇄 또는 파쇄를 1시간 동안 진행한 것을 제외하고는 실시 예 3과 동일한 방법으로 폴리우레탄 품-탄소나노튜브 복합체를 제조하였다. 실시예 6  A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 1 hour. Example 6
탄소나노튜브를 분쇄 또는 파쇄를 3시간 동안 진행한 것을 제외하고는 실시 예 3과 동일한 방법으로 폴리우레탄 품-탄소나노류브 복합체를 제조하였다. 실시예 7 Except that carbon nanotubes were ground or crushed for 3 hours In the same manner as in Example 3, a polyurethane product-carbon nanoleube composite was prepared. Example 7
탄소나노튜브를 분쇄 또는 파쇄를 4시간 동안 진행한 것을 제외하고는 실시 예 3과 동일한 방법으로 폴리우레탄 폼-탄소나노튜브 복합체를 제조하였다. 실시예 8  Polyurethane foam-carbon nanotube composites were prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 4 hours. Example 8
탄소나노튜브를 분쇄 또는 파쇄를 6시간 동안 진행한 것을 제외하고는 실시 예 3과 동일한 방법으로 폴리우레탄 품-탄소나노튜브 복합체를 제조하였다. 실시예 9  A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 3 except that the carbon nanotubes were ground or crushed for 6 hours. Example 9
탄소나노튜브를 분쇄 또는 파쇄를 12시간 동안 진행한 것을 제외하고는 실시 예 3과 동일한 방법으로 폴리우레탄 품-탄소나노류브 복합체를 제조하였다. 실시예 10  Except that the carbon nanotubes were pulverized or crushed for 12 hours, a polyurethane product-carbon nano-leube composite was prepared in the same manner as in Example 3. Example 10
(1) 탄소나노류브의 산처리  (1) Acid Treatment of Carbon Nano-Rubes
폴리올 상에서 잘 분산되게 만들어 주기 위하여 과산화수소를 이용하여 탄소 나노튜브를 산처리 하였다. 이때, 과산화수소 50( l에 1.5 중량부의 탄소나노류브 를 첨가하여 진행하였다. 산처리를 하는 동안에는 bath타입의 초음파 장치를 이용 하여 90분간 진행하였다.  The carbon nanotubes were acid treated with hydrogen peroxide to ensure good dispersion on the polyols. At this time, the hydrogen peroxide was added by adding 1.5 parts by weight of carbon nano-lube to 50 (l. During the acid treatment, it proceeded for 90 minutes using a bath-type ultrasonic device.
(2) 산처리된 탄소나노류브가 분산된 폴리올의 제조 (2) Preparation of Acid-Treated Carbon Nano-Rubber-Dispersed Polyols
폴리에테르 폴리올 (polyether polyol, KPC Co.에서 구매)의 중량을 기준으로 상기 탄소나노류브를 0.01중량부로 첨가하였다. 상기의 폴리을 화합물이 탄소나노 류브사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여 기계적 교반 장치 (mechanical stirrer)를 이용하여 lOOrpm의 저속에서 3000rpm의 고속으로 5분 간 교반하여 주었다.  0.01 parts by weight of the carbon nanolybe was added based on the weight of the polyether polyol (polyether polyol, purchased from KPC Co.). The poly was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer to enable the compound to be smoothly inserted and dispersed between the carbon nano-rubbers.
(3) 폴리우레탄 품-탄소나노튜브 복합체의 제조 (3) Preparation of polyurethane product-carbon nanotube composite
실시예 10-2에 따라 제조된 탄소나노튜브 함유 폴리올과 폴리머릭 메틸렌 디 페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt's Co.에서 구매), 계면활성제 및 발포제 (물과 싸이클로펜탄의 흔합물) 를 넣어 상온에서 반웅시켜 폴리우레탄 품-탄소나노튜브 복합체를 제조하였다. 상 기 탄소나노튜브가 포함된 고분자형 폴리올 화합물의 비는 양론비보다 5중량 % 과량 으로 첨가하였으며, 반웅을 위하여 기계적 교반 장치를 이용하여 3000rpm으로 20초 동안 교반하였다. 실시예 11 Carbon nanotube-containing polyols and polymeric methylene diphenyl isocyanates (purchased from Lupranat M20, BASF Co.), catalysts (B8462, purchased from Goldschmidt's Co.), surfactants and blowing agents prepared according to Example 10-2. A mixture of cyclopentane) The reaction was added at room temperature to prepare a polyurethane product-carbon nanotube composite. The ratio of the polymer polyol compound including the carbon nanotubes was added in excess of 5% by weight relative to the stoichiometric ratio, and stirred for 20 seconds at 3000 rpm using a mechanical stirring device. Example 11
폴리올의 중량을 기준으로 탄소나노류브의 첨가량을 0.05중량부로 한 것을 제외하고는 상기 실시예 10과 동일한 방법으로 풀리우레탄 폼-탄소나노튜브 복합체 를 제조하였다. 실시예 12  A pulley urethane foam-carbon nanotube composite was prepared in the same manner as in Example 10, except that the amount of carbon nanoleub added was 0.05 parts by weight based on the weight of the polyol. Example 12
폴리을의 중량을 기준으로 탄소나노튜브의 첨가량을 0.3중량부로 한 것을 제 외하고는 상기 실시예 10과 동일한 방법으로 폴리우레탄 품-탄소나노튜브 복합체를 제조하였다. 실시예 13  A polyurethane product-carbon nanotube composite was prepared in the same manner as in Example 10, except that carbon nanotubes were added in an amount of 0.3 parts by weight based on the weight of poly. Example 13
(1) 탄소나노튜브의 산처리  (1) Acid treatment of carbon nanotubes
폴리을 상에서 잘 분산되게 만들어 주기 위하여 과산화수소를 이용하여 탄소 나노튜브를 산처리 하였다. 이때, 과산화수소 500ml에 1.5 중량부의 탄소나노튜브 를 첨가하여 진행하였다. 산처리를 하는 동안에는 bath타입의 초음파 장치를 이용 하여 90분간 진행하였다.  The carbon nanotubes were acid treated with hydrogen peroxide to ensure good dispersion of the poly phases. At this time, 1.5 parts by weight of carbon nanotubes were added to 500 ml of hydrogen peroxide. During the acid treatment, a bath-type ultrasonic device was used for 90 minutes.
(2) 실란커플링 에이전트 및 탄소나노튜브가 첨가된 폴리올의 제조 (2) Preparation of Polyol Added with Silane Coupling Agent and Carbon Nanotube
폴리에테르 폴리올 (polyether polyol, KPC Co.에서 구매)의 중량을 기준으로 상기 탄소나노튜브를 0.01중량부로 첨가하였다. 상기의 폴리올 화합물이 탄소나노 튜브사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여, 실란 커플링 에이전트를 0.1 중량부 첨가하고 기계적 교반 장치 (mechanical stirrer)를 이용하 여 lOOrpm의 저속에서 3000rpm의 고속으로 5분간 교반하여 주었다.  0.01 parts by weight of the carbon nanotubes were added based on the weight of the polyether polyol (polyether polyol, purchased from KPC Co.). In order to allow the polyol compound to be smoothly inserted and dispersed between the carbon nanotubes, 0.1 parts by weight of a silane coupling agent was added and a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer. It was stirred for 5 minutes.
(3) 폴리우레탄 폼-탄소나노류브 복합체의 제조 (3) Preparation of Polyurethane Foam-Carbon Nano-Rube Composite
실시예 13— 2에 따라 제조된 탄소나노튜브 함유 폴리을과 폴리머릭 메틸렌 디 페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt's Co.에서 구매), 계면활성제 및 발포제 (물과 싸이클로펜탄의 흔합물) 를 넣어 상온에서 반웅시켜 폴리우레탄 품-탄소나노튜브 복합체를 제조하였다. 상 기 탄소나노튜브가 포함된 고분자형 폴리을 화합물의 비는 양론비보다 5중량? ¾ 과량 으로 첨가하였으며, 반웅을 위하여 기계적 교반 장치를 이용하여 3000rpm으로 20초 동안 교반하였다. 실시예 14 Carbon nanotube containing poly and polymeric methylene diphenyl isocyanates (purchased from Lupranat M20, BASF Co.) prepared according to Examples 13-2, catalyst (B8462, Purchased from Goldschmidt's Co.), a surfactant and a blowing agent (a mixture of water and cyclopentane) were added at room temperature to prepare a polyurethane product-carbon nanotube composite. The ratio of the polymer type poly compound containing carbon nanotubes is 5% by weight than the stoichiometric ratio? ¾ was added in excess, and the reaction was stirred at 3000 rpm for 20 seconds using a mechanical stirring device. Example 14
폴리올의 중량을 기준으로 탄소나노류브의 첨가량을 0.05증량부로 한 것을 제외하고는 상기 실시예 13과 동일한 방법으로 폴리우레탄 품-탄소나노튜브 복합체 를 제조하였다. 실시예 15  Polyurethane article-carbon nanotube composites were prepared in the same manner as in Example 13, except that the amount of carbon nanoleuze was added to 0.05 part by weight based on the weight of the polyol. Example 15
폴리올의 중량을 기준으로 탄소나노튜브의 첨가량을 0.3중량부로 한 것올 제 외하고는 상기 실시예 13과 동일한 방법으로 폴리우레탄 품-탄소나노류브 복합체를 제조하였다.  Polyurethane article-carbon nano-leube composite was prepared in the same manner as in Example 13, except that the amount of carbon nanotubes added was 0.3 parts by weight based on the weight of the polyol.
실시예 16  Example 16
폴리올의 중량을 기준으로 탄소나노튜브의 첨가량을 0.5중량부로 한 것을 제 외하고는 상기 실시예 13과 동일한 방법으로 폴리우레탄 폼-탄소나노튜브 복합체를 제조하였다. 실시예 17  A polyurethane foam-carbon nanotube composite was prepared in the same manner as in Example 13, except that the amount of carbon nanotubes added was 0.5 parts by weight based on the weight of the polyol. Example 17
(1) 그라파이트가 분산된 폴리올의 제조  (1) Preparation of Polyol Dispersed Graphite
폴리에테르 폴리을 (polyether polyol, KPC Co.에서 구매)의 중량을 기준으로 상기 그라파이트를 1.0 중량부로 첨가하였다. 상기의 폴리올 화합물이 그라파이트 사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여 기계적 교반장치 (mechanical stirrer)를 이용하여 100rpm의 저속에서 3000rpm의 고속으로 5분간 교 반하여 주었다.  1.0 parts by weight of graphite was added based on the weight of polyether polyol (polyether polyol, purchased from KPC Co.). The polyol compound was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer so that the polyol compound could be smoothly inserted into the graphite to be dispersed and reacted.
(2) 폴리우레탄 -그라파이트 복합체의 제조 (2) Preparation of polyurethane-graphite composite
실시예 17-1에 따라 제조된 그라파이트 함유 폴리올과 폴리머릭 메틸렌 디페 닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462,Goldschraidt ' s Co.에서 구매), 계면활성제를 넣어준 뒤ᅳ 발포제는 넣지 않고 상은에서 반웅시켜 폴리우레탄 -그라파이트 복합체를 제조하였다. 상기 그라파이트가 포함된 고분자형 폴리올 화합물의 비는 양론비보다 5중량 % 과량으로 첨가하였으며 , 반웅을 위하여 기계적 교반 장치를 이용하여 5000rpm으로 20초 동안 교반하였다. 실시예 18 Graphite-containing polyols and polymeric methylene diphenyl isocyanates (purchased from Lupranat M20, BASF Co.), catalysts (B8462, purchased from Goldschraidt's Co.) and surfactants prepared according to Example 17-1. I don't add a blowing agent Polyurethane-graphite composites were prepared. The ratio of the polymer-containing polyol compound including graphite was added in an amount of 5% by weight over the stoichiometric ratio, and stirred at 5000 rpm for 20 seconds using a mechanical stirring device for reaction. Example 18
폴리올의 중량을 기준으로 그라파이트의 첨가량을 3.0중량부로 한 것을 제외 하고는 상기 실시예 17과 동일한 방법으로 폴리우레탄 -그라파이트 복합체를 제조하 였다. 실시예 19  A polyurethane-graphite composite was prepared in the same manner as in Example 17, except that the addition amount of graphite was 3.0 parts by weight based on the weight of the polyol. Example 19
폴리올의 중량을 기준으로 그라파이트의 첨가량을 7.0중량부로 한 것을 제외 하고는 상기 실시예 17과 동일한 방법으로 폴리우레탄 -그라파이트 복합체를 제조하 였다. 실시예 20  A polyurethane-graphite composite was prepared in the same manner as in Example 17, except that the amount of graphite added was 7.0 parts by weight based on the weight of the polyol. Example 20
(1) 니켈코팅탄소섬유가 분산된 폴리올의 제조  (1) Preparation of Polyols Dispersed with Nickel Coated Carbon Fiber
폴리에테르 폴리올 (polyether polyol , KPC Co.에서 구매)의 중량을 기준으로 상기 니켈코팅탄소섬유를 1.0 중량부로 첨가하였다. 상기의 폴리올 화합물이 니켈 코팅탄소섬유 사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여 기 계적 교반장치 (mechanical stirrer)를 이용하여 100rpm의 저속에서 3000rpm의 고속 으로 5분간 교반하여 주었다.  1.0 parts by weight of the nickel-coated carbon fiber was added based on the weight of the polyether polyol (polyether polyol, purchased from KPC Co.). The polyol compound was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer in order to allow the polyol compound to be smoothly inserted and dispersed between the nickel-coated carbon fibers.
(2) 폴리우레탄 -니켈코팅탄소섬유 복합체의 제조 (2) Preparation of polyurethane-nickel coated carbon fiber composite
실시예 20-1에 따라 제조된 니켈코팅탄소섬유 함유 폴리올과 폴리머릭 메틸 렌 디페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt's Co.에서 구매), 계면활성제를 넣어준 뒤, 발포제는 넣지 않고 상온 에서 반웅시켜 폴리우레탄 -니켈코팅탄소섬유 복합체를 제조하였다. 상기 니켈코팅 탄소섬유가 포함된 고분자형 폴리올 화합물의 비는 양론비보다 5중량 % 과량으로 첨 가하였으며, 반웅을 위하여 기계적 교반 장치를 이용하여 5000rpm으로 20초 동안 교반하였다. 실시예 21 폴리올의 중량을 기준으로 니켈코팅탄소섬유의 첨가량을 3.0중량부로 한 것 을 제외하고는 상기 실시예 20과 동일한 방법으로 폴리우레탄-탄소나노튜브 복합체 를 제조하였다. 실시예 22 Nickel-coated carbon fiber-containing polyols prepared according to Example 20-1 and polymeric methylene diphenyl isocyanates (Lupranat M20, purchased from BASF Co.), catalysts (B8462, purchased from Goldschmidt's Co.), and surfactants Afterwards, the foaming agent was reacted at room temperature without adding a polyurethane-nickel coated carbon fiber composite. The ratio of the polymer polyol compound containing the nickel-coated carbon fiber was added in excess of 5% by weight of the stoichiometric ratio, and stirred for 20 seconds at 5000 rpm using a mechanical stirring device for reaction. Example 21 A polyurethane-carbon nanotube composite was prepared in the same manner as in Example 20, except that the amount of the nickel-coated carbon fiber was added to 3.0 parts by weight based on the weight of the polyol. Example 22
폴리을의 중량을 기준으로 니켈코팅탄소섬유의 첨가량을 7.0중량부로 한 것 을 제외하고는 상기 실시예 20과 동일한 방법으로 폴리우레탄-탄소나노튜브 복합체 f 제조하였다. 실시예 23  A polyurethane-carbon nanotube composite f was prepared in the same manner as in Example 20, except that the amount of the nickel-coated carbon fiber was 7.0 parts by weight based on the weight of the poly. Example 23
(1) 탄소나노류브와 그라파이트가 분산된 폴리올의 제조  (1) Preparation of Polyols Dispersed with Carbon Nano-Rubber and Graphite
폴리에테르 폴리올 (polyether polyol, KPC Co.에서 구매)의 중량을 기준으로 상기 실시예 5를 통해 제조한 탄소나노튜브를 3.0 중량부 첨가하고, 그라파이트를 1.0 중량부로 첨가하였다. 상기의 폴리올 화합물이 탄소나노류브와 그라파이트 사 이에 원활하게 삽입되어 분산되어 반응될 수 있게 하기 위하여 기계적 교반장치 (mechanical stirrer)를 이용하여 lOOrpm의 저속에서 3000rpm의 고속으로 5분간 교 반하여 주었다.  3.0 parts by weight of carbon nanotubes prepared in Example 5 were added based on the weight of polyether polyol (polyether polyol, purchased from KPC Co.), and graphite was added in 1.0 parts by weight. In order to allow the polyol compound to be smoothly inserted and dispersed between carbon nano-leubu and graphite, the polyol compound was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer.
(2) 폴리우레탄—탄소나노튜브 -그라파이트 복합체의 제조 (2) Preparation of polyurethane-carbon nanotube-graphite composite
실시예 23-1에 따라 제조된 탄소나노튜브, 그라파이트 함유 폴리올과 폴리머 릭 메틸렌 디페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt's Co.에서 구매), 계면활성제를 넣어준 뒤, 발포제는 넣지 않고 상온 에서 반웅시켜 폴리우레탄-탄소나노튜브 -그라파이트 복합체를 제조하였다. 상기 탄 소나노류브와 그라파이트가 포함된 고분자형 폴리올 화합물의 비는 양론비보다 5중 량% 과량으로 첨가하였으며, 반웅을 위하여 기계적 교반 장치를 이용하여 5000rpm 으로 20초 동안 교반하였다. 실시예 24  Carbon nanotubes prepared in Example 23-1, graphite-containing polyols and polymeric methylene diphenyl isocyanates (Lupranat M20, purchased from BASF Co.), catalysts (B8462, purchased from Goldschmidt's Co.), surfactants Thereafter, the foaming agent was reacted at room temperature without adding a polyurethane-carbon nanotube-graphite composite. The ratio of the polymer polyol compound containing carbon nanonob and graphite was added in an amount of 5% by weight over the stoichiometric ratio, and the reaction was stirred for 20 seconds at 5000 rpm using a mechanical stirring device. Example 24
폴리올의 중량을 기준으로 탄소나노류브의 첨가량을 3.0 중량부, 그라파이트 의 첨가량을 3.0중량부로 한 것을 제외하고는 상기 실시예 18과 동일한 방법으로 폴리우레탄-탄소나노류브 -그라파이트 복합체를 제조하였다. 실시예 25 Polyurethane-carbon nano-leube-graphite composite was prepared in the same manner as in Example 18, except that the amount of carbon nanoleube was added by 3.0 parts by weight and the amount of graphite was added by 3.0 parts by weight based on the weight of the polyol. Example 25
폴리을의 중량을 기준으로 탄소나노튜브의'첨가량을 7.0 중량부, 그라파이트 의 첨가량을 7.0중량부로 한 것을 제외하고는 상기 실시예 23과 동일한 방법으로 폴리우레탄-탄소나노류브 -그라파이트 복합체를 제조하였다. 실시예 26 The 'addition amount of the carbon nanotubes, based on the weight of polrieul 7.0 parts by weight of polyurethane in the same manner as in Example 23 except that the graphite addition amount of the part 7.0 parts by weight, was prepared the graphite composite carbon nano ryubeu. Example 26
(1) 탄소나노튜브와 니켈코팅탄소섬유가 분산된 폴리올의 제조  (1) Preparation of polyols in which carbon nanotubes and nickel-coated carbon fibers are dispersed
폴리에테르 폴리올 (polyether polyol , KPC Co.에서 구매)의 중량을 기준으로 상기 실시예 5를 통해 제조한 탄소나노튜브를 3.0 중량부 첨가하고, 니켈코팅탄소 섬유를 1.0 증량부로 첨가하였다. 상기의 폴리올 화합물이 탄소나노튜브와 니켈코 팅탄소섬유 사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여 기계 적 교반장치 (mechanical stirrer)를 이용하여 lOOrpm의 저속에서 3000rpm의 고속으 로 5분간 교반하여 주었다.  3.0 parts by weight of carbon nanotubes prepared in Example 5 were added based on the weight of polyether polyol (polyether polyol, purchased from KPC Co.), and nickel coated carbon fibers were added in an amount of 1.0 parts by weight. In order to allow the polyol compound to be smoothly inserted and dispersed between the carbon nanotubes and the nickel-coated carbon fiber, a mechanical stirrer was used for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm. It stirred.
(2) 폴리우레탄-탄소나노튜브—그라파이트 복합체의 제조 (2) Preparation of polyurethane-carbon nanotube-graphite composite
실시예 26-1에 따라 제조된 니켈코팅탄소섬유 함유 폴리올과 폴리머릭 메틸 렌 디페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt's Co.에서 구매), 계면활성제 및 발포제 (물과 싸이클로펜탄의 흔합물) 를 넣어 상온에서 반웅시켜 폴리우레탄—탄소나노튜브 -니켈코팅탄소섬유 복합체를 제조하였다. 상기 탄소나노튜브와 니켈코팅탄소섬유가 포함된 고분자형 폴리올 화 합물의 비는 양론비보다 5중량 % 과량으로 첨가하였으며, 반웅을 위하여 기계적 교 반 장치를 이용하여 5000rpm으로 20초 동안 교반하였다. 실시예 27  Nickel-coated carbon fiber-containing polyols and polymeric methylene diphenyl isocyanates (purchased from Lupranat M20, BASF Co.), catalysts (B8462, purchased from Goldschmidt's Co.), surfactants and blowing agents prepared according to Example 26-1. A mixture of water and cyclopentane) was added and reacted at room temperature to prepare a polyurethane-carbon nanotube-nickel coated carbon fiber composite. The ratio of the polymer polyol compound including the carbon nanotubes and the nickel-coated carbon fiber was added in an excess of 5% by weight of the stoichiometric ratio, and stirred at 5000 rpm for 20 seconds using a mechanical stirrer. Example 27
폴리올의 중량을 기준으로 탄소나노튜브 3.0 중량부, 니켈코팅탄소섬유의 첨 가량을 3.0중량부로 한 것을 제외하고는 상기 실시예 26과 동일한 방법으로 폴리우 레탄-탄소나노튜브—니켈코팅탄소섬유 복합체를 제조하였다. 실시예 28  Polyurethane-carbon nanotubes-nickel-coated carbon fiber composites in the same manner as in Example 26, except that 3.0 parts by weight of carbon nanotubes and 3.0 parts by weight of nickel-coated carbon fibers were added based on the weight of the polyol. Was prepared. Example 28
폴리을의 중량을 기준으로 탄소나노튜브 7.0 중량부, 니켈코팅탄소섬유의 첨 가량을 7.0중량부로 한 것을 제외하고는 상기 실시예 26과 동일한 방법으로 폴리우 레탄-탄소나노튜브 -니켈코팅탄소섬유 복합체를 제조하였다. 실시예 29 Polyurethane-carbon nanotubes-nickel-coated carbon fiber composites in the same manner as in Example 26, except that 7.0 parts by weight of carbon nanotubes and 7.0 parts by weight of nickel-coated carbon fibers were added based on the weight of poly; Was prepared. Example 29
(1) 탄소나노튜브의 산처리  (1) Acid treatment of carbon nanotubes
폴리올 상에서 잘 분산되게 만들어 주기 위하여 과산화수소를 이용하여 탄소 나노튜브를 산처리 하였다. 이때, 과산화수소 500ml에 1.5 중량부의 탄소나노튜브 를 첨가하여 진행하였다. 산처리를 하는 동안에는 bath타입의 초음파 장치를 이용 하여 90분간 진행하였다.  The carbon nanotubes were acid treated with hydrogen peroxide to ensure good dispersion on the polyols. At this time, 1.5 parts by weight of carbon nanotubes were added to 500 ml of hydrogen peroxide. During the acid treatment, a bath-type ultrasonic device was used for 90 minutes.
(2) 산처리된 탄소나노튜브가 분산된 폴리올의 제조 (2) Preparation of Polyols Dispersed with Acid-treated Carbon Nanotubes
폴리에테르 폴리올 (polyether polyol, KPC Co.에서 구매)의 중량을 기준으로 상기 탄소나노튜브를 0.01중량부로 첨가하였다. 상기의 폴리을 화합물이 탄소나노 튜브사이에 원활하게 삽입되어 분산되어 반웅될 수 있게 하기 위하여 기계적 교반 장치 (mechanical stirrer)를 이용하여 lOOrpm의 저속에서 3000rpm의 고속으로 5분 간 교반하여 주었다.  0.01 parts by weight of the carbon nanotubes were added based on the weight of the polyether polyol (polyether polyol, purchased from KPC Co.). The poly was stirred for 5 minutes at a high speed of 3000 rpm at a low speed of 100 rpm using a mechanical stirrer to enable the compound to be smoothly inserted and dispersed between the carbon nanotubes.
(3) 폴리우레탄—탄소나노튜브 복합체의 제조 (3) Preparation of polyurethane-carbon nanotube composite
실시예 29-2에 따라 제조된 탄소나노튜브 함유 폴리을과 폴리머릭 메틸렌 디 페닐 이소시아네이트 (Lupranat M20, BASF Co.에서 구매), 촉매 (B8462, Goldschmidt's Co.에서 구매), 계계면활성제를 넣어준 뒤, 발포제는 넣지 않고 상 은에서 반웅시켜 폴리우레탄-탄소나노튜브 복합체를 제조하였다. 상기 탄소나노튜 브가 포함된 고분자형 폴리올 화합물의 비는 양론바보다 5중량 % 과량으로 첨가하였 으며, 반웅을 위하여 기계적 교반 장치를 이용하여 3000rpm으로 20초 동안 교반하 였다. 실시예 30  Carbon nanotube-containing poly and polymethylene diphenyl isocyanate (purchased from Lupranat M20, BASF Co.), catalyst (B8462, purchased from Goldschmidt's Co.) prepared according to Example 29-2, and the surfactant , A polyurethane-carbon nanotube composite was prepared by reacting in phase silver without adding a blowing agent. The ratio of the polymer polyol compound including the carbon nanotubes was added in excess of 5% by weight of the stoichiometry bar, and the reaction was stirred at 3000 rpm for 20 seconds using a mechanical stirring device. Example 30
폴리올의 중량을 기준으로 탄소나노튜브 7.0 중량부로 한 것을 제외하고는 상기 실시예 29와 동일한 방법으로 폴리우레탄 -탄'소나노류브 복합체를 제조하였다. 비교예 1 A polyurethane-tan ' sonanoleuven composite was prepared in the same manner as in Example 29, except that 7.0 parts by weight of carbon nanotubes were used based on the weight of the polyol. Comparative Example 1
폴리올에 탄소나노튜브를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 폴리우레탄 품을 제조하였다. 비교예 2 A polyurethane product was manufactured in the same manner as in Example 1, except that carbon nanotubes were not added to the polyol. Comparative Example 2
폴리올의 중량을 기준으로 탄소나노튜브의 첨가량을 0.5증량부로 한 것을 제 외하고는 실시예 1과 동일한 방법으로 폴리우레탄 품-탄소나노류브 복합체를 제조 하였다. 평가예 1 전기전도도 관찰  Except that the amount of carbon nanotubes added to 0.5 parts by weight based on the weight of the polyol was prepared in the same manner as in Example 1. Evaluation Example 1 Observation of Electrical Conductivity
전기전도도를 관찰하기 위하여 실시예 1 내지 실시예 9 및 비교예 1 내지 비 교예 2에 따른 폴리우레탄 품-탄소나노튜브 복합체 및 폴리우레탄 폼 시편 각각을 가로 15隱 X세로 15mmx높이 5隱로 잘라내어, 상기 시편의 전기전도도를 측정하였 다.  In order to observe the electrical conductivity, each of the polyurethane product-carbon nanotube composite and the polyurethane foam specimens according to Examples 1 to 9 and Comparative Examples 1 to 2 were cut out to a width of 15 mm x 15 mm x 5 mm, The electrical conductivity of the specimen was measured.
도 2는 실시예 2 내지 실시예 4와 비교예 1 및 비교예 2에 따라 제조된 폴리 우레탄 폼-탄소나노튜브 복합체의 전기전도도 결과이다.  Figure 2 is a result of the electrical conductivity of the polyurethane foam-carbon nanotube composite prepared according to Examples 2 to 4 and Comparative Examples 1 and 2.
[표 2]는 실시예들과 비교예들에 따라 제조된 폴리우레탄 폼ᅳ탄소나노류브 복합체와 폴리우레탄 폼에 대하여 전기전도도 (S/cm)를 측정한 결과를 정리한 것이 다.  Table 2 summarizes the results of measuring the electrical conductivity (S / cm) for the polyurethane foam ᅳ carbon nano-lube composite and polyurethane foam prepared according to the Examples and Comparative Examples.
【표 2】  Table 2
Figure imgf000020_0001
Figure imgf000020_0001
하기 도 2, 도 7 및 상기 [표 2]를 참조하면, 실시예 1 내지 실시예 9에 따 른 폴리우레탄 폼-탄소나노튜브 복합체는 탄소나노튜브를 첨가하지 않은 비교예 1 에 비하여 높은 전기전도도를 갖는 것을 알 수 있다. 이는 상기 탄소나노튜브의 첨 가로 인하여 폴리우레탄 폼—탄소나노튜브 복합체가 형성될 때, 분쇄된 탄소나노튜 브 입자가 폴리우레탄 품 내에서 전기가 흐를 수 있는 길을 만드는 역할을 하여 전 기를 잘 통하게 하고, 이에 따라 전기전도도가 증가한 것으로 판단된다. 평가예 2 밀도 및 열전도도의 측정 Referring to FIGS. 2, 7 and [Table 2], the polyurethane foam-carbon nanotube composites according to Examples 1 to 9 are higher in electrical conductivity than Comparative Example 1 without adding carbon nanotubes. It can be seen that having. This is because when the polyurethane foam-carbon nanotube composite is formed due to the addition of the carbon nanotubes, the pulverized carbon nanotube particles serve to create a path for electricity to flow in the polyurethane product. It is believed that the electrical conductivity is increased accordingly. Evaluation Example 2 Measurement of Density and Thermal Conductivity
실시예들과 비교예들에 따라 제조된 폴리우레탄 품-탄소나노튜브 복합체와 폴리우레탄 품에 대하여 밀도와 열전도도를 측정하였다.  Density and thermal conductivity were measured for the polyurethane article-carbon nanotube composite and the polyurethane article prepared according to Examples and Comparative Examples.
[표 3]은 실시예 1 내지 실시예 9 및 비교예 1 내지 비교예 2에 따라 제조된 폴리우레탄 품ᅳ탄소나노튜브 또는 폴리우레탄 폼의 밀도 및 열전도도 (kcal/mh°C)를 나타낸 것이다. [Table 3] shows the density and thermal conductivity (kcal / mh ° C) of polyurethane foamed carbon nanotubes or polyurethane foam prepared according to Examples 1 to 9 and Comparative Examples 1 to 2 .
【표 3】  Table 3
Figure imgf000021_0001
Figure imgf000021_0001
도.3 내지 도 5 및 [표 3]과 도 8을 참조하면, 실시예들에 따라 제조된 폴리 우레탄 품-탄소나노튜브 복합체는 비교예들에 비하여 열전전도도가 낮은 것을 알 수 있다. 또한 실시예에 따른 폴리우레탄 품-탄소나노튜브 복합체는 비교예에 비하 여 대체로 셀의 크기가 작은 것을 알 수 있다.  Referring to FIGS. 3 to 5 and Table 3 and FIG. 8, it can be seen that the polyurethane product-carbon nanotube composite prepared according to the examples has a lower thermal conductivity than the comparative examples. In addition, it can be seen that the polyurethane product-carbon nanotube composite according to the embodiment is generally smaller in size than the comparative example.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
폴리우레탄 및 폴리올에 분산된 탄소나노튜브를 포함하고, 상기 탄소나노튜 브는 폴리올 100 중량 대비 0.01ᅳ 7 중량부인 것을 특징으로 하는 폴리우레탄 폼-탄 소나노튜브 복합체 .  Polyurethane foam carbon nanotube composite comprising a carbon nanotube dispersed in a polyurethane and a polyol, the carbon nanotube is 0.01 to 7 parts by weight based on 100 weight of the polyol.
【청구항 2]  [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 이들 의 흔합물 중 어느 하나이고, 폴리우레탄 품의 발포셀 경계에 분포하는 것을 특징 으로 하는 폴리우레탄 품-탄소나노튜브 복합체 .  The carbon nanotube is any one of single-walled carbon nanotubes, double-walled carbon nanotubes or a mixture thereof, and polyurethane-carbon nanotube composites, characterized in that distributed on the foam cell boundary of the polyurethane product.
【청구항 3】  [Claim 3]
제 1 항에 있어서,상기 폴리우레탄은 디이소시아네이트 화합물과 폴리을을 반웅시켜 합성하고, 상기 디이소시아네이트 화합물은 폴리머릭 메틸렌 디페닐 이소 시아네이트 또는 모노머릭 메틸렌 디페닐 이소시아네이트이며, 폴리을은 폴리에테 르 폴리올인 것을 특징으로 하는 폴리우레탄 품-탄소나노류브 복합체 .  The method of claim 1, wherein the polyurethane is synthesized by reacting a diisocyanate compound with a poly, and the diisocyanate compound is a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and the poly is a polyether polyol. Polyurethane product-carbon nano-leuver composite, characterized in that
【청구항 4]  [Claim 4]
제 1 항에 있어서,  The method of claim 1,
난연제 또는 셀 안정제를 더 포함하는 것을 특징으로 하는 폴리우레탄 품-탄 소나노튜브 복합체 .  Polyurethane article-carbon nanotube composite further comprises a flame retardant or cell stabilizer.
【청구항 5】  [Claim 5]
(al) 볼밀을 이용하여 탄소나노류브를 파쇄하는 단계; 또는 (a2) 탄소나노류 브를 산처리하는 단계 ;  (al) crushing the carbon nanoleubes using a ball mill; Or (a2) acid treating the carbon nanobub;
(b) 폴리에테르 폴리올에 상기 파쇄한 탄소나노튜브 또는 산처리한 탄소나노 튜브를 분산시키는 단계 ; 및  (b) dispersing the crushed carbon nanotubes or acid treated carbon nanotubes in a polyether polyol; And
(c) 상기 탄소나노튜브가 분산된 폴리에테르 폴리올에 폴리머릭 메틸렌 디페 닐 이소시아네이트 및 모노머릭 메틸렌 디페닐 이소시아네이트중에서 선택되는 어 느 하나의 디이소시아네이트 화합물과 발포제를 첨가하여 반웅시키는 단계 ;를 포함 하는 폴리우레탄 품-탄소나노튜브 복합체의 제조방법.  (c) adding and reacting any one of the diisocyanate compounds selected from polymeric methylene diphenyl isocyanate and monomeric methylene diphenyl isocyanate and a blowing agent to the polyether polyol in which the carbon nanotubes are dispersed. Method for producing urethane product-carbon nanotube composite.
【청구항 6]  [Claim 6]
제 5 항에 있어서,  The method of claim 5,
상기 (al) 단계의 탄소나노튜브의 파쇄시간은 0.5-100 시간 동안 진행하는 것을 특징으로 하는 폴리우레탄 폼—탄소나노튜브 복합체의 제조방법. Method for producing a polyurethane foam-carbon nanotube composite, characterized in that the crushing time of the carbon nanotubes of the step (al) proceeds for 0.5-100 hours.
【청구항 7】 [Claim 7]
제 5 항에 있어서,  The method of claim 5,
상기 (a2) 단계에서 과산화수소를 이용하여 탄소나노류브를 산처리하고, 과 산화수소 100 중량 대비 0.2-0.4 중량부인 것을 특징으로 하는 폴리우레탄 폼 -탄소 나노튜브 복합체의 제조방법 .  The method of producing a polyurethane foam-carbon nanotube composite, characterized in that the acid treatment of carbon nano-lube using hydrogen peroxide in the step (a2), 0.2 to 0.4 parts by weight relative to 100 weight of hydrogen peroxide.
【청구항 8】  [Claim 8]
제 5 항에 있어서,  The method of claim 5,
상기 (b)단계는 상기 폴리에테르 폴리올 100 중량 대비 0.05—0.15 중량부의 실란 커플링 에이젼트를 더 첨가하여 분산시키는 것을 특징으로 하는 폴리우레탄 품-탄소나노튜브 복합체의 제조방법.  The step (b) is a polyurethane product-carbon nanotube composite, characterized in that the dispersion by adding 0.05 to 0.15 parts by weight of the silane coupling agent with respect to 100 weight of the polyether polyol.
【청구항 9]  [Claim 9]
제 5 항에 있어서,  The method of claim 5,
상기 폴리에테르 폴리올의 히드록시기와 디이소시아네이트 화합물의 이소시 아네이트기는 1-2 : 1의 중량비로 존재하는 것을 특징으로 하는 폴리우레탄 폼-탄 소나노튜브 복합체의 제조방법 .  A hydroxy group of the polyether polyol and an isocyanate group of a diisocyanate compound are present in a weight ratio of 1-2: 1.
【청구항 10】  [Claim 10]
제 5 항에 있어서,  The method of claim 5,
상기 (b) 단계에서 폴리을에 탄소나노류브를 분산시키기 위하여 초음파를 이 용하는 것을 특징으로 하는 폴리우레탄 폴리우레탄 품—탄소나노류브 복합체의 제조 방법.  Polyurethane polyurethane article-a method for producing a carbon nano-lung complex, characterized in that the ultrasonic wave is used to disperse the carbon nano-lube in poly in the step (b).
【청구항 111  [Claim 111]
제 5 항에 있어서,  The method of claim 5,
상기 (c) 단계에서 상기 탄소나노튜브가 분산된 폴리올에 첨가하는 발포제는 시클로펜탄, 아이소펜탄, 노말펜탄, 클로로플루오로카본, 히드로클로로플루오로카 본, 히드로플루오로카본, 물 또는 이들의 흔합물 중 어느 하나인 것을 특징으로 하 는 폴리우레탄 품—탄소나노튜브 복합체의 제조방법 .  The blowing agent added to the polyol in which the carbon nanotubes are dispersed in step (c) is cyclopentane, isopentane, normal pentane, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, water or a mixture thereof. Polyurethane article, characterized in that any one of the method of producing a carbon nanotube composite.
【청구항 12]  [Claim 12]
제 5 항에 있어서,  The method of claim 5,
상가 (c) 단계의 반웅은 25-80°C의 온도로 진행하는 것을 특징으로 하는 폴 리우레탄 품-탄소나노튜브 복합체의 제조방법. Addition (c) step reaction is a method for producing a polyurethane product-carbon nanotube composite, characterized in that proceeding to a temperature of 25-80 ° C.
【청구항 13】  [Claim 13]
폴리우레탄 및 폴리올에 분산되는 탄소나노류브, 그라파이트, 니켈코팅탄소 삼유, 탄소나노튜브 -그라파이트 복합체 및 탄소나노튜브 -니켈코팅탄소섬유 복합체 중에서 선택되는 어느 하나의 탄소 소재를 포함하고, 상기 탄소 소재는 폴리올 100 중량 대비 0.01-7 중량부인 것을 특징으로 하는 폴리우레탄 -탄소 소재 복합체. Carbon nanolyuves, graphite, nickel-coated carbon dispersed in polyurethanes and polyols Samyu, carbon nanotubes-graphite composites and carbon nanotubes-nickel-coated carbon fiber composites comprising any one carbon material selected from, wherein the carbon material is polyurethane polyurethane, characterized in that 0.01-7 parts by weight based on 100 weights of polyol- Carbon material composite.
【청구항 14】  [Claim 14]
제 13 항에 있어서,  The method of claim 13,
상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 이들 의 흔합물 중 어느 하나인 것을 특징으로 하는 폴리우레탄 -탄소 소재 복합체.  The carbon nanotube is a polyurethane-carbon composite, characterized in that any one of single-walled carbon nanotubes, double-walled carbon nanotubes or a mixture thereof.
[청구항 15】  [Claim 15]
제 13 항에 있어서,  The method of claim 13,
상기 폴리우레탄은 디이소시아네이트 화합물과 폴리올을 반웅시켜 합성하고, 상기 디이소시아네이트 화합물은 폴리머릭 메틸렌 디페닐 이소시아네이트 또는 모 노머릭 메틸렌 디페닐 이소시아네이트이며, 폴리올은 폴리에스테르 폴리올인 것을 특징으로 하는 폴리우레탄 -탄소 소재 복합체 .  The polyurethane is synthesized by reacting a diisocyanate compound with a polyol, wherein the diisocyanate compound is a polymeric methylene diphenyl isocyanate or a monomeric methylene diphenyl isocyanate, and the polyol is a polyurethane poly-carbon. Material composite.
【청구항 16】  [Claim 16]
(dl) 볼밀을 이용하여 탄소나노류브를 파쇄하는 단계; 또는 (d2) 탄소나노튜 브를 산처리하는 단계 ;  (dl) crushing the carbon nanoleubes using a ball mill; Or (d2) acid treating the carbon nanotubes;
(e) 폴리에테르 폴리올에 상기 파쇄 또는 산처리한 탄소나노튜브, 그라파이 트, 니켈코팅탄소섬유, 상기 파쇄 또는 산처리한 탄소나노튜브와 그라파이트 복합 체 및 상기 파쇄 또는 산처리한 탄소나노튜브와 니켈코팅탄소섬유 복합체 중에서 선택되는 어느 하나의 탄소 소재를 분산시키는 단계; 및  (e) the pulverized or acid treated carbon nanotubes, graphite, nickel coated carbon fibers, the crushed or acid treated carbon nanotubes and graphite composites, and the crushed or acid treated carbon nanotubes; Dispersing any one carbon material selected from nickel-coated carbon fiber composites; And
(f) 상기 탄소 소재가 분산된 폴리에테르 폴리올에 폴리머릭 메틸렌 디페닐 이소시아네이트 및 모노머릭 메틸렌 디페닐 이소시아네이트중에서 선택되는 어느 하나의 디이소시아네이트 화합물을 반웅시키는 단계;를 포함하는 폴리우레탄ᅳ탄소 소재 복합체의 제조방법 .  (f) reacting any one of the diisocyanate compounds selected from polymeric methylene diphenyl isocyanate and monomeric methylene diphenyl isocyanate on the polyether polyol in which the carbon material is dispersed; Manufacturing method.
..
【청구항 17] [Claim 17]
제 16 항에 있어서,  The method of claim 16,
상기 (dl) 단계의 탄소나노튜브의 파쇄시간은 0.5-100 시간 동안 진행하는 것을 특징으로 하는 폴리우레탄 -탄소 소재 복합체의 제조방법ᅳ  Crushing time of the carbon nanotubes of the step (dl) is a method for producing a polyurethane-carbon composite, characterized in that for 0.5-100 hours
【청구항 18】  [Claim 18]
제 16 항에 있어서,  The method of claim 16,
상기 (d2) 단계에서 과산화수소를 이용하여 탄소나노류브를 산처리하고, 과 산화수소 100 중량 대비 0.2-0.4 중량부인 것을 특징으로 하는 폴리우레탄 -탄소 소 재 복합체의 제조방법. Polyurethane-carbon element, characterized in that the acid treatment of carbon nano-lube using hydrogen peroxide in the step (d2), 0.2 to 0.4 parts by weight based on 100 weight of hydrogen peroxide Method for preparing ash composite.
【청구항 19]  [Claim 19]
제 16 항에 있어서 ,  The method of claim 16,
상기 폴리에테르 폴리올의 히드록시기와 디이소시아네이트 화합물의 이소시 아네이트기는 1-2 : 1의 중량비로 존재하는 것을 특징으로 하는 폴리우레탄 -탄소 소재 복합체의 제조방법ᅳ  Method for producing a polyurethane-carbon composite according to claim 1, wherein the hydroxyl group of the polyether polyol and the isocyanate group of the diisocyanate compound are present in a weight ratio of 1-2: 1.
【청구항 20】  [Claim 20]
제 16 항에 있어서,  The method of claim 16,
상기 (e) 단계에서 폴리올에 탄소나노튜브를 분산시키기 위하여 초음파를 이 용하는 것을 특징으로 하는 폴리우레탄 폴리우레탄 -탄소 소재 복합체의 제조방법. 【청구항 21】  Method of manufacturing a polyurethane polyurethane-carbon composites, characterized in that using the ultrasonic wave to disperse the carbon nanotubes in the polyol in the step (e). [Claim 21]
제 16 항에 있어서,  The method of claim 16,
상기 (c) 단계의 반웅은 25-80의 온도로 진행하는 것을 특징으로 하는 폴리 우레탄—탄소 소재 복합체의 제조방법 .  The reaction of step (c) is a method of producing a polyurethane-carbon composite, characterized in that proceeding to a temperature of 25-80.
PCT/KR2010/009585 2009-12-31 2010-12-30 Polyurethane foam-carbon nanotube composite, and preparation method thereof WO2011081485A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090135292 2009-12-31
KR10-2009-0135292 2009-12-31
KR1020100066322A KR20110079470A (en) 2009-12-31 2010-07-09 Polyurethane foam-carbon nanotube composite and fabrication method of the same
KR10-2010-0066322 2010-07-09

Publications (2)

Publication Number Publication Date
WO2011081485A2 true WO2011081485A2 (en) 2011-07-07
WO2011081485A3 WO2011081485A3 (en) 2011-12-01

Family

ID=44227069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009585 WO2011081485A2 (en) 2009-12-31 2010-12-30 Polyurethane foam-carbon nanotube composite, and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2011081485A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863779A (en) * 2012-10-18 2013-01-09 扬州大学 Preparation method of composite material of interpenetrating polymer network and carbon nanotubes
WO2014023833A1 (en) * 2012-08-10 2014-02-13 Diera S.A. Padded sanitary installation
WO2021198215A1 (en) * 2020-04-01 2021-10-07 Rampf Holding Gmbh & Co. Kg Conductive polyurethane
WO2022015429A1 (en) * 2020-07-13 2022-01-20 L&P Property Management Company Thermally conductive nanomaterials flexible foam
CN114316194A (en) * 2021-12-10 2022-04-12 卓尔博(宁波)精密机电股份有限公司 Polyurethane composite material for motor shell and preparation method thereof
US11597862B2 (en) 2021-03-10 2023-03-07 L&P Property Management Company Thermally conductive nanomaterial coatings on flexible foam or fabrics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080003843A (en) * 2005-04-27 2008-01-08 아르끄마 프랑스 Polymer-based cellular structure comprising carbon nanotubes, method for its production and uses thereof
KR100793259B1 (en) * 2006-12-29 2008-01-10 (주)디피아이 홀딩스 Waterborne polyurethane resin, method of manufacturing the waterborne polyurethane and method of dispersing carbon nano tube using the waterborne polyurethane
JP2008001866A (en) * 2006-06-26 2008-01-10 Toyo Tire & Rubber Co Ltd Polyurethane sheet and its production process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080003843A (en) * 2005-04-27 2008-01-08 아르끄마 프랑스 Polymer-based cellular structure comprising carbon nanotubes, method for its production and uses thereof
JP2008001866A (en) * 2006-06-26 2008-01-10 Toyo Tire & Rubber Co Ltd Polyurethane sheet and its production process
KR100793259B1 (en) * 2006-12-29 2008-01-10 (주)디피아이 홀딩스 Waterborne polyurethane resin, method of manufacturing the waterborne polyurethane and method of dispersing carbon nano tube using the waterborne polyurethane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HESHENG XIA ET AL.: 'Preparation and characterization of polyurethane-carbon nanotube composites' SOFT MATTER vol. 1, 2005, pages 386 - 394 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023833A1 (en) * 2012-08-10 2014-02-13 Diera S.A. Padded sanitary installation
CN102863779A (en) * 2012-10-18 2013-01-09 扬州大学 Preparation method of composite material of interpenetrating polymer network and carbon nanotubes
WO2021198215A1 (en) * 2020-04-01 2021-10-07 Rampf Holding Gmbh & Co. Kg Conductive polyurethane
WO2022015429A1 (en) * 2020-07-13 2022-01-20 L&P Property Management Company Thermally conductive nanomaterials flexible foam
US11814566B2 (en) 2020-07-13 2023-11-14 L&P Property Management Company Thermally conductive nanomaterials in flexible foam
US11597862B2 (en) 2021-03-10 2023-03-07 L&P Property Management Company Thermally conductive nanomaterial coatings on flexible foam or fabrics
CN114316194A (en) * 2021-12-10 2022-04-12 卓尔博(宁波)精密机电股份有限公司 Polyurethane composite material for motor shell and preparation method thereof
CN114316194B (en) * 2021-12-10 2023-11-28 卓尔博(宁波)精密机电股份有限公司 Polyurethane composite material for motor shell and preparation method thereof

Also Published As

Publication number Publication date
WO2011081485A3 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Agrawal et al. PU foam derived from renewable sources: Perspective on properties enhancement: An overview
KR20110079470A (en) Polyurethane foam-carbon nanotube composite and fabrication method of the same
WO2011081485A2 (en) Polyurethane foam-carbon nanotube composite, and preparation method thereof
Kausar Polyurethane composite foams in high-performance applications: A review
Kirpluks et al. Rigid polyurethane foam thermal insulation protected with mineral intumescent mat
US5565497A (en) Dispersant for filled, rigid cellular polymers
JP6140280B2 (en) Polyurethane polymers and compositions made using discrete carbon nanotubes MOLECULARREBAR
JP2018021211A (en) Composition in the form of dispersion comprising lignin, method for producing the same and use of the same
JP5922771B2 (en) Isocyanate-based polymer foam composites with improved thermal insulation properties
KR100507847B1 (en) Hard polyurethane foam composition and insulation for keeping coolness using it
Li et al. Rigid polyurethane foam/cellulose whisker nanocomposites: Preparation, characterization, and properties
CA2116556A1 (en) Dispersant for carbon black-filled foam
SK4292000A3 (en) Process for preparing rigid polyurethane foams, rigid plyurethane or urethane-modified polyisocyanurate foam and a polyfunctional composition
Lim et al. Synthetic aliphatic biodegradable poly (butylene succinate)/MWNT nanocomposite foams and their physical characteristics
CN105461895B (en) Combined polyether, polyisocyanurate foam and its feedstock composition and preparation method
JP2004285319A (en) Rigid polyurethane foam composition and low-temperature insulator using the same
JP2024036685A (en) Method for producing thermosetting foam with excellent flame retardancy and thermosetting foam using the same
Burgaz Polyurethane Insulation Foams for Energy and Sustainability
KR101154191B1 (en) Method for preparing polyisocyanurate foam using liquid nucleating agents and polyisocyanurate foam prepared by the same
HUE032607T2 (en) Process for producing rigid polyurethane foams
KR100809667B1 (en) Water blowned polyurethane composition having very low density and method for preparing the same
CN107089916A (en) Formic acid organic amine salt compounds and its purposes as foaming agent
CN103068924A (en) Polyisocyanurate composition
KR100599197B1 (en) Clay-polyurethane foam nanocomposite of heat pipe lagging material and manufacturing method thereof
KR100889837B1 (en) Manufacturing method of polyurethane foam/clay nano composites for the thermal insulation and the Polyurethane foam/clay nano composites using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841317

Country of ref document: EP

Kind code of ref document: A2